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Summary (English)

Throughout this thesis we investigate a recently introduced light scattering tech-
nique. The system setup of the technique is highly flexible and the output
signal contains information from several different optical phenomena, and the
technique appears well suited for in-line process control in general. The main
goal of this thesis is to provide an exploratory study in relation to dairy based
applications, with a major emphasis on the microstructure in yogurt products,
which is critical for consumer acceptability.

We explore different approaches to quantifying the output signal, using both
established physical models as well as statistical descriptions of the signal.

The paper first paper deals with quantifying micrographs of yogurt, which pro-
vide ground truth information on the microstructure. The second paper makes a
direction comparison between the light scattering technique and the objectively
quantified protein microstructure.

Finally, one paper seeks to quantify each of the individual pieces of information
available in the signal, which reveals a lot of potential for further exploration.
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Summary (Danish)

Målet for denne afhandling er at ...
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Preface

This thesis was prepared at the Image Analysis and Computer Graphics sec-
tion at the Department of Applied Mathematics and Computer Science at the
Technical University of Denmark (DTU). It was done in fulfilment of the re-
quirements for acquiring a doctor of philosophy degree (PhD) within the topic
of image analysis.

The presented was financed by the Centre for Imaging Food Quality project,
which is funded by the Danish Council for Strategic Research (contract no.
09-067039) within the Programme Commission on Health, Food and welfare.

The research presented in the thesis concerns a recently introduced optical plat-
form and its applicability within dairy production. First, the underlying theo-
retical concepts is introduced alongside the applied instrumentation. Hereafter
an overview of the applied methods is provided. Finally, the major findings are
covered and discussed, which leads to the conclusion. Following the conclusion
are six manuscripts prepared during the course of the PhD study.

The project has been supervised by Professor Rasmus Larsen and co-supervised
by Associate Professor Anders B. Dahl. The research has mainly been carried
out at DTU but also at Centre for Image Processing & Analysis at Dublin
City University during an external stay under supervision of Professor Paul F.
Whelan and Ovidiu Ghita.
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Chapter 1

Introduction

Milk has been a food source for humans since prehistoric times. While the
primary natural function of milk is nutrition for the young, it has also been a
general steady food source ever since the first domestication of animals. Fer-
mentation of milk was initially used to conserve the nutrients of milk, which
would otherwise deteriorate rapidly, especially in hot climates. Fermentation
added safety and portability to milk as well as novelty for the consumer due to
the viscous consistency with unique texture and flavour.

The consumption of milk is very geographically dependent, with the highest milk
consumed per capita in North America, Australia, and Northern Europe. Africa,
South America, and Asia are amongst areas with the lowest consumption per
capita, which can be due to a high percentage of the population being lactose
intolerant as well as a limited availability of refrigeration. However, during
production of fermented milk products, lactose is broken down, making products
easier to digest for lactose intolerants and non-intolerants alike. Together with
the increased shelf life of these products, fermented milk products are more
attractive to these markets.

Almost every part of the world has its own regional variants of fermented milk
products. This is partly due to tradition, where each region developed its own
approach to fermentation, and partly due to market preference in terms of
flavour, appearance, and texture. In Denmark there is currently an increas-
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Figure 1.1: Yogurt consumption in Denmark in the period 1990-2011. Data is
from Statistics Denmark (www.dst.dk).

ing trend in the demand for products with high protein and low fat contents.
Throughout the thesis we will primarily consider acid fermented milk products
and we will in broad terms refer to these products as yogurt.

Following a recent business report by PM Food & Dairy Consulting (2012),
the yogurt demand is growing globally. In 2000 the global production of yogurt
reached 20 million tonnes, and by 2010 the production reached nearly 30 million
tonnes. By 2015 it is expected that the production will exceed 40 million tonnes,
which corresponds to a revenue of 70 billion US dollars. These significant in-
creases in demand has especially been attributed recent trends in Asia, as well
as dietary and health benefits, that are continuously discovered (Van de Water
et al., 1999; Desobry-Banon et al., 1999; Larsson et al., 2008; Mozaffarian et al.,
2011). In Denmark the yogurt consumption has increased almost consistently
since the late 90’s as can be seen in Figure 1.1.

Comparable to any other product, consumer acceptability is a critical parameter.
Muir and Hunter (1992) investigated sensory properties of fermented milk prod-
ucts and found that consumer acceptability was positively affected by: Creamy
flavour, creamy texture, and viscosity. While flavour relates to the taste and
smell of the product, texture and viscosity are related to "mouthfeel" and the
general physical properties, and are defined by the ingredient composition and
microstructure of the product (Folkenberg et al., 2005).

Fat positively affects the perceived creaminess of a product (Janhøj et al., 2006),
and as a result the recent demand for yogurts products with low fat content and
high protein content, has provided the industry with additional challenges. This
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has lead to increased activity in finding ways to replace fat, either by special
processing of the milk protein or adding different ingredients as fat replacers to
attain the same type of creaminess (Sandoval-Castilla et al., 2004; Paseephol
et al., 2008; Torres et al., 2012).

Thereby, texture can partly be related to the product composition. Lucey (2004)
also lists a broad range of production parameters that can result in texture de-
fects if not carefully considered. These texture defects includes a weak body,
graininess, and wheying-off where water is wrongfully expelled from the yogurt.
Figure 1.2 gives a schematic overview of the production steps involved in the
making of stirred yogurt, which is the most common yogurt product in Den-
mark. Following Lucey (2004) the majority of these production steps, as well as
the handling of the bulk between the production steps (typically transportation
through pipes), can result in texture defects of the final product if not consid-
ered carefully. In order to maintain a consistent product quality in a yogurt
production line, it can therefore be beneficial to monitor the microstructure in-
and between the different production steps.

Process control can hereby be used in several areas of the yogurt production. It
can be used to monitor different processing steps such as the incubation where
the yogurt structure is formed or it could be used to pinpoint critical production
steps where unwanted structural changes might occur, e.g. due to wear and tear
of the processing equipment or maladjusted processing parameters. Related to a
slightly different topic, a sensor sensitive to microstructure could potentially aid
in screening process parameters in the development of new products. Process
control sensors can be divided into three different categories, and throughout
this thesis we will adopt the following terminology:

• In-line. The sensor can be mounted directly in the current process flow.

• On-line. Some of the process flow is diverted in order to reach the sensor.

• At-line. Sample has to be extracted from the process flow an measured
outside the process flow.

To the best of our knowledge process control in relation to microstructure in yo-
gurt production remain a rather untouched subject in the literature. However,
sensors sensitive to microstructure applied in the making of hard cheese has been
covered to a great extent, and several review papers can be found (Lucey, 2002;
O’Callaghan et al., 2002; Castillo, 2006). Here, a broad selection of method-
ologies is covered ranging from mechanical testing to thermal conductivity, and
optical methods. Especially, the optical methods have always been of great in-
terest in regards to quality inspection and process control in general due to their
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Milk standardization
Obtain Correct milk composition

Homogenisation
Reduce fat particle size

Heat-treatment
Kill unwanted bacteria and affect

final yogurt properties
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Attain incubation temperature

Add lactic acid bacteria
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Milk is acidified
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Figure 1.2: Simplified flow chart of the production of stirred yogurts. In part I
the milk is still in its liquid state, and in Part II the characteristic
yogurt texture is attained. The incubation step in Part II is where
the initial yogurt structure is formed. The flow chart is adopted
from Lee and Lucey (2010).
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non-invasive nature (Chen and Sun, 1991). Lucey (2002) notes that while a lot
of different methods for process control techniques exist for cheese making no
standard approach is commonly used in modern dairy production. Among other
things Lucey attributes this to problems such as the sensors not being suitable
for in-line implementation, difficulty in meeting hygienic standards, and the lack
of robustness of the sensors in a commercial setting.

Throughout this thesis 2D static light scattering (2DSLS), a novel optical sen-
sor technique, is investigated. The sensor is remote, flexible in terms of setup,
and provides a signal that has not been investigated previously for dairy applica-
tions. We hypothesise that this sensor type potentially can alleviate some of the
above mentioned implementation issues. However, preliminary studies has to
be conducted in order to verify the potential of the sensor. For a process control
sensor it is required to ensure that the sensor is sensitive to the particular factor
being evaluated (here the yogurt microstructure), it should be reproducible, and
the signal-to-noise ratio should be appropriate (Chen and Sun, 1991; MacGregor
and Kourti, 1995).

1.1 Objectives

The main objective of this thesis is to provide an exploratory study of the
2DSLS technique within the confines of dairy products. This includes both
understanding the 2DSLS signal itself to determine the potential and limitations
of the novel modality, as well as determining appropriate ways to parameterise
the output signal.

Interpretation of the signals is another important aspect of the investigation,
for which well established reference methods should also be applied. This can
aid in determining what kind of chemical or microstructural phenomena that
can be detected using the 2DSLS.

Additionally, the work of this thesis was carried out in parallel to another PhD
project, within the Centre for Imaging Food Quality (CIFQ), by Otto Højager
Attermann Nielsen (Nielsen, 2014). In his project the 2DSLS system setup
was continuously developed. Thus, another important part of this project was
to provide feedback whenever the system was used in practice, to aid in the
continuous development of the 2DSLS platform.
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1.2 Thesis Overview

The thesis is structured with two introductory chapters which first gives a brief
overview of milk, yogurt and the production of yogurt (Chapter 2). Hereafter,
an introduction to the relevant concepts of light scattering is provided, which
additionally is put into context of dairy products (Chapter 3).

Based on these chapters descriptions of reference instrumentation is provided,
as well as details on the 2DSLS platform and its related methods (Chapter 4).
Next, the data sets used throughout the included contributions are presented
(Chapter 5), and in Chapter 6 most of the methodologies applied during the
analysis of the data sets are described.

Chapter 7 highlights and discusses the major findings for each of the included
contributions found in Appendix A-F. The results alongside the actual contri-
butions should preferably be read before the conclusion in Chapter 8.

1.3 Contribution Overview

The major contributions of this thesis cover an explorative study of the applica-
bility of the 2DSLS modality. This includes a validation of the method, in light
of existing technologies and established light scattering theory, as well as an
exploration of the different pieces of information available in the 2DSLS signal.
The majority of the presented work has been carried out within the confines of
dairy products.

Additionally, a substantial amount of work has been put into objectively quan-
tifying microscopy images of protein microstructure in yogurts. This area has
previously been investigated, but no standard approach has been suggested, thus
we provide a comparative study that considers a broad range of methods. The
objective description of the actual microstructure has allowed for direct com-
parisons between 2DSLS and the actual microstructure of a yogurt. This was
necessary in order to verify the sensitivity of 2DSLS toward changes in protein
microstructure.
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1.4 Abbreviations

2DSLS - 2D Static Light Scattering
ANOVA - Analysis Of Variance
AOTF - Acousto-Optical Tuneable Filter
BIF - Basic Image Features
CCD - Charge Coupled Device
CIFQ - Centre for Imaging Food Quality
DLS - Dynamic Light Scattering
DWS - Diffusing Wave Spectroscopy
FWHM - Full Width at Half Maximum
GDL - Glucono-δ-Lacone
GLCM - Grey Level Co-occurrence Matrix
GMM - Gaussian Mixture Model
HDR - High Dynamic Range
IR - Infrared
LED - Light Emitting Diode
LOOCV - Leave-One-Out Cross Validation
MANOVA - Multivariate Analysis Of Variance
MDS - Multidimensional Scaling
MFP - Mean Free Path
NPMANOVA - Non Parametric Multivariate Analysis Of Variance
NIR - Near Infrared
RTE - Radiative Transfer Equation
SAOR - Small Amplitude Oscillatory Rheology
SIFT - Scale Invariant Feature Transform
SMP - Skimmed Milk Powder
SS - Sum of Squares
SVM - Support Vector Machine
UV - Ultra Violet
VIS - Visible
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Chapter 2

Milk and Fermented Milk
Products

This chapter gives an introduction to bovine milk and the production of related
fermented milk products. While the main focus of this thesis is on fermented
milk products such as yogurt, a lot of the previous process control techniques
have been introduced in the context of cheese making. Therefore, a brief section
on cheese making is also included in order to provide the necessary foundation
for Chapter 4, where applied and related instrumentation is introduced.

2.1 Milk

Milk is a complex food with more than 100000 different molecular variations,
based on different species, in-species variations, seasonal variations, geographic
variations, etc. The average constituents of cows milk are (Walstra et al., 2010):

• Water (87.1%). Acts as the host medium.

• Lactose (4.6%). Milk sugar solubilised in the host medium.

• Fat (4.0%). Exist as fat globules.
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Opaque liquid

x10000
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Fat globules Fat globule

Casein micelles

Figure 2.1: Milk illustrated at different scales.

• Protein (3.3%). 80% of the protein is casein which exists as micel-
lar structures and 20% is whey protein, which is solubilised in the host
medium.

• Other (1%) - minerals, enzymes, and vitamins.

Milk is an turbid liquid, made up by an emulsion of fat globules, and a suspension
of casein micelles. This is illustrated in Figure 2.1, where milk is sketched at
different scales.

Fat globules are droplets, and their size range is between 100-10000nm. Casein
micelles are significantly smaller, 20− 400nm, but the structure of these is not
yet agreed upon in the literature, and several review papers have been published
within the last decade (Dalgleish and Corredig, 2012).

The dry matter content of the casein micelle in bovine milk consists of approx-
imately 94% protein, divided between four different types of casein (αs1-, αs2-,
β-, and κ), and 6% calcium phosphate. A recent study by Dalgleish (2011) sug-
gests that the most probable structure of the casein micelle is a "coated sphere
model", where most of the κ-casein is present on the surface of the micelle,
providing a steric stabilisation the prevents aggregation with other micelles.

The internal structure of the casein micelle is quite irregular. At neutral pH
(6.7), the micelle structure is held together by a balance of attractive hydropho-
bic forces and electrostatic repulsion between caseins. The structure is further-
more stabilised by calcium phosphate which is bound to αs- and β-casein. The
micelles are very porous, and thereby highly hydrated, thus while they constitute
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Figure 2.2: Probable structure of the casein micelle. The surface is covered
by κ-casein (green), and the inside consists of αs- and β-casein
(red) bound by calcium phosphate. Some caseins are bound by
hydrophobic attraction (blue). Image from Dalgleish (2011).

a relative small part of the total weight of milk, they occupy approximately 10%
of the total volume. The probable structure of the casein micelle is illustrated
in Figure 2.2.

2.2 Yogurt

Yogurt is a fermented milk product made by adding lactic acid bacteria to the
milk. The bacteria converts lactose into lactate which lowers the pH value. This
change in environment destabilises the casein micelle which eventually leads an
aggregation of the micelles resulting in the formation of a protein network. We
will use the terms casein network and protein network interchangeably through-
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Figure 2.3: The protein network of a milk gel along with lactic acid bacteria
(yellow) observed through an electron microscope. The scale bar
is 2µm. Image from Kalab (2010).

out the thesis. As seen in Figure 2.3, the network consists of clusters and chains
of casein and constitutes a weak gel with some resistance to deformation. The
strength of the gel is defined by the total solid content in the base milk as well
as the density and amount of cross-linking in the network.

Even though lactic acid bacteria is used for most commercial products, as bacte-
ria are living organisms there is a natural variability in the activity, and processes
can be hard to reproduce. Glucono-δ-lactone (GDL) is a food additive that acts
as acidifier when it hydrolyses in water, and is commonly used to mimic bacteria
fermentations. However it has been shown that the physical properties of the
protein networks created from lactic acid bacteria and GDL differ (Lucey et al.,
1998a). Based on these results it was concluded that model studies performed
with GDL should be verified using lactic acid bacteria as well.

The fermentation process can be roughly divided into three different pH intervals
(Lee and Lucey, 2010):
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• pH 6.7 to 6.0. Small amount of calcium phosphate is solubilised. Overall
structure of the casein micelle is unchanged.

• pH 6.0 to 5.0. Calcium phosphate is continuously being solubilised, and
complete "gone" when pH reaches 5.0. The outer layer of κ-casein shrinks,
and the internal stability is weakened.

• pH ≤ 5.0. Getting closer to the isoelectric point of casein (pH 4.6), the
electrostatic repulsion diminishes and hydrophobic casein-casein attrac-
tion predominates. This eventually leads to aggregation of the entire sys-
tem (the gelation point). After the gelation point additional cross-linking
of micelles continues, which strengthens the gel further.

It is important to note that two similar pH developments does not imply similar
physical properties of the protein network (Haque et al., 2001). Referring to
Figure 1.2, a lot of process parameters exist for the production of fermented
milk products that changes the fermentation kinetics as well as the final prod-
uct. Throughout the thesis we are mainly making investigations based on the
process parameters leading up to the fermentation: Milk standardisation, ho-
mogenisation, heat treatment, and incubation temperature.

Milk standardisation is the first step in yogurt production, in which the com-
position of the base milk is adjusted to ensure the desired fat content. This
is typically done using skimmed milk and cream. Additionally, milk powders
can be used to adjust the protein content, which is often the case with low-fat
yogurts. This is needed as the final strength of the protein network also relies on
the total milk solid content. In general the total milk solid content for yogurt
ranges between 9% to 20% for certain concentrated yogurts (Lee and Lucey,
2010).

In homogenisation the size of the fat globules is reduced (≈ 2µm) through high
pressure treatment. This produces a more stable emulsion, and a new surface
layer of casein and whey is formed on the fat globules (Lee and Lucey, 2010;
Yildiz, 2010). This allows for fat globules to be embedded in the protein network
and thereby increases the strength of the network. The casein micelles are not
affected by homogenisation.

Heat treatment has two major purposes. It is used to eliminate unwanted mi-
croorganisms, which would otherwise provide "competition" when using lactic
acid bacteria. Furthermore, the denatured whey proteins interact with κ-casein
on the micelle surface. This allows for more casein cross-linking and thereby
more dense gels (Anema and Li, 2003).

Fermentation temperature greatly affects the speed at which GDL hydrolyses,
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and the activity of the lactic acid bacteria. As a result this affects the speed at
which the fermentation process occurs. Higher temperatures tend to result in a
faster fermentation process, where a lot of rearrangements are made during the
casein aggregation. This results in a more loose gel. At lower temperature fewer
rearrangements are made during the aggregation, and denser gels are produced
(Lee and Lucey, 2010).

The fermentation process is typically stopped by rapid cooling when pH reaches
a certain value (often pH 4.6, but can be different depending on the product),
which ensures the right acidity of the yogurt. While this can give a yogurt the
right taste, changing the parameters of the different processing steps can lead
to very different structural developments and end results in terms of structure
(Lee and Lucey, 2010).

2.3 Cheese

In cheese making the fermentation is mainly carried out by adding rennet to
milk. Rennet is an enzyme and contrary to the acid fermentation described
previously, enzyme fermentation does not destabilise the internal structure of
the casein micelles. Instead the enzymes only break down parts of the κ-casein
on the surface, which reduces the steric stability of the colloidal system, and the
entire micelles eventually aggregate and form a gel network (the curd) (Dalgleish
and Corredig, 2012). Again, after aggregation additional cross-linking of micelles
further strengthens the gel and increases the curd firmness.

When the curd has reached a suitable firmness, the cheese curd has to be cut
into smaller cubes in order draw out the water (the whey). The cutting increases
the gel surface to volume ratio, allowing whey to be easier separated. The time
of cutting greatly affects the final product. If the curd is cut when the firmness
is too low the cheese yield is reduced, or if the curd firmness is too high when
the curd is cut in results it a quality reduction (Castillo, 2006). Thus, there is
an incentive to be able to consistently determine a cutting point that gives the
biggest yield while retaining the desired quality.

Additionally, the coagulation speed has been of interest to determine how rapidly
the milk system starts to aggregate after rennet addition, which can affect the
throughput in a production line. This is of course very dependent on the pro-
cess parameters. Thus, in application and research related studies in the four
parameters are typically of interest in relation to cheese making:

• Coagulation speed. The rate at which at aggregation starts to occur
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after rennet addition.

• Gelation point. The point at which the entire casein aggregates.

• Curd firming. How fast is the curd firming after the gelation point.

• Cutting time. The time when the curd is cut.

As will be seen in Chapter 4, a lot of process control methods have previously
been investigated for monitoring or estimating these specific parameters.



16 Milk and Fermented Milk Products



Chapter 3

Light Propagation in Milk
Products

In this chapter a brief introduction to light propagation in diffusive materials is
provided, and the chapter will act as theoretical foundation for parts of Chapters
4 and 6. Initially, basic concepts of light and light scattering are introduced,
and hereafter few physical models will be described. Finally, the chapter will
be put into the context of Chapter 2.

3.1 Light Propagation

Light is electromagnetic radiation, which can be described as a duality between
waves and particles. Thereby it can thought of as a collection of one or more
photons propagating through space as electromagnetic waves. In broad terms
light covers the wavelength spectrum from 10 to 10000nm, where the ultraviolet
(UV) regime covers 10-400nm, the visible (VIS) regime covers 400-700nm, and
the infrared (IR) regime covers 700-10000nm as shown in Figure 3.1. Often a
sub category to IR, near infrared (NIR), is defined to cover 700-2500nm.

Interaction between light and matter can be observed at different scales. On
a microscopic scale, when a photon interacts with a particle it can either be
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Figure 3.1: The spectrum for electromagnetic radiation. Graphics by Philip
Ronan.

diffracted or absorbed by the particle, or experience a change in direction (de-
noted scattering) due to reflection or refraction. These different phenomenons
are illustrated in Figure 3.2(a). For simplicity we assume that scattering is elas-
tic, meaning that the photon experience no difference in energy before and after
a change in direction. Other types of scattering will be discussed in Section
3.1.2. On a macroscopic scale, light-matter interaction is typically described
through absorption, reflection, refraction, or scattering, as illustrated in Figure
3.2(b).

The specific phenomenon exhibited between light and matter is dependent on
both wavelength and the composition of the material. Materials can e.g. be
classified as transparent, translucent, turbid, or reflective, due to chemical com-
position or specific spatial arrangement of the particles in the material. In
this way, optical properties often attest to the properties of the material it-
self. The chemical composition of a material can be investigated through its
absorption properties. Chemical compounds absorb at different wavelengths,
characterised by their absorption spectra, which often contains a unique combi-
nation of absorption peaks. Thus, the absorption spectra are sometimes denoted
as spectral fingerprints. Absorption spectra are commonly investigated through
near-infrared spectroscopy, which is a family of methods that have been widely
applied in pharmaceutical and agricultural applications (Roggo et al., 2007;
Huang et al., 2008). Scattering is dependent on the microstructure of the sam-
ple, and is e.g. affected by the density of the material, the spatial distribution of
the scattering particles (homogeneous, heterogenous, etc.) as well as the particle
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Figure 3.2: Light-matter interaction on different levels of scale.

sizes in the material, which will be discussed later in this section. Scattering is
also dependent on the wavelength of the light. However, contrary to the spec-
tral fingerprints in the absorption spectra, scattering decreases monotonically
as a function of the wavelength. Investigating the absorption and scattering
properties of a material can hereby be used to probe information on both the
chemical and micro structural properties of the material.

A group of materials that has been thoroughly investigated in regard to both
medical and agricultural applications is biological tissues (Martelli et al., 2010).
Generally biological tissue is a turbid material, in which light exhibits diffu-
sive behaviour, meaning that the scattering properties dominate the absorption
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Figure 3.3: Water absorption spectrum. Image by Palosirkka.

properties with in the VIS regime. Biological tissue often contains a considerable
amount of water, and thereby it is important to pay attention to the absorption
spectrum of water. From Figure 3.3 it can be seen that water is transparent for
the entire VIS spectrum, however it significantly absorbs light when stepping
into the UV or NIR regimes. The effects of the scattering properties can thereby
be hard to detect in these areas. This makes the VIS regime particularly well
suited for investigating the scattering properties of biological tissue.

Thus, when shining visible light into biological tissue most of the light penetrates
the surface of the material, where it is initially refracted (described by the
refractive index) and later scattered beneath the surface of the tissue. After a
number of scattering events, some of the light eventually exits the tissue. This
exiting light is denoted as diffuse reflectance or diffuse transmittance depending
on which side of the tissue it is observed at, as illustrated in Figure 3.4.

If a narrow light beam is used, a decay of the diffuse reflectance can be observed
emanating from the incident point of the light. The light close to the point of
incidence has typically undergone single or few scattering events, whereas light
further away from the point of incidence has typically been scattered multiple
times. Likewise for the diffuse transmittance a decay can be observed, although
it is a simpler signal as mainly light that has been scattered multiple times.
These decays are highly dependent on the underlying particle size distribution
as illustrated in Figure 3.5. Here it can be seen how the decay depends on
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Diffuse reflectance Diffuse transmission

Figure 3.4: Examples of diffuse reflectance and diffuse transmission when a
material is illuminated by a light beam.

particle size and particle concentration when a narrow light beam is shined
orthogonally into the material.

Increasing the particle concentrations results in more scattering, but larger par-
ticles also increases the scattering. Furthermore, increased scattering results
in higher intensities near the light incident points. In general, large particles
scatter light more efficiently, and more precisely the scattering efficiency is pro-
portional to the size parameter. Assuming the scattering particle is spherical,
the dimensionless size parameter is defined as (Martelli et al., 2010):

s =
2πr

λ
, (3.1)

where r is the radius of the particle and λ is the wavelength of the light. From
the equation it can be seen that both larger particles and lower wavelengths
increase the scattering efficiency.

Light scattering is in general described by Mie scattering theory (Mie, 1908),
with the special case of very small particles, which can be referred to as Rayleigh
scattering theory (Rayleigh, 1899). In terms of the size parameter in Equation
(3.1), we think of Mie scattering when the wavelength is proportional to the
particle size (s ≈ 1) and Rayleigh scattering when the wavelength is much
larger than the particle size (s � 1). A major difference between between the
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Figure 3.5: The decay of the diffuse reflectance illustrated for materials with
different density and size distribution of the suspended particles.
The first column depicts the different materials, the second col-
umn depicts the spatial distribution of the diffuse reflectance, and
the third row shows an intensity profile through the centre of the
signal.
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Table 3.1: Naming convention for scattering in terms of the size parameter, s,
form Equation 3.1, as well as the corresponding scattering decays
across wavelength.

Name convention Size parameter Scattering decay rate
Rayleigh s� 1 λ−4

Mie s ≈ 1 λ−1

Scattered light

Incident light

Small particle Large particle

Figure 3.6: Illustration of how particle size can affect the phase function (de-
picted in gray).

two types of scattering is that Rayleigh scattering is more wavelength dependent,
and decays faster across wavelengths. The decay rates are summarised in Table
3.1.

Thus, the size of the particles affects both the scattering efficiency and the decay
rate of the scattering efficiency across wavelengths. Finally, the particle size is
also related to the phase function; a probability density function that determines
the direction of the light after it has been scattered by a particle. The phase
function is dependent on the ratio between particle size and wavelength, thus
when particles are small compared to the wavelength of the light, scattering is
isotropic. If the particles are large compared to the wavelength of the light, the
direction of scattering typically becomes elongated. An example of a forward
lobed phase function is given in Figure ??. The effects of a forward lobed
probability density function are most prominent when considering single or few
scattering events. For multiple scattered light, the ensemble of scattering events
eventually becomes completely random and thereby isotropic.
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3.1.1 Physical Models

Following the notation by Frisvad et al. (2007), macroscopic light transport
in diffusive media can be described through the Radiative Transfer Equation
(RTE)(Chandrasekhar, 1960):

(~ω · ∇)L(x, ~ω) = −µtL(x, ~ω) + µs

∫
4π

p(~ω′, ~ω)L(x, ~ω′)dω′, (3.2)

where L(x, ~ω) is the radiance at point x in direction ~ω. Radiance (or light) is
measured in energy flux per solid angle per projected area. µt, µs, and µa =
µt−µs are the extinction, scattering, and absorption coefficients respectively. p
denotes the phase function, which is defined by a probability density function for
the outgoing direction of the scattered light. The left hand side of the equation
is the change of light along a ray, which is explained by two terms on the right
hand side: the attenuation and the incoming scattering from all directions.

When multiple scattered light is considered in practice, the Henyey Greenstein
model (Henyey and Greenstein, 1941) is commonly considered as a single number
parameterisation of the phase function in 3.2. It is represented by the asymmetry
factor g, which is a measure of the asymmetry in the single scatter pattern

p(θ) =
1

4π

1− g2

[1 + g2 − 2g cos(θ)]
3/2

(3.3)

Here, −1 < g < 1, g = 0 denotes isotropic scattering, and negative and positive
values of g denote backward and forward scattering respectively. Figure 3.7
shows the single scatter patterns for different values of g as well as different
inclination angles of the incident light beam. From here it is clear that an
oblique incident angle of the light can provide significantly more information on
g compared to an orthogonal light beam.

While Equation (3.2) provides a good description of light diffusion in diffusive
media, no practical analytical solutions are available (Martelli et al., 2010). It
can be solved numerically through Monte Carlo simulations, but this is ineffi-
cient for realtime computations, which are required for process control applica-
tions. However, various approximations to the RTE have been suggested and
a common variant is the diffusion approximation. Here it is assumed that all
light has been scattered multiple times (thus, single scattering is neglected),
and the scattering coefficient of (3.2) is replaced by the reduced scattering co-
efficient µ′s = µs(1 − g). By using µ′s instead of µs, direct measures of g are



3.1 Light Propagation 25

−0.4 −0.2 0 0.2 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g=0.125
g=0.375
g=0.625
g=0.875
lightentry point

(a) 0◦ light inclination angle
−0.4 −0.2 0 0.2 0.4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) 37.5◦ light inclination angle

−0.4 −0.2 0 0.2 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) 75◦ light inclination angle

Figure 3.7: Asymmetry of single scattering patterns visualised for positive val-
ues of g and different light inclination angles. The results are based
on the Henyey Greenstein model. At 0◦ the incident light is or-
thogonal to the illuminated surface, and for inclination angles >
0◦, the light comes from the bottom side of the plot.
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avoided. Based on the diffusion approximation, Farrell et al. (1992) derived a
(calculation wise) simplified analytical expression for semi-infinite diffusive me-
dia illuminated orthogonally by a narrow light beam. The diffuse reflectance of
multiple scattered light, R, is described as a function of the radius, r, to the
point of incidence:

R(r) =
a′

4π

[
1

µ′t

(√
3µa(µa + µ′s) +

1

ρ1

)
exp(−

√
3µa(µa + µ′s) ρ1)

ρ21

+

(
1

µ′t
+

4A

3µ′t

)(√
3µa(µa + µ′s) +

1

ρ2

)
exp(−

√
3µa(µa + µ′s) ρ2)

ρ22

]
(3.4)

where a′ = µ′s/(µa + µ′s) is the transport albedo, i.e. the proportion of light
reflected by the surface, and µ′t = µa + µ′s is the extinction coefficient. A is
defined as the mismatch in refractive index between air and the diffusive media,
and can be calculated by the empirical formula originally given by Groenhuis
et al. (1983). ρ1 and ρ2 are quantities introduced as boundary conditions in the
derivation of the analytical expression and given by:

ρ1 =

[(
1

µ′t

)2

+ r2

]1/2
(3.5)

ρ2 =

[(
1

µ′t
+

4A
3µ′t

)2

+ r2

]1/2
(3.6)

From the above it can be seen that the entire expression in (3.4) can be described
entirely through µa and µ′s. Graaff et al. (1992) further makes an approximation
to the wavelength dependency of µ′s through a power function, in order to obtain
more information on the particle size distribution:

µ′s = αλ−β . (3.7)

Here, α is the signal amplitude, and related to particle density, and β is related
to the ratio between wavelength and particle radius and can thereby provide
information on the particle sizes. Following the notation of Table ?? β = 4
corresponds to Rayleigh scattering and β ≈ 1 corresponds to Mie scattering.
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A final important quantity to consider is the mean free path (MFP), which is
based on both the absorption and scattering coefficients (Martelli et al., 2010):

MFP =
1

µ′t
=

1

(µa + µ′s)
. (3.8)

MFP describes the average path length a photon travels into a given material
before it is scattered for the first time. In Chapter 6 this property will be
considered further in a extension to Equation 3.4.

3.1.2 Additional Scattering Types

In the previous sections we assumed that scattering was an elastic process.
However, scattering can be divided into three groups:

• Elastic scattering. Assumes no change in energy between scattering
events. This is what has been considered until now in this chapter, and a
the majority of optical methods in Chapter 4 rely on this kind of scattering.
Typically, elastic scattering can be quantified by four parameters: µa, µ′s,
g, and the refractive index.

• Inelastic scattering. There is a change in energy between scattering
events. This energy can partly be attributed to fluorescence, in which
the wavelength of the incident light is different from the scattered light.
This phenomena is exploited in Confocal Scanning Laser Microscopy, see
Section 4.1.2

• Quasi-elastic scattering. Assumes no change in energy between scat-
tering events. However, the wavelength of the scattered light shifts due
to Doppler shifts caused by moving particles. This can be used to get
information on the mobility of the scattering particles.

While the concept of inelastic scattering is straightforward, quasi-elastic scatter-
ing requires a brief introduction. This phenomenon can only be observed when
using a coherent light source, such as a laser. A laser is monochromatic coherent
light, meaning that the light waves are in phase at every point in space. This
property allows for indirect observation of Brownian motion, which is random
motion of particles suspended in a host medium, e.g. a fluid. The motion is
due to the particles colliding with the molecules of the host medium, and the
speed of this motion is highly dependent on the size of the suspended particles.
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Figure 3.8: Examples of light interference effects. Light in phase experiences
constructive interference resulting in a high intensity being cap-
tured by the detector. For light out of phase the deconstructive
interference results in a low intensity being captured by the detec-
tor. In our case the change in phase is caused by Doppler Shifts
due to moving particles.

Thus, the Brownian motion can be indirectly observed as intensity fluctuations
(denoted speckle) in scattered laser light, due to destructive or constructive in-
terference caused by Doppler shifts. The interference effects causing speckle is
illustrated in Figure 3.8. This type of speckle is exploited by a family of methods
presented in Section 4.2.1.3.

3.1.3 Milk Products

Milk and fermented milk products are diffusive materials (Martelli et al., 2010),
and thereby light interaction is dominated by scattering in the VIS regime. The
main scatterers in milk are the fat globules and the casein micelles. As men-
tioned in the previous chapter, the fat globules are significantly larger than the
casein micelles, and following Equation (3.1) they scatter light more efficiently.
In fact, the globules are close to Mie scattering, whereas the casein micelles are
closer to the Rayleigh scattering.

Combining the low absorption properties and the wavelength dependent scat-
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tering decays of Table 3.1, this explains why full-fat milk appears white, as
all wavelengths are scattered almost equally by the fat globules. However, for
low-fat milk the scattering contribution from the casein micelles becomes signifi-
cant, meaning that the scattering becomes more wavelength dependent. Shorter
wavelengths are hereby scattered more than the longer wavelengths, explaining
why low-fat milk tends to have a blue tint.

During milk fermentation the particle size distribution naturally changes due to
the aggregation of the casein micelles. While the final protein network does not
have an inherent particle size, the scattering properties change (Claesson and
Nitschmann, 1957). Thereby, the scattering properties are of great interest for
fermented as some of the scattering can be attributed to how the casein micelles
have aggregated. In terms of quasi-elastic scattering, the aggregation of the
casein micelle will greatly affect the particle mobility and thereby the observed
speckle (Alexander and Dalgleish, 2004).

In Nielsen et al. (2013) we used Photon Time-of-Flight Spectroscopy to inves-
tigate the absorption and scattering properties from 550-1000nm for several
commercially available milk products. Some of the results are presented in Fig-
ure 3.9. The green and cyan curves are milk with 0.5% and 1.5% fat respectively
and 3.5% protein. The Blue and red curves are yogurts with 0.5% and 1.5% fat
and 4.5% and 4.0% protein respectively. It can be seen that both fat content
and the fermentation changes the scattering properties of the products. This is
despite the small differences in protein content. The small differences in protein
content of the fermented products can be observed at the smaller wavelengths,
where protein contributes most to scattering, and the blue curve is steeper due
to Rayleigh scattering. Also it can be seen that µa � µ′s as expected, and water
absorption peaks can be observed around 750nm and 970nm as previously noted
by (Palmer and Williams, 1974).

Moreover, from µa and µ′s the MFP can be calculated. For the least scattering
product (0.5% milk) the MFP approximately range from 0.6mm to 2mm in the
shown wavelength interval, and for the most scattering product (1.5% yogurt)
the MFP approximately range from 0.3mm to 0.5mm. This also gives an idea
about the penetration depth of the technique in relation to milk and yogurt
products.
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(a)

(b)

Figure 3.9: Reduced scattering and absorption properties for different dairy
products. The green and cyan curves are milk with 0.5% and
1.5% fat respectively and 3.5% protein. The Blue and red curves
are yogurts with 0.5% and 1.5% fat and 4.5% and 4.0% protein
respectively.



Chapter 4

Instrumentation

This chapter introduces the instrumentation that has been used for data acqui-
sition during the work resulting in this thesis, including a thorough introduction
to the CIFQ workbench. Also provided, is a brief overview of previous and exist-
ing methods that have been used to monitor milk fermentations, with a strong
emphasis on the optical methods. Although the main focus of this thesis is
yogurt, related work will be presented in the context of cheese making. Finally,
similarities and differences between the CIFQ workbench and related optical
methods will be pointed out.

4.1 Applied Instrumentation

4.1.1 CIFQ Workbench

In this section we present the CIFQ workbench, which is the primary instru-
ment used during the work of this thesis. As mentioned in Chapter ??, the
instrument has been developed parallel to this project, and the author of this
thesis has aided in the continuous development of the system through direct
hands on experience with the system. It is a novel imaging modality in relation
to dairy process control, and from here on the modality will be referred to as
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Figure 4.1: A schematic view of the hyperspectral vision system. Additionally
two lenses were installed, one in front of the laser beam and one
in front of the camera.

2D Static Light Scattering (or 2DSLS). The system is a generalisation of the
commercial product VideometerSLS (V ideometer A/S, Hørsholm, Denmark),
and was introduced in (Nielsen et al., 2011b,a). Following its introduction, sev-
eral evolutionary upgrades have been performed as knowledge on the system as
well as data sets have been gathered. A schematic of the setup is presented in
Figure 4.1

It consists of two major parts: A light delivery system, and a detector system.
The light delivery system consists of a super continuum light source (SuperK Ex-
treme EXW-12, NKT Photonics, Birkerød, Denmark), which produces a broad
white lightband (400-2400nm).

The light is filtered by an acousto-optic tunable filter (AOTF) (SuperK SE-
LECT, NKT Photonics, Birkerød, Denmark), and the combined system pro-
duces a Gaussian shaped polarised laser beam, in the range 465-1030nm, at
high spectral resolution (approximate ±5nm). The system can hereby be con-
sidered hyperspectral. Furthermore, the laser beam is focused down using a
beam focusing lens (focal length = 40mm), which gives a wavelength dependent
beam waist ranging from 100-200µm in the wavelength interval. The laser is
focused on the surface of the investigated sample at an oblique incident angle
(≈ 45◦).

