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Abstract
In order to create full 3D surface models of human heads, a state-of-the art method
involves the use of 3D scanner systems, such as the Canfield Scientific Vectra M3 3D-
scanner. By utilizing a built-in protocol, partial scans can be formed. The following
process of stitching together the partial scans involves a semi-automatic alignment in
which salient key points are manually annotated and used for alignment. This process
is time consuming and involves a learning curve for the person doing the annotations.

The present work presents a method for automatically assigning anatomical fea-
ture labels to the surface vertices of frontal human face scans. Randomized decision
forests with weak classifiers have been used as classification models. The models have
been trained with a novel method for computing three dimensional vertex feature
descriptors, called tangent plane features.

The author has been provided with an active shape model of frontal human faces
which is based on scans from 641 test persons from the Danish Blood Donor Study.
This has been utilized to generate a large dataset of plausible frontal surface shapes.

The results from the work indicate that the classification of the randomized deci-
sion forests is enhanced when the feature computations are based on an area around
each surface vertex of up to 10% of the diagonal of the shape bounding box. Set-
ting up a framework for multiple, single-scale investigation has proven to give good
insights into the tuning parameters of the randomized decision forests. Cascading
classifiers did not improve the results but heuristics for a method that could improve
them have been made.

In one of the conducted experiments, the classification of anatomical regions on
frontal human face scans by the use of tangent plane features as weak classifiers for
training randomized decision forests has yielded an average accuracy of 95% on an
independent test set.
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Resumé
En moderne metode til dannelse af komplette 3D-overflademodeller af menneske-
hoveder involverer brugen af 3D-skanningssystemer, såsom Canfield Scientific Vectra
M3 3D-skanneren. Ved at udnytte en indbygget protokol kan partielle skanninger
skabes. Den efterfølgende proces med sammenklipning af de partielle skanninger
involverer en semiautomatisk justering i hvilken fremstående pejlemærker manuelt
annoteres og bruges i justeringen. Denne proces er tidskrævende og involverer en
læringskurve for personen der udfører annoteringerne.

I den foreliggende afhandling præsenteres en metode til automatisk at kunne
tildele anatomiske særprægsmærkater, eller feature labels, til de tredimensionelle over-
fladepunkter på frontale menneskelige ansigtsskanninger. Randomiserede
beslutningsskove med svage sorteringsmaskiner, eller classifiers er blevet brugt som
klassifikationsmodeller. Modellerne er blevet trænet med en ny metode til at beregne
tredimensionelle punkt-særprægs-beskrivere, kaldet tangent plane features.

Til sin rådighed har forfatteren fået stillet en active shape model af frontale men-
neskeansigter som er baseret på skanninger fra 641 testpersoner fra Det Danske Blod-
donorstudie. Dette er blevet anvendt til at generere et stort datasæt af plausible
frontale ansigtsformer.

Resultaterne fra arbejdet indikerer at klassifikationen via de randomiserede beslut-
ningsskove forbedres når featureberegningerne er baseret på et område omkring hvert
overfladepunkt på op til 10% af diagonallængden af den mindste kube der kan inde-
holde formen. En omstrukturering af systemet til at kunne foretage multiple enkelt-
skalaundersøgelser har vist sig at give god indsigt i parameterjusteringen af de ran-
domiserede beslutningsskove. Gennemførslen af en kaskade af classifiers forbedrede
ikke resultaterne, men der er i den sammenhæng blevet skabt en heuristik der muligvis
ville kunne forbedre dem.

I et af de udførte eksperimenter har klassifikationen af anatomiske regioner på
frontale menneskeansigtsskanninger ved brug af tangent plane features som svage
classifiers i forbindelse med træning af randomiserede beslutningsskove i et tilfælde
ført til en gennemsnitlig prædiktionsnøjagtighed på 95% på et uafhængigt testsæt.
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CHAPTER 1
Introduction

The reader is introduced to the background and motivation that lays the foundation
for the work in the thesis.

1.1 Background

By using a semi-automatic approach, today, three dimensional surface models of
human heads can be created and represented as a triangular mesh. Typically, the
person is exposed to a multiple camera set-up and a partial 3D surface model is
created. By rotating the person and repeating the process for various degrees of
rotation, the partial 3D surface models can be merged, or stitched, together into a
very detailed, full 3D surface model.

In the process of stitching partial 3D surface models together, a crucial require-
ment is that there must be an overlap between neighbouring partial scans. In the
context of aligning frontal head surface scans, overlaps can be determined on the
basis of consistent anatomical regions, such as the nose, eyelids, chin, and so on. By
manually annotating salient features that overlap on each partial scan, they can be
stitched together.

Harder et al. [HPL+13] have proposed a framework for creating full 3D human
head surface models based on partial scans. Their system set up involves the use
of a Canfield Scientific Vectra M3 3D-scanner system, which can be seen in Figure
1.1. An important aspect of the approach is that it involves a stitching process. This
involves manual annotation of so-called anatomical ”sub-parts” that are consistent in
that they do not vary much between partial scans.

In order to annotate the anatomical surface regions and points of interest on the
human head, a program such as Sumatra [Pau] can be used. It is short for ”The Sur-
face Manipulation and Transformation Toolkit” and has been developed by Rasmus
Reinhold Paulsen and DTU Compute. Figure 1.2 shows how manual annotation has
been used to subdivide a triangular mesh into 24 facial regions, or classes.

In the present thesis, a leap is taken onwards from the manual annotation proce-
dure by investigating the possibility of developing a system that is based on imple-
menting randomized decision forests that enable automatic anatomical classification
on frontal human surface models.
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Figure 1.1: The Canfield Scientific Vectra M3 system set up.

1.2 Motivation
Manual annotations of 3D points on a head surface model requires both time, anatomi-
cal knowledge and human precision. Whereas the presumed lower fail rate may enable
humans to compete with computers on the two last-mentioned requirements, the time
factor is where they are out shined by the computational capacities of computers. The
Microsoft Kinect has a body-part recognition system for single depth images that is
based on the works of Shotton et al. [SSK+13]. Here, randomized decision forests are
used to achieve object recognition in 5 ms on the Xbox GPU, which enables real-time
body part segmentation. Figure 1.3 shows an example of a depth image in which
darker grey scale colours signify low distance to camera and associated body-part
segmentation.

Motivated by the fast body-part recognition system developed by Shotton et al.
a frontal face region classification method will be the aim for the present thesis work.
Taking offset in a frontal face active shape model, some significant differences between
the approach of Shotton et al. [SSK+13] and the approach in the present thesis are
tied to the following points:

http://www.canfieldsci.com/imaging_systems/facial_systems/VECTRA_M3_Imaging_System.html
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Figure 1.2: Subdivision of a triangular mesh into a total of 24 classes, or ground
truth labels based on manual annotation in Sumatra [Pau].
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Figure 1.3: Example of a depth image (left) and corresponding body-part segmen-
tation based on randomized decision forests as described by Shotton et
al. [SSK+13].

1. Shotton et al. are using single depth images to classify body part distribution.
They are also using low-computational-cost per-pixel depth image feature re-
sponses as weak classifiers when training their randomized decision forest. The
present work will work on 3D vertices and the weak classifiers will be focusing
on computing various so-called tangent plane features, which is a novel concept.

2. Shotton et al. are synthesizing a large training data set of poses from a motion
capture (”mocap”) database. Each pose is randomized to simulate random span
in weight, height, camera noise, camera pitch and roll, hair style and clothing.
The present work will utilize a frontal face active shape model provided by the
Image Analysis and Computer Graphics section at DTU to synthesize training
data based on a mean shape whose facial regions will be manually annotated.
By propagating these annotated vertices and randomizing the principal compo-
nent perturbations, the resulting data set covers the range of all possible facial
appearances and expressions that can possibly be created by the active shape
model.

Ideally, the functionality that is achieved can be utilized within scientific areas
within:
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• Advanced hearing aid shell shape modelling based on simulation of sound wave
collision with the intricate features of the human head surface.

• Driver awareness programs for real-time detection of sudden attention deficits
arisen within a vehicle driver.

• Surgical planning via 3D-models of human faces or full heads to enhance surgical
decisions or even aid surgical robots.
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CHAPTER 2
Previous Work

The main inspiration for the present work is founded upon the Microsoft Kinect
body-part labelling framework by Shotton et al. [SSK+13]. The authors are using
randomized decision forests to classify pixels in input depth images with respect to
what body part they belong to. This approach is based upon 3D representation of
shapes and do not suffer from the difficulties of various illumination conditions and
texture and colour variations that image based methods are exposed to. They are
training randomized decision forests based upon sampling from a synthesized training
set of static motion-capture (mocap) poses. An important factor is that each pose has
a body-part labelling that is consistent across the entire mocap database. Each sample
is then subject to randomized variational perturbation based upon parameters such
as character height, weight, clothing, pose, rotation and translation, as well as camera
camera position and orientation. Each perturbed shape is then graphically rendered
into depth images and a corresponding ground-truth body-part scheme, see Figure
1.3. By combining weak classifiers based on single pixel-wise depth image intensity
readings, they train randomized decision forests that enables body-part classification
with an accuracy that greatly supersedes the accuracy of each weak classifier.

