
3
7

1
0

Research Article
Received: 8 December 2012 Revised: XX XXXX Accepted article published: 30 April 2013 Published online in Wiley Online Library: 7 June 2013

(wileyonlinelibrary.com) DOI 10.1002/jsfa.6207

A sampling approach for predicting the eating
quality of apples using visible–near infrared
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Abstract

BACKGROUND: Visible–near infrared spectroscopy remains a method of increasing interest as a fast alternative for the
evaluation of fruit quality. The success of the method is assumed to be achieved by using large sets of samples to produce
robust calibration models. In this study we used representative samples of an early and a late season apple cultivar to evaluate
model robustness (in terms of prediction ability and error) on the soluble solids content (SSC) and acidity prediction, in the
wavelength range 400–1100 nm.

RESULTS: A total of 196 middle–early season and 219 late season apples (Malus domestica Borkh.) cvs ‘Aroma’ and ‘Holsteiner
Cox’ samples were used to construct spectral models for SSC and acidity. Partial least squares (PLS), ridge regression (RR) and
elastic net (EN) models were used to build prediction models. Furthermore, we compared three sub-sample arrangements for
forming training and test sets (‘smooth fractionator’, by date of measurement after harvest and random). Using the ‘smooth
fractionator’ sampling method, fewer spectral bands (26) and elastic net resulted in improved performance for SSC models
of ‘Aroma’ apples, with a coefficient of variation CVSSC = 13%. The model showed consistently low errors and bias (PLS/EN:
R2

cal = 0.60/0.60; SEC = 0.88/0.88◦Brix; Biascal = 0.00/0.00; R2
val = 0.33/0.44; SEP = 1.14/1.03; Biasval = 0.04/0.03). However, the

prediction acidity and for SSC (CV = 5%) of the late cultivar ‘Holsteiner Cox’ produced inferior results as compared with ‘Aroma’.

CONCLUSION: It was possible to construct local SSC and acidity calibration models for early season apple cultivars with CVs of
SSC and acidity around 10%. The overall model performance of these data sets also depend on the proper selection of training
and test sets. The ‘smooth fractionator’ protocol provided an objective method for obtaining training and test sets that capture
the existing variability of the fruit samples for construction of visible–NIR prediction models. The implication is that by using
such ‘efficient’ sampling methods for obtaining an initial sample of fruit that represents the variability of the population and
for sub-sampling to form training and test sets it should be possible to use relatively small sample sizes to develop spectral
predictions of fruit quality. Using feature selection and elastic net appears to improve the SSC model performance in terms of
R2, RMSECV and RMSEP for ‘Aroma’ apples.
c© 2013 Society of Chemical Industry
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INTRODUCTION
The use of visible and near infrared spectroscopy (visible–NIR)
for the rapid evaluation of fruit quality remains a topic of
importance and interest for the food research community and
food industry because, in a near future, it might be included
in ‘the tool box’ for efficient farm management.1,2 Spectral
regions on the visible and near infrared spectrum have been
used to predict quality in intact fruits such as apples (380
up to 2000 nm), apricots (600–2500 nm), citrus (636–1236 nm),
grapes (650–1100 nm), kiwifruits (300–1100 nm), pineapples
(400–2500 nm) with different degrees of success.3 The fruit quality
parameters studied with spectroscopy included: soluble solids
content (SSC), firmness, acidity, dry matter, taste and starch, among
others.3 In most of these studies the quality characteristics were
predicted using multivariate statistical models.

Two of the most important fruit quality traits are SSC and
acidity.4 These traits have a great influence on consumer liking

and repetitive purchases. During fruit growth, the internal quality
traits are expected to vary due to different causes (type of soil,
weather, training and thinning techniques, etc.). This variation
in quality might be the most important factor affecting the
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Højbakkegård Allé 13, 2630 Taastrup, Denmark. E-mail: mmar@life.ku.dk

a Department of Plant and Environmental Sciences, Faculty of Science, University
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calibration models, which are used to train different spectroscopy
devices.3 Model validation, an essential step to be carried out after
calibration, has often been performed using samples from the
same batch. The tendency has been to use or suggest large sets of
samples, which together with pre-processing statistical methods,

reached somewhat satisfactory results.3–5 One conclusion was
that the samples should be ‘rich’ in variation and ideally contain
information from multiple orchards/seasons/cultivars to obtain

sufficient robustness.3,6–8 In addition, for the purpose of proper
model construction, post-harvest sample arrangements have also
been proposed with different aims. Interestingly, most of the
studies reporting spectral robustness issues for fruit quality, used
samples obtained randomly from either fruit trees or from the
commercial market. Frequently, little has been reported regarding
the sampling techniques applied during fruit collection and often
relevant sample statistics (mean, standard deviation, ranges of the
quality parameter of interest) have not been provided. As a result,
the reproduction, comparison, evaluation and improvement of
the mentioned experiments becomes challenging.