The resulting spatial distribution of diffuse reflectance is captured using a CCD
camera with an objective lens. A spacer tube is installed in between camera
and lens to enhance the level of zoom. Throughout the work of this thesis, two
different detector systems have been used, which are summarised in Table 4.1.
The main difference between the two capturing systems is the increased field
of view of the most recent detector system. With the increased field of view of
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Table 4.1: The two different CCD and objective lens setups used throughout
the thesis.

Camera Spacer Objective lens Pixel Spatial
resolution resolution

Grasshopper CCD, 6.5cm 23FM50L, 1200 × 1600 (3.2µm)2

Point Grey Research, Tamron Co. Ltd.
Richmond, Canada Saitama, Japan

AM-800GE CCD, 8.5cm LM50XC, 2472 × 3296 (3.2µm)2

JAI, Kowa Co. Ltd.,
Yokohama, Japan Nagoya, Japan

most dynamics of the diffuse reflectance can be captured better. The working
distance is≈ 5cm in both setups, thus data is captured remotely. The acquisition
time has changed throughout the work of this thesis. At its current state the
system captures a set of high dynamic range (HDR) images at approximately
2sec/wavelength.

Figure 4.2 presents the quantum efficiency of the CCD, the transmission spec-
trum of the objective lens, and the output power of the laser. While the wave-
length range spanned by the AOTF can be changed via add-ons, it can be seen
that the detector setup has to be changed entirely if wavelengths outside the
visible regime should be explored. Images of the setup can be found in Figure
4.3.

Cf. Figure 4.2 the image intensities are different between wavelengths, due to a
wavelength dependent combined system response. In general, the entire dynamic
range of the light intensities, cannot be spanned by a single exposure time.
Thus, high dynamic range (HDR) imaging is required to avoid saturated areas
or areas with low signal-to-noise ratio (Mann and Picard, 1994). This is done by
capturing layers of the same image at different exposure times (exposure times
range between 160 µs and 1.6s). For each pixel in the image, the layer with the
longest possible exposure time, without saturation, is selected. The final pixel
value in the HDR image is obtained by normalising with the corresponding
exposure time.

A conceptual view of the 2DSLS signal (or diffuse reflectance image) is shown
in Figure 4.4, which illustrates the incident light beam in relation to the sample
surface. Furthermore, it can be seen that the signal is symmetrically elongated
along the light direction. Also, the presented colourmap convention will be
used for all diffuse reflectance images throughout the thesis. We will use the
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Figure 4.2: CCD quantum efficiency, objective lens transmission spectrum,
and the output power of the laser. Combined, these components
defines the amplitude of the system response.
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(a) The entire 2DSLS setup

(b) Light delivery fibre and objective lens

(c) 470nm (d) 510nm (e) 600nm

Figure 4.3: (a) shows the native 2DSLS setup, where the parts of the light
delivery system is highlighted. The black box on the righthand side
contains the light delivery fibre and CCD detector system as shown
in (b). (c) through (e) shows different wavelengths illuminating a
solid epoxy optical phantom.
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Figure 4.4: Conceptual view of the 2DSLS signal. The presented colourmap
convention will be used throughout the thesis.

terms 2DSLS signal and diffuse reflectance image interchangeably throughout
the thesis.

Concrete data examples of milk and fermented milk illuminated at different
wavelengths are shown in Figure 4.5 and 4.6. It can be seen that the diffuse
reflectance images consist of the incidence point of the light (highest intensity)
and hereafter a diffusion of the light. Close to the point of incidence, light has
undergone few scattering events as can be seen by the elongated isocontour in
which effects of the phase function, Equation (3.2), can be observed. Moving
away from the point of incidence, multiple scattering eventually predominates
as can be seen as the isocontours becoming isotropic. This is due to multiple
scattered light being completely random. Also considering Figure 4.5 and 4.6, a
wavelength dependency can be observed. The shorter wavelengths are scattered
more and therefore reaches isotropic scattering closer to the point of incidence,
whereas elongation effects from single scattering are more prominent for the
longer wavelengths.

In addition to the light diffusion, a speckle interference pattern can be observed
as an underlying high frequency pattern. Looking at Figure 4.5 and 4.6 the
speckle can be seen quite clearly near the point of incidence. Additionally, for
Figure 4.6 the speckle can vaguely be seen further away (at log-intensity values
12-13) especially for the fermented milk samples.

The speckle is due to the coherency of the light source, which can get out of
phase due to the Doppler effect, as described in Section 3.1.2, or simply by dif-
ferences in the path length travelled of the diffuse reflected light. This has been
studied previously in relation to several phenomena such as: Brownian motion
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(b) Yogurt (1.5% fat), 500nm

Figure 4.5: Log-transformed diffuse reflectance images at 500nm. The incident
light comes from the top left corner of the image.
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(b) Yogurt (1.5% fat), 900nm

Figure 4.6: Log-transformed diffuse reflectance images at 900nm. The incident
light comes from the top left corner of the image.
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(quasi elastic scattering), flow (Briers and Webster, 1996), surface irregularities
(Chandley, 1976), and scattering in turbid media in general (Piederrière et al.,
2004b). In some applications it is simply considered noise (Goodman, 1976).

Spatial speckle effects, as seen in the diffuse reflectance images, typically arise
from surface irregularities and scattering in turbid media, and the effects can be
confounded (Guyot et al., 2004). Additionally, the spatial speckle size increases
as the wavelength of the light increases (Viasnoff et al., 2002). Dynamic speckle
effects (intensity fluctuations) arise from flow or Brownian motion, and are
typically analysed using time resolved measurements, as will be presented in
Section 4.2.1.3. Thus, in order to avoid the spatial speckle effects becoming
"blurred" due to dynamic speckle, the exposure time must be short relative to
the correlation time of the dynamic speckle (Piederrière et al., 2005). However,
as the diffuse reflectance images are created from multiple HDR layers with
different exposure times, different areas of the images will be affected differently
by the dynamic speckle effect. Thus, according to the spatial location in the
diffuse reflectance images there may be contributions from three different speckle
phenomena. The speckle part of the diffuse reflectance images is investigated
further in Paper F.

In summary the 2DSLS signal is complex and consists of contributions from
several phenomena, as illustrated in Figure 4.7. In Section 6.1 different ways
to quantifying these phenomena, both independently and combined, are consid-
ered.

Similar 2D imaging modalities have previously been applied, and very much in
relation to predicting quality parameters of apples (Cho and Han, 1999; Lu,
2004; Peng and Lu, 2007; Qing et al., 2008; Romano et al., 2011). There are
four major additions to the systems used in these studies and our 2DSLS setup:

• Hyperspectral. The increased the spectral resolution allow for easier
investigation of wavelength dependent phenomena.

• Coherent light. Interference effects in form of speckle can be observed.

• Oblique incident angle of the light. Cf. Figure 3.7, information from
single scattering effects, and thereby effects of the phase function, can be
investigated.

• Higher spatial resolution. Small areas can be observed, which e.g. al-
lows for measuring the mean free path and asymmetry related parameters
in the single scattered light.

As mentioned in Chapter 1, the presented system can be considered a laboratory
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Figure 4.7: A one-dimensional view of the different contributions in the 2DSLS
signal. The highest amplitude corresponds to the reflection of the
incident Gaussian beam. The light intensity decays rapidly here-
after, and close to the beam centre the single scattering contribu-
tion predominates. Moving further away from the beam centre,
only effects from multiple scattered light can be seen. Additionally,
all three contributions are affected by speckle due to the coherency
of the light.

workbench. Through the flexibility of the setup, a broad range of parameters
such as spatial setup, wavelengths, and signal quantification can be investi-
gated. From these investigations more focused and cost-efficient systems can be
designed, e.g. using only the "necessary" wavelengths in form of laser LEDs or
specific camera setups.

4.1.2 Confocal Scanning Laser Microscopy

Microscopy has been widely used in order to study the microstructure of fer-
mented milk products (Kalab, 1981; Skriver, 1995; Sandoval-Castilla et al.,
2004; Folkenberg et al., 2005). Especially Confocal Scanning Laser Microscopy
(CSLM) has become popular within the last two decades (Lucey and Singh,
1997; Lucey et al., 1998b,a). This microscopy modality is well suited for study-
ing the microstructure of milk gels as it requires little sample preparation. By
relying on observing inelastic scattering, specific compounds can be targeted
using fluorescent stains. These stains can target specific molecules such as fat
and protein.

One way of applying the fluorescent stains to a sample, is to have an acetone
solution of the stain. The solution is applied to a microscopy slide, and when the
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Figure 4.8: The principle of confocal laser scanning microscopy. The red lines
denotes the light which hits the sample of interest in the focal
plane. The blue lines denotes the emitted light from the fluorescent
dye in the focal plane, which is captured by the detector. The
dashed black lines are emitted light, which is out of focus, and
does not hit the detector. Graphics by Magnus Manske.

acetone has fully evaporated the sample is applied on top of the fluorescent stain.
When the sample has rested for a couple of minutes it is ready for measurements.
A stained sample is illuminated by a certain wavelength, and the fluorescent
stained molecules excites another wavelength, which is captured by a detector.
The confocal principle of CSLM is illustrated in Figure 4.8. By using a point
light source and pinholes in a confocal setup, the optical resolution and contrast
can be increased. The point light is scanned across the stained sample, and
primarily light in the focal plane is captured.

As light is mainly collected from a single plane is captured, CSLM can be used
to perform optical sectioning and thereby create 3D views of the investigated
sample. However, depending on the task, it can be more relevant to randomly
sample 2D slices at the same depth to ensure a more representative view of the
gel network. Figure 4.9 shows examples of three different stirred yogurts. The
pixel intensities correspond to a combination of the focus and the amount of
protein present at the given pixel. Bright pixels denote high protein content,
as this was the chosen stain, whereas dark pixels typically denotes the pores
containing the continuous phase such as whey.

From the example images, it can be seen that the amount of protein appears
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to increase both when fat and protein is added to the base yogurt. While
this change in total intensity is straightforward when the protein content is
increased, the change in total intensity when the fat content is increased can
be contributed the homogenisation of the milk, cf. Chapter 2. In homogenised
milk the fat globules are covered with a protein layer, thus the amount of visible
protein changes in the CSLM images.

(a) Base yogurt

(b) Base yogurt with additional fat (c) Base yogurt with additional protein

Figure 4.9: Confocal laser scanning microscopy images of stirred yogurts with
different compositions. The resolution of the images is 1024×1024
pixels, and each images covers an area of 375× 375µm.
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4.1.3 Small Amplitude Oscillatory Rheology

Rheology is the study of deformation and flow of matter, often in form of viscous
fluids. Rheology is performed by quantifying the sample response to physical
force or movement and can be measured in multiple ways, but can been gen-
eralised into two major categories: Large deformation and small deformation
rheology. Both categories have found their place within the field of food science
(Steffe, 1996). Large deformation rheology is destructive, however in terms of
milk gels it has been found to correlate well to the oral perception of viscosity,
due to the similarities to mastication. Contrary, small deformation rheology
is non-destructive and correlates well to non-oral perception of viscosity, e.g.
stirring a yogurt with spoon (Skriver et al., 1999). A major advantage of small
deformation rheology is that it can be used to continuously monitor a developing
system such as a milk fermentation.

The variant of theology applied in this thesis is the Small Amplitude Oscillatory
Rheology (SAOR) (Bohlin et al., 1984). It has become a popular method for
studying milk fermentation in general, and is furthermore often used as refer-
ence when studying optical methods. In SAOR a small sinusoidal deformation is
applied, in which small deformation is defined as a relative deformation, which
does not disrupt the development of the network structure (Lee and Lucey,
2010). Fermented milks are viscoelastic, meaning that they express both ideal
elastic and ideal viscous behaviour. These behaviours can be described by the
storage (elastic) modulus (G′), which is the amount of energy stored per de-
formation cycle, and the loss (viscous) modulus (G′′), which is the amount of
energy lost as dissipation per deformation. Throughout the thesis, we will only
report the storage modulus (G′) when rheological measurements are presented.

Different geometries can be used in SAOR. However, the most commonly used
geometry, in relation to milk gels, is the double gap concentric cylinder. This
measuring geometry has a large interface between sample and geometry, which
is ideal for weak gels such as fermented milk products. The measuring geometry
is shown both separately and installed in a rheometer in Figure 4.10.

The typical rheological behaviour of a GDL milk fermentation can be seen in
Figure 4.11 in relation to time and pH value. It can be seen the storage modulus
has a zero baseline until the point where casein micelles start to aggregate, which
is ≈ pH 5 cf. Section 2. Hereafter a sigmoidal behaviour can be observed (Lee
and Lucey, 2010).
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(a) The separate parts of the geometry. (b) The geometry in measuring position.

(c) The geometry installed in a rheometer,
where it can be lowered to measuring position.

Figure 4.10: The double gap concentric cylinder geometry used in SAOR
(small amplitude oscillatory rheology). As the name implies mea-
surements are performed by small circular oscillatory motions of
the geometry.
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(b) pH vs. rheology curve

Figure 4.11: The typical rheological behaviour during a milk fermentation
measured by small amplitude oscillatory rheometry. The gela-
tion point is where the baseline for the storage modulus is bro-
ken, i.e. around 85min in (a) and just below pH 5 in (b). This
corresponds well to the pH intervals presented in Section 2.2.



46 Instrumentation

4.2 Related Instrumentation

Comprehensive overviews of measuring techniques that previously have been
used to monitor milk fermentation are by Lucey (2002); O’Callaghan et al.
(2002); Castillo (2006). These methods have mainly been presented in relation
to estimating the optimal cutting time in cheese making. A lot of the early
methods involves observing a milk sample extracted from the bulk or direct
destructive contact with the bulk:

• Visual methods. A popular method was proposed by Berridge (1952) to
determine the point of gelation. It is based on visually detecting the first
signs of graininess of the milk clinging to the inside surface of an inclined,
revolving bottle.

• Penetrometers. To measure the curd firmness, the force or depth pene-
tration of the curd is measured using various probes (knife, sieve, etc.).

• Suspended bodies. A geometry (ball, cone, plate, etc.) is suspended in
the curd. The curd firmness is then determined by the drag exerted by
the curd when slowly lifting the geometry.

• Rheological methods. This family of methods is less empirical than
the previously described. Controlled levels of strain are applied to the
curd to measure the absolute viscosity. As mentioned in Section 4.1.3, the
large deformation rheology was introduced, and later the non-destructive
small deformation methods were introduced. While large deformation
methods could determine the curd firmness in a destructive manner, small
deformation allows for continuous nondestructive measurements. This way
both the gelation point and curd firming can be observed (Bohlin et al.,
1984)

Generally, any interaction with the milk gel during fermentation is sought to
be avoided during production, due to risk of contaminating or damaging the
milk gel. Thus, more recent methods have had a stronger emphasis on limited
interaction with the milk gel when the measurements are made. As a result a lot
of these methods can perform measurements continuously and are potentially
easier to implement in-line for modern dairy processing environments. Castillo
(2006) divide these nondestructive methods into three categories:

• Thermal methods. Thermal conductivity sensors are used to mea-
sure changes in heat transfer from a heat source (typically a wire) to
the surrounding milk. The heat transfer changes according to viscosity
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and O’Callaghan et al. (2002) found that the measured signal was very
suitable for estimating the gelation point, but not particularly suited for
following the curd firming.

• Ultrasonic methods. Through an ultrasound transmitter and a receiver,
changes in attenuation and velocity are measured. During coagulation it
has been seen that the attenuation decreases as the gel is formed, due to
the lower loss of energy in an elastic medium. Features from a polynomial
fit to the measured signal was found to correlate well to the gelation point
and the coagulation speed (Gunasekaran and Ay, 1994)

• Optical methods. Light is shined into the milk at one point, and the
scattered light is typically measured at another point. Multiple modalities
have been suggested, and different types of signals have been reported in
the literature with different applications in mind.

The upcoming section gives a short summary of previously investigated optical
methods. Furthermore, descriptions are provided for the most applied optical
methods, and finally the major similarities and differences between the presented
optical methods and the CIFQ workbench are pointed out.

4.2.1 Optical Methods

There has always been great interest in optical methods in regard to quality
inspection and process control, due to their noninvasive and nondestructive
nature, which makes them ideal for process control of agricultural products
(Chen and Sun, 1991).

Optical methods are applied in either transmission, side scatter, or backscatter
mode, and recent methods often utilise fibre optic probe setups as illustrated in
Figure 4.12. Various light sources and photodetectors are used. In relation to
milk fermentation transmission and backscattering modes have typically been
applied. Transmission measurements are typically performed through a glass
cuvette or similar geometry (potentially on-line or at-line, cf. Chapter 1), while
backscattering can be performed both in a geometry or directly on the milk bulk
(potentially in-line or on-line, cf. Chapter 1).

While transmission mode requires a more powerful light source and a suitably
sized transmission geometry (in regards to the turbidity of the investigated sam-
ple), the measured signal is simpler as it potentially only consists of light that has
been scattered multiple times. Contrary, the measured signal from backscatter
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Figure 4.12: Different variations of optical measurements using a fibre op-
tic probe setup. Backscatter mode and transmission mode have
most commonly been used in relation to milk fermentations con-
tinuously. Image is from Castillo (2006).

mode is a combination of single scattered and multiple scattered light. How-
ever, backscatter mode is arguably better suited for process control as it has
no requirements but an optically unobstructed view of the sample of interest,
whereas transmission often relies on sample extraction. This potentially makes
methods based on backscattering easier to implement for real world applications
in the dairy production.

When compared to the SAOR measurements seen in Figure 4.11, all optical
methods have one thing in common: They are not measuring the same kinetics
as SAOR, and they show a clear developing signal before the gelation point. This
is most likely due to the early rearrangements and aggregations of casein micelles
before the final aggregation, which does not affect the viscosity (Alexander and
Dalgleish, 2004; Alexander et al., 2006). Consequently, optical signals have
typically not been used directly to determine gelation point or the cutting time
for cheese making. Instead there have been an emphasis on extracting features
from the optical signals, and hereafter application of statistical modelling to
predict gelation point or cutting time (O’Callaghan et al., 2002). However,
optical methods are not only used in application studies. They are also used
to great extent in research based studies, often to investigate how different
treatments affect the coagulation kinetics and generally extend the knowledge
of milk coagulation.
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4.2.1.1 Turbidity

Turbidity is measured by the ratio of light being transmitted through a geom-
etry as seen in Figure 4.12. In relation to studies on milk fermentation, the
first turbidity measurements date back as early as the late 20’s where a rennet
coagulation was followed, and small turbidity changes were detected (Schneck,
1928). Claesson and Nitschmann (1957) measured turbidity during rennet coag-
ulation at multiple wavelengths (500-900nm) and found that 900nm best suited
to follow the rennet coagulation. While 500nm are more scattering according
to theory, they found that 900nm showed the percentage wise biggest difference
between the initial condition and the end condition.

Turbidity measurements are still used today, and commercial NIR based instru-
ments, such as the Optigraph (Ysebaert Inc., Frepillon, France), are available.
These instruments are commonly used to investigate the coagulation speed for
different process parameters, enzymes, or milk types (McMahon et al., 1984;
Serra et al., 2007; Vallas et al., 2010).

4.2.1.2 Diffuse Reflectance

More than two decades after the first paper on turbidity measurements, optical
changes were measured by diffuse reflectance in backscatter mode using colour
difference meters (Hardy and Fanni, 1981). Here it was seen that the lightness
and the blue-yellow parameter (L∗ and b∗ respectively) in the Lab colour space
changed significantly during milk coagulation. In more recent approaches dif-
fuse reflectance is measured using fibre optic probe in backscatter mode with
a setup similar to that of Figure 4.12 (Payne et al., 1990). CoAguLite (Re-
flectronics, Lexington, KY 40502, USA) is commercially available NIR based
(880nm) version of the technique, which has been used in application studies
on cutting time estimation for on different products (Castillo et al., 2000, 2005;
Abdelgawad et al., 2014)

Figure 4.13 presents an example of the signal output from the CoAguLite sensor
as a function of time during cheese making. Time is divided into three phases,
similar to pH intervals for yogurt fermentation in Section 2.2. In Phase I,
enzymatic reactions dominates and it can be seen that the measured signal does
not change considerably. In Phase II, aggregation starts to occur, which affects
the measured signal due to changes in particle sizes. The signal continuously
develops throughout the entire phase. The gelation point is located at the end
Phase II. Hereafter additional cross-linking proceeds during the curd firming in
Phase III.
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From the signal derivatives the inflection point (tmax) can be found, which have
shown strong correlation to the coagulation speed. Further, under the right
circumstances tmax can be used to predict the point of gelation and cutting
time (Payne and Castillo, 2007).

Figure 4.13: The diffuse reflectance (or light backscatter) ratio and its deriva-
tives as a function of time during cheese making. Image is from
Payne and Castillo (2007).

4.2.1.3 Dynamic Light Scattering and Diffusing Wave Spectroscopy

While the previous methods relied on elastic scattering, and the amount of light
being diffusely reflected or transmitted, Dynamic Light Scattering (DLS) re-
lies on using laser light to observe quasi-elastic scattering (Berne, 1976). The
speckle, due to Brownian motion, is measured through a pinhole using a pho-
tomultiplier tube in sidescattering mode. The measured signal is quantified
through the temporal autocorrelation function, from which various algorithms
can be applied to quantify the particle size distribution of the investigated sam-
ple. A significant drawback to DLS is that it only works for single scattered
light. This means that highly scattering samples, such as milk, has to be di-
luted. This makes it infeasible for real world applications, as the dilution can
damage the weak gel systems of fermented milks.

However, extensions to both the data acquisition and the data analysis tech-
nique have been developed to increase the applicability for highly scattering
media (Pusey, 1999). A widely used extension is Diffusing Wave Spectroscopy
(DWS) (Pine et al., 1988). Contrary to DLS, DWS operates in backscatter or
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transmission mode, and the algorithms applied to the temporal autocorrelation
function assume that all light has been scattered multiple times. Using DWS,
the average particle size of the sample and the mean free path of the light can
be estimated.

DWS can be measured using a photomultiplier tube or a CCD as detector. A
photomultiplier tube is typically used to monitor fast developing speckle pat-
terns due to high temporal resolution, whereas a CCD is used to monitor slow
developing speckle patterns, and the pixels on the CCD are considered as an
ensemble of individual detectors (Viasnoff et al., 2002). Additionally, if a CCD
is used as detector, the laser beam is expanded before reaching the investigated
sample, to get a sufficiently large area of speckles to measure.

DWS has been widely applied as a research tool in relation to milk and other
colloidal food systems. Specifically in relation to milk fermentation, DWS has
mainly been used to extend the current knowledge of milk coagulation (Alexan-
der and Dalgleish, 2006). However, according to Castillo (2006) NIZO Food
Research has used the commercially available system, Rheolight (Optel, NL-
6546 Nijmegen, Netherlands), in-line to follow the curd firming progress during
cheese making.

4.2.2 Comparison Between 2DSLS and Related Optical
Methods

Obviously there is a major difference between the setup for the Optigraph (tur-
bidity measurements) and the 2DSLS setup, as they rely on diffuse transmission
and diffuse reflectance respectively. However, both the Optigraph, CoAguLite,
and 2DSLS observe effects of elastic scattering. CoAguLite and 2DSLS are
more related as they both rely on diffuse reflectance measurements. Neverthe-
less, there are still some major differences between the two setups. CoAguLite
uses the optic probe setup seen in Figure 4.12, in which light is shined orthog-
onally into the sample using a fibre, and the diffuse reflectance and captured
some distance away by another fibre.

2DSLS uses oblique incident light, which can probe information on the phase
function cf. Figure 3.7, and the diffuse reflectance is captured remotely using a
CCD. The CCD allows for not only quantifying the signal in terms of intensity
but also in terms of signal shape. A CCD can also be seen as a 2D array of
detectors with a narrow field of view, where an optical fibre can be seen as a
single detector with a larger field of view. Thus, the diffuse reflectance images
could potentially approximate the CoAguLite signal by selecting an area in the
diffuse reflectance images.
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Contrary to the Optigraph and CoAguLite, both DWS and 2DSLS uses a co-
herent light source. While 2DSLS uses a narrow light beam, DWS expands
the beam before illuminating the sample, and quasi-elastic scattering is investi-
gated in the illuminated area. This implies that quasi-elastic scattering is only
observable in a narrow area in the 2DSLS signals. Another important differ-
ence to DWS is that the measured signal is time resolved and analysed through
its temporal autocorrelation function, whereas the signals from the Optigraph,
CoAguLite, and 2DSLS are static measures.

In terms of wavelengths most commercial products, based on turbidity or diffuse
reflectance, applies a NIR light source. This was justified early on by Claesson
and Nitschmann (1957) who observed that longer wavelengths spanned a greater
dynamic range when considering the relative increases in the scattering prop-
erties during the fermentation in cheese making. This is also verified by the
absolute scattering properties for milk and yogurt presented in Figure 3.9. In
terms of wavelength DWS just requires a coherent light source, and often a
helium-neon laser is used (632.8nm). The above mentioned spectral ranges are
covered entirely by the current 2DSLS setup.

In summary 2DSLS can potentially be considered a combined sensor technology,
that holds some of the information that potentially combines features from both
CoAguLite and DWS, and additionally contains effects of the phase function.
Thus, the 2DSLS signal is a lot more complex compared to the related methods.
While this allows for a lot of information being stored in the 2D signals, it
also introduces the problem of isolating the different types of information. In
Section 6.1 different methods for quantifying the diffuse reflectance images will
be introduced.
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Data

The aim of this chapter is to provide a brief overview of the types of data in-
vestigated throughout this thesis. Each data set is briefly motivated, described,
and followed up with clarifying images of the applied experimental setup and
data examples if relevant. For the specific details on the actual data acquisition,
we refer to the papers, in which the data sets have been utilised. The data sets
are presented in chronological order.

For all the presented data sets, the 2DSLS system has been used for data acqui-
sition. However, two different detector systems have been applied throughout
the work of this thesis as summarised in Table 4.1. Unless stated otherwise, the
Grasshopper CCD detector system has been used in the data acquisition.

Table 5.1 provides an overview of the data sets and in which of the included
papers they have been used.

5.1 23 Fermentation Processes

This data set was created to investigate the generalisability of the 2DSLS tech-
nique toward common process parameters in the production of fermented milks.
Through a 23 factorial design, fat content, protein content, and fermentation
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Table 5.1: Overview of the data sets, and in which of the included papers they
have been used.

Data set Paper
23 fermentation processes A
Milk products C + F
Intralipid series B
24 stirred yogurts D + E
Repeated fermentation process F

temperature was changed systematically between a low and a high level. The
factorial design allows for screening factor significance with a small amount of
data points (Montgomery, 2008), and additional repeated centre points (average
level of all factors) were added to the factorial design to assess the experimental
error directly. The fermentations were carried out using GDL.

The fat content was controlled using homogenised UHT semi-skimmed and
whole milk for the low and high level respectively. Protein content was changed
by adding skimmed milk powder. 2DSLS and SAOR measurements (Stresstech
HR with temperature cell ±0.1◦C, Reologica Instruments AB, Lund, Sweden)
were performed during the fermentation. To ensure the correct temperature for
the 2DSLS measurements, the setup was installed around a water bath (SW2
±0.2◦C, Julabo Labortechnik GmbH, Seelback, Germany). Figure 4.10 shows
images of the applied rheometer and Figure 5.1 shows images of the 2DSLS
setup for an early iteration of the experiment. Data examples are shown in
Figure 5.2.
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(a) Top view

(b) Side view

Figure 5.1: The 2DSLS setup installed around a water bath during on-line
measurements of a milk fermentation.
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Figure 5.2: Logarithmic transformed diffuse reflectance images from two sam-
ple points in the fermentation experiment at different wavelengths.
The lefthand side of each image shows the signal before the fer-
mentation, while the righthand side shows the signal after the
fermentation. The top row shows examples from the sample with
low protein and high fat, while the lower row shows examples from
the sample with high protein and low fat.
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Figure 5.3: Some of the commercial products used for the milk product data
sets.

5.2 Milk Products

Based on 2DSLS measurements of commercial milk products, this data set pro-
vides an easy and relevant way of assessing the different types of information
available in the 2DSLS signal. By selecting both non-fermented and fermented
products with different ingredient compositions the discriminating properties
of multiple scattered light, single scattered light, and speckle from the diffuse
reflectance images can be related to either ingredient composition or microstruc-
ture.

Two slightly different versions of this data set has been produced. The first data
set was created using the Grasshopper CCD detector system in the 2DSLS setup,
and the second set was created using the AM-800GE CCD detector system. The
details on the different detector setups are summarised in Table 4.1. A subset
of the commercial products used for the two data sets is shown in Figure 5.3.

5.3 Intralipid Series

This data set consists of 21 graduated water dilutions of Intralipid (Intralipid
20%, Fresenius Kabi, Bad Homburg, Germany). Intralipid is a highly stable
and standardised fat emulsion which has been found well suited for simulating
the optical properties of biological material. The dilutions were made to have
linearly increasing scattering properties encompassing the range of common milk
and yogurt products. Each dilution was measured at three different wavelengths
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(a) Lowest intralipid concentration,
500nm

(b) Lowest intralipid concentration,
900nm

(c) Highest intralipid concentration,
500nm

(d) Highest intralipid concentration,
900nm

Figure 5.4: Logarithmic transformed diffuse reflectance images of the extrema
sample points from the intralipid data set. The colormap is con-
sistent across columns.

(500, 700, and 900nm) using the 2DSLS technique. It should be noted that while
Intralipid can be used to change the scattering properties in a controlled manner,
the scattering properties are only affected due to the changes in particle density.

This data set was used in Paper B to evaluate the different methods of Section
6.1.1 and 6.1.2, used to quantify the multiple scattered light in the 2DSLS
signal. By spanning a broad, yet highly resolved, range of scattering properties,
the discriminating properties, as well as the limitations when dealing with very
low or high scattering samples, can be evaluated. Figure 5.4 gives examples of
the extrema 2DSLS signals in the data set.
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5.4 24 Stirred Yogurts

The main goal of this data set was to determine how changes to either chemical
composition or microstructure affects the diffuse reflectance images of the 2DSLS
technique. For this purpose a triple replicated 24 factorial design was used to
systematically create different types of stirred yogurts. The four factors spanned
fat content, protein content, pre-heat treatment, and incubation temperature.
The two first mentioned factors changes the chemical composition of the yogurt,
while two latter only affects the formation of the microstructure. Thus, all
factors are expected to change the final microstructure.

The fat content was controlled using homogenised UHT semi-skimmed and
whole milk for the low and high level respectively. Protein content was changed
by adding skimmed milk powder. Pre-heat treatment was performed using an
autoclave (Systec V-Series, Holm & Halby, Brøndby, Denmark) and the incuba-
tion temperature was controlled using water baths (Lauda Ecoline E100, Lauda
Dr. R. Wobser Gmbh & Co. Kg, Lauda-Königshofen, Germany).

For the milk fermentation lactic acid bacteria was used, and the pH develop-
ment (CINAC pH Controller, Ysebaert Dairy Division, Frepillon, France) was
monitored throughout the fermentation. When a sample reached pH 4.6, it was
stirred and stored in a refrigerator (5◦C) for a week prior to measurements. The
final products were measured using both 2DSLS and CSLM (Leica DM IRE2,
Leica Microsystems, Heidelberg, Germany). Images from the experiments are
provided in Figure 5.5, and data examples are given in Figure 5.6.

In Paper D different ways of describing the CSLM image objectively are inves-
tigated, and in Paper E comparisons are made between CSLM and the 2DSLS.
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(a) Monitoring the pH development during milk fermen-
tation in two water baths

(b) Autoclave used for
pre-heat treatment

(c) Half a batch of yogurt samples

(d) Using the Leica CSLM

Figure 5.5: Images from the sample production and measurements for the 24

stirred yogurts data set.
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(a) CSLM image, loose protein network (b) CSLM image, dense protein network

(c) 2DSLS 500nm, loose protein network (d) 2DSLS 500nm, dense protein network

Figure 5.6: Data examples from the 24 stirred yogurt experiment. The shown
data examples are from the loosest and densest protein networks
in the data set. The CSLM images have a spatial resolution of
0.375× 0.375mm and for the 2DSLS images it is approximately 8
× 10.5mm.
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5.5 Repeated Fermentation Processes

In this data set a single GDL milk fermentation was repeated multiple times.
The main idea was to assess the response and reproducibility of the different
methods applied to quantifying the 2DSLS signal (see Section 6.1).

Throughout the milk fermentation pH measurements (827 pH Lab, Metrohm,
Herisau, Switzerland) and rheological measurements (Stresstech HR with tem-
perature cell ±0.1◦C, Reologica Instruments AB, Lund, Sweden) were carried
out. For the 2DSLS measurements the AM-800GE CCD detector system was
used. Additionally, the 2DSLS measurements were performed through a 1.5cm
soda lime sight glass (Lumiglas, F.H.Papenmeier GmbH & Co., Schwerte, Ger-
many). Similar to Section 5.1 the 2DSLS was installed around a water bath
(SW2 ±0.2◦C, Julabo Labortechnik GmbH, Seelback, Germany) in order to
maintain a constant temperature throughout the fermentation. Images of the
experimental setup is provided in Figure 5.7.

In total seven repeated milk fermentations were carried out, however the data
set was found to contain perturbations and low repreducibility which we at the
time of writing have not resolved. Especially the lower wavelengths appear to
be significantly different from what was seen in the experiment in Section 5.1.
As a consequence measurements for a single milk fermentation only is presented
in Paper F.
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(a) pH meter (b) 2DSLS setup

(c) 2DSLS setup (close-up)

Figure 5.7: (a) shows the applied pH meter. (b) shows the entire 2DSLS setup
installed around a water bath, while (c) shows a close-up view of
the 2DSLS system measuring through the sight glass. Addition-
ally the pH probe is also visible in the lefthand side of the glass
container.
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Chapter 6

Methods

A broad range of methods have been used to produce the contributions of this
thesis. This chapter gives brief introductions to some of the topics and utilised
methods, as well as the context in which they have been applied. The aim of
this chapter is to facilitate the reading of the contributions. First, different
approaches to quantifying the 2DSLS signal are introduced, and hereafter the
CSLM images, of the protein network microstructure, are discussed within the
scope of image texture analysis. Hereafter, more general methodologies are
introduced covering data transformation, clustering, classification, and analysis
of variance.

6.1 2D Static Light Scattering

Figure 6.1 shows a diffuse reflectance image captured by the 2DSLS technique.
As described in Section 4.1.1, the images are complex signals containing several
types of information. In this section we consider three major elements of the
images, cf. Figure 4.7:

• Multiple scattered light. Observed as the isotropic light diffusion far
from the light incident point.
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Figure 6.1: 2DSLS image of yogurt (1.5% fat) at 900nm.

• Single scattered light. Observed as the anisotropic light diffusion close
to light incident point.

• Speckle. Observed as the underlying interference pattern (most pro-
nounced near the light incident point).

Following Chapter 3 all three elements can be related to the particle size dis-
tribution of the investigated sample. In this section different approaches to
quantifying the above mentioned features are presented. The characterisation
methods range from physical models, to empirical verified methods that have
been found to work well for specific types of data. The data used in each of the
methods will be visualised in relation to Figure 6.1.

Section 6.1.1 and 6.1.2 mainly cover quantification of the multiple scattering
effects. In Section 6.1.1 physical modelling is applied in order to estimate the
absorption (µa) and reduced scattering (µ′s) coefficients, whereas Section 6.1.2
applies statistical measures to the image intensities in order to derive a response
of the combined absorption and scattering properties. While the statistical mea-
sures may seem less interpretable, Figure 3.9 verifies that milk products indeed
are diffusive media (µa � µ′s), and can be characterised almost exclusively by
the their scattering properties in the investigated wavelength range. Thus, the
combined response of the statistical approaches will mainly describe the scat-
tering properties. Paper B covers a comparative study between the methods in
Section 6.1.1 and 6.1.2.
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In practice there is an inherent problem with the methods in Section 6.1.2 as
they quantify the images based on the image intensities. The image intensities
are highly dependent on variations in the system response, which is defined by
the light delivery system and detector system for the 2DSLS technique. As dis-
cussed in Chapter 1 this can potentially be problematic in relation to process
control, where a reasonable signal-to-noise ratio must be established before it is
meaningful (MacGregor and Kourti, 1995). Thereby, applying intensity based
characterisation may enforce strict stability requirements on both the light de-
livery system and the detector system, which can be a problem in practice.

Instead of considering image intensities, the characterisation techniques in Sec-
tion 6.1.1, 6.1.3, and 6.1.4 considers distances and shapes, which are not depen-
dent on image intensities. This alleviates the stability requirements for both
light delivery and detector system. However, different requirements are im-
posed on the detector system like spatial resolution and field of view. Shape
characterisation is primarily covered in Paper F.

Finally, the approach in Section 6.1.5 investigates the diffuse reflectance images
to the frequency domain, which is investigated further in Paper C. Additionally,
for each of the introduced methods advantages and limitations, which have been
observed in practice, will be briefly mentioned.

6.1.1 Oblique Model Based Characterisation

As described in section 3.1.1, Farrell et al. (1992) derived the analytical expres-
sion in Equation (3.4) for semi-infinite diffusive media illuminated orthogonally
by a narrow light beam. In relation to the diffuse reflectance images the ex-
pression can be fitted to image profiles extracted orthogonal to the scattering
direction, as illustrated in Figure 6.2(b). Equation (3.4) was derived based
on the assumption that all light has been scattered multiple times, and must
therefore be fitted to the data a suitable distance away from the beam centre.

Previously other modalities have been used to measure similar profiles, and
Equation (3.4) has been fitted to the measured data using non-linear least
squares fitting procedures (Wright and Nocedal, 1999). From this, the absorp-
tion and scattering properties have been investigated for a broad range of food
products covering milk, juice, fruits, vegetables, and sugar gels (Qin and Lu,
2007, 2008; Herremans et al., 2013). However, the approach is dependent on
the image intensities, which can be a problem in relation to process control as
discussed in the previous section. Furthermore the assumptions of Equation
(3.4) are not completely in line with the 2DSLS setup, where the incident light
is oblique rather than orthogonal.
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Figure 6.2: The left column presents masks where the white areas illustrates
the data being used extracted from Figure 6.1 and "x" denotes
the light incident point. The right column shows the extracted
intensity profiles. Additional for (d) the symmetry break due to
the oblique incident angle of the light is visualised.



6.1 2D Static Light Scattering 69

�x

�1

�2

Negative source

Positive source

Incident light beam 

�i

�t

r

xentry xdiffusion

mfp

x

z

Figure 6.3: A schematic view of the quantities used in estimating µa and µ′s.
The incident light is initially refracted at the sample surface, xentry,
and travels one mean free path into the sample before it is scat-
tered for the first time at xdiffusion. The positive and negative
source are quantities introduced for the boundary conditions used
in the derivation of the analytical expression given in Equation
(6.3). Illustration is from Nielsen et al. (2014).

Instead, there have been greater emphasis on the extensions by Wang and
Jacques (1995) and Lin et al. (1997) which is also based on the diffusion ap-
proximation but not dependent on the image intensities. They proposed to use
oblique incident angle of the light and consider the intensity profile in the scat-
tering direction. From this profile a break in symmetry can be observed near
the single scattered light, as can be seen in Figure 6.2(d).

The symmetry break is further explained in Figure 6.3. Here it can be seen
that the light, that is not reflected on the surface, is refracted at the surface
and travels a distance into the sample before it experiences the first scattering
event. This is what causes the break in symmetry. Recalling Equation (3.8),
the average distance travelled is referred to as the mean free path (MFP) and,
following the illustration, it can be calculated as:

MFP =
∆x

sin(θt)
, (6.1)

where θt, depends on the incident angle of the light, θi, and the refractive index
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of the sample. ∆x can be measured from the scattering profile as a shift in
centre of mass when traversing down the intensity isocontours, as illustrated in
Figure 6.2(d). Through Monte-Carlo simulations Lin et al. (1997) found that in
practice the MFP for biological tissue could be expressed as:

MFP = 3D =
1

(0.35µa + µ′s)
(6.2)

where D is the diffusion coefficient. Coinciding with the original work by Farrell
et al. (1992), the reflectance of the multiple scattered light, R, can be modelled
as function of radius, r, however a modified expression that takes the asymmetric
profile into account is applied (Wang and Jacques, 1995; Lin et al., 1997):

R(r) = 3D

(
µeff +

1

ρ1

)
exp(−ρ1µeff)

ρ21

+ (3D + 4AD)

(
µeff +

1

ρ2

)
exp(−ρ2µeff)

ρ22
(6.3)

where A is the mismatch in refractive index between air and the diffusive me-
dia, which can be calculated by an empirical formulation originally given by
Groenhuis et al. (1983). ρ1 and ρ2 are given by:

ρ1 = 3D cos θt + 4AD (6.4)
ρ2 = 3D cos θt (6.5)

Whereas Equation (3.4) is fitted to the image profiles, orthogonal to the scatter-
ing direction, to obtain values of µa and µ′s, Equation (6.3) is fitted to the image
profiles along the scattering direction to obtain µeff, which can be expressed by
µa and µ′s.

As both expressions are based on the diffusion approximation, the data fitting
must be performed a suitable distance from the incident point of the light,
in order to ensure multiple scattered light. Furthermore, both approaches are
dependent on the system response, and the estimated coefficients are therefore
relative quantities. However the MFP calculated in (6.1) can be used to correct
the relative estimates of µeff and provide absolute estimates of the absorption
and scattering coefficients:
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µa =
MFP · µ2

eff
3

(6.6)

µ′s =
1

MFP
− 0.35µa (6.7)

Furthermore, as the 2DSLS technique utilises multiple wavelengths, Equation
(3.7) can be applied to µ′s in order to provide more details on the particle size
distribution.

The oblique angle technique was implemented alongside the development of
the 2DSLS technique, and an in-depth description of the technique is given
by Nielsen et al. (2014), which also covers a broad range of considerations in
relation to the implementation. The technique is not dependent on the image
intensities, however some requirements are posed on the detector system. The
spatial resolution needs to be small compared to ∆x in order to ensure that ∆x
is resolved appropriately. This can get difficult for highly scattering materials,
where ∆x is very short. At the same time the field of view of the detector
system has to be sufficiently wide, such that a reasonable amount of data can
be used for fitting to the expression in Equation (6.3).

6.1.2 Intensity Based Characterisation

6.1.2.1 Loglog Model

This parameter was originally presented by Carstensen et al. (2009) and is being
used in a commercially available product (VideometerSLS, Videometer A/S,
Hørsholm, Denmark), on which the 2DSLS technique is originally based.

The parameter is extracted from a double logarithmic transformed intensity
profile, log(log(I + 2)), where I correspond to the profile of pixel intensities.
The intensity profile is sampled orthogonal to the scattering direction through
the light incident point as illustrated in Figure 6.2(a) and 6.2(b). To reduce
noise an entire band of profiles is averaged. Hereafter, a linear model is fitted to
one of the outer parts of the profile as illustrated in Figure 6.4. This reduces the
parameterisation to a slope and an intercept. Both parameters hold information
about the scattering and absorption properties. In practice we are only consid-
ering the slope parameter, as this parameter typically spans a greater dynamic
range, and is less dependent on the system response compared to the intercept.
This parameterisation can be seen as a simplification of the physical models



72 Methods

Figure 6.4: Feature extraction using the loglog model approach. A linear
model is fitted to either of grey marked intervals of the double
logarithmic transformed intensity profile, and the slope parameter
of the model is used as the quantification.

covered in the previous section. The double logarithmic transformation com-
bined with the linear model can furthermore be seen as a compromise between
resistance towards noise and suppressing information.

The slope parameter of the loglog model has been found to cover the scattering
regime of milk and fermented milk products well, and has been the general go-to
method throughout the thesis. Furthermore, the double logarithmic transfor-
mation reduces the sensitivity toward system response variations.

6.1.2.2 Intensity Spread

Until now the quantification methods have relied on profiles extracted from the
diffuse reflectance images, and thereby merely utilises a fraction of the infor-
mation available. This measure, on the contrary, is based on a considerable
amount of data in the images. Within a certain radius of the incident light
point a histogram of the pixel intensities is considered as illustrated in Figure
6.5.

Typically intensity histograms are quantified using first order statistics, however
these are very sensitive to outliers. Since the distribution of the pixel intensities
is heavy tailed, robust statistics should be considered. Here, we apply a robust
measure of the variability, the Median Absolute Deviation (MAD) (Hoaglin
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Figure 6.5: (a) presents the circular mask where the white areas illustrates the
data being used extracted from Figure 6.1. "x" denotes the light
incident point, and r is the radius of the circular mask. (b) shows
the extracted heavy-tailed intensity histogram.

et al., 1983):

MAD = median (|H −median (H) |) (6.8)

where H is the pixel intensity histogram. The variability of the histogram
describes how spread out the intensities are in the image, and thereby covers
both single and multiple scattered light. For highly scattering samples the
intensity distribution is more spread out as the light decays faster, and the
variability hereby increases.

This simple scheme has been found to work consistently well for a broad scatter-
ing regime, especially when masks with large values of r are considered. However
the measure is sensitive to variations in the system response.

6.1.2.3 Patch Average

This method was inspired by the methods using fibre optic probes as the shown
Figure 4.12. An optical fibre can be considered a single detector with a larger
field of view, whereas a CCD can be considered a 2D array of detectors, each with
a narrow field of view. Thus, the signal from a fibre optic probe can potentially
be approximated by a patch in the diffuse reflectance images, as illustrated in
Figure 6.6. The image patch is the quantified by a Gaussian weighted average.

This approach has been found to be extremely discriminative when d and s are
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Figure 6.6: The image patch mask where the white areas illustrates the data
being used extracted from Figure 6.1. "x" denotes the light in-
cident point, while d and s denote the distance from the light
incident point and side length of the image patch respectively.

chosen carefully. However, there appears to be a significant tradeoff between
the discriminative power and how large a scattering regime the method is able
to cover appropriately. Also, being reliant entirely on intensity averages, it is
sensitive to variations in the system response.

6.1.3 Scattering Eccentricity Characterisation

In this quantification method, the effects of the phase function, cf. Equation
(3.2), are investigated through the single scattered light. Joshi et al. (2006)
estimated the asymmetry parameter, g, using diluted samples and Monte-Carlo
simulations. This approach is not suitable in practice, in relation to fermented
milk products, as dilution may disrupt the protein network. Additionally, we
found that the spatial resolution of the applied detector systems of the 2DSLS
technique was not adequate to perform feasible data fitting to analytical models
such as the Henyey Greenstein model described in Equation (3.3).

Instead the effects of scattering eccentricity were characterised by considering
the intensity isocontours in the signal, as illustrated in Figure 6.7. These iso-
contours approximately take the shape of ellipses for which the eccentricity can
be determined as the ratio between the magnitude of the major and minor axis.
For this purpose Principal Component Analysis (PCA), see Section 6.3.1, can be
applied to the distribution of two-dimensional coordinate vectors for all points
within the isocontour. The eccentricity, E, can hereby be described by the
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Figure 6.7: The intensity isocontours highlighted for the diffuse reflectance
image in Figure 6.1.

eigenvalues, λminor and λmajor

E = 1− λminor

λmajor
(6.9)

where E is bounded between 0 and 1. For low values of E the isocontour is
almost circular, and high values of E the isocontour is elongated.

If the intensity isocontour is extracted based on distances from the light inci-
dent point, this characterisation is invariant toward variations in the system
response. However, the spatial resolution of the detector greatly impacts the
size of isocontours that can be quantified appropriately.

6.1.4 Speckle Size Characterisation

An underlying speckle pattern can be seen when looking at a diffuse reflectance
image. The effect has been found to be especially pronounced for the fermented
milk products when looking at Figure 4.5 through 4.6 and concentrated around
the light incident point. Figure 6.8 shows a close-up view of a diffuse reflectance
image for fermented milk, where the speckle phenomenon is clearly visible. To
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isolate the phenomenon a speckle image, Sf , can be extracted through a filtering
which normalises the local mean and variance at each pixel location:

Sf (x, y) =
f(x, y)−mf (x, y)

σf (x, y)
(6.10)

where f is the original image, mf is the estimated local mean, and σf is the
estimated local standard deviation. Using 5×5 neighbourhoods to estimate the
local quantities was found appropriate, and a result can be seen in Figure 6.8.
While the speckle pattern is isolated appropriately, effects of the HDR algorithm
used in the image acquisition (see Section 4.1.1) can be seen. The effects can
be observed as rings with lower signal-to-noise ratio where different HDR layers
are stitched together.

Nevertheless, the speckle size can be quantified from the image in Figure 6.8(b).
Following Goodman (1975); Piederrière et al. (2004b) the average speckle size
can be investigated by considering the spatial autocorrelation function. Here
the width of the maximum response around lag 0 gives information on the self
similarity of the local structures, and the average speckle size can be estimated
by the full width at half maximum (FWHM) of the maximum response. The
average speckle size estimation is illustrated in Figure 6.9

In practice the autocorrelation function and FWHM estimate is calculated for
each of the lines in the image, both vertically and horizontally. Hereafter, the
average FWHM response is used as an estimator for the average speckle size.

As the speckle is characterised through its size rather than intensities, it has
been found to be robust towards variations in the system response.

6.1.5 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) was introduced in relation to image data
by Ahmed et al. (1974). It is a linear transformation, in which an image can be
represented in terms of its frequency components, which are uncorrelated and
energy compact. Given an n×m image, f , the corresponding n×m frequency
map, F , can be described as:

F (u, v) =
2√
nm

c(u)c(v)

m−1∑
y=0

n−1∑
x=0

f(x, y) cos
(2x+ 1)uπ

2n
cos

(2y + 1)vπ

2m
, (6.11)
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(a) Diffuse reflectance image of fermented milk (1.5% fat) at 500nm

(b) Corresponding speckle image

Figure 6.8: (a) shows a closeup view of a diffuse reflectance image where the
speckle phenomenon is clearly visible. (b) shows the underlying
speckle pattern obtained when applying the local normalisation
scheme in Equation (6.10).
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(a) Speckle image (b) Corresponding spatial 2D autocorrelation
function for the entire image

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.5

0

0.5

1

→ ← FWHM

(c) Corresponding 1D spatial autocorrelation function for a single row

Figure 6.9: (a) shows an extracted speckle pattern, while (b) and (c) show
the corresponding spatial autocorrelation functions. From the au-
tocorrelation function the average speckle size can be estimated
by the full width at half maximum of the maximum response as
illustrated in (c).
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where c(0) = 1/
√

2, c(k) = 1 for k > 0. The values F (u, v) represent the
importance or energy of the corresponding frequencies. Looking at the diffuse
reflectance images, it is straight forward to recognise that the light diffusion
can be described by the low frequencies in the image, while the speckle pattern
can be described by higher frequencies. Figure 6.10 depicts how the frequency
map appears when diffuse reflectance images of either milk or fermented milk are
considered. A clear difference can be seen between the two milk products. While
the lowest frequencies, to some degree, appear equal, the higher frequencies show
more variation. When the speckle pattern is pronounced, a broader and more
dense area in the frequency spectrum is covered, which makes sense considering
the original images.

The diffuse reflectance images can hereby be quantified in the frequency domain
rather than the spatial domain. Often when the DCT map is used as image
features, the coefficients are selected from the DCT map using a zigzag or a zonal
approach as illustrated in Figure 6.11 (Dabbaghchian et al., 2010). However,
as we are interested in both the low and the high frequency information in the
images, another approach is considered as presented Paper C.

As the DCT utilises the image intensities, cf. Equation (6.11), the DCT coef-
ficients are dependent on the system response. However, the frequency domain
may allow for alternative formulations of shape and size features opposed to
those of Section 6.1.3 and 6.1.4. At the time of writing, this has not been
investigated further.

6.2 Confocal Scanning Laser Microscopy

This section introduces some of the concepts covered in Paper D. Here, confocal
scanning laser microscopy (CSLM) micrographs of casein networks are treated
and analysed as image textures, and the main goal is to provide a sufficient
discriminative description of each network. This section first provides a general
introduction to image textures, and hereafter three popular concepts, in relation
to image texture description, are briefly introduced .

6.2.1 Image Textures

Authors have provided different definitions of image texture, and following
Materka et al. (1998) no strict definition exists. Carstensen (1992) provides
the following broad definition of an image texture: "A texture is a region in 2D
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(a) Diffuse reflectance image signal of milk
(1.5% fat) at 900nm

x

y

(b) Diffuse reflectance image of fermented
milk (1.5% fat) at 900nm

u

v

(c) DCT frequency map of the signal in (a)

u

v

(d) DCT frequency map of the signal in (b)

Figure 6.10: (a) and (b) show image patches extracted from the 2DSLS signal
near the light incident point (the artefacts in (a) are air bubbles).
(c) and (d) shows the corresponding DCT frequency maps where
the lowest frequencies are located in the top left corner. The
colour scale equal is across rows.
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(a) Zigzag (b) Zonal

Figure 6.11: The conventional approaches to selecting image feature from the
DCT map. In (b) the grey coloured area corresponds to the
selected DCT coefficients.

or 3D that can be perceived as being spatially homogeneous in some sense", im-
plying that textures contain some degree of repetitive subpattern, that appears
homogeneous when considered at a certain scale.

The properties of these subpatterns have previously been described through
uniformity, roughness, regularity, frequency, directionality, homogeneity, ran-
domness, etc. (Materka et al., 1998). Some texture examples are presented
in Figure 6.12. Figure 6.12(a) shows a brick wall in which every brick can be
considered a regular subpattern repeated over the image. Figure 6.12(b) shows
a more random texture with a high frequency structure, and no particular di-
rectionality of the subpatterns compared to the other textures. Finally Figure
6.12(c) shows an irregular texture with regular subpatterns (broad lines).

Figure 6.13 shows examples of extrema casein networks from the data set in
Section 5.4. Here it can be seen that the texture of these images, to some
degree, resembles that of Figure 6.12(b), which appears highly random and
with no apparent directionality. Also, similar to the brick texture in Figure
6.12(a) that is made up by bricks and joints, the protein network is made up
by two types of subpatterns: The pores (uniform black regions) and the protein
network (irregular brighter regions). Comparing the loose and the dense protein
network side by side, the different subpatterns seem to differ in scale. This is
very apparent for the pores, however it is much more subtle for the network
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(a) (b) (c)

Figure 6.12: Examples of different textures from the Brodatz database (Bro-
datz, 1966).

Our main goal in relation to the CSLM images, is to provide a suitable descrip-
tion of the texture that can be used to discriminate between casein networks
made from different process parameter, cf. Chapter 2. Textures are often de-
scribed by means of statistical methods, which can be grouped as first, second,
and higher order statistics. First order statistics describe the distribution of
pixel intensities, second order statistics considers pairs of pixels and thereby
takes the spatial arrangement into account. Higher order considers three or
more pixels at a time (Carstensen, 1992).

Cf. Chapter 2.2 the physical properties of the protein networks are partly defined
by the amount of cross-linking between protein structures and overall density.
Hereby, it is natural to believe that second- or higher order descriptors should
provide the most appropriate descriptions of the gels. As of such, these types
of descriptors are the main focus in Paper D.

6.2.2 Multiscale Representation and Filter Banks

The frequency of the texture subpatterns relates to the scale of the texture, and
should be considered carefully. In the case of Figure 6.12(a), the texture can
appear uniform at small scale (a single brick), while at a larger scale (a brick
wall) the joints between the bricks breaks the uniformity. Moving even further
up in scale (an entire brick building) the texture may appear uniform again.
Thus, selecting a suitable scale has been found to be a fundamental problem in
texture analysis (Lindeberg and Garding, 1993). One way to resolve this issue
is to consider a multiscale representation of the texture (Lindeberg, 1994), and
hereafter a texture description can be applied to each scale representation. The
final texture descriptor can be considered as the joint distribution of descriptors
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(a) Loose protein network

(b) Dense protein network

Figure 6.13: Examples of CSLM images of protein network.
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(a) original image (b) σ = 10 (c) σ = 100

Figure 6.14: Multi scale representation using the Gaussian scale space ap-
proach. σ denotes the width of the Gaussian filter.

across all scales. Most of the applied texture descriptors in Paper D utilise one
of the multiscale representation covered in this section.

One of the most common approaches to multiscale representation is scale spaces.
A scale space is a series of increasingly more blurred images where the blurring
typically is applied by Gaussian filters. An example is shown in Figure 6.14.
Here it can be seen how different structures stand out at different scales. In the
original image the small details of the protein network are highlighted, where
at σ = 100 the overall network structure is highlighted.

A computational efficient alternative, that covers a broad range of scales, is
the pyramid representations (Lindeberg, 1994). Here the different levels in the
pyramid represent different scales. In the Gaussian pyramid each level is con-
structed by smoothing (with a Gaussian filter) and downsampling (by a factor
2) the previous level. An example is shown in Figure 6.15. In relation to Paper
D Gaussian pyramids are being used as multiscale extensions to existing texture
descriptors as suggested by Qian et al. (2011); Roberti de Siqueira et al. (2013).

Another pyramid representation is the Laplacian pyramid, which contains the
second order derivatives across multiple scales. The Laplacian pyramid can
be approximated by the Difference of Gaussians approach (Marr and Hildreth,
1980), which corresponds to subtracting consecutive levels in the Gaussian pyra-
mid. Here, an upsampling of the level above is needed. An example of a Lapla-
cian pyramid can be seen in Figure 6.16. In relation to Paper D a variant of the
Laplacian pyramid is used to detect blobs, which is the initial step in the Scale
Invariant Feature Transform (SIFT) (Lowe, 2004). Blobs are defined as regions
with large absolute second order derivatives in all directions, and by finding the
local maximum "blob response" across multiple scales, the scale of the blob can
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Figure 6.15: Gaussian pyramid with 5 levels, going from level 0 (top) to level
4 (bottom).



86 Methods

also be estimated.

In general image derivatives can be applied in texture description to provide
invariance toward pixel intensity variations. E.g. Crosier and Griffin (2008,
2010) proposed to apply a set of Gaussian derivative filters at different scales.
From the filter responses each pixel location is assigned the most similar basic
image feature (BIF), which covers slopes, blobs, lines, and saddle points. This
is illustrated in Figure 6.17.

Here, the applied Gaussian derivative filters can be considered a filter bank.
Strictly speaking the Gaussian scale space, as illustrated in Figure 6.14, can be
considered a filter bank, consisting of Gaussian filters of different sizes. However,
in relation to texture analysis, filter banks are typically referred to as a more
focused set of filters targeting specific frequencies and patterns in the image.

While the idea of filter banks is not particularly new (Malik and Perona, 1990),
remarkable results have recently motivated the use of filter banks (Leung and
Malik, 2001; Cula and Dana, 2004). The filter responses present a new multivari-
ate representation of the original image, which is commonly used in conjunction
with "textons" which will be introduced in the upcoming section. Following the
results of Varma (2004) one of the most successful filter banks is the Maximum
Response 8 (MR8), which is shown in Figure 6.18. It consists of 38 filters divided
into edge and bar filters, each presented at three scales and six orientations, and
two isotropic filters: A Gaussian and a Laplacian.

For each scale of both the edge and bar filters, only the orientation which gives
maximum response is used. Thereby eight rotation invariant filter responses are
obtained. In relation to Paper D, the MR8 filter bank is applied in conjunction
with a fractal descriptor (Varma and Garg, 2007).

6.2.3 Textons

Julesz (1981) and Julesz and Bergen (1983) proposed the notion of textons which
was introduced as small texture primitives, such as ellipses, rectangles, line seg-
ments, etc. Image texture was hereafter described as frequency distribution of
texton occurrences. In practice the texton approach is performed by extracting
local descriptors from the texture and each descriptor is hereafter assigned the
most similar texton from a predetermined texton dictionary. The texton dictio-
nary is either defined a priori or they are learned from the data set. The BIF
methodology illustrated in Figure 6.17 is an example of an a priori texton dic-
tionary, consisting of blobs, slopes, lines, and saddle points. Learned texton sets
can be created by randomly sampling local descriptors (denoted training data)
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Figure 6.16: Laplacian pyramid with 5 levels, going from level 0 (top) to level
4 (bottom).
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(a) Filters (b) Original image

(c) BIF (σ) (d) BIF (2σ)

(e) BIF (4σ) (f) BIF (8σ)

Figure 6.17: Example of Basic Image Features (BIF). (a) shows the Gaussian
derivative filters (from zeroth-order to second-order) at a single
scale and (b) shows the original image. (c) through (f) show the
assigned BIF for four different sizes of the Gaussian derivative
filters (σ = 1). These images contain slopes (grey), bright blobs
(white), bright lines (yellow), and saddle points (green).
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Figure 6.18: The 38 filters of the MR8 filter bank. Each filter is 49 × 49
pixels.



90 Methods

from the entire data set. Hereafter a K-means clustering (see Section 6.4.1) is
performed on the training data, and the K cluster centres hereafter comprises
the learned texton dictionary. The general texton pipeline is shown in Figure
6.19 along with an idealised example of the clustering step.

The texton methodology has been found to be well suited for texture classifica-
tion when combined with filter banks (Leung and Malik, 2001; Hayman et al.,
2004; Varma and Zisserman, 2005; Caputo et al., 2005). Here the joint mul-
tivariate filter response at each pixel location is considered a local descriptor.
However, a simple scheme has recently challenged this approach. Varma and Zis-
serman (2009) demonstrated how using small image patches (n×n pixel neigh-
bourhoods) as local descriptors could outperform state-of-the-art filter bank
methods. They, amongst other things, contributed this to the filter banks po-
tentially smoothing away fine details.

The majority of applied texture descriptors in Paper D are based on the texton
methodology, and both a priori defined- and learned texton dictionaries are
considered.

6.3 Data Transformation

This section introduces three methods for transforming data, which in essence
provides new views of the data that can be exploited in further analysis, or
provide easier interpretability of the data.

6.3.1 Principal Component Analysis

Considering a data matrix X = (x1,x2, . . . ,xN )T ∈ RN×p, where N are the
observations and p is the number of features, or the dimensionality. The essence
of principal component analysis (PCA) is hereby to reduce the dimensionality
of X, while retaining as much as possible of the variation present in X (Jolliffe,
2005). It is a linear transformation, which rotates the original coordinate system
of the data, and the new coordinate axes (principal axes) maximises the vari-
ance of the projected data (principal components) as illustrated in Figure 6.20.
Furthermore, the principal axes are mutually orthogonal and ordered such that
the first principal axes explains the most variation in X, and for the sequential
principal axes the variation explained decreases monotonically. Typically, re-
taining 95% of the variance in the data matrix results in a significant reduction
in dimensionality.
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k-means 
clustering

Prior textons

Learned textons

Random sub-sampling

Extract cluster centres

Extract local
descriptors

Assign textons

Original image Texton coded image

(a) Texton pipeline

(b) Texton clustering

Figure 6.19: (a) shows the applied pipeline for the texton approach. Local
descriptors are extracted from the texture images, and each de-
scriptor is assigned the most similar texton from an a prior or a
learned set of textons. The showed texton coded image is made
from densely sampled descriptors, which have been assigned one
of eight textons. (b) shows an idealised example of the cluster-
ing step in two dimensions. The clustering is performed on the
training data (blue circles) from which the cluster centres (red
circles) can be found and used as the texton set.
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Figure 6.20: To span as much variation as possible in one direction, the orig-
inal coordinate system is rotated to form a new basis, the first
principal axis. The second principal axis is orthogonal to the first
principal axis and spans less variance.
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The covariance matrix, Σ ∈ Rp×p, of X can be expressed in terms of the eigen-
decomposition:

Σ = VΛVT (6.12)

where V = (v1,v2, . . . ,vN)T is a matrix containing columns of eigenvectors
and Λ = diag(λ1, λ2, . . . , λN ) holds the corresponding eigenvalues (the variance
in the direction of the corresponding eigenvector). The eigenvectors correspond
to the principal axes, and thus selecting k ≤ p columns of V can be used to
project X into an n× k dimensional space.

In Paper C, PCA has been used for easier visual assessment of data, however in
Paper A it is used more extensively. Here it is used to reduce entire time devel-
opments into few variables, which are better suited for analysis of variance (see
Section 6.6). In order to validate the dimensionality reduction, we investigated
the variation explained by the projected data. For this purpose we followed the
work on active shape models by Cootes et al. (1995).

Considering a 2D example, the N observations in X correspond to shapes, and
the p features correspond to the vectorised 2D spatial coordinates of the shapes.
Thereby the i’th observation is given by xi = (xi1, yi1, . . . , xi p2 , yi

p
2
). A mean

shape, x̄, is calculated, and the shapes in X are centred around it. Performing
the eigendecomposition in Equation (6.12) of the corresponding covariance ma-
trix, the variation explained by projecting the data onto the k’th principal axis,
vk can be visualised by:

x = x̄ + vkbk (6.13)

where bk is a weighting of the k’th principal axis. Suitable limits for bk are often
defined by the eigenvalues: −3

√
λk ≤ bk ≤ 3

√
λk. A 2D example is shown in

Figure 6.21, where the shapes consist of facial features. Here it can be seen how
the first principal axis varies the shape of the chin and placement of the nose
and eyes, while the second principal axis changes the shape of the lips and the
width of the chin, whereas the third axis changes the placement of the eyes and
the width of the face. The figure also illustrates how the amount of variation
explained decreases from the first to the third principal component.
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(a) Data set (b) First principal axis

(c) Second principal axis (d) Third principal axis

Figure 6.21: Illustration of how Equation (6.13) can be used to investigate the
variation explained by projecting the data onto the k’th principal
axis. (a) shows all the shapes in the data set, while (b) through
(d) shows the mean shape, x̄ (black) and the effect of varying bk
between −3

√
λk (red) and 3

√
λk (green).
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6.3.2 Distance Matrix

Sometimes observations cannot be represented as data points, but only in the
context of mutual distances between observations. In these cases we have a
distance matrix, D, which is a symmetric matrix with nonnegative values and
a zero diagonal. Each element in the distance matrix, dij for i 6= j, corresponds
to the pairwise distance between observations. On the contrary, converting a
data matrix, X ∈ RN×p, to a distance matrix, D ∈ RN×N≥0 can also be seen as
a way of reducing the dimensionality of the data.

In Paper D we use distance matrices as an approach to make fair comparisons
between univariate and multivariate descriptors, and to provide the necessary
input for an alternative to the conventional analysis of variance framework,
which will be introduced in Section 6.6.3.

6.3.3 Multidimensional Scaling

Multidimensional scaling (MDS) can at first be seen as the inverse of creating the
distance matrix introduced in the previous section. However, more commonly
it can be seen as dimensionality reducing approach where interpoint distances
between observation are retained as good as possible. Provided a data matrix
X ∈ RN×p and its corresponding distance matrix, D ∈ RN×N≥0 , multidimensional
scaling can be used to determine a lower-dimensional representation of the data
where the mutual distances of D are approximated. This can be done by seeking
the values Z = (z1, z2, . . . , zN )T ∈ Rk (where k < p) that minimises the stress
function:

S(Z) =

N∑
i=1

N∑
j=1

(dij − ||zi − zj ||)2 (6.14)

where || · || is the Euclidean norm. This approach is known as least squares
scaling. Furthermore, the stress function is commonly minimised using gradient
descent algorithms (Wright and Nocedal, 1999). A slightly different formulation
of the stress function is the Sammon mapping. Here, more emphasis is put on
preserving the smaller mutual distances in the data set, and the expression is
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given by:

SSM(Z) =

N∑
i=1

N∑
j=1

(dij − ||zi − zj ||)2

dij
(6.15)

The appropriate choice of stress function is dependent on the data at hand
(Hastie et al., 2009). In Paper E multidimensional scaling was applied in order
to compare the multidimensional texture descriptors of Section 6.2.3, with the
univariate quantification of the 2DSLS signal in Section 6.1.2.1.

6.4 Clustering

In this section we consider three unsupervised clustering approaches, applied
throughout the contributions. The basis of unsupervised clustering is to explore
the data and find intrinsic structures. Typically the methods are initialised in
terms of a N × p data matrix, where N is the number of observation, and p
is the dimensionality of the data, along with the desired number of so called
cluster centres.

6.4.1 K-Means Clustering

Considering a set of observations X = (x1,x2, . . . ,xN )T ∈ RN×p, K-means
clustering attempts to perform a partition into K clusters which minimises the
objective function (Bishop et al., 2006):

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (6.16)

where || · || is the Euclidean norm, and rnk ∈ {0, 1} are the responsibilities,
which take a binary variable indicating if xn is member of the k’th cluster
or not. µk are the cluster centres calculated as the mean of all observations
included in the k’th cluster. The objective function can be minimised through
the following iterative scheme:

1. Assign each µk a random position (or initial guess) in the data set
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(b) Final clustering

Figure 6.22: Examples of K-means clustering with three clusters. Circles de-
note the observation and "x" marks the cluster centres.

2. For each xn:

• Determine nearest µk and update rnk

3. For each cluster:

• Recalculate µk according to rnk

4. If not converged go to 2.

n = 1, . . . , N and k = 1, . . . ,K

This is continued until convergence or when a minimum change in the updated
cluster centres is attained. A simple clustering example is shown in Figure 6.22.

This type of clustering has been applied in relation to the textons introduced in
Section 6.2.3, where it is commonly used for learning the texton set from training
data (Leung and Malik, 2001; Cula and Dana, 2004; Varma and Zisserman,
2009). Thereby, it has been used to great extent in Paper D.

6.4.2 Gaussian Mixture Model

Gaussian mixture model (GMM) is a similar variant of clustering. Directly
compared to K-means clustering the GMM assumes that each cluster centre
is a Gaussian distribution and thereby described in terms of θ = {µk,Σk, πk}
for k = 1, . . . ,K, where µk is the mean, Σk is the covariance matrix, and πk
is the prior of the k’th Gaussian distribution. Provided a set of observations
X = (x1,x2, . . . ,xN) ∈ Rp and K unknown Gaussian distributions, we seek
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to maximise the probability of θ given the observations. That is, we seek to
maximise the likelihood function:

arg max
θ

p(X|θ) =

N∏
n=1

K∑
k=1

πkN (xn|µk,Σk) (6.17)

A common approach to maximising this function is to apply the Expectation-
Maximisation algorithm (Bishop et al., 2006; Hastie et al., 2009), which is an
iterative scheme resembling that of K-means clustering. It can briefly be de-
scribed in the following steps:

1. Assign each of the K Gaussian distributions random parameters (or initial
guess)

2. For each xn:

• Assign responsibility, rnk, for each cluster, based on the likelihood.
A point close to the cluster centre will likely get a responsibility close
to 1 for that cluster, and close to 0 for every other cluster.

3. For each cluster:

• Recalculate µk, Σk, and πk weighted by rnk

4. If not converged go to 2.

n = 1, . . . , N and k = 1, . . . ,K

Again, the scheme is continued until convergence or when a minimum change
is attained during the updates. Directly compared to K-means clustering, the
calculated responsibilities in GMM are not binary, which results in softer deci-
sion boundaries. Figure 6.23 gives an example where K-means clustering and
GMM are applied to data with asymmetric covariant structure, highlighting the
strength of the GMM. Here it can be seen that K-means have sharper deci-
sion boundaries, while GMM appears to be more adaptable to the covariant
structure of the data.

We have applied GMM for an image segmentation task in Paper D, in which it
was found to provide more satisfactory results than K-means clustering.
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Figure 6.23: Example of applying K-means and GMM on data with asym-
metric covariant structure. Circles denotes the observation and
"x" marks the cluster centres.

6.4.3 Hierarchical Clustering

Hierarchical clustering takes a slightly different approach compared to the two
previous methods. Requiring neither the actual observations as input or any
amount of clusters, hierarchical clustering determines the entire hierarchical
structure based on the dissimilarities of the observations, e.g. in the form of the
distance matrix, D, introduced in Section 6.3.2.

This hierarchical structure can be determined in bottom-up approach (agglom-
erative), in which every data point initially is considered a cluster. Clusters are
hereafter recursively merged. Alternatively, a top-down approach (divisive) can
be used, in which the entire data set initially is considered a cluster. Hereafter,
a recursive splitting of the cluster is performed.

The splitting and merging of clusters is decided upon based on the chosen
linkage function. The three following linkages are often used (Hastie et al.,
2009). Given two clusters C1 and C2 the single linkage is described as the
distance between the two most similar data points of the two clusters:

`single(C1, C2) = min
i∈C1

i′∈C2

dii′ (6.18)

The complete linkage measures the distance between the two most dissimilar
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(b) Dendrogram

Figure 6.24: A data set (a) and it corresponding dendrogram (b) using a Eu-
clidean distance matrix and the average linkage. The colours in
the scatter plot corresponds to those of the dendrogram.

data points:

`complete(C1, C2) = max
i∈C1

i′∈C2

dii′ (6.19)

And the average linkage can be seen as a compromise between single and com-
plete linkage:

`average(C1, C2) =
1

N1N2

∑
i∈C1

∑
i′∈C2

dii′ (6.20)

where Ni corresponds to the number of data points in cluster Ci. The appropri-
ate choice of linkage function, depends much on the investigated data. Figure
6.24 provides a small example using a Euclidean distance matrix and the aver-
age linkage, and the results are represented using a dendrogram. A dendrogram
visualises the hierarchical structure of the data, and the vertical lines denote
the distances between different cluster centres. Cutting the dendrogram hori-
zontally results in a segmentation of the data, and the amount of intersected
vertical lines corresponds to the number of clusters in the segmentation. As
of such hierarchical clustering has become very popular tool for creating inter-
pretable views of the data where a hierarchical structure exist. In Paper D we
use hierarchical clustering to visualise how the protein microstructure of the
16 unique yogurts (see data set in Section 5.4) are ordered based on an image
texture descriptor.
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6.5 Classification

Classification is the problem of identifying to which class or label a new observa-
tion belongs. This decision is typically based on prior knowledge obtained from
an initial set of observations with corresponding labels, on the base of which a
classification model has been built. Or in other words, a classification model
has been trained on the prior observations. The training is a very important
part of the classification as it greatly affects the performance of the classification
model. In the following sections a strategy for training classification models is
briefly introduced, and hereafter two non-parametric classifiers are presented.

6.5.1 Cross Validation

Typically model training requires the selection of one or more parameters, which
must be chosen carefully to ensure an appropriate generalisability. A model can
be trained to perfectly classify the available training data, however it may not
perform well when classifying unseen data, due to the lack of generalisability.
This issue is denoted overfitting.

K-fold cross validation is a widely used approach to counter overfitting. Here,
the data set is randomly divided into K equal sized parts, and in turn the model
performance is evaluated on one part (test set), while the model is trained on
the K − 1 remaining parts (training set). The parameters for the classification
model are selected based on the average performance on the test sets.

Typical values for K are 5 or 10 (Hastie et al., 2009), however for particularly
small data sets with N samples, leave-one-out cross validation (LOOCV) can be
used, corresponding to (K = N). Most of the data sets presented in Chapter 5
are fairly limited in size, thus LOOCV has mostly been applied throughout this
thesis. Furthermore LOOCV has mainly been applied in relation to support
vector machines, which will be introduced in Section 6.5.3.

6.5.2 k-Nearest Neighbour

k-nearest neighbour classification is non-parametric method which classifies a
new observation by the majority vote of the k nearest neighbours in the training
set. Thus, the training set simply consists of the individual observations in the
training set. The measure of closeness implies a distance metric, and while the
Euclidean distance is the most widely used, other metrics can be applied.
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Within the field of texture classification, evaluation of texton descriptors (see
Section 6.2.3) is often performed using a slight variation of k-nearest neighbour
classification, combined with the χ2 distance metric (Press, 2007). The perfor-
mance of a texton descriptor, is evaluated by isolating a number of observation
from each class and build a classification model on the remaining observations.
The isolated observations are hereafter classified using the trained model. The
final evaluation of each descriptor is then based on the statistical distribution
of classification rates across multiple random splits of the data. Thus, cross
validation is not applied as described in the previous section. This approach
was initially proposed by Leung and Malik (2001) and is now commonly applied
when evaluating texture descriptors (Cula and Dana, 2004; Varma and Zisser-
man, 2005, 2009). We also apply this approach, when evaluating different image
texture descriptors in relation to protein microstructures in Paper D.

6.5.3 Support Vector Machine

The support vector machine (SVM) classifier rely on simple yet effective princi-
ple. Given a training set of two separable classes by the observations (x1,x2, . . . ,xN ) ∈
Rp and the corresponding class labels (y1, y2, . . . , yN ) ∈ {−1, 1}, the SVM clas-
sifier seeks to create a decision boundary that maximises the margin between the
two classes, as illustrated in Figure 6.25(a). The general separating hyperplane
can be formulated as

xw + b = 0 (6.21)

where w is the normal to the hyperplane and b
||w|| is the perpendicular distance

from the hyperplane to the origin. The two hyperplanes making up the margins
can be formulated as

xiw + b ≤ 1 for yi = −1 (6.22)
xiw + b ≥ 1 for yi = 1 (6.23)

Thus, the hyperplanes must lie |1−b|||w|| and
|−1−b|
||w|| from the origin. This results in

a margin with a width of 2
||w|| , and thereby maximising the margin corresponds

to a minimising of ||w||. The minimisation must be performed such that all
observations in the training set are classified correctly, thus the final objective
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Figure 6.25: An example of the SVM classifier in two dimensions for separable
data (a) and non-separable data (b). The highlighted points
denotes the support vectors, which defines the hyperplane.

function can be written as

min
w,b
||w|| subject to yi(xiw + b) ≥ 0, i = 1, . . . , N (6.24)

However, often the data cannot be separated perfectly, and slight alterations has
to be made to the objective function to accommodate for this. For this purpose
a so-called slack variable, ξ = (ξ1, ξ2, . . . , ξN ) where ξi ≥ 0, is introduced, which
can be used to allow for observations in the training set to be misclassified.
From Figure 6.25(b) it can be seen that an observation xi is misclassified when
ξi > 1 and correctly classified when ξi = 0. Thus, bounding

∑N
i=1 bounds the

total amount by which classifications fall on the wrong side of their margin, i.e.
the total overlap. The slack variable can hereby be incorporated to the objective
function in Equation (6.24) as follows

min
w,b
||w|| subject to

{
yi(xiw + b) ≥ (1−ξi)

||w|| i = 1, . . . , N

ξi ≥ 0,
∑N
i=1 ξi ≤ C

(6.25)

Here, the constraint measures the overlap in relative distance, which changes
with the width of the margin. Thus, C, which bounds the total allowed overlap
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can be seen as a tuneable parameter, which controls the trade-off between error
and margin. The objective functions in Equation (6.24) and (6.25) can be turned
into convex quadratic optimisation problems with the use of Lagrange multipli-
ers (Hastie et al., 2009). From the optimisation the support vectors, shown in
Figure 6.25, are determined from which the hyperplane can be constructed.

A widely popular extension to SVM classifiers is to apply the kernel trick, which
is a way of mapping data to a very high dimensional space and down to an
inner product space without having to compute the mapping to the very high
dimensional space explicitly. This allows for using linear methods that will
behave similar to non-linear methods in the original input space. However, for
the SVM classification problems in this thesis (Paper B and C), we expected
linear classification boundaries to be sufficient. Thus, we have only considered
the linear kernel, which corresponds to the inner product space.

Additionally, the above mentioned formulations only considers binary problems,
however SVM classifiers can be extended to multi class problems as well. In a
comparative study Hsu and Lin (2002) found the one− against− one method-
ology to be both practical and competitive. For M classes the one-against-one
approach constructs M(M − 1)/2 binary classifiers, and a new observation is
classified as the majority vote when considering all classifiers.

6.6 Analysis of Variance in Factorial Designs

Analysis of variance (ANOVA) is a class of statistical models used for under-
standing the sources of variability in a data set, and does so by modelling the
linear relationship between a response variable and one or more independent
variables. In its simplest form ANOVA provides a statistical test of whether or
not the means of m groups are equal, that is the null-hypothesis H0 : µ1 = µ2 =
. . . = µm is tested against the alternative-hypothesis H1 : µ1 6= µ2 6= . . . 6= µm.

ANOVA is commonly applied in relation to factorial designs, where the inde-
pendent variables are denoted factors, which are often changed systematically
within two levels (low and high). In total this yields 2k unique factor combi-
nations, where k is the number of factors. For the response variable, only one
observation is required for each factor combination in order to perform hypoth-
esis testing of all k factors (more observations are needed to investigation factor
interactions), thus factorial designs allow for very efficient screening for signifi-
cant factor effects using a limited amount of observations. This section briefly
introduces ANOVA, and variants hereof, in relation to factorial designs.
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Figure 6.26: An example of a 22 design, with two factors A and B each with
two levels. Each corner in the design contains n observations.

ANOVA was used in Paper A, D, and E in relation to the data sets intro-
duced in Section 5.1 and 5.4, which were both constructed through 2k factorial
designs. Each data set has three and four factors respectively (corresponding
to milk fermentation process parameters), and the 2DSLS, CSLM, and SAOR
measurements corresponds to the response variables.

6.6.1 ANOVA

Figure 6.26 provides a graphic representation of a 22 factorial design. Here
we have two factors A and B each with a = b = 2 levels and n univariate
observations for each factor combination. Furthermore we have an interaction
term AB, which describes the combined effect of A and B. In order to test for
factor significance, the total variability of the data set is partitioned into sum of
squares (SS), by considering the contrast in the response variable for different
factor levels. Thus, the total variability in the data set, SST , is defined by the
sum of squares of each source of variation in the design:

SST = SSA + SSB + SSAB + SSW (6.26)

where SSW corresponds to the variability not accounted for by the main factors
and interactions, that is the within-group variability or experimental error. Di-
viding the sum of squares by their associated degrees of freedom, df , gives the
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mean squares, from which an upper one-tailed F -test can be applied for each
factor and interaction term. E.g. considering factor A we can test whether or
not the variability explained by factor A exceeds the variability explained by
the experimental error, i.e. we test the null-hypothesis H0 : σ2

A = σ2
” against

the alternative hypothesis H1 : σ2
A > σ2

W . Thus, we calculate the F statistic

F =
SSA/dfA
SSW /dfW

(6.27)

and compare it to the sample distribution Fα,dfA,dfW , where dfA = (a− 1) and
dfW = ab(n− 1). If we reject the null-hypothesis the effect of factor A is found
to be significant within the factorial design. This approach generalises to larger
factorial designs as well.

The ANOVA model assumes normally distributed residuals, as well as homo-
geneity of variance (homoscedasticity). Statistical tests exist for verifying these
assumptions such as the Shapiro-Wilk test (normality) and Levene’s test (ho-
moscedasticity), however model adequacy is conventionally assessed through
inspection of the residuals of the underlying linear model (Montgomery, 2008).

6.6.2 MANOVA

Multivariate analysis of variance (MANOVA) is a generalisation of ANOVA,
where the significance of multiple response variable can be investigated. Effects
of the main factors and interactions are hereby assessed on a linear combination
of response variables. Moreover, for each investigated factor or interaction effect,
the linear combination is made such that it maximises the difference between
groups. Also, compared to performing an ANOVA for each of the response vari-
ables, MANOVA allows for inspection of the covariant structure of the response
variables. However, MANOVA requires more degrees of freedom due to the in-
creased number of response variables, and the standard F -test is not applicable
for multivariate data. Instead different approximations can be considered such
as Wilks’ Lambda and Pillai’s Trace (Hand and Taylor, 1987).

6.6.3 NPMANOVA

The image texture descriptors introduced in Section 6.2.3 and applied in Paper
D, are frequency histograms of texton occurrences in an image. The histograms
are by definition expected to be multivariate, and thereby seem to fit into the
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(a) Distances from points to
group mean

(b) Interpoint distances

Figure 6.27: The sum of squared differences from each point to the group
mean is equal to the sum of squared interpoint distances divided
by the number of points.

scope of MANOVA. However, as will be seen in Paper D, some of the descriptors
will as much as 1296-dimensional. Considering the data set used in this paper
(see Section 5.4), applying MANOVA on these descriptors will lead to a certain
deficit in degrees of freedom.

An alternative approach denoted non-parametric multivariate analysis of vari-
ance (NPMANOVA) has been proposed within the field of ecology (Anderson,
2001a). Ecological community data typically consists of species counts (fea-
tures) at a number different sites (observations). Often the number of species
greatly exceeds the number of sites, providing a similar deficit in degrees of
freedom, as seen for the texture descriptors. Furthermore, for conventional dis-
tance measures for these types of data, such as Bray-Curtis dissimilarity (Bray
and Curtis, 1957), a group mean is not calculated easily. Thereby, the sum of
squares cannot be calculated as for ANOVA and MANOVA.

Instead, the NPMANOVA relies on the relationship illustrated in Figure 6.27.
This states that the sum of squared differences from each point to the group
mean is equal to the sum of squared interpoint distances divided by the num-
ber of points. Thereby, the sum of squares can be calculated for any distance
measure, provided a distance matrix (see Section 6.3.2) is available.

Thus, considering the factorial design in Figure 6.26 with two factors A and B,
each with a = b = 2 factor levels, and n observations at each factor combination,
the corresponding distance matrix, D, will be of size N × N where N = abn.
From the elements of the distance matrix, dij , the total sum of squares can be
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calculated as:

SST =
1

N

N−1∑
i=1

N∑
j=i+1

d2ij (6.28)

which corresponds to the sum of squared distances in the upper triangular part
(not including the diagonal) of the distance matrix. In a similar fashion the
sum of squares for the main factors and the residuals can be calculated, by
considering the within-group variability for the factors:

SSW (A) =
1

bn

N−1∑
i=1

N∑
j=i+1

d2ijε
(A)
ij (6.29)

SSW (B) =
1

an

N−1∑
i=1

N∑
j=i+1

d2ijε
(B)
ij (6.30)

SSW (R) =
1

n

N−1∑
i=1

N∑
j=i+1

d2ijε
(AB)
ij (6.31)

where ε(·)ij is an indicator function taking the value of 1 if observation i and j
has the same level of the factor in the superscript. A visual interpretation of the
indicator function is presented in Figure 6.28. From SST and the within-group
variabilities, the actual sum of squares for the factors can be calculated as:

SSA = SST − SSW (A) (6.32)
SSB = SST − SSW (B) (6.33)
SSAB = SST − SSA − SSB − SSR (6.34)

Following Equation (6.27), a similar test statistic can be calculated for the fac-
tors and interactions. However, this statistic only corresponds to the F statistic
of traditional ANOVA, if the distance matrix is based on Euclidean distances
from univariate observations. As this is not the case for the previously men-
tioned texture descriptors, a different approach to hypothesis testing has to be
considered.

Anderson (2001a) proposes to apply permutation testing. Under the null-
hypothesis, the factor "labelling" in the distance matrix can be swapped freely,
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Figure 6.28: A visual interpretation of the indicator function ε
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ij applied in

Equation 6.29 through 6.31.
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relative to the investigated factor, without changing the value of the test statis-
tic when recalculating the sum of squares. Thus, if we consider the test statistic
of the original labelling, F , and the test statistic of the i’th permutation, Fπi , a
p-value can be defined as:

p =

∑U
i=1 Φ(Fπi ≥ F )

U
(6.35)

where U is the number of permutations and Φ(·) is 1 when the argument is
true and zero otherwise. The expression basically summarises how likely it is to
obtain a permuted labelling that increases test statistic of the original labelling.
If the p-value is below the level of significance we reject null-hypothesis as in
the standard ANOVA. Testing for all possible permutations is often infeasible,
and often only a predetermined number of permutations are performed for each
factor and interaction effect. However, the more permutations performed the
greater precision of the p-value is obtained.

Contrary to ANOVA and MANOVA, NPMANOVA only has the assumption of
homoscedasticity. However, as we are performing permutation tests we do not
have access to residuals, thus contrary to ANOVA and MANOVA we have to
rely on statistical tests. For distance matrices Anderson (2006) proposed to use
a generalised version of Levene’s test. This approach investigates the principal
coordinates of the distance matrix obtained through MDS techniques resembling
those of Section 6.3.3.



Chapter 7

Results and Discussion

In this chapter a short summary is provided for each of the included contribu-
tions found in the Appendix. The summary will mainly highlight and discuss
the most significant findings and relate them to the topics of Chapter 2 through
4, as well as the other contributions.

7.1 Paper A

In this first contribution the generalisability of the 2DSLS technique was evalu-
ated. The 23 milk fermentation data set was used, which consists of nine unique
milk fermentations including the three repeated centre points. The three fac-
tors covered fat content, protein content, and fermentation temperature, which
all are expected to affect the structure development during the fermentation in
terms of microstructure and optical properties as well as the viscosity.

Both 2DSLS (480-1030nm) and SAOR was used to continuously monitor the
milk fermentations. Visually, both modalities showed significant differences be-
tween the initial condition and the final condition for each of the unique milk
fermentations. Furthermore, the 2DSLS diffuse reflectance images were quanti-
fied using the loglog model, and the applicability of this simple alternative to
physical models was validated.
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SAOR and 2DSLS showed different developments throughout the fermentations
and both were found to behave according to the literature. SAOR behaved as
previously described in the literature and 2DSLS was found to correspond well
to light scattering theory. The large fat globules were found to affect the signal
more than the smaller protein structures, and the fermentation temperature
was found to affect the fermentation speed, and thereby the initial steepness
of the quantified 2DSLS signal. Also, the quantified 2DSLS signal showed a
wavelength dependent response, and at longer wavelengths the quantified signal
resembled that of the NIR-based CoAguLite sensor shown in Figure 4.13.

ANOVA all experimental factors were found to be significant for both SAOR and
2DSLS. However, for 2DSLS the protein content was only found to be significant
at the lowest wavelengths (480-540nm). In terms of light scattering theory this
makes sense as the protein structures are small compared to the wavelength of
the light, which results in rapid decay of scattering efficiency as the wavelength
increases (see Table 3.1).

These results encouraged the continued investigations of the 2DSLS technique.
In Paper B, C, and F, different approaches to quantifying the 2DSLS signal are
considered, and especially in Paper E and F, the wavelength dependency of the
quantified signal is investigated further.

7.2 Paper B

Following Chapter 3 the light scattering properties of a material is highly de-
pendent on the underlying microstructure. Thereby the characterisation of the
scattering properties is of great importance. In this contribution the methods
of Section 6.1.1 and 6.1.2 are used to quantify the scattering properties diffuse
reflectance images.

Thereby, in addition to the loglog model applied and validated in Paper A, this
also includes physical based models as well as empirically extracted features,
which utilises more of the unique information available in the images. For
this investigation the Intralipid data set of Section 5.3 was used, which consist
of gradually diluted Intralipid samples that spans a broad range of linearly
increasing scattering properties. Classification rates, discriminative power, and
linearity of the quantified scattering properties across the data set were used to
evaluate the quantification methods.

It was found that the higher scattering the harder it became for the methods to
discriminate different samples. For highly scattering samples the light decay, due
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to the diffusion from light incident point, is very rapid. This means that in order
to resolve the dynamics of the light diffusion, a suitable spatial resolution of the
detector system is required. From the results it appears that the applied 2DSLS
system setup could not resolve these dynamics appropriately. This especially
holds true for the oblique model in Section 6.1.1, which relies on measuring
the MFP in the diffuse reflectance images. When the scattering increases, the
MFP decreases and becomes harder to resolve and introduces variance to the
estimated scattering properties.

In general the physical models were found to introduce more variance in the
quantified scattering properties, which we believe can also be contributed model
variance. Nevertheless, the physical models were found to maintain the expected
linear increase in scattering properties across the data, even when the high
scattering started to diminish the discriminative power. This was not always
the case when compared to the empirical methods, marking the strength of the
physical models.

Interestingly, no method performed best across the entire data set. While the
loglog model showed good performance throughout a broad range of scattering
properties, the robust measure of intensity spread from Section 6.1.2.2 showed
the best overall performance. However, the patch average from Section 6.1.2.3
showed better discriminative power in some scattering intervals while greatly
violating the assumption of linearly scattering properties when considering the
entire data set.

We believe these results highlights both the potential of using more of the avail-
able data in the diffuse reflectance images, and the 2DSLS system as a work-
bench, from which more specific systems can be developed. As an example if the
optical probe in Figure 4.12 is considered in backscatter mode, the placement
of the light emitting fibre and light receiving fibre can be varied freely. From
the results in this contribution, the optimal offset between emitter and receiver
will vary greatly depending on the scattering properties of the investigated sam-
ple. This offset basically corresponds to different areas in the diffuse reflectance
images as illustrated in Section 6.1.2.3, meaning that the 2DSLS system could
potentially aid in determining the optimal offset between emitter and receiver
for such a sensor.

7.3 Paper C

I Paper A and B, the 2DSLS signal has mainly been considered in terms of
multiple scattering. However, as mentioned in both Section 4.1.1 and 6.1, ad-
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ditional information is available in the signal. In this paper we explored the
discriminative properties of the diffuse reflectance images when considering the
DCT and the milk products data set.

Hereby, the 2DSLS signals were transformed into the frequency domain using the
DCT. The frequency information was considered within two domains denoted
the low and high frequencies. The low frequencies were assumed to cover the
entire light diffusion in the diffuse reflectance images, and thereby both single
and multiple scattered light, while the high frequencies were assumed to cover
the underlying speckle pattern.

Conventionally, when the DCT map is used for extracting discriminative feature
vectors, zonal or zigzag strategy are used, as illustrated in Figure 6.11. However,
as we were interested in both the low and high frequency information, a more
focused approach was considered. Here, the DCT map was divided into a low
and a high frequency part through an entropy criterion based on the DCT map
coefficients. The low frequencies was represented by the actual DCT coefficients,
and the high frequencies was represented by entropy measures.

This approach resulted in a relatively large feature space, thus a selection of the
most discriminative wavelength and features was performed sequentially. This
resulted in the most discriminative wavelength being 830nm, at which both low
and high frequency features were selected. The DCT description was compared
directly to the loglog model, which only considers the multiple scattered light
in the 2DSLS signal.

For the loglog model it was found that there was a slight overlap between milk
products with high fat content and fermented milk products with a low fat
content. We have previously seen this for results based on both the loglog
model and the oblique model (unpublished), however the DCT features were
found to provide a clear separation of all samples. From visual assessment of
the results this could in particular be attributed the high frequency features.

The results ultimately emphasises that considering more of the information
available in 2DSLS signal, can provide additional information on the investi-
gated sample. The effects of single scattering and speckle patterns are inves-
tigated individually and in more detail in Paper F. The most discriminative
wavelength, 830nm, may seem to contradict the findings of Paper A and E.
However, in these papers the preference of lower wavelengths is mainly related
to the protein structures and multiple scattered light. In this paper wavelength
selection is based on a broader data set and more information from the 2DSLS
signals.
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7.4 Paper D

CSLM can provide close to ground truth measurements of the microstructure in
protein networks. However, such microscopy images are most commonly used
for subjective visual assessment. While, this is feasible for small data sets, it
can become difficult when the amount of data is large or when the difference
between two images has to be quantified. For this purpose objective descriptions
of the microstructure is more valid.

Previously, microstructure of protein networks has mainly been quantified ob-
jectively by estimating the fractal dimension (ratio between the change in detail
and change in scale) alongside morphological measures such as the average pore
size in the protein network. However, in the field of image texture classification,
the fractal dimension is not regarded a strong contender, as it is not a unique
descriptor and it is typically calculated globally for the entire texture. Today,
state-of-the-art descriptors often rely on representing texture as occurrences of
textons, as described in Section 6.2.3.

A broad range of different texture descriptors was applied to the CSLM images
from the 24 stirred yogurt data set of Section 5.4. The descriptors covered a
broad range of texton based descriptors, as well as grey level co-occurence matri-
ces (GLCM) and some of the most common fractal descriptors. All descriptors
were evaluated through ANOVA and through classification rates on different
partitions of the data set.

Almost all texture descriptors found the factors (fat content, protein content,
pre-heat treatment, and incubation temperature) of the experimental design to
be significant. Also, nearly all descriptors agreed that there was a significant
variability across the three replicates of the design, which can be expected when
working with lactic acid bacteria. In terms of classification rates a lot of the
texton based descriptors outperformed the descriptors based on fractal analysis
and GLCM. However, due to high variation in the classification results, a best
texton descriptor could not be determined.

The variation was partly found to arise from the less dense gels which appeared
more irregular in the CSLM images compared to the dense protein networks.
Furthermore, all texture descriptors were found to perform better on the denser
networks. This hints that the spatial resolution applied in the image acqui-
sition may not have been optimal for capturing representative images of the
microstructure. The difference in irregularity of the microstructure can also be
seen from Figure 5.6. Still, when extracting the median response for one of the
best performing texture descriptors, and visualising these responses through hi-
erarchical clustering, the result corresponded well to visual assessment. Thus,
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we believe an appropriate objective description of the microstructure has been
achieved.

This allows for direct comparison between microstructure and the 2DSLS signal,
which can aid in the investigation of the discriminative properties of the 2DSLS
signal in regard to the microstructure of the protein network and chemical com-
position. This particular comparison is covered in Paper E.

7.5 Paper E

This was a natural extension to Paper D, in which the microstructure of the
protein networks in the 24 stirred yogurt data set (see Section 5.4) was objec-
tively quantified through CSLM images. CSLM can provide close to ground
truth information on the actual microstructure of the protein network, whereas
rheological methods such as SAOR are only partly related to the microstructure.

The 2DSLS diffuse reflectance images were quantified in terms of multiple scat-
tered light using the loglog model, as we, throughout Paper A, B, and C have
found this method to be both discriminative and reproducible across a broad
range of dairy products. The quantified 2DSLS signal was evaluated in a similar
manner and compared directly to one of the best performing texture descriptors
in Paper D.

Through ANOVA it was found that all factors in the experimental design were
significant. The factors changing the chemical composition (fat content and
protein content) were found to be very significant across all wavelengths. The
factors that only changed the final microstructure (pre-heat treatment and in-
cubation temperature) were typically found to be very significant for the lower
wavelengths while becoming less significant or insignificant when the wavelength
increased. The same wavelength dependent trend was found for the variability
across the three replicates. In comparison the CSLM texture descriptor found
all factors to be very significant, and the variability across replicates was found
to be slightly significant.

Looking at the general classification results, the performance of the 2DSLS
signal was generally inferior to that of CSLM. However, in some cases, when
only considering subsets of the entire data set, the performance was comparable.
This was especially prominent for the less dense networks. As speculated in
Paper D, this might be because the applied spatial resolution in the CSLM
images was not particularly well suited for capturing representative views of the
microstructure.
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However, similar to the ANOVA, a trend was observed in which the lower wave-
lengths appeared better in discriminating between different microstructure. For
samples with a high fat content this trend was often obscured. Following light
scattering theory, this can be explained by the scattering contribution from
the large fat globules entirely dominating that of the smaller protein structures
in the 2DSLS signal. Thus, it appears that by quantifying multiple scattered
light it is possible to distinguish different types of chemical composition and
microstructure, especially when lower wavelengths and low fat yogurts are con-
sidered.

Looking at the correlation between the quantified 2DSLS and CSLM signals,
the 2DSLS signal at lower wavelengths also appears to correlate better to the
objective description of the protein microstructures. These trends in wavelength
dependency were also found in Paper A, where changes in protein content only
significantly affected the measured 2DSLS signal for the milk fermentations
process when considering the shorter wavelengths.

This is interesting in relation to the existing commercial sensors, mentioned in
Section 4.2.1.1 and 4.2.1.2, used for monitoring the structure formation during
cheese making. These sensors are based on NIR wavelengths, as they provide the
largest relative signal increase throughout the structure formation. Thereby, the
existing sensor technologies may only be suboptimal if a discrimination between
different protein microstructures is of interest.

The data material in relation to 2DSLS measurements was unfortunately lim-
ited, and as a result this paper only presents preliminary results. Thereby, a
natural evolutionary step to this work would be to include more optical mea-
surements, and furthermore apply the different quantification methods of Paper
F to said measurements. Additionally, including sensory measurements could
further enhance the interpretability of the data available in the 2DSLS signal.

7.6 Paper F

Until now, the 2DSLS has primarily been quantified in regard to the parts of
2DSLS signal where the contribution from multiple scattered light predominates.
With the exception of Paper C, the 2DSLS signal has been quantified using
physical models formulated in the literature, as described in Section 6.1.1, and
through empirical simplified approaches described in 6.1.2. In Paper C the
entire image was decomposed into frequencies through the DCT, and a few
specific frequencies were extracted, based on the discriminative properties for
the milk product data set (Section 5.2). While it was found that high and low
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frequency information had different discriminative properties, all of extracted
information was convolved at not directly interpretable.

Thus, in this paper the aim was to individually quantify the different pieces of
information available in the 2DSLS signal. As mentioned in Sections 4.1.1 and
6.1 we believe, that the 2DSLS signal mainly contains information from three
different types of light interaction: Multiple scattered light, single scattered
light, and the underlying speckle interference pattern. The different quantifica-
tion schemes were evaluated on the milk products data set (Section 5.2) and the
repeated milk fermentation data set (Section 5.5).

The physical model (Section 6.1.1) produced highly interpretable results, that
corresponded well to the light scattering theory of Chapter 3. However, when
the investigated sample was highly scattering, a lot of variance was introduced
to quantified signal. This was because the physical model relies on measuring
the MFP, which becomes short for highly scattering samples and thereby harder
to resolve in a reproducible manner. This was also seen in Paper B. Contrary,
the loglog model (Section 6.1.2.1) was less interpretable as expected, and when
looking across wavelengths the effects of the combined system response (Figure
4.2) was clearly visible in the signal. However, when observing the quantified
signal, at a single wavelength, during the milk fermentation, there was a good
correspondence between the physical model and the loglog model. Albeit, the
loglog model showed significantly more reproducible results.

The speckle patterns were quantified through the average speckle size (Sec-
tion 6.1.4). It was seen that the speckle size changed significantly depending
on the spatial location in the 2DSLS signal, however when suitable large re-
gion was considered a stable estimate was obtained. Most remarkable was how
the average speckle size created a clear distinction between milk products and
fermented milk products, as previously hinted in Paper C. For the milk fermen-
tation, the average speckle size showed a significantly different behaviour from
the quantified multiple scattered light, and most of all resembled what has been
reported on DWS in the literature. DWS indirectly measures particle mobil-
ity through dynamic speckle patterns (Section ??), and the speckle patterns in
2DSLS is static, although we believe there is a potential correlation between to
two modalities.

For the scattering eccentricity (Section 6.1.3) a noteworthy wavelength depen-
dency was observed, which should be investigated further. Also, resembling the
issue of resolving the MFP for highly scattering samples, a similar issue arose
when trying to estimate the scattering eccentricity close to the light incident
point. As a consequence the eccentricity was only considered in a region bor-
der lining single scattered light and multiple scattered light. When observing
the scattering eccentricity during the milk fermentation, it showed a similar
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behaviour to that of quantified multiple scattered light, and with fairly low
variance in the eccentricity estimates.

In summary, quantifying the different pieces of of information available in the
2DSLS has resulted in two major findings. First, the different types of quan-
tified information in the images provided different views of the investigated
samples. Secondly, quantifying shapes in the 2DSLS signal was verified as a
viable approach, which is very relevant in relation to process control as shapes
are typically invariant toward variations in the system response. However, it
was found that both the estimates of scattering eccentricity and average speckle
size depended on the system setup as well as the spatial region considered when
quantifying the 2DSLS signal. This implies that more effort has be to put into
determining optimal measurement and quantification conditions for each of the
parameters.
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Chapter 8

Conclusion

Throughout this thesis, we have investigated the optical technique 2D Static
Light Scattering (2DSLS), and investigated its applicability in relation to moni-
toring and discriminating microstructure during production of yogurt like prod-
ucts. The microstructure of yogurt products, and food in general, is of great
importance as it relates to quality parameters such as mouthfeel and product
appearance, which are critical to consumer acceptability. Briefly, 2DSLS cap-
tures images of the spatial distribution of the diffuse reflectance, when a sample
is illuminated by a hyperspectral (465-1030nm) laser beam. Thereby, it is a re-
mote and non-invasive technique, which are highly desirable features in relation
to process control of food products.

The system applied throughout this thesis can be considered flexible workbench
with a lot of free parameters in the setup. From this workbench optimal param-
eters for a given problem can be determined, and a focused cost-efficient systems
can be designed. The workbench itself was introduced and related to existing
commercially available optical instruments. The related instruments have typ-
ically been used to monitor the structure formation during cheese making in
order to determine the optimal cutting time. It was found that the 2DSLS tech-
nique to some extent could be considered a generalisation of all the commercial
available techniques. However, it should be stated that some related techniques
utilises rapid temporal measurements, whereas 2DSLS currently utilises static
measurements. To the best of our knowledge no commercially available op-
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tical instruments exist for process control related to microstructure in yogurt
products.

Much emphasis was put into understanding and quantifying the 2DSLS signal.
Ultimately we found that the signal consists of contributions from at least three
different optical phenomena: Multiple scattered light and single scattered light,
as well as an underlying speckle interference pattern, that affects most of the
signal.

Initially we relied on quantifying effects of the multiple scattered light, as this
have been investigated in depth in the literature. We initially quantified the mul-
tiple scattered light using both physical models as well as empirically validated
statistical approaches. The physical models separate the 2DSLS signal into
absorption and scattering coefficients, which are primarily defined by chemical
composition and microstructure respectively. Thus, the physical models provide
highly interpretable results that correspond well to light scattering theory. Also,
the measures can be invariant to variations in the system response. However,
the estimated parameters typically shows low signal to noise ratio.

In contrast, the statistical approaches provide measures that contain the con-
volved absorption and scattering properties, and the measures are furthermore
affected by variations in the system response. In relation to dairy products,
the mixing of the absorption and scattering is not a problem, as the scattering
properties dominate the absorption properties in the investigated wavelength
spectrum. Furthermore, the signal to noise ratio is significantly higher com-
pared that of the physical models.

Later we considered the single scattered light and the speckle interference pat-
tern. Our initial investigation have shown that these parts of the 2DSLS signal
contain both similar as well as complementary information in relation to mul-
tiple scattered light. Furthermore, the new parameters quantified in terms of
shapes in the signal, which makes them invariant toward variations in the sys-
tem response. Also, the initial findings have shown promising signal to noise
ratio. The quantification of single scattered light and the speckle pattern is still
ongoing work.

As reference measurements we initially applied rheology, which is a family of
invasive measures that can provide information on the physical properties of a
yogurt, e.g. the viscosity. However, rheology only provides information derived
from the underlying microstructure of the investigated sample, and not the
microstructure itself. Thus, we considered microscopy, which provides close to
ground truth measurements on the microstructure. Especially confocal scanning
laser microscopy has found its place within food science, including dairy science,
as specific compounds such as the protein microstructure can be targeted. This
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lead to the investigation of quantifying the micrographs objectively. It was
found that the protein microstructure resembled the periodic, yet randomised,
behaviour of general image textures, and we there compared a broad range of
different texture descriptors. Here, we found that recent approaches within the
field of texture classification were suitable for discriminating between different
yogurt microstructures.

The objective description of the micrographs allowed for a comparative study of
2DSLS and microscopy. The study suggested that the 2DSLS signal (in terms of
multiple scattered light) could be used to discriminate between different protein
microstructures. Especially low-fat yogurts were well discriminated whereas
high-fat yogurts were more problematic, due to the scattering effect from fat
being significantly larger than that of protein. Furthermore, it was observed that
especially shorter wavelengths were well suited for discrimination, and correlated
better to quantified microscopy images as well. All observations correspond well
to light scattering theory.

The study thereby also emphasised a limitation of the technique. While the
current 2DSLS system setup generally covers the range of standard milks and
yogurt products, the detector system cannot resolve the scattering dynamics for
highly scattering samples such as high-fat products, e.g. cream cheese. However,
these limitations have only been verified for the multiple scattered light (and
most likely single scattered light as well) in the 2DSLS signal.

As a concluding remark we believe that our objectives have been fulfilled in
such a way, that the 2DSLS technique can be brought into pilot plant scale
testing in collaboration with our industrial partners. We believe we have cov-
ered a lot of the free parameters in the 2DSLS workbench, needed to design
the first prototype system in relation to monitoring microstructure in low-fat
yogurt products. While there is still more work to do in the laboratory, a real
world in-line implementation would help us to further understand the practical
limitations of the technique.

In summary, we have seen the potential for the 2DSLS technique to be a signif-
icant contribution in relation to existing technologies, both in terms scientific
and practical applications. However, we also believe that we only have scratched
the surface of the technique.
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Abstract

A novel hyperspectral (480-1030nm) laser imaging system is used to monitor
the optical changes during a milk acidification process. Images of diffuse re-
flectance are captured remotely using a tuneable laser and CCD camera, and
differences in the response images between base milks and corresponding gels
elucidate several interesting features. In this paper one of these features is
quantified using a simple and noise resistant quantification scheme inspired by
conventional light interaction models. The generalisability of the feature is in-
vestigated through a factorial design in which fat content, protein content and
the fermentation temperature is changed systematically. The acidification is ini-
tialised using glucono-δ-lactone (GDL), and conventional oscillatory rheology is
used to validate the gel development. Through analysis of variance the extracted
image feature shows significant effects from fat and temperature throughout all
wavelengths. Additionally a significant effect for protein is only seen at lower
wavelengths (480-540nm).

A.1 Introduction

Simple in-line monitoring techniques for food manufacture can aid in production
of high quality products with low variability. Food quality relates to factors like
appearance, taste, and texture that are important for consumer acceptance, as
well as chemical and microbiological composition that hold information about
nutrition and food safety. For decades there has been an interest in optical meth-
ods for measuring food quality parameters, especially methods based on non-
contact designs, as these methods are well-suited for monitoring fragile systems
and for in-line implementation in factory settings. In this paper we investigate
the potential for using hyperspectral images of lights diffuse reflectance to mon-
itor the gelation process in dairy production. The images are captured using a
novel hyperspectral vision system, which is a generalisation of the commercially
available product, VideometerSLS (Videometer A/S, Hørsholm, Denmark).

Milk gelation is a central process in the production of many products including
yogurts and cheeses. These milk gels are formed by lowering the pH value of the
milk, which ultimately leads to destabilization and aggregation of the suspended
casein micelles. Hereby a gel network is formed by the casein. The structure
formed through the gelation process is important for the consumers experience
of the final yoghurt or cheese (Bourne, 2002). Creaminess and viscosity are key
factors for product quality and closely linked to the gel structure (Muir and
Hunter, 1992). To optimize the product quality a control mechanism of the gel
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formation is required, here a reliable monitoring system plays a key role.

The structural properties of the final gel can rely on a plethora of different
parameters. Milk standardization, homogenization (Vedamuthu, 1991), pre-
heat treatment (Law, 1996) and incubation temperatures (Lee and Lucey, 2004)
are parameters that can be controlled (Lee and Lucey, 2010). With a precise
tool to monitor the structure development these parameters can be adjusted to
account for uncontrollable parameter like the natural variations in the raw milk
(Tamime and Robinson, 1999).

Milk gelation is obtained by lowering the pH in the milk, and it is common
to measure the temporal pH development. This is important to ensure that
the product has the correct acidity, but the development of pH is not uniquely
related to the structure development. Two gelation processes might have the
same temporal pH development, but result in products with different viscosity
or creaminess (Haque et al., 2001).

It is well known that the optical properties change throughout a milk gelation
process, and these optical changes have been investigated intensively. Many
methods have been suggested, which are primarily based on near infrared (NIR)
transmission and reflectance (O’Callaghan et al., 2002). Especially diffuse re-
flectance measurements using optical probes have been investigated to a great
extent. A system for estimating the optimal cutting time during cheese making
was presented by Payne et al. (1993b). This system has also been investigated
for a variety of different product types as well as other application areas in
the milk gelation process, and multiple application studies have been published
(Fagan et al., 2007).

Mezzenga et al. (2005) pays special interest to dynamic light scattering (DLS)
and diffusing wave spectroscopy (DWS). These methods illuminate scattering
media using a coherent laser beam. By observing the fluctuations in scattering
intensity (speckle), which is caused by Brownian motion of the scattering par-
ticles, information about the size and dynamics of the particles can be derived.
This can be estimated on the basis of the temporal autocorrelation function of
the observed fluctuations. While DLS deals with single scattering events, DWS
is an extension of DLS that deals with multiple scattering and is more suited
for real world applications (Weitz et al., 1993).

Despite the abundance of optical methods, only few in-line systems are com-
mercially available for monitoring milk coagulation (Lucey, 2002; Castillo, 2006;
O’Callaghan et al., 2002). This can partly be explained by the hostile process
conditions where plant vibrations and strict requirements for the implemen-
tation exist. The optical methods needs to be performed in situ, should not
interfere in the production, and has to meet dairy hygiene standards. Light
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transmission, light reflectance, and DWS (both transmission and backscatter-
ing), have all been used for in-line measurements (O’Callaghan et al., 2002;
Castillo, 2006).

A well-documented light reflectance system is the CoAguLite (Reflectronics,
3009 Montavesta Road, Lexington, KY 40502, USA), which measures light re-
flectance ratios using optical probes. During milk coagulation it records a sig-
moidal behaviour from which the time of gelation and the optimal cutting time
for cheese can be predicted (Castillo et al., 2000). This particular system is
installed by welding optical probes into the side of a cheese vat. While this is
well-suited for large scale production, it can be uneconomical for small scale
production where smaller (and perhaps several different) cheese vats are used
(Craft-Jenkins, 2012).

In this paper we investigate the potential of using a hyperspectral diffuse re-
flectance imaging system as a tool for in-line milk gel assessment. Measurements
are made by shining a tuneable laser (480-1030nm) into the sample and a CCD
camera capturing an image of the spatial distribution of the diffuse reflection.
Directly compared to CoAguLite, the system is also based on light reflectance,
but offers increased flexibility in both system setup and analysis of data. Data
can be collected non-invasively which should alleviate in-line implementation.
The system was introduced by Nielsen et al. (2011b,a), and has similarities to
backscattering DWS. However, the signal output and subsequent analysis is sig-
nificantly different. While DWS is based on measuring particle dynamics our
measurements are influenced by the changes in the absorption and scattering
properties.

We study the temporal changes in the hyperspectral diffuse reflectance images
in different milk gelation processes. Protein content, fat content, and fermenta-
tion temperature are changed systematically in a factorial design to investigate
the generalisability of the method. The images are quantified and through anal-
ysis of variance significance effects are determined across different wavelengths.
The gelation processes are validated using small-amplitude oscillatory rheology,
which can provide information about the rheological properties continuously
throughout the acidification process.



A.2 Material and Methods 129

A.2 Material and Methods

A.2.1 Experimental Design

The purpose of the experiment was to investigate the generalisability of the
diffuse reflectance images towards three common process parameters: protein
content, fermentation temperature, and fat content. These three factors were
varied systematically at two levels, resulting in a full single replicated 23 factorial
experimental design. Additionally, three replicates were added as centre points
to the design. Centre points can be used to estimate the mean squared error
(MSE) of the experiment from the centre points alone, and to investigate for
quadratic factor effects (Montgomery, 2008). Additionally the centre points
provided enough degrees of freedom to check for significance in all first and
second order interactions in the experimental design.

The factor levels were chosen to ensure reasonable differences between the differ-
ent gelation developments while still being relevant in the scope of commercial
products. The absolute value of the fat content was ensured using commercially
available UHT milk with two levels of fat; semi-skimmed (1.5%) and whole-milk
(3.5%). The protein content was increased by adding 1.67% (w/w) skimmed
milk powder (SMP), which results in an increase in protein content from 3.4%
to 4.0%. The temperature spanned 27.5◦C to 37.5◦C and was controlled using
water baths. The factorial design is summarised in Table A.1.

For each of the nine different process compositions, the acidification was per-
formed by adding 2% (w/w) glucono-δ-lactone (GDL), as it is a reproducible
model system for milk gelation as opposed to bacteria cultures (Lucey et al.,
1998a). Each sample in the experimental design was a 5.5-hour-long series of
diffuse reflectance images (taken every 6 minutes) and rheological measurements
(taken every 2.5 minutes). First measurement were made three minutes after
GDL addition. The time points for image acquisition were recorded, and linear
interpolation was used to obtain time correspondence between the 11 measure-
ment series.

For the remainder of this article, the capital letters (P, T, and F for protein
content, temperature, and fat content respectively) in sample names denote a
high factor level, while absence of capital letters denote a low factor level. The
centre points will be referred to as “centre”.
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Table A.1: Factors and target levels for the 23 factorial experiment (plus three
centre points) used for testing the generalizability of the diffuse
reflectance images.

Target factor levels
Factor Code Low Centre High

Protein content [%] P 3.4 3.7 4.0
Temperature [◦C] T 27.5 32.5 37.5
Fat content [%] F 1.5 2.5 3.5

A.2.2 Milk Sample Preparation

The milk was kept at room temperature in its commercial packaging, until it was
used. In preparation of the experiments, each milk sample (500ml) was initially
heated for an hour in a water bath at the target temperature. It was then taken
out of the water bath and the SMP was immediately dissolved (if required) in
the sample using a magnetic stirrer. Hereafter GDL was added and the sample
was stirred for three minutes. Three aliquots were taken from the sample. Two
200ml aliquots in open glass containers were placed back in the water bath, one
for capturing diffuse reflectance images, and one for temperature measurements.
One 20ml aliquot was used for rheology measurements. All experiments were
carried out during a one-and-a-half-week period.

A.2.3 Milk Temperature Control

For temperature control, a shaking water bath (SW2 ±0.2◦C, Julabo Labortech-
nik GmbH, Seelback, Germany) was used. The shaking function was turned off
to avoid any vibrations, which would cause shifts in the sample height and in-
terfere with the image acquisition. Using a temperature probe (Tes-1380 Tem-
perature Meter ±0.5◦C, TES Electrical Electronic Corp., Taipei, Taiwan) it
was found that the general temperature was between 0.1 to 0.5◦C lower than
the target factor levels. As the milk was prepared outside the water bath the
temperature dropped a few degrees before it was put back into the temperature-
controlled environment.
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A.2.4 Hyperspectral Diffuse Reflectance Images

An example of a diffuse reflectance image is shown in Figure A.2. The images
are formed using a system following that of Nielsen et al. (2011b,a). A schematic
view of the system set-up is shown in Figure A.1. The set-up is based on a super
continuum light source (SuperK Extreme, NKT Photonics, Birkerød, Denmark),
filtered by an acousto-optic tunable filter (SuperK Select, NKT Photonics, Birk-
erød, Denmark), and the combined system produces a collimated light beam, in
the range 480-1030nm, at high spectral resolution. For each wavelength the laser
is shined into the milk sample from the top down at an oblique incident angle
(45◦), and a CCD camera (Grasshopper CCD Cam, Point Grey Research Inc.,
Richmond, Canada) with a spatial resolution of 1200×1600 pixels, captures an
high dynamic range (HDR) image of the diffuse reflectance.

super continuum light source 

AOTF

computer systemlight delivery fiber
CCD

sample

Figure A.1: A schematic view of the hyperspectral vision system. Additionally
two lenses were installed, one in front of the laser beam and one
in front of the camera.

Additional to the system shown, a biconvex lens (focal length: 100mm) was
installed in front of the light beam. This focussed the light to a Gaussian
(transverse electromagnetic mode00) beam waist of 150µm. In front of the
CCD a zoom lens (23FM50L, Tamron Co. Ltd., Saitama, Japan) was installed
with a 6.5cm spacer, which yielded a spatial pixel size of 3.2µm in the object
plane. The vision system was installed around the water bath (see Section
A.2.3), and the entire set-up was shielded from background light.

Both the output power of the light source and quantum efficiency of the CCD
chip are wavelength dependent. For this reason we make a pre-calibration of
the output power and the exposure times in the HDR algorithm, to ensure that
no pixel become overexposed for short exposure times, and that an adequate
signal is available for the longest exposure time. The calibration is performed
on a highly scattering medium that represent the final state of the fermented
milk. For these measurements whole milk was used. The camera was set to
minimum exposure time and the light source power was reduced until no pixels
were saturated. Using this reduced power the maximum shutter time is set high
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enough to produce low noise pixel intensities far from the light entry point. A
compromise was made on maximum exposure time, to avoid too long acquisition
times. Thus, some averaging is performed when quantifying the images (see
Section A.2.4.1).

The wavelengths were sampled in 10nm steps, which resulted in 56 different
spectral samples at every time point. With a consistent acquisition time just
under six minutes, approximately 60 data points were acquired throughout the
5.5-hour-long acidification process.

A.2.4.1 Parameter Extraction

Milk products are highly scattering media and following diffusion theory, the
area close to the beam centre is dominated by a single or few scattering events.
These events take place close to the sample surface, and do not give much
information about subsurface sample properties. Further away from the beam
centre, multiple scattering events begin to dominate. Here light has entered
the sample and been scattered multiple times before leaving the sample again
(diffuse reflectance). The appearance of this part is therefore dependent on the
optical properties of a larger volume of the sample, which relates to particle
sizes and volume concentration – this is where we extract the slope parameter.
For simplicity we have only considered a single image feature which models
the rate of light decay far away from the point of incidence. This parameter
was presented by Carstensen et al. (2009) and is being used in a commercially
available product (Videometer A/S, Hørsholm, Denmark).

The parameter is the slope of a double logarithmic transformed profile, log(log(I+
2)), where I is the pixel intensities. The profile is sampled orthogonally to the
incident direction of the laser through the intensity peak. This profile is sym-
metric and we average the two sides. To reduce the noise further we use the
average of an 11-pixel-wide band. A linear model is fitted to the latter half of
the profile, i.e. the part of the profile far (400 pixels, i.e. 1.3mm) from the
beam centre, which reduces the parameterisation to a slope and an intercept.
The parameter extraction is visualised in Figure A.2. Both parameters hold in-
formation about the samples scattering properties and its absorption spectrum.
However, the intercept parameter is also highly dependent on the amplitude
of the measured signal. Thus, the slope parameter should be better suited to
follow the optical changes during milk gelation.

This parameterisation can be seen as a simplification of the work by e.g. (Farrell
et al., 1992; Wang and Jacques, 1995). Their work is based on physical models
where they utilise the diffusion approximation to estimate the absorption and
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reduced scattering coefficients. Our approach is a more statistical way of quanti-
fying the light diffusion. The double logarithmic transformation combined with
the linear model can be seen as a compromise between resistance towards noise
and suppressing information.

A.2.5 Small Amplitude Oscillatory Rheology

Acidified milks are weak gel networks, thus easily damaged by deformation. In
order to continuously measure on a single sample, small amplitude oscillatory
rheology (SAOR) can be used. In SAOR a small sinusoidal deformation is ap-
plied, in which small deformation is defined as a relative deformation, which does
not disrupt the development of the network structure (Lee and Lucey (2010)).
Acidified milks are viscoelastic, meaning that they express both ideal elastic and
ideal viscous behavior. These behaviors can be described by the storage (elas-
tic) modulus (G′), which is the amount of energy stored per deformation cycle,
and the loss (viscous) modulus (G′′), which is the amount of energy lost as dis-
sipation per deformation. Only the storage modulus (G′) is reported when the
rheological measurements are presented. Typically, during milk fermentation
the storage modulus has a zero baseline until the point where casein micelles
starts to aggregate (referred to as the gelation point), after which a sigmoidal
behaviour can be observed (Lee and Lucey, 2010).

In this experiment a 20ml sample was used in the rheometer (Stresstech HR
with temperature cell ±0.1◦C, Reologica Instruments AB, Lund, Sweden) with
a double gap concentric cylinder measuring system.
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(c) Slope parameter from final profile

Figure A.2: Extraction of the slope parameter from a double logarithmic
transformed diffuse reflectance image of whole milk at 900nm.
In (a) a horizontal band of profiles is extracted from the image,
and the corresponding intensity profiles can be seen in (b). (c)
shows the final profile after averaging over all profiles in the band,
as well as across the profile centre. The dashed lines indicate the
interval where the linear model is fitted, and the slope parameter
is extracted.
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A.2.6 Analysis of variance

Analysis of Variance (ANOVA) was used to determine the significant factors
when considering the slope parameter or the rheology measurements as the
response variable. Significance of main effects, as well as all possible interac-
tions were investigated. Some slight modifications were made to the standard
ANOVA. The mean squared error (MSE) was estimated from the centre points
and the presence of quadratic effects was also included in the analysis. Also,
a slightly different approach to hypothesis testing was used as the degrees of
freedom in the experiment were limited. Here, the mean squares and degrees of
freedom of a factor are pooled with the error, if the p-value of the corresponding
F statistic is larger than 0.25. A sequential approach to the pooling is used,
starting with the higher order interactions. Thus, the error can be estimated
with more degrees of freedom. These modifications to the ordinary ANOVA are
suggested by Montgomery (2008).

As each acidification process is a temporal series of measurements, it is necessary
to find a scalar representation for the ANOVA. Two approaches were used.
The first was to record the amplitude of the signal at fixed time points, and
the time points at 10, 25, 50, 75, 90, and 100% of the total time were used.
The second approach utilised Principal Component Analysis (PCA) of entire
signals, in which principal scores are used to make a scalar presentation of the
process. To investigate the variation explained by the principal components,
the approach presented by Cootes et al. (1995) can be used. Here the mean
signal is calculated, and all signals are centred around it. A PCA is performed
on the centred signals, and the loading vectors, scaled by their eigenvalues, are
added to/subtracted from the mean shape. In this way we can investigate the
variation described by each principal component.

A.2.7 Multivariate analysis of variance

Multivariate analysis of variance (MANOVA) was also considered. MANOVA
is a generalisation of ANOVA, where multiple responses can be tested simulta-
neously, and linear combinations of the response variable are considered when
determining factor and interaction significance. MANOVA requires more de-
grees of freedom, thus with this experiment we are limited to two dependent
variables, if we wish to retain all factor effects from the previous ANOVA tests.
The first and second principal scores are chosen as dependent variables, and
Pillais trace is used as an approximation to the F statistic (Olson, 1976). MSE
calculations from centre points, and pooling of MSE and factors with a p-value,
as described in Section A.2.6, was also used for the MANOVA.
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A.3 Results

A.3.1 Hyperspectral Diffuse Reflectance Images

Examples of diffuse reflectance images are presented in Figure A.3. Most of the
appearance of these images can be encoded by a parametric model based on the
refractive index, scattering, absorption and phase function (Joshi et al., 2006).
To show the effect of the milk acidification directly in the image data, an early
and late image in the time series is combined and separated by a black line. The
images are presented for two different samples at three wavelengths.

For all measurements, the light attenuation is stronger by the final fermented
product, as can be seen by the faster decaying signal, which corresponds to
an increase in either scattering or absorption. This is remarkable, the chemical
composition is the same throughout the acidification process, and yet the optical
signals change significantly. This have recently been verified by Nielsen et al.
(2013) where it is shown that the primarily optical difference between milk and
fermented milk products is in the reduced scattering coefficient.

The elongation is caused the oblique incidence angle of the light. The specific
shape is arising by a combination of the light penetration depth, which is used
by Wang and Jacques (1995), and the shape of the phase function of single light
scattering. As a general trend, the penetration depth increases as a function of
wavelength. This makes the shape more elongated. However, it is evident that
the elongation also is different between the samples with high fat or protein,
where the later is more elongated across all wavelength. The shape of the
elongation is also complex, for the start point of the high protein samples at
500nm the light is forming a narrow fan-shaped shape profile rather than a
simple ellipsoid. Thus it is clear that more information about the scattering
process is available than what is covered by the parameterisation in Section
A.2.4.1.

Additionally, the images also show differences in an underlying interference pat-
tern, which is mostly visible close to the point of incident, and is stronger in
the fully fermented samples. The effect is present over the whole image, and
have been utilised in (Sharifzadeh et al., 2013) to distinguish milk and yogurt
products with coinciding optical properties.
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Figure A.4: Parameter and variance estimates for a centre point sample. (a)
and (c) shows the parameter estimates for the slope and the in-
tercept parameter respectively and (b) and (d) shows the corre-
sponding variance estimates of the parameters.

A.3.1.1 Parameter Extraction

The intercept and slope parameter were extracted from the diffuse reflectance
images for each time point (61 in total) and wavelength (56 in total). Figure A.4
shows the estimated parameters and their corresponding variance for a centre
point in the factorial experiment.

The low numerical value of the parameter variance for both the slope and in-
tercept, combined with the smooth development of the parameters themselves,
validates the applied linear model. However, the slope parameter shows clearer
dynamics across time when compared to the intercept parameter. For the sake
of simplicity we will only consider the slope parameter for further analysis.
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Looking at the outer regions of the wavelength interval, there is a tendency to-
wards steeper slope parameter estimates. This was the general behaviour seen
throughout all experiments. Also, from Figure A.4(b) it can be seen that pa-
rameter variance is higher in two major regions. This pattern was repeated
throughout all the experiments. One region is in the near-infrared area, where
the low quantum efficiency of the CCD cameras results in a lower signal-to-
noise ratio, and thereby larger model errors. The other region is around 700nm
late in the acidification process, which is because the transformed profile starts
to show more curvature inside the fitting interval. The slope parameter, aver-
aged over three different wavelength intervals is shown alongside the rheology
measurements in Figure A.5.

A.3.2 Small Amplitude Oscillatory Rheology

The rheological measurements seen in Figure A.5. According to Lucey and Singh
(1997) and Sodini et al. (2004) an increase in total solids content (protein and/or
fat) increase the final gel strength (storage modulus). Following Phadungath
(2005) higher temperature generally increases the speed of the acidification, and
lowers the final gel strength level, as a response to the increased rearrangement
of the casein particles. While the increased temperature results in earlier gela-
tion points as seen in Figure A.5, the final gel strength after 5.5 hours is also
generally larger. While this contradicts Phadungath (2005), Anema (2008) notes
that inconsistencies regarding this matter exist in the literature. These incon-
sistencies are attributed differences in the measuring conditions. Additionally,
Anema (2008) presents more general results on the matter, which corresponds
well to our observed values.
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A.3.3 Analysis of Variance

ANOVA was both performed at different time points in the measurement time
series, and on the entire time series projected into one dimension, and thereby
suitable for ANOVA. For the sub-space projected measurements Figure A.6 ex-
emplifies the variation explained by the first three principal components for the
slope parameter (averaged over all wavelengths) and the rheology measurements.

For the slope parameter in the lowest wavelength interval the first principal
component (PC1) describes the amplitude of the signal and both PC2 and PC3
seem to cover the temporal location and amplitude of the bump located early
in the process. Looking at individual spectral bands the same observation were
made, however PC2 shows more pronounced effects of the bump for the lower
wavelengths c.f. Figure A.5. For the rheology measurements, both PC1 and PC2
seem to incorporate the signal amplitude, steepness after the gelation point, and
the overall shape of the signal, whereas PC3 was harder to interpret. In case of
both slope parameter and rheology the two first components accounted for more
than 95% of the total variation. It should be noted that the PCAs were applied
separately for the different response variables. This means that we cannot be
sure that all data is transformed in the exact same manner.
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Figure A.6: The interpretation of the 1st, 2nd, and 3rd Principal Components
(PC) scores used in the Analysis of Variance (ANOVA) analysis.
The top row shows for the slope parameter (averaged over all
wavelengths) and the bottom row shows for the rheology. The
shown percentages denotes the amount of variance explained by
each PC.
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In order to also incorporate the hyperspectral information of the slope parame-
ter, the overall wavelength interval was uniformly divided into eight subintervals.
Within these subintervals the slope parameter was averaged. Thus, in total, we
effectively have 6+3 different scalar representations of the 8+1 response vari-
ables, that is a total of 81 ANOVA tests had to be performed.

Rather than presenting conventional ANOVA tables, the p-values are presented
in Figure A.7. The p-values clearly show that both temperature and fat level
have significant impact on both rheology and the averaged slope parameter for
all wavelengths. Protein only has an effect on rheology and the averaged slope
parameter in the lowest wavelength interval. Additionally, the slope parameter
seems to be more sensitive to factor interactions as well as quadratic effects.
These tendencies mostly appear at higher wavelengths.

Looking at the amplitudes for the rheology measurements after 10% of the
total time, it can be seen that all factors are significant. This is due to the
period before the gelation point in the milk acidification process, where no
signal is measured for most of the experiments. Thus the centre points coincide
and result in a MSE close to zero, which causes all factors to be significant.
Similar trends can be observed for some slope parameter ANOVAs (550-610,
690-750, and 760-820nm). As these occur as abrupt changes compared to the
neighbouring ANOVA tests, this might as well be due to nearly coinciding centre
point measurements.

A.3.4 Multivariate Analysis of Variance

The MANOVA was performed on PC1 and PC2, as they accounted for more
than 95% of the variance for both the slope parameter and the rheology. The
results are presented in Figure A.8, and they resemble the ANOVA tests. Both
fat and temperature are significant for the slope parameter and the rheology
measurements, while protein is significant for the rheology measurements and
the slope parameter in the 480-540nm interval. Again interactions and quadratic
effects seem more prominent for the slope parameter.

A.4 Discussion

The raw image data presented in Figure A.3 show significant variation between
the initial and the end states of the milk gels. This is a strong motivation for
further processing of the image data. In this work we consider linear modelling of
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Figure A.7: Summary of the p-values in the ANOVA tests. The first eight
images show the results for the averaged slope parameter in
the eight different wavelength intervals, and the last image is
the results for the rheology measurements. Each column in an
image is one ANOVA test. {s1,s2,s3} are the principal scores
and {t10,t25,t50,t75,t90,t100} are the slope parameter ampli-
tudes recorded at 10, 25, 50, 75, 90, and 100% of the total time.
Level of significance is denoted by asterisks (∗∗∗ p < 0.001, ∗∗
p < 0.01, ∗ p < 0.05).

double logarithmic transformed diffuse reflectance profiles, but it is evident from
the image that other features can also be considered. Nevertheless, the linear
model provides a good description of the diffused light far from the entrance
point, and specifically the slope parameter show significant changes in dynamics.
Furthermore, the estimated variance of the slope coefficient was small compared
to both the temporal changes during the milk fermentation and between the
different sample composition. This motivates it as a robust model for inspection
of the diffuse reflectance images.
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Through ANOVA and MANOVA we saw that all chosen factors were significant
for the rheology. This was also the case for the slope parameter. However,
protein content was only found significant at the lower wavelengths. Factor
interactions were not predominant in either rheology or slope parameter, but
quadratic effects were found to be significant for the slope parameter at the
higher wavelengths. However, due to the small experimental design it is not
possible to determine the source of the quadratic effects. This shows that the
slope parameter was seemingly affected by both the structure development and
the chemical composition of the milks. Figure A.5 also illustrates how the low
wavelengths differentiate protein levels better, with the exception of samples
F and PF. In general it seems harder to distinguish between protein levels in
samples with a high level of fat. This is consistent with the literature as casein
micelles are known to generally scatter less light than the fat globules (Walstra
et al., 2010).

As previously mentioned the slope parameter models the light decay rate, which
depends on the total attenuation. Thus, increasing either scattering or absorp-
tion properties will increase the decay of light and thereby increase the slope
parameter. Scattering is inversely proportional to wavelength (Martelli et al.,
2010). However, Figure A.4(a) only shows a monotonous decrease in the slope
parameter from 480 to 780nm hereafter it starts to increase again. A possible
explanation is based on the water absorption spectra (Curcio and Petty, 1951),

Figure A.8: Summary of the p-values in the MANOVA tests. Each column
is a MANOVA test. The first eight columns are the results for
the slope parameter averaged in different wavelength intervals,
and the last column is the results for rheology measurements.
The dependent variables are the first and second principal scores.
Level of significance is denoted by asterisks (∗∗∗ p < 0.001, ∗∗
p < 0.01, ∗ p < 0.05).
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where a small absorption peak is located between 700 and 800nm and a more
dominant peak is located between 900 and 1030nm. This corresponds well to
the observed behaviour of the slope parameter.

It is clear that the rheology measurements and the slope parameter describe
two different developments in the milk acidification process. Contrary to the
rheology measurements, the slope parameter shows a clear signal before the
gelation point (the point where the casein micelles starts to aggregate), which
has been observed before using optical methods (Alexander and Dalgleish, 2004;
Alexander et al., 2006). Furthermore, the slope parameter has a clear ordering
of the different acidification processes early on, especially when looking at the
processes with different fat levels and temperature levels. However, the protein
effect is clearly weak for the slope parameter. In terms of wavelength dependency
the signal in the interval 480-540nm shows a clear bump in the beginning of
the process, which is not present at the higher wavelengths. Especially at 970-
1030nm the initial steepness of the signal seem to correspond to the fermentation
temperature. The steepest initial signals are seen at high temperatures and may
relate to the faster gelation processes, which are also seen for the rheology in
Section A.3.2.

Also, an early ordering of the acidification processes was found when looking at
the slope parameter. The ordering is kept throughout the entire acidification
process and corresponds well to the final levels of G′ of the rheology measure-
ments. Lastly, the slope parameter shows a clear signal development before the
gelation point. Alexander and Dalgleish (2004) and Alexander et al. (2006) also
observed this phenomenon using DWS. They suggested this was due to changes
in the so-called structure factor, i.e. changes to the positional correlation of the
casein micelles. This may be further emphasised by a wavelength-dependent
"bump", that can be found near the gelation point at lower wavelengths seen
in Figure A.5. The bump is most pronounced at the lower wavelengths, which
might be explained by the size of the casein micelles (50nm to 600nm (Horne
and Dalgleish, 1985)). If the positional correlation of the micelles changes, it
manifests itself in changes of the scattering properties for light at the lower
wavelengths as casein mainly contribute as Rayleigh scatterers Martelli et al.
(2010).

The analysis in this paper suggests that use of hyperspectral information can be
beneficial for the use of diffuse reflectance images. Apart from the light-delivery
system, the system described in Section A.2.4 consists of basic components.
Thus, if all necessary information (to a given problem) can be expressed by
a combination of few wavelengths (or bands of wavelengths), the light source
may be replaced by laser diodes. This will allow significant shorter acquisition
times and more cost-efficient vision systems. This, of course, leads to the task
of determining an optimal subset of wavelengths, which will be prioritised when
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larger data sets are acquired.

A.5 Conclusion

The use of hyperspectral diffuse reflectance images has provided some encourag-
ing results for monitoring optical changes during milk acidification. The images
data of the milk fermentation process show that it has a high sensitivity to both
the structure formed during the fermentation process, but also the contents of
both protein and fat level. A single feature from the diffuse reflectance images,
the slope parameter, was found to be reproducible and enabled us to differenti-
ate between different milk acidification processes. Some wavelength dependency
was observed, in which protein content was only distinguishable at lower wave-
lengths. This wavelength dependency will be investigated further in the future,
as it can be a key element in designing specialised multispectral vision systems.
The experiment presented in this paper is limited in scope and acts as a screen-
ing of the generalisation abilities of the presented vision system. While protein,
temperature, and fat were included in the experiment, these are only a few of
the parameters that have been reported to influence the structure development.
So it would be obvious to include other process parameters, as well as starter
cultures, in addition to GDL in future experiments. Also, different quantifica-
tion methods for the diffuse reflectance images will be investigated. Further, we
believe the method is very applicable for diffusive media in general, and coupling
the flexibility of the system set-up and data that can be recorded remotely, it
may be suited for both at-line and in-line implementations.
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Abstract

Light scattering in turbid media can be related to the microstructure of the
media. Thus, light scattering can potentially be used for process control of
products where the structure is a key component. However process control
requires robust and sensitive input data to function properly. In this study
we investigate different decomposition methods for extracting light scattering
information from images of diffuse reflectance. Both well-established theoretical
methods and data driven methods are considered and evaluated based on their
robustness and sensitivity to changes in light scattering properties.

B.1 Introduction

Many food processes can be seen as controlled efforts to preserve, destroy, or
transform structure (Aguilera and Stanley, 1999). According to Bourne (2002)
the textural properties of foods can be derived from their structure, and is one
of the most important factors concerning consumer acceptability. Microstruc-
ture in particular affects the physical properties of a material. Concerning food
products the microstructure can affect a lot of the quality parameters we as-
sociate with a product, such as nutritious properties, stability, and physical
properties (Aguilera, 2005). Thus, there is incentive for having improved con-
trol of the structural changes during food processing in order to ensure high and
consistent quality.

In this paper we investigate the potential for process control of structural changes
using a novel hyperspectral imaging modality. The method is applicable for
homogenous turbid media, and incorporates elements from optics and hyper-
spectral imaging. Data from this modality is highly dependent on the optical
properties. Typically changes in the optical properties have been characterized
by looking at: changes in diffuse reflectance (Payne et al., 1993b), the trans-
port mean free path (MFP) derived from speckle dynamics (Weitz et al., 1993;
Alexander and Dalgleish, 2006), and absorption (µa) and reduced scattering
(µ′s) (Farrell et al., 1992; Wang and Jacques, 1995). In terms of interpretability
the extraction of MFP, µa, and µ′s makes it easier to relate optical properties to
chemical and structural properties of turbid media. However modelling physical
parameters will often introduce model variance, which can affect the robustness
of the parameter estimation.

Hyperspectral imaging is a technique that integrates conventional imaging and
spectroscopy. It has become increasingly popular within the field of food science



B.2 Material 149

during the last two decades due to speed and also non-contact assessment (Sun,
2010). Gowen et al. (2007) gives an overview of recent publications within the
hyperspectral imaging field, which exclusively covers heterogeneous materials
such as vegetables and fruit. As we are dealing with homogenous turbid media,
we take a different approach than conventional hyperspectral imaging. Rather
than capturing images of a material in full field illumination, we shine a coherent,
collimated light (laser) into the material and capture an image of the spatial
distribution of the diffuse reflectance. These images make up the data used in
our analysis.

Instead of using entire images for the analysis, a common step is to decompose
an image into a number of features. This can reduce the computational load as
well as provide higher level of interpretation of the diffuse reflectance images.
Well-founded theoretical models will be considered for this decomposition step.
These usually operate on one-dimensional intensity profiles. Also considered,
are the data-driven methods that can be seen as empirical methods. These
consider more of the information in the diffuse reflectance images.

The goal of this paper is to investigate different decomposition methods and
evaluate their sensitivity towards changes in the scattering properties. The goal
is also to determine how robust the decomposition schemes are. In order to
use the image features for process control, a reasonable signal-to-noise ratio
(SNR) must be established (MacGregor and Kourti, 1995). The turbid media
considered in this paper are fat emulsions. However, we expect that the meth-
ods presented here apply to homogenous turbid media in general. In terms of
structure prediction, we assume that all structural information can be related
to scattering.

B.2 Material

B.2.1 Diffuse Reflectance Images

When light refracts into a turbid medium it is either scattered or absorbed when
interacting with the particles in the medium. Whereas absorption is highly
dependent on the chemical composition of the material, scattering is highly
dependent on the size, shape, and density of the particles. Thus scattering
can be correlated to the microstructural properties of a material. If light only
scatters, it will eventually emerge at the surface at a point different from the
point of entry. The emergent light is known as the diffuse reflectance. The
spatial distribution of the diffuse reflectance will typically follow an anisotropic
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Figure B.1: Left: Schematic of the hyperspectral vision system. Right: Exam-
ple of a logarithmic transformed diffuse reflectance image. The
light is shone from the bottom of the image, and the point of
incidence is the area with largest pixel intensity (red colour).

diffusion process, which emanates from the point where the light was incident.
Light close to the point of incidence has typically scattered a few times, whereas
light far away from the point of incidence has scattered multiple times.

Our aim is to extract information on the optical properties from the diffuse
reflectance. The system works by shining a laser with tuneable wavelength into
the sample material at an oblique incident angle (45◦). High Dynamic Range
(HDR) images (Mann and Picard, 1994) of the resulting diffuse reflectance are
captured by a CCD camera (Grasshopper CCD Cam, Point Grey Research Inc.,
Richmond, Canada) with a zoom lens (23FM50L, Tamron Co. Ltd., Saitama,
Japan) installed in front of the CCD with a 6.5cm spacer. The HDR images
are 1200 by 1600 pixels, with a physical pixel size of 3.2µm. The light deliv-
ery system is based on a super continuum light source (SuperK Extreme, NKT
Photonics, Birkerød, Denmark), filtered by an acousto-optic tunable filter (Su-
perK Select, NKT Photonics, Birkerød, Denmark). At the moment the system
potentially covers the wavelengths 450nm to 1050nm with a spectral resolution
down to 5nm. As this paper is about the decomposition of the diffuse reflectance
images, we will only consider a small selection of wavelengths.

A simplified schematic of the system is shown in Figure B.1 alongside an exam-
ple of the diffuse reflectance images. The system is a research platform, which
can be used to design cost-efficient vision systems with geometry and wave-
lengths optimized for a specific process. More information on the vision system
is provided by Nielsen et al. (2011b).



B.3 Methods 151

Table B.1: The theoretical reduced scattering coefficient intervals for the three
selected scattering regimes at three different wavelengths. All re-
ported intervals have the unit [cm−1]

Low scattering Medium scattering High scattering
regime regime regime

500 nm [7.2 ; 31.3] [35.0 ; 63.0] [67.5 ; 87.5]
700 nm [6.4 ; 22.2] [24.6 ; 42.9] [45.8 ; 59]
900 nm [6.0 ; 16.9] [18.6 ; 31.3] [33.3 ; 42.4]

B.2.2 Intralipid Data Set

The data set of this paper consists of different dilutions of Intralipid (Intralipid
20%, Fresenius Kabi, Bad Homburg, Germany). Intralipid is a highly stable
and standardized fat emulsion and approved for direct intravenous infusion for
patients who are unable to get nutrition via an oral diet. It is also often used
to simulate the optical properties of turbid media, as it mainly contributes as
a scattering compound in the visible regime. Turbid media are generally highly
scattering materials with low absorption characteristics, i.e. the reduced scatter-
ing coefficient µ′s dominates over the absorption coefficient µa, and incorporates
many biological samples including a wide variety of food products (fruit, veg-
etables, dairy products, emulsions), when considering the visible spectrum. For
our experiment we made 21 graduated water dilutions of Intralipid. The dilu-
tions were made to have linearly increasing scattering properties covering the
range of milk and fermented milk products. Seven repeated measurements were
made for each of the 21 dilutions, and the 21 dilutions were split into three
scattering regimes of equal size, with "low", "medium", and "high" scattering
properties. All dilutions were recorded at three different wavelengths (500, 700,
and 900nm). The theoretical reduced scattering coefficients for the data set
were calculated based on Lorenz-Mie theory (Frisvad et al., 2007; Michels et al.,
2008) and are summarized in Table B.1.

B.3 Methods

It is hard to obtain information about material properties directly from the
diffuse reflectance images, so the images were decomposed into compact repre-
sentations (features). Two different decomposition strategies were considered.
First, the theoretical models, which are commonly used for decomposing light
diffusion signals into µa and µ′s. These models are typically only based on
what corresponds to intensity profiles in the images. Hereby they only utilise
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a fraction of the data available from our images. The second strategy there-
fore consisted of data-driven approaches, which utilise different parts of the
images. These more empirical features are typically a mixture of the absorption
and scattering properties, and can therefore be harder to interpret compared
to the theoretical models. We consider different approaches to both the the-
oretical modelling and empirical strategies in the following. All methods are
implemented using Matlab (MathWorks, Natick, Massachusetts, U.S.A.).

B.3.1 Farrell Model Decomposition (FM)

General cases of light scattering and absorption in turbid media can be described
analytically by the radiative transfer equation (Chandrasekhar, 1960). However
this expression is difficult to solve and computational inefficient for use in real
time applications. For materials where scattering is dominant (µ′s � µa), the
light transport can be considered a diffusion process. By assuming that diffusion
is isotropic the radiative transfer equation can be simplified significantly. While
this simplification cannot accurately model the diffuse reflectance near the point
of incidence, it provides an efficient way of estimating µa and µ′s.

Farrell et al. (1992) derived an analytical solution for the diffusion approximation
to describe the diffuse reflectance at the surface of a semi-infinite turbid medium,
when illuminated by a ray of light at normal incidence. The reduced scattering
coefficient was estimated by partly following the fitting routine used in the work
by Lu (2004). An inherent problem with the Farrell decomposition is that
it requires absolute values of the diffuse reflectance in order to estimate the
actual reduced scattering coefficient. However, for some applications it should
be sufficient to look at relative estimates of the reduced scattering coefficients.

B.3.2 Oblique Model Decomposition (OM)

The technique of oblique incidence angle (Wang and Jacques, 1995) is an ex-
tension of the original method by Farrell et al. (1992), in which the symmetry
break between single scattered light near the entry point is measured relative
to the diffuse part of the profile. The symmetry break allows an indirect mea-
surement of the mean free path that eliminates the need for absolute intensity
measurements. A major benefit to this is that it generally lowers the practical
requirements of the vision system.



B.3 Methods 153

B.3.3 Loglog Model Decomposition (LM)

Carstensen et al. (2009) proposed the loglog model. It models the decay of
the light intensity far away from the point of incidence A double logarithmic
transformed intensity profile (log(log(I + 2)), where I is the pixel intensity)
is extracted orthogonal to the scattering direction and through the point of
incidence. A robust linear model is fitted to this profile, and the extracted
feature is the slope parameter of this model. We have previously experienced
very robust results with this decomposition method (unpublished).

B.3.4 Patch Average Decomposition (PA)

A point measurement from the diffuse reflectance images resembles the measure-
ments made by fibre optic probes, where light is sent into the sample using one
fibre and the diffuse reflection is collected by another fibre some distance from
the incident light. The more times the light is scattered the lower the observed
intensity will be. This is the main idea behind the work by Payne et al. (1993a),
which has proven itself useful in regard to determining the optimal cutting point
during cheese making. As a light collecting fibre will often have a field of view,
we select an image patch (50 by 50 pixels) orthogonal to the scattering direction
and calculate a Gaussian weighted average of that patch. The patches will be
extracted at different distances from the light incident point.

B.3.5 Intensity Spread Decomposition (IS)

A simple way to utilise a lot of the available image data is to consider histograms
of the pixel intensities in the diffuse reflectance images. The histograms are cre-
ated by masking out circular regions centred on the point of incidence. Typically
histograms are quantified using first order statistics, however these are very sen-
sitive to outliers. Since the distribution of the pixel intensities is heavy tailed,
robust statistics should be considered. In the case of measuring the spread of
the histogram we can use the median absolute deviation (MAD):

MAD = median(|H −median(H)|), (B.1)

which is the median of the absolute deviations from the median of the data
(H). The intensity spread will give an estimate of how the diffuse reflection
intensity has developed after a given distance from the incident light point. As
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with the patch average decomposition, we consider different variations of the
decomposition method, in this case by considering masks with different radii.

B.3.6 Feature Evaluation

The extracted features should be sensitive towards changes in scattering, such
that small changes can be precisely assessed. They should also be robust with
little variation within the same sample. We use the Rayleigh quotient, also
known as the Fisher Criterion (Hastie et al., 2009) evaluate this property. It
can be seen as an analogue to the signal-to-noise ratio (SNR), as it evaluates
the between-class variance relative to the within-class variance. In the univari-
ate case the Rayleigh quotient can be found as B/W , where B and W are
the between- and within-class variances respectively. For best discrimination
between different samples we want to have a large numerator and small denom-
inator. In addition to the Rayleigh quotient we will also report the average
leave-one-out classification results using linear support vector machine (SVM)
classifiers (Chang and Lin, 2011), to evaluate how well the different intralipid di-
lutions can be distinguished. The Rayleigh quotient and the SVM classification
rates will be reported for the three different scattering regimes in the intralipid
data set. Lastly we expect the 21 intralipid dilutions to have linearly increasing
scattering properties. To verify this we report the correlation coefficient for the
features in the entire scattering regime of the data set.

B.4 Results and Discussion

The results are summarized in Table B.2. Overall the methods perform better
in the low scattering regimes, and typically also at the higher wavelengths.
These general observations hold true for the theoretical models (FM and OM).
The two methods show similar trends both in terms of Rayleigh quotient and
classification rates. They perform well in the low scattering regime, but degrade
significantly when moving to the medium and high scattering regimes. The
theoretical models behave well in terms of the expected linearity, and the low
linearity for OM is simply because of large variance in the feature estimates.
In general the theoretical models show more within class variation compared to
the other methods. An example of the OM decomposition is shown in Figure
B.2.
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Figure B.2: Examples of how different methods perform. The bars indicate
the standard deviation for the feature estimates of the seven repli-
cates for each dilution. The dotted lines indicate the different
scattering regimes.
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The LM decomposition performs well overall for the low and medium scattering
regime in terms of classification. There is a significant drop in the Rayleigh
quotient when going from the low to the medium scattering regime, hinting
that while the method is robust, the sensitivity toward scattering changes is not
as pronounced compared to PA or IS. However the linearity assumptions are
maintained well, as can be seen in Figure B.2.

PA decomposition works very well for the low scattering regime and has the
highest Rayleigh quotients in this regime. For the medium and highly scattering
regimes there is a significant drop in performance, and there seems to be a serious
problem in terms of linearity. This is especially prevalent when the patch is
extracted far away from the point of incident. This is most likely because if
a sample is highly scattering, the majority of the diffusion dynamics happens
close to the point of incidence, leaving very little variation between samples in
the areas far from the point of incidence. Thus, feature estimates can reach a
plateau when the scattering becomes sufficiently high. An example for PA with
high discrimination (and reasonable linearity) for the low scattering regime, but
bad linearity for entire regime can be found in Figure B.2.

The overall performance of the IS decomposition is good and it shows the best
results throughout the entire scattering regime, while retaining the expected
linear behaviour. This is especially true when looking at 900nm. The method
performs best when the mask radius is large. Compared to PA the sensitivity is
not as great in the low scattering regimes. The best performing IS decomposition
example can be seen in Figure B.2.

From these results it is clear that no single decomposition method does not stand
out as the better solution for the presented data set. It really depends on the
considered scattering regime, the used wavelength, and the needed sensitivity
and robustness. While the FM, OM, and LM decompositions are fairly fixed
in the way they are extracted, the sampling schemes used for the PA and IS
decompositions could have been done differently. Additionally two-dimensional
spatial features have not been considered in this contribution.

Furthermore the geometry of the vision system can also be changed, and espe-
cially increasing the amount of zoom used for the camera should significantly
enhance the performance. More zoom would allow capturing more details of the
diffusion dynamics, which should increase the performance when the scattering
becomes "too high". This especially holds true for the theoretical models, as
their underlying models depend on modelling these dynamics.
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Table B.2: Evaluation of the different decomposition method at three different
wavelengths. Each cell reports three numbers, one number for each
of the three different scattering regimes ("low"/"medium"/"high").
Further a parameter, β, is provided for PA and IS. For PA it de-
notes how far away (in pixels) from the point of incident the patch
is extracted, and for IS it denotes the radius (in pixels) of the
applied mask.

500 nm
Decomposition
type

β Rayleigh quotient Classification rates
[%]

Linearity

Farrel model
(FM)

– 378.1 / 11.3 / 1.6 95.5 / 55.1 / 14.3 0.97

Oblique
model (OM)

– 1196.6 / 1.3 / 0.1 97.8 / 64.4 / 0 0.27

loglog model
(LM)

– 1397.7 / 92.5 / 0.6 100 / 95.9 / 34.7 0.92

100 254.1 / 183.6 / 29.3 100 / 91.8 / 59.2 0.86
Patch average 300 343.4 / 10.1 / 57.7 100 / 46.9 / 81.6 0.17
(PA) 500 254.2 / 44.1 / 15.7 79.6 / 65.3 / 77.6 0.39

100 152.0 / 54.8 / 10.3 100 / 77.6 / 42.9 0.97
Intensity 300 200.3 / 207.4 / 27.5 100 / 83.7 / 53.1 0.93
Spread (IS) 500 252.1 / 235.2 / 34.4 100 / 91.8 / 73.5 0.88
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700 nm
Farrel model
(FM)

– 84.1 / 20.6 / 1.5 98.0 / 57.1 / 20.4 0.93

Oblique
model (OM)

– 73.4 / 62. / 0.7 90.5 / 62.5 / 20.5 0.64

loglog model
(LM)

– 694.6 / 254.5 / 3.4 100 / 98.0 / 57.1 0.95

100 1127.8 / 186.6 / 119.2 100 / 98.0 / 57.1 0.64
Patch average 300 3158.2 / 24.9 / 337.3 100 / 53.1 / 67.3 0.57
(PA) 500 3325.6 / 13.6 / 36.0 100 / 30.6 / 89.8 0.08

100 156.8 / 44.6 / 12.6 100 / 85.7 / 61.22 0.95
Intensity 300 722.3 / 354.1 / 94.5 100 / 100 / 87.8 0.94
Spread (IS) 500 1263.4 / 511.3 / 212.4 100 / 100 / 89.8 0.92

900 nm
Farrel model
(FM)

– 31.7 / 12.3 / 1.4 69.4 / 69.4 / 28.6 0.98

Oblique
model (OM)

– 65.4 / 25.9 / 3.9 100 / 72.5 / 43.3 0.97

loglog model
(LM)

– 632.7 / 493.5 / 43.2 100 / 100 / 93.9 0.96

100 556.7 / 354.8 / 45.7 100 / 95.9 / 98.8 0.99
Patch average 300 2004.5 / 209.1 / 2.9 100 / 85.7 / 14.3 0.89
(PA) 500 2646.0 / 9.2 / 33.4 100 / 44.9 / 44.9 0.64

100 134.52 / 31.3 / 9.2 100 / 79.6 / 42.9 0.99
Intensity 300 564.26 / 205.3 / 69.5 100 / 100 / 93.9 0.99
Spread (IS) 500 1042.6 / 372.8 / 113.0 100 / 100 / 96.0 0.99

B.5 Conclusions

In this paper we have demonstrated some of the potential in using diffuse re-
flectance images. Both theoretical and data-driven decomposition methods were
demonstrated and tested in practice. It was seen that by sacrificing some of the
interpretability (and some practical advantages in the case of the oblique de-
composition method) provided by the theoretical methods, significant increases
in both robustness and sensitivity could be achieved. While some data driven
methods successfully covered the entire considered scattering range, no single
decomposition method performed best in all the considered data sets. This em-
phasises the advantage of considering diffuse reflectance images, when designing
or optimizing instruments based on light reflectance methods.
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Abstract

We propose to use the two-dimensional Discrete Cosine Transform (DCT) for
decomposition of diffuse reflectance images of laser illumination on milk products
in different wavelengths. Based on the prior knowledge about the characteristics
of the images, the initial feature vectors are formed at each wavelength. The low
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order DCT coefficients are used to quantify the optical properties. In addition,
the entropy information of the higher order DCT coefficients is used to include
the illumination interference effects near the incident point. The discrimination
powers of the features are computed and used to do wavelength and feature
selection. Using the selected features of just one band, we could characterize
and discriminate eight different milk products. Comparing this result with the
current characterization method based of a fitted log-log linear model, shows
that the proposed method can discriminate milk from yogurt products better.

C.1 Introduction

The Discrete Cosine Transform (DCT) is an appropriate transformation in the
field of signal processing. It was first introduced in (Ahmed et al., 1974) to
be used in the image processing area for the purpose of feature selection. It
has excellent decorrelation properties as well as energy compaction. In addi-
tion, it decomposes the spatial frequency of an image in terms of various cosines
transforms. Some of its application areas are image and speech compression
(Gonzalez and Woods, 2002; Ramírez and Minami, 2003), speech recognition
(Bouvrie et al., 2008; Sharifzadeh et al., 2012a) and medical imaging (Fu et al.,
2005). In this paper, the DCT is employed for decomposition of diffuse re-
flectance images. These images are obtained by illumination of a hyperspectral
coherent laser (460-1000 nm) into the surface of eight different milk products.
This vision system has been introduced recently for inspection of the structure
of food items (Nielsen et al., 2011b,a). It is applicable for homogenous products
where particle size and shape are important parameters. The main idea is to
use the diffusion effects, which are known to be correlated to the microstruc-
ture, for characterization of the structural composition of food items (Martelli
et al., 2010; Mateo et al., 2010). On the other hand, research findings in the
field of food quality control have demonstrated a correlation between the tex-
ture, chemical and physical properties of food items with t- heir microstructure
characteristics (Bourne, 2002; Aguilera, 2005). Considering these sequential re-
lationships from the optical level to the quality level, it is possible to build an
automatic light-based system as a measuring tool, for monitoring the quality
of dairies along the production line and avoid unwanted structures during the
process.

Therefore, finding an efficient method for characterization of the hyperspectral
images into key discriminative features obtained from a minimum number of
bands is of special concern in this field. The reduction in the number of required
wavelengths will assist to simplify the laser set-up and make the overall system
simpler and cost effective. According to the characteristics of the milk products
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(a) (b)

Figure C.1: (a) A log-log transformed diffuse reflectance image of yogurt show-
ing the low frequency diffusion effect at the center. (b) The
zoomed image showing the high frequency speckle noise around
the incident point caused by the destructive interference of light
to the rough surface of fermented milk.

e.g. fat or viscosity, we can observe different visual effects in the hyperspectral
images. The main optical feature is the low frequency light diffusion emanating
from the incident point that has the highest intensity in the image as can be seen
in Fig. C.1(a). Another important effect is a high frequency speckle pattern
caused by interference of coherent light due to surface irregularities (Goodman,
2007). It is shown in Fig. C.1(b) by zooming in around the center point. These
effects vary in different products according to their molecular composition and
thus reflectance and scattering properties of light.

The current characterization technique for these images uses a narrow band of
pixels of the scattering profile including the scattering center (Nielsen et al.,
2011b,a; Sharifzadeh et al., 2012b). A double logarithm transformation is ap-
plied on the original profile to form this image. Therefore, the extracted line
of intensities is called the log-log model. The resulting profile includes a slope
and an intercept containing the subsurface and surface information respectively.
This method only considers the low frequency information in the image. In this
paper, we propose to apply a DCT transform on the double logarithm of the
entire diffuse reflectance image to decompose the low frequency diffusion effect
as well as the high frequency speckle patterns. DCT can decorrelate the highly
correlated information in these images. It decomposes the low frequency diffu-
sion effects and high frequency speckle effects into low and high order coefficients
that could be quantified easier. Finally, due to the high compression level in
the DCT domain, the number of discriminative features is reduced. In order to
form an initial set of features for each image of each wavelength, we combine
those of both low and high frequency effects. The low order DCT coefficients
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are considered to characterize the optical properties. The entropy information
of the high order coefficients are used to characterize the speckle effect based on
an approach that will be explained in C.3.

In the next step, the discrimination power analysis (DPA) introduced in (Dab-
baghchian et al., 2010), is employed as a selection criterion on the initial set of
features for both wavelength and feature selection. It is a more careful method
in terms of discrimination than the conventional zigzag or zonal masking for
DCT coefficient selection. Especially, that is in our work, both the low and high
order features are important. Using the final selected features of one proper
wavelength, we could characterize and discriminate the eight different products.
The proposed method is compared to the previous profile based characteriza-
tion method including low frequency information and the results show that in
addition to the more discrimination power of the proposed method (including
both the low and high frequency information), it can separate the milk class
products from the yogurt class better. The rest of this paper is organized as
follows. In section C.2, the data is described. Section C.3presents the charac-
terization of the diffuse reflectance images. In section C.4, feature selection and
discrimination is explained. The experimental results are shown in section C.5.
Finally, there is a conclusion for this paper.

C.2 Data Description

The data set consists of spectral diffuse reflectance images (1200 × 1600 pixel)
of eight commercial dairy products including milk and yogurt categories. Table
C.1. shows their names and fat levels. L, M and H stand for low, medium
and high. The CH and CU are extracted from the commercial name of the
products. In each category, there are products with different fat levels and
viscosities. In the yogurt category, there are two different products with similar
fat levels. The yogurt products differ from each other not only in terms of the
fat, but also according to the applied fermentation processes. In this paper, we
are not interested in predicting these kinds of features. Instead, we would like
to characterize the products diffuse reflectance profiles and then discriminate
them using their optical features. In fact, the optical characteristics represent
the chemical, physical and structural differences between the products. For
each product, there are five samples in the data set. Thus, there are 40 samples
available in total. The laser was illuminated in 55 wavelengths (460-1000 nm).



C.3 Characterization of the images 165

Table C.1: The eight milk products and their fat levels

Product Type Yogurt Milk
Short Names L M H CH CU L M H
Fat Level 0.5 1.5 3.5 0.1 1.5 0.5 1.5 3.5

C.3 Characterization of the images

As mentioned in section C.1 there are two important features in the diffuse re-
flectance images that can be used for characterization of these images; the low
frequency light diffusion effect and the high frequency speckle effect. The light
diffusion effect shows the spatial intensity distribution due to the absorption
and scattering of the light. It is mostly dependent on the microstructural char-
acteristics of the subsurface such as particle size distribution. The speckle effect
is caused by the interference of light at the surface. It can be seen as a mea-
sure of surface roughness. In a fermented milk product like yogurt, the surface
roughness is higher than milk due to the increase in viscosity of the material
after the fermentation process. Hence, it could be used as a measure for distin-
guishing milk from yogurt. Fig. C.2 shows in the top row, two diffusion images
of a medium-fat milk sample (M-M) and a high-fat yogurt (Y-H). The images
are zoomed around the incident point. The difference in both low frequency
diffusion effect and the high frequency speckle noise effect is clear between the
two images.

C.3.1 DCT Transform

Two dimensional DCT transform is applied to the diffuse reflectance images of
each sample product at each wavelength. This yields 40× 55 DCT matrixes of
size 1200×1600. In the second row of Fig. C.2, the corresponding 400×400 DCT
coefficients from the top-left DCT matrix of the above images are illustrated.
The difference in the higher order DCT coefficients represents the speckle effect
that was seen in the spatial domain as well. However, it is not easy to distinguish
the difference in low order DCT coefficients that represent the diffusion effect.

According to these observations, choosing the DCT coefficients in a conventional
zigzag or zonal low order masking alone, is not a good choice. That is due to
the large number of DCT coefficients in a wide span of low and high frequencies
that describe the scattering and speckle effect. To demonstrate this issue, a
400× 400 sub-volume of DCT coefficients from the top-left of the DCT matrix
is considered for all the samples of all classes. For ease of visualization, they are
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Figure C.2: (Top) left and right, the zoomed diffuse reflectance images of milk-
M (1.5) and yogurt-H (3.5) respectively. (Down) their correspond-
ing 400× 400 top-left DCT coefficients from the DCT matrix



C.3 Characterization of the images 167

Figure C.3: The first 50 highest DCT coefficients of all the samples of the 8
products: (a) in original domain (b) in PCA space using the first
two PCs.

sorted and just the logarithm of the 50 highest are illustrated in Fig. C.3(a).
It is difficult to distinguish all the products. In addition, they are transformed
into the PCA domain and the first two PCs are shown in Fig. C.3(b). In both
images, just a few products can be distinguished from each other and the other
classes. It is not easy to distinguish most fermented products and the high-fat
milk from each other. This is because; the higher values of the DCT coefficients
only carry the information about the diffusion effect and that is not enough for
discrimination. In order to include the speckle effect, we propose to use the
entropy of the DCT coefficients which will be explained in the following section.

C.3.2 Entropy

The high frequency DCT coefficients that contain information about the speckle
effect result in an increase in the entropy of the sub-volumes of the DCT matrix
that include them. For example, in the two 400 × 400 sub-volumes that are
shown at the bottom of Fig. C.2, the entropies are 1.55 and 2.02 from left
to right respectively. Starting from the top-left corner of a DCT matrix, we
considered an n ×m sub-volume and calculated the entropy repeatedly, while
continuously increasing the n and m values as illustrated in Fig. C.4(a). The
resulting entropy profile is shown in Fig. C.4(b). It shows that, as the size of the
volume increases, the entropy also increases up to some point and then, decreases
due to the uniform values of the DCT coefficients in higher frequencies. Since
the speckle effect that characterizes the surface roughness enhances the higher
order DCT coefficients, the maximum entropy should describe the speckle effect
for each sample. By forming such entropy profile for the eight products, we
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Figure C.4: (a) The sequential entropy calculation on increasing sub-volumes
of the DCT matrix. (b) The resulting entropy profile. (c) The
zoomed original diffusion image around the incident point. (d)
The diffusion image obtained by the inverse DCT transform of
the 52× 52 lower order sub-volume of the DCT matrix.

found that it can characterize their speckle effect uniquely. Therefore, the low
entropies before the peak point can be considered as the diffusion effect so that,
their corresponding sub-volumes include mostly the DCT coefficients describing
the diffusion effect. On the other hand, the right side of the peak point includes
the higher order DCT coefficients that describe the diffusion effect. To verify
this further, we isolated the low order diffusion effect DCT coefficients using
the index of the peak point that is 52 in Fig. C.4(b). Then, an inverse DCT
transform is applied to this 52× 52 DCT sub-volume. Comparison of the result
with the original diffuse reflectance image shows the removal of the speckle
effect, as shown in Fig. C.4(c, d).
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C.3.3 Forming the Initial Feature Set

According to the discovered points, the right side of the entropy profile was
considered for characterization of the speckle effect. The mean, the standard
deviation and the maximum value, of this part of the profile were considered
as the candidate speckle effect features. By looking to the entropy profiles of
the eight products, it was found that in average, the maximum entropy occurs
around a 50 × 50 sub-volume. Regarding to its variation in different products
and also considering a softer threshold for separation of the DCT coefficients
of the diffusion and speckle effects, a 20 × 20 sub-volume of low order DCT
coefficients was considered. They form a 400 length vector as the candidate
feature for the light diffusion effect. The final initial set of features for each
wavelength image was formed by concatenating the three candidate features of
the speckle effect with the 400 of the diffusion effect.

C.3.4 Feature Forming based on log-log model

In order to form the features based on log-log model, at each wavelength, a
narrow diagonal band (around 10 pixels width) including the scattering center
was considered in the double logarithm of the diffuse reflectance image as shown
in Fig. C.5(a). The orientation of the line was chosen in a way to consider as
much as possible, higher number of pixels along the path through the center.
Then, it was averaged over the pixels. Since this diagonal line is symmetric, just
half of that was considered. The resulting averaged profile includes an intercept
from the peak and a slope as shown in Fig. C.5(b). These two features were
used to characterize the image. For more information, we refer to (Nielsen et al.,
2011b,a).

C.4 Feature Selection and Discrimination

The length of the formed initial set of features (403) per band, regarding the
total number of samples of all classes (40) is quite high. Therefore, it is better
to select a subset of them according to their ability for characterization and
discrimination of different products. Besides that, there are 55 bands per sample
and as mentioned earlier, we are interested to reduce the number of wavelengths
to simplify the laser set-up. Therefore a strategy should also be taken into
account to sort the discrimination ability of different wavelengths and select one
or a few number of them. Since majority of the features are the decorrelated
DCT coefficients, it is not necessary to decorrelate them by a transformation
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Figure C.5: (a) Symmetric narrow band of pixels crossing the incident point
in the double logarithm diffuse reflectance image. (b) Half of the
band is averaged and the slope and intercept from the peak are
shown.

into an orthogonal space. Inspired by the approach in (Dabbaghchian et al.,
2010), we employ the DPA introduced in that work. The main idea behind this
data-dependent approach is that, all of the DCT coefficients do not have the
same discrimination power (DP). In other words, some of them can discriminate
the classes better than the others. It is different from other similar approaches
such as PCA and LDA, in the sense that it does not utilize the between- and
within- class variances by a transformation to maximizes the discrimination of
the features in the transformed domain. It searches for the best discriminant
features in the original domain. In case of decorrelated features such as DCT
coefficients it is an appropriate approach for ranking the features and choosing
a sub-set of them. The calculation of DPA will be explained step by step in the
following.

Assuming that we have C classes with theNc number of data points and P = 403
features in each class, the DPj of each feature fj (j = 1, 2, ..., 403) is calculated
as follows:

1. The mean and variance of each class is calculated for that feature

(fj) : mjc =
1

N

∑Nc

n=1 fnj , c = 1, 2, ..., C,

vjc =
∑Nc

n=1(fnj −mjc)
2, c = 1, 2, ..., C

2. The variance of all classes are averaged:

V wj =
1

C

∑C
c=1 vjc

The mean and variance of all training samples are calculated for
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Figure C.6: The three steps of the sequential strategy

fj : Mj =
1

C ×Nc
∑C
c=1

∑Nc

n=1 fnj ,

V Bj =
∑C
c=1

∑Nc

n=1(fnj −Mj)
2

3. The DP can be estimated as DPj =
vBj
vwj

It is mentioned in (Dabbaghchian et al., 2010) that DPA can be used as a stand-
alone feature reduction algorithm. Since we need to do both band and feature
selection, a sequential strategy is taken into account as shown in Fig. C.6.

C.4.1 Preparation of Training and Test Sets

In order to maintain the training and test sets from the few data points, one
sample of each class was considered as the unseen test data and the rest were
assigned to the training set. Therefore, the two sets were formed as test8×403×55,
train32×403×55. Then, leave one out cross validation (LOOCV) was used on
the training data set for both wavelength selection and feature selection steps.
LOOCV is used for generalization and to avoid over-fitting as much as possible
(Hastie et al., 2009). However, due to the limited training data points, this
could not be achieved completely.

C.4.2 Wavelength Selection

The band selection algorithm is as follows:

1. At each iterations of LOOCV, sum of the DP’s of all 403 training features
are calculated at each wavelength w = 2, 3, ..., 55;SUM32×55

2. The sum of DPs, SUM32×55 is averaged over the 32 iterations; Average_SUM1×55.
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3. The best band is the one with the highest average discrimination power.

This algorithm was also used for wavelength selection of the log-log model.

C.4.3 Feature Selection for The Selected Band

The use of just one band is a significant reduction in the number of features,
since there are 403 initial features per wavelength. In order to select the most
discriminative features of the selected band, these steps are followed:

1. The DPs of the features in the selected band are sorted for each of the 32
LOOCV iterations in descending order. Then, the corresponding features
to the first top five DPs at each iteration are kept in a list;

2. The densities of the unique features in this list are calculated.

3. According to these densities, the features that were among the top five
features almost in all 32 LOOCV iterations are selected as the final fea-
tures.

The number five in the above explained procedure was chosen empirically by
looking to the sorted features and also for the aim of selecting a limit number of
features. Interestingly, we observed in all the iterations, the first three features
were from distinct low frequency DCT coefficients representing the light diffusion
effect and one of the last two was the mean value of the speckle effect from the
entropy profile shown in Fig. C.4(b).

C.4.4 Discrimination

In order to evaluate the proposed characterization approach and compare it
with the existing log-log method, the training and test data are visualized on
the same plot. Besides that, the discrimination power of the two methods is
numerically measured by sum of the feature’s DPs as well as the maximum
Rayleigh quotient term (Hastie et al., 2009):

max =
aTBa

aTWa
(C.1)
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(a) (b)

Figure C.7: (a) Average sum of DPs over the 32 LOOCV iterations for the
55 bands. (b) Density of the 8 unique features found among the
top five discriminative features in the list over the 32 iterations.
The horizontal axis shows the feature’s number among the 403
features.

Where, B and W are the between- and within-class covariance matrixes and a
is the Eigen vector of the generalized Eigen-value problem, det(B−λW ) = 0. In
order to maximize C.1, the Eigen vector a1 corresponding to the highest Eigen
value λ1 should be used.

In addition, the support vector machine (SVM) classifier with a linear kernel is
used (Chang and Lin, 2011) and the average LOOCV results and unseen test
results are compared for the two methods.

C.5 Results and discussion

First, the results of the proposed method in DCT domain will be shown. Then,
the log-log model results will be presented. Finally, there is a discussion.

C.5.1 Characterisation Results in DCT Domain

As explained in the previous section, both the band selection and feature selec-
tion were performed using LOOCV on the training data. Fig. C.7(a) shows the
average sum of the DPs for the 55 bands. According to this plot, the highest
sum of DPs obtained for band 38 (830 nm).
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Figure C.8: The 1, 2 and 3 are the mean, standard deviation and maximum of
the entropy profile of the speckle effect. The 400 low order DCT
feature’s numbers start from 4.

By sorting the feature’s DPs in this band, a list of features corresponding to the
top five DPs were formed for the 32 LOOCV iterations. There were eight unique
features in the list. Fig. C.7(b) shows the densities of the unique features in
the list. As can be seen, three features were among the top features in all 32
iterations. They are the low order DCT coefficients showing the light diffusion
effect. Their location in the DCT matrix is represented in Fig. C.8. In addition,
the feature number one that represents the mean entropy of the speckle effect
was among the top five features in 31 of the iterations. These four features were
selected as the final features, for characterizing the samples.

In order to visualize the ability of the speckle effect features to separate the two
groups of yogurt products and milk, a 3D visualization of the mean, standard
deviation and maximum features (1, 2, 3 in Fig. C.8) is represented in Fig.
C.9(a). The results show that these features are capable to perform the sepa-
ration accurately for both training and test data. In addition to this between
group separations, we can also observe a trend for within group separation ac-
cording to the fat level. Fig C.9(b) shows the 3D visualization of the three
diffusion effect features (4, 6, 44 in Fig. C.8). As can be seen, they fail to sep-
arate the high-fat milk sample (M-H) and the medium-fat yogurt (Y-M). Since
the visualization of the 4D selected features is impossible, three of them (1, 4,
6) are chosen and visualized in Fig. C.9(c). Even in absence of one of them,
we can see the successful separation of all the classes and also the two groups
of milk and yogurt. Finally, the four features are transformed into the orthog-
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onal PCA space and the first two PCs are shown in Fig. C.9(d). Besides the
successful discrimination, we can observe that the PC1 represents the variation
from yogurt to milk group, while PC2 shows the change in fat content.

C.5.2 Characterisation Results Using the log-log Model

The same wavelength selection strategy based on sum of discrimination powers
were used for band selection for log-log model dataset. Fig. C.10 shows the
2D visualization of the slope and intercepts features in original as well as PCA
space. In both spaces, the two features group the samples only according to
their fat level, while there is no trend to separate the milk group from the
yogurt group. For example the high fat milk (M-H) and the medium fat yogurt
(Y-M) have close overlap which may make the discrimination difficult.

C.5.3 Discussion

According to the visualized results, the combination of the speckle effect (high
frequency) and diffusion effect (low frequency) features in DCT domain shows
to be a promising way of characterizing the diffuse reflectance images. The
statistical analyses results are presented in Table C.2. Although both methods
could discriminate the single test samples of all classes, the average LOOCV
classification performance shows that the proposed method can work better.
However, the statistical models suffer from the over-fitting due to the limited
number of samples. The table results show that, the DCT domain features are
capable to characterize the images better in terms of discrimination power and
Rayleigh criteria than the log-log model features. Besides that, considering the
plots in Fig. C.9 and Fig. C.10, they are capable to reduce the overlap between
classes and separate the products not only according to their fat level, but also
according to their category (milk-yogurt). That is obtained by employing the
ability of DCT transform in frequency decomposition and combining the high
and low frequency information of the images. When only the analysis of the
diffusion effect is needed, this frequency-decomposed information can be used
to exclude the speckle effect as shown in Fig. C.4(d), using the inverse DCT
transform.
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Figure C.9: (a) 3D visualization of speckle effect features (b) 3D visualization
of the three diffusion effect selected features (c) 3D visualization
of speckle and diffusion selected features (d) 2D plot in PCA space
using the first two PCs. The ’o’ shows a training sample and ’+’
shows a test sample.

Table C.2: The discrimination results

Av. SVM Perf. SVM Test Perf. Sum of DPs of the Rayleigh
of LOOCV selected features criteria

DCT 100% 100% 2460.3 5850.6
Log-Log Model 96.87% 100% 1815.1 79.60
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Figure C.10: 2D visualization of the log-log model features (a) in original
space (b) in PCA space.

C.6 Conclusion

In this paper, a DCT-based characterization method is introduced for diffuse
reflectance images. These images result from illumination of a narrow laser beam
in different wavelengths into eight different dairies. They were milks and yogurts
of different types and fat levels. The low order DCT coefficient were used to
characterize the low frequency light diffusion effect and the entropy information
of higher order DCT coefficients were used to characterize the speckle effect in
the images. The discrimination power criterion was used to reduce the number
of wavelength and to select the features. The existing characterization method
based on a linear log-log model can only separate the products according to
their fat levels, but the proposed method can discriminate them based on both
their category (milk-yogurt) and fat level. It also improves the discrimination
and removes the overlap between the classes.
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Abstract

The microstructure of protein networks in yogurts defines important physical
properties of the yogurt and hereby partly its quality. Imaging this protein
network using Confocal Scanning Laser Microscopy (CSLM) has shown good
results, and CSLM has become a standard measuring technique for fermented
dairy products. When studying such networks, hundreds of images can be ob-
tained, and here image analysis methods are essential for quantitative assess-
ments. There is no standard image analysis method for CSLM images, but
methods including grey level co-occurrence matrix analysis and fractal anal-
ysis have been used with success. However, a range of other image texture
characterisation methods exists. Our contribution is an investigation of the
choice of image analysis methods, by performing a comparative study of nine
different methods. Here CSLM images from a yogurt fermentation study are
investigated, where production factors including fat content, protein content,
heat treatment, and incubation temperature are varied. Method evaluation is
conducted by variance analysis, classification, and cluster analysis, and our in-
vestigation reveals that there is a significant effect in choosing image texture
descriptors based on frequency distribution of predefined image features (tex-
tons). Texton based methods were found to have superior performance over both
grey level co-occurrence matrix descriptors and variants of fractal analysis.

D.1 Introduction

Interpretation of a large body of images requires automated image analysis
techniques to ensure a quantitative assessment. In this paper we investigate
the choice of the image analysis technique for studying Confocal Scanning Laser
Microscopy (CSLM) images of protein networks in fermented yogurts. The
CSLM image depicts a small sample area, typically of less than 1mm2, just under
the surface of the sample. Two sampling steps are involved in the analysis. First
a sample is taken from a larger yogurt container and placed on a microscope
slice and then a suitable set of imaging sites are chosen. A very small part of
the actual yogurt is hereby measured, and we have experienced that a relatively
large variation between images can be observed. This must be accounted for in
the choice of image analysis method.

CSLM has become popular in the field of dairy science within the last two
decades. It has been used for studying both milk gels made from bacteria cul-
ture or glucono-δ-lactone (Lucey and Singh, 1997; Lucey et al., 1998b,a). CSLM
is well suited for microstructure studies of milk gel because little sample prepa-
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ration is needed. Moreover, one can use fluorescent probes to target specific
compounds of interest such as bacteria, fat, and protein – here we study protein
networks of casein, which is of special interest for analysing milk gels.

The main constituents of milk are protein (mainly casein), water, and fat.
Through fermentation, the casein aggregates and forms a network (the gel)
in which water and fat are embedded. The microstructure of this network af-
fects the general functionality of the gel as well as the textural properties and
the appearance of the gel (Lee and Lucey, 2010), which are important quality
factors (Muir and Hunter, 1992).

Process parameters, such as processing temperatures and ingredient composi-
tion, can affect the microstructure of the casein network. Such effects can be seen
as appearance changes in the CSLM images, like difference in interconnectivity,
pore size distribution, strand thickness, and tortuosity. These characteristics
are often used for describing the appearance of milk gels, see e.g. (Lucey et al.,
1998a). However, such qualitative characterisations are not operational for large
data sets. Instead we propose using an automated analysis technique where the
micrographs are characterised using so called image descriptors. These descrip-
tors should preferably correlate with the physical properties of the milk gel, i.e.
how the consumer experiences it. In addition it should be robust to the variance
introduced by the measurement procedure, while being sensitive to changes in
structure.

CSLM images of casein networks can be described as image textures, which
typically can be described as repetitive patterns with some degree of structure.
It is therefore natural to choose image analysis methods for texture characteri-
sation. A common texture descriptor is the fractal dimension, which describes
complexity of irregular objects as a ratio of the change in detail by the change in
scale (Mandelbrot, 1983). Previously there has been much emphasis on fractal
analysis in regard to food structure (Barrett and Peleg, 1995). This also ap-
plies to milk gels, where fractal models have been suggested to mathematically
model the kinetic behaviour of the gel formation (Horne, 1999). Fractal analy-
sis have successfully been used to study the properties for a range of different
protein gels (Hagiwara et al., 1998; Pugnaloni et al., 2005; Dàvila et al., 2007;
Dàvila and Parés, 2007; Kuhn et al., 2010; Torres et al., 2012). Nonetheless,
Pugnaloni et al. (2005) recognised that while the fractal dimension can be a
sensitive descriptor it is not unique. Consequently clearly different structures
can have same fractal dimension, making the validity of fractal analysis problem
dependent. Thus, Pugnaloni et al. (2005), Dàvila et al. (2007), and Dàvila and
Parés (2007) applies fractal analysis in conjunction with other morphological
measures such as pore size distribution and lacunarity. The latter can be seen
as a measure of inhomogeneity.
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In the wake of the popularity of fractal analysis, a lot of methods for estimating
the fractal dimension have been proposed. Soille and Rivest (1996) and Lopes
and Betrouni (2009) provides insightful overviews of fractal analysis for images,
and Lopes and Betrouni (2009) also covers the field of multi fractal analysis.
This is a generalisation of fractal analysis where a single fractal dimension is not
sufficient to describe the dynamics of the system; hence a spectrum of fractal
dimensions is estimated.

In terms of texture classification, fractals have some nice properties like invari-
ance towards affine and perspective transformations, which was illustrated in Xu
et al. (2006). Nevertheless, Varma and Garg (2007) state that while both frac-
tal and multi-fractal analysis have been investigated for texture classification,
they are often lagging behind the state-of-the-art classifiers primarily for two
reasons. Firstly to the non-uniqueness of the fractal dimension, and secondly
that fractal dimension is often computed globally for an image. Multiple studies
in material classification (Leung and Malik, 2001; Hayman et al., 2004; Varma
and Zisserman, 2005; Caputo et al., 2005) suggests that such image textures
are best discriminated using statistical distributions of textons. Textons are
prototypical image features found throughout an entire data set. For an image
all features are individually assigned to the most similar texton, and the image
descriptor is then defined by the frequency distribution of texton occurrences.
Another widely used texture characterisation is the grey level co-occurrence ma-
trix, which has been used for texture characterisation including food analysis
(Zheng et al., 2006).

With the aim of quantifying the microstructure of milk gels, we compare a set
of image descriptors, originating from general texture classification, but based
on different design principles. These are compared to common fractal analysis
as well as a state-of-the-art fractal based image descriptor. Our investigation is
based on a fermentation study where we have varied the fat and protein content
and heat treatment and incubation temperatures – factors that are expected
to influence the formation of the casein network. Furthermore, the study was
repeated over three consecutive days. Our expectation is that a well-behaved
image descriptor will enable a classification of the micrograms to the categories
defined by our experiment. There might, however, be some misclassifications if
the treatment does not result in pronounced structural changes.

We also aim at using the image descriptors to determine the significance of the
experimental factors. Stand-alone fractal analysis can easily be carried over to
an analysis of variance framework, as it outputs a single numerical value. How-
ever, this is not usually the case for the other investigated image descriptors,
where the output is often a multi-dimensional vector. If the number of observa-
tions is small compared to the vector dimensionality, this can potentially lead
to a lack of degrees of freedom in a multivariate analysis of variance framework.
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Instead we represent the image descriptors by mutual distances. Thus, we can
transfer the image descriptors to a similar, albeit non-parametric framework
(Anderson, 2001a). Also, data with a high order of dimensionality is typically
difficult to interpret in its original form. Therefore, we also use the distance
representation to form a hierarchical representation of the data, which is well
suited for visual interpretation.

D.2 Materials and Methods

D.2.1 Experimental Design

A triple replicated 24 experimental design was used to create the different milk
gel formulas. The four factors spanned fat and protein content, and pre-heat
treatment and incubation temperature. An overview of the experimental de-
sign and the factor levels is shown in Table D.1. All formulas were prepared
in 1 litre batches, and the three replicates were created on three consecutive
days. Systematic day-to-day variation was expected and this nuisance factor
was eliminated by incorporating the days as a block in the experimental design
(Montgomery, 2006).

The fat content was varied using homogenised UHT semi-skimmed and whole
milk for the low and high level respectively. Protein content was changed
by adding 3% (w/w) skimmed-milk powder (Lactalis Ingredients, Bourgbarré,
France) in the high factor level. Pre-heat treatment was performed using an au-
toclave (Systec V-Series, Holm & Halby, Brøndby, Denmark). Immediately after
pre-heat treatment the samples were put into a cold water bath until next day.
The following day the samples were heated to their target incubation tempera-
ture in water baths (Lauda Ecoline E100, Lauda Dr. R. Wobser Gmbh & Co.
Kg, Lauda-Königshofen, Germany), and hereafter inoculated with a yogurt bac-
terial culture (YO-MIX 863, DuPont Danisco Range, Copenhagen, Denmark).
The pH development was measured every 5 minutes (CINAC pH Controller,
Ysebaert Dairy Division, Frepillon, France). When a sample reached pH 4.6 it
was stirred and stored at 5◦C in a plastic container for a week.

D.2.2 Confocal Laser Scanning Microscopy

All micrographs were captured using a Leica DM IRE2 confocal scanning laser
microscope (Leica Microsystems, Heidelberg, Germany). Before microscopy the
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Table D.1: The 24 experimental design. Minus and plus denote low and high
factor levels respectively. The actual factor level values are given in
the left most column. The entire design is replicated across three
days. The subsets will be referred to in Section D.3.

Subset 1 Subset 2 Subset 3 Subset 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fat content - - - - - - - - + + + + + + + +
[1.5/3.5 g/100g]
Protein content - - - - + + + + - - - - + + + +
[3.4/4.4 g/100g]
Pre-heat treat. - - + + - - + + - - + + - - + +
[75/90 ◦C/15min]
Incubation temp. - + - + - + - + - + - + - + - +
[39/43 ◦C]

yogurts were stirred gently. Protein was stained using a FITC (fluorescein-5-
isothiocyanate) solution (2g/litre) in acetone, which was applied to a microscope
slide. The slide rested until the acetone had evaporated, and yogurt was applied
to the slide, and rested for 15 minutes at room temperature. Sample micrographs
were captured using a 40× oil immersion objective (40× HCX PL Apo 1.25 Oil),
and FITC was excited at 488nm using an Ar/Kr laser, and the emitted signal
was collected from 503 to 533nm at a depth of 7µm into the sample. To eliminate
bias in the data acquisition the CSLM images were randomly sampled, however
major artefacts such as air pockets were avoided. The images were captured at
resolution 1024× 1024 pixels, and each images covered an area of 375× 375µm.
The pixel intensity corresponds to a combination of the focus and the amount
of protein present at the given pixel. During recording each image line was
captured four times and averaged to reduce noise. 10 images were recorded for
each yogurt sample, making a total of 480 micrographs.

Examples of micrographs from each of the samples in Table D.1 can be seen
in Figure D.1. These examples have been chosen as the median image from
each sample defined by the best overall performing method in Section D.3.3.
The examples in Figure D.1 indicate that an increase in both protein and fat
content generally increases the coverage of the protein network. The influence
from fat is due to the homogenised fat globules being covered by a layer of casein
(Yildiz, 2010). This way they become an integral part of protein network. The
influence of changing the protein content is straightforward.

Changes to pre-heat treatment and incubation temperature results in more sub-
tle changes to the images. Higher pre-heat treatment temperatures results in
more willing casein fusions, leading to more interconnected and dense gel net-
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Figure D.1: Examples of the 16 different yogurt samples from a single repli-
cate. The numbering corresponds to that of Table D.1.

works (Lucey et al., 1999). Incubation temperature affects the speed of the
gel formation. Lower temperatures result in lower gel formation speeds, which
again produces more interconnected and dense gels (Lee and Lucey, 2004).

D.2.3 Image Pre-Processing

D.2.3.1 Image Normalisation

The pixel intensities in the micrographs correspond to the combined response
from the local protein content, dye concentration, and focus. Thus, comparisons
between pixel intensities across the entire data set may not be meaningful unless
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we apply image normalisation. We normalise the images to have zero mean and
unit variance.

D.2.3.2 Gel Segmentation

A typical pre-processing step when assessing protein gel micrographs is to seg-
ment out the gel structures. In this paper this gel segmentation is used for
the box counting method in Section D.2.4.2. However, the segmentation could
also be used to extract morphological descriptors. We will not consider such
descriptors in this paper.

As seen in Figure D.1, the CSLM images contain two major region types: regions
with in-focus light (the gel) and regions with out-of-focus light (the pores).
Naturally the out-of-focus light produces areas with low intensity and low signal-
to-noise ratio. Usually, the gel network and pores are segmented by applying a
threshold on the pixel intensities. However, the pixel intensities in CSLM images
of protein gels are typically not of bimodal type (Mellema et al., 2000; Pugnaloni
et al., 2005), which complicates the identification of a suitable threshold.

Looking at Figure D.1, three major regions can be identified in the images:
the internal pore structure, the casein gel, and the transitions between these
regions. We propose to use three convolutions that capture the uniqueness of
the three different regions. A mean filter and a local entropy estimate is used to
distinguishing between the intensity and uniformity of the gel and pore regions
respectively, and a local skewness estimate is used to detect region transitions.
In order to segment out the different regions, the three-dimensional image rep-
resentation was used as input for a Gaussian Mixture Model (Reynolds, 2009)
with three clusters (one for each image region).

D.2.4 Image Descriptors

A broad range of image descriptors are presented below. In Sections D.2.4.1
through D.2.4.3 we consider some classical image descriptors and in D.2.4.4
through D.2.4.8 we consider the image descriptors based on the texton ap-
proach, which is well suited for classifying image textures (Leung and Malik,
2001; Hayman et al., 2004; Varma and Zisserman, 2005; Caputo et al., 2005).
The texton approach was initially proposed by Julesz (1981) and the main idea
is to extract local descriptors from each image and assign each descriptor into a
set predetermined descriptors (denoted textons). The final image descriptor is a
normalised frequency histogram of the textons. Furthermore, local descriptors
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can be extracted from all pixel locations (dense sampling), or only at specific
key points of interest. In summary, textons can be seen as a dictionary of reoc-
curring image structures. Assigning each local descriptor to a texton can also
be seen as a way of suppressing potential noise in the local descriptors.

For the methods in Sections D.2.4.4 and D.2.4.5 the textons are defined a priori
by the method, but for the methods in Sections D.2.4.6 through D.2.4.8 the
textons have to be learned from the data set. This can be done by randomly
sampling local descriptors from the entire data set (denoted training data),
and perform a k-means clustering on the training data. The k cluster centres
hereafter comprises the textons. The texton pipeline is illustrated in Figure D.2.

k-means 
clustering

Prior textons

Learned textons

Random sub-sampling

Extract cluster centres

Extract local
descriptors

Assign textons

Original image Texton coded image

Figure D.2: The applied pipeline for the texton approach. Local descriptors
are extracted from the original images, and can be extracted
densely or at specific key points. Each descriptor is assigned a
texton from a prior or a learned set of textons. The texton coded
image is made from densely sampled descriptors, which have been
assigned one of eight textons.

Looking at the microstructure in Figure D.1, no distinct orientation of the struc-
tures can be seen. Thus, the image descriptor should preferably not be depen-
dent on the direction of a given feature; that is, it should be rotational invariant.
Furthermore, as suggested by Møller et al. (2013) the protein gels should also be
considered at different scales for a more complete description. Table D.2 gives
an overview of the investigated image descriptors and their general features.

All methods mentioned in this section have one or more free parameters that
can be chosen by the user. In most cases these parameters greatly affects the
performance of the method and must be chosen carefully. Specifically for the
methods following the texton approach (without prior textons), the amount of
training data and the number of desired textons should be decided.
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D.2.4.1 Intensity Histogram

This image descriptor is a histogram where each bin corresponds to a pixel
intensity in the image. The range of pixel intensities is uniformly distributed
such that it matches the desired number of bins in the histogram.
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D.2.4.2 Fractal Dimension

While there are many approaches to fractal analysis, most methods follows the
same basic approach (Lopes and Betrouni, 2009). First some image quantity,
N(r), is measured at different scales or step sizes, r. For true fractal scaling
these quantities can be related by a power law behaviour:

N(r) ∝ c · rD, (D.1)

where D is the fractal dimension and c is a constant. This expression is then
linearised through a log-transformation:

log(N(r)) = D log(r) + log(c), (D.2)

and the fractal dimension can be estimated by the slope. For real world data, the
log-transformed response may not show perfect fractal scaling (linear behaviour)
across all values of r. Thus, it is important to select the appropriate fractal range
of r for estimating D. (Varma and Garg, 2007) suggested to also include the
intercept in Equation (D.2) as discriminative property, to alleviate the problem
of the non-uniqueness of the fractal dimension. They denote it the fractal
length. We will present results for using the fractal dimension alone and with
the fractal length as well. The fractal length is also used for the method in
Section D.2.4.8.

In this paper we apply two different approaches to fractal analysis. First is the
box counting method, which is the most popular and frequently used type of
fractal analysis (Lopes and Betrouni, 2009). Following the notations in Equation
(D.1) and (D.2), boxes with side length r are placed on a binary image, and
N(r) corresponds to the number of boxes that sample the gel structure. In
the second approach we look at the spatial autocorrelation modelled through
semivariograms. For an image the semivariogram is estimated by

γ(h) =
1

2
E
[
(I(x)− I(x + h))2

]
(D.3)

where I(x) is the pixel intensity at image coordinate x, and h is a displacement.
Again, we can relate back to power law behaviour of equation (D.1) such that
γ(h) and h correspond to N(r) and r respectively. A similar approach was used
by Pugnaloni et al. (2005). It should be clarified that we are estimating a fractal
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parameter for the image and not the actual fractal dimension of the protein gel
itself.

D.2.4.3 Grey Level Co-occurence Matrices

Grey Level Co-occurrence Matrix (GLCM) is a well-established method intro-
duced by Haralick et al. (1973). The GLCM expresses the probability of a given
grey level intensity change between two pixels distanced by a displacement, h,
and an angle φ. Let (i, j) denote the pixel intensities, then a GLCM, c is defined
by c = P ((i, j)|h, φ). An example is given in Figure D.3. Thereby, the number
of grey level intensities in the image defines the dimensionality of a GLCM.
Typically the image intensities are downsampled. We use a uniform downsam-
pling of the grey level intensities, but other schemes may also be considered (Soh
and Tsatsoulis, 1999). The properties of the GLCM are commonly quantified
by statistical measures, and Haralick et al. (1973) proposes 14 different of such
measures, which we also apply.

When creating the GLCM, multiple angles and displacements can be considered.
Due to the lack of direction of the protein structures, we pool the directional
information by averaging the GLCM over multiple angles (0, 45, 90, 135◦) as
done in (Soh and Tsatsoulis, 1999). In terms of selecting appropriate displace-
ments, Møller et al. (2013) suggests using a single displacement at different scale
representations of the image following the work by Roberti de Siqueira et al.
(2013). To generate different scale representations Gaussian pyramids are cre-
ated by sequentially smoothing and downsampling (by a factor 2) in the original
image for each level of the pyramid (Lindeberg, 1994). Level 0 in the pyramid
corresponds to the original image. Thus, the GLCM can be created at differ-
ent image scales, and the final image descriptor is the joint distribution of the
quantified GLCM across multiple scales.
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Figure D.3: The Grey Level Co-occurrence Matrix (GLCM) calculated for a
5×5 image with four grey level intensities. h = 1 and θ = 0◦.
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D.2.4.4 Local Binary Patterns

Ojala et al. (2002) introduced the Local Binary Patterns (LBP) for texture anal-
ysis. Here a circular neighbourhood of radius, R, and P pixels is investigated
for each pixel in the image. A local descriptor is defined by measuring the in-
tensity difference between a pixel and its neighbourhood. Negative differences
are assigned 0, and positive differences are assigned 1. This results in a binary
string (or pattern) with a length equal to the amount of pixels in the neigh-
bourhood. Rotational invariance is obtained by shifting each binary pattern to
get the minimum value. An example of the LBP descriptor is shown in Figure
D.4. Ojala et al. (2002) notes that some pattern occurrences are generally more
discriminative and they proposed only considering a subset of so-called uniform
patterns. The LBP image descriptor is an histogram over the occurrences of all
binary patterns in the image. As with the GLCM in Section D.2.4.3 a similar
multi scale approach using Gaussian pyramids is adopted (Qian et al., 2011).
Thus, the final image descriptor is the joint distribution of LBP histograms
across multiple scales.

14

12

4

11

10

5

12

7

13

1

1

0

1

0

1

0

1

Binary string

11101001

Decimal value

233

Binary string

00111101

Decimal value

61

threshold shiftconvert

Figure D.4: Local binary pattern (LBP) calculated for 3 × 3 neighbourhood
(R = 1, P = 8). First the neighbourhood is thresholded according
to the centre value, and hereafter the thresholded neighbourhood
is converted to a binary string. To obtain a rotation invariant
description of the neighbourhood, the binary string is shifted to
obtain the smallest possible decimal value.

D.2.4.5 Basic Image Features

The Basic Image Features (BIF) descriptor was introduced by Crosier and Grif-
fin (2008). This descriptor detects how local image structures change across
scales. At first, six Gaussian derivative filters (from zeroth-order to second-
order) are applied to the image. From the filter responses each pixel is assigned
one of six BIFs corresponding to bright/dark blobs, slopes, bright/dark lines, and
saddle points. The BIFs are then assigned across multiple scales defined by the
width of the Gaussian derivative filters. An example is shown in Figure D.5.
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Crosier and Griffin (2008) empirically found that four logarithmic distributed
scales were appropriate. That is σ, 2σ, 4σ, and 8σ, where σ is the standard
deviation of the Gaussian filters. The final image descriptor is constructed by
considering how the BIF of each pixel changes across the four scales. This results
in a frequency histogram with 64 = 1296 bins.

(a) Original image (b) BIF (σ) (c) BIF (2σ)

(d) BIF (4σ) (e) BIF (8σ)

Figure D.5: The Basic Image Features (BIF) extracted at four different scales.
The BIFs extracted from the original image are slopes (grey),
bright blobs (white), bright lines (yellow), and saddle points
(green). σ = 1 was used for the width of the Gaussian derivative
filters.

D.2.4.6 Scale Invariant Feature Transform

After being introduced by Lowe (1999), the Scale Invariant Feature Transform
(SIFT) has become a popular tool in the field of object recognition. This method
detects stable key points in an image and provides a local description of the sur-
rounding area for each key point. The key points of interest are bright/dark
blobs found across multiple scales using a difference of Gaussian pyramid (Lin-
deberg, 1994). Thresholds can be applied to remove weak contrast blobs and
blobs located on edges. For each key point a local descriptor is defined on a
4 × 4 grid of locations (based on the orientation and scale in which the key
point was found), where each location contains a histogram of the local gradient
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magnitudes in 8 orientations. This makes for a local key point description of
4× 4× 8 = 128 dimensions, that is both scale and rotation invariant.

The method and all parameters are adopted directly from Lowe (2004). This
results in between 6000-8000 key points being found in each micrograph (denser
gels have more key points). The texton approach with training is used to make
the final image descriptor.

(a) SIFT keypoints (b) SIFT descriptors

Figure D.6: Two steps from Scale Invariant Feature Transform (SIFT). (a)
shows 100 random key points (corresponding to blobs) found in
the image. The size of the circle corresponds to the scale of the
blob and the pin shows the orientation. (b) shows descriptors for
ten of the random key points in (a). As depicted, the descriptor
is made from a 4 × 4 grid, and for each grid space the gradient
magnitude is calculated for eight orientations. The size of the
grid is determined by the blob scale.

D.2.4.7 Image Patches

Varma and Zisserman (2009) showed that the use of image patches as local
features for the texton approach can be an efficient way of discriminating dif-
ferent materials. Image patches are extracted at each pixel location. From a
patch of size n × n pixels, a n2-dimensional local descriptor is defined as the
joint distribution of pixels intensities. Each descriptor is contrast normalised by:
p← p[log(1 +L(p)/0.03)]/L(p), where p is the local descriptor and L(p) = ||p||2
is the Euclidean norm of p, which has empirically been determined to give better
discrimination. The texton approach with training is used for creating the final
image descriptor. An example of a texton dictionary based on image patches is
shown in Figure D.7.
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D.2.4.8 Local Fractal Features

Rather than estimating the fractal dimension for the entire image, Varma and
Garg (2007) proposed to estimate the fractal dimension locally. Let N(x, r) =∑
I(x, r), where I(x, r) are the pixel intensities within a closed disc of radius,

r, at image coordinate, x. Varma and Garg (2007) hypothesised that N(x, r)
follows the power behaviour of Equation (D.1), from which the fractal dimension
can be estimated from the slope in Equation (D.2). Furthermore, they also add
the intercept to the image descriptor and denotes it as the fractal length. As
discussed in Section D.2.4.2 the fractal range in which the fractal parameters
are estimated has to be determined. To accommodate rotation invariance and a
multi scale representation, the MR8 filter bank (Varma and Zisserman, 2005) is
applied to the image. This results in eight representations of the original image.
For each representation the fractal dimension and fractal length are estimated
at each pixel location, thus a 16-dimensional local descriptor is obtained. As
in section D.2.4.7, each descriptor is contrast normalised. The texton approach
with a training step is used for creating the final image descriptor.

D.2.5 Method Evaluation

This section describes three ways of evaluating and interpreting the image de-
scriptors presented in Section D.2.4. The dimensionality of the image descriptor
for each method and details about each descriptor will be provided in Section
D.3.2. A fair way of comparing descriptors of different dimensionality is to make
comparisons based on the distances between image descriptors. When compar-
ing histograms, a suitable distance measure is the χ2 distance (Malik et al.,
1999; Flannery et al., 1992):

χ2(H1, H2) =
∑
i

(H1
i −H2

i )2

(H1
i +H2

i )
(D.4)

where H is the histograms, and i denotes the bin. This way the pairwise dif-
ference between each bin is weighed by the numerical size of the bins. As a
result, large and small bins are treated more equally. This distance measure is
commonly used for texton frequency histograms in general (Malik et al., 1999;
Leung and Malik, 2001; Varma and Zisserman, 2005). We also found this dis-
tance measure suitable for the non-histogram image descriptors used by fractal
analysis and GLCM. Thus, all methods in this section evaluate and compare
the image descriptors based on the χ2 distance.
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D.2.5.1 Nearest Neighbour Classification

The nearest neighbourhood classifier is a popular evaluation method within the
field of texture classification (Leung and Malik, 2001; Cula and Dana, 2004;
Varma and Zisserman, 2005, 2009). First the data is randomly split into train-
ing and test data equally for each class, and hereafter each observation in the
test data is classified as the distance-wise closest observation in the training
data. Multiple random splits of the data set are performed to give a statistical
distribution of the classification rates.

D.2.5.2 Non-Parametric Multivariate Analysis of Variance

Multidimensional response vectors (image descriptors in this case) in factorial
designs are not necessarily suited for the analysis of variance (ANOVA) frame-
work. Especially if the dimensionality exceeds the number of investigated factors
one has to make up for the deficit in degrees of freedom by performing repli-
cations of the experimental design. However, as some of the image descriptors
has as many as 1296 dimensions, this is infeasible. Thus, an alternative to the
classical ANOVA framework is needed. Such an alternative has been proposed
within the field of ecology.

The non-parametric multivariate analysis of variance (NPMANOVA) was pro-
posed by Anderson (2001a) to indirectly analyse multidimensional response vec-
tors by looking at the pairwise mutual distances. For N response vectors these
inter point distances is represented by a N × N distance matrix. In ANOVA
factor significance is investigated by comparing the variability of a factor effect
and the experimental error through an F-statistic. Thus, the total variability
of the data has to be partitioned into sum of squares for each factor and the
experimental error. This is done by looking at the group centroids of different
factor levels, conversely this is not possible when analysing the distance matrix.
Instead Anderson (2001a) utilises a well-known relation that states that the sum
of squared distances, from a set of points to their group centroid, is equal to the
sum of squared inter-point distances divided by the number of points.

NPMANOVA conflicts with the assumptions of the ANOVA framework, e.g. it
does not assume normality and is not necessarily based on Euclidean distances.
This implicates that the standard F-statistic cannot be used as such, and instead
p-values are obtained through permutation tests (Anderson, 2001b). However,
similar to ANOVA, a major assumption for the NPMANOVA is equal variance
across groups in the experimental design. This can be validated through a
generalised version of Levene’s test (Anderson, 2006).
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D.2.5.3 Hierarchical Clustering

Hierarchical clustering is an unsupervised clustering method, which uses the
interpoint distances to define a hierarchical ordering of the data. The clustering
is typically done in a bottom-up fashion, meaning that each data point initially
comprises a cluster and hereafter most similar clusters are greedily merged.
Similarity is defined in terms of a link function (Hastie et al., 2001). We use
the group average link function in which similarity is determined by the average
similarity between all members in the considered clusters. The final hierarchical
structure can be presented as dendrograms.

D.3 Results

D.3.1 Gel Segmentation

For the gel segmentation, we found filter sizes of 5 × 5 to be appropriate, for
the mean, skewness, and entropy filters. Segmentation results for two of the
samples are shown in Figure D.8. The segmentations successfully segment out
the protein, the pores, and the transitions between the two regions. Additionally
the segmentations are found to be smooth. However, there seem to be a tendency
of overestimating the transitions between pore and protein regions, resulting in
transitions being favoured more than the pores. This is most likely related to
the deepness of the pores. Some pores are deep and thereby is represented by
out-of-focus light, whereas some less deep pores will have light that is more in
focus, thus creating structures similar to transitions. However, we found this to
be of little importance, as we are only concerned with the segmentation of the
protein, used for the box counting method in Section D.2.4.2.
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(a) Sample 3

(b) Sample 12

Figure D.8: Segmentation examples. White denotes pores, grey denotes pro-
tein, and black denotes transitions between pores and protein.
These examples correspond to sample 3 and 12 in Figure D.1.
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D.3.2 Parameter Selection

The parameters for the methods in Section D.2.4 were chosen such that the
method achieved the best possible correct classification in the nearest neighbour
classifier. To limit the parameter space substantially, the parameter search in
some cases was only considered for dyadic intervals. The rest of the parameters
have been investigated in a fairly dense manner. Table D.3 summarises the
chosen parameters.

A couple of observation can be made. In general most methods favour low
spatial support, e.g. the best displacement for the variogram in fractal analysis
was 6 pixels and the optimal patch size for image patch exemplars was 7 × 7
pixels. However, both LBP and GLCM successfully utilise multiple levels in the
Gaussian pyramid, which can be seen as an increase in spatial support. LBP
consistently favoured one or more levels in the gaussian pyramid in addition
to the original image. Also, while the chosen standard deviation for the basic
image features seems small, the largest scale at 8σ corresponds to Gaussian
filters with relative large support (≈ 40 × 40 pixels). Thereby, both LBP and
basic image features successfully exploit greater spatial support when describing
the micrographs.

Looking at the texton approaches where textons are learned through train-
ing, only a limited amount of textons are needed in order to provide a feasible
description. This makes sense considering both the inter and intra similarity
between the images of different casein gel. However, image patch exemplars use
twice as many textons compared to the methods with SIFT and local fractal
features. This may be explained by the lack of rotation invariance of the image
patches, i.e. multiple patches are needed to describe multiple rotations of the
same structure. The limited amount of unique image structures is further em-
phasised when looking at the methods covering intensity histograms or GLCM.
Here a uniform down sampling of the pixel intensity range is performed, and
down sampled intensity ranges gave better discrimination of the casein gels.
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D.3.3 Nearest Neighbour Classification

The results for the nearest neighbour classification are presented in Table D.4.
They are calculated based on 1000 random splits of the data, and averaged over
the three blocks in the experimental design. Overall correct classification rates
using all 16 samples are presented as well as smaller experiments using only sub-
sets of the data set. Finally, classification rates are also given in an experiment
where we create supersets of the previous subsets, i.e. sample 1-4 comprises
one class etc. The subsets are used to closely investigate the discrimination of
the subtle changes made by pre-heat treatment and incubation temperature.
The supersets are used to investigate discrimination between different fat and
protein compositions.

Looking at the overall classification rates, the image patch method is the best
performer closely followed by the basic image features. In general the texton
methods appears to be the best performers. Also, it can be seen that adding the
fractal length to the fractal analysis increases the discriminative power in case of
both the box counting and the variogram method. One important issue to note
is the standard deviations are high, immediately suggesting that the methods
are not performing significantly different. However, the standard deviations are
often comparable in size across the methods hinting that they, at least to some
degree, can be explained by data variation. Referring to Figure D.1 this can
be further emphasised due to the potential appearance overlap of the different
image samples. The standard deviations are even higher when considering the
subsets or grouped subsets, likely due to mis-classifications having higher impact
on each random split, when fewer groups are considered.

From the subsets it can be seen that the subtle changes to the gel are easier
to detect when the gel structure is dense. Subset 1 has the lowest correct
classification rates, whereas subsets 2 and 3 have higher classification rates and
are generally comparable. The highest classification rates are found at subset
4 where the gel is most dense. Also, differences in classification rates between
non-texton and texton methods become more pronounced as the gel density
increases. SIFT has the greatest increase in classification rates when going from
subset 2 and 3 to subset 4. Again this can probably be contributed to the density
of the gels, as SIFT finds more key points in the dense gels. The decrease in
performance for sparser gels can also be explained by the fact that the textures
in these gel structures are more inhomogeneous than the textures in denser gels
(see images in Figure D.1). This can be a problem as a single image may not
contain a representative description of the sample, and two images of the same
sample can potentially be very different.

When considering the superset, where each sample is classified into subset 1
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through 4, we see large performance increases for all methods. This is especially
noticeable in the classification results for intensity histograms, which see a large
performance increase as the amount of protein is the main changing factor across
the subsets, which directly affects the pixel intensity distribution. In summary
the texton approaches seem to be well suited for discriminating between the
microstructure of the different samples, with the best performer being the image
patch approach. While fractal analysis is outperformed by the texton methods
it is still a strong competitor to the more complex GLCM approach, which
additionally utilises the multiple scales.
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D.3.4 Non-Parametric Multivariate Analysis of Variance

Table D.5 presents the results for the NPMANOVA. The blocking of the repli-
cates was also included in the analysis as the factor Day. The test for equal
variance among samples within each of the three replicates is also included. For
both analyses a square root transformation of the data was used to suppress
some of the data variance.

It can be seen that all methods agree that each of the factors in the experimental
design are significantly changing the appearance of the protein network in the
micrographs. Also, most image descriptors find "day" to be significant, meaning
there is a significant day-to-day variation between the samples, which can be
expected when working with bacteria cultures. Looking at the test for equal
variances, most methods show significant differences in variance across factor
groups within one or two of the replicates. This can be a problem as a difference
in group variance can lead to falsely detecting significant changes in group means
(Anderson, 2001a). Thus, the results from the NPMANOVA should be treated
with some degree of caution, when considering the methods that show significant
differences in variance between factor groups.



206
Evaluation of Confocal Laser Scanning Micrographs of Stirred Yogurts

Using Image Analysis

T
ab

le
D
.5:

T
he

p-values
for

the
N
P
M
A
N
O
V
A
,
the

blocking
of

the
three

replicates
is

included
as

the
factor

D
a
y.

T
he

table
also

includes
the

tests
for

equalvariance
w
ithin

each
replicate.

∗
denotes

a
significance

on
a
0.05

level.

D
escriptor

nam
e

D
ay

Fat
P
rotein

P
re-heat

Incubation
E
qualvariance

content
content

treatm
ent

tem
perature

D
ay

1
D
ay

2
D
ay

3
Intensity

histogram
0.016*

<
.001*

<
.001*

<
.001*

<
.001*

0.137
0.078

0.080
Fractal(box

count)
1

0.513
<
.001*

<
.001*

<
.001*

<
.001*

0.349
0.021*

<
.001*

Fractal(box
count)

2
0.735

<
.001*

<
.001*

<
.001*

<
.001*

0.255
0.115

<
.001*

Fractal(variogram
)
1

<
.001*

<
.001*

<
.001*

<
.001*

<
.001*

0.484
0.266

0.029*
Fractal(variogram

)
2

0.005*
<
.001*

<
.001*

<
.001*

<
.001*

0.381
0.233

0.009*
G
LC

M
0.010*

<
.001*

<
.001*

<
.001*

0.002*
0.359

0.249
0.160

LB
P

0.044*
<
.001*

<
.001*

<
.001*

<
.001*

0.194
0.002*

0.161
B
IF

0.040*
<
.001*

<
.001*

<
.001*

<
.001*

0.204
0.008*

0.054
SIF

T
0.031*

<
.001*

<
.001*

<
.001*

<
.001*

0.152
0.022*

0.021*
Im

age
patches

0.011*
<
.001*

<
.001*

<
.001*

<
.001*

0.180
0.114

0.071
Localfractalfeatures

0.005*
<
.001*

<
.001*

<
.001*

<
.001*

0.146
0.144

0.089

G
L
C

M
=

G
rey

L
evel

C
o-occurence

M
atrices,L

B
P

=
L
ocal

B
inary

P
attern,B

IF
=

B
asic

Im
age

Features,
S
IF

T
=

Scale
Invariant

Feature
T
ransform



D.4 Discussion 207

D.3.5 Hierarchical Clustering

Hierarchical clusterings are frequently presented using dendrograms. Figure
D.9 presents dendrograms from two different clusterings using the image patch
descriptor from Section D.2.4.7. For comparison, the clustering is based on the
same replicate, in the experimental design, from which the examples in Figure
D.1 were extracted.

In Figure D.9(a) the hierarchical clustering is based on all data in this replicate.
It can be seen that there is a lot of overlap between the different samples, which
can be attributed to the potential overlap of the samples and the within sample
variation. It can be seen that subset 1 (red) is rather isolated from the other
samples. There is a large overlap between subset 2 and subset 4 (yellow). This
can be expected as both subset 2 and 4 have high protein content, which visually
contributes most to the changes in the images in Figure D.1. High fat content
also changes the appearance but to a less degree than protein. This leads to
subset 2 slightly overlapping with subset 3. By analysing Figure D.9 in greater
detail it can be seen that the densest sample in subset 2 (sample 6) favours
subset 3, and the least dense sample in subset 3 (sample 11) favours subset 3.

While Figure D.9(a) gives an overview of the major changes in the data, the more
subtle changes from different pre-heat treatments and incubation temperatures
can be difficult to assess. To get a clearer view, we can filter out some of image
descriptors points. We do this by only selecting the median image descriptor
and its two closest neighbours for each of the samples. The sample median is
found as the image descriptor that is closest to all other image descriptors within
the same sample. The result is shown in Figure D.9(b), and comparing directly
to Figure D.1 there is a good visual correspondence between the images and the
hierarchical representation.

D.4 Discussion

This paper has provided a comparative study between some of the methods
typically associated with analysis of protein gels, and different methods from the
field of material classification. Common for all methods is that they have free
parameters that need to be chosen carefully. We have considered and covered a
broad range of these free parameters, but our objective was not to exhaustively
evaluate their impact on the performance of each method. In this study the
parameters were chosen based on the best classification rates on the entire data
set, but tuning parameters on the subsets of the data could also be considered.
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Figure D.9: Hierarchical clusterings presented by dendrograms. The colours
correspond to the sample colours in Figure D.1, and each coloured
bar represents a sample image. In (a) the hierarchical clustering is
performed on all data in a single replicate. In (b) the clustering is
performed using only three selected observations from each class
in a single replicate.

As previously mentioned, fractal analysis can be performed in several ways
(Soille and Rivest, 1996; Lopes and Betrouni, 2009), and we have just considered
two of the most widely used approaches. For other methods like GLCM and
LBP, multiple extensions exist (Roberti de Siqueira et al., 2013; Huang et al.,
2011). We have only considered a single extension of each method; a multi scale
representation using Gaussian pyramids. However, several other multi scale
or filter bank representations can be considered (Lindeberg, 1994; Varma and
Zisserman, 2005). Similarly, while image descriptors like BIF and local fractal
features are more convolved and self-contained methods, both rely on multi
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scale or filter bank representations. These can, to some degree, be considered
as parameter-free methods.

The SIFT image descriptor locates blobs in the images, and creates a local de-
scriptor for each blob. Compared to the other methods, SIFT only considers
6000-8000 key points rather than the entire image, which actually lead to reason-
ably classification rates, when the gels were dense. Other image key points could
be considered such as corners or branch points, depending on the appearance of
the gel network.

Looking at the classification rates, the image patch method appears to be the
overall best performing method. It utilises small patches of the raw image data,
which can outperform state-of-the-art filter bank based methods. Varma and
Zisserman (2009) discusses this in detail, and they also suggest to investigate
rotational invariance and dimensional reduction of the patches.

It was found that other methods also favoured low spatial support, when the
parameters were chosen. However, for the methods that utilised multi scale
representation, multiple scales were actually chosen. This might suggest that
unions of image descriptors across different scales should be further investigated.
This is emphasised in Figure D.1, where it can be seen that structures appear
to be smaller the denser the gel network is.

In general, the texton methods seem to significantly outperform fractal analy-
sis and GLCM, however, due to the large standard deviations in classification
rates, it is hard to determine the best texton method. As mentioned earlier the
less dense gels appear more inhomogeneous, and this contributes to the large
variations in the data set. Less zoom during image acquisition could be a po-
tential solution to generate more representative images of the gel network. Also,
concatenation of several images could be employed to reduce the variation.

D.5 Conclusion

A broad range of image descriptors has been investigated for discriminating be-
tween the protein networks of stirred yogurts made with different compositions
and processing temperatures. The experiment was replicated on three consec-
utive days. Conventional image descriptors, such as fractal analysis and grey
level co-occurrence matrices, were investigated alongside more recent approaches
to image description. The recent approaches rely on using textons, which was
found to increase the discrimination between different yogurt microstructures.
Also, while non-texton approaches performed similarly on the entire data set,
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the texton methods performed better when denser gel networks were considered.
However, due to large within sample variation and overlap between samples, the
best texton method cannot be determined without further testing. For the non-
parametric multivariate analysis of variance, all methods agreed that all factors
in the experimental design were significant. Also a significant day-to-day varia-
tion was observed by most of the methods. However, some of the methods did
not have equal sample variation within all of the replicates. Hierarchical clus-
tering was applied to one of the best performing image descriptors and showed
a hierarchy of the data, which was consistent to our own visual interpretation
of structure and density of the gel networks.
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Appendix E

Discriminating Yogurt
Microstructure Through

2D Static Light Scattering

Jacob L. Skytte

Abstract

Previously there has been much emphasis on studying the milk fermentation
process in relation to cheese making. Especially optical methods have been
applied to a great extent due to the convenience explicitly defined by their non-
invasive nature. However, studies concerning discrimination of microstructure
in yogurt products using optical methods are limited. This report presents pre-
liminary results for an explorative study of a novel hyperspectral (460-900nm)
optical technique denoted 2D Statics Light Scattering (2DSLS). Comparisons
were made to objective measures of the yogurt microstructure observed by con-
focal scanning laser microscopy (CSLM). The output signal from both methods
was evaluated for 16 different yogurts, created through a 24 factorial design,
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covering four common production parameters, that changes the final microstruc-
ture of the yogurt. Both methods detected significant changes across all factors.
Through analysis of variance and nearest neighbour classification it was also ob-
served that 2DSLS is more sensitive to changes in microstructure when shorter
wavelengths are considered, which corresponds well to Mie theory. Additionally,
the shorter wavelengths also resulted in higher correlation coefficients between
CSLM and 2DSLS.

E.1 Introduction

The quality perception of fermented milk products is partly defined by the
microstructure of the network formed during protein aggregation (Muir and
Hunter, 1992; Folkenberg et al., 2005). To investigate the microstructure of
the protein network, confocal scanning laser microscopy (CSLM) has become
a popular imaging modality as little sample preparation is required. Along
with the relative easy data collection, this also reduces the risk damaging the
investigated sample (Lee and Lucey, 2010).

Typically, the microstructure in the CSLM images is evaluated subjectively,
and the protein networks are often described by the inter connectivity and tor-
tuousity (Lucey et al., 1998a). However, for large data sets or comparative
studies, subjective evaluation becomes problematic. A human inspector can, in
most cases, easily distinguish two different microstructures. However, it is very
difficult to quantify difference in an objective manner.

Therefore, in Skytte et al. (2014a) we investigated different approaches to quan-
tify the microstructure in protein network of stirred yogurts in an objective
manner. We found that by applying popular image descriptors from the field
of material classification. Here, we could discriminate well between 16 unique
types of stirred yogurt made in a 24 factorial design. Two factors, fat and pro-
tein content, were related to the chemical composition of the base milk, and
two factors, pre-heat treatment and incubateion temperature, were process pa-
rameters that primarily affected the development of the microstructure. All
four treatments were expected to change the final microstructure and through
analysis of variance this was verified by the image descriptors. Additionally,
the ordering of the objective measurements corresponded well to what was seen
visually. This objective description allows us to use CSLM images directly as
reference measures, and comparisons to other objective methods can be made.
Thus, in this report we compare the microstructure of the protein networks to
a signal output from a novel hyperspectral optical method: 2D Static Light
Scattering (2DSLS).
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From light scattering theory it is known that the main scatterer in milk and yo-
gurt are the fat globules, due to their size (Walstra et al., 2010; Martelli et al.,
2010). However, the significantly smaller protein structures are also contributing
to the overall scattering properties, and hereby the aggregation of the protein
structures during fermentation can be observed by optical measurements. Milk
fermentations have previously been investigated to great extent in relation to
cheese making, where the initial structure formation is followed in order to pre-
dict the optimal cutting time (Lucey, 2002; O’Callaghan et al., 2002; Castillo,
2006). In Skytte et al. (2014b) we applied 2DSLS in relation to milk fermen-
tations and saw signals similar to those of other optical methods (O’Callaghan
et al., 2002). Comparing CSLM and optical method directly there is a differ-
ence in the scale at which a sample is observed. CSLM images are captured
on microscopic scale, whereas light scattering measurements are typically per-
formed on a macroscopic scale. Thereby it can potentially be easier to perform
measurements, that are representative of sample, when using light scattering
techniques.

Best to our knowledge little has been published in regard to discrimination
of different microstructures in fermented milk products using optical methods.
Hereby, we investigate how well 2DSLS can differentiate between the 16 unique
stirred yogurts previously used in Skytte et al. (2014a). Additionally, com-
parisons will be made to one of the objective measures of the microstructure
observed in CSLM images. If the 2DSLS method can detect small changes it
can potentially be used for process control in the making of dairy products, but
also act as screening tool when developing new dairy products in addition to
conventional rheological measurements (Lee and Lucey, 2010).

It should be noted that due to the small amount of optical measurements this
study is considered preliminary, and the presented results should be seen as
encouraging rather than concluding.

E.2 Materials and Methods

In this section the experimental design is initially introduced, and hereafter the
2DSLS technique is presented alongside a way of characterising its signal. Fi-
nally, the CSLM image descriptor, used for making the comparisons to 2DSLS,
is briefly introduced alongside an approach to map this multidimensional de-
scriptor into a one-dimensional space.



214
Discriminating Yogurt Microstructure Through

2D Static Light Scattering

E.2.1 Experimental Design

The data was collected in a 24 factorial design. The four factors were common
process parameters found in yogurt making, and covered fat content, protein
content, pre-heat treatment temperature, and incubation temperature. The fat
and protein content naturally affects the chemical composition of the yogurt,
while the two latter factors define the amount of protein cross-linking that will
be made when the protein structures start to aggregate (Lucey et al., 1999;
Lee and Lucey, 2010). All factors were expected to significantly affect the final
microstructure, however the heat-treatment and incubation temperature were
only expected to show subtle differences.

Initially the base milk was adjusted to the right fat and protein content, and
hereafter the milk was heat treated for 15min at the target factor temperature
level. After heat treatment the milk was rapidly cooled in a cold water bath.
Finally the milks were heated to the target incubation, lactic acid bacteria was
added to the milk and the fermentation was initialised. The fermentation was
continued until a pH of 4.6 was reached, whereafter the milks (now yogurts)
were stirred and stored in a refrigerator for a week prior to measurements.
Three replicates of the experiment were performed on three consecutive days,
which yielded a total of 3 · 16 = 48 yogurts.

For each yogurt sample we had three optical measurements, and 10 CSLM im-
ages of the protein microstructure. As some day-to-day variation was expected
due to the use of bacteria culture, each replicate was included as a block in the
factorial design. Thus, the day-to-day variation will be isolated in the analysis
(Montgomery, 2008). The block will be referred to as day. The experimental
design is summarised in Table E.1, and Figure E.1 shows example images of
the different microstructures for one of the days. For the specific details on the
experiment and the data collection in relation to CSLM please refer to Skytte
et al. (2014a).

E.2.2 2D Static Light Scattering

We have recently introduced the novel optical method, 2D Static Light Scatter-
ing (2DSLS) (Nielsen et al., 2011a,b; Skytte et al., 2014b). The system setup
consists of a hyperspectral light delivery system (460-900nm), from which the
light beam is focused into the sample at an oblique angle. Using a CCD orthog-
onal to the sample surface, the spatial distribution of the diffuse reflectance is
captured. In front of the CCD a 6.5cm spacer and an objective lens was placed.
A simplified schematic of the setup is shown in Figure E.2 and Figure E.3(a)
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Figure E.1: Examples of the 16 different yogurt samples from a single repli-
cate. The numbering corresponds to that of Table E.1.
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Table E.1: The 24 experimental design. Minus and plus denotes low and high
factor levels respectively. The actual factor level values are given in
the left most column. The entire design is replicated across three
days. The subsets will be referred to in Section E.3.

Subset 1 Subset 2 Subset 3 Subset 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fat content - - - - - - - - + + + + + + + +
[1.5/3.5 g/100g]
Protein content - - - - + + + + - - - - + + + +
[3.4/4.4 g/100g]
Pre-heat treat. - - + + - - + + - - + + - - + +
[75/90 ◦C/15min]
Incubation temp. - + - + - + - + - + - + - + - +
[39/43 ◦C]

shows a data example for semi-skimmed milk at 600nm. Three measurements
were taken for each of the prepared stirred yogurts.

E.2.2.1 Diffuse Reflectance Image Quantification

An example of the captured diffuse reflectance images can be seen in Figure
E.3(a). In order to quantify the diffuse reflectance images we consider the loglog
model, an approach applied and validated in Skytte et al. (2014b). The method
was found to be appropriate for this type of images. It models the intensity
decay of the multiple scattered light, i.e. the light far away from the light
incident point.

The quantification scheme is illustrated in Figure E.3. Here, a double loga-
rithmic intensity profile is extracted orthogonal to the scattering direction. To
reduce noise, the extracted profile is calculated as the mean of a band of profiles.
A linear model is fitted to the outer part of the extracted profile, and the slope
of the model (denoted the slope parameter from here on) describes the com-
bined contribution of the absorption and scattering properties. However, milk
and fermented milk products are diffusive materials, meaning that the scatter-
ing properties greatly dominate the absorption properties (Martelli et al., 2010).
Thus, the combined contribution mainly reflects the scattering properties.

The quantification only considers a small amount of the data available in the
images. A multivariate description, which considered frequencies of the entire
image, was presented in Sharifzadeh et al. (2013). However, for this comparative
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Figure E.2: Simplified schematic of the 2DSLS system setup.

study we preferred the one dimensional representation for simplicity.

E.2.3 CSLM Image Descriptor

Alongside the slope parameter extracted from the diffuse reflectance images,
we present the results for one of the image descriptors used to describe the
protein microstructure in the CSLM images. This particular descriptor was
found to be one of overall best performers Skytte et al. (2014a). It represents the
microstructure as a distribution of frequently occurring structures, determined
by a trained dictionary of image patches (7×7 pixels) (Varma and Zisserman,
2009).

E.2.4 Multidimensional Scaling

Some of the image descriptors used to objectively describe the microstructure
in Skytte et al. (2014a) were of high dimensionality. Thus, in order to make the
suitable for further analysis the descriptors were mapped to a distance space.
Thus, rather than using the actual p-dimensional space with N observations,
the mutual distances between all possible observation pairs were used. The
data was thereby represented as an N ×N dissimilarity matrix, D.

Multidimensional scaling can be used to determine a low-dimensional represen-
tation of the data, where the mutual distances of D are approximately retained.
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(a) Diffuse reflectance image

(b) Corresponding intensity profile

Figure E.3: Illustration of the diffuse reflectance image quantification. (a)
shows the double logarithmic transformed 2DSLS signal, and the
black line denotes the corresponding intensity profile seen in (b).
A linear model is fitted to either of the grey intervals in (b) and
the absolute value of the slope parameter comprises the quantified
signal.
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This can be done by seeking the values Z = (z1, z2, . . . , zN )T ∈ Rk (where
k < p) that minimises the stress function:

SSM(Z) =

N∑
i=1

N∑
j=1

(dij − ||zi − zj ||)2

dij
(E.1)

where dij is an element in D and ||·|| is the Euclidean norm. The expressions is a
slightly modified version of the common least squares formulation and denoted
Sammon mapping. The modification puts more emphasis on preserving the
small mutual distances (Hastie et al., 2009). This was motivated by the fact
that some factors in the experimental design were expected to only make subtle
differences to the microstructure. For k = 1 a one dimensional representation of
the observations is obtained, that approximately retains the mutual distances
provided by the dissimilarity matrix. Hereby the CSLM image descriptor and
the slope parameter from the 2DSLS signal can be compared on the same terms
as in Skytte et al. (2014a).

E.2.5 Statistical Analysis

To make the best possible comparison between the CSLM image descriptor and
the slope parameter, we apply the majority of evaluation techniques used in
Skytte et al. (2014a). This includes performing analysis of variance to deter-
mine the factor significance in the experimental design, and applying nearest
neighbour classification on the entire data set as well as different subsets of the
data set. Additionally, we present the correlations between the one dimensional
representation of the CSLM image descriptor and the slope parameter from the
2DSLS signal.

E.3 Results

The following section primarily present the comparisons between the quantified
2DSLS signal and the CSLM image descriptor.
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E.3.1 Multidimensional Scaling

Multi dimensional scaling was performed on the CSLM image descriptors, in
order to make an one-dimensional representation. For this representation, the
median CSLM image descriptor was used alongside its two closest points. The
average approximation error for the mapping was found to be 10.9%, when using
the Sammon mapping. Using a least squares mapping the average approxima-
tion error was found to be 17.4%, thus validating the choice of the Sammon
mapping. This one-dimensional representation of the CSLM image descriptor
is used for the correlation analysis in Section E.3.2.3.

E.3.2 Statistical Analysis

E.3.2.1 Analysis of variance

The results for the slope parameter from the analysis of variance are shown in
Figure E.4. As expected the changes in chemical composition (fat and protein)
are very significant across all wavelengths. The incubation temperature was
also found to be nearly as significant, however a slight trend can be found
after 800nm where the level of significance starts to decrease as the wavelength
increases further. A similar trend can be noted for both day and pre-heat
treatment across the entire wavelength interval. However, both of these factors
appear less significant across all wavelengths.

In comparison, the chosen CSLM image descriptor found all factors to be very
significant (p < 0.001), and day to day variation was found to be slightly less
significant (p = 0.011).

E.3.2.2 Nearest Neighbour Classification

Nearest neighbour classification was performed on different partitions of the
data set. This was done in order to highlight the specific capabilities of the two
methods:

• Entire data set (16 classes). The overall performance for a broad data
set was evaluated.

• Superset (four classes). Here, each of the subsets, defined in Table
E.1, constitutes a single class, and reflects how well different the chemical
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Figure E.4: Factor significance for the 2DSLS technique across all wavelengths
through analysis of variance. day denotes the day-today variation
between the three replicates. The pixel intensity corresponds to
the p-values, and the level of significance is denoted by asterisks
(∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05)

composition can be discriminated.

• Subsets 1-4 (each subset has four classes). The subsets defined
in Table E.1 were used to evaluate how well the subtle microstructural
changes are reflected in the measurements when the chemical composition
of the yogurt changes.

The classification rates are based on the average over 1000 random splits of the
data set, and further averaged across the three replicates of the experimental
design. The classification results for all partitions are summarised in Figure E.5
and E.6. Here the blue curves represent the classification rates for the slope
parameter at different wavelengths, and the red curves represent the classifica-
tion rates of the CSLM image descriptor as obtained in Skytte et al. (2014a).
Furthermore, Figure E.7 provides the corresponding confusion matrices for the
CSLM image descriptor and the 2DSLS slope parameter at three different wave-
lengths.

Looking at the classification rates for the entire data set and the superset (Fig-
ure E.5), 2DSLS appears to perform significantly worse than the CSLM image
descriptor. When considering the entire data, the classification rates for the
2DSLS slope parameter tend to decrease as the wavelength increases, and for
the shortest wavelengths there is even a slight overlap in performance with the
CSLM descriptor. This corresponds well to the presented confusion matrices in
Figure E.7.
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(a) Entire data set

(b) Superset

Figure E.5: Classification rates for the CSLM image descriptor (red) and the
2DSLS slope parameter for all wavelengths, on the different parti-
tions of the data set. The margins denotes one standard deviation.
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(a) Subset 1

(b) Subset 2

(c) Subset 3

(d) Subset 4

Figure E.6: Classification rates for the CSLM image descriptor (red) and the
2DSLS slope parameter for all wavelengths, on the different parti-
tions of the data set. The margins denote one standard deviation.
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Figure E.7: Confusion matrices for the classification on the entire data set.
The sample numbers corresponds to those of Table E.1, and fur-
thermore the grid highlights the four defined subsets.
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Figure E.8: The average correlation between the average CSLM descriptor
and 2DSLS slope parameter as a function of wavelength. The
correlation is averaged across the three replicates and the margins
denotes the standard deviation.

The same tendency is not seen for the classification rates of the superset. Here
the performance generally appears to be lower, with larger standard deviations,
and virtually no wavelength dependency. We found this was due to the samples
with a high level of fat (samples 9 through 16), in which the effect of protein
content seemed to be obscured, which is also hinted at in the confusion matrices.
This confounding combined with only four classes is likely to cause the low
performance.

Moving on to subsets 1 and 2, it can be seen that the performance actually
appears similar for CSLM and 2DSLS especially at the lower wavelengths. Con-
sidering the subsets 3 and 4, which have a high fat content, the performance is
a bit lower and a wavelength dependency is only seen for subset 3 which has a
protein content. The results for the subsets also seem to correspond well to the
confusion matrices.

E.3.2.3 Correlation

Correlations could be calculated between the 2DSLS slope parameter and the
one-dimensional representation of the CSLM image descriptor obtained through
multidimensional scaling in Section E.3.1. The correlation coefficients presented
in Figure E.8 are based on the average responses from the two modalities, and
averaged across the three replicates. Again, a wavelength dependency can be
seen, and in this case it is even more prominent than for the classification rates.
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In Figure E.9 we have plotted the average responses, for a single replicate,
against each other, at three different wavelengths. When comparing across
wavelengths it quite clear to see how the signal at 500nm is affected more by
changes to protein content and the protein network microstructure compared to
the higher wavelengths. Especially for the samples with low fat content (sample
1 through 8) the effects of pre-heat treatment and incubation temperature are
pronounced. Contrary, at 900nm there is a clear separation between low fat and
high fat samples, while there is only a small effect from the protein content.
Looking at the effects of pre-heat treatment and incubation temperature they
are more or less collapsed into a single point, making them hard to distinguish.

E.4 Discussion and Conclusion

A comparative study has been made between the 2DSLS signal and an CSLM
image descriptor, and several interesting observations can be made. All of the
applied evaluation techniques generally showed a wavelength dependency, in
which lower wavelengths were better at distinguishing different microstructures
of a protein aggregated network. However, when fat is added to the system,
the effects of protein content, pre-heat treatment and incubation temperature
diminishes.

These findings corresponds well to Mie theory (Mie, 1908) as the scattering
effect of milk fat is significantly larger than that of milk protein due to the
difference in structure size (fat lies within the range 100-10000nm while protein
leis within 20-400nm) (Walstra et al., 2010). Additionally, the scattering effect
decays faster across wavelengths when considering small structures compared to
the wavelength of the light.

For the applied wavelength interval (460-900nm) this means that the scattering
contribution from the fat structure remains fairly constant across the interval,
whereas the contribution from the protein structures decays significantly across
the interval. This means the effect of protein content and different protein
microstructures should be more visible at lower wavelengths. This corresponds
well to the observations from all the evaluation techniques.

In general the CSLM image descriptor showed more sensitivity towards the
experimental factors compared to the 2DSLS slope parameter, however in a
few cases classification performance was comparable. This was especially clear
for the samples 1 to 4 with low fat and protein content. Here it should be
noted that the CSLM have just been captured at a single zoom level, and from
Figure E.1 it can be seen that the less dense microstructure also appears more
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Figure E.9: The average CSLM image descriptor and the average 2DSLS slope
parameter plotted against each other at different wavelengths.
The sample numbers and colours corresponds to those of Table
E.1 and Figure E.1.
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irregular. This suggests that the applied zoom level does not necessarily yield
a representative view of the less dense microstructures and other zoom levels
should be considered (Skytte et al., 2014a). A similar, albeit inverted, problem
was observed in relation to the 2DSLS slope parameter, where the high fat
content seemingly confounded the effects from the other experimental factors.
Here a higher spatial resolution might be able capture the appropriate dynamics
in the decay of the light diffusion.

In relation to commercially available optical sensors, the observations of this
report are interesting. As mentioned in the introduction, optical methods have
most commonly been investigated in relation to the initial structure formation
during cheese making. A comparative study by O’Callaghan et al. (1999) con-
sidered different commercially available modalities for monitoring this structure
formation. All the applied optical sensors were based on near-infrared (NIR)
light. Claesson and Nitschmann (1957) initially recommended NIR light as these
wavelengths showed a larger relative increase in the signal output, compared to
lower wavelengths, during the structure formation.

Thereby, for assessing the microstructure of protein networks, the preliminary
results of this report suggests that new optical sensors should be developed,
rather than relying on the already commercially available sensors used in cheese
making. Future work will consist of validating these findings on a larger data
set, where more data (for each modality) are available for each sample in the
factorial design. Additionally, other quantification schemes for the 2DSLS signal
will also be considered in future analysis.
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Quantification of multiple
scattered light, speckle
patterns, and scattering
eccentricity in Diffuse

Reflectance Images

Jacob L. Skytte

Abstract

2D static light scattering (2DSLS), is a recently introduced optical technique,
that captures images of the spatial distribution of the diffuse reflectance from a
sample illuminated by a laser beam. The signal of this modality includes infor-
mation from several different light interaction phenomena, thus throughout this
report we seek out to quantify and compare the individual parts of the signal.
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This includes light attenuation by scattering, directionality of the scattering
properties, and finally it generation of speckle structure. Preliminary results
will be shown for quantifying fixed regions of the 2DSLS signal. The individ-
ual quantifications are visually assessed for two different data set, in relation
to discriminative properties and reproducibility. One data set covers different
commercial milk products, and the other covers a milk fermentation.

F.1 Introduction

Nielsen et al. (2011b,a) introduced the optical technique, 2D Static Light Scat-
tering (2DSLS), which potentially can be well suited process control. The
method is based on capturing images of the spatial distribution of the diffuse
reflectance when illuminating a sample with an oblique laser beam. Investi-
gating the distribution of the diffuse reflectance can reveal both chemical and
microstructural properties of the illuminated sample (Martelli et al., 2010).

In Skytte et al. (2014b) we applied the technique in regard to milk fermenta-
tions, and found that it was possible to follow the protein aggregation during
the structure development. However, only a small part of the 2DSLS signal
was quantified. The technique was furthermore applied to different commer-
cial dairy products in Sharifzadeh et al. (2013), and here the entire signal was
considered in the frequency domain through the discrete cosine transformation
(Ahmed et al., 1974). It was found that the low and high frequency parts of
the signal discriminated the products differently and furthermore complimented
one another.

In this report we specifically try to quantify individual types of information in
the 2DSLS signal, which are found at spatially different locations. Figure F.1(a)
shows an example of the 2DSLS signal. It is a complex signal containing contri-
butions from at least three different phenomena: Multiple scattered light, single
scattered light, and speckle, all of which will be explored in this report. Multi-
ple scattered light is located "far" from the incident point where the intensity
isocontour is approximately circular and isotropic scattering dominates. Single
scattered light is located "close" to the light incident point where the intensity
isocontours are asymmetric and effects of the phase function dominates. This
is illustrated in Figure F.1(b). Speckle is present as an underlying inference
pattern and will be visualised clearly in Section F.2.1.2. Figure F.1(c) shows
a conceptual cross-section of the 2DSLS signal, which consists of the reflected
Gaussian beam (red), single scattered light (green), and multiple scattered light
(blue). All three parts contain and underlying interference pattern denoted
speckle.
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(c) Conceptual cross-section of the 2DSLS signal

Figure F.1: (a) shows the 2DSLS signal (diffuse reflectance image) of milk (1.5
% fat) at 900nm. (b) shows the corresponding intensity isocon-
tours (artefacts arise from bubbles in the measured sample). The
laser beam comes in from the righthand side of the image at an
oblique angle, and the light incident point is located around the
highest pixel intensities (coloured red). (c) shows a conceptual
cross-section of the 2DSLS signal orthogonal to the light incident
direction.

Multiple scattered light can be described physical models which rely on the
diffusion approximation. The models are defined in terms of the absorption
coefficient, µa and the reduced scattering coefficient, µ′s = µs(1 − g), where
−1 < g < 1 is the asymmetry parameter (Farrell et al., 1992; Wang and Jacques,
1995; Lin et al., 1997). Through Mie theory (Mie, 1908), both µs and g can be
related to the shape and size distribution of the suspended particles.

The single scattered light provides information on the directionality of the
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scattering process; that is the scattering phase function to which g is related
(Martelli et al., 2010). For milk, the scattering directionality is forward lobed as
can be seen in Figure F.1. This is especially clear near the light incident point,
where the intensity isocontours are elongated.

The final phenomenon is the underlying speckle pattern, which, in addition,
can be attributed several different phenomna. First of all speckle is an interfer-
ence phenomenon that arises when illuminating a material with a coherent light
source (such as a laser). Constructive or deconstructive interference arises when
the light dephases due to Doppler shifts caused by Brownian motion (Alexander
and Dalgleish, 2006) or when light travels different path lengths before reaching
the detector (Piederrière et al., 2004a). As 2DSLS employs static measures,
the speckle effects due to Doppler shifts should not be directly visible in the
signal. In contrast, effects due to differences in path lengths should be visi-
ble. These path length differences are often contributed surface irregularities
(as many surfaces appear rough when observed at the scale of an optical wave-
length) (Goodman, 1976) or when light is scattered in random media in general
(Piederrière et al., 2004b). However, these two phenomena can be hard to dis-
tinguish (Guyot et al., 2004)

As will seen been in Section F.2.1 most of the investigated quantification meth-
ods in this paper relies on shapes and distances, rather than pixel intensities. In
relation to process control this pose a significant advantage as the quantification
of the signal hereby becomes independent of variations in the system response
(light intensity, detector sensitivity, etc.), which is desirable (Chen and Sun,
1991). Furthermore, the quantification methods will be subjectively evaluated
on two data sets.

The first data set consists of commercially available dairy products, and is used
to investigate what kinds of information the different 2DSLS quantification can
be related to (chemical composition or microstructure). The second data set
is a milk fermentation to investigate how each of the quantification methods
develops throughout the protein aggregation where the characteristic structure
of fermented milk products is formed. Optical changes throughout milk fermen-
tations have been studied thoroughly in relation to cheese making (O’Callaghan
et al., 1999, 2002; Lucey, 2002; Castillo, 2006).
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Figure F.2: A schematic view of the 2DSLS system setup.

F.2 Materials and Methods

F.2.1 2D Static Light Scattering

A schematic view of the 2DSLS system is shown in Figure F.2, and an exam-
ple of the 2DSLS signal was shown in Figure F.1. The system setup consists
of a super continuum light source (SuperK Extreme, NKT Photonics, Birkerød,
Denmark), filtered by an acousto-optic tunable filter (SuperK Select, NKT Pho-
tonics, Birkerød, Denmark), and the combined system produces a polarised laser
beam, in the range 470-1000nm, at high spectral resolution.

The laser is focused on the sample surface using an beam focusing lens (focal
length = 40mm) at an oblique incident angle (45◦), which results in a Gaussian
beam with a wavelength dependent beam waist ranging from 100-200µm. For
each selected wavelength images are captured using a CCD camera (AM-800GE,
JAI, Yokohama, Japan) with a 6.5cm spacer and an objective lens (LM50XC,
Kowa Co. Ltd., Nagoya, Japan). The resolution of the images is 2472 × 3296
pixels with a spatial pixel size of 3.2 × 3.2µm. High dynamic range imaging
is applied in order to ensure an appropriate signal-to-noise ratio (Mann and
Picard, 1994).

As previously mentioned, the 2DSLS signal contains contributions from a lot
of different phenomena, and Sections F.2.1.1 through F.2.1.2 describes different
approaches to quantify the individual phenomena.

F.2.1.1 Multiple Scattered Light

Figure F.3 presents typical pixel intensity profiles that can be extracted from
the diffuse reflectance images. Previously we have quantified such intensity
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profiles in the 2DSLS signal through physical models (Nielsen et al., 2014) and
a similar, yet simplified approach in (Skytte et al., 2014b). We will shortly
summarise both approaches in this section.

(a) Scattering direction profile
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Figure F.3: Examples of pixel intensity profiles that can be extracted from
the diffuse reflectance images. (a) is extracted through the light
incident point and along the scattering direction, while (b) is ex-
tracted orthogonal to the scattering direction. Additionally for
(a) the symmetry break due to the oblique incident angle of the
light is visualised.

Multiple scattered light can be quantified by means of the intensity profile in
the scattering direction, by fitting it to a analytical expression determined by
the combined contribution of µ′s and µa. The symmetry break in the applied
intensity profile is dependent on the mean free path (MFP) and thereby the
absolute values of µ′s and µa. The MFP can therefore be used together with
the analytical expression to obtain absolute estimates of µ′s and µa, which are
invariant toward variations in the system response (Wang and Jacques, 1995;
Lin et al., 1997; Nielsen et al., 2014). Moreover, the wavelength dependency
of µ′s can be used to obtain additional information on particle size and particle
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density of the investigated sample (Graaff et al., 1992). This is done by fitting
µ′s to a power function

µ′s = αλ−β , (F.1)

where λ is the wavelength, and α and β relates to the particle concentration
and average particle size respectively. High values of α corresponds to high
particle density, while low values of β corresponds to a rapid scattering decay
across wavelengths, and thereby a small average particle size as explained by
Mie theory (Mie, 1908).

Alternatively, a simplified approach to quantifying the multiple scattered light is
also considered. Here the intensity profile orthogonal to the scattering direction
is considered. By applying a logarithmic transform to the profile twice, the
outer parts becomes approximately linear and can hereby be described by a
linear model. From this model a slope and an intercept can be extracted, which
are both affected by the absorption and scattering properties of the sample.
However, the slope parameter has been found to be more discriminative and
will therefore only be considered in the following. This parameterisation is
however dependent on the system response. The approach was validated in
(Skytte et al., 2014b).

In summary the quantified multiple scattered light will be presented in terms
of µ′s, α, β, and the slope parameter of the loglog model. Values for µa will
not be presented as they primarily reflects water absorption in the investigated
wavelength interval (Martelli et al., 2010).

F.2.1.2 Speckle

The underlying speckle pattern can be extracted by performing a local normal-
isation for all pixel in the image. Thus, each pixel is normalised to zero mean
unit and variance through estimates from the local n×n neighbourhood. Using
5 × 5 neighbourhoods was found to be appropriate, and examples for the ex-
tracted speckle pattern can be seen in Figure F.4 and F.5. From here it can be
seen that depending on the sample, both speckle size and signal-to-noise ratio
varies quite significantly depending on the spatial location in the image.

The average speckle size can be estimated through the full width at half maxi-
mum (FWHM) of the maximum response in the spatial autocorrelation function
(Goodman, 1975). For simplicity we will present the average speckle size for
three different sized regions centred on the light incident point.
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(a) 2DSLS signal

(b) Speckle

Figure F.4: Milk (1.5%) at 900nm. (a) shows the 2DSLS signal while (b)
shows the speckle pattern extracted at the 512×512 pixels region
marked by the black square in (a).
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(a) 2DSLS signal

(b) Speckle

Figure F.5: Fermented milk (1.5%) at 900nm. (a) shows the 2DSLS signal
while (b) shows the speckle pattern extracted at the 512 × 512
pixels region marked by the black square in (a).
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F.2.1.3 Scattering Eccentricity

Effects of the phase function, or g, can be quantified by extracting intensity iso-
contours (see Figure F.1(b)) at specific distances from the light incident point.
By comparing the magnitude of the minor and major axis the eccentricity of the
isocontour can be estimated. One approach to quantifying the eccentricity, is to
perform a principal component analysis (PCA) on the spatial coordinates of all
pixels lying with a given intensity isocontour. From the PCA, the ratio between
the two eigenvalues can be used to describe the eccentricity. The scattering ec-
centricity will be measured for isocontours extracted at three different distances
from the light incident point, along the scattering direction. The eccentricity
is bounded between 0 and 1, and low values the isocontour is almost circular,
while larger values denote a more elongated behaviour.

F.2.2 Data

This section introduces the two dairy based data sets used in this report, and
very briefly how the data sets were collected.

F.2.2.1 Commercial Dairy Products

This data set consists of six commercially available milk products, three milks
and three fermented milks, summarised in Table F.1. All products are ho-
mogenised, and the fermented milks are based on lactic acid bacteria. Thus,
both ingredient composition and microstructure differs throughout the data set,
and the products are expected to span a broad range of scattering properties.
This allows for a meaningful interpretation of the quantified 2DSLS signal in
relation to chemical composition and microstructure. For each product five
repeated measurements were performed using the 2DSLS technique.

F.2.2.2 Milk Fermentation

For the milk fermentation we used commercial UHT milk (1.5% fat, 3.4% pro-
tein), and 2% (w/w) Glucono-δ-lactone (GDL) was used as acidifier. The actual
milk fermentation was performed at 25◦C, and the temperature was kept con-
stant using a water bath (SW2 ±0.2◦C, Julabo Labortechnik GmbH, Seelback,
Germany). Before fermentation the milk sample (2000ml) was heated to 25◦C
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Table F.1: Product information for the six commercial dairy products. The
reference name will be used for the remainder of this report. All
products are homogenised. The first three products are milks and
the next three products are fermented milks, and all fermented
milks are based on lactic acid bacteria.

Product name Reference Fat Protein
name (g/100g) (g/100g)

Arla Lærkevang Sødmælk milk (3.5%) 3.5 3.5
Arla Lærkevang Letmælk milk (1.5%) 1.5 3.5
Arla Lærkevang Minimælk milk (0.5%) 0.5 3.5
Arla A38 Naturel 3.5% A38 (3.5%) 3.5 3.5
Arla A38 Naturel 1.5% A38 (1.5%) 1.5 4.0
Arla A38 Naturel 0.5% A38 (0.5%) 0.5 4.5

in the water bath. During this heating, the milk was kept in a sealed con-
tainer to avoid evaporation of water. When the target temperature was reached
GDL was added and the sample was stirred on a magnetic mixer for three min-
utes. Hereafter 20ml of the sample was extracted and used for small amplitude
oscillatory rheology (Stresstech HR with temperature cell ±0.1◦C, Reologica In-
struments AB, Lund, Sweden) (Bohlin et al., 1984), and 1800ml was used for the
2DSLS measurements, which were performed through a 1.5cm soda lime sight
glass (Lumiglas, F.H.Papenmeier GmbH & Co., Schwerte, Germany). The sight
glass rested on a custom made pedestal, which ensured that the glass was in full
contact with the sample surface.

Rheological measurements were performed every three minutes, and 2DSLS
measurements were performed every two minutes. In order to ensure time consis-
tency between 2DSLS and rheology, linear interpolation was used. Additionally,
the 2DSLS signal at lower wavelengths was found to be corrupted and not feasi-
ble for analysis, thus for the milk fermentations the quantified 2DSLS signal is
only presented for some of the higher wavelengths. The source of error remains
unknown at the time of writing.

F.3 Results

F.3.1 Dairy Products

In this section the results of applying the quantification schemes from Section
F.2.1.1 through F.2.1.2 are presented and discussed for the dairy product data
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Table F.2: Estimates of α and β, cf. Equation (F.1), for the milk product data
set.

Reference name α β
milk (3.5%) 36.1± 0.345 −1.11± 0.038
milk (1.5%) 26.9± 0.185 −1.68± 0.0379
milk (0.5%) 16.0± 0.0967 −2.13± 0.0421
A38 (3.5%) 64.0± 0.874 −1.52± 0.0614
A38 (1.5%) 44.6± 0.268 −1.08± 0.024
A38 (0.5%) 42.3± 0.253 −1.36± 0.0269

set.

F.3.1.1 Multiple Scattered Light

From the reduced scattering coefficient, µ′s, presented in Figure F.6(a), it can
be seen that it follows a monotonically decreasing behaviour, which corresponds
well to light scattering theory (Mie, 1908). The ordering of the products cor-
responds well to what we saw in Nielsen et al. (2013). Furthermore, the error
bars increase as the estimated µ′s increases, and some of the products (milk
(3.5%), A38 (0.5%), and A38 (1.5%)) are not separable for the majority of the
investigated spectrum. The primary reason for the larger error bars is that for
highly scattering samples the MFP becomes short and hard to resolve using the
current detector system. This directly introduces measuring noise to the final
estimates of µ′s.

In Table F.2 values for α and β of Equation (F.1) are provided. As previously
mentioned, α relates to particle concentration and β relates to the average par-
ticle size. For milk, the interpretation is straightforward. As the protein content
is equal for all milks, c.f. Table F.1, only the fat content changes, which means
that the particle concentration decreases as the fat content is lowered. This
corresponds well to the decrease in α. Additionally, the average particle size
decreases, as the protein structures (20-400nm) are significantly smaller than
the fat structures (100-10000nm) (Walstra et al., 2010), which corresponds well
to the decreases in β as the fat content decreases. For A38, the behaviour is
a little more complex, as the protein content increases while the fat content
decreases, cf. Table F.1. Where α decreases as expected when looking at the
total amount of fat and protein, the behaviour of β does not follow the trend
seen for the milk products. However, the β value for A38 (3.5%) is significantly
different from that of a similar product reported in Nielsen et al. (2013), for this
we have no final explanation.
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Moving on to the slope parameter in Figure F.6(b), a very different behaviour
can be found when compared to µ′s. The general near-convex behaviour of
the slope parameter can most likely be contributed the combination of the light
delivery system and the sensitivity of the CCD detector setup. The output power
of the light decreases when approaching the lower wavelengths, and the quantum
efficiency of the CDD decreases as it approaches the higher wavelengths. This
implies the expected dependence on the system response when using the slope
parameter. On the other hand, the ordering of the products appears to be very
similar to that of µ′s, however the slope parameter appears more reproducible
than µ′s. Furthermore, the parameters for all products are separated for large
parts of the investigated wavelength spectrum. Thus, while the slope parameter
is not as interpretable as µ′s, it can still be a feasible way of quantifying the
2DSLS signal. This was also concluded in Skytte et al. (2014b).
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Figure F.6: Multiple scattered light quantified for the dairy products data set.
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F.3.1.2 Speckle

Moving on to the speckle part of the signal, we have estimated the average
speckle size for different n×n regions (n ∈ {100, 300, 500}) centred on the light
incident point. For n = 100 in Figure F.7(a), the average speckle size does
not seem to be very reproducible, and the error bars are relatively large. The
reason for the large error bars for n = 100 may be found in Figure F.5(b).
Here it can be seen that the speckle size is not very well defined near the centre
of the signal and there appears to be a lot of different speckle contributions.
This can potentially result in very different estimates of the average speckle
size in 100 × 100 region. However, the problem appears to be alleviated when
considering larger regions.

Thus, for n = 300 in Figure F.7(b) the error bars, for most products, become sig-
nificantly smaller and the discriminative properties of using the average speckle
size becomes clearer. Contrary to the results for multiple scattered light, an
entirely different ordering of the products is seen. Most remarkable is the dis-
tinction between milk products and fermented milk products, which become
very clear at the higher end of the wavelength spectrum. This suggest that the
speckle can be related to a different phenomenon than multiple scattered light.

For the dense samples, the speckle size seems to be estimated reproducibly for
most wavelengths, however for the less dense samples, milk (0.5%) and milk
(1.5%), the reproducibility appears significantly worse. This could be explained
by Figure F.4(b), from which it appears that the speckle is not well defined for
the milk products. Similar results are seen for n = 500 in Figure F.7(c), however
A38 (3.5%) is suddenly distinguished from A38 (0.5%) and A38 (1.5%), while
the milk products appears less separated. However, the reproducibility appears
a little better.

Contrary to the results of multiple scattered light, there is no distinct monotony
found across wavelengths. Instead there actually appears to be some slow re-
producible fluctuations in the average speckle size across certain wavelength
intervals, e.g. 500-650nm for A38 (0.5%) and A38 (1.5%). In general, the trend
across wavelengths seems very different for all of the investigated region sizes.
These differences between region sizes and across wavelengths, may suggest that
there are several different sources contributing to the observed speckle patterns.
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Figure F.7: Average speckle size estimated for the dairy products data set.
n refers to the size of the region (n × n) in which the average
speckle size has been estimated. The region is centred upon the
light incident point.
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F.3.1.3 Scattering Eccentricity

Finally, the quantified scattering eccentricity was estimated for the intensity
isocontours located m pixels away (m ∈ {100, 300, 500}) from the light incident
point in the light direction. The general behaviour of the eccentricity is repeated
for all values of m as can be seen in Figure F.8(a) through F.8(c). For m = 100
the reproducibility of the parameter estimate is worse than for m = 300 and
m = 500. This is not particularly surprising because isocontours extracted close
to the centre of the 2DSLS signal are smaller and harder to resolve appropri-
ately. Thereby the reproducibility of the parameter estimate increases as larger
isocontours are considered. Furthermore, when considering the higher wave-
lengths the products become well separated. Also, highly scattering products,
cf. Figure F.6(a), have values closer to zero, meaning that the extracted iso-
contour is more circular. This is expected as for highly scattering samples the
light scattering becomes completely random (and thereby isotropic) closer to
the light incident point.

Looking at the actual eccentricity estimates, a slightly different ordering of the
products can be seen when compared to the results of multiple scattered light.
The main difference is found at the high fat products milk (3.5%) and A38
(3.5%), which are now grouped together. This makes sense as fat should be the
primary scatterer in high fat milk products, even for fermented milk products
with the dense protein structures. It should be restated that the reduced scat-
tering coefficient is formulated as µ′s = µs(1 − g), and scattering eccentricity
is primarily related to g, thus some relation between the parameters can be
expected.

However, the most pronounced effect of the eccentricity is the wavelength depen-
dency, seen as sudden collapses and inflations of the eccentricity. Furthermore,
the wavelength dependency is not equal for all products. At the time of writing,
we have three hypotheses on this prominent wavelength dependency. Our first
hypothesis is that it is an effect of the polarisation of the laser. We know this
polarisation is wavelength dependent, thus this may be what is affection the
scattering eccentricity. Our second hypothesis concerns the water absorption
peaks located between 700 and 800nm and between 900 and 1000nm (Curcio
and Petty, 1951). An increase in absorption would decrease the MFP, and
the measured scattering eccentricity would thereby become more circular. The
third hypothesis is that the wavelength dependent behaviour reflects particle
sizes present in the milk products. Protein structures naturally exists as dif-
ferently sized structures, and while the milk products are homogenised (which
results in standardised fat particle size), it has been shown that homogenisation
can lead to multilobed size distributions of the fat particles (Olson et al., 2004).
These hypotheses will be investigated in the future.
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Figure F.8: Intensity isocontour eccentricity estimated for the dairy products
data set. m denotes the distance away from the light incident
point, along the light direction, that the isocontour is extracted.
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Figure F.9: The rheological development for the milk fermentation. The point
where the curve rapidly increases is denoted the gelation point.

F.3.2 Milk Fermentation Data

Based on the observed results for dairy product data set, the results presented
for the milk fermentation will be narrowed down. Thus, the following sections
only present a subset of the quantified parameters for the milk fermentations.
Furthermore, as the milk fermentation presents a time development, results will
only shown for three wavelengths to maintain a clear overview of the results.
The selected wavelengths are 700, 780, and 860nm, which corresponds to the
local minima and maxima from Figure F.8(b). The wavelengths were also found
to be appropriate for the other quantification methods.

The initial condition of the milk fermentation should approximately correspond
to milk (1.5%), however the end condition is expected to be a bit different from
A38 (1.5%). This is expected as different heat treatments have been used, and
furthermore this milk fermentation is performed using, whereas the commercial
products have been created using lactic acid bacteria.

F.3.2.1 Rheology

Figure F.9 shows the rheological measurements. Here it can be seen how the
viscosity (G′) develops throughout the milk fermentation. The rapid increase
in viscosity denotes the so-called gelation point, on which all protein structures
have aggregated. Using the measurements of G′, we will highlight the approxi-
mate gelation point in the following plots of the quantified 2DSLS signal.
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F.3.2.2 Multiple Scattered Light

Looking at µ′s in Figure F.10(a), a clear development is seen before any change
in viscosity are detected. This has also been reported previously in the literature
and most likely corresponds to early rearrangements of the protein structures.
(Alexander and Dalgleish, 2006; Payne and Castillo, 2007). The signal ampli-
tude corresponds well to that seen in Figure F.6(a), and higher wavelengths
seem to span a greater dynamic range as originally reported by Claesson and
Nitschmann (1957).

Looking at α and β in Figure F.10(b) and F.10(c) respectively, they correspond
very well to the underlying mechanics of milk fermentations. Throughout the
fermentation, there should not be changes to the chemical composition, which
corresponds well to the approximate constant level of α. On the other hand the
average particle size is expected to increase as the protein structures starts to
aggregate. This is reflected well in the β parameter. Furthermore, the signal to
noise ratio appears higher for β.

The slope parameter in Figure F.11(a) generally behaves similar to µ′s, however
parameter estimates show significantly higher signal to noise ratio. Thus, while
the wavelength dependency is different between the two methods as seen in
Figure F.6(a) and F.6(b), the actual time development over a single wavelength
appears similar. Furthermore, the behaviour corresponds well to what has been
presented for related modalities (O’Callaghan et al., 1999; Payne and Castillo,
2007).

F.3.2.3 Speckle

The development of the average speckle size for n = 500 can be seen in Figure
F.11(b). It clearly behaves differently from the quantified multiple scattered
light, and the rapid signal increase resembles that of the rheological measure-
ments. There is not much difference across wavelengths, which was expected
when looking at the results from the dairy product data set in Figure F.7(c).
The two data sets were not made under the same measuring conditions, which
indicates the speckle patterns are very dependent on the system setup. This
corresponds well to what has been reported in relation to other speckle modal-
ities (Viasnoff et al., 2002; Guyot et al., 2004; Piederrière et al., 2005). Here,
wavelength as well as aperture size and working distance of the detector systems,
have been reported to affect the speckle pattern.

Looking at the time development of the average speckle size, a sharp signal
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Figure F.10: Parameter estimates for quantified multiple scattered light for
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Figure F.11: Parameter estimates for quantified multiple scattered light,
speckle size, and single scattered light for the milk fermentation
data set.
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increase is seen just before the gelation point. The behaviour is significantly
different from what was observed through multiple scattered light. Actually,
the signal resembles seen from diffusing wave spectroscopy (although inverted),
which measures particle mobility through dynamic speckle patterns (Alexander
and Dalgleish, 2004, 2006). In contrast, the speckle patterns in the 2DSLS signal
are measured statically. However, as the protein aggregates the sample becomes
denser, which likely affects the degree of light interference, and thereby change
the speckle patterns. The static speckle patterns in the 2DSLS signal may po-
tentially be an alternative approach to observing the phenomenon investigated
through diffusing wave spectroscopy.

F.3.2.4 Scattering Eccentricity

Finally, the time development for the eccentricity parameter at m = 300 is
shown in Figure F.11(c). Looking at the ordering of the wavelengths it does not
correspond well to the local minima and maxima seen in Figure F.8(b). As for
the speckle in the previous section, this suggests that the eccentricity parameter
may very well also be dependent on the system setup.

When considering the time development of the eccentricity for m = 300, the sig-
nal actually resembles that of the quantified multiple scattered light (especially
the slope parameter) in Figure F.6(b). This may verify the relation between the
eccentricity and µ′s previously hypothesised in Section F.3.1.3. This however,
also suggests that the eccentricity parameter at m = 300 is extracted in a region
where the contribution off multiple scattered light predominates that of single
scattered light. The same behaviour was seen for m = 100, albeit with lower
signal to noise ratio in the estimated eccentricity (not shown).

F.4 Discussion and Conclusion

In this report three different light phenomena: Multiple scattered light, speckle
interference pattern, and single scattered light, were identified in the 2DSLS
signal, and further attempted quantified.

Multiple scattered light has previously been investigated in detail, and physical
models have previously been developed (Wang and Jacques, 1995; Lin et al.,
1997). We applied the physical model which relies on resolving the MFP in the
signal, and thereby providing an absolute estimate µ′s, and furthermore α and β.
The physical modelling provided interpretable coefficients, which, for the most
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part, corresponded well to theory. To the best of our knowledge, µ′s, α, and β
have not been reported for entire milk fermentations previously. A simplified
approach was also applied in form of the slope parameter. While this parameter
is dependent on the system response, it was found to be significantly more
reproducible than the physical model. However, it is not nearly as interpretable
and does not provide an analysis across wavelength as the α and β coefficients.
Nevertheless, it was found to show similar dynamics in the time development
for the milk fermentation.

For the speckle pattern, the average speckle size was estimated. Here it was seen
that this resulted in a clear distinction between the milk products and fermented
milk products. The reasoning for this being that the denser samples produces
more light interference. Furthermore, it was found that the time development
of the estimated average speckle size during milk fermentation, resembled the
signal previously seen for diffusing wave spectroscopy Alexander and Dalgleish
(2004, 2006). However, it was also seen that the speckle size is dependent on
both the applied system setup, as well as the spatial region in the 2DSLS signal
in which the speckle size is estimated.

Single scattered light and effects of the phase function was investigated by the
eccentricity of the intensity isocontours. Some remarkable wavelength depen-
dencies were discovered which should be investigated further. The isocontours
close to the light incident point were found hard to resolve, with the current
detector system. Thus, isocontour eccentricity was estimated "far" away from
in a region possibly border lining between single scattered light and multiple
scattered light. As with the quantified speckle, the eccentricity was found to be
dependent on the system setup.

The eccentricity and speckle size measures are both interesting in relation to
process control, as they rely on shape rather than image intensities, thus they
are potentially invariant toward variation in the system response. Thus, in the
future optimal system setup configurations should be investigated further for
both the scattering eccentricity and speckle size parameters. Likewise, suitable
regions in the 2DSLS signal should be determined for both parameters. These
regions should preferably change dynamically according to the scattering of the
sample, such that the same "optical regions" are found in both images. E.g. the
eccentricity is measured two or three MFPs, instead of a fixed spatial distance,
away from the light incident point.
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