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Abstract

The assessment of circulating tumor cells (CTCs) in blood samples from cancer
patients can help in determining the prognosis for the patient and can help
in personalized treatment. The CytoTrack is a �uorescent microscope, which
can be used to image possible CTCs within a blood sample. These images are
manually looked through by a trained operator, in order to determine which
images are of CTCs and which are false positives. This is time consuming and
tedious work, and reducing this scoring time is the topic of this thesis.

In this thesis images from the CytoTrack are automatically scored. For this
di�erent classi�cation methods are tested including random forest and support
vector machines. The algorithms are tested on data from breast cancer patients
and on data from spiked samples. The performance on the spiked data are
signi�cantly better compared with the patient data. This is explained by bigger
variations within the patient samples compared with the spiked samples.

Through cross validation both high sensitivities and speci�cities are computed.
For this work the sensitivity is weighted over the speci�city since it is important
not to miss any true positives. To avoid missing true positives, thresholds are
determined based on the receiver operating characteristic (ROC) curves. These
thresholds are chosen so the true positive rate is equal to one.

After choosing a threshold the algorithms are tested on a unknown test set.
From this testing it is shown that it is possible to completely avoid false negatives
and still classify a signi�cant part of the data as negatives. That is, the amount
of data to be scored manually is reduced and hence the scoring time is reduced.



ii



Resumé (Danish)

Cirkulerende tumorceller (CTC'er) i blodprøver fra kræftpatienter kan detekteres
og dette kan hjælpe til med at bestemme prognosen for patienten og kan hjælpe
til med at tilrettelægge individuel behandling. CytoTrack er et �uorescerende
mikroskop, som kan anvendes til at tage billeder af mulige CTC'er i en blodprøve.
Disse billeder kigges manuelt igennem af en uddannet operatør, for at afgøre
hvilke billeder der er af CTC'er og hvilke der er falske positive. Det er tidskrævende
og kedeligt arbejde, og at reducere denne scoringstid er emnet for denne afhandling.

I denne afhandling bliver billeder fra CytoTrack automatisk klassi�ceret. Til
dette er forskellige metoder testet, inklusiv random forrest og support vector
machines. Algoritmerne er afprøvet på data fra brystkræftpatienter og på data
fra spikede prøver. Baseret på denne test er klassi�ceringen af spiket data
signi�kant bedre end klassi�ceringen af patient data. Dette kan forklares ved
store variationer inden for patientprøverne, sammenlignet med de spikede prøver.

Gennem krydsvalidering blev der beregnet både høje sensitiviteter og speci�citeter.
Da det er vigtigt ikke at fejlscore nogle af de sande positive, er der i dette arbejde
lagt mest vægt på sensitivitet frem for speci�citet. For at undgå at misse nogle
af de sande positive, fastlægges en threshold på baggrund af receiver operating
characteristic (ROC) kurver. Threshold værdierne er valgt således at den sande
positive rate er lig med én.

Efter at have valgt en threshold, testes algoritmerne på et ukendt test sæt.
Fra denne test er det vist, at det er muligt helt at undgå falsk negative og
stadig klassi�cere en betydelig del af data som negativ. Det vil sige at mængden
af data der skal scores manuelt reduceres og dermed reduceres scoringstiden.
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Abbreviations

In this section the abbreviations used in this project are given.

Abbreviation Explanation

BLOB Binary Large Object

CD45 Leukocyte Common Antigen (the CD stands for Cluster of
Di�erentiation)

CTC Circulating Tumor Cells

DAPI 4',6-Diamidino-2-Phenylindole

EpCAM Epithelial Cell Adhesion Molecule

FITC Fluorescein Isothiocyanate (Anti-pan-Cytokeratin)

fn False Negative

fp False Positive

MCF7 Michigan Cancer Foundation-7 (Name of a cell line)

oob Out-Of-Bag



xii Abbreviations

rbf Radial Basis Function

ROC Receiver Operating Characteristic

ROI Region of Interest

SkBr3 (Memorial) Sloan�Kettering Cancer Center-3 (Name of a
cell line)

SVM Support Vector Machine

tn True Negative

tp True Positive



Motivation and Outline

Motivation

Cancer is one of the most common causes of death world wide with around 7.6
million cancer deaths each year [JBC+11]. The majority of the cancer related
deaths are attributed to blood-borne metastatic cancers, since this gives limited
treatment options and thus an unfavorable prognosis [H+13][Lig12]. The cells
responsible for the metastases move through the blood vessels and are known
as circulating tumor cells (CTCs).

The presence of CTCs within a blood sample can be used as a prognostic
factor and give an indication of whether the cancer is actively spreading or
not. By monitoring the number of CTCs during a course of treatment, the
e�ectiveness of the treatment can be assessed much quicker compared with
classical imaging modalities such as PET, CT and MRI. Furthermore CTCs can
be characterized for di�erent cancer mutations and thus be used for personalized
treatment [C+04][Lig12].

Di�erent techniques are available for detecting CTCs and they are generally
based on the same principles. First an isolation of the CTCs based on di�erences
in the characteristics of blood cells and CTCs, next the cells are marked with
e.g. �uorescent markers to make it possible to distinguish them from the rest
of the cells. The cells are then imaged and the images are manually assessed
and classi�ed by a trained operator. This manual scoring can take up to several
hours and is time consuming and tedious work. The scoring is made qualitatively
and both inter- and intra- operator variability is introduced. Automatic scoring
of CTCs based on images is the topic of this thesis in the hope of overcoming
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some of these di�culties.

Outline

This section contains an overview over the chapters included in this thesis

• Chapter 1 - Objectives: In this chapter a short description of the
objectives of this thesis is given

• Chapter 2 - Introduction: In this chapter an introduction to the
problem at hand is given. This includes a description of cancer, especially
metastasizing cancer, diagnosis and treatment of cancer and description
of CTCs and how they are detected.

• Chapter 3 - Existing Technology: In chapter 3 some earlier attempts
of classifying CTCs and cells in general are shortly discussed. Furthermore
a short description of the basic principles behind the competing technology
CellSearchr is included.

• Chapter 4 - Data: In this chapter a description of the data used is given.

• Chapter 5 - Methods: The methods used for this thesis are introduced
in chapter 5. A general description of the methods at hand are given and
some preprocessing methods are tested.

• Chapter 6 - Results: This chapter contains the results of using the
di�erent scoring algorithms. The di�erent algorithms are tested and their
performance are compared.

• Chapter 7 - Discussion: The �nal results are discussed.

• Chapter 8 - Conclusion: A short conclusion of the entire thesis is given
in this section.

• Appendix A - CytoTrack Images: Some of the images used for this
thesis are shown in this appendix

• Appendix B - Feature Histograms: The histograms of all the features
introduced in chapter 5 are shown in this appendix.

• Appendix C - Speci�cations: The speci�cations made for the program
is given in this appendix



Chapter 1

Objectives

The objective of this thesis is to develop an automatic algorithm for scoring of
cell images obtained using the CytoTrack.

The CytoTrack generates a catalog of images of potential CTCs. These images
contains a lot of false positive images and only a few true positives, since CTCs
are extremely rare. The current method is for trained operators to manually
look through these images to determine which are true positives and which are
false positives. The goal for this automatic scoring is to reduce the number of
false positives without losing any of the true positives. Thus a high sensitivity
is weighted over a high speci�city. The manual scoring can take up to several
hours per sample and by reducing the number of images to look through, the
scoring time can be reduced. The goal is to at least score 10% of the true
negatives as negatives.
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Chapter 2

Introduction

2.1 Cancer

Cancer is one of the most common causes of death world wide with around 7.6
million cancer deaths each year [JBC+11]. The rate of cancer incidences are
increasing in the economically developing countries and the cancer burden is
thus getting bigger each year. In the future cancer should be a chronic disease
that you live with and not a disease that you die from, and in order to ful�ll
this goal more research is necessary.

Most of the cancer related deaths are attributed to blood-borne metastatic
cancers, since the metastases often attacks vital organs such as the lungs or the
brain [H+13][Y+11]. Furthermore when the cancer has started metastasizing
the treatment options are limited. The cells that move through the blood and
start the secondary tumors are known as circulating tumor cells (CTCs) and
assessment of these can be a step in the right direction for cancer research.