In an earlier study, we explored the variability of mass, sugar,
firmness and starch of representative samples of ‘Granny Smith’
apples obtained at the orchard scale (Martı́nez Vega MV et al.,
unpublished). In this study, we extend our approach of using the
‘fractionator’ tree sampling procedure to obtain representative
apple fruit samples at time of harvest.9 These samples were
used to evaluate the performance of visible–NIR spectroscopy
method for calibration and validation model development. Thus,
the objectives of the study were: (1) evaluate the SSC and acidity
prediction performance of an early and late season apple cultivar;
and (2) to compare different sub-sampling techniques to form
training and test sets on the overall performance of the prediction
models. Furthermore, we discuss the main implications of the
method in practice.

MATERIALS AND METHODS
Fruit material
Two Danish apple (Malus domestica Borkh.) cultivars, an early
season ‘Aroma’ and a late season ‘Holsteiner Cox’, were collected
at fruit maturity, in September and October 2011, respectively
from 11-year-old trees at the Pometum orchard, University of
Copenhagen, Denmark. The samples were selected using the
‘fractionator’ procedure for trees,9 from 10 trees per cultivar. The
fractionator procedure is a form of multi-level systematic uniform
random cluster sampling, in which the trees, primary branches,
and, at the final stage, branch segments form the clusters of fruit
for sampling purposes. For both cultivars we used systematic
sampling periods of 2 (for branch) and 2 for in-branch segment
with random starts. When the branch segments bore more than
one fruit, a random number was used to select one fruit from
each of the final sample of branch segments. Each sampled fruit
was labelled with a number to preserve information about the
picking order. Once harvested, the samples were kept at room
temperature (18 ◦C). To widen the spread of fruit SSC and acidity
values for the experiments, apple quality measurements for each
cultivar were performed after 5 (Date 1) and 10 (Date 2) days of
storage. Likewise, to preserve the distribution of fruits per tree
from the original sample, the sub-groups for each of the storage
periods mentioned were selected by taking a systematic sample
of fruit with period 2 while preserving the original picking order
from the 10 trees. Thus, sample Date 1 contained apples 1, 3, 5 . . . ,
and Date 2 sample consisted of the fruit ranked 2, 4, 6 and so forth.

Determination of fruit quality
On each apple, two pieces of fruit flesh (stem to calix end), from
the exposed and non-exposed side of the fruit were squeezed. Its
juice was presented to a calibrated handheld brix meter (Metler
Toledo ‘Quick brix 60’; Mettler Toledo Inc. Columbus, Ohio, USA)
to measure SSC content. The remaining juice was kept for acidity
determination. Acidity was measured with a titrino (719 S Titrino
Metrohm; , Herisau, Switzerland). The titration consisted of adding
a solution of NaOH of concentration 0.1 mol L−1 to 5 mL a sample
solution of apple juice until the pH reached 8.1. Results were
expressed in grams of malic acid (the most abundant acid in
apples) per 100 mL of apple juice.

Spectral measurements
A spectrometer (MOE-1 System, Tec5 AG, Oberursel, Germany) with
MMS sensors and a 12 V/100 W halogen lamp was used to collect
reflectance readings in 1 nm increments within a wavelength
range between 400–1130 nm, yielding 731 values per spectrum.
A calibration was performed using a white piece of barium sulfate
every 20 apples. Spectral measurements were performed on the
exposed and non-exposed (to sun) parts around the equator of
each apple. A distance between the lamp and the fruit of 10 mm
was maintained. A holder supported fruits to direct light in a
45◦ angle to avoid specular reflectance. The integration time
was 161 ms. Each intact fruit was placed on a rotary circular
base with the stem–calyx vertical and four equidistant guides on
the base made sure that the measurements were approximately
equidistant. The scans collected at each sample point were
averaged and transformed to absorbance [log(1/reflectance)].10

Training and test sets arrangements
First, over-mature or damaged fruit samples on ‘Date 2’ were
removed from the data sets. Then, three different data sets were
formed for each cultivar.