Approaches towards localization of facial features in depth images acquired from fa-
cial 3D scans from the Xbox Kinect has been implemented by Fanelli et al. [FDG+13].
The authors are using a patch based depth image voting system to determine head
pose and facial features. Fanelli et al. [FDVG13] have expanded this approach to
incorporate active shape models, thus enabling them to align depth and intensity
images of unseen faces by fitting a 3D model to them.

In the context of locating facial features in 2D images, several approaches are
worth mentioning. Using Haar-like features, Cootes et al. [CILS12] are training a
random forest based regression-voting scheme to locate feature points in 2D images.
Cevikalp et al. [CTF13] are using a cascade of classifiers based on roots and parts
detectors to locate faces and face parts in 2D images. By using head pose as a
conditional global face property, Dantone et al. [DGFVG12] are training regression
forests to locate facial features in 2D images. Zhu et al. [ZR12] are using mixture-of-
tree models to detect faces, estimate pose and facial landmarks on both standard face
image databases as well as ”in the wild” Flickr images. Yang et al. [YP13] are using a
star graph based structured-output regression forest approach to localize individual
face parts.
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CHAPTER 3
Data

In this section the origins of the data is described and how it is utilized to form the
data that the present analytical work is based upon.

3.1 The Active Shape Model
Fagertun et al. [FAHP13] and Fagertun et al. [FHR+13] describe how they have
recorded 3D facial scans of 641 volunteers of the Danish Blood Donor Study [PEK+12].
The Canfield Vectra M3 Imaging System, shown in Figure 1.1, has been used to
capture and create the 3D facial scans. Each scan contains between 70,000 to 100,000
vertices consisting of Cartesian (x,y,z) coordinates with corresponding RGB (red-blue-
green) colour intensity values. The scans have been cropped to only show the faces
with the neck, ear and hair regions being excluded. By using a method described
by Blanz and Vetter, [BV03], the cropped scans have been restructured such that
there is so-called point-to-point correspondence between them. The cropping and
restructuring processes have brought the common number of vertices for all scans to
39,653.

Fagertun et al. [FHR+13] have created both a 2D active appearance model of
the texture information in the shapes (Cootes et al. [CET+01]) and also, a 3D
active shape model (Cootes et al. [CTCG95]) describing the 3D vertex coordinate
variations. The active appearance model framework originates from the active shape
model architecture and is not utilized in the present work. Based on the description
of how to build an active shape model from a set of 2D-hand images by Stegmann
and Gomez [SG02], the following is a description of how the current model is built
from the 3D face scans.

Generalized Procrustes Shape Alignment
Each of the N = 641 facial scans are built up as a vector x of (3× n, 1) elements, in
which the number of vertices is n = 39, 653:

x = [x1, x2, · · · , xn, y1, y2, · · · , yn, z1, z2, · · · , zn]T (3.1)
The centroids, or center-of-mass for each shape, are calculated as

(x, y, z) =

 1

n

n∑
j=1

xj ,
1

n

n∑
j=1

yj ,
1

n

n∑
j=1

zj

 , (3.2)
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and each shape is now translated and rescaled based on the centroids and the
centroid sizes

S(x) =

n∑
j=1

√
(xj − x)2 + (yj − x)2 + (zj − x)2. (3.3)

After subtracting the mean shape from each shape (centering around zero) and
dividing by the centroid size (scaling to unit length), what remains to complete the
Procrustes alignment, is the removal of rotational artefacts. This can be done by
selecting a reference shape, for instance, the first shape and aligning the remaining
N − 1 shapes to this. Conceptually, a shape xj , j = {2, 3, · · · , N − 1} is aligned
to the reference shape x1 by computing the singular value decomposition (SVD)
of xT

1 xj , thus maximizing the correlation between the two shapes. By using the
notation UDV T = SV D(xT

1 xj), the rotation matrix V UT =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
can

be obtained. This is then used to superimpose xj to x1 in the most optimal way by
xj ← xj ∗ V UT .

The Procrustes mean shape can now be computed as the mean of the Procrustes
aligned shapes:

x =
1

N

N∑
i=1

xi. (3.4)

Eigenvalue Decomposition of the Procrustes Mean Shape
A new set of variables y, as well as its mean y, can now be made through a linear
transformation of the data vector in Eqn. 3.1 by the formulas

y = Mx (3.5)

y = Mx. (3.6)

The shape covariance matrix for the Procrustes mean shape in Eqn. 3.1 and the
covariance matrix for y in Eqn. 3.5 can be represented by

Σx =
1

N

N∑
i=1

(xi − x)(xi − x)T (3.7)

Σy =
1

N

N∑
i=1

(yi − y)(yi − y)T . (3.8)

By inserting the expressions for y from Eqn. 3.5 and Σx from Eqn. 3.7 into the
expression for Σy and rearranging, we arrive at
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Σy = MΣxMT . (3.9)
Restricting the vectors of M to be of unit length and orthogonal, M becomes an

orthogonal matrix, meaning that M−1 =MT , and by multiplying MT on the left side
of Eqn. 3.9, and utilizing that MTM = I, we get the expression

MTΣy = ΣxMT . (3.10)

By denoting MT by Φ and rearranging, we get the equation for the square matrix
Σx that can be eigen decomposed:

Σx = ΦΣyΦ
−1, (3.11)

such that the diagonal values of Σy becomes eigenvalues and Φ, the orthogonal
matrix of column eigenvectors.

3.2 Synthesizing data from the Active Shape Model
The data that was made available for the current thesis comes in the following form:

• A (3 ∗ 39653, 1) sized vector representing the mean shape x in Eqn. 3.4.

• A (3 ∗ 39653, 397) size matrix representing the 397 eigenvectors, or principal
components Φ.

• A (397, 1) sized vector representing the square roots of the diagonal eigenvalues
corresponding to the eigenvectors.

• A (77872, 3) sized triangular connectivity matrix. Each row corresponds to a
face and the three columns holds the index k of the three vertices in the mean
shape in Eqn. 3.4. Notice that k can take on the values {1, 2, · · · , n} and
n = 39, 653.

In order to synthesize frontal face models with plausible variation, an initial choice
has been made to focus on the shape variation and not use the texture information.
The variational model poses are described by Paysan et al. [PKA+09] and are gener-
ated from the formula:

x(α) = x+Φσα (3.12)
The elements of the formula in Eqn. 3.12 are:

• x is a new shape with a scalar factor α that determines the amount of pertur-
bation of the vertex coordinates along each principal component direction. The
values are spread with even intervals of 0.25 between -2 and 2, amounting to 17
scalar values.
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• x is the mean shape and is organized in the form: x ∈ R3m,1. Here, m = 39.653
signifies the number of vertices and the x, y and z coordinates are stacked in
one column vector.

• Φ is the principal component matrix consisting of the orthonormal eigenvectors.

• σs are square roots of the eigenvalues associated with the eigenvectors.

In order to minimize the number of principal components to use for generating the
training data set, the eigenvalues of the shape model have been examined. In Figure
3.1, the top sub-figure shows the eigenvalue numbers plotted against their value, while
the bottom sub-figure is the accumulated eigenvalue sum as a fraction of the total
amount of variation described by the entire active shape model. A threshold of 80%
has been chosen in this connection and thus, by retaining the 119 highest principal
components, the number of orthogonal principal directions are reduced by 278, down
from 397.

In order to save the generated faces as vtk files, the Matlab functions readVTK
and writeVTK created by Mario Richtsfeld have been utilized, for which the author
directs his appreciations. Also, the function explorer3dMM by Jens Fagertun has
been utilized with the aim of obtaining insight into the composition and functionality
of vtk files, to whom appreciations are also directed.

By varying over the principal component scores derived from perturbing the mean
shape by the 119 largest eigenvalues and for the 17 scalar values as described in Eqn.
3.1, a total of 2023 vtk files are generated and saved in a separate training data labeled
folder. Each vtk files takes up 2.77 MB, summing up to a total of 5.5 GB.

Visual inspection of the vtk files is redundant due to the variations being quite
small, as Figures 3.2 witnesses. However; very small perturbations are visible.

In order to ensure that the scales of each shape can be compared, the bounding
box is computed as the diagonal of the smallest box that can contain all vertices in a
shape. This has been shown for the mean shape in Figure 3.3.

When calculating the diagonal lengths of the bounding box for all the 2023 shapes
in the data set, it can be seen that the lengths are normal distributed with mean
µ = 221.388 pixels and standard deviation σ = 0.466 pixels, as can be seen in Figure
3.4.

By investigation, the shape formed by PC31 and α = −2.0 has the smallest bound-
ing box diagonal, while the shape formed by the exact same principal component but
with α = 0.50 has the largest bounding box diagonal. This is not surprising when
taking into consideration that the principal component directions describe orthogo-
nal axes with maximal variation. Figure 3.5 show the two resulting shapes in various
views.
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Figure 3.1: Visualization of the procedure for selecting the number of principal com-
ponents required to account for the desired amount of the total variation
in the active shape model coordinates. See text for description.
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Figure 3.2: From left to right, top to bottom: Shapes generated from (1) PC 1 and
α = −2.0, (2) PC 36 and α = −1.0, (3) PC 71 and α = 0.25 and (4)
PC 119 and α = 2.0. See Eqn. 3.1.
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Figure 3.3: Bounding box shown for the mean shape.
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Figure 3.4: 100 bin histogram showing the distribution of bounding box diagonal
length for the 2023 shape data set. The values for µ±β ·σ is shown for
β scalars {−2,−1, 0, 1, 2} on the abscissa.
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Figure 3.5: The shapes with the smallest (yellow) and largest (multicoloured)
bounding box diagonals (216.8 pixels and 227.7 pixels), seen from vari-
ous view points. The shapes both stem from PC31, but with α = −2.0
and α = 0.50.
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CHAPTER 4
Methods

As stated in Chapter 1, the works of Shotton et al. [SSK+13] impose the main inspira-
tion towards the present work, which is why the methods of analysis are comparable
to this work. Namely, the data synthetization process, the body-part class labelling
approach, simple features as weak learners and classification by use of randomized de-
cision forests are being scrutinized. As described in Chapter 3, 2023 triangular vertex
meshes have been synthesized from an active shape model. This chapter describes
the methods that the present work is analyzing.