The existence of CTCs has been known since the 19th century and these have
been linked to metastasizing [Lig12]. In the circulation most of the CTCs get
destroyed, but some cells survive, escape the circulation and starts proliferation
at a new site, see �gure 2.1.
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Figure 2.1: Illustration of how CTCs leave the primary tumor and starts
metastasizing [H+13].

2.2 Cancer - Diagnosis and Treatment

Cancer is generally diagnosed using di�erent imaging modalities such as PET,
CT and MRI and con�rmed with a biopsy. After detection of malignancies a risk
analysis is performed to determine the severity of the disease. This risk analysis
is based on tumor size, whether or not there are metastases, and whether or not
the cancer has spread to lymph nodes [NH04]. The assessment of CTCs could
possibly be a supplement to this risk analysis.

For the treatment the �rst step is generally surgical removal of the tumor,
followed by chemotherapy, radiation therapy, immunotherapy and/or targeted
therapy [Lig12]. The e�ectiveness of the therapy is detected through the di�erent
imaging modalities where typically a scan is made before start of therapy and
again 3-6 month after ending therapy. There is thus a long waiting before it is
possible to tell whether the therapy is working. Furthermore it is only possible
to detect tumors of a certain size using classical imaging modalities and thus
very small tumors can easily be overlooked. By measuring the number of CTCs
a real-time monitoring of the treatment is possible. For an e�ective treatment
the number of CTCs found in a blood sample will decrease, but if the number
stays the same or even increase it is possible to conclude that the treatment is
ine�ective [C+04]. With this knowledge is it possible to change the treatment
much faster and thereby give the patient a much better prognosis.
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2.3 Ciculating Tumor Cells

The knowledge of CTCs is still very limited and looking at these can give rise
to a lot of new knowledge. CTCs are very low in number with as few as one
among billions of other cells [Y+11]. Generally the number of CTCs is higher
for patients with metastatic cancers than for local cancers, and the number of
CTCs will generally decrease during an e�ective treatment [H+13].

The CytoTrack system can be used to detect CTCs. Di�erent �uorescent
markers are used in the detection, and for �nding CTCs the most widely used
marker is for cytokeratin. By using other markers it is possible to characterize
the individual CTCs. This information can be used for personalized therapy
and can help to identify new therapeutic targets to help suppress metastasis
[Y+11].

The current de�nition of a CTC is based on preclinical studies made using
the CellSearchr system1 [Lig12]. For a cell to be classi�ed as a CTC it has to
be positive for cytokeratin, it has to have a nucleus, it should not be positive
for CD452, it should have a cell-like morphology and it should have a diameter
larger than 4 µm [H+13][Lig12].

2.4 Sample Preparation

The �rst step in CTC detection is collection of the blood sample. To avoid skin
cells contaminating the blood, the �rst draw should not be used. Before a blood
sample is scanned in the CytoTrack, some preparation steps are necessary. The
�rst step is to isolate the bu�y coat3 from the blood sample, see �gure 2.2.
The blood sample is centrifuged and hereby it is possible to remove the plasma
in order to get to the bu�y coat. The bu�y coat is transferred to a new tube
and to make sure all erythrocytes are removed, the sample is lysed4 [Cyt14a].
This process is very crucial and it is possible that some cells are lost in this step.

The next step is to stain the cells and for this three di�erent types of �uorescent
markers are used. A �uorescent marker is a molecule that can be attached to
a speci�c biomolecule and thereby help in the detection of that biomolecule.

1The CellSearchr system is another system which can be used for CTC detection, see more

in chapter 3
2CD45 is positive for some leukocytes
3The part of the blood sample that primarily contains the leukocytes and platelets after

centrifuging the blood sample
4Lysis means breaking down erythrocytes
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To visualize a labeled molecule the �uorescent marker is excited by a light
source and light of lower frequency, and thus higher wavelength, is emitted
[WW07][YFF08]. When more than one marker is used it is important that
these emit light of di�erent wavelengths and thus are distinguishable.

For this thesis the �rst �uorescent marker used is Anti-pan-Cytokeratin (Fluorescein
Isothiocyanate (FITC)), which stains cells containing cytokeratin and emits light
in the green spectrum [Cyt14a]. Cytokeratin is expressed in cells of epithelial
origin and thus epithelial CTCs can be visualized using FITC. The second
staining is a nuclear stain (4',6-Diamidino-2-Phenylindole (DAPI)), that emits
light in the blue spectrum. DAPI stains all cells having a nucleus, meaning all
the remaining cells in the tube should be stained with DAPI. The last staining
is Anti-human CD45 (leukocyte common antigen (CD45)), which is expressed in
the cell membrane of some leukocytes, i.e. negative for CTCs [Cyt14a]. CD45
emits light in the red spectrum. Besides these three staining the phenomenon
of auto �uorescence can appear in a sample. That is, other molecules than the
stained ones can emit light and thus give rise to false positives.

For a cell to be classi�ed as a CTC it should be positive for both FITC and
DAPI, but negative for CD45, in order to be categorized as a CTC.

After the staining the cells are washed and smeared out on a CytoTrack disc
where the cells are immobilized.

Figure 2.2: Illustration of the sample preparation and scanning procedure
[H+13].
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2.5 CTC Detection an Enumeration

The CytoTrack is a system for detection of rare cells, such as CTCs and an
illustration of the CytoTrack can be seen in �gure 2.3.

Figure 2.3: Illustration of the CytoTrack from [Cyt14b]

After the disc has been prepared it is inserted in the CytoTrack. Here a laser is
used to scan the sample, in order to �nd FITC positive areas. These are saved
as hot spots, i.e. possible CTCs. After the scanning the CytoTrack retrieves
the hot spots and these are imaged using the camera.

For the setup used for this project, i.e. CTC detection, three images are taken
of each hot spot. The three images are obtained using three di�erent �lters in
order to image the three di�erent types of staining. That is, CD45 in the red
channel, FITC in the green channel, and DAPI in the blue channel, see �gure
2.4.

After the scanning the images are manually scored by a trained operator, i.e. a
bunch of the hot spots are false positives and only a few are true positives. The
scoring is based on the CTC de�nition described in section 2.3. The operator
is presented with three images of each hot spot, i.e. an image from the CD45-,
FITC- and DAPI- channel, and from these it is determined if the criteria for a
CTC is met.

The number of hot spots from one sample varies signi�cantly from patient to
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Figure 2.4: Example of the images obtained using CytoTrack

patient. The scoring can take up to several hours for large data sets, where there
can be up to thousands of hot spots. As this scoring is a manual process both
inter- and intra- operator variability is introduced. Furthermore this manual
scoring is time consuming, tedious and costly, and it would be preferable to
reduce or even eliminate this step. Reduction in scoring time or even elimination
of manual scoring could possibly be obtained by use of an automatic scoring
algorithm.



Chapter 3

Existing Technology

CTC detection is a novel technology and to my knowledge only one attempt
of automatic classi�cation of CTC images is publicly documented, i.e. [Lig12].
In [Lig12] the images are obtained from the CellSearchr system. CellSearchr

is the only available FDA-cleared technology for CTC detection and hence a
short description of the procedures involved in CTC detection when using the
CellSearchr follows.

In the preparation of the sample an enrichment step based on magnetic separation
is added. That is, the CTCs are captured by adding an EpCAM 1 ferro�uid
and placing the sample between magnets. After this enrichment the cells are
stained with �uorescent markers similar to those used with the CytoTrack. This
results in a 300 µl sample which is placed in a semi-automatic epi-�uorescent
microscope, where it is scanned in four �uorescent channels [Lig12]. These
channels includes one for each of the three �uorescent markers and a control
channel used to verify auto �uorescence or used for a fourth biomarker. After the
scan the CellSearchr software �nds objects that are positive in the cytokeratin
channel (also known as the PE-channel) and in the nuclear channel (also known
as the DAPI-channel). An example of the image gallery presented to the
CellSearch r operator is given in �gure 3.1.

For the classi�cation in [Lig12] the patient survival is used as a training parameter

1EpCAM = Epithelial Cell Adhesion Molecule, which is expressed in epithelial cells
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Figure 3.1: Examples of the CellSearchr image gallery [Lig12]. The �rst
column (CK-PE DAPI) is overlap images of the cytokeratin and
nuclear channel, the second column (CD45-APC) is the CD45
channel, the third column (FITC) is the control channel, the fourth
column (CK-PE) is the cytokeratin channel and the �fth column
(DAPI) is the nuclear channel.