Set A
A smooth arrangement from all samples (‘Date 1’ and ‘Date 2’
together) according to SSC and acidity values was performed. The
‘smooth’ arrangement was formed by ranking all the original
sample of fruit in increasing order according to the SSC or
acidity level, respectively, for SSC and acidity modelling. Then
every second fruit was pushed out to form a monotonically
increasing and then decreasing ordering of fruit by quality. From
this new ordering, a predefined systematic sampling interval of ‘4’
(probability p = 1/4) was applied to obtain approximately 25% of
the samples for the test set. The remaining 75% of the samples
comprised the training set. This procedure was repeated four
times, starting with fruit ranked 1, 2, 3 and 4, corresponding to
the four possible ‘random starts’ that form all possible systematic
samples from the ‘smooth’ ordering. Systematic sampling from
a smooth arrangement (‘smooth fractionator’) is a procedure
designed to provide samples with high within-sample variance
and low between-sample variance, which in this case means that
both training and test sets capture well the variation of SSC and of
acidity existing in the original sample.11,12 The averages of results
were used to evaluate the general performance of the regression
methods on the data sets.

Set B
SSC samples of each cultivar from ‘Date 1’ formed the training set
and samples from ‘Date 2’ the test set. The same criterion was used
to construct the models for acidity.

J Sci Food Agric 2013; 93: 3710–3719 c© 2013 Society of Chemical Industry wileyonlinelibrary.com/jsfa



3
7

1
2

www.soci.org MV Martı́nez Vega et al.

Set C
The original data set was divided into training (75%) and test (25%)
sets using simple random sampling without replacement. This was
repeated 25 times to obtain 25 independent sets for training and
testing. The averages of results were used to evaluate the general
performance of the regression methods on the data sets.

Preprocessing of spectral data
Since the spectral data contained NIR bands, Multiplicative scatter
correction (MSC) was applied.10 In addition, because of the
presence of visual bands, the original data set without MSC was
also considered. All the models and algorithms were calculated
using Matlab software (version R2011a; The MathWorks Inc., Natick,
MA, USA).

Calculation of calibration and prediction models
Three different linear regression methods were used on each data
set. For all the regression methods, 10-fold cross validation with a
modified version of the standard error rule13 was used for finding
the best parameters to train the model.

Partial least squares regression
The commonly used partial least squares regression (PLS) method
was used to predict fruit quality from spectra data. The basis of the
method is to link the variation in the spectral information to the
response to find only the relevant information for predicting the
response.10

Calibration and prediction models were constructed using
the ‘internal validation’ approach (using samples from the same
batch).3 The SSC and acidity data were autoscaled before model
calculation. This latter procedure ensures that all samples have
approximately the same contribution to the model.10

Ridge regression
This method is based on the penalisation of the regression
coefficients. As a result, the regression model is regularised to
reduce the variance of the predicted output.13 The purpose is
to alleviate the effect of noise on the model. Ridge regression
requires that both the response vector (Y) and the data matrix (X)
to be centred.

Elastic net
Elastic net (EN) is a sparse regression method based on the
regularisation of regression coefficients. This means that the
regression coefficients are shrunk so that some of them are set to
zero. Therefore, it can cancel out the noise effect. In addition, it has
a grouping effect and the non-zero coefficients correspond to the
groups of correlated variables (wavelengths). When the number
of variables (e.g. number of spectral bands = 731) is higher than
the number of observations (e.g. NSSC = 196 data points), the
prediction becomes an ‘ill-posed’ problem13 and EN is one of
the appropriate methods in this case. This method requires the
response vector (Y) to be centred and the data matrix (X) to be
normalised with unique length for each variable.14

Feature selection
This method is commonly used for high dimensional data to
reduce the complexity of the model. Since the dimensionality of
the apple data was high (731 spectral bands), this pre-processing

step was also employed. It was compared with the regression
results using all the features (wavelengths). Feature selection helps
to distinguish the wavelengths that carry the useful information
for the prediction to simplify the model.

A common approach for dimension reduction is principal
component analysis (PCA), but it is not an appropriate method
for ‘ill-posed’ problems.15 Although PCA is a dimension reduction
method, each principal component is a linear combination of all
the basic features (wavelengths). This means that it could not be
used as a tool for reducing the number of used wavelengths for
prediction. We applied a feature selection algorithm proposed in a
former study (Sharifzadeh S et al.,16 unpublished). The method first
sorts the wavelengths according to the number of times that their
corresponding regression coefficients were non-zero in several
iterations of elastic net regression and then selects a subset of
them as described below.

For this research, the regression coefficients obtained from
applying EN on the set C (25 randomly generated training sets),
were used for feature selection. First, the number of times that the
coefficients were non-zero in each band was counted (‘frequency
of being non-zero’). Then, the wavelengths were sorted according
to their corresponding frequencies. To choose a proper number of
wavelengths for performing the regression task, a candidate list of
the number of selected wavelengths was formed:

candidate list of top selected wavelengths

= [20, 50, 80, 100, 150, 200, 250, 700]

In the next step, an EN regression with 10-fold cross validation
was applied on only the 25 training sets using the spectral
data corresponding to each of these candidate numbers of
wavelengths. Finally, the best candidate number of wavelengths
was chosen according to the corresponding minimum root mean
square error of prediction (RMSEP).

Model evaluation
Model robustness was evaluated in terms of the coefficient of
determination (R2), the standard deviation (SD) of training and test
sets, the standard error of calibration (SEC), the root mean square
of residual errors of cross validation (RMSECV), the standard error
of prediction (SEP), the root mean square of residual errors of
prediction (RMSEP) and the bias.

RESULTS AND DISCUSSION
Cultivar variability along the harvest season
The ‘fractionator’ procedure yielded in total 205 fruits for ‘Aroma’
and 221 fruits for ‘Holsteiner Cox’. The total number of samples
for ‘Aroma’ in Date 1 was N = 103 fruit and for Date 2 was N = 102
fruit. The number of samples for ‘Holsteiner Cox’ was N = 111
fruit in Date 1 and N = 110 fruit in Date 2. Figure 1 illustrates the
spread of SSC and acidity values for both cultivars after elimination
of damaged samples (over-mature or with disease). The higher
SSC values of ‘Holsteiner Cox’ were expected given the reported
sweetness properties of the late season cultivar as compared to
the early season ‘Aroma’.17

In general SSC and acidity values had low to moderate variation.
‘Aroma’ samples had the same average of SSC on both post-storage
dates, whereas ‘Holsteiner Cox’ samples showed a slight increase
of the average SSC values. The increase is related to degradation of
starch which normally is present at high levels in late season

wileyonlinelibrary.com/jsfa c© 2013 Society of Chemical Industry J Sci Food Agric 2013; 93: 3710–3719
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Figure 1. Box and whisker plots for (a) SSC (soluble solids content) and (b) acidity values for cultivars ‘Aroma’ and ‘Holsteiner Cox’ on two post-storage
measurement dates (5 and 10 days). Extreme values, present for both variables and measurement dates are indicated by solid symbols on the plots. N =
number of samples; CV = SD/mean.

cultivars with potential for postharvest storage (unpublished
data). The lower coefficient of variation (CV = SD/mean) of SSC for
‘Holsteiner Cox’ as compared to ‘Aroma’ , showed that ‘Holsteiner
Cox’ samples had a notably narrower spread of SSC values (Fig.
1a). ‘Aroma’ and ‘Holsteiner Cox’ had almost similar CVs of acidity
on both harvest dates.

Spectral signatures of the early and late season cultivar
The spectral signatures for the apple cultivars ‘Aroma’ and
‘Holsteiner Cox’ obtained in two different post-storage dates are
illustrated in Fig. 2.

There were differences in the shapes of the spectral signature
between cultivars and between measurement dates. Furthermore,
the curves showed large variability in absorbance at a given
wavelength. The visible region (below 700 nm) of the spectra
appeared more irregular than the NIR region (above 700 nm)
between Dates 1 and 2.