4.1 Anatomical labelling
Since all the shapes are generated from the same active shape model, there is point-to-
point correspondence between the vertices of all shapes in the data set, and therefore,
the mean model shape has been used for the manual class annotation. The shape has
been loaded into Sumatra [Pau] and a nominal class label has been assigned to each
vertex. One of steps in the manual annotation process i shown in Figure 4.1. Adding
artificial colours to each class, the representation is seen in Figure 1.2. It must be
made clear that for the purpose of defining prominent facial characteristics, an exact
correspondence with well-defined facial regions is not needed. The reason for that is
that often, anatomical surface regions are named after non-surface structures, such
as bones, muscles, other tissue, such as glands, or even vessels or nerve fibre bundles.
However, for descriptive purposes, the annotated regions and their location in relation
to anatomical regions are described in Table 4.2.

4.2 The Tangent Plane Features are the 3D Vertex Features
The present work presents a novel feature representation that is inspired by the depth
image features by Shotton et al. [SSK+13]. This section describes the depth image
features and how they inspired to the creation of the tangent plane features.

From Depth Image Features to Tangent Plane Features
Shotton et al. [SSK+13] are using depth image (I) features which are visualized in
Figure 4.3. The response of the features for a given pixel (x) marked with a yellow
cross are computed as the pixel intensity difference between the pixels marked with
red circles. The position of these pixels are determined by offset vectors u and v
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Label Left/ Anatomical Abbre- # %
# Right/ region viation of of

Center vertices total
1 Left eye L-E 373 0.9
2 Right eye R-E 474 1.2
3 Left infraorbital area L-IA 733 1.8
4 Right infraorbital area R-IA 613 1.5
5 Center apex of nose AN 423 1.1
6 Right nostril and nose wing R-NNW 362 0.9
7 Left nostril and nose wing L-NNW 369 0.9
8 Center dorsum of nose DN 922 2.3
9 Center skin part of upper lip SUL 1429 3.6

10 Center root of nose and glabella RNG 1049 2.6
11 Left upper eyelid, eyebrow L-UEELF 2891 7.3

and lower forehead
12 Right upper eyelid, eyebrow R-UEELF 3028 7.6

and lower forehead
13 Center mucosal part of upper lip MUL 889 2.2
14 Center mucosal part of lower lip MLL 777 2.0
15 Right side of nose R-SN 651 1.6
16 Left side of nose L-SN 725 1.8
17 Center skin part of lower lip SLL 1927 4.9
18 Right area above R-AANS 394 1.0

nasolabial sulcus
19 Left area above L-AANS 331 0.8

nasolabial sulcus
20 Center chin C 3608 9.1
21 Right area below R-ABPS 902 2.3

palpebromalar sulcus
22 Left area below L-ABPS 859 2.2

palpebromalar sulcus
23 Right cheek R-C 8378 21.1
24 Left cheek L-C 7546 19.0

Table 4.2: Description of correspondence between class labels and anatomical re-
gions. For each class is also shown its name abbrevation, number of
vertices and the percentage of total vertices (39,653).
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Figure 4.1: Manual annotation procedure carried out in Sumatra [Pau].

which are parameters in a candidate feature list ϕ(u, v). The pixel intensity dI(y) in
a pixel y is also called the depth. With this notation, the feature response f for a
pixel x in image I and a candidate feature ϕ(u, v) can be computed by Eqn. 4.1:

fϕ(I, x) = dI

(
x+

u

dI(x)

)
− dI

(
x+

v

dI(x)

)
. (4.1)

Each offset is normalized according to the pixel intensity in the pixel x.
The width of an object, such as for example the arm with the yellow cross in the

right image in Figure 4.3, will vary with the distance of that object to the camera.
This varying distance has been taken into account by Shotton et al. [SSK+13] when
the feature response f is computed from Eqn. 4.1. When an object is moved away
from the camera (i.e. if the intensity dI(x) of a pixel x on that object is increased),
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Figure 4.3: 2 types of depth image features shown for different pixels x (yellow
crosses). From Shotton et al. [SSK+13].

the smaller the object width will be in the image plane. The scaling of the length of
the displacement vectors u and v by 1

dI(x)
compensates for this effect.

In contrast to the pixel intensity of 2D depth images leading to varying scaling of
offset vectors, the vertex response dI(y) considered in the present work is based on
offset vectors that are spanning the tangent plane to the vertex. This means that the
offset plane is always in level with the vertex and therefore, the offsets do not need to
be scaled by 1

dI(x)
. Removing this scaling from Eqn. 4.1, Eqn. 4.2 substitutes this:

fϕ(I, x) = dI (x+ u)− dI (x+ v) . (4.2)

In the present work, there are no 2D depth intensity images. Instead, the ”image”
I is a 3D triangular mesh, also denoted as a shape. Figure 4.4 shows a close up
of vertex 7416 (black) in a arbitrary shape along with its blue normal vector n⃗ and
scaled unit tangent vectors a⃗ (red) and b⃗ (purple). The tangent plane they span is
shown in transparent red and by combining the tangent vectors, 8 points have been
visualized in yellow and green.

In Eqn. 4.1, the offsets u and v are normalized by the pixel intensity in a pixel
marked with a yellow cross in Figure 4.3. The pixel range in a depth image starts at
a low number for the objects that are closest to the camera and ends at a high, fixed
number which describes the ”general” background distance. Since the closest object
cannot be at a distance of zero to the camera, this normalization always allows for
some degree of displacement by the u and v vectors.

In the present work, instead of pixel intensity, shortest distance-to-mesh will be
used to describe the vertex response dI(y). Where Shotton et al. used the offset
vectors in Eqn. 4.1 to describe 2D displacement in depth intensity images, in this
work, they will represent displacements along scaled unit a⃗ and b⃗ tangent plane vectors.



4.2 The Tangent Plane Features are the 3D Vertex Features 23

Figure 4.4: Tangent plane (pink) of vertex 7416(black) with 8 evenly spread out
points (yellow and green).
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The displacements are computed by scaling the unit tangent vectors with a scalar,
denoted by pFactor, which is computed by this formula:

pFactor = scaleFactor ∗ boxDiag. (4.3)
In Eqn. 4.3, scaleFactor is a scalar that can take the values between 0 and 1,

and boxDiag is the length of the diagonal of the bounding box of the shape that the
vertex belongs to. As a reference, boxDiag is the length of the red line in Figure 3.3.

In the examples in this chapter, the tangent vectors are scaled by a scaleFactor
of 0.025, which means that the length of these vectors are 2.5 % of the diagonal length
of the bounding box of the entire shape.

The naming convention for the 9 points that are shown in green and yellow in
Figure 4.4 are visualized in Figure 4.5. In this figure, v refers to the vertex on the
shape, ta and tb are the pFactor scaled tangent vectors, and the points are made in
the following way:

• a is v − ta − tb,

• b is v − tb,

• c is v + ta − tb,

• d is v − ta,

• v is the vertex,

• f is v + ta,

• g is v − ta + tb,

• h is v + tb, and

• i is v + ta + tb.

Based on such 9 points in this example (the ninth point being x itself), 8 + 7 +
6 + 5 + 4 + 3 + 2 + 1 = 36 combinations of candidate ϕ(u, v) features can be chosen.

Figure 4.6 shows 120 tangent planes for a training shape. Five vertices have
been sampled at random from each class such that there is an equal distribution of
samples from each of the 24 classes. Figure 4.5 shows how labels are assigned to the 9
points lying in each vertex tangent plane that lay the foundation for the feature rule
calculations. Noticing that the middle point is in fact the vertex v itself, the rules
can be derived from Eqn. 4.2 and will take the form as shown in Table 4.7.

The computations of feature rule responses for one of the 120 sampled vertices
shown in Figure 4.6 are shown in Table 4.8.

The tangent plane feature calculations include the following steps:

• The active shape model contains a connectivity list that describes how the
vertices are connected into a triangle mesh.
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Figure 4.5: Visualization of tangent plane point association. The blue plane corre-
sponds to the pink tangent plane in Figure 4.4. v is the vertex and a
is v − ta − tb, b is v − tb, c is v + ta − tb, and so forth. (ta, tb) are the
tangent vectors that have been scaled by pFactor.

• Vertex normals can be computed from the neighbouring points {pi} in the
vicinity, as shown in Figure 4.9, as described by Bærentzen et al. [BGAA12],
chapter 17. Conceptually, a principal component analysis is applied to the
(x, y, z) coordinates of the neighbouring points {pi} and the normal vector n is
then the principal direction that shows the least variation in {pi}.