11

instead of a marked training set and furthermore [Lig12] studies the impact of
changing the CTC de�nition to see the e�ect on patient survival.

The process of scoring the images is divided into segmentation, features extraction
and classi�cation. In [Lig12] for the segmentation three histogram based methods
are tested, these are Zack's triangle threshold, Otsu's method and the isodata
method. From the segmented images 24 basic features are extracted and from
these 4 are selected through univariate analysis. The classi�cation is based on
these 4 features, and di�erent threshold levels for each feature are tested. This
results in 16464 di�erent classi�ers, which are tested. The �nal results from
[Lig12] are comparable to manual scoring, and the inter- and intra- operator
variability is eliminated.

Besides [Lig12] the identi�cation and characterization of di�erent types of cells
have been researched thoroughly, e.g. in [HEH+06] [PSF+04] [BACP07].
In [HEH+06] di�erent methods for cell classi�cation are reviewed. Among
all methods tested the random forest and support vector machines algorithms
outperform all other algorithms, with both the highest mean classi�cation accuracy
and the lowest standard deviation.

In this thesis di�erent methods are tested for both the segmentation and for
the classi�cation. For the segmentation Otsu's method and a �xed threshold
are tested, and for the classi�cation support vector machines and random forest
are tested.
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Chapter 4

Data

The images are obtained as described in section 2.5. Three images are obtained
of each hot spot, i.e. one for the CD45-, FITC- and DAPI staining. The images
are of size 1280x960 pixels and each pixel corresponds to 0.375x0.375µm. The
images are rgb images and are obtained in jpeg format. Two sets of data are
used for this thesis. The �rst set consist of images obtained from cell lines mixed
with humane blood, and the second set consist of images obtained from blood
samples of mammary cancer patients. In this chapter cropped versions of the
original images are shown, for the uncropped versions the reader if referred to
appendix A.

4.1 Spiked Samples

The �rst data set consist of images obtained from cell lines mixed with humane
blood. These images are generally easier to score since the cells have had the
change to grow big and have not been subjected to the stress and strain from
the human circulatory system.
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Data set No. of positives No. of negatives
MCF7 1 129 51
MCF7 2 162 45
MCF7 3 105 57
MCF7 4 129 45
MCF7 5 123 123
MCF7 6 132 135
MCF7 7 174 57
MCF7 8 114 90
SKBR3 1 315 285
Total 1383 888

Table 4.1: Number of image set scored positive and negative by the operator
in the spiked data.

Two types of cell lines are used, MCF71 and SkBr32. These are chosen since
they have a high cytokeratin expression, i.e. a high homogeneous FITC signal
(see �gure 4.1b and 4.2b), and their nuclei are increased in size as seen in �gure
4.1c and 4.2c. These characteristics makes them easy to score and thereby a
good starting point.

Both the MCF7 and SkBr3 cell line originates from mammary cancer patients
and are both isolated in 1970 from Caucasian women [ATC14b] [ATC14a].
Examples of how the cells look when imaged using CytoTrack can be seen in
�gure 4.1 and 4.2. Furthermore some examples of false positive images (i.e.
images that are scored negative in the manual scoring) are shown in �gure 4.3
and 4.4.

For training of the algorithm eight data sets obtained from MCF7 and one
set from the SkBr3 cell line are used. The number of positives and negatives
for each data set can be seen in table 4.1. For the testing 2 data sets from the
SkBr3 cell line are used.

1The acronym MCF7 refers to Michigan Cancer Foundation-7 which is who established

the cell line in 1973
2The acronym SkBr3 refers to Memorial Sloan�Kettering Cancer Center which is who

isolated the cell line
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(a) CD45 (b) FITC (c) DAPI

Figure 4.1: MCF7 cell imaged using CytoTrack (the images are cropped out
from the original)

(a) CD45 (b) FITC (c) DAPI

Figure 4.2: SkBr3 cell imaged using CytoTrack (the images are cropped out
from the original)

Figure 4.3: Example of a false positive image from the spiked samples (the
images are cropped out from the original)

Figure 4.4: Example of a false positive image from the spiked samples (the
images are cropped out from the original)
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4.2 Patient Samples

Since it is of more clinical relevance to look at real patient data, some patient
samples are also included in the data for this thesis. These images can be a bit
harder to score than the images of spiked samples, since there are more variation
in the appearances of the cells. In �gure 4.5 and 4.6 some images are shown of
CTCs from patient samples.

One data set stands apart from the rest, i.e. data set B171. In this sample
the CTCs are generally bigger and have a high homogeneous FITC signal. An
example is illustrated in �gure 4.7. This di�erence is explained by B171 being
a fresh sample, where the others are older samples taken from the freezer.

There are also some alignment issues in some of the images as seen in �gure
4.8. This misalignment is a result of the instrument being heated when running
for a long time. In the imaging process, the three types of images are taken
separately, i.e. �rst all the DAPI images are taken, second the FITC images
and third the CD45 images. This results in a signi�cant time di�erence between
the three images of one hot spot.

In �gure 4.9 and 4.10 there are some examples of false positive images (i.e.
images scored negative in the manual classi�cation process). It is clear that
there are great variations among both the positive and negative images.

The patient samples are all from mammary cancer patients and are all from
patients enrolled in the XeNa project. The XeNa project is a clinical trial,
which studies the drug Xeloda on invasive breast cancer patients [Lan13].

The data is divided into a training set and a testing set. The training set
consist of images of all hot spots from 10 patients from the XeNa project, 5
who are CTC positive and 5 who are CTC negative, and images of some of the
hot spots from 4 other patients from the XeNa project (B95, B129, B130 and
B134). The test set consist of 7 data sets with images of all hot spots.

As can be seen from table 4.2 there are a lot more negative images than positives,
which gives rise to a severe unbalanced data set. A balanced data set has thus
been generated by using all positive images and an equal number of randomly
selected negative images. This balanced data set are used for the training.
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Data set No. of positives No. of negatives
B95 5 16
B97 12 269
B102 0 292
B113 5 60
B127 0 187
B129 1 13
B130 25 17
B133 8 225
B134 6 1
B137 0 167
B143 0 208
B161 0 233
B163 48 115
B171 15 219
Total 125 2022

Table 4.2: Number of image sets scored positive and negative by the operator
in the patient data.

Figure 4.5: Example of a CTC positive image set from the patient data (the
images are cropped out from the original)

Figure 4.6: Example of a CTC positive image set from the patient data (the
images are cropped out from the original)
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Figure 4.7: Example of a CTC positive image set from the B171 data set (the
images are cropped out from the original)

Figure 4.8: Image example of misalingment, the image is an overlay between
the three channels and the images used for the overlay are cropped
out from the original

Figure 4.9: Example of a false positive image from the patient data (the images
are cropped out from the original)

Figure 4.10: Example of a false positive image from the patient data (the
images are cropped out from the original)



Chapter 5

Methods

All computations are implemented in Matlab (The Mathworks Inc.) in version
8.3.0.532 for windows. Matlab is chosen since it is excellent for image analysis
and it provides ease of programming. Furthermore Matlab o�ers various toolboxes
and for this thesis both the image processing toolbox and the statistics toolbox

are used. The speci�cations for the program are given in appendix C.

The di�erent steps involved in the classi�cation of the CTC images are illustrated
in the �owchart in �gure 5.1.
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Figure 5.1: Flowchart over the steps involved in the classi�cation of the CTC
images
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5.1 Preprocessing

Before the classi�cation, some preprocessing steps are necessary. Features have
to be extracted from the images. These features should preferably be based
on the cell morphology and hence the cells have to be segmented. In order to
segment the images, they are �rst converted into gray scale images.

5.1.1 Gray Scale

For the conversion of rgb images into gray scale, two methods are tested.

1. Method 1:
The use of Matlab's function rgb2gray, which uses a weighted sum of the
red, green and blue component:

Igray = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B (5.1)

where R, G and B are the red, green and blue component, respectively.

2. Method 2:
Only looking at one of the components, i.e. for CD45 only the red
component, for FITC only the green component and for DAPI only the
blue component is taken into account.

In �gure 5.2 the two gray scale conversion methods are compared. In the �rst
row are the CD45 images, in the second the FITC images and in the third row
the DAPI images. In the �rst column of �gure 5.2 the original images are shown,
and in the second and third column method 1 and 2 are shown, respectively.