The ‘Aroma’ signature showed a noisy area in the blue
region 400–500 nm. On the further green region 500–600 nm,
there were differences on the turning points of the curve
between Date 1 and Date 2 spectra. Different spectral regions
have been related to chemical components such as chlorophyll
at 650–695 nm18 or carotenoids and anthocyanins at shorter
wavelengths than 650 nm, sugars in 470–484 nm, 498–512 nm,
526–540 nm, 568–582 nm, 665–679 nm,19 and sour taste (acidity)
in the 640–700 nm region.20 The low absorption values around the
area between 700 and 900 nm probably do not contain important
information for ‘Aroma’ and ‘Holsteiner Cox’ cultivars. In this

sense, spectral bands with almost zero light absorption have been
reported to be influenced mainly by scattering properties of the
tissue.21 These spectral regions were not removed for the model
calculations, however.

The peaked-shaped area shape above 900 nm is consistent with
previous studies of SSC on apples. One should expect to find
spectral curve peaks at around 800 nm related also to chlorophyll
content,22 950 nm peaked areas may be related to water content
and sugar–water peaks at 840 and 890 nm23 and the overtones
of the hydroxy (O—H) stretch/vibration of H2O/carbohydrates
may be explained at 930–1080 nm as well as variations in the
absorption at 960 and 1060 nm, which are related to absorption
of pure water and solutions of different sugar concentrations.18

Results of band selection
Figure 3 shows the counts of non-zero coefficients for each of
the 731 wavelengths. The plot corresponds to the analysis of the
original SSC data without MSC pre-treatment.

Figure 4 shows the resulting averages of the RMSEP values
plotted after EN was applied on bands of training data according to
the candidate list. As described previously in the feature selection
section.

For SSC, the minimum RMSEP occurred at 600 features, but
there was a very close RMSEP value also at 350. Because 350 bands
was considerably smaller than 600, the first 350 top bands were
selected for SSC. The same procedure was performed for acidity.
In this case, the first 250 bands were chosen. The selected bands
for SSC and acidity are shown in Fig. 5.

J Sci Food Agric 2013; 93: 3710–3719 c© 2013 Society of Chemical Industry wileyonlinelibrary.com/jsfa



3
7

1
4

www.soci.org MV Martı́nez Vega et al.

'Aroma' Date 1

Wavelength (nm)

400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)

400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)

400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)

400 500 600 700 800 900 1000 1100 1200

Lo
g 

(1
/R

)

0.0

0.2

0.4

0.6

0.8

1.0
'Aroma' Date 2

(b)

(a)

'Holsteiner Cox' Date 1

Lo
g 

(1
/R

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
g 

(1
/R

)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
g 

(1
/R

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

'Holsteiner Cox' Date 2

Figure 2. Raw spectral patterns recorded in the visible–NIR region 400–1100 nm (exposed and non-exposed sides of the fruit averaged and MSC
pre-processed) and expressed as ‘Absorbance’ for (a) ‘Aroma’ and (b) ‘Holsteiner Cox’ in two measurement dates. Axes: X = wavelength (400–1100 nm),
and Y = absorbance.
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Figure 3. The frequency of having non-zero regression coefficients in 25
iterations of EN for the original SSC data set for ‘Aroma’ apples.

All the described steps were also performed with the MSC pre-
processed data. The number of selected bands for SSC and acidity
in this case were 450 and 250 respectively.

Results for the calibration and validation models
The resulting numbers of fruit samples on each of the previously
explained sampling arrangements were: Sets A and C of ‘Aroma’
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Figure 4. The RMSEP candidate number for SSC.

had 147 and 49 (196 in total) samples for SSC and 141 and 48 (189
in total) samples for acidity. ‘Holsteiner Cox’ SSC training and test
sets A and C had 165 and 54 (219 in total) respectively and the sets
for acidity had 152 and 51 (203 in total) samples.

The smallest RMSEPs from each combination of the three
arrangements and two data sets (original/MSC) are presented
in Fig. 6. The selected features on Set A (smooth arrangement)
using the EN regression and 26 wavelengths obtained the best
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Figure 6. Overall comparison of the soluble solids content (SSC) prediction
errors based on RMSEPs of the three training/test arrangements (A, B
and C respectively) and the two original (without) and MSC pre-processed
data. MSC, multiplicative scatter correction; Rg, ridge regression; FS, feature
selection; EN, elastic net. The numbers on the ordinate indicate the number
of wavelengths used in the models.

results for SSC and acidity prediction. Therefore complete results
of sets B and C are not presented.

Figure 7 illustrates a comparison of the error of the prediction
models obtained on sets B (Fig. 7a) and C (Fig. 7b) respectively.
The figure further demonstrates the importance of the strategy
used for forming the training and test sets. The minimum RMSEPs
for set B were higher than the worst results obtained using set A
using PLS. Set C also produced better models than Set B, but the
best results were not as good as those for Set A.

Sets B and C had higher prediction errors. In particular the
random sets (C) often caused over fitting during the modelling
process, resulting often in poorer models. As an illustration, Fig. 8
shows the spread of RMSEP from the three sample arrangements
used for building the prediction models of SSC of ‘Aroma’ apples.
Summary statistics for the four sets and their average formed
during smooth arrangement (Set A) are shown in Table 1.

Table 2 presents the average prediction statistics for the set ‘A’
of the ‘Aroma’ cultivar, which obtained the best results for both
SSC and acidity models. In general, the calibration and prediction

correlation using PLS were inferior to RR and EN in all cases (Table
2 and Table 3). The error and bias remained low for set A.

In a similar manner, Table 3 shows the ridge and EN regression
results for the selected bands of the original and MSC pre-
processed data. For the SSC data, in all cases except ridge
regression on the original data, the performance slightly improved
using the reduced number of wavelengths. In the case of acidity,
the effect was the same.

Soluble solids content
Table 2 shows that elastic net and ridge regression improved
the prediction of SSC and also resulted in lower errors and bias
as compared to PLS. Table 3 demonstrates that even though all
the models performance in terms of R2, errors and bias were not
importantly improved after band selection, fewer bands on the
visible and NIR region were suited for SSC prediction for set A.
Fewer bands simplify the measurement systems and make them
more cost effective. Our ‘Aroma’ SSC calibration models performed
better (R2 = 0.44; SEC = 0.88◦Brix; range: 8.0–15.5◦Brix; SD = 1.39)
than previous studies done by Zude et al.,21 which reported
R2 = 0.04 and higher SEC = 1.82 (for stored ‘Golden Delicious’
apples). They used higher number of samples in storage (n = 250;
SD = not reported) and spectral bands between 400 and 1000 nm.
On the other hand, Dai et al.24 obtained SSC prediction models
with higher R2 using smaller sample numbers (N = 58; R2 = 0.76;
SEC = 0.22; SEP = 0.83), similar band range 400–1100 nm for a
data set with SSC values fairly normally distributed around
the mean (rangecal = 8.6–16.7; rangeval = 8.6–15.5 SDcal = 1.69;
SDval = 1.62). The high difference between SEC and SEP in this
latter study indicates that the training and test samples were
not very similar. Another model from Hernández et al.25 also had
high prediction results (R2 = 0.98; SEC = 0.45◦Brix; SEP = 1.69◦Brix)
except bias = 1.62 was quite high. They used samples with higher
variation than ours (CVSSC = 0.28). It was not clear, however, how
the samples were collected in these latter studies. Peirs et al.8

calculated a SSC model using 244 apple samples for calibration
and 244 samples validation from seven different apple cultivars
where R2

cal = 0.91 to 0.92, SEC = 0.49 to 0.76 but using spectral
regions between 380 and 2000 nm. It is possible that better results
for SSC might be obtained by extending the spectral data to other
areas of the NIR spectra to the ones we studied.
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Figure 7. Comparison of the RMSEPs of the different regression methods used on the data division for modelling sub-samples (a) Set B and (b) set C
for ‘Aroma’ cultivar. The numbers on the ordinate indicate the number of wavelengths used in the models and the letters indicate, in each case, the
approach used to analyse the data sets. MSC, multiplicative scatter correction; O, original data without MSC; Rg, ridge regression; FS, feature selection;
EN, elastic net.

Table 1. Statistics for the training/test sub-sample sets for the sample arrangement A

Characteristic Statistic Set 1 Set 2 Set 3 Set 4 Average

Soluble solids content (◦Brix) Number 147/49 147/49 147/49 147/49 147/49

Range 7.9–14.4/8.3–15.9 7.9–15.9/8.2–14.3 7.9–15.9/8.2–14.4 8.2–15.9/7.9–14.1 8.0–15.5/8.1–14.7

Mean 11.05/11.08 11.06/11.05 11.06/11.04 11.06/11.05 11.1/11.1

SD 1.37/1.47 1.41/1.37 1.40/1.38 1.40/1.39 1.39/1.40

Acidity (g 100 mL−1) Number 141/48 141/48 141/48 141/48 141/48

Range 0.5–1.1/0.45–0.87 0.47–1/0.45–0.88 0.45–0.91/0.5–0.1 0.45–1/0.51–0.9 0.47–0.98/0.48–0.91

Mean 0.67/0.67 0.67/0.67 0.67/0.67 0.67/0.67 0.67/0.67

SD 0.09/0.01 0.09/0.1 0.09/0.1 0.1/0.09 0.09/0.1

Acidity

Our acidity models performed lower those reported by Peirs
et al.8 They used random samples from a combination of seven
different apple cultivars to construct calibration (N = 244) and
validation (N = 244) models in the region between 380 and
2000 nm. Their results were R2

cal = 0.88, R2
val = 0.86 (SEC = 1.64;

SEP = 1.73). Abu-Khalaf and Bennedsen26 reported also better
results using in total 200 samples of two apple cultivars (‘Golden
Delicious’ and ‘Jonagold’) to calculate calibration (N = 130;
r2 = 0.84; SEC = 0.07) and validation models (N = 70; SEP = 0.07)

on the spectral region 400–1100 nm. Other studies have reported
improved prediction results for acidity on citrus fruit using the
spectral region between 500–1100 nm (r2 = 0.65; RMSEP = 0.15)
and up to the 2500 nm acidity predictions have reached r2 = 0.86;
RMSEP = 0.17.27

‘Holsteiner Cox’ models had poor prediction, which was
somehow expected because the sample variability from this
cultivar was very low (CV of 5–6%). However, this also means
that the spectra may be did not capture SSC or acidity levels
accurately for this cultivar.
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Table 2. Averaged calibration and prediction results (Set A) for ‘Aroma’ apple cultivar using all 731 spectral bands

Raw data sets MSC transformed data sets

Characteristic Statistic PLS RR EN PLS RR EN

Soluble solids content (◦Brix) Ncal 147 147 147 147 147 147

Nval 49 49 49 49 49 49

RMSECV 0.91 0.78 0.90 0.91 0.87 0.85

RMSEP 1.09 1.04 1.04 1.11 1.08 1.05

R2
cal 0.55 0.68 0.56 0.60 0.60 0.61

R2
val 0.33 0.43 0.43 0.35 0.39 0.43

SEC 0.93 0.79 0.92 0.92 0.88 0.86

SEP 1.07 1.04 1.04 1.11 1.08 0.99

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval 0.01 0.02 0.01 −0.03 0.01 0.02

NNC 731 731 45 731 731 134

Acidity (g 100 mL−1) Ncal 141 141 141 141 141 141

Nval 48 48 48 48 48 48

RMSECV 0.08 0.08 0.07 0.08 0.08 0.08

RMSEP 0.08 0.08 0.08 0.09 0.08 0.08

R2
cal 0.29 0.30 0.36 0.29 0.27 0.33

R2
val 0.22 0.22 0.22 0.15 0.18 0.18

SEC 0.08 0.08 0.08 0.08 0.08 0.08

SEP 0.09 0.09 0.08 0.09 0.09 0.09

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

NNC 731 731 81 731 731 26

MSC, multiplicative scatter correction.
PLS, partial least squares method.
RR, ridge regression.
EN, Elastic Net.
Ncal, number of samples in the calibration set.
Nval, number of samples in the prediction set.
RMSECV, root mean square error of cross validation.
RMSEP, root mean square error of prediction.
R2

cal, coefficient of determination (calibration).
R2

val, coefficient of determination (validation).
SEC, standard error of calibration.
SEP, standard error of prediction.
Biascal, bias calibration.
Biasval, bias validation.
NNC, number of non-zero coefficients.

The differences on model robustness observed between the
three approaches used for forming training and test sets, indicated
that training and test sample arrangement do affect the overall
model performance, especially when the number of samples
are limited and smaller than the number of wavelengths. The
tendency of producing stable prediction after applying the smooth
fractionator to form training and test sets, stressed the importance
of maintaining the original sample variability throughout the entire
model construction process in order to achieve model robustness
and high precision (higher coefficients of determination, low
errors between calibration and validation sets and low bias). This
conclusion is supported by the differences observed between
our training and test sets performance, which suggests that
the variability of the training set were, by chance, excluded
from the test set during the formation of training and test sets.
Consequently, using a different sampling period (p = 2) to form
training and test sets, so that the proportion becomes 50–50
instead of the commonly used 75–25, might be a better approach
to use in order to preserve as much as possible the original
variability of the whole data set, when working with smaller

samples. The fractionator technique used to sample fruit from the
trees has already been shown to be an effective way to obtain
small samples (<100) representing the variability of fruit size and
internal quality at the orchard scale, as shown by Wulfsohn et al.28

and Martinez V et al. (unpublished). These previous studies and
the findings of this study suggest that is feasible to develop robust
visible–NIR prediction models using relatively small samples. The
type of cross validation used might have some additive effect
on the model performance as well, because it is a method also
based on repetitive selection of samples from the calibration set.29

However, given the low results for the model errors and bias, we
consider the robustness of our models to be adequate for this type
of data set.

In practice, the results of this study imply that using local
fruit samples for developing spectral calibration and prediction
sets is feasible, as long as the sample variability is taken into
account on the formation of training and prediction sets. The late
season samples, however, need to be modelled differently. Using
representative fruit samples with higher internal quality variability
(e.g. CV > 15%) might be a better approach to use, since a much
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Figure 8. Box plots for the root mean square of prediction (RMSEP) for the raw and MSC treated data of the sample arrangements A, B and C.

Table 3. Averaged calibration and prediction results (set A) for Aroma apple cultivar using selected bands

Raw data sets MSC transformed data sets

Characteristic Statistic PLS RR EN PLS RR EN

Soluble solids content (◦Brix) Ncal 147 147 147 147 147 147

Nval 49 49 49 49 49 49

RMSECV 0.87 0.77 0.88 0.92 0.88 0.87

RMSEP 1.14 1.07 1.03 1.13 1.07 1.05

R2
cal 0.60 0.69 0.60 0.55 0.60 0.61

R2
val 0.33 0.40 0.44 0.33 0.40 0.43

SEC 0.88 0.78 0.88 0.93 0.89 0.87

SEP 1.14 1.07 1.03 1.13 1.08 1.05

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval 0.04 0.03 0.03 0.00 0.02 0.02

NNC 350 350 26 450 450 50

Acidity (g 100 mL−1) Ncal 141 141 141 141 141 141

Nval 48 48 48 48 48 48

RMSECV 0.08 0.08 0.08 0.08 0.08 0.08

RMSEP 0.08 0.08 0.09 0.08 0.08 0.08

R2
cal 0.32 0.31 0.27 0.32 0.31 0.30

R2
val 0.22 0.24 0.19 0.19 0.20 0.18

SEC 0.08 0.08 0.08 0.08 0.08 0.08

SEP 0.09 0.08 0.09 0.08 0.08 0.09

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

NNC 250 250 37 250 250 19

Abbreviations as in the footnote to Table 2.

higher number of samples of the fruit populations with the same
variability as the samples we presented will not necessarily improve
the prediction results greatly. Such high variability samples may be
obtained from commercial orchards where the internal variability
of fruits is expected to be higher. We are testing this hypothesis in
different batches in our further research.

CONCLUSION
Three sub-sampling techniques for the formation of training and
test sets for spectral prediction of SSC and acidity of an early apple
cultivar were compared. The smooth fractionator approach was
clearly superior to random sampling and to by-date separation,

resulting in models with consistently low errors and low bias,
mainly because the method provides a fair representation of the
response values in both the training and test sets. In addition,
three different methods to reduce model complexity, PLS, RR
and EN were compared. Using elastic net and fewer bands
were the best approaches to reduce model complexity (R2 = 0.44;
SEP = 1.03◦Brix; bias = 0.03; range: 8.1–14.7◦Brix). Therefore our
results confirmed that the fractionator sampling provide data sets
suitable for SSC prediction with visible–NIR spectroscopy. To our
knowledge, this is the first proposal of a modelling protocol for a
sub-sample of training and test sets, which takes into account the
variability of the original sample in the context of predicting fruit
quality by using a non-destructive method.
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