• Based on the normals, the normal plane and tangential vectors can be used to
define the offsets for which the shortest distance to the surface can be computed.
This computation will be used in the computation of the feature based vertex
descriptors.

Based on the model vertex triangulation connectivity list tl and the vertices pts
that make out the triangulated mesh, a triangulation class TR is made in Matlab via
the built-in command TR = triangulation(tl,pts). By using the built-in method
call vn = vertexNormal(TR), the unit normal vectors to each vertex is computed.
In Figure 4.9, a unit normal vector is shown for the mean shape of the active shape
model.

In order to compute the tangent vectors for the triangulated mesh based on the
normal vector, the method described in chapter 8.5 in Bærentzen et al. [BGAA12]
is used. By denoting by n the normal vector, ã a random vector and a and b two
vectors spanning the tangent plane, the calculations in Eqn. 4.4 can be made:
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Figure 4.6: Random sub selection of five vertices from each of the 24 classes in a
training mesh. The tangent planes associated with each vertex is colour
matched with the vertex class colour.
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Figure 4.9: The red diamond marks a highlighted random mesh vertex and its unit
normal vector. The neighbouring vertices marked by magenta circles are
derived from the highlighted vertex via the connectivity list associated
with the active shape model.
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(x+ u, x+ v) dI(x+ u) dI(x+ v) fϕ(I, x)

(a,b) dist(I,a) dist(I,b) dist(I,a)-dist(I,b)
(a,c) dist(I,a) dist(I,c) dist(I,a)-dist(I,c)
(a,d) dist(I,a) dist(I,d) dist(I,a)-dist(I,d)
(a,v) dist(I,a) dist(I,v) dist(I,a)-dist(I,v)
(a,f) dist(I,a) dist(I,f) dist(I,a)-dist(I,f)
...

...
...

...
(h,i) dist(I,h) dist(I,i) dist(I,h)-dist(I,i)

Table 4.7: Correspondence table of the elements in Eqn. 4.2 and the labelling
scheme for a single vertex in Figure 4.6. In the table, a, b, c, d, v, f,
g, h and i refer to the tangent plane points in Figure 4.5. The first col-
umn contains the 36 possible point pairs (x+u, x+v). When comparing
the notion of x, u and v from Eqn. 4.2 with Figure 4.6, x is the 3D co-
ordinate of the vertex v, and u and v are the shifts by the combinations
of the scaled tangent vectors ta and tb. The second and third columns
represent the vertex responses and are computed as the closest distance
from the point to the shape surface. The last column contains the ac-
tual tangent plane features. For example, the four entries in the first
line can be interpreted as follows. The first entry (a,b) means that the
combination of the two points (a,b) from Figure 4.5 are considered. The
second entry is the first vertex response in Eqn. 4.2, namely, the closest
distance from the point a to the shape surface. The third entry is the
vertex response for point b. The fourth entry is the subtraction of point
b’s vertex response from point a’s feature response. Notice that this is
not the absolute difference and therefore, the feature response can have
a negative value.

a =
ã− n(ã · n)
∥ã− n(ã · n)∥ ,

b = n× a
(4.4)

The random vector ã has been chosen as the upward (z-axis) unit vector [0 0 1]
T .

By making these calculations on the point in focus in Figure 4.9, the unit tangent
vectors are shown in Figure 4.10.

For a given triangular mesh, the following calculations are made to establish coor-
dinates of points lying in the tangent plane that will be used for feature computations:

• Determine bounding box corner coordinates and diagonal length, as shown in
Figure 3.3.
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Figure 4.10: Unit length vectors to the vertex marked with a red diamond in Figure
4.9. Red vector a and magenta vector b are computed via Eqn. 4.4.
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(x+ u, x+ v) dI(x+ u) dI(x+ v) fϕ(I, x)

(a,b) 0.4356 0.4296 0.0060
(a,c) 0.4356 0.9591 -0.5234
(a,d) 0.4356 0.5011 -0.0655
(a,v) 0.4356 0 0.4356
(a,f) 0.4356 0.5191 -0.0834
...

...
...

...
(h,i) 0.3507 0.5952 -0.2444

Table 4.8: Feature response table for one of the 120 sampled vertices shown in Figure
4.6. The right column contains the tangent plane features and the reader
is referred to Table 4.7 for an elaboration of the table entries. If all
features are computed for the 120 vertices, the data matrix X will have
the size (nObs,nFeatures) = (120,36). Table 4.13 shows the entries of the
data matrix X.

• Triangulate and compute unit vertex normals (the blue vector in Figure 4.9 is
an example).

• Based on Eqn. 4.4, compute tangent vectors of unit normal based on alignment
with the z-axis. Also, scale tangent vectors based on diagonal length (red and
magenta vectors in Figure 4.4).

• Compute the tangent plane spanned by the tangent vectors as can be seen in
Figure 4.4.

4.3 Randomized Decision Forests as a Classification
Approach

This section describes the theory behind randomized decision forests and how it is
manifested within the methods.

The concept of randomized decision forests was invented by Breiman [Bre99] and
was influenced by Amit and Geman [AG97] who classified handwritten digits and
Latex symbols in 2D images by optimizing binary decision trees based on simple
spatial relationship features. Criminisi et al. [CSK11] are influenced by Breiman’s
classification random forests and one of the authors, Shotton, is also one of the key
persons in the main inspiration to the present work [SSK+13].

A decision forest is built up of a number of decision trees, thus, making it an
ensemble method. Within a random forest, also referred to as a randomized decision
forest, each single tree is trained from a random subset of input variables, or in the
present case, tangent plane features. The random subset sampling is performed by
creating vectors that are iid, which is important, since this lowers the correlation
between the trees. Figure 4.12 shows the structure of a decision tree.
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Figure 4.11: Basic concept of a decision tree structure. All observations are consid-
ered at the j = 0 level. Based on the splitting criterion, the observa-
tions are split into the two child notes and so forth. If the trees are
trained with a minimum node size of 1, the trees are grown until the
leaf nodes (blue) only contain one kind of class.

An important aspect is that by growing deep trees, each tree fits very well to the
random of subset of data that it was created from. The single tree bias is therefore,
very small, but the variance among the trees is high. By averaging over the trees, the
forest is formed and the predictive power of each tree keeps the bias low but lowers
the variance. It is important to keep in mind that randomness is only injected into
the system during the training phase, and not during testing.

The following describes the random forests theory and how it is applied in the
present work.

The Theory behind Randomized Decision Forests
Criminisi et al. [CSK11] describe a decision tree as a tool for deciding what class
a certain observation belongs to. In the present context this can be interpreted as
what anatomical region a vertex belongs to. A tree is constituted of a root node that
branches out via binary splits into several layers of internal nodes ultimately ending
in leaf nodes that holds the classification labels. In each node a question is asked and
answered via rules of thumb (weak learners). By randomly growing a vast amount of
trees in this order, each internal node and each leaf node has a trained distribution
associated with it. By computing the information gain at each node split, the split
with the highest confidence can be chosen.

Decision trees are randomly trained in an ensemble to form a decision forest. The
key model parameters to this procedure, are:

• The size of the forest (the number of trees, nTrees)
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• The stopping criterion for training each tree (in this context, the minimum
number of elements in a leaf node, minNodeSize).

• The weak learner model choice (the number of features to sample from at each
node, mtry). The total possible number is nFactor = 36, see Table 4.7.

• The objective function for determining how to split at each internal tree node
(Θ∗

j ).

• The function that is used for determining the information gain during the tree
training (I in Eqn. 4.6).

• The feature choice (the tangent plane features described in Section 4.2).

If the number of tangent plane features for a given vertex v is nFeatures, then a
small sub sample of features is sampled at each split node, both during training and
testing. This sub sampling can be formulated as a rule ϕ(v), that reduces the feature
dimensionality in this way:

ϕ : RnFeatures → Rmtry, (4.5)

in which mtry << nFeatures.
The following notation is used:

• c ∈ C is a class label.

• C is the full list of class labels: C = {ck} = {1, 2, · · · , nClass}, where the
default class label type is nominal and the default number of classes nClasses
is 24, as shown in the case with manually annotated class labels in Figure 1.2.

• Sright and Sleft are the left and right child nodes at an internal node Sj . When
using binary trees as in the present work each split will be dual and inevitably
creating 2 offspring nodes that can then either become split nodes themselves
or end as leaf nodes.

Both during the training and testing process, at each internal tree node Sj , a
random subset mtry is sampled from the training data and the split with the high-
est information gain Ij is chosen. By defining the Shannon entropy as H(S) =
−
∑

c∈C p(c) log(p(c)), the information gain I is described by Eqn. 4.6:

I = H(S)−
∑

i∈{left,right}

|Si|
|S| H(Si). (4.6)

At each split node, a weak learner model contains a binary split function

h(v,Θj) ∈ {0, 1} . (4.7)
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The domain values 0 and 1 relate to the outcome of a threshold evaluation at the
split node. This is associated with the parameters for the weak learner model at the
internal tree node Sj which is denoted by

Θj = (ϕ, τ), (4.8)
where ϕ is the sub sample rule described in Eqn. 4.5 and τ is a parameter vector

of linearly spaced threshold values that are considered during the information gain
computations Ij .

The weak learner model is defined by

h(v,Θj) = [ϕ(v) > τ ] , (4.9)
which takes on the two possible values 0 and 1 as described in Eqn. 4.7.
Noting that the formula for the information gain I in Eqn. 4.6 is generic and is

generally applied to all non-leaf nodes in a tree. In order to compute the specific
information gain Ij for node j, the following sets are required for consideration:

• Sj , Sleftj and Srightj . These are the sets of training points in the j’th node and its
two child nodes.

• The parameter list Θj in Eqn. 4.8.

The specific information gain in node j then becomes

Ij = I(Sj , Sleftj , Srightj ,Θj), (4.10)
and the aim is then to maximize the specific information gain via the objective

function

Θ∗
j = argmax

Θj

Ij . (4.11)

It must be kept in mind that the parameter list Θj in Eqn. 4.8, and therefore,
also, the objective function Θ∗

j in Eqn. 4.11 are governed by the number mtry of
sampled tangent plane features as described above.

When testing for the class of an unseen observation, the following procedure is
followed. For all t = {1, 2, · · · , T} trees in the forest, each leaf node is associated with
a probabilistic leaf predictor model

pt(c|v), (4.12)
and all trees can be averaged together to obtain the full prediction for the forest

by the formula:

p(c|v) = 1

T

T∑
t=1

pt(c|v). (4.13)
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In order to decide how the trees should be grown, three popular choices of stopping
criteria are evident:

1. Grow the trees until a desired depth level is reached.

2. Grow the trees until the information gain for further growing falls under a
desired value.

3. Grow the trees until the minimum number of observations in a node is reached.

In the present work, the third criterion has been chosen. In particular, deep trees
are sought for in the pursuit of low bias - high variance trade-off.

Implementation
Liaw et al. [LW02] have implemented a C based code for creation of randomized
decision forests in R which is based on a Fortran implementation by Breiman and
Cutler [BC04]. A mex/standalone interface to this package has been created for
Matlab by Jaiantilal [Jai13]. The author directs his thanks to the creators.

The following steps are required in order to train the model:

1. Load desired number of random training meshes into workspace.

2. Randomly sample desired number of vertices from each class.

3. Compute features for each of these samples and assemble into one matrix.

4. Collect ground truth labels for each sample and assemble into one vector.

5. Subdivide feature matrix and ground truth vector into bootstrapping training
and evaluation sets. These are also referred to as ”in-bag” and ”out-of-bag” sets.

6. Run the Random Forest software with the training data as input as well as the
desired number of trees and number of classes to sample from at each split.

The Random Forest software has a functionality for predicting the class of an
input feature test matrix.

Preparing the data
In order to set up a few examples, five vertices are picked at random from each class
from an arbitrary training shape (adding up to a total of 120 vertices), which has
been visualized in Figure 4.6. In Figure 4.12, the same has been done, only in this
instance, 100 random vertices from each class have been sampled. Table 4.13 shows
how the features of the sub-partitioned data in Figure 4.6 are assembled into a data
matrix X and Table 4.14 shows the corresponding vector of class labels.

Prior to training a randomized decision forest, the following parameters have to
be determined:
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Figure 4.12: Random sub selection of 100 vertices from each of the 24 classes in a
random training mesh. The tangent planes associated with each vertex
is colour matched with the vertex class colour.
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vertex ID \ fϕ(I, x) (a,b) (a,c) · · · (g,i) (h,i)
3613 1.0971 0.8992 · · · -0.7631 -0.5983
16859 0.3909 -1.1980 · · · 0.3053 0.1749

...
...

... . . . ...
...

8995 -0.6271 1.0901 · · · -2.6292 -1.3669
9010 -0.0149 -0.6473 · · · -0.1002 -0.8294
...

...
... . . . ...

...
27584 -0.0458 0.0058 · · · 0.4416 0.3027
10783 -0.0482 0.2137 · · · 3.3530 -0.0371

Table 4.13: Table of the entries in the data matrix X associated with the 120 random
samples shown in Figure 4.6. The rows are the 120 observations, or
vertex IDs and the columns are the 36 features. Each row in this table
is the result of a computation of the right column in Table 4.7 for the
respective vertex with the vertex IDs in the left column on this table.

class
1
1
...
2
2
...
24
24

Table 4.14: Table of the entries in the ground truth response vector Y which cor-
responds with the data matrix X in Table 4.13. The rows contain the
class assignment labels that was manually annotated in Sumatra [Pau],
and the number of observations is the same for these two tables. The
class labels in this table correspond with the coloured class labels in
Figure 4.6.
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• Number of observations, nObs, which is based upon:

– Number of training meshes to include in the training set, nShapes.
– Number of vertices to sample from each class, nSamplesPerClass (24

classes, number of vertices in each class varies, see Table 4.2).

• Fraction of ”in-bag”/”out-of-bag” observations to keep for training/evaluating
when doing bootstrap sampling during individual tree training (default is 5/6 ∗
nObs).

• Number of trees to train for the model, nTrees.

• Number of allowed features that can be sampled during each tree split, mtry.

Three scenarios have been carried out, and the parameters are as follows:

• Number of training meshes: 4, 4 and 50.

• Number of vertices from each class: 100, 150 and 150.

• Bootstrap training/test fraction: 5/6 in all three cases.

• Number of trees: 500, 500 and 1000.

• Number of allowed features: 3 in all three cases.

In order to test the performance of the three models, a random mesh from the
training data set is used. The same number of vertices from each class is picked at
random and the true classes are then used as input to the model.
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CHAPTER 5
Results and Evaluation

This chapter is built up of three sections. The initial section 5.1 describes the measures
that are used to report the results. This is followed by a section 5.2 that provides the
reader with an overview of the experiments that have been carried out as well as an
interpretation and evaluation of the results. The final section 5.3 reports the results
and analyses them.

5.1 Procedure for reporting the results from the analysis
In order to understand how well the randomized decision forest based classification
utilizing tangent plane features approach works, the concepts of variable importance
are described in the following.

Two measures of variable importance
The introduction of the novel tangent plane features necessitates an investigation of
the variable importance. Two methods are used, namely the decrease in Gini impurity
and the decrease in accuracy [Bre99]. Their individual functionality is described
separately below.

Decrease in accuracy
As Breiman states [Bre99], this is a method of randomly permuting out-of-bag esti-
mates in a certain fashion and comparing the model’s prediction on this permuted
out-of-bag set with that of the unpermuted set.

The following steps are carried through during the training of each tree in the
randomized decision forest training:

• After training the tree on the in-bag samples, the out-of-bag samples are tested
on the tree and the misclassification rate when comparing the prediction with
the true class labels is computed and kept for reference.

• For each of the n = 1,2, ...,nFeatures tangent plane features, or variables,
their corresponding entries in the out-of-bag samples are now randomly per-
muted. This means that, if the out-of-bag set is a matrix of size
(nObs,nFeatures), the first column is randomly shifted around. For each of
the nFeatures permutations the following is done:
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– The n’th permuted out-of-bag set is tested on the tree and the prediction
is saved.

• When all nFeatures predictions for the nFeatures perturbed out-of-bag data
sets have been computed, they are combined into one common prediction by
majority voting.

• The misclassification rate of this majority voted prediction is now computed by
comparison with the true class labels.

• The misclassification rate of the perturbed out-of-bag reruns is now compared
to the misclassification of the non-perturbed out-of-bag samples and the per-
cent increase in misclassification is used as a measure of the importance of the
nFeatures variables.

When interpreting the variable importance when using this method, there are
two extremes that enhance the understanding. In one end, if, say, variable 3 has a
very low value, it means that randomly perturbing the values of that specific variable
for all observations and comparing the prediction with the unperturbed prediction
did not lead to a lower prediction. This means that in this example, it does not
really matter if variable 3 is even used, because no matter what values it takes, it
does not enhance the predictions. In the other end, if, say, variable 12 has a very
high value, this means that a random perturbation of that specific variable for all
observations critically impacts and lower the predictions, which makes that variable
highly important.

Decrease in Gini impurity
The method for using the Gini impurity to determine the variable importance as
described by Deng et al. [DRT11] is elaborated in the following.

By denoting ptj as the proportion of class j in node t in a tree, the Gini impurity
can be computed by IG(t) =

∑nClasses
j=1 ptj(1− ptj). By inspection, if ptj approaches 1,

it means that node t only contains observations from class j. The (1−ptj) part of the
equation leads to the Gini impurity becoming zero.

Because a split takes place in the node, the Gini impurity in the two children
nodes is lower than that of the parent node.

Breiman [Bre99] states that by averaging the decrease in Gini impurity for all
variables over all trees, it is possible to get a total picture of how much each variable
contributes to lowering the Gini impurity during the training of all trees in the forest.

The method for interpreting the variable importance based on the Gini impurity
decrease is similar to that of the decrease in accuracy as described above. A high
decrease for a variable means that the descriptive effect of that variable cannot be
ascribed to random chance and therefore, that variable is deemed important. A low
decrease for a variable implies that there is a higher risk that the variable is only
making correct predictions due to random chance.
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5.2 Experiment overview
Six investigations have been carried out and the overall parameters are shown in Table
5.1.

The first experiment was done to determine the effect of increasing number of trees
used in training randomized decision forests. The characteristics of this experiment
is a large number of trees.

The second experiment is the first of two approaches to enhance the separation
between classes that was hard to separate during the first experiment. This approach
involves oversampling of the problematic classes.

The third and fourth experiment deals with cascades of classifiers, and is an
alternative approach to solving the problem of hard-to-separate classes.

The fifth experiment is a multi-scale approach to investigating how an expansion
of the tangent plane feature dimensionality affects variable importance when trained
on multiple randomized decision forests. A sub-sampling parameter mtry is also
investigated in this experiment.

The sixth and final experiment is a multiple, single-scale approach to investigating
a large range of varying tangent plane feature scales and their effect on the overall
prediction accuracy. A large number of randomized decision forests is trained and a
deeper investigation on the sub-sampling parameter mtry is carried out.

5.3 Results and evaluation of experiments
In this section the results from the six experiments are shown and evaluated.

Experiment 1
The first experiment was carried out with the following fixed parameter settings:
scaleFactor, nFeatures, nClasses, nShapes, mtry, nSamplesPerClass and
min. node size. A single randomized decision forest was trained.

This experiment gives some insight to the behaviour of the out-of-bag training
error for increasing number of trees. Figure 5.2 shows that when averaging over
an increasing number of randomized decision trees, the total predictive strength of
the forest increases. However, once the error has fallen below 10%, the effect falls
significantly for the number of trees exceeding 100.

The created randomized decision forest has been tested on a random shape from
the data set with the constraint that the shape was not included in the training of
the model. Figure 5.3 shows the confusion matrix between the predicted and actual
classes. The average accuracy can be read as the percentage in the lower right block.
The high value of 95% is partly due to the high number of shapes used in the model
training. Also, 150 random vertex samples from each class ensures that there is an
equal emphasis on each class. A lower accuracy for prediction of classes 23 and 24 is
evident, and by inspection of the ground truth class labels in Figure 1.2, it turns out
that these two classes are the left and right pair of cheeks. Looking these classes up
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Experiment 1 Experiment 2 Experiment 3
Value Fixed? Value Fixed? Value Fixed

scaleFactor 0.025 yes 0.025 yes 0.025 yes
nFeatures 36 yes 36 yes 36 yes
nClasses 24 yes 24 yes 2 (23,24) yes
nShapes 50 yes 50 yes 50 yes
nTrees 1000 yes 100 yes 1000 yes
mtry 3 yes 3 yes 3 yes

nSamplesPerClass 150 yes varying no 300 yes
min. node size 3 yes 5 yes 5 yes

# of random forests 1 yes 1 yes 1 yes

Experiment 4 Experiment 5 Experiment 6
Value Fixed? Value Fixed? Value Fixed?

scaleFactor 0.025 yes [0.010, no 20 values no
0.025,
0.100]

nFeatures 36 yes 108 yes 36 no
nClasses 23 yes 24 yes 24 yes
nShapes 50 yes 50 yes 50 yes
nTrees 200 yes 150 yes 150 yes
mtry 3 yes [2,4,8, no 36 values no

16,32,
64,128]f

nSamplesPerClass 150 yes 150 yes 150 yes
min. node size 5 yes 1 yes 1 yes

# of Random forests 1 yes 7 no 720 no
Table 5.1: Overview table of parameter settings for the experiments that were car-

ried out.

in Table 4.2 reveals that they contain 21.1% and 19.0% of the total number of shape
vertices, respectively, which makes them the largest classes by far. In comparison, the
third largest class, the centred chin part, class 20, contains less than half the number
of vertices.

Another reason for the high accuracy for this experiment lies in the training error
graph in Figure 5.2, in which it was witnessed that the large number of trees in the
forest increase the quality of the predictions.

Another interesting subject to investigate is the importance of the variables, or the
tangent plane features that were used in the training of the forest and were described
in Section 4.2. The features were scaled with scaleFactor = 0.025, which, as a
reference, is the same scale that was used to create the tangent planes in Figure 4.4.
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Figure 5.2: Experiment 1. Training error for the out-of-bag training data for in-
creasing number of averaged trees in the forest.

Figure 5.4 shows the two measures of calculating the variable importance, the mean
decrease in accuracy and Gini impurity as described in Subsection 5.1. Generally,
what is important to notice here is that the range of importance for the most and
least important variables is a factor 2, at most, which leads to the evaluation that all
variables are sufficiently important to retain for further analysis.

Experiment 2
In order to investigate a way to increase the accuracy of the prediction of the paired
classes 23 and 24, a new experiment was conducted. The same parameters as in
Experiment 1 was kept, expect for two parameters: the number of nTrees was lowered
from 1000 to 100 and nSamplesPerClass was changed such that instead of evenly
sampling 150 vertices per class, 300 samples were taken from each of classes 23 and
24 and 150 samples were taken from the remaining classes. Figure 5.5 shows the out-
of-bag training error and variable importance plots. When comparing with Figures
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Figure 5.3: Experiment 1. Confusion matrix between the predicted classes for a
subset of 150 vertices from each class in a random test shape and the
manually annotated ground truth labels in Figure 1.2.



5.3 Results and evaluation of experiments 45

0 5 10 15 20 25 30 35
0

0.05

0.1

Tangent plane feature #

M
ag

ni
tu

de

Mean decrease in Accuracy

0 5 10 15 20 25 30 35
0

1000

2000

3000

Tangent plane feature #

M
ag

ni
tu

de

Mean decrease in Gini impurity

Figure 5.4: Experiment 1. Variable importance plots. For reference, the variables
fϕ(I, x) are described in the most-right column of Table 4.7.

5.2 and 5.4, it can be seen that the training error is higher in Experiment 2 due to
the lower number of trees in the forest, and also, the same variables tend to show
slightly higher importance.

The most indicative conclusion to draw from this experiment come from investi-
gating the confusion matrix between the model prediction on a random test shape
that was not included in the model training, as seen in Figure 5.6. The random test
shape was equally sampled from all 24 classes. When comparing to the accuracy of
the model in Experiment 1 where all classes were equally sampled, it can be seen that
the accuracy for class 23 increases from 74% to 78%, and for class 24, the accuracy
increase is from 76% to 85%. The increase in largest for class 24 but both classes tend
to easier to predict by this experiment. However, there is a de route in the average
accuracy that actually drops from 95% to 91%. When looking at the predictions
of the third worst classified class, which was class 17, its accuracy actually dropped
from 85% to 75%, which is a drastic drop. This side effect is caused by the way that
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Figure 5.5: Experiment 2. Left: Training error for the out-of-bag training data
for increasing number of averaged trees in the forest. Right: Variable
importance plots. For reference, the variables fϕ(I, x) are described in
the most-right column of Table 4.7.

the randomized decision forests are formed. At each split node, a higher amount of
samples from classes 23 and 24 are evaluated at the expense of the remaining classes
being under represented.

Experiments 3 and 4
In Experiment 2 it could be seen that oversampling the difficult classes 23 and 24
did not improve the average accuracy of the prediction of the randomized decision
forest. Namely, a notable amount of observations that had the class 24 ground truth
label were falsely predicted as class 23, and vice versa, which could be seen in the
Experiment 1 and 2 confusion matrices in Figures 5.3 and 5.6. On the ground truth
labelling Figure 1.2 it is obvious that these two classes possess two significant at-
tributes: they’re paired and they contain a relatively large amount of vertices. In
order to enhance the separation of these classes, Experiments 3 and 4 constitute an
approach of cascading classifiers that consists of two randomized decision forest mod-
els has been trained in order to let the two models complement each other. After a
brief representation of the randomized decision forest models, a combined test will
be described.

In Experiment 3 a randomized decision forest has been trained based only on
sampling from classes 23 and 24, and in Experiment 4, another forest has been trained
on a dataset in which the 24 ground truth class labels have been altered so that vertices
with class label 24 are relabelled into class 23.

Experiment 3 has been based on 50 randomly sampled training shapes, each with
300 samples per class and a number of 1000 trees, and Experiment 4 has been based
on 50 randomly sampled training shapes, each with 150 samples from each of the
23 classes and 200 trees. The out-of-bag training error is for the two experiments is
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Figure 5.6: Experiment 2. Confusion matrix between the predicted classes for a
subset of 150 vertices from each class in a random test shape and the
manually annotated ground truth labels in Figure 1.2.
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shown in Figure 5.7. The graphs show that in Experiment 3, the out-of-bag training
error barely drops below 13%, even after 1000 trees, and in Experiment 4, the same
error after 200 trees is below 9%, which leads to the expectation that the models
should be able to predict if a vertex belongs to a cheek, but that it can be hard to
distinguish if it belong to the left or the right cheek.

In order to utilize the two RF models, a random test shape has been sampled from
the full data set with the criterion that the shape has not been used in creation any
of the models. 300 vertices have been sampled and tangent plane features have been
computed. The model from Experiment 4 has been used to predict the class labels
of this test shape, and the confusion matrix between the 23 ground truth classes and
the predicted classes has been shown in Figure 5.8.

The 317 samples that were predicted as label 23 have been retained and the RF
model based on classes 23 and 24 (Experiment 3) has been used to predict which of
these two classes they belong to. The tangent planes for these samples have been
visualized in Figure 5.9. The resulting confusion matrix has been shown in Figure
5.10.

To conclude upon the observations by utilizing a cascade of classifiers, the two
confusion matrices in Figures 5.8 and 5.10 will be scrutinized. In the first step of the
cascading process, the average accuracy is at a relative high level of 94%. However,
since only 75% are correctly predicted as belonging to the combined class 23/24 and
only 88% of those are correctly predicted according to the left and right cheek, it
means that only 75% ∗ 88% = 66% are correctly predicting the correct cheek.

Experiment 5
The fifth experiment stands out from the previous experiments in that it is the
only experiment with more than 36 features. In Experiments 1 through 4, a sin-
gle scaleFactor value of 0.025 has been used, which corresponds to the middle sized
tangent plane shown in Figure 5.11. In Experiment 5, scaleFactor takes on the val-
ues [0.010, 0.025, 0.100]. For each value, the corresponding 36 tangent plane features
are computed, and assembled into a 108-row vector.

Another variational feature of this experiment is that the various values
[2, 4, 8, 16, 32, 64, 128] of the parameters mtry have been used. For each of these
values, a randomized decision forest has been trained on 50 training shapes, 150 trees
and min. node size of 1, which implies that all trees are grown fully (only one
observation in each leaf node).

The target of the analysis in Experiment 5 is to investigate if it possible to de-
duce what values of scaleFactor and mtry yield the best randomized decision forest
classification. The out-of-bag training errors have been shown in Figure 5.12 and by
a close-up it appears that an mtry value of 4 is a good choice for the 108 element
tangent plane feature scenario. The mtry value of 128 has been included, but it is
obsolete, since this number is higher than the feature dimension of 108, which means
that all features can be picked as random candidates at each node sampling. This im-
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Figure 5.7: Experiment 3 (top) and 4 (bottom). Out-of-bag error computed on the
same training set during training of an RF based only on the classes 23
and 24 (Experiment 3) and for an RF with classes 23 and 24 merged
together (Experiment 4).
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Figure 5.8: Confusion matrix between the ground truth class labels of a previously
unseen test shape and predicted class labels for the RF with classes 23
and 24 merged together (Experiment 4). 300 samples from each class
were made and 317 samples were predicted as belonging to class region
23. Average accuracy is 0.94.
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Figure 5.9: The 317 samples that were predicted to belong to the merged class 23/24
label. The labels can be seen in the confusion matrix in Figure 5.8.

plies that the concept of randomizing trees disappears. Therefore, this graph should
not be used and is only there for reference.

The two measures for variable importance have been illustrated in Figures 5.13
and 5.14. The first figure shows the average decrease in accuracy for each of the 108
features during the training of the 150 trees for each of the 7 randomized decision
forest models that corresponds with the 7 mtry values. The graph also depicts the
average graph for the seven models as well as the average of this graph for each of the
feature number intervals 1 to 36, 37 to 72 and 73 to 108 (green lines). These green
lines correspond to the three scaling levels in Figure 5.11. The second figure shows
the same computational procedures, only for the Gini impurity measure instead of
accuracy decrease.

In order to test the performance of the randomized decision forests in Experiment
5 on previously unseen data, a test set consisting of 50 randomly sampled shapes with
150 random samples from each shape was created under the constraint that none of
the shapes had been used in the model training. Upon computing the 108 features
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Figure 5.10: Confusion matrix between the ground truth class labels of a previously
unseen test shape and predicted class labels for the RF that was based
only on the classes 23 and 24 (Experiment 3). Average accuracy is
0.88.

for all the sampled vertices, the randomized decision forests corresponding to mtry
values of 2,4,8,16,32 and 64 were tested and their average accuracy was computed.
The last model was kept out due to the too large mtry value. Figure 5.15 depicts the
average accuracy for the models. It can be seen that for a mtry value of 16, the test
accuracy is highest.

The first conclusion that can be drawn from Experiment 5 is based on the bottom
sub figure in Figure 5.12. The green graph that lies slightly above the thick, grey
graph corresponds to the randomized decision forest that was trained for the mtry
value of 4, which means that during the training of that model, for each node, 4
features out of 108 were considered at random. However, even though this was the
case for the out-of-bag training error, the picture is another for the actual test data,
which Figure 5.15 clearly witnesses. Here, it is evident that a mtry value of 16 yields
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Figure 5.11: Experiment 5. Three example tangent planes for a random vertex
based on the tangent plane scaling values 0.010, 0.025 and 0.100.
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Figure 5.12: Experiment 5. Top: out-of-bag training error during RF training. Bot-
tom: a close-up of the graphs with a low pass filter to smooth the
graphs.

better test results on hitherto unseen data.

Another conclusive remark is based on the variable importance plots in Figures
5.13 and 5.14. Common for both measures of variable importance is that both signal
a general ”stair-case” tendency on the average graphs for the models, which have been
shown with thick blue lines to enhance the perception of this effect. By averaging
over the feature intervals that correspond to each scale, it is evident that the highest
variable importances can be traced for the scaleFactor value 0.100. Due to the
quite big difference in variable importance for a feature vector of length 108, further
investigations is required to make more distinct analysis of the single scales.
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Figure 5.13: Experiment 5. The seven first stair graphs show the mean decrease in
accuracy for the 108 features (average of the 150 trees). The thick blue
stair graph is the average of the other stair graphs. The three green
graphs are the averages of the thick blue graph in the three feature
scale intervals 1 to 36, 37 to 72 and 73 to 108.
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Figure 5.14: Experiment 5. The seven first stair graphs show the mean decrease
in Gini impurity for the 108 features (average of the 150 trees). The
thick blue stair graph is the average of the other stair graphs. The
three green graphs are the averages of the thick blue graph in the
three feature scale intervals 1 to 36, 37 to 72 and 73 to 108.
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Figure 5.15: Experiment 5. The average accuracy for testing the 6 RFs correspond-
ing to the mtry values 2,4,8,16,32 and 64. The test was performed on
a large test set of 50 shapes and 150 random samples per class.

Experiment 6
The sixth and last experiment is inspired by the outcome of Experiment 5 that pointed
towards the existence of some values for scaleFactor and mtry that could have
potential influence on raising the average test accuracy. The main distinction between
Experiments 5 and 6 is clear: scaleFactor is now varied in a different way from before.
Instead of forming one long multi-scale feature vector, now, a series of multiple, single-
scaled vectors are formed. This means that each feature vector now has the length
36 as was the case in Experiments 1 through 4. The scaleFactor values range from
0.005 to 0.100 in steps of 0.005, adding to a total of 20 values. Figure 5.16 shows an
example of the corresponding tangent planes for a random vertex in a random shape.

Once again the mtry parameter is varied, but this time it is done for all possible
values, which means that it will range between 1 and 36. This combination of 20
scaleFactor values and 36 mtry values leads to a system of 720 randomized decision
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forests.

Figure 5.16: Experiment 6. Twenty example tangent planes for a random vertex
based on the different tangent plane scaling values used in the experi-
ment.

The first noticeable observation with this experiment comes from investigating the
out-of-bag training error graphs that are shown in Figure 5.17. For each randomized
decision forest corresponding to the 720 mtry, scaleFactor combination, the training
error graph for increasing number of trees is shown. Two graphs have been highlighted,
namely the best (yellow) and worst (red) models measured on their error rate at the
inclusion of the 150th tree. The yellow graph corresponds to the (mtry,scaleFactor)
setting (14,0.100) and the red graph corresponds to the (mtry,scaleFactor) set-
ting (17,0.005). The confusion matrices of the corresponding models are depicted
in Figure 5.18. In this figure, it can be seen that the average accuracy is 84% in the
best case and a mere 7% in the worst case. By investigation, it can be seen that
the worst model has a very high tendency towards predicting observations to belong
to either class 11, 7 or 24. By comparing to the ground truth Figure 1.2 and refer-
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ence Table 4.2, it can be seen that this corresponds to the quasi-anatomical regions
Left upper eyelid, eyebrow and lower forehead (L-UEELF),
Left nostril and nose wing (L-NNW) and Left cheek (L-C), respectively.

Figure 5.17: Experiment 6. 720 blue out-of-bag training error graphs, correspond-
ing to all combinations of the mtry and scaleFactor parameter values.
Yellow and red graphs show the models that exhibit the lowest training
error for all 150 trees included. The best combination corresponds to
a mtry value of 14 and scaleFactor of 0.1, which is the biggest tangent
plane in Figure 5.16. The worst combination is at an mtry value of
17 and corresponding scaleFactor value of 0.005, which is the smallest
tangent plane.

In order to test the performance of the 720 randomized decision forest models, a
test set has been created in the following way: 50 random shapes have been sampled
such that none of them have been included in the model training. Each shape has
150 samples taken from each class. For each model, the corresponding feature com-
putation is governed by that model’s scaleFactor value. While keeping the vertex
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Figure 5.18: Experiment 6. Confusion matrices for the two RF models that exhibit
the best (top) and worst (bottom) out-of-bag training error rate. See
Figure 5.17 for the corresponding training error rates.
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list and shape index fixed, the model is then tested for each of the 36 mtry settings.
This is repeated such that all 720 randomized decision forests are tested on the same
test data set for comparison.

In Figure 5.19, the average accuracy for the 720 randomized decision forests have
been plotted. The abscissa is subdivided into 20 distinct regions that each comprise
the 20 distinct scaleFactor values corresponding to the 20 different tangent plane
feature scales that are visualized in Figure 5.16. Each of the subdivided regions
contain the corresponding 36 mtry levels. On the figure is also marked the model
that manifest the best performance with respect to the average accuracy (green). The
model has the (mtry,scaleFactor) combination (10,0.100). The worst performing
model has the (mtry,scaleFactor) combination (31,0.010), which is shown in red.

A different way of viewing the best and worst (mtry,scaleFactor) combinations
is shown in Figure 5.20. The same nature of the (mtry,scaleFactor) combinations
may be slightly more apparent in this figure. In Figure 5.19 it could easily be deducted
that a high scaleFactor led to a better accuracy, but on Figure 5.20, besides that
the same conclusion can also easily be deducted, in addition, it is revealed that lower
mtry levels lead to a slightly better performance than higher. This is in accordance
with the nature of the randomization functionality of the decision forests: if the mtry
value is too high, too many features are considered at each node split, and this leads
to similar conditions for the single trees of the forests. In the other end, if there is a
low mtry setting, only very few features are sampled at each node split stage, which
leads to very different trees and thus, higher randomization.

In order to look closer at the performance of the best and worst performing
randomized decision forests in terms of their accuracy performance on the test set,
Figure 5.21 shows the confusion matrices. In this figure, it can be seen that the
average accuracy is 85% in the best case and 4% in the worst case. By investiga-
tion, it can be seen that the worst model has a very high tendency towards pre-
dicting observations to belong to either class 6 or 7. By comparing to the ground
truth Figure 1.2 and reference Table 4.2, it can be seen that this corresponds to
the paired quasi-anatomical regions Right nostril and nose wing (R-NNW) and
Left nostril and nose wing (L-NNW).
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Figure 5.19: Experiment 6. Mean accuracies for the 720 RFs. Each of the 20 ver-
tical grey-scaled subdivisions contain 36 models corresponding to 36
mtry values and illustrate each of the 20 scaleFactor values. The mod-
els that elicit the best and worst accuracies (green and red) are shown
and correspond to the (mtry,scaleFactor) combinations (10,0.100) and
(31,0.010) and associated mean accuracies of 85% and 4%. The corre-
sponding tangent plane sizes are the biggest and the second-smallest
in Figure 5.16.
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Figure 5.20: Experiment 6. Mean accuracies for the 720 RFs. This is an alternative
approach to visualizing the results in Figure 5.20. The horizontal axis
contains the mtry values and the vertical axis, the scaleFactor values.
Each square in the image is color scaled according to its mean accuracy
when subjected to the test data set. The best and worst RF model
(mtry,scaleFactor) combination are marked with green and red rings,
respectively.
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Figure 5.21: Experiment 6. Confusion matrices for the two RF models that exhibit
the best (top) and worst (bottom) average test accuracies. When com-
paring to Figure 5.19, the following can be said about the two RF
models. The models correspond to the (mtry,scaleFactor) combina-
tions (10,0.100) and (31,0.010) and associated mean accuracies of 85%
and 4%. The corresponding tangent plane sizes are the biggest and
the second-smallest in Figure 5.16.



CHAPTER 6
Discussion

The main parts of the analysis has been:

• To generate a large plausible data set of frontal human faces from an active
shape model.

• To create a set of weak classifiers.

• To use the weak classifiers to train randomized decision forests.

• To use the randomized decision forests and weak classifiers to classify fronto-
facial anatomical regions on new scans.

The active shape model based data set consisting of 2023 shapes with plausible
variation was formed and used in the training of various settings of randomized de-
cision forests. The diagonal of the bounding boxes for all the shapes were computed
and the variation enabled the creation of multiple forests that were different. Not
only because of the randomization processes involved in the work of sampling the
vertices and shapes but also because of the variability in the data set.

Inspired by Shotton et al. [SSK+13], the tangent plane features were developed as
a tool for describing facial features. Because this is a novel idea, investigations on the
features were done to analyze how they affected the performance of the randomized
decision forests.

The experiments were focused upon investigations of the tangent plane feature pa-
rameters and also, upon the settings for training and testing the randomized decision
forests.

Through the experiments it was revealed that some classes were difficult to classify
properly. Namely, the two paired cheek regions spawned new experiments within the
fields of uneven observation sampling, classifier cascades and multiscale feature com-
putations. Naturally, such investigative work as this has some linear developmental
stages as these.

In the event that someone would set out to do further work based on the present
thesis work, the findings will give the future work a good head start by incorporating
some of the learned principles, such as generating a large data set prior to commencing
the work on building the feature descriptors. Once this is done, quite early on, initial
tests of the classifier performance in relation to the number of trained trees is a good
idea. Because this will give a good idea of how many trees are actually required. The
advantage of identifying the number of required trees early is that this knowledge can
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save much training and testing time in the subsequent experiments by lowering the
number of included trees in the forests.

In the light of the cascading approach on building several randomized decision
forests that complement each other, the following heuristics could lay the foundation
for a new approach:

• Start by setting some initial parameters for the number of sampled shapes,
number of samples per class, number of trees, tangent plane feature scale, mtry
value and train a randomized decision forest.

• Make sure to save the model.

• Test the forest on a new set of shapes that were not included in the model
training.

• Make the program automatically decide if some classes are hard to predict. As
an example the program should pick the two paired classes, 23 and 24, that
were manually chosen for further investigations in the experiments.

• Make the program make a split decision to automatically train a new forest
containing a merged version of the classes 23 and 24 and also, a forest that only
has the purpose of classifying into classes 23 and 24.

• Make the program test the cascade of the two models as was manually done in
the experiments.

By making the program continuously break up the problems into smaller and
train merged versions and dual-class forests - and saving the models along the way
- a network of specialized randomized decision forests can be built up. It could be
imagined that, when the network has become large, when presented with new data,
by treating the data with the ”sub-models”, hard to predict classes could be predicted
in this manner.



CHAPTER 7
Conclusion

The analytical work of the present academic thesis has been founded upon the con-
cept of training randomized decision forests for classification of anatomical regions of
frontal human 3D scans based on weak classifiers. The main inspiration comes from
Microsoft Kinect’s body-part labelling system. A novel method has been invented
for computing variables that are used in the training process of randomized decision
forest. This ”tangent plane feature” method uses simple computations to describe
local differences between vertex tangent planes and surface parts.

The present analytical work comprises the concept of building up a large database
of plausible frontal human surface shapes from an active shape model that is itself
based upon over 600 actual facial scans. The use of such a model has allowed for
investigations on tangent plane features and randomized decision forests that would
otherwise not be possible due to the fact that randomized decision forests thrive on
large amounts of training data.

Several experiments have been made in a linear, investigative practice. Some had
the purpose of investigating the nature of randomized decision forests, namely the
effect of the number of trees in a forest on the predictions. Other intrinsic parame-
ters of randomized decision forests were investigated, such as the number of random
features to sample from at each internal tree node. It was discovered that there was a
slightly better performance when doing relatively few feature samples per node. This
can be assigned to the fact that this increases the randomness between the trees in
a forest, which again will lead to more randomized trees, and which, ultimately, is
one of the main aspects of randomized decision forests: the randomization gives more
different trees and thus, each tree’s predictive abilities will cover a larger amount of
the features that describe the anatomical regions.

Experiments on cascading classifiers with the purpose of raising the predictions of
facial regions that were hard to classify have been carried out. However, no increase
in the predictions were seen.

The framework of setting up both multi-scale feature based as well as multiple,
single-scale feature based randomized decision forests led to interesting ways for de-
termining what tangent plane feature scales could lead to the highest classification
accuracy. It turned out that by scaling the tangent plane features by 10% of the
diagonal of the bounding box of the shape and keeping a number of feature samples
per node at 10 out of 36 possible features, the highest average prediction of 85% was
reached.

The results from the present analysis makes the options of further investigating
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the tangent plane features in a randomized decision forest setting, a sensible choice.



CHAPTER 8
Future Work

The variation in the diagonal length of the bounding box for all shapes has been com-
puted, but the variation between the shapes has not been further investigated. Since
the active shape models and active appearance models were developed by Tim Cootes
and his colleagues, many have investigated the variational nature of this principal com-
ponent based method. The active shape model method is based on perturbations in
the total number of vertices and as such, models based on for example sparse princi-
pal components could open up for an analysis between the relation between tangent
plane features and local facial features that are unique for single persons.

In my bachelor thesis I investigated the correlation between sparse components of
two dimensional mid-sagittal brain scans of the corpus callosum and parameters that
were indicators of neurodegenerative diseases [Ots11]. This concept could be applied
to a three dimensional setting in which local deformations of facial abnormalities are
detected by the use of tangent plane features and randomized decision forests.

A natural expansion of investigations along the same road would be to incorporate
a new data set based on an active shape model of the full human head.

The tangent plane features were inspired by Shotton et al. [SSK+13] who com-
puted two dimensional depth images and base their weak classifiers on these intensity
images. The data set that has been used in the present thesis work could be subject
to a new analytical approach that involves the use of depth image features. The
performance of that work would then be directly comparable to the present work.

The concept of cascading classifiers by the use of multiple randomized decision
forests has been conducted in the present work. However, cascades of classifiers by a
combination of tangent plane features and depth image features could also be a viable
path of research.
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