The comparison in �gure 5.2 clearly show a higher contrast for the images
obtained using method number 2 compared with method number 1. Since a
high contrast will make the segmentation easier method number 2 is chosen and
used for the �nal scoring program.

After the conversion the pixel values are normalized to achieve consistency in
the pixel range, i.e. to make the individual images more comparable. The
normalization is done by use of 5% and 95% of the maximum value, i.e.

Inorm = 255 · Igray −max5%
max95% −max5%

(5.2)
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where Igray is the gray scale image, and max5% and max95% are 5% and 95%
of the maximum values, respectively.

Figure 5.2: Comparison of two gray scale methods. Top: CD45, middle:
FITC and bottom: DAPI. First column: Original images, second
column: rgb2gray applied to images, third column: Only one
channel.

5.1.2 Segmentation

The images have to be segmented to make it possible to extract morphological
features from the cells. The �rst step in the segmentation is to only segment
the FITC images, and from this determine a region of interest (ROI). This ROI
is de�ned as the box that exactly contains the hot spot found in FITC, plus
10 pixels in each direction. The ROI is cropped out of the three images, i.e.
CD45, FITC and DAPI. The segmentation of the CD45 and DAPI images is
only performed on the cropped images.

There are many di�erent approaches to image segmentation, and it is important
to �nd the right method for the right images. All the cells in the images are
objects of interest, these are all clearly visible from the background and a simple
histogram-based method should be su�cient. Two methods have been tested,
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a �xed threshold where a threshold is determined for each type of image, and
Otsu's method for generating an automatic threshold.

1. Fixed Threshold
A �xed threshold is determined for each type of image. The optimal
threshold is determined based on the histograms of several images. A
threshold was chosen for the CD45-, FITC- and DAPI images independently
from each other. The thresholds that gave the best results on a scale from
0 to 255 were 200 for CD45 and DAPI, and 60 for FITC. Some results of
using this method can be seen in �gure 5.3 in the third column.

2. Otsu's Method
In Otsu's method for applying a threshold to an image, the histogram is
normalized and assumed to be a probability distribution, i.e. [Ots79]

pi = ni/N, pi ≥ 0, ΣL
i=1pi = 1 (5.3)

where ni is the number of pixels at level i, N is the total number of pixels
and L is the gray levels.

The optimal threshold for separating the two classes, C0 and C1, is de�ned
as the one that gives the lowest within-class variance σ2

W

σ2
W = ω0σ

2
0 + ω1σ

2
1 (5.4)

where ω0 and ω1 are the probabilities of class C0 and C1, respectively, and
σ2
0 and σ2

1 are the variances of class C0 and C1, respectively [Ots79].

This method is implemented using Matlab's function graythresh from
the image processing toolbox. In order to be as sensitive as possible and
to avoid segmenting a lot of noise, an o�set of 20 is added to the FITC
and CD45 images. The o�set is not added to the DAPI images since these
are often saturated and thus have a threshold of 255. Some results from
this method can be seen in �gure 5.3 in the second column.

For both methods all objects that have a size of 100 pixels ( 14µm2) or less are
considered noise and are removed from the images. Furthermore to be sure that
even the smallest objects are segmented in the FITC images, a dilation operation
is applied to the gray scale image and after segmentation an erosion is applied,
in order not to overestimate the sizes of the objects. For the structuring element
a disk shape with a radius of 5 and 3 are used, respectively. All hot spots imaged
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will be found close to the center of the images, and hence all borders are cleared
for objects in the uncropped binary FITC images.

The two methods are compared in �gure 5.3. In the �rst column are the original
gray scale image for CD45, FITC and DAPI, respectively. Otsu's method are
applied to the images in column two, and in the third column the results of
applying a �xed threshold is illustrated.

For some images the �xed threshold performed excellent, as seen in the FITC
images of �gure 5.3, but as can be seen in the DAPI and CD45 images of �gure
5.3 that did not apply to all images. The background and the intensity of the
cells varies signi�cantly throughout the data, and hence a �xed threshold does
not give an optimal segmentation. Otsu's method on the other hand performed
much more robust and thus this was the method of choice for the segmentation.

Figure 5.3: Comparison of two threshold methods. Top: CD45, middle:
FITC and bottom: DAPI. First column: Original images, second
column: Otsu's method, third column: Fixed threshold.
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5.1.3 Feature Extraction

As a �rst step in the feature extraction some obvious negatives are classi�ed.
These are classi�ed based on the area and convex area of the binary large

object (BLOB) found in the FITC images. Furthermore the overlap between
the BLOB in the FITC image and a BLOB in the CD45 image is also used
for this preselection. The criteria for obvious negatives are image sets where
no BLOBs are found in FITC, where the BLOB has an area or convex area
larger than 10,000 pixels (�1406µm2) in FITC and image sets where there are
100% overlap between the BLOB found in FITC and a BLOB found in CD45.
Besides these obvious negative images, all image sets where the FITC contains
more than one object are classi�ed as cases of doubts. This is done to avoid
classifying the same image twice.

After this preselection 13 basic morphological features are extracted from the
images. These are area, convex area, solidity, eccentricity, diameter, perimeter,
minor axis/major axis, contrast, overlap between FITC and DAPI, overlap
between FITC and CD45 and mean intensity in FITC, DAPI and CD45. These
features are chosen since they e.g. describe the shape of the cell, which should
have an impact on the classi�cation. Furthermore both intensities and contrast
are thought to possibly have an e�ect on the classi�cation. Generally a relatively
high intensity is observed for the CTCs in the FITC images, and a bit lower
intensity is observed for the nucleus of CTCs (lower intensity for the blob in
DAPI compared with other DAPI blobs). The �rst eight features are measured
in the FITC images. The �rst seven features and the intensities are measured
using the regionprops function which is directly available from the image

processing toolbox in Matlab. The contrast is de�ned as the standard deviation
of the pixel values. The overlaps are de�ned as the area where both images
have values of 1, i.e. where the BLOB overlaps, divided by the entire area of
the BLOB in FITC. The overlap is thus a value between 0 and 1, where 1 is
de�ned as 100% overlap.

The distribution of these features are plotted as cumulative histograms. This
is done to see how well the chosen features separate the positive and negative
image sets. The histograms for both the patient data and the spiked data can
be seen in appendix B. From these histograms it is clear that the positive and
negative class are more well separated for the spiked data than for the patient
data.
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5.2 Classi�cation Methods

After the preprocessing the unclassi�ed images have to be classi�ed based on
the computed features. Classi�cation is the task of dividing unseen data into
the right classes. For this a classi�cation algorithm is used, which is trained
on training data where the classes are already known. In this case a data set
marked by a trained operator is used, since there is no ground truth. There are
a number of di�erent classi�cation algorithms to choose from and some of the
popular choices include random forest and support vector machines. These two
algorithms generally performs well, which e.g. is shown in [HEH+06], and are
the methods of choice for this thesis.

5.2.1 Random Forest

Random forest is a classi�cation algorithm that is built from decision trees. A
decision tree is a tree that classi�es the input data by sorting based on the
values of the features extracted from the data. The features are represented by
decision nodes, where the topmost are called root nodes. The root nodes are
connected to the internal nodes through branches. Each branch do a binary
split and ultimately end out in leaf nodes which holds the classi�cation of the
data [HGFO14]. An example of a decision tree can be seen �gure 5.4.

In a random forest many decision trees are grown. Each tree is trained from a

Figure 5.4: Example of a decision tree from [HGFO14]
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randomly chosen subset of the input features mtry, which is a way of reducing
the dimensionality of the features

Rn → Rmtry, mtry � n (5.5)

where n is total the number of features.

From a random forest it is possible to associate a distribution with each of
the internal nodes as well as the leaf nodes. These distributions can be used
to choose the split with highest con�dence. A probabilistic predictor model is
associated with the leaf nodes of all the trees

pt(y|v) (5.6)

where y is the class label, i.e. either CTC or not a CTC, v is the feature values,
and t = {1, 2, ..., T} is the trees [BC] [BS09].

An average over all the trees can give the full prediction for the forest

p(y|v) =
1

T

T∑
t=1

pt(y|v) (5.7)

From these probabilities it is possible to compute a Receiver operating characteristic
(ROC) curve, which can be used to choose optimal thresholds to e.g. avoid false
negatives.

