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a b s t r a c t

In food quality monitoring, color is an important indicator factor of quality. The CIELab (Lnanbn) color
space as a device independent color space is an appropriate means in this case. The commonly used
colorimeter instruments can neither measure the Lnanb color in a wide area over the target surface nor in
a contact-less mode. However, developing algorithms for conversion of food items images into Lnanb
color space can solve both of these issues. This paper addresses the problem of Lnanb color prediction
from multispectral images of different types of raw meat. The efficiency of using multispectral images
instead of the standard RGB is investigated. In addition, it is demonstrated that due to the fiber structure
and transparency of raw meat, the prediction models built on the standard color patches do not work for
raw meat test samples. As a result, multispectral images of different types of meat samples (430–970 nm)
were used for training and testing of the Lnanb prediction models. Finding a sparse solution or the use of
a minimum number of bands is of particular interest to make an industrial vision set-up simpler and cost
effective. In this paper, a wide range of linear, non-linear, kernel-based regression and sparse regression
methods are compared. In order to improve the prediction results of these models, we propose a
supervised feature selection strategy which is compared with the Principal component analysis (PCA) as
a pre-processing step. The results showed that the proposed feature selection method outperforms the
PCA for both linear and non-linear methods. The highest performance was obtained by linear ridge
regression applied on the selected features from the proposed Elastic net (EN) -based feature selection
strategy. All the best models use a reduced number of wavelengths for each of the Lnanb components.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Monitoring the quality of meat products is a significant concern
in the food industry. Supplying a consistent high quality product
requires a continuous assessment in the meat industry. This
requires a development of on-line inspection methods for auto-
mation of the inspection process (Sharifzadeh et al., 2012).
Conventional assessment methods in this case are based on sub-
jective visual judgment and laboratory tests which are time-con-
suming, destructive and inconsistent in terms of human accuracy.

The visual appearances such as the texture pattern and the
color of the meat are the main criteria for both the manufacturer
and customer. These parameters are linked to the chemical
properties such as the water-holding capacity, intra-muscular
(marbling) and protein content (Sun, 2010). As a result, surface

color is an important parameter for quality measurement in the
meat industry.

One efficient color space for quantification of food items is the
CIELab or Lnanbn color space, due to its precise characteristics
(Mendoza et al., 2006; Brewer et al., 2006). It is a device independent
color space defined by the International Commission on Illumination
– abbreviated as CIE in 1976. Lnanbn has a perceptually equal space.
This means that the Euclidean distance between two colors in the
CIELab color space is strongly correlated with the human visual
perception (Tkalčič and Tasič, 2003). The Ln is the luminance
component and the an and bn are chromatic components.

Colorimeters and spectrophotometers are traditional instru-
ments for measurements of colors such as Lnanbn in the food
industry. They provide a quantitative measurement in a similar
way to the human eye (Wu and Sun, 2013; Balaban and Odabasi,
2006). Colorimeters, such as the Minolta chromameter or the
Hunter Lab, are used to measure the color of primary radiation
sources that emit light and secondary radiation sources that reflect
or transmit external light (León et al., 2006). Therefore, color
values are obtained optically but not mathematically. Before doing
the measurements, the instrument is usually calibrated.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2013.09.004

n Corresponding author. Tel.: þ45 50361337; fax: þ45 45882673.
E-mail addresses: sarash@dtu.dk, sarasharifzade@yahoo.com,

sarash@dtu.dk (S. Sharifzadeh), lkhc@dtu.dk (L.H. Clemmensen),
cbo@teknologisk.dk (C. Borggaard), sst@teknologisk.dk (S. Støier),
bker@dtu.dk (B.K. Ersbøll).

Engineering Applications of Artificial Intelligence 27 (2014) 211–227

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2013.09.004
http://dx.doi.org/10.1016/j.engappai.2013.09.004
http://dx.doi.org/10.1016/j.engappai.2013.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2013.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2013.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2013.09.004&domain=pdf
mailto:sarash@dtu.dk
mailto:sarasharifzade@yahoo.com
mailto:sarash@dtu.dk
mailto:lkhc@dtu.dk
mailto:cbo@teknologisk.dk
mailto:sst@teknologisk.dk
mailto:bker@dtu.dk
http://dx.doi.org/10.1016/j.engappai.2013.09.004


Traditional instrumental measurements can only measure the
surface of a sample that is uniform and rather small (Balaban
and Odabasi, 2006). Hence, they cannot completely represent the
surface characteristics especially when it is non-uniform and
highly textured as is the case for meat. In order to have a global
representation of the target surface, computer vision techniques can
be used to quantify the color (Wu and Sun, 2013). This leads to the
formation of a 3D map of Lnanbn color values. Such a map represents
the spatial characteristics of the whole surface instead of a small area.
Color space conversion techniques can be employed to transfer an
image into the Lnanbn space with the desired numerical and visual
specifications. Thereby, the images of the meat samples from other
color spaces such as RGB or CMYK can be transferred into Lnanbn

space. In this way, it is possible to convert each image pixel into
Lnanbn and therefore, generalize the representation.

Reviewing the literature shows that, conversion to Lnanbn was
mainly performed using RGB images. In Larrain et al. (2008) and
Mendoza et al. (2006) standard sequential transformation into
XYZ color space and then from XYZ to Lnanbn was used for RGB
images of beef and vegetables respectively. In Fdhal et al. (2009),
conversion for the RGB images of the standard color patches into
Lnanbn was performed using BPANN.1 In Cao and Jun (2011) and
Cao and Jun (2008), RBFNN2 and GRNN3 were used for conversion
from CMYK color space to CIELab respectively.

The use of RGB images has some drawbacks. An RGB image,
captured by a digital camera, is formed by filtering the incoming
photons into three broad primary channels representing the color
variables; Red, Green and Blue (RGB). These three variables are enough
to describe a color sensation. However, the intensity recorded in
each channel is an integration over a large range of wavelengths and
therefore, two objects with different spectral radiant power distribu-
tion may seem to have similar colors in an RGB image. This is called
metameric failure, which means matching colorimetrically under one
illumination, but differ under another. It occurs when the spectral
radiant power distribution of two objects are different, but the rough
splitting of photons fails to observe this Dissing et al. (2010). In
addition, RGB is a device dependent color space and the color of an
object may be slightly different in two different camera records.

Multispectral imaging is an alternative for solving these limita-
tions. In a multispectral imaging system, the sampling frequency
of the electromagnetic spectrum is high and images are formed in
very narrow bands compared to the three broad intervals used
in standard RGB imaging. Therefore, the distribution of incoming
photons for each pixel is approximated correctly. Besides the
visual bands that characterize the color information, the higher
wavelengths such as NIR are related to the chemical character-
istics. Therefore, spectral imaging has been widely used for food
quality control applications (Gamal et al., 2009; Dissing et al.,
2009; Sharifzadeh et al., 2013).

So far, multispectral imaging has never been used in color
conversion of food items. Color conversion using the spectral
images can be done based on statistical predictive models. The
advantage of such methods over the standard matrix transforma-
tion was investigated in León et al. (2006). In that work, a
sequential transformation was used for conversion of the RGB
images of color samples into Lnanbn. In addition, OLS4 linear
regression and ANN5 with early stopping generalization were
employed and their results showed that the ANN model obtained
the best performance. In Dissing et al. (2010), the multispectral

images of the standard color patches were transformed into the
CIE-XYZ using linear regression models.

This paper focuses on conversion of multispectral images
(430–970 nm) of different types of raw meat into Lnanbn units. In
the following, we explain the main points investigated in
this paper:

Since the food items can have variation, it is important to create
and validate the prediction models on food products. Therefore,
the use of real meat samples instead of the color patches for
building the prediction models was investigated. Uncooked meat
is translucent and transparent. Therefore the light reflected from
it, not only comes from its surface but part of it comes from below
the surface. Meat also has structure due to fibers with orientation.
The color patches do not have structure and the light is reflected
directly from the surface. Therefore, a model built on color patches
do not work well on raw meat samples.

Due to the fact that the vision systems with their spectra are
costly and not feasible to implement in the industry for online food
productions, the sparsity is important and performing predictions
using a minimum number of wavelengths would make the required
vision system more cost efficient. Therefore, we propose a new
supervised feature selection strategy based on EN and lasso6 regres-
sion as a pre-processing step. The selected features were compared
with PCA using three different regression strategies. A complete
comparison between linear, non-linear and kernel-based regression
methods was performed, which we did not see in the previous
works. In order to have a general and fair judgment about the
methods, the original data set was divided randomly into 25 training
and test sets and the regression methods were tested on all of them
and the average results were considered.

Finally, the results of the spectral images were compared with
the RGB images.

The rest of the paper is organized as follows; Section 2 is about
color description and Section 3 describes the data preparation.
In Section 4, we describe linear, non-linear and kernel-based
regression methods respectively. Section 5 is about the proposed
supervised linear feature selection algorithm. Experimental results
are presented in Section 6. Finally, there is a conclusion for this
paper in Section 7.

Fig. 1. Lnanbn 3D color space.

1 Back Propagation artificial neural network.
2 Radial basis function neural network.
3 Generalized regularized neural network.
4 Ordinary least square.
5 Artificial neural networks. 6 Least angle shrinkage and selection operator.
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2. Color description

In principle, there are two methods for describing color;
the spectral and the tristimulus data description (X-Rite, 2004).
Spectral data, describes the surface properties of the colored
object. It demonstrates how the surface affects (reflects, absorbs,
transmits, or emits) light. Conditions such as lighting changes, the
uniqueness of each human viewer, and different rendering meth-
ods have no effect on these surface properties. In this paper, the
multispectral images of meat are the input images.

The tristimulus data which is a 3D color space, describes
the color of an object, as it appears to human eye or sensor, and
as it would be reproduced on a device such as a monitor or printer.
A CIELab color could be considered as a point in a 3D coordinate
color space as shown in Fig. 1. On the other hand, RGB and CMYK
color representation describe a color as three values that can be
mixed to generate the color. In contrast to these color spaces,
CIELab is device-independent, meaning that the range of colors
in this color space does not depend on the characteristics of
a particular device, or the visual skills of a specific observer or the
lightening condition. In addition, the RGB and CMYK color spaces
are much smaller than the range of colors that is visible to the
human eye.

In this paper, the output color is CIELab which is a uniform and
widely used color scale. In this color space, Ln defines the lightness
and ranges from 0 to 100; an denotes the red/green value; and bn

the yellow/blue value. The range of both chromatic components
is between �128 and 128. This Color space resembles a three-
dimensional space and uses rectangular coordinates based on the
perpendicular yellow-blue, green-red and illumination axes as
shown in Fig. 1.

3. Data preparation

The meat data for this work was provided by the Danish Meat
Research Institute. Fig. 2 shows six different samples of meat from

the used data set. In this data set, there were images of different
types of turkey, chicken, beef, veal and pork.

In order to prepare the reference Lnanbn measure, two Minolta
Chroma Meters CR300 and CR400 were used. Each Minolta data
was acquired at eight locations on each meat sample and the
average and standard deviations of these readings were recorded.
Then, the two Minolta results were averaged. The mean values
were used as the reference Ln, an and bn for each sample. The
average standard deviations will be used as a reference for
evaluation of the accuracy of the prediction models.

Totally, we used 52 meat samples which were divided ran-
domly into training and test sets 25 times. In each data set, the
number of training samples were 38 which were used for building
the models and the remaining 14 samples were kept as unseen
data for the test step.

For each meat sample, multispectral images were acquired at
20 different wavelengths ranging from 430 to 970 nm using a
VideometerLab. VideometerLab is a multispectral imaging device.7

A sample is placed inside an integrating sphere. On top of the
sphere, there is a camera which achieves a uniform and repro-
ducible illumination. The illuminating diodes achieve the same
level of intensity in all bands. They were calibrated radiometrically
as well as geometrically to obtain the optimal dynamic range for
each LED as well as to minimize distortions in the lens and thereby
pixel-correspondence across the spectral bands. The optimal light
condition avoids shadows and specular reflections (Dissing et al.,
2009).

To form the feature vectors from the multispectral images,
a Region of Interest (ROI) of size 200�200 pixel was selected from
each sample image. In the next step, the pixel gray levels in each
ROI were averaged at each wavelength. Therefore, we finally have
20 features per meat sample. The feature matrix is XN�P , where
N denotes the number of samples and P is the number of
wavelengths. The three output components are LN�1;AN�1;BN�1.

Fig. 2. Six different meat samples from the data set used in this paper.

7 http://www.videometer.com
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For ease of notation, we consider each of them as Y in the
following sections.

One important point about the data set is that, we did not
know the regions, where the measurements were performed.
This means that, there is a deviation or mismatch between the
regions fromwhich, X is formed and the regions that Y values were
measured.

In order to conduct the comparative experiment with the color
checker, the standard X-Rite color checker was used. As shown in
Fig. 3, it has 24 squares of colors in an 4�6 array. The multi-
spectral images of this color checker were prepared in exactly the
same wavelengths and light settings as the meat samples and the
data set was formed in the same way. It has 24 samples in 20
wavelengths. The reference Lnanbn values of each color patch in the
color checker is known.

4. Methods

In this section three regression strategies namely linear, non-
linear and kernel-based methods that were used in this paper are
explained. Due to the limited number of samples, a fivefold CV was
applied on the training data for the optimal choice of model
parameters in all the methods.

4.1. Linear regression

To convert the pixel intensities in the multispectral images
into Lnanbn units, we can simply use the unbiased OLS model
Ŷ ¼ Xβ̂olsþɛ, where ɛ is i.i.d. noise. However, since it is highly
probable that some wavelengths have higher correlation to some
of the output components (Lnanbn), selection and shrinking stra-
tegies can be useful.

One simple regularization method is ridge regression which
uses the L2 norm penalty to shrink some of the regression
coefficients. This decreases the variance of the outputs. Another
efficient regularization method is PLS which selects directions or
components based on both the variance in the co-variates and
their correlation with the response (Hastie et al., 2008). If there is a

lot of variation in X that has no connection to the variation of
outputs and instead, the response is highly sensitive to the low
variations of input, PLS can be a good solution. Therefore, we apply
the PLS regression to improve the result, in the case such scenario
exists in our data.

There are not necessarily prominent changes between images
of all sequences of wavelengths and some of them are highly
correlated. In this case a sparse solution such as lasso which uses
the L1 norm penalty can be employed:

β̂ lasso ¼ argminβ
1
2

∑
N

i ¼ 1
yi�β0� ∑

P

j ¼ 1
xijβj

 !2

þλ ∑
P

j ¼ 1
9βj9

9=
;

8<
: ð1Þ

Here, βj is the jth coefficient and λ controls the shrinkage rate.
Another sparse regression method is EN. EN is in fact a compro-
mise between lasso and ridge. Each regression coefficient is
calculated as a weighted combination of ridge and lasso. EN selects
variables like lasso, and shrinks together the coefficients of the
correlated predictors like ridge (Hastie et al., 2008). The EN
regression coefficients are computed by minimization of the
following function:

β̂EN ¼ argminβ
1
2

∑
N

i ¼ 1
yi�β0� ∑

P

j ¼ 1
xijβj

 !2

þλ1 ∑
P

j ¼ 1
9βj9þλ2 ∑

p

j ¼ 1
Jβj J ;

8<
:

9=
;
ð2Þ

where there are both L1 and L2 penalty terms. The sparse regres-
sion methods result in the use of less wavelengths. As mentioned
before, this is important regarding the economical concerns.

4.2. Non-linear regression

ANN can be used as a non-linear regression solution. Fig. 4
shows the architecture of a simple ANN for regression with one
hidden layer. First,M linear combinations of the input variables are
built and then each combination is transformed using an activa-
tion function hð:Þ:

ϕjðXÞ ¼ hðΣ i ¼ P
i ¼ 1αijxkþα0jÞ; j¼ 1;‥;M ð3Þ

where αij is the weight parameter and α0j is the bias. Then, the
output Ŷ is constructed as a linearly weighted combination of the
non-linear basis functions ϕjðXÞ:

Ŷ ðX;βÞ ¼ f ∑
M

j ¼ 1
βjϕjðXÞþβ0

 !
ð4Þ

Fig. 3. The X-Rite color checker.

Fig. 4. The ANN diagram for regression with one hidden layer.
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βj and β0 are the weight and bias parameters respectively, and
f ð:Þ is an activation function which is usually, the identity function
in the case of regression (Bishop, 2006).

Although this non-linear model is more complex and difficult
to interpret, it may probably be more accurate for some types
of data. Therefore, when there is no need for a detailed inter-
pretation of the model, ANN may be a good solution which is the
case for color conversion. The choice of basis function and the
solution strategy for the weight parameters vary in different ANNs.
In addition, the architecture of an ANN is also based on the
number of hidden layers and neurons. As mentioned in Section
1, in many previous color conversion works, different types of ANN
were used. Therefore, in this work, their application was investi-
gated and compared with the linear methods.

4.2.1. ANN modeling and parametrization
One widely used ANN is the single hidden layer feed-forward

ANN which uses a sigmoid basis function:

ϕjðXÞ ¼ sjðXÞ ¼
1

1þexpð�SjXÞ
ð5Þ

Here, Sj is the scale parameter which controls the activation
rate. A large scale may cause hard activation around 0.

Another type is the RBFNN that uses a non-linear RBF8 based on
the Euclidean distance or Mahalanobis distance (like a Gaussian
kernel function):

ϕjðXÞ ¼ ρjðJX�μj J Þ ð6Þ

where μj is the center vector of the jth hidden node and ρis the
distance function. The RBFNN also has one hidden layer.

The parameters of the ANN models are commonly estimated by
minimization of the sum of square function shown in Eq. (7), using
the BP procedure (Hastie et al., 2008). This is a gradient descent
process.

EðβÞ ¼Min ∑
N

n ¼ 1
‖Ŷ ðXn;βÞ�Y‖2 ð7Þ

BPANN is a well-known and widely used network and it has
been used for color conversion problem as mentioned in Section 1.
Although it is a powerful algorithm, it has some drawbacks.
One important problem with the error function minimization for
complex and flexible models is the over-fitting on training data
and poor generalization. Because a complex model is more flexible
in capturing the training data behavior. Other problems are slow
convergence and the possibility that the network converges to a
local minimum. The ANN algorithms are also sensitive to the initial
points and it is recommended to restart the algorithm several
times for this reason. We applied the simple BPANN as well as the
generalized BPANN with early stopping on our data set. They were
also used in León et al. (2006) and Fdhal et al. (2009), for
conversion from RGB into Lnanbn units. Although they worked fine
in some of the 25 random sets, the results were poor for most of
them and the average results were not satisfactory. This is because
of the above mentioned problems. Due to this oscillating and
unstable behavior of BP, we employed other types of BPANN.

In the literature, there are ANNs that employ different strate-
gies to overcome these problems (Bishop, 2006; Bishop and
Tipping, 2003; Hagan et al., 1996). In this paper we applied some
of these strategies and compared their results; The ANN with
Adaptive learning rate and momentum term was tested to accel-
erate the convergence. In addition, different regularized ANNs
were used to constrain the parameters. In the following, the tested
ANNs will be explained in detail.

4.2.2. ANN with adaptive learning rate and momentum term
Considering the error minimization in Eq. (7), the gradient

∇EðβÞ can be obtained by means of back-propagation of errors
through the layers. This gradient is used in the family of gradient
training algorithms which iteratively form:

βkþ1 ¼ βk�ηk∇EðβkÞ; k¼ 0;1;2;… ð8Þ
where βk is the current weight, �ηk is the learning rate and k is
the step number and �ηk∇EðβkÞ shows the search direction. The
BP gradient-based training algorithms minimize the error function
using the above gradient decent or steepest descent method with
constant, heuristically chosen, learning rate.

The learning rate determines how fast a network will learn the
relationships between input and output patterns. A smaller value
of the learning rate means a slower learning process. In fact,
the optimal learning rate changes during the training process, as
the algorithm moves across the performance surface. Therefore,
the performance of the steepest descent algorithmwould improve,
if the learning rate changes during the training process. An
adaptive learning rate attempts to keep the learning step size as
large as possible while keeping learning stable (Hagan et al., 1996).

The idea about using a momentum BP is to stabilize the weight
change and smooth the osculation in the trajectory. Therefore,
a fraction of the previous weight change Δβk is considered
in updating of the current weights βkþ1. Acting like a low-pass
filter, momentum allows the network to ignore small local minima
in the error surface and slide through them. It also speeds the
convergence because, when all weight changes are in the same
direction, the momentum amplifies the learning rate.

Δβkþ1 ¼ γΔβk�ð1�γÞηk∇EðβkÞ; k¼ 0;1;2;… ð9Þ
where γ is the momentum coefficient and should be between
0 and 1. This gives the system a certain amount of inertia since the
weight vector will tend to continue moving in the same direction
unless opposed by the gradient term.

Both the BP with adaptive learning rate and BP with momen-
tum term were applied on the 25 data sets.

4.2.3. Regularization of ANN
Feed-Forward ANN regularization: The simplest regularizer is

the quadratic in which, a penalty term is added to the error
function and penalizes the sum of weights toward zero similar to
the regularization of the linear methods. The results of this
method were acceptable on the validation sets and some of the
test sets. However, the average test results were not satisfactory,
showing very unstable and oscillating response on the different
sets. This may happen due to the convergence in a local minimum.

These poor results will not be presented in this paper. Instead,
the Bayesian regularization was used. It is an interesting approach
which estimates the ANN parameters by a probabilistic approach
(Bishop, 2006). Both the model output targets Y and parameters
β are characterized as random variables with normal distributions.
Then, the Bayesian rule is applied, to calculate their prior and
posterior probabilities. Consequently, the predictive distribution of
the output is obtained, using the sum and product rules for
probabilities as shown in Eq. (10). For more details we refer to
(Bishop, 2006; Bishop and Tipping, 2003).

PðŶ jX;YtrÞ ¼
Z

PðŶ jX;βÞ:PðβjYtrÞ dβ ð10Þ

where, Ytr denotes the data used for training the model. The
averaging nature of the Bayesian method over many different
possible solutions solves the over-fitting problem.

Another regularized ANN that was tested is the Nr_quadratic
neural regressor with a quadratic cost function from DTU:toolbox
(Kolenda et al., 2002). This is a two layer feed-forward ANN with8 Radial basis function.
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a hyperbolic tangent non-linear functions for the hidden layer and
linear output layer. The weights of the ANN are optimized with a
MAP9 approach and the quadratic error function is augmented
with a Gaussian prior over the weights. An adaptive regularization
is used to prevent the over fitting. For more information, we refer
to the documents provided in Kolenda et al. (2002).

BPANN are sensitive to the number of neurons in their hidden
layers. Too few neurons can lead to under fitting and too many
neurons can cause over fitting. For this reason, for training of all
the ANN algorithms described in Sections 4.2.2 and 4.2.3, loops are
used for the best choice of the number of hidden nodes. Algorithm
1 shows the procedures used to train the ANN model. In each CV
iteration, there is a loop on hidden nodes size. There is also
another loop which repeats the training for each fold and each
hidden node size several times. This will restart the network,
training from different initial points and also helps to avoid falling
in a local minimum. The output network from this algorithm will
be used for the test data.

Algorithm 1. Training algorithm for ANNs described in Sections
4.2.2 and 4.2.3.

Inputs: Training data (Xtr ;Ytr)
Initialization:

� HD¼vector of hidden neuron size
� Rep¼number of repetition times
� Initialize the 5 fold indices

Algorithm:
1. For cv¼1,…,5 repeat:

Divide the inputs into training and validation sets
2. For nhd¼1,…,HD repeat:
3. For rp¼1,…,Rep repeat:

Train the ANN with nhd number of hidden nodes
Calculate the training error matrix (HD�Rep)

End loops 2 and 3
Find the vector of minimum training error (1�HD)
Find their corresponding trained ANN
Use these ANN to calculate the validation error (cv�HD)

End loop 1
� Find the minimum validation error
� Find the corresponding ANN with best nhd

Output: Best trained ANN and validation error

RBFNN Regularization: For generalization of the RBFNN, the
GRNN is used (Specht, 1991). In GRNN, the best prediction with
minimum variance is obtained as the conditional mean value of Ytr
given X.

Ŷ ðXÞ ¼ E〈YtrjX〉¼
Z þ1

�1
YtrPðYtr jXÞ dYtr ð11Þ

This could be calculated using the joint probability. GRNN uses
a nonparametric approach to calculate the joint probability
PðX;YtrÞ by a Gaussian isotropic kernel (Parzen window). The
resulting probabilistic output is shown in Eq. (13). The numerator
is the sum of the weighted training targets which contribute
according to their joint probabilities with the input test sample, to
form the output target. The denominator normalizes the solution.

Ŷ ðXÞ ¼
R þ1
�1 YtrPðX;YtrÞ dYtrR þ1
�1 PðX;YtrÞ dYtr

ð12Þ

Ŷ ðXÞ ¼
∑N

i ¼ 1Y
i
tr exp � D2

i
2s2

� �
∑N

i ¼ 1 exp � D2
i

2s2

� � ð13Þ

where Di ¼ ðX�Xi
trÞT ðX�Xi

trÞ and Yi
tr ;X

i
tr are the ith training sample

values. s is the standard deviation of the Gaussian kernel and
is called the smoothing parameter. As can be seen from this
equation, the contribution weights are in fact the Mahalanobis
distance of the test input from the training samples. This means
that the closer training samples will contribute more in the
prediction of the output target. The smoothing parameter has
great effect on the output prediction. With larger s, more training
data will contribute in the target output than with a small s.
In each CV iteration, we loop over different s values and repeated
the training like in Algorithm 1, for the proper choice of s.

4.3. Kernel-based regression

SVM10 was used as a kernel-based method for regression. SVM
is characterized based on a maximum margin algorithm. Given the
set of training data fðx1; y1Þ;…; ðxN ; yNÞg, SVM finds a f(x) function
that has at most ɛdeviation from the actual target y. For this aim,
the features are mapped to an M-dimensional feature space using
non-linear basis functions ðhðxÞÞ. Then, a linear model is con-
structed in this feature space:

f ðx;βÞ ¼ ∑
M

m ¼ 1
βmhmðxÞþβ0 ð14Þ

To estimate βm and β0, a new type of loss function called
ɛ�sensitive loss function is used:

V ɛðrÞ ¼
0 if jrjoɛ

jrj�ɛ otherwise

(
ð15Þ

The objective function to be minimized is as follows:

minβ;β0
Lðβ;β0Þ ¼ ∑

N

i ¼ 1
V ðyi� f ðxiÞÞþ

λ
2
∑β2

m ð16Þ

The second term in Eq. (16) controls the complexity level of the
model. This optimization leads to a kernel based solution:

f̂ ðxÞ ¼ hðxÞT β̂ ¼ ∑
N

i ¼ 1
αiKðx; xiÞ; α̂ ¼ ðHHT þλIÞ�1Y ð17Þ

where Kðx; xiÞ ¼∑M
m ¼ 1hmðxÞhmðxiÞ. For more information, we refer

to Hastie et al. (2008).

5. The proposed supervised linear feature selection

Feature selection can be used as a pre-processing step before all
the explained methods. It helps to avoid over fitting by reducing
the number of trainable parameters as much as possible.

Since the sparse linear regression methods perform both
feature selection and regression together, it is not expected that
a feature selection step improve their results. But, for non-sparse
regression methods, it can be effective.

In the case of a feed-forward ANN, with a flexible number of
hidden nodes, it is well known that the hidden layer can be
regarded as taking the role of feature selection and dimension
reduction. In in each CV iteration of Algorithm 1, the loop over the
number of hidden nodes performs this selection properly. It has
been demonstrated that CV is a successful model selection method
(Shi and Xu, 2006). In addition, for ANN models, feature selection

9 Maximum a posteriori. 10 Support vector machine.
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can be applied on the input variables XN�P as a pre-processing step
before the regression. It can be combined with any type of neural
network.

One common dimension reduction method is PCA. It projects
the variables orthogonally into a new space in which, they are
sorted according to their variances. Therefore, it is possible to
exclude features with low variance from the model. But, PCA
is an unsupervised feature selection algorithm. This means that
it does not consider the important information in the target
values Ytr and their dependencies to the training spectra Xtr. In
addition, PCA is not a sparse feature reduction method. Because
each principal component is a linear combination of all the
variables.

However, according to the reasons described in Section 1,
we are interested in using a minimum number of wavelengths.
Although the sparse linear regression methods such as EN and
lasso perform this, to improve the prediction results, we propose
to use them for supervised linear feature selection. As described
in Section 4.1, these methods will remove the redundant
and irrelevant variables from the model, even with low or high
variance. Algorithm 2 shows the different steps of our proposed
supervised feature selection algorithm to form the reduced feature
sets from EN.

In Algorithm 2, the vector Freq was used to record the
number of times each wavelength had non-zero regression
coefficients and w was the vector of wavelengths. EN regression
was repeated 4 times on each of the 25 input training sets. The
4 repetitions were done to cancel the effect of randomness in CV
loops. At the final iteration, the frequency of being non-zero for
each of the 20 coefficients were obtained. The sorted Freq vector
shows the top frequent non-zero coefficients. Their correspond-
ing wavelengths could be found in the re-ordered version of the
w vector according to the sorted Freq. At this step, the number of
wavelengths, to be used as the final selected features were
determined. For this aim, another iteration over all possible
candidate numbers (1–20) were tested. In the case of higher
number of wavelengths (when N5P) this can be reduced to a
limited candidate list. The average RMSE11 was considered as a
criterion for the final decision. The best number of features
among the 20 candidates corresponds to the one with the
minimum RMSE (n). Finally, the selected wavelengths were
used to form the new training and test feature matrices. The
same algorithm was used for feature selection by lasso. These
two method were compared with PCA.

Algorithm 2. The proposed algorithm for feature selection
using EN.

Inputs: 25 sets of (Xtr ;Xts;Ytr)
Initialization:

� Freq¼vector of zeros (1�20)
� W¼vector of the 20 wavelengths

Algorithm:
1. For all the 25 sets and for rep¼1,…,4 repeat:

Compute βEN by training an EN regression model with
5 fold cv
Add one to the Freq elements with non-zero βEN

coefficients
End loop 1

Sort Freq in descending order
Re-order the corresponding elements inW with respect to

Freq
2. For i¼1,…, 20 repeat:

3. For all the 25 sets and for rep¼1,…,4 repeat:
Compute the RMSE of regression on the training data

using the corresponding first i wavelengths of W
End loops 2 and 3

Average the RMSEs over the 25 sets and 4 iterations
Find the index of the minimum average RMSE among the

20. (n)
Select the first n top wavelengths fromW, (selEN) and form

the 25 sets of XtrEN ;XtsEN
Output: 25 sets of (XtrEN ;XtsEN)

6. Experimental results

In this section, first the evaluation criteria for prediction
models will be introduced. Then, we will show the results from
the experiments on the X-Rite color checker. In the next step,
the results of applying linear, non-linear and kernel-based
models on all the spectral data will be presented. Then, we
will show the results of the same models on the selected
features from both our proposed method and PCA. Since
there were many tables of results, only the box plots are
illustrated here and the complete tables are presented in the
appendix. The RGB images experimental results will be shown
next and also an Lnanbn image will be formed. Finally, there will
be a discussion.

6.1. Evaluation measures for prediction models

R-square (R2), RMSE and ΔE measures are used for evaluation
of the models.

R2 is a statistical measure that shows the amount of data
variation explained by a regression model. In order to calculate the
R2, RSS,12 TSS13 and ESS14 are defined as follows:

RSS¼ ∑
N

i ¼ 1
ðyi� ŷiÞ2; TSS¼ ∑

N

i ¼ 1
ðyi�Y Þ2; ESS¼ ∑

N

i ¼ 1
ðŷi �Y Þ2

ð18Þ
The most general definition of the ðR2Þ or coefficient of

determination is

R2 ¼ 1�RSS
TSS

� �
� 100 ð19Þ

In this definition, ðR2Þ is calculated based on the unexplained
variance by the model or in other words the variance of the
model's error.

RMSE shows the estimated standard deviation of the error and
is calculated as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1
∑
N

i ¼ 1
ðyi� ŷiÞ2

s
ð20Þ

As mentioned in Section 3, the average standard deviation
of the Minolta measurements can be used as a reference
for evaluation of the prediction models. Table 1 shows the
overall average of standard deviations for all the 14 samples in
the 25 test sets. The estimated RMSE as the standard deviation
of the prediction model, can be compared with these measured
values.

11 Root mean square error.

12 Residual sum of squares.
13 Total sum of squares.
14 Explained sum of squares.
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The delta error ΔE shows the color difference. A ΔE of 1 or less
is not perceptible by human eye. AΔE between 3 and 6 is typically
considered as an acceptable match in commercial applications.

Fig. 5. The plot of the ðμ7sÞ in 20 wavelengths for the 24 ROI of the color patches. The horizontal axis shows the wavelength.

Fig. 6. R2 box plots of the Lnanbn prediction for linear models on the 25 random
test sets.

Table 1
The average of the standard deviations over the 25
test sets for Lnanbn components.

Component The average standard deviation

Ln 2.237
an 1.115
bn 0.879

Table 2
The training and test results of the prediction model built on the color checker and
meat data.

LOOCV-EN Color checker model Meat model

Ln an bn Ln an bn

R2
tr% 93.25 95.55 95.71 90.73 94.85 83.92

RMSEtr 4.75 5.08 6.89 2.50 1.25 1.02

R2
ts% 84.06 �482.42 �521.64 87.63 87.28 68.07

RMSEts 3.18 12.20 6.26 2.78 1.76 1.41

ΔEts 12.35 3.22
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Since the ΔE calculations are illuminant-dependent, calculations
from colors viewed or measured under different illuminants are
not comparable (Upton, 2006).

ΔE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� L̂Þ2þða� âÞ2þðb� b̂Þ2

q
ð21Þ

6.2. Color checker test results

As described in Section 1, due to the transparency and texture
structure of the raw meat, the use of multispectral images of meat
may probably work better than the standard color checkers for
color prediction. This was investigated by performing two experi-
ments on the color checker data and meat samples.

In the first experiment, the color checker data was used for
training a prediction model and in the second one, the 25 meat

training sets were used. Then, they were applied for prediction on
the respecting training sets as well as the 25 test sets. The average
results were considered. The linear sparse EN regression was used
to form the prediction model for Lnanbn color components. Since
the color checker data had limited number of samples (X24�20),
LOOCV15 was used for both experiments on the color checker and
meat data. This helps to have good generalization while finding
the optimal model parameters. The results are presented in
Table 2.

As can be seen, both models were capable of predicting on their
own training data. But, the color checker failed to predict the color
components for the meat data as expected regarding the physical
characteristics of the raw meat. The negative R2 shows the high

Fig. 7. The frequency map of the selected wavelengths by EN (left) and lasso (right).

15 Leave one out cross validation.
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RSS in Eq. (19). These results motivate us to use the multispectral
images of meat to build the prediction models.

The errors in the case of the color checker training data was
higher than expected. The reason for this was investigated by
calculation of 0.95% confidence interval of the mean values of the
color patches. First, the standard error of the regions of interests in
the 24 patches of color was calculated from which, we computed
Δx24�20 for the 95% confidence interval of the mean values. Then,
it was used for calculation of the confidence intervals for the three
components and the averaged results were considered.

ΔL24�20 ¼Δx24�20βLð20�1Þ-ΔL ¼ 2:67 ð22Þ

Δa24�20 ¼Δx24�20βað20�1Þ-Δa ¼ 7:34 ð23Þ

Δb24�20 ¼Δx24�20βbð20�1Þ-Δb ¼ 7:90 ð24Þ

These results explain the reason for high RMSEtr for the color
checker. In addition, The average values of the ROIs for the 24 color
patches plus/minus the standard deviation within each region,
along different wavelengths ðμ7sÞ, are plotted in Fig. 5. It shows

that, although the color patches seem to be uniform, there is still
variation in the spectral images of each color patch.

6.3. Linear model results

In this section the results of applying the linear regression
methods described in Section 4.1 are presented. As stated before,
the tables of average results on the 25 training and test sets are
shown in the appendix. In Fig. 6, the box plots of the R2 of the test
results over the 25 different sets are shown. The R2 results for the
Ln and an components were better than bn component. The test
RMSEs (see the appendix), show higher prediction error compared
to the measurements errors shown in Table 1. The training set
results was better than the test set. The best ΔEts was 3.12
obtained from the ridge regression. Since the 25 sets were
generated randomly, possibly some of the training sets did not
include the existing variation inside the original data set. Con-
sidering the fact that the original data set consists of a few samples
of different types of meat, the above mentioned issue, may explain
some far data points from the median in the box plots.

Since we are interested in sparse solutions, the number of
times that the EN and lasso regression coefficients were non-zero
in the 25 sets are illustrated for the three components in Fig. 7. We
call this a frequency map because, it shows the frequency of
having non-zero coefficients for each wavelength. Comparing the
wavelengths with the spectrum of colors shown in the bottom of
the plots, helps to find which wavelengths are mostly selected by
EN and lasso. As can be seen, some near infra-red wavelengths in
all cases were among the top most frequent bands.

6.4. ANN results

In this section, the results of applying the non-linear regression
methods described in Section 4.2 are presented. Since in this paper
different ANNs are compared, their names are contracted for the
ease of notation. For feed-forward ANN, a simple one hidden layer
architecture similar to the Fig. 4 was considered. The algorithm
shown in Algorithm 1 was used for training the generalized feed-

Fig. 8. R2 box plots of the Lna nb n prediction for non-linear models on the 25
random test sets.

Fig. 9. R2 box plots of the Lna nb n components from SVM prediction results on the
25 random test sets.

Fig. 10. The average of the first 2 PCs from the 25 random data sets versus the
wavelengths.
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forward ANN with adaptive learning rate (CVHA), momentum BP
(CVHM), Bayesian regularization (CVHB) and Neural regressor
with quadratic cost function (CVHQ). The range of hidden neurons
sizes were f5;10;20;40;60;80;100g. Similar algorithm was used
for training the GRNN (CVSG). However, a loop for the best choice
of the smoothing value s was used instead of the hidden neurons
loop. The regularized RBFNN model is a 2 layer network. For the
smoothing value s, 100 different values were generated logarith-
mically between 0.01 to 10.

Fig. 8 shows the box plots of R2 test results. We can see that,
there are some very far outliers from the median which may affect
the overall average results significantly. Such a case can be seen for
example, for the CVHB prