
Planning in Multi-Agent Systems

Salvador Jacobi

Kongens Lyngby 2014
Compute-BSc-2014

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk Compute-BSc-2014-1

Summary (English)

The goal of the thesis is to investigate how the GOAL agent programming
language can be extended with automated planning capabilities. Agent pro-
gramming was partially motivated by the lack of flexible planners, but agent
programming languages often lack useful planning capabilities. A prototype of
a planning module that uses the partial-order planning algorithm is implemented
in Java and integrated into the GOAL codebase.

ii

Summary (Danish)

Målet for denne afhandling er at undersøge hvordan agent-programmeringssproget
GOAL kan udvides med muligheder for automatiseret planlægning. Agent pro-
grammering var partielt motiveret af mangel på fleksible planlægningværktøjer,
men agent-programmeringssprog mangler ofte nyttige planlægningsmuligheder.
En prototype af et planlægningsmodul som benytter partial-order planlægnings
algoritmen er implementeret i Java og integreret i GOAL’s codebase.

iv

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring an BSc in Software Technology.

Lyngby, 01-July-2014

Salvador Jacobi

vi

Contents

Summary (English) i

Summary (Danish) iii

Preface v

1 Introduction 1

2 The GOAL Agent Programming Language 3

3 Automated Planning 9

4 Planning Module 11
4.1 Simplifying assumptions . 12
4.2 Integration . 12
4.3 Test program . 13

5 Partial-Order Planning Algorithm 15
5.1 Implementation . 19

6 Conclusion 23

A Appendix 25
A.1 Source code listing . 25

Bibliography 45

viii CONTENTS

Chapter 1

Introduction

The purpose of this project is to integrate automated planning into the GOAL
agent programming language. This will enable GOAL agents to compute a
plan—a sequence of actions—that will achieve a particular goal without the
need to define a rule based strategy in the agent program that is specific to the
problem domain.

My task has been to implement a planning module that extends the GOAL
programming language. The GOAL codebase is written Java and my planning
module is implemented by extending this codebase to allow users of the GOAL
programming language to invoke this planning module.

My thesis is organized as follows. I will start with an introduction of the GOAL
programming language and some of the relevant concepts in automated plan-
ning. I will then discuss the planning module and how it integrates into GOAL.
I will also describe the partial-order planning algorithm and my attempt to
implement it in Java. Finally, I will conclude this project.

2 Introduction

Chapter 2

The GOAL Agent
Programming Language

GOAL is a programming language and a platform designed specifically for pro-
gramming cognitive agents and simulating their behavior in a multi-agent sys-
tem. The term agent is used to describe an entity that can perceive information
about its environment and perform actions that can potentially change the state
of this environment. GOAL provides tools to program the behavior of agents
that can act and perceive in an environment.

An example of an environment could be a version of the famous blocks world
domain. In the blocks world domain blocks are arranged on a table and the
blocks can be sitting either directly on the table or on top of another block.
There is always room on the table for more blocks, but there can only be one
block directly on top of another. A block can be moved onto the table or onto
another block, but only one can be moved at a time. This could be extended
with multiple agents that are all capable of moving blocks around. Moving a
block from one position to another would be an action that is then broadcasted
to the other agents as a percept about who moved what block to and from
where. Agents could work together or against each other to achieve some desired
configuration of the blocks.

4 The GOAL Agent Programming Language

(1) (2)

(3) (4)

Figure 2.1: Blocks world configurations

Here’s an example of the blocks world domain with three blocks a, b, and c
that are moved from one configuration to another over the course of three
move actions.

A GOAL agent maintains a mental state, which is all the information the
agent currently has about the environment and the goals it wants to achieve.
This information is represented using a knowledge representation language (KR-
language), which is a symbolic, logic language. GOAL is not retricted to any
specific KR-language, but the important thing is that the represented infor-
mation can be updated and queried through the interface that GOAL defines.
The currently implemented KR-language is Prolog, which will be used in the
following examples.

The mental state of an agent is separated into three categories; knowledge,
beliefs, and goals. The knowledge base is static and cannot be changed during
execution. It holds general knowledge about the environment, such as rules and
facts that always apply. The belief base is dynamic and can be updated during
execution to reflect the current state of the environment. This is everything
specific to the current state of the environment. The goal base contains goals
that the agent wants to achieve. These should ideally be declarative goals that
specify what the state of environment should be, but nothing about how to
achieve it. When a goal is achieved (i.e. when its thruth value can be derived
from the knowledge and belief bases) it is removed from the goal base. The goal
base is also dynamic and the agents can adopt and drop goals during execution.

5

An environment is an external program that communicates with the GOAL
runtime through the Java-based Environment Interface Standard (EIS). Agents
interact with the environment through percepts and actions.

A percept is sent by the environment to a specific agent and contains informa-
tion about some aspect of the environment that the agent can perceive. This
information could be anything about the state of some simulation or even data
from a hardware sensor. Agents process incoming percepts to update their be-
liefs about the environment by inserting and/or deleting facts into/from the
belief base.

Agents can perform actions to potentially change the state of the environment.
Available actions are formally specified in the agent program. An action speci-
fication consists of the action name and its parameter variables, a precondition,
and a postcondition. A precondition specifies under what conditions an action
can be performed and a postcondition specifies the effects of performing an ac-
tion. When the precondition for an action is satisfied, the action is said to be
enabled. When an action is performed, the belief base is updated according to
the postcondition.

move(X,Z) {
pre { block(X), on(X,Y), clear(X), clear(Z) }
post { on(X,Z), not(on(X,Y)) }

}

Figure 2.2: Action specification of move action

Here is an example of an action specification in the blocks world domain that
moves a block X onto Z (either a block or the table). The precondition states
that X should be a block, that X should be on top of something Y , and that
both the block being moved and the destination is clear, i.e. there’s nothing
on top of it (except for the table which is always clear).

A GOAL agent program is separated into modules that consist of different sec-
tions. There are three special modules: init, main, and event. The init module
is used to specify the initial knowledge, beliefs and goals of the agent as well as
for defining the action specifiations. The main module serves as the entry point
of the agent program, and the event module is used for processing percepts. It
is also possible to specify custom modules that can be invoked with an action
rule.

6 The GOAL Agent Programming Language

knowledge {
block(a).
block(b).
block(c).
clear(table).
clear(X) :-

block(X),
not(on(_,X)).

}

beliefs {
on(c,a).
on(a,table).
on(b,table).

}

goals {
on(a,b), on(b,c).

}

Figure 2.3: Knowledge, beliefs, and goals

This is an example of the initial knowledge, beliefs, and goals of an agent
in the blocks world domain. The knowledge section encodes the following
information. There are three blocks named a, b, and c. The table is always
clear, i.e. it’s always possible to put something on the table. The rule clear(X)
says that a block is clear if there is nothing on top of it. The beliefs section
encodes the following initial configuration of blocks. The blocks are configured
as shown in fig. 2.1.(1). The goals section specifies a single goal—that the
blocks should be stacked as shown in fig. 2.1.(4).

The main module must contain a program section. A program section defines a
strategy for selecting actions to perform using action rules. A program section
consists of a list of action rules of the form if ψ then α, where ψ is a mental
state condition that specifies when the action α (or combination of actions) is
applicable. A mental state condition is a query that inspects the knowledge,
belief, and goal bases of the agent. It consists of mental atoms, such as bel(φ)
and goal(φ), that can be combined in a logic expression.

if goal(clear(Y)), bel(on(X,Y)) then move(X,table).

Figure 2.4: Action rule

Here’s an example of an action rule where the mental state condition is a
conjunction of two mental atoms. The goal atom inspects the goal base to
see if we have a goal to clear Y . The bel atom inspects the combination of
the knowledge and belief base to see if we currently believe that some block
X is on top of Y . The action moves the block X away from Y , however only
if there’s nothing on top of X.

When the action of an action rule is both enabled and applicable it is called an
option. An action rule will generate an option for every configuration of action
parameters that satisfy the mental state condition.

7

The order in which action rules are considered during execution is determined
by the rule evaluation order of the containing program section. The possible
evaluation orders are linear, random, linearall and randomall. With the
linear order, action rules are evaluated from top to bottom and the first option
generated will be performed. With the random order, an option is randomly
selected from all the options generated by all the rules. The linear and random
orders will only perform one action (or action combo) in each evaluation step
of a module, whereas the linearall and randomall orders will consider all the
rules and perform multiple actions in the same evaluation step. There’s also
an adaptive order that invokes an adaptive learning algorithm that is then
responsible for selecting an option.

A module will continue evaluating until its exit condition holds. There are four
possible exit conditions:

nogoals — exit if there are no goals left in the goal base

noaction — exit if no action was performed in this evaluation step

always — always exit the module

never — never exit the module

Note that there is a special action exit-module that will exit a module regard-
less of its exit condition. The default exit condition is always, except for the
main module, where it’s never.

When a GOAL program is started, the main module is evaluated. Whenever an
action is performed a cycle is started that fetches new percepts from the envi-
ronment, evaluates the init module if it hasn’t been already, and then evaluates
the event module. A cycle is also started if no action was performed after eval-
uating the main module. The agent program terminates when the main module
exits.

8 The GOAL Agent Programming Language

Chapter 3

Automated Planning

“Planning is the reasoning side of acting. It is an abstract, explicitly delibera-
tion process that chooses and organizes actions by anticipating their expected
outcomes.” [GNT04]

Planning can be viewed as a search in a transition system Σ = (S,A, γ), where
S is a finite set of all possible states of the environment (or of a simplified
model thereof), A is a finite set of all possible actions, and γ : S × A → S is
a state-transition function that will compute the resulting state of performing
an action. This is assuming that the transition system is deterministic, i.e. the
result of performing an action in some particular state will always result in the
same state. A transition system Σ can be represented as a directed graph where
the vertices are the states in S and the arcs are actions in A, such that the
action a will go from state s to s′ if and only if γ(s, a) = s′.

The planning problem can then by defined as a triple P = (Σ, s0, g), where Σ
is a transition-system, s0 is the initial state, and g is a set of goal states. A
solution to the planning problem would then be a sequence of actions that form
a path in the graph from s0 to s ∈ g.

One of the main issues is how to define P without explicitly enumerating all the
possible states and actions, as the number of these quickly become very large due
to combinatorial explosion. For example, there are 3.27697927886085654441 ·

10 Automated Planning

1020 distinct states in blocks world domain with just 20 blocks1.

One method of implicitly representing P is the classical representation, which
uses a first-order language L with a finite number of predicate and constant
symbols and no function symbols. A state is then defined as a set of ground
atoms of L. These are all the predicates that hold in that state. Predicates not
mentioned are considered false (this is the closed world assumption (CWA)).

Actions are represented using operators. An operator is a template for a set
of actions. It consists of an action name that includes parameter variables, a
precondition and the effects that are both sets of literals (an atom of the negation
thereof) that may contain the variables mentioned in the parameters. An action
is then a ground instance (no variables) of an operator. The state transition
function then be defined as follows: γ(s, a) = (s\effects−(a))∪effects+(a), where
effects+(a) and effects−(a) are the atoms of resp. the positive and negative
literals that appear in the effects of an action a.

The statement of a planning problem is what corresponds to syntical specifica-
tion, e.g. how it would be represented in the GOAL language. The statement
of the planning problem P = (Σ, s0, g) is defined as P = (O, s0, g), where O is
the set of operators.

1This happens to follow the integer sequence http://oeis.org/A000262, which describes
the number of “sets of lists”.

http://oeis.org/A000262

Chapter 4

Planning Module

The planning module is an extension to the GOAL programming language.
When the planning module is invoked by an agent, it selects a single goal from
the goal base and attempts to find a plan to achieve this goal. If successful, the
planning module will have the agent perform the actions of the plan, one at a
time.

One way of achieving this would be to integrate an external PDDL planner
by translating the planning problem in GOAL into PDDL and have the exter-
nal planner find a plan that is then brought back into GOAL for execution.
PDDL stands for Planning Domain Definition Language and is an attempt at
standardizing the description of planning domains and problems.

Another solution would be to write a planner myself that is part of the GOAL
codebase. This would also allow me to make use of data structures and utilities
already defined in GOAL when implementing the planning algorithm.

I decided to write a partial-order planner based on the PoP procedure defined
in [GNT]. One reason for choosing a plan-space planning algorithm (as opposed
to state-space) is that it lends itself well to multi-agent planning, as the partial
plan structure allows for plan-merging operations to be defined and handled
more easily. The planning problem could be decomposed and distributed to
agents and then finally merged. I did not have the time to look into this aspect

12 Planning Module

multi-agent planning, but making the choice for a plan-space planner would
make it easier to later implement such a feature in GOAL.

I have tried my best to keep the planner independent of the KR-language by
only using the interfaces defined in GOAL. There are, however, subtle aspects
such as variable renaming that might depend on the KR-language in use, e.g.
in Prolog variables must be capitalized.

4.1 Simplifying assumptions

Predicates that derive from other predicates introduce a lot of difficulties when
planning, so I have decided to only consider basic predicates. One way of deal-
ing with rules would be to compile them into simple facts before invoking the
planner. I decided to simply assume that the agent program makes no use of
rules, such as the clear(X) predicate mentioned earlier.

Another assumption I’ve made is that all action specifications should adhere
to the STRIPS format, where preconditions are conjunctions of positive literals
and postconditions are conjunctions of literals. This limits the expressiveness
of the precondition as it is no longer possible to specify that certain predicates
should not hold for the action to be enabled. I also assume that all variables
mentioned in the precondition and postcondition appear in the parameters of
the action specification. This is not something GOAL requires, but will make
it easier to deal with variables in action specifications.

4.2 Integration

The planner is integrated into GOAL by implementing a new rule evaluation
order. In a similiar way to adaptive order that invokes an adaptive learning
algorithm, I have implemented a plan order that invokes my planning algorithm
that then performs the actions of the resulting plan (if any). The planning
module hooks into the GOAL runtime inside the run method of the RuleSet
class with an addition case to a switch statement (see line 21 in the appendix).

The program section of a module with the plan order is completely ignored, as
everything is left to the planner. The action rules of the program section could
be used to aid the planner with information specific to the domain, but this is
not something I’ve looked into.

4.3 Test program 13

The planner works by extracting the facts of the knowledge and belief bases
and combining them into a set of DatabaseFormula, which is a Java interface
implemented by the KR-language plugin (Prolog in this case) that represents an
expression that can be inserted into a database of expressions. This corresponds
to the initial state s0 of the planning problem. The goal is also extracted as a
set of DatabaseFormula which then corresponds to g. The action specifications
of the init module are gathered as soon as the agent program has been parsed,
and the preconditions and postconditions of actions are also converted to sets
of DatabaseFormula.

If the planner finds a plan, it will perform the actions of the plan on at a time
until all action have been performed or the precondition of the next action
doesn’t hold. If the planner returns failure, then the module will simply do
nothing.

If the planner is unable to find a solution plan it might keep on searching for a
very long time, stalling the agent program. One way to deal with this would be to
implement some kind of time out period that simply stops the planner in case it
takes too long as well as some precaution that prevents it from happening again
immediately. This is not something I have implemented and there are many
other refinements that can be made. It would be useful if the programmer could
also specify some kind of strategy for when to give up planning or when the
replan in case of an unsatisfied precondition caused by other agents changing
the state of the environment while the planner is running.

4.3 Test program

In order to test the correctness of my planning module I set up a simple test
program that solve a problem based on the blocks world domain (See appendix
for a listing of the plan.goal program) The example given earlier used a rule
to determine if a block was clear. In order to work with the planning module
the rule must be eliminated. The clear rule is removed from the knowledge base
and instead clear(c) and clear(b) is added to the belief base.

14 Planning Module

knowledge {
block(a).
block(b).
block(c).
clear(table).

}

beliefs {
on(c,a).
on(a,table).
on(b,table).
clear(c).
clear(b).

}

goals {
on(a,b), on(b,c).

}

Figure 4.1: Knowledge, beliefs, and goals

In order to update the clear predicate when the blocks are moved, the move
action is split into two actions; move1(X,Y,Z) for moving a block X sitting on
Y onto a another block Z and move2(X,Y) for moving a block X sitting on Y
on to the table. The postconditions will update the clear predicate to correctly
reflect the environment.

move1(X,Y,Z) {
pre { block(X), block(Z), on(X,Y), clear(X), clear(Z) }
post { on(X,Z), not(on(X,Y)), clear(Y), not(clear(Z)) }

}

move2(X,Y) {
pre { block(X), on(X,Y), clear(X) }
post { on(X,table), not(on(X,Y)), clear(Y) }

}

Figure 4.2

It’s trivial to see that the optimal plan (the plan with the least actions) for
stacking the blocks a, b, and c on top of eachother is the following sequence of
actions: 〈move2(c, a), move1(b,table,c), move1(a,table,b)〉.

The main module simply contains a program section with the rule evaluation
order plan. The program section contains a single dummy action rule that is
never actually evaluated with the only purpose of keeping the GOAL parser
happy.

Chapter 5

Partial-Order Planning
Algorithm

The partial-order planning (POP) algorithm is a plan-space planning algorithm
as opposed to a state-space planning algorithm. In state-space planning you
search the the graph of Σ to find a goal state. In plan-space planning you
search in a graph where the vertices are (potentially unfinished) plans and the
arcs are refinement operators that step by step fill out the details of a plan.

The POP algorithm works on partial-order plans. This means that the actions
of a plan do not have to be in one specific sequence (i.e. in total-order). Instead,
actions and orderings are decoupled and ordering constraints are placed on pairs
of actions. An ordering constraint simply tells wether some action should come
after another action, but not necessarily directly after it. A partial-order plan
can thereby represent multiple total-order plans, i.e. all the possible interleav-
ings of actions that satisfy the ordering constraints. The algorithm follows the
least commitment strategy, where only the strictly necessary constraints are put
on a plan in order to progress, e.g. actions of the plan are partially instati-
ated such that variables can remain unbound and action are only ordered when
necessary.

Consider the statement P = (O, s0, g) of a classical planning problem P. A
partial-order plan is a tuple π = (A,≺, B, L), where A is a set of partially

16 Partial-Order Planning Algorithm

instantiated operators of O (referred to as actions), ≺ is a set of ordering con-
straints ai ≺ aj that tells that action ai is ordered before aj , B a set of binding
constraints on the variables of the actions of A, and L is a set of causal links
〈ai

p−→ aj〉 that tells that action ai provides the precondition p for the action aj .

A partial-order plan is a solution to the planning problem if it has no flaws.
A flaw is either a subgoal or a threat, and these are related to the causal links
of L. A causal link 〈ai

p−→ aj〉 specifies that the action ai has effect p that
satisfies the precondition p of the action aj . A subgoal is a precondition without
a corresponding causal link. If an action a with an effect ¬q can be interleaved
in-between two actions ai and aj of a casual link 〈ai

p−→ aj〉 and p can be unified1

with q, then a is said to be a threat on the causal link, as it could potentially
negate an effect that one action provides for another.

The POP algorithm is started with the empty plan. This plan contains two
pseudo actions a0 and a∞ that do not map to any actions that can be performed
by an agent. The start action a0 has an empty precondition and effects s0. The
finish action a∞ has no effects and precondition g. The plan also contains the
ordering a0 ≺ a∞ and all actions inserted later will be ordered in-between a0
and a∞ such that a0 and a∞ are resp. the first and last action. This plan
obviously contains flaws, as the action a∞ contains subgoals.

The idea is then to keep refining the plan until there are no flaws are left. This
is acheived by adding causal links to solve subgoals as well as new actions to
create these casual links. Threats are resolved by adding either ordering or
binding constraints such that the threat is avoided. The threatening action a
can either be demoted or promoted with resp. aj ≺ a and a ≺ ai. Another way
to resolve the threat is to add a binding constraint such that p and q are no
longer unifiable.

The PoP algorithm is shown in alg. 1. It takes two arguments π and agenda.
The first argument π is the current version of the plan. The agenda is a set of
ordered pairs (a, p), where a is an action of A and p is a precondition of a that
is also a subgoal. When the agenda is empty, there there’s nothing left to do
and the solution plan is returned.

The algorithm is initially called with the empty plan and an agenda that contains
(a∞, p) for all preconditions p of a∞.

1Two terms can be unified if there exists a substitution such that the terms become equal,
e.g. the substitution {X 7→ a, Y 7→ table} unifies the two terms on(X, table) and on(a, Y).

17

Algorithm 1 PoP algorithm as given in [GNT04]

1: procedure Pop(π, agenda) . where π = (A,≺, B, L)
2: if agenda = ∅ then
3: return π
4: end if
5: select any pair (aj , p) in and remove it from agenda
6: relevant← Providers(p, π)
7: if relevant = ∅ then
8: fail
9: end if

10: non-deterministic choice of action ai ∈ relevant
11: L← L ∪ {〈ai

p−→ aj〉}
12: update B with the binding constraints of this causal link
13: if ai is a new action in A then
14: update A with ai
15: update ≺ with (ai ≺ aj), (a0 ≺ ai ≺ a∞)
16: update agenda with all preconditions of ai
17: end if
18: for each threat on 〈ai

p−→ aj〉 or due to ai do
19: resolvers← set of resolvers for this threat
20: if resolvers = ∅ then
21: fail
22: end if
23: non-deterministic choice of resolver in resolvers
24: add that resolver to ≺ or to B
25: end for
26: return Pop(π, agenda)
27: end procedure

The Providers(p, π) procedure returns actions that are relevant to the precon-
dition p. These are new actions or actions already in A that have an effect that
could potentially satisfy the precondition p.

There are two non-deterministic choices for selecting actions and resolvers.
Backtracking over these non-deterministic choices works the following way. When
a fail is encountered, the algorithm continues from where the previous non-
determinstic choice was made with a new choice. If all choices are exhausted
it counts as a fail and it backtracks even further. If there is no previous non-
determinstic choice the algorithm fails and no plan is found.

18 Partial-Order Planning Algorithm

block(X1)
block(Z1)
on(X1,Y1)
clear(X1)
clear(Z1)

block(X2)
block(Z2)
on(X2,Y2)
clear(X2)
clear(Z2)

block(a)
block(b)
block(c)
clear(table)
on(c,a)
on(a,table)
on(b,table)
clear(c)
clear(b)

block(X3)
on(X3,Y3)
clear(X3)

on(X3,table)
¬on(X3,Y3)
clear(Y3)

on(X1,Z1)
¬on(X1,Y1)
clear(Y1)
¬clear(Z1)

on(X2,Z2)
¬on(X2,Y2)
clear(Y2)
¬clear(Z2)

a0 a∞
move1(X1,Y1,Z1)

move1(X2,Y2,Z2)

move2(X3,Y3)

on(a,b)
on(b,c)

binding constaints:
X1 = a, Y1 = table, Z1 = b
X2 = b, Y2 = table, Z2 = c
X3 = c, Y3 = X1

Figure 5.1: Graphical representation of a partial-order plan

Fig 5.1 is a graphical representation of a partial-order plan that solves the blocks
world problem shown in fig. 4.1. The boxes are the actions of A with precondi-
tion above and effects below. Casual links are shown with solid arrows and some
ordering constraints are explicitly shown with dashed arrows. The majority of
the ordering constraints are implicit: a0 ≺ a for all a 6= a0, a ≺ a∞ for all
a 6= a∞, and casual links imply an ordering constraint in the same direction.

This partial-order plan has only one linearization, i.e. it only represents one
total-order plan: 〈move2(c, a), move1(b,table,c), move1(a,table,b)〉. The two
ordering contraints shown explicitly are the result of two threat resolvers. The
action move1(X1, Y1, Z1) initially threatened the casual link that provides the
precondtion clear(X2) with the effect ¬clear(Z1), as X2 = Z1 = b. This is
resolved by demoting the threat action such that it is ordered after the casual
link: move1(X1, Y1, Z1) ≺ move1(X2, Y2, Z2).

5.1 Implementation 19

5.1 Implementation

In order to implement the PoP algorithm in Java, I have translated the pseu-
docode to a version that backtracks using recursion (see alg. 2). When a failure
condition is encountered, the function returns a null -value. The algorithm works
on a single plan that is updated and reverted. After the plan is updated to re-
flect the choice of an action or resolver, a recursive call is made. If the recursive
call returns null, then the changes made in this recursion are reverted and a
new choice is made. If the recursive call returns a non-null value, then it is
propagated and the algorithm returns the solution plan.

The threat resolution is moved into a separate procedure Pop2, that recurses
to resolve threats. If all threats are resolved, it calls the main procedure Pop
to continue.

The ordering constraints are handled by an OrderingManager that maintains
the transitive closure of ≺. This makes it possible to query ordering constraints
in constant time, however, it is significantly more costly to update the orderings
as it requires a re-propagation of the transitive closure with complexity O(n2).
It should however be beneficial as there are usually issued more queries than
updates when planning.

The OrderingManager class implements a method getLinearization that com-
putes one of the possible total-order plans. The ordering constraints can be
viewed as a directed acyclic graph with actions as vertices and arcs as orderings.
A linearization is the found by performing a topological sort that puts all the
actions into a specific ordering.

a
c

b
d

(a) Ordering constraints

a c b d

(b) Linearization 〈a, c, b, d〉

Figure 5.2: Example of topological sort

20 Partial-Order Planning Algorithm

Algorithm 2 PoP procedure without choose/fail

1: procedure Pop(π, agenda) . where π = (A,≺, B, L)
2: if agenda = ∅ then
3: return π
4: end if
5: select any pair (aj , p) in and remove it from agenda
6: relevant← Providers(p, π)
7: for ai ∈ relevant do
8: L← L ∪ {〈ai

p−→ aj〉}
9: update B with the binding constraints of this causal link

10: isNewAction← ai 6∈ A
11: if isNewAction then
12: update A with ai
13: update ≺ with (ai ≺ aj), (a0 ≺ ai ≺ a∞)
14: update agenda with all preconditions of ai
15: end if
16: threats← Threats(ai, p, aj)
17: result← Pop2(π, agenda, threats)
18: if result 6= null then
19: return result
20: end if
21: if isNewAction then
22: remove preconditions of ai from agenda
23: remove (ai ≺ aj), (a0 ≺ ai ≺ a∞) from ≺
24: remove ai from A
25: end if
26: remove binding constraints of this causal link from B

27: L← L \ {〈ai
p−→ aj〉}

28: end for
29: return null
30: end procedure
31: procedure Pop2(π, agenda, threats) . where π = (A,≺, B, L)
32: if threats = ∅ then
33: return Pop(π, agenda, threats)
34: end if
35: select any threat t from threats
36: resolver ← Resolvers(t)
37: for resolver ∈ resolvers do
38: update ≺ or B according to resolver
39: result← Pop2(π, agenda, threats)
40: if result 6= null then
41: return result
42: end if
43: revert ≺ or B according to resolver
44: end for
45: end procedure

5.1 Implementation 21

This version of the algorithm is not very practical as the choice of the action and
resolver on resp. line 7 and 37 is arbitrary. The partial-order planning algorithm
is very dependent on a heuristic for the choice of actions and resolvers as this
has a huge impact on plan space that must be searched. By implementing a
best-first strategy where the action and resolvers are chosen based solely on their
heuristic value. Fewest alternatives first (FAF) is the heuristic to solve the flaw
(or subgoal) that results in the fewest number of resolvers. The idea is to get
the flaws with the smallest branching factor out of the way as early as possible
to limit the cost of eventual backtracking.

My planner implementation managed to find a plan to achieve the goal in my test
program, however, this is only a coincidence. By simply changing the goal such
that the blocks should be a stack in the reverse order causes the algorithm to
never terminate. This is because the planner makes arbitrary choices of actions
and resolvers that are not guided toward a solution. My implementation in Java
can be seen in POPPlanner.java from line 108 in the appendix.

22 Partial-Order Planning Algorithm

Chapter 6

Conclusion

I have made myself familiar with the GOAL agent programming language and
the structure of its codebase in order to extend the language with planning
capabilities. I have integrated a planning module that hooks in to the GOAL
runtime and implemented a version of the partial-order planning algorithm in
Java.

The planning module is unfortunately not in a state that makes it practical to
use in a GOAL agent program, as the planning algorithm is not guided by a
heuristic. It does, however, find a solution plan for the small example problem
I set up and the methods for manipulating a partial plan structure appear to
be working as intended.

If I had more time to work on this project, I would definitely prioritize a better
search strategy that takes a heurstic function, such as FAF, into consideration.
The following aspects would also be interesting to investigate:

• How to distribute a planning problem in a multi-agent system.

• What kinds of problems can be solved with a combination of planning and
a rule based strategy.

• Implementing the Planning Domain Definition Language (PDDL) as a
KR-language.

24 Conclusion

Appendix A

Appendix

A.1 Source code listing

src/test/resources/goal/tools/plan/plan.goal

1 init module {
2 knowledge {
3 block(a).
4 block(b).
5 block(c).
6 clear(table).
7 }
8
9 beliefs {

10 on(c,a).
11 on(a,table).
12 on(b,table).
13 clear(c).
14 clear(b).
15 }
16
17 goals {
18 on(a,b), on(b,c).
19 }
20
21 actionspec {
22 move1(X,Y,Z)@int {
23 pre { block(X), block(Z), on(X,Y), clear(X), clear(Z) }
24 post { on(X,Z), not(on(X,Y)), clear(Y), not(clear(Z)) }
25 }
26

26 Appendix

27 move2(X,Y)@int {
28 pre { block(X), on(X,Y), clear(X) }
29 post { on(X,table), not(on(X,Y)), clear(Y) }
30 }
31 }
32 }
33
34 main module [exit=nogoals] {
35 program [order=plan] {
36 % dummy action rule
37 if true then print (0).
38 }
39 }

src/test/java/goal/tools/plan/PlannerTest.java

1 package goal.tools.plan;
2
3 import static org.junit.Assert.assertFalse;
4 import static org.junit.Assert.assertNull;
5 import static org.junit.Assert.assertTrue;
6 import goal.core.agent.Agent;
7 import goal.core.agent.AgentId;
8 import goal.core.agent.EnvironmentCapabilities;
9 import goal.core.agent.GOALInterpreter;

10 import goal.core.agent.LoggingCapabilities;
11 import goal.core.agent.MessagingCapabilities;
12 import goal.core.agent.NoEnvironmentCapabilities;
13 import goal.core.agent.NoLoggingCapabilities;
14 import goal.core.agent.NoMessagingCapabilities;
15 import goal.core.kr.KRlanguage;
16 import goal.core.program.GOALProgram;
17 import goal.tools.PlatformManager;
18 import goal.tools.adapt.FileLearner;
19 import goal.tools.adapt.Learner;
20 import goal.tools.debugger.NOPDebugger;
21 import goal.tools.logging.Loggers;
22
23 import java.io.File;
24
25 import org.junit.After;
26 import org.junit.AfterClass;
27 import org.junit.Before;
28 import org.junit.BeforeClass;
29 import org.junit.Test;
30
31 import swiprolog3.engines.SWIPrologLanguage;
32
33 public class PlannerTest {
34
35 @BeforeClass
36 public static void setupBeforeClass () {
37 Loggers.addConsoleLogger ();
38 }
39
40 @AfterClass
41 public static void tearDownAfterClass () {
42 Loggers.removeConsoleLogger ();
43 }
44
45 Agent <GOALInterpreter <NOPDebugger >> agent;
46 GOALInterpreter <NOPDebugger > controller;
47 KRlanguage language;

A.1 Source code listing 27

48
49 @Before
50 public void setUp() throws Exception {
51 AgentId id = new AgentId("TestAgent");
52 language = SWIPrologLanguage.getInstance ();
53 File file = new File("src/test/resources/goal/tools/plan/plan.goal");
54 GOALProgram program = PlatformManager.parseGOALFile(file , language);
55 MessagingCapabilities messagingCpabilities = new NoMessagingCapabilities

();
56 EnvironmentCapabilities environmentCapabilities = new

NoEnvironmentCapabilities ();
57 LoggingCapabilities loggingCapabilities = new NoLoggingCapabilities ();
58
59 NOPDebugger debugger = new NOPDebugger(id);
60 Learner learner = new FileLearner(id.getName (), program);
61 Planner planner = new POPPlanner(program);
62 controller = new GOALInterpreter <NOPDebugger >(program , debugger ,
63 learner , planner);
64 agent = new Agent <GOALInterpreter <NOPDebugger >>(id ,
65 environmentCapabilities , messagingCpabilities ,
66 loggingCapabilities , controller);
67 }
68
69 @After
70 public void tearDown () throws Exception {
71 language.reset();
72 }
73
74 @Test
75 public void testStart () throws InterruptedException {
76 controller.start();
77 assertTrue(controller.isRunning ());
78 controller.awaitTermination ();
79 assertFalse(controller.isRunning ());
80 assertNull(controller.getUncaughtThrowable ());
81 }
82
83 }

src/main/java/goal/core/program/rules/RuleSet.java
(Everything but the run method of RuleSet is omitted)

303 /**
304 * Executes this {@link RuleSet }.
305 *
306 * @param runState
307 * The run state in which the rule set is executed.
308 * @param substitution
309 * The substitution provided by the module context that is

passed
310 * on to this rule set.
311 * @return The {@link Result} of executing this rule set.
312 * @throws KRQueryFailedException
313 *
314 * FIXME: enable learner to deal with Rule#isSingleGoal
315 */
316 public Result run(RunState <?> runState , Substitution substitution) {
317 Result result = new Result ();
318 // Make a copy of the rules so we don’t shuffle the original below.
319 ArrayList <Rule > rules = new ArrayList <Rule >(this.rules);
320 MentalState ms;
321
322 switch (ruleOrder) {

28 Appendix

323 case PLAN:
324 ms = runState.getMentalState ();
325
326 Set <SingleGoal > goals = ms.getAttentionSet ().getGoals ();
327 if (goals.isEmpty ()) {
328 // No goal to plan for
329 break;
330 }
331
332 // Search for plan
333 SingleGoal goal = goals.iterator ().next();
334 List <Action > plan = runState.getPlanner ().plan(ms, goal);
335
336 if (plan == null) {
337 // No plan found
338 break;
339 }
340
341 // Execute plan step by step
342 for (Action action : plan) {
343 result = action.run(runState , runState.getMentalState ()
344 .getKRLanguage ().getEmptySubstitution (),
345 runState.getDebugger ());
346
347 if (result.hasPerformedAction ()) {
348 // Update beliefs
349 runState.startCycle(true);
350 } else {
351 // Exit module if precondition fails
352 break;
353 }
354 }
355
356 break;
357 case ADAPTIVE:
358 case LINEARADAPTIVE:
359 /*
360 * For now there is no differentiation between adaptive and linear
361 * adaptive options. In both cases , a ’random ’ action option will be
362 * selected for execution by the learner.
363 */
364
365 ms = runState.getMentalState ();
366 RuleSet ruleSet = this.applySubst(substitution);
367
368 runState.incrementRoundCounter ();
369 runState.getDebugger ().breakpoint(
370 Channel.REASONING_CYCLE_SEPARATOR ,
371 null ,
372 "+++++++ Adaptive Cycle " + runState.getRoundCounter ()
373 + " +++++++ ");
374
375 /*
376 * Get the learner to choose one action option , from the input list
377 * of action options.
378 */
379 List <ActionCombo > options = ruleSet.getActionOptions(ms ,
380 runState.getDebugger ());
381
382 // There are no possible options for actions to execute.
383 if (options.isEmpty ()) {
384 break;
385 }
386
387 // Select an action

A.1 Source code listing 29

388 ActionCombo chosen = runState.getLearner ().act(
389 runState.getActiveModule ().getName (), ms , options);
390
391 /* Now execute the action option */
392 result = chosen.run(runState , substitution);
393
394 /*
395 * Obtain the reward from the environment. Or , if the environment
396 * does not support rewards , then create an internal reward based on
397 * whether we have achieved all our goals or not.
398 */
399 boolean goalsEmpty = ms.getAttentionSet ().getGoals ().isEmpty ();
400 // runState should now have reward set.
401 Double envReward = runState.getReward ();
402 double reward = (envReward != null) ? envReward : goalsEmpty ? 1.0
403 : 0.0;
404
405 if (! goalsEmpty) {
406 /* Update the learner with the reward from the last action */
407 runState.getLearner ().update(
408 runState.getActiveModule ().getName (), ms , reward);
409 } else {
410 /*
411 * If goals were achieved , then the final reward is calculated ,
412 * and the learning episode finished , in RunState.kill() when
413 * the agent is killed.
414 */
415 }
416 break;
417 case RANDOM:
418 Collections.shuffle(rules);
419 case LINEAR:
420 for (Rule rule : rules) {
421 result = rule.run(runState , substitution);
422 if (result.isFinished ()) {
423 break;
424 }
425 }
426 break;
427 case RANDOMALL:
428 Collections.shuffle(rules);
429 case LINEARALL:
430 // Continue evaluating and applying rule as long as there are more ,
431 // and no {@link ExitModuleAction} has been performed.
432 for (Rule rule : rules) {
433 result.merge(rule.run(runState , substitution));
434 if (result.isModuleTerminated ()) {
435 break;
436 }
437 }
438 break;
439 }
440
441 return result;
442 }

src/main/java/goal/tools/plan/Link.java

1 package goal.tools.plan;
2
3 import goal.core.kr.language.DatabaseFormula;
4
5 public class Link {

30 Appendix

6
7 PlanAction provider , consumer;
8 DatabaseFormula proposition;
9

10 public Link(PlanAction provider , DatabaseFormula proposition ,
11 PlanAction consumer) {
12 this.provider = provider;
13 this.proposition = proposition;
14 this.consumer = consumer;
15 }
16
17 @Override
18 public String toString () {
19 return "Link(" + provider + ",\n" + proposition + "," + consumer
20 + "\n)\n";
21 }
22
23 }

src/main/java/goal/tools/plan/Ordering.java

1 package goal.tools.plan;
2
3 public class Ordering {
4
5 private final PlanAction before , after;
6
7 public Ordering(PlanAction before , PlanAction after) {
8 this.before = before;
9 this.after = after;

10 }
11
12 }

src/main/java/goal/tools/plan/OrderingManager.java

1 package goal.tools.plan;
2
3 import java.util.Collections;
4 import java.util.HashMap;
5 import java.util.HashSet;
6 import java.util.IdentityHashMap;
7 import java.util.LinkedList;
8 import java.util.List;
9 import java.util.Map;

10 import java.util.Queue;
11 import java.util.Set;
12
13 public class OrderingManager {
14
15 private final Map <PlanAction , Set <PlanAction >> orderings = new

IdentityHashMap <PlanAction , Set <PlanAction >>();
16 private final Map <PlanAction , Set <PlanAction >> closure = new

IdentityHashMap <PlanAction , Set <PlanAction >>();
17
18 /**
19 * Check whether or not an ordering constraint is consistent with the rest

.
20 *
21 * @param a
22 * plan action that comes first.

A.1 Source code listing 31

23 * @param b
24 * plan action that comes after.
25 * @return <code >true </code > iff the ordering constraint is consistent

with
26 * the rest.
27 */
28 public boolean isConsistent(PlanAction a, PlanAction b) {
29 // Check for cycles
30 Set <PlanAction > afterB = closure.get(b);
31 return afterB == null || !afterB.contains(a);
32 }
33
34 /**
35 * Get all plan actions that come after a specific plan action.
36 *
37 * @param a
38 * plan action.
39 * @return A set of actions that come after the action specified.
40 */
41 public Set <PlanAction > after(PlanAction a) {
42 Set <PlanAction > after = closure.get(a);
43 if (after == null) {
44 return Collections.EMPTY_SET;
45 }
46 return after;
47 }
48
49 // TODO: Leave consistency check to caller?
50 /**
51 * Add an ordering constraint if it’s consistent with the rest.
52 *
53 * @param a
54 * plan action that comes first.
55 * @param b
56 * plan action that comes after.
57 *
58 * @return <code >true </code > iff ordering constraint was added

successfully.
59 */
60 public boolean addIfConsistent(PlanAction a, PlanAction b) {
61 if (! isConsistent(a, b)) {
62 return false;
63 }
64
65 Set <PlanAction > afterA = orderings.get(a);
66 Set <PlanAction > afterAClosed;
67
68 if (afterA == null) {
69 afterA = new HashSet <PlanAction >();
70 orderings.put(a, afterA);
71 afterAClosed = new HashSet <PlanAction >();
72 closure.put(a, afterAClosed);
73 } else {
74 afterAClosed = closure.get(a);
75 }
76
77 Set <PlanAction > afterBClosed = closure.get(b);
78 if (afterBClosed == null) {
79 afterBClosed = Collections.EMPTY_SET;
80 }
81
82 afterA.add(b);
83 afterAClosed.add(b);
84 afterAClosed.addAll(afterBClosed);
85

32 Appendix

86 for (PlanAction action : orderings.keySet ()) {
87 Set <PlanAction > afterClosed = closure.get(action);
88 if (afterClosed != null && afterClosed.contains(a)) {
89 afterClosed.add(b);
90 afterClosed.addAll(afterBClosed);
91 }
92 }
93
94 return true;
95 }
96
97 /**
98 * Remove an ordering constraint. Note that this will trigger a
99 * re-propagation of the transitive closure.

100 *
101 * @param a
102 * plan action that comes first.
103 * @param b
104 * plan action that comes after.
105 * @return <code >true </code > iff this update had any effect.
106 */
107 public boolean remove(PlanAction a, PlanAction b) {
108 Set <PlanAction > afterA = orderings.get(a);
109 if (afterA == null || !afterA.contains(b)) {
110 return false;
111 }
112
113 // Compute linearization before removal
114 List <PlanAction > linearization = getLinearization ();
115
116 // Remove ordering constraint
117 afterA.remove(b);
118 if (afterA.isEmpty ()) {
119 orderings.remove(a);
120 }
121
122 // Re -propagate transitive closure
123 closure.clear();
124
125 for (int i = linearization.size() - 1; i >= 0; i--) {
126 PlanAction x = linearization.get(i);
127 Set <PlanAction > afterXClosed = closure.get(x);
128
129 for (int j = i - 1; j >= 0; j--) {
130 PlanAction y = linearization.get(j);
131
132 Set <PlanAction > afterY = orderings.get(y);
133 if (afterY != null && afterY.contains(x)) {
134 Set <PlanAction > afterYClosed = closure.get(y);
135 if (afterYClosed == null) {
136 afterYClosed = new HashSet <PlanAction >();
137 closure.put(y, afterYClosed);
138 }
139
140 afterYClosed.add(x);
141 if (afterXClosed != null) {
142 afterYClosed.addAll(afterXClosed);
143 }
144 }
145 }
146 }
147
148 return true;
149 }
150

A.1 Source code listing 33

151 /**
152 * Compute a topological sort of the ordering constraints.
153 *
154 * @return A total -order plan that satisfies all ordering constraints.
155 */
156 public List <PlanAction > getLinearization () {
157 List <PlanAction > linearization = new LinkedList <PlanAction >();
158
159 // Make copy of orderings
160 Map <PlanAction , Set <PlanAction >> edges = new HashMap <PlanAction , Set <

PlanAction >>(
161 orderings);
162
163 // Find nodes with no incoming edges
164 Queue <PlanAction > noIncoming = new LinkedList <PlanAction >(
165 orderings.keySet ());
166 for (Set <PlanAction > actions : orderings.values ()) {
167 noIncoming.removeAll(actions);
168 }
169
170 while (! noIncoming.isEmpty ()) {
171 PlanAction n = noIncoming.poll();
172 linearization.add(n);
173
174 Set <PlanAction > afterN = edges.get(n);
175 if (afterN == null) {
176 continue;
177 }
178
179 edges.remove(n);
180
181 forAfterN: for (PlanAction m : afterN) {
182 for (Set <PlanAction > actions : edges.values ()) {
183 if (actions.contains(m)) {
184 continue forAfterN;
185 }
186 }
187
188 noIncoming.add(m);
189 }
190
191 }
192
193 return linearization;
194 }
195 }

src/main/java/goal/tools/plan/POPPlanner.java

1 package goal.tools.plan;
2
3 import goal.core.kr.language.DatabaseFormula;
4 import goal.core.kr.language.Substitution;
5 import goal.core.mentalstate.BASETYPE;
6 import goal.core.mentalstate.BeliefBase;
7 import goal.core.mentalstate.MentalState;
8 import goal.core.mentalstate.SingleGoal;
9 import goal.core.program.ActionSpecification;

10 import goal.core.program.GOALProgram;
11 import goal.core.program.actions.Action;
12
13 import java.util.ArrayList;
14 import java.util.Collections;

34 Appendix

15 import java.util.HashSet;
16 import java.util.LinkedList;
17 import java.util.List;
18 import java.util.Set;
19
20 public class POPPlanner implements Planner {
21
22 private class AgendaPair {
23
24 public PlanAction action;
25 public DatabaseFormula precondition;
26
27 public AgendaPair(PlanAction action , DatabaseFormula precondition) {
28 this.action = action;
29 this.precondition = precondition;
30 }
31
32 @Override
33 public String toString () {
34 return "AgendaPair(" + action.toString () + ","
35 + precondition.toString () + ")";
36 }
37
38 }
39
40 private class Provider {
41
42 public PlanAction action;
43 public Substitution subst;
44
45 public Provider(PlanAction action , Substitution subst) {
46 this.action = action;
47 this.subst = subst;
48 }
49
50 @Override
51 public String toString () {
52 return "ProviderPair(" + action.toString () + "," + subst.toString ()
53 + ")";
54 }
55 }
56
57 private final Substitution emptySubst;
58 private final List <ActionSpecification > actionSpecs;
59 private long nonce;
60
61 /**
62 * Create a new partial -order planner.
63 *
64 * @param program
65 * the goal program
66 */
67 public POPPlanner(GOALProgram program) {
68 emptySubst = program.getKRLanguage ().getEmptySubstitution ();
69 actionSpecs = program.getModule("init").getActionSpecifications ();
70 }
71
72 @Override
73 public List <Action > plan(MentalState ms, SingleGoal goal) {
74 nonce = 0;
75
76 Set <DatabaseFormula > startActionPositiveEffects = new HashSet <

DatabaseFormula >();
77 BeliefBase bb = ms.getOwnBase(BASETYPE.BELIEFBASE);
78 BeliefBase kb = ms.getOwnBase(BASETYPE.KNOWLEDGEBASE);

A.1 Source code listing 35

79 startActionPositiveEffects.addAll(bb.getTheory ().getFormulas ());
80 startActionPositiveEffects.addAll(kb.getTheory ().getFormulas ());
81
82 Set <DatabaseFormula > finishActionPreconditions = new HashSet <

DatabaseFormula >();
83 finishActionPreconditions.addAll(goal.getGoal ().getAddList ());
84
85 PlanAction startAction = new PlanAction(null , Collections.EMPTY_SET ,
86 startActionPositiveEffects , Collections.EMPTY_SET);
87 PlanAction finishAction = new PlanAction(null ,
88 finishActionPreconditions , Collections.EMPTY_SET ,
89 Collections.EMPTY_SET);
90
91 Plan plan = new Plan(startAction , finishAction , emptySubst);
92 LinkedList <AgendaPair > agenda = new LinkedList <AgendaPair >();
93
94 for (DatabaseFormula precondition : finishActionPreconditions) {
95 agenda.add(new AgendaPair(finishAction , precondition));
96 }
97
98 plan = pop(plan , agenda);
99 if (plan != null) {

100 return plan.getLinearization ();
101 }
102
103 // No plan found
104 return null;
105 }
106
107 // Will mutate plan!
108 private Plan pop(Plan plan , LinkedList <AgendaPair > agenda) {
109 if (agenda.isEmpty ()) {
110 // Nothing to do , all sub -goals satisfied
111 return plan;
112 }
113
114 // Next sub -goal to satisfy
115 AgendaPair pair = agenda.poll();
116
117 List <Provider > providers = getProviders(pair , plan);
118
119 // Non -deterministic choice of relevant action
120 for (Provider provider : providers) {
121 PlanAction action = provider.action;
122 Substitution subst = provider.subst;
123
124 // Update binding constraints
125 Substitution oldSubst = plan.subst;
126 Substitution newSubst = plan.subst.combine(subst);
127 if (newSubst == null) {
128 continue;
129 }
130 plan.subst = newSubst;
131
132 // Add causal link
133 Link link = new Link(action , pair.precondition , pair.action);
134 plan.links.add(link);
135
136 boolean isNewAction = !plan.actions.contains(action);
137 if (isNewAction) {
138 plan.actions.add(action);
139
140 plan.orderingManager.addIfConsistent(plan.start , action);
141 plan.orderingManager.addIfConsistent(action , plan.finish);
142

36 Appendix

143 for (DatabaseFormula precondition : action.getPreconditions ()) {
144 agenda.push(new AgendaPair(action , precondition));
145 }
146 }
147
148 if (plan.orderingManager.addIfConsistent(action , pair.action)) {
149 LinkedList <Threat > threats = getThreats(plan , isNewAction ,
150 action , link);
151
152 Plan result = pop2(plan , agenda , threats);
153 if (result != null) {
154 return result;
155 }
156
157 // TODO: These removals will all trigger re -propagation!
158 plan.orderingManager.remove(action , pair.action);
159 }
160
161 // Remove new action
162 if (isNewAction) {
163 for (int i = 0; i < action.getPreconditions ().size(); i++) {
164 agenda.pop();
165 }
166
167 // TODO: These removals will all trigger re -propagation!
168 plan.orderingManager.remove(action , plan.finish);
169 plan.orderingManager.remove(plan.start , action);
170
171 plan.actions.remove(action);
172 }
173
174 // Remove causal link
175 plan.links.remove(link);
176
177 // Revert binding constraints
178 plan.subst = oldSubst;
179 }
180
181 // Fail: Relevant actions exhausted
182 return null;
183 }
184
185 private Plan pop2(Plan plan , LinkedList <AgendaPair > agenda ,
186 LinkedList <Threat > threats) {
187 if (threats.isEmpty ()) {
188 return pop(plan , (LinkedList <AgendaPair >) agenda.clone ());
189 }
190
191 Threat threat = threats.pop();
192 List <Resolver > resolvers = threat.getResolvers(plan);
193
194 // Resolvers: promote , demote , binding constraint?
195 for (Resolver resolver : resolvers) {
196 if (! resolver.apply()) {
197 continue;
198 }
199
200 Plan result = pop2(plan , agenda ,
201 (LinkedList <Threat >) threats.clone());
202 if (result != null) {
203 return result;
204 }
205
206 resolver.revert ();
207 }

A.1 Source code listing 37

208
209 // Fail: Resolvers exhausted
210 return null;
211 }
212
213 private List <Provider > getProviders(AgendaPair pair , Plan plan) {
214 List <Provider > providers = new ArrayList <Provider >();
215
216 // TODO: Multiple providers for same action?
217
218 // Add relevant existing actions
219 for (PlanAction action : plan.actions) {
220 // TODO: Ensure action can be ordered before pair.action? Does this
221 // fix it?
222 if (action == pair.action
223 || plan.orderingManager.after(pair.action).contains(action)) {
224 continue;
225 }
226
227 for (DatabaseFormula formula : action.getPositiveEffects ()) {
228 Substitution subst = formula.mgu(pair.precondition);
229
230 // TODO: Apply plan.subst to operands before mgu?
231 // Ensure the substitution is consistent with existing bindings
232 if (subst != null && plan.subst.combine(subst) != null) {
233 providers.add(new Provider(action , subst));
234 break;
235 }
236 }
237 }
238
239 // Add relevant new actions
240 for (ActionSpecification actionSpec : actionSpecs) {
241 PlanAction action = new PlanAction(actionSpec , nonce++, emptySubst);
242 for (DatabaseFormula formula : action.getPositiveEffects ()) {
243 Substitution subst = formula.mgu(pair.precondition);
244 if (subst != null) {
245 providers.add(new Provider(action , subst));
246 break;
247 }
248 }
249 }
250
251 return providers;
252 }
253
254 private static boolean isThreat(Plan plan , PlanAction action , Link link) {
255 if (!plan.orderingManager.isConsistent(link.provider , action)
256 || !plan.orderingManager.isConsistent(action , link.consumer)) {
257 return false;
258 }
259
260 for (DatabaseFormula q : action.getNegativeEffects ()) {
261 Substitution subst = link.proposition.mgu(q);
262 if (subst != null && plan.subst.combine(subst) != null) {
263 return true;
264 }
265 }
266
267 return false;
268 }
269
270 private static LinkedList <Threat > getThreats(Plan plan ,
271 boolean isNewAction , PlanAction newAction , Link newLink) {
272 LinkedList <Threat > threats = new LinkedList <Threat >();

38 Appendix

273
274 // Find threats due to new action
275 if (isNewAction) {
276 for (Link link : plan.links) {
277 if (link.provider == newAction || link.consumer == newAction) {
278 continue;
279 }
280
281 if (isThreat(plan , newAction , link)) {
282 threats.add(new Threat(newAction , link));
283 }
284 }
285 }
286
287 // Find threats on new link
288 for (PlanAction action : plan.actions) {
289 if (action == newLink.provider || action == newLink.consumer) {
290 continue;
291 }
292
293 if (isThreat(plan , action , newLink)) {
294 threats.add(new Threat(action , newLink));
295 }
296 }
297
298 return threats;
299 }
300 }

src/main/java/goal/tools/plan/Plan.java

1 package goal.tools.plan;
2
3 import goal.core.kr.language.Substitution;
4 import goal.core.program.actions.Action;
5
6 import java.util.ArrayList;
7 import java.util.HashSet;
8 import java.util.List;
9 import java.util.Set;

10
11 /**
12 * A partially instantiated partial -order plan.
13 *
14 * @author S.Jacobi
15 *
16 */
17 public class Plan {
18
19 public final PlanAction start , finish;
20 public final Set <PlanAction > actions = new HashSet <PlanAction >();
21 public final OrderingManager orderingManager = new OrderingManager ();
22 public Substitution subst;
23 public final Set <Link > links = new HashSet <Link >();
24
25 /**
26 * Create new partial -order plan with pseudo actions start and finish.
27 *
28 * @param start
29 * plan action with initial state as positive effects.
30 * @param finish
31 * plan action with goal state as preconditions.
32 * @param emptySubst

A.1 Source code listing 39

33 */
34 public Plan(PlanAction start , PlanAction finish , Substitution emptySubst)

{
35 this.start = start;
36 this.finish = finish;
37 actions.add(start);
38 actions.add(finish);
39 orderingManager.addIfConsistent(start , finish);
40 subst = emptySubst;
41 }
42
43 /**
44 * Get one possible fully instantiated linearization of the partial -order
45 * plan.
46 *
47 * @return A list of {@link Action}s that describe a possible total -order.
48 */
49 public List <Action > getLinearization () {
50 // TODO: What if flawless plan is partially instantiated?
51
52 List <PlanAction > planActionLinearization = orderingManager
53 .getLinearization ();
54 List <Action > linearization = new ArrayList <Action >(
55 planActionLinearization.size() - 2);
56
57 for (PlanAction planAction : planActionLinearization) {
58 Action action = planAction.getAction ();
59 if (action != null) {
60 linearization.add(action.applySubst(subst));
61 }
62 }
63
64 return linearization;
65 }
66
67 }

src/main/java/goal/tools/plan/PlanAction.java

1 package goal.tools.plan;
2
3 import goal.core.kr.language.DatabaseFormula;
4 import goal.core.kr.language.Substitution;
5 import goal.core.kr.language.Var;
6 import goal.core.program.ActionSpecification;
7 import goal.core.program.actions.Action;
8 import goal.core.program.actions.UserSpecAction;
9 import goal.tools.errorhandling.exceptions.KRInitFailedException;

10
11 import java.util.Collections;
12 import java.util.HashSet;
13 import java.util.List;
14 import java.util.Set;
15
16 public class PlanAction {
17
18 private static final String VARIABLE_POSTFIX = "planactionpostfix";
19
20 private final UserSpecAction action;
21 private final Set <DatabaseFormula > preconditions;
22 private final Set <DatabaseFormula > positiveEffects;
23 private final Set <DatabaseFormula > negativeEffects;
24

40 Appendix

25 /**
26 * Create new plan action from action specification and unique nonce.
27 *
28 * @param actionSpec
29 * action specification to create plan action from
30 * @param nonce
31 * number unique to this call within current plan search
32 * @param emptySubst
33 * empty substitution for relevant kr language
34 */
35 public PlanAction(ActionSpecification actionSpec , long nonce ,
36 Substitution emptySubst) {
37 preconditions = new HashSet <DatabaseFormula >();
38 positiveEffects = new HashSet <DatabaseFormula >();
39 negativeEffects = new HashSet <DatabaseFormula >();
40
41 List <DatabaseFormula > preconditionList = actionSpec.getPreCondition ()
42 .toUpdate ().getAddList ();
43 List <DatabaseFormula > positiveEffectsList = actionSpec
44 .getPostCondition ().getAddList ();
45 List <DatabaseFormula > negativeEffectsList = actionSpec
46 .getPostCondition ().getDeleteList ();
47
48 // Rename variables
49 Substitution renameSubst = emptySubst;
50 for (DatabaseFormula formula : preconditionList) {
51 renameSubst = updateRenameSubst(renameSubst , formula , nonce);
52 preconditions.add(formula.applySubst(renameSubst));
53 }
54 for (DatabaseFormula formula : positiveEffectsList) {
55 renameSubst = updateRenameSubst(renameSubst , formula , nonce);
56 positiveEffects.add(formula.applySubst(renameSubst));
57 }
58 for (DatabaseFormula formula : negativeEffectsList) {
59 renameSubst = updateRenameSubst(renameSubst , formula , nonce);
60 negativeEffects.add(formula.applySubst(renameSubst));
61 }
62
63 action = actionSpec.getAction ().applySubst(renameSubst);
64
65 try {
66 action.addSpecification(actionSpec);
67 } catch (KRInitFailedException e) {
68 e.printStackTrace ();
69 }
70 }
71
72 public PlanAction(UserSpecAction action ,
73 Set <DatabaseFormula > preconditions ,
74 Set <DatabaseFormula > positiveEffects ,
75 Set <DatabaseFormula > negativeEffects) {
76 this.action = action;
77 this.preconditions = preconditions;
78 this.positiveEffects = positiveEffects;
79 this.negativeEffects = negativeEffects;
80 }
81
82 private static Substitution updateRenameSubst(Substitution subst ,
83 DatabaseFormula formula , long nonce) {
84 for (Var var : formula.getFreeVar ()) {
85 if (!subst.getVariables ().contains(var)) {
86 subst = subst.combine(var.renameVar("", VARIABLE_POSTFIX
87 + nonce));
88 }
89 }

A.1 Source code listing 41

90
91 return subst;
92 }
93
94 public Action getAction () {
95 return action;
96 }
97
98 public Set <DatabaseFormula > getPreconditions () {
99 return Collections.unmodifiableSet(preconditions);

100 }
101
102 public Set <DatabaseFormula > getPositiveEffects () {
103 return Collections.unmodifiableSet(positiveEffects);
104 }
105
106 public Set <DatabaseFormula > getNegativeEffects () {
107 return Collections.unmodifiableSet(negativeEffects);
108 }
109
110 @Override
111 public String toString () {
112 StringBuilder sb = new StringBuilder ();
113 sb.append("\n<");
114 sb.append(action);
115 sb.append(",\npre: ");
116 sb.append(preconditions);
117 sb.append(",\nef+: ");
118 sb.append(positiveEffects);
119 sb.append(",\nef -: ");
120 sb.append(negativeEffects);
121 sb.append(">");
122
123 return sb.toString ();
124 }
125
126 }

src/main/java/goal/tools/plan/Planner.java

1 package goal.tools.plan;
2
3 import goal.core.mentalstate.MentalState;
4 import goal.core.mentalstate.SingleGoal;
5 import goal.core.program.actions.Action;
6
7 import java.util.List;
8
9 public interface Planner {

10
11 /**
12 * Search for a plan to achieve a single goal.
13 *
14 * @param ms
15 * the current mental state
16 * @param goal
17 * the goal to plan for
18 * @return A list of {@link Action}s that describes a plan to achieve the
19 * goal or {@code null} if no plan is found.
20 */
21 List <Action > plan(MentalState ms , SingleGoal goal);
22
23 }

42 Appendix

src/main/java/goal/tools/plan/Resolver.java
1 package goal.tools.plan;
2
3 public interface Resolver {
4
5 public boolean apply();
6
7 public void revert ();
8
9 }

src/main/java/goal/tools/plan/ResolverDemote.java
1 package goal.tools.plan;
2
3 public class ResolverDemote implements Resolver {
4
5 private final Plan plan;
6 private final Threat threat;
7
8 public ResolverDemote(Plan plan , Threat threat) {
9 this.plan = plan;

10 this.threat = threat;
11 }
12
13 @Override
14 public boolean apply() {
15 return plan.orderingManager.addIfConsistent(threat.link.consumer ,
16 threat.action);
17 }
18
19 @Override
20 public void revert () {
21 plan.orderingManager.remove(threat.link.consumer , threat.action);
22 }
23
24 }

src/main/java/goal/tools/plan/ResolverPromote.java
1 package goal.tools.plan;
2
3 public class ResolverPromote implements Resolver {
4
5 private final Plan plan;
6 private final Threat threat;
7
8 public ResolverPromote(Plan plan , Threat threat) {
9 this.plan = plan;

10 this.threat = threat;
11 }
12
13 @Override
14 public boolean apply() {
15 return plan.orderingManager.addIfConsistent(threat.action ,
16 threat.link.provider);
17 }
18
19 @Override
20 public void revert () {
21 plan.orderingManager.remove(threat.action , threat.link.provider);

A.1 Source code listing 43

22 }
23
24 }

src/main/java/goal/tools/plan/Threat.java

1 package goal.tools.plan;
2
3 import java.util.ArrayList;
4 import java.util.List;
5
6 public class Threat {
7
8 public PlanAction action;
9 public Link link;

10
11 public Threat(PlanAction action , Link link) {
12 this.action = action;
13 this.link = link;
14 }
15
16 public List <Resolver > getResolvers(Plan plan) {
17 List <Resolver > resolvers = new ArrayList <Resolver >();
18
19 resolvers.add(new ResolverDemote(plan , this));
20 resolvers.add(new ResolverPromote(plan , this));
21 // TODO: Resolve threat with binding constraint?
22
23 return resolvers;
24 }
25 }

44 Appendix

Bibliography

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004.

[Hin14] Koen V. Hindriks. Programming Cognitive Agents in GOAL.
Published at http://ii.tudelft.nl/trac/goal/ (accessed January
2014), 2014.

[RN10] Stuart Russell and Peter Norvig. Artificial intelligence: A Modern
Approach. Pearson, 2010.

	Summary (English)
	Summary (Danish)
	Preface
	Contents
	1 Introduction
	2 The GOAL Agent Programming Language
	3 Automated Planning
	4 Planning Module
	4.1 Simplifying assumptions
	4.2 Integration
	4.3 Test program

	5 Partial-Order Planning Algorithm
	5.1 Implementation

	6 Conclusion
	A Appendix
	A.1 Source code listing

	Bibliography