Di�erent variables should be taken into consideration when constructing a random
forest. An important variable is the size of the forest, which is given by the
number of trees. By adding more trees to a forest it is possible to reduce the
variance of the model and keep the bias of the trees. Other important variables
are the minimum number of leaf nodes, which is used as a stopping criterion in
the training for each tree, and the number of features to select from each split
(mtry) [BC] [BS09].

Random forest can also be used for estimating the features importance, by
randomly permuting the out-of-bag (oob) features. The oob features are the
ones not incorporated in the construction of the tree. After having trained each
tree in the in-bag samples, the oob samples are tested and the number of votes
for the correct class is counted. For each of the n features their values in the oob
samples are randomly permuted and predictions are computed. The number of
votes for the correct class of the permuted oob samples is subtracted from the
number of votes for the correct class of the non-permuted oob samples. The
average over all trees in the forest is used as a raw importance score for the
feature n. If this importance score is low it implies that changing this feature
will not have a signi�cant e�ect on the scoring of the data and vice versa [BC]
[BS09].
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5.2.2 Support Vector Machine

Support vector machines (SVMs) are supervised learning models which can be
used for binary classi�cation of data. The input vectors are mapped into a
high dimensional feature space called Z. The mapping is done using non-linear
mapping which is chosen prior to the classi�cation. The data is separated into
two classes by use of a linear separating plane called a hyperplane. There will
be an in�nite amount of hyperplanes that can separate the training data, but
not all will generalize well. The optimal hyperplane is de�ned as the plane that
gives the maximal margin between vectors of the two classes as can be seen
in �gure 5.5. Only a small amount of the training data have to be taken into
account for this approach, i.e. the support vectors [CV95] [TM14].

Figure 5.5: Illustration of the principle in SVM [CV95]

The algorithm is �rst trained using a marked training set, {xi, yi}(i = 1, ..., n),
where xi ∈ Rd and yi ∈ {−1,+1} (corresponding to the two classes not a CTC

and CTC ). The equation for the optimal hyperplane is thus,

w0 · x + b0 = 0 (5.8)

where w0 is the weight vector and b0 is the bias [CV95].

The decision function is given as

I(z) = sign

( ∑
support vectors

w0 · z + b0

)
(5.9)
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which determined the classi�cation of the vector z.

For inseparable data, i.e. can not be separated without error, the goal is to
reduce the number of errors. For this a soft margin is used, which is given as

min

(
1

2
w2 + C

(∑
i

ξi

))
(5.10)

under the constraints
yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0
(5.11)

Increasing C will allow a more strict separation between classes and reducing C
towards zero will make a wrong classi�cations less important [CV95] [TM14].

Not all data can be well separated using a simple hyperplane. For these cases a
kernel function K(x,y) is used to map the data into higher dimensional spaces.
In a linear space S, the function ϕ maps x to S.

K(x,y) = ϕ(x) · ϕ(y) (5.12)

Di�erent functions can be used as kernel functions and in this thesis two di�erent
kernels, besides the linear, are tested, i.e. a polynomial and a radial basis
function (rbf). The polynomial kernel is of the form

K(x,y) = (x · y + 1)d (5.13)

where d is the order of the polynomial. The rbf is given as

K(x,y) = exp

(
−|x− y|2

σ2

)
(5.14)

where σ2 is the variance [CV95] [TM14].

The output of SVM is not simple scores as it is for random forest. Instead
the output is given by

f(x) = h(x) + b (5.15)

where
h(x) =

∑
i

yiαiK(xi,x) (5.16)

where αi is the weight of a support vector in the feature space and xi is the
image of a support vector in input space [CV95]. From this output a posterior
probability can be calculated by �tting a sigmoid function to f(x)

P (y = 1|f) =
1

1 + exp(Af +B)
(5.17)

where the parameters A and B are trained discriminatively using the training
set [Pla99].
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Chapter 6

Results

In order to �nd the optimal method for classifying the data, 4 di�erent algorithms
are tested. These are the random forest and SVM with 3 di�erent kernel
functions (linear, polynomial and radial basis function (rbf)). For this the
feature importance is tested followed by cross validation and testing of the 4
algorithms.

6.1 Feature importance

The importance of the features is tested using random forest, see section 5.2.1.
In �gure 6.1 each feature is given as a number along the x-axis (see table 6.1)
and the feature importance is given along the y-axis. From this it is clear that
not all features contribute equally to the separation of the data. Based on these
histograms the 3 and 6 most important features for both patient and spiked
data are found and used for further testing.

In �gure 6.1 it can be seen that there are big variations in the importance
of the individual features for the spiked data. There are also some variations
for the patient data, but these are not as big as for the spiked data.
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The 6 most important features for the patient data given in descending order
are:

1. Mean intensity measured in FITC

2. Convex area

3. Area

4. Diameter

5. Perimeter

6. Contrast

The 6 most important features for the spiked data given in descending order
are:

1. FITC/DAPI overlap

2. FITC/CD45 overlap

3. Contrast

4. Convex area

5. Mean intensity measured in FITC

6. Area
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Figure 6.1: Illustration of the importance of the di�erent features for both
patient (left) and spiked (right) data.



6.1 Feature importance 33

Number Feature
1 Contrast
2 FITC/CD45 overlap
3 FITC/DAPI overlap
4 Area
5 Minor-/major axis
6 Eccentricity
7 Diameter
8 Solidity
9 Perimeter
10 Convex area
11 Intensity FITC
12 Intensity CD45
13 Intensity DAPI

Table 6.1: Features corresponding to the numbers in �gure 6.1.
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6.2 Cross Validation

The 4 algorithms are cross validated using 10-fold cross validation. In 10-fold
cross validation the training data is randomly divided into 10 equal sized subsamples
and the training is performed on 9 of the 10 subsamples, the last subsample is
then used for validation. This is repeated 10 times using a new subsample for
validation each time, i.e. all subsamples are used for validation exactly once.
The 10 results are then averaged to give an estimate of the performance of the
algorithm.

6.2.1 Random Forest

For random forest 3 variables have to be determined, these are the number of
trees, the minimum number of leaf nodes and the number of variables to sample
(mtry). The �rst variable, number of trees, are tested using the out-of-bag error
(oob error). The oob error is plotted as a function of the number of trees as seen
in �gure 6.2. It can be seen that the error does not change much after reaching
about 200-300 trees, but to be on the safe side 500 trees are used.

Furthermore it can be seen that for the patient data, using all features give
signi�cantly lower oob error compared with using 3 or 6. For spiked data, using
6 features gives the lowest oob error. It is also worth noticing that the oob
error in general is much lower for the spiked samples compared with the patient
samples.
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Figure 6.2: Oob error as a function of the number of trees for patient data
(left) and spiked data (right).

After the number of trees is determined, a 10 fold cross validation is performed
where the minimum number of leaf nodes and the number variables to sample
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are varied. The results from the cross validation are illustrated in �gure 6.3 and
6.4 where the sensitivity and speci�city is computed for each combination. The
sensitivities are shown to the left and the speci�cities are shown to the right.
In �gure 6.3 the patient data is used and in �gure 6.4 the spiked data is used.
For both �gures the top row is including 3 features, the middle is including 6
features and the bottom row is including all features. From these �gures it is
clear that both higher sensitivities and speci�cities are reached for the spiked
data compared with the patient data.

The goal is to reach as high sensitivity and speci�cty for one of the combinations.
For this thesis the sensitivity is weighted higher than the speci�city, since the
goal is to completely eliminate false negatives.

From the two �gures it is noticed that the sensitivities are generally higher than
the speci�cities, and relatively high sensitivities are found for all combinations.
There are bigger variations in the speci�cities, e.g. the speci�cities are clearly
higher using all features for the patient data compared with using 3 or 6 features.
For the spiked data the variations for the speci�cities are not as clear, but they
are generally higher using 6 features compared with using all or 3 features. The
best combination for both patient and spiked data is given in table 6.2, and
these combinations are used for the testing.

Patient Spiked
No. of features All 6
No. of variables to sample 9 4
Minimum number of leaf nodes 6 2
Sensitivity 0.8518 0.9572
Speci�city 0.8178 0.8907

Table 6.2: Summary of the variables that give the best combination of
sensitivity and speci�city for random forest.
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Figure 6.3: Sensitivities and speci�cities computed from 10-fold cross
validation for the patient data. In the top row the 3 most
important features are included, in the middle row the 6 most
important features are included and in the bottom row all features
are included.
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Figure 6.4: Sensitivities and speci�cities computed from 10-fold cross
validation for the spiked data. In the top row the 3 most important
features are included, in the middle row the 6 most important
features are included and in the bottom row all features are
included.
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6.2.2 SVM Linear

For the linear kernel of SVM a 10 fold cross validation is performed where the
variable C and the kernel scale is varied. The results from the cross validation are
illustrated in �gure 6.5 and 6.6 where the sensitivity and speci�city is computed
for each combination. The sensitivities are shown to the left and the speci�cities
are shown to the right. In �gure 6.5 the patient data is used and in �gure 6.6
the spiked data is used. For both �gures the top row is including 3 features,
the middle is including 6 features and the bottom row is including all features.
From these �gures it is clear that both higher sensitivities and speci�cities are
reached for the spiked data compared with the patient data, as was also seen
from the random forest.

As for the random forest the sensitivities are higher than the speci�cities and
there are bigger variations in the speci�cities. In this case the highest speci�cities
are achieved using 6 features for both patient and spiked data. The best
combinations for both patient and spiked data are given in table 6.3, and these
combinations are used for the testing.

It is worth noticing that the speci�cities are generally lower using the linear
kernel compared with using random forest for both patient and spiked data.
Furthermore for the patient data the computed sensitivities are also lower compared
with the results from using random forest.

Patient Spiked
No. of features 6 6
Kernel scale 1 1
C 100 10
Sensitivity 0.7982 0.9548
Speci�city 0.6491 0.8175

Table 6.3: Summary of the variables that give the best combination of
sensitivity and speci�city for SVM with a linear kernel.
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Figure 6.5: Sensitivities and speci�cities computed from 10-fold cross
validation for the patient data. In the top row the 3 most
important features are included, in the middle row the 6 most
important features are included and in the bottom row all features
are included.
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Figure 6.6: Sensitivities and speci�cities computed from 10-fold cross
validation for the spiked data. In the top row the 3 most important
features are included, in the middle row the 6 most important
features are included and in the bottom row all features are
included.
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6.2.3 SVM Polynomial

For SVM using the polynomial kernel a 10 fold cross validation is performed
where the variable C and the order of the polynomial is varied. The results from
the cross validation are illustrated in �gure 6.7 and 6.8 where the sensitivity and
speci�city is computed for each combination. The sensitivities are shown to the
left and the speci�cities are shown to the right. In �gure 6.7 the patient data is
used and in �gure 6.8 the spiked data is used. For both �gures the top row is
including 3 features, the middle is including 6 features and the bottom row is
including all features.

For the polynomial kernel the sensitivities are higher than the speci�cities, as
seen for both random forest and SVM with a linear kernel. As for the linear
kernel the highest speci�cities are reached using 6 features for both patient and
spiked data. The best combination for both patient and spiked data are given
in table 6.4, and these combinations are used for the testing.

The sensitivities and speci�cities for the spiked samples are comparable to the
ones computed using the linear kernel and using random forest. For the patient
data the results from using the polynomial kernel are comparable to using the
linear kernel and hence the results are worse for the polynomial kernel compared
with using random forest.

Patient Spiked
No. of features 6 6
Order 3 2
C 1 10
Sensitivity 0.7719 0.9578
Speci�city 0.7105 0.8467

Table 6.4: Summary of the variables that give the best combination of
sensitivity and speci�city for SVM with a polynomial kernel.
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Figure 6.7: Sensitivities and speci�cities computed from 10-fold cross
validation for the patient data. In the top row the 3 most
important features are included, in the middle row the 6 most
important features are included and in the bottom row all features
are included.
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Figure 6.8: Sensitivities and speci�cities computed from 10-fold cross
validation for the spiked data. In the top row the 3 most important
features are included, in the middle row the 6 most important
features are included and in the bottom row all features are
included.
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6.2.4 SVM rbf

For SVM with an rbf kernel a 10 fold cross validation is performed where the
variable C and the kernel scale (σ) is varied. The results from the cross validation
are illustrated in �gure 6.9 and 6.10 where the sensitivity and speci�city is
computed for each combination. The sensitivities are shown to the left and the
speci�cities are shown to the right. In �gure 6.9 the patient data is used and in
�gure 6.10 the spiked data is used. For both �gures the top row is including 3
features, the middle is including 6 features and the bottom row is including all
features. As for the other algorithms both higher sensitivities and speci�cities
are reached for the spiked data compared with the patient data.

In this case the highest speci�cities are achieved using 6 features for both patient
and spiked data. The best combination for both patient and spiked data are
given in table 6.5, and these combinations are used for the testing.

From table 6.5 it is clear that the three SVM algorithm's performances are
comparable for the patient data, but performs a bit worse than random forest.
For the spiked data all four algorithm's performances are comparable.

Patient Spiked
No. of features 6 6
Kernel Scale (σ) 10 10
C 10 100
Sensitivity 0.7193 0.9639
Speci�city 0.7193 0.8394

Table 6.5: Summary of the variables that give the best combination of
sensitivity and speci�city for SVM with rbf kernel.
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Figure 6.9: Sensitivities and speci�cities computed from 10-fold cross
validation for the patient data. In the top row the 3 most
important features are included, in the middle row the 6 most
important features are included and in the bottom row all features
are included.
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Figure 6.10: Sensitivities and speci�cities computed from 10-fold cross
validation for the spiked data. In the top row the 3 most
important features are included, in the middle row the 6 most
important features are included and in the bottom row all
features are included.
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6.3 ROC Curves

A receiver operating characteristic (ROC) curve is a graphical representation of
the performance of a binary classi�er when varying the discriminant threshold.
The ROC curve is computed by plotting the true positive rate as a function of
the false positive rate.

From the cross validation, the 4 algorithms, for both patient and spiked data,
that performs the best are chosen for further testing. In �gure 6.11 the ROC
curves for these 4 algorithms for both patient data and spiked data are shown.
There are no apparent di�erences in the performance of the 4 algorithms, but it
seems like random forest performs a bit better for the patient data, as expected.

Thresholds are found based on the ROC curves. Since it is more important
to avoid false negatives than false positives, the thresholds are chosen so that
the true positive rate is equal to 1. The rest is classi�ed as negatives.
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(b) Spiked samples

Figure 6.11: ROC curves for patient data (to the left) and spiked data (to the
right).
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6.4 Results From Testing

The four algorithms trained on the spiked data are tested on the spiked test
data. The results from this test can be seen in table 6.6. It should be noted
that beside the data in the table, 163 image sets are classi�ed as cases of doubts,
and hence not incorporated in the table. In table 6.6 it is noticed that for three
out of four algorithms there are no false negatives. The one false negative can
be seen in �gure 6.12.

Tp Tn Fp Fn Sensitivity Speci�city
SVM linear 179 35 23 0 1 0.6034
SVM polynomial 178 44 14 1 0.9944 0.7586
SVM rbf 179 39 19 0 1 0.6724
Random forest 179 31 27 0 1 0.5344

Table 6.6: Results from testing the algorithms based on the spiked data on
the spiked testing data. Tp = True positive, Tn = True Negative,
Fp = False positive and Fn = False negative.

Figure 6.12: Illustration of the false negative image from the spiked test data
(the images are cropped out from the original)

Data set B171 looks more like the spiked data than the patient data. This is
explained by B171 being a fresh sample. Since the test set is unknown, there
is no information about whether the test samples are fresh or not. Therefore
patient data is tested using both the algorithms trained on the spiked data and
the algorithms trained on the patient data. The results can be seen in table
6.7. Besides the results in table 6.7 209 image sets are classi�ed as cases of
doubts and are not incorporated in the table. From table 6.7 it is clear that
the algorithms trained on spiked data give higher speci�cities, but at the same
time they give false negatives and thus lower sensitivities compared with the
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algorithms trained on the patient data. All in all three image sets are scored
false negative and these can be seen in �gure 6.13, 6.14 and 6.15.



50 Results

Tp Tn Fp Fn Sensitivity Speci�city
SVM linear 21 236 184 2 0.9130 0.5619
(Spiked)
SVM polynomial 20 346 74 3 0.8696 0.8238
(Spiked)
SVM rbf 20 321 99 3 0.8696 0.7642
(Spiked)
Random forest 22 246 174 1 0.9565 0.5857
(Spiked)
SVM linear 23 188 232 0 1 0.4476
(Patient)
SVM polynomial 23 164 256 0 1 0.3905
(Patient)
SVM rbf 23 194 226 0 1 0.4619
(Patient)
Random forest 23 186 234 0 1 0.4429
(Patient)

Table 6.7: Results from testing all algorithms on the patient data. Tp = True
positive, Tn = True Negative, Fp = False positive and Fn = False
negative.

The images which are scored negative are sorted from the data, and the operator
will only have to verify the data scored as positive and the data scored as cases of
doubts manually. In order to determine how e�ective the individual algorithms
are, the percentage of the true negatives which are actually scored negative can
be seen in table 6.8. From this it is noticed that a larger portion of the data is
generally scored negative from the patient data compared with the spiked data.
The largest percentages are scored negative for the patient data scored with the
algorithms trained on the spiked samples, but these are also the ones with most
false negatives.
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Figure 6.13: Illustration of a false negative image from the patient test data
(the images are cropped out from the original)

Figure 6.14: Illustration of a false negative image from the patient test data
(the images are cropped out from the original)

Figure 6.15: Illustration of a false negative image from the patient test data
(the images are cropped out from the original)
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Spiked Data Patient Data
SVM linear 16.59% 37.70%
(Spiked)
SVM polynomial 20.85 % 55.27%
(Spiked)
SVM rbf 18.48% 51.28%
(Spiked)
Random forest 14.69% 39.09%
(Spiked)
SVM linear - 30.03%
(Patient)
SVM polynomial - 26.71%
(Patient)
SVM rbf - 30.99%
(Patient)
Random forest - 29.71%
(Patient)

Table 6.8: Percentage of the true negatives that are actually scored as true
negatives.
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6.5 Time Elapsed

In table 6.9 the time elapsed for running the di�erent algorithm are given. The
speci�cs for the computer used for the scoring can be seen in table 6.10.

From table 6.9 it is clear that there are no remarkable di�erences between the
algorithms in terms of time.

Spiked Data Patient Data
(400 hot spots) (652 hot spots)

SVM linear 325.57s 608.13s
(Spiked)
SVM polynomial 326.61s 605.61s
(Spiked)
SVM rbf 325.35s 611.33s
(Spiked)
Random forest 333.77s 607.50s
(Spiked)
SVM linear - 602.65s
(Patient)
SVM polynomial - 612.53s
(Patient)
SVM rbf - 610.43
(Patient)
Random forest - 612.65
(Patient)

Table 6.9: Time elapsed for the di�erent scoring algorithms.

Processor Intel core i5-2500k 3.3 GHz
Memory 8 GB RAM
Storage 128 GB SSD

Table 6.10: Computer used for computing the results.
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Chapter 7

Discussion

Thirteen di�erent features are tested in this thesis. From the test of feature
importance it is clear that not all features have the same in�uence on the
separation of the data. The feature with the lowest importance is the mean
intensity in CD45 for both the patient and the spiked data. There are big
variations in the quality of especially the CD45 images, which could give rise
to this low importance. It is also interesting to notice that the features with
the highest importance are di�erent for the patient data and the spiked data.
Furthermore the features have roughly the same importance for the patient data
compared with the spiked data. This could be due to the fact that there are big
variations in the appearances of the CTCs in the patient data compared with
the spiked data, as is illustrated in section 4.2.

For the random forest the oob-error is computed for varying number of trees.
From this it is clear that the error is signi�cantly lower for the spiked data
compared with the patient data. This could probably be explained by the big
variations between the CTC images in the patient data. Another reason for
the lower error in the spiked data, could be that more positive CTC images
were used for the training of the spiked data compared with the patient data.
It is also interesting to notice that the number of features does not have a
signi�cant impact for the spiked data, whereas for the patient data the number
of features seem to have a great impact. An explanation for this could be that
the importance of the features are relatively similar for the patient data and
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thus all features have an in�uence on the separation of the two classes.

From the cross validation of the random forest relatively high sensitivities and
speci�cities are achieved. These are generally higher for the spiked data, as
expected. By changing the number of variables to sample and the minimum
number of leaf nodes, there are observed no big variations. The biggest variations
are observed by changing the number of features used. It is not the same
variables or the same number of features that give the highest sensitivities and
speci�cities for patient data compared with spiked data. This is not surprising
when comparing with the results from the measures of feature importance and
the oob-errors.

The cross validation on the SVM with a linear kernel gives very di�erent results
depending on the variables used. Furthermore as for the random forest the
sensitivities are generally higher than the speci�cities. The variables that give
the highest sensitivities also gives the lowest speci�cities and a compromise
between the two must be chosen. For the spiked data it is possible to choose
a combination with high sensitivity that gives relatively high speci�city. This
combination gives a sensitivity that is almost equal to the one found using
random forest, but the speci�city is signi�cantly lower. For the patient data
both the sensitivity and speci�city are signi�cantly lower compared with the
results from random forest. This indicates that the random forest performs
better in the cross validation compared with the SVM with a linear kernel.

Cross validation is also performed using SVM with a polynomial kernel. The
best combination of variables gives sensitivities comparable to the ones obtained
using the linear kernel and the speci�cities are a bit higher. This goes for both
the patient and spiked data. This could indicate that the polynomial kernel
generally performs better compared with the linear kernel. On the other hand
the speci�cities are again lower compared with the random forest, indicating
that the random forest performs better on these data sets.

By cross validating the SVM with an rbf kernel it is clear that there are more
variable combinations resulting in all the data being classi�ed as CTC positive
when comparing with the other algorithms. The best variable combination
for the patient data results in the lowest sensitivity compared with the other
algorithms. On the other hand the speci�city is comparable to the one computed
using SVM with a polynomial kernel. For the spiked data the speci�city is also
comparable with the one computed from using SVM with a polynomial kernel.
The sensitivity computed for the spiked data when using SVM with an rbf kernel
is the highest sensitivity computed compared with the other algorithms. Since
sensitivity is weighted higher than speci�city, this could indicate that using an
rbf kernel is the optimal method for the spiked data, but it should be noted that
the sensitivity for the rbf kernel is only around 1% higher than the sensitivities
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computed for the other algorithms.

The ROC curves for the spiked data are very similar, and hence comparable,
which corresponds with the cross validation. An explanation of this could be
that the two populations of the spiked data (negative and positive images)
are relatively easy to separate, and hence making the classi�cation easier and
thereby similar performance of the di�erent algorithms are achieved. For the
patient data on the other hand there are bigger variations in the performance
of the ROC curves. It clearly looks like the random forest performs the best,
which corresponds with the results from the cross validation. Generally the
ROC curves computed for the patient data are worse than the ones computed
for the spiked data, as expected.

For both patient and spiked data the threshold becomes very low before all true
positives are classi�ed as positives. This gives rise to a lot of false positives, but
since avoiding false negatives is more important this is accepted.

For the testing of the algorithms the threshold is change based on the ROC
curves. By changing the threshold high sensitivities, and thereby low number
of false negatives, are reached and for most cases false negatives are avoided
completely. The downside to the high sensitivities are low speci�cities. As can
be seen from table 6.6 and 6.7 the highest speci�cities are reached for the lowest
sensitivities, as expected. For the cases where a sensitivity of 1 is achieved the
speci�city is generally higher for the spiked data compared with the patient
data. This is again what is expected, since the spiked data is generally easier
to score compared with the patient data.

One image set is false negative for the spiked data and this is from testing
the SVM with a polynomial kernel. The image set can be seen in �gure 6.12
and from the FITC image it looks like a cluster consisting of 2 or 3 CTCs,
and the BLOB in the FITC image is thus relatively big and does not have a
cell-like morphology compared with other CTC positive images. This could be
the reason for this image set being scored negative.

For the patient data there are all in all 3 image sets which are scored false
negative. The �rst one in �gure 6.13 there are no apparent overlap between
FITC and DAPI, which could lead to the wrongful scoring. This could be a
result of either misalignment between the FITC and the DAPI images or the
cytokeratin only being expressed on the side of the cell. In the second image
set, �gure 6.14, there are a very high signal from the CD45 image. The entire
CD45 image is bright red, which could be the explanation for the wrongful
classi�cation. In the last false negative image set shown in �gure 6.15 there are
almost no signal in the FITC image and the object does not have a cell-like
morphology.
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Besides the above mentioned reasons for the misclassi�cation, it is also possible
that some of the images are wrongfully classi�ed by the operator. The operators
scores are qualitatively made and no ground truth exist, thus variability in the
operators scoring is expected.

The algorithm that performed the best on the patient test data is the SVM
with an rbf kernel trained on patient data. This is a bit surprising, since this
was the algorithm that performed the worst in the cross validation. For the
spiked data it was the SVM with an rbf kernel trained on spiked data that
performed the best, this is on the other hand in correspondence with the cross
validation.

The time elapsed for running the algorithms are given in table 6.9. From this
it is clear that there are no signi�cant time di�erences between the algorithms.
The time elapsed for scoring the patient test set (652 hot spots) is around 10
minutes, which is a reasonable time considering the reduction in manual scoring
time. The same goes for the spiked data where the time elapsed is around 5
minutes for 400 hot spots.

Since there are big variations in the data, it has not been possible to eliminate the
cases of doubts, and a manual scoring is still necessary for these. Furthermore
there are a signi�cant amount of false positives, so the images scored positive
should also be looked through and veri�ed by the operator.

As mentioned earlier the cases of doubts contains more than one object. This
is to avoid classifying the same image twice. Furthermore for some CTCs the
cytokeratin is unevenly spread out through the cell and thus there can be several
small green spots in the FITC image. For such cells the image could be classi�ed
as containing more than one object and thus classi�ed as a case of doubt. By use
of another way to handle images containing more than one object, less images
might be classi�ed as cases of doubts.

Another problem is the amount of false positive. When decreasing the amount
of false negatives, the amount of false positives increases, and since it is really
important to avoid false negatives in this case, the high amount of false positives
have to be tolerated.

Optimizing this scoring algorithm are a di�cult task. For such an optimization
a large data set with a known ground truth should be used. This is not possible
in this case, since no ground truth exists. Furthermore the data set used for
this thesis is relatively small and just a few wrongful scorings in the training set
can have a signi�cant impact on the performance of the algorithm.
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Conclusion

The purpose of this thesis have been to make an automatic algorithm for scoring
of cell images obtained using CytoTrack. For this it is crucial to avoid false
negatives completely and the amount of false positives is less important.

The algorithm was developed based on 13 simple features and the importance
of these was tested. For the patient data all features had similar importance,
where on the other hand there were big variations in the importance of the
features for the spiked data.

Both patient data and spiked data was cross validated and from this it is clear
that lower error, and higher sensitivities and speci�cities, are achieved for the
spiked data. These results corresponds with the expectations, since spiked data
is generally easier to score compared with patient data.

In order to avoid false negatives the threshold has been lowered based on the
ROC curves. The threshold was chosen so that the true positive rate was equal
to 1. By changing this threshold high sensitivities were achieved and in several
cases it was possible to completely avoid false negatives, but as a consequence
of these high sensitivities, low speci�cities were computed.

Since there still were a lot of false positives and there were some image sets
scored as cases of doubts, these should still be manually scored by a trained
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operator. Around 15-20% of the true negatives are scored negative for the spiked
data and around 25-30% for the patient data. This is a signi�cant amount for
large data sets and is in compliance with the objectives. Furthermore the time
used for the scoring is around 10 minutes for a data set of 652 hot spots, which
is a reasonable amount of time.

Eight di�erent algorithms was tested on the patient data. Four of the algorithms
were trained on spiked data and four were trained on patient data. The algorithms
trained on the spiked data unfortunately gave a few false negatives, but higher
speci�cities. The four trained on patient data gave a bit lower speci�cities and
no image sets were scored false negative.

On the spiked data only four algorithms were tested and these were all trained
on spiked data. For the spiked data three out of the four algorithms performed
similar, but one algorithm scored one false negative.

The algorithm that performed the best on the patient data was the SVM with
an rbf kernel trained on patient data. Using this algorithm gave a sensitivity of
1 and a speci�city of 0.4629 when testing on an unknown test set. Furthermore
30.99% of the true negatives was scored negative, which is in correspondence
with the objectives.

For the spiked data, the algorithm that performed the best was SVM with
an rbf kernel trained on spiked data. Using this algorithm gave a sensitivity of
1 and a speci�city of 0.6724 when testing on an unknown test set. Furthermore
18.48% of the true negatives was scored negative, which is in correspondence
with the objectives.
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CytoTrack Images

In this section the uncropped versions of the cropped images shown in section
4.1, 4.2 and 6.4 are shown.

(a) CD45 (b) FITC (c) DAPI

Figure A.1: MCF7 cell imaged using CytoTrack (the original uncropped
version of 4.1)
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(a) CD45 (b) FITC (c) DAPI

Figure A.2: SkBr3 cell imaged using CytoTrack (the original uncropped
version of 4.2)

Figure A.3: Examples of false positive images from the spiked samples (the
original uncropped version of 4.3)

Figure A.4: Examples of false positive images from the spiked samples (the
original uncropped version of 4.4)

Figure A.5: Image examples of patient samples (the original uncropped
version of 4.5)
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Figure A.6: Image examples of patient samples (the original uncropped
version of 4.6)

Figure A.7: Image example of a CTC in the B171 data set (the original
uncropped version of 4.7)

Figure A.8: Image example of a CTC in the B171 data set (the original
uncropped version of 4.8)

Figure A.9: Examples of false positive images from the patient samples (the
original uncropped version of 4.9)
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Figure A.10: Examples of false positive images from the patient samples (the
original uncropped version of 4.10)

Figure A.11: Illustration of the false negative image from the spiked test data
(the original uncropped version of 6.12)

Figure A.12: Illustration of a false negative image from the patient test data
(the original uncropped version of 6.13)

Figure A.13: Illustration of a false negative image from the patient test data
(the original uncropped version of 6.14)
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Figure A.14: Illustration of a false negative image from the patient test data
(the original uncropped version of 6.15)
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Appendix B

Feature Histograms

In this section the cumulative histograms for all the computed features are
shown. In �gure B.1, B.2 and B.3 the features for the patient samples are
shown and in �gure B.4, B.5 and B.6 the features for the spiked samples are
shown.
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Figure B.1: Histograms of the area and the convex area for the patient
samples.
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Figure B.2: Histograms of solidity, eccentricity, minor-/major axis, diameter,
perimeter and contrast for the patient samples.
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Figure B.3: Histograms of the FITC/CD45 and FITC/DAPI overlap, and of
the intensities measured in CD45, FITC and DAPI for the patient
samples.
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Figure B.4: Histograms of area, convex area, solidity, eccentricity,
minor-/major axis and diameter for the spiked samples.
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Figure B.5: Histograms of the perimeter, contrast, FITC/CD45 and
FITC/DAPI overlap, and the intensities of CD45 and FITC for
the spiked samples.
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Figure B.6: Histograms of the intensities measured in DAPI for the spiked
samples.



Appendix C

Speci�cations

Overview

In this section the speci�cations for the software developed as a part of the
master project Image based characterization of circulating tumor cells are described.
The purpose of the software is to allow users of the CytoTrack to make automatic
scoring of cells. The images obtained from the CytoTrack can be used as input
for the software, and the output will be a catalog of cells divided into three
categories. The three categories should be: not a CTC, case of doubt, CTC.
There will be a minimum of three input images; FITC, DAPI and CD45.

The scoring of the cells should be based on di�erent parameters, e.g. eccentricity,
diameter, intensity, contrast and size of nucleus.

Preprocessing: The input images are RGB images and these should be converted
to gray scale and normalized, in order to make the images comparable. The
normalized images should be segmented. By segmenting the images it is possible
to extract objects from the images for further investigation. If necessary di�erent
�lters and morphological operations may be applied.

Region of Interest: A region of interest (ROI) containing the hot spot may be
cropped out of the binary FITC images. If the binary conversion of the DAPI
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and CD45 images is not su�cient, another segmentation method may be applied
on the DAPI and CD45 images in order to separate the individual nuclei/cells.

Categorization: Di�erent methods for the categorization should be tested to
�nd the optimal one. These methods should preferably include random forest
and support vector machines.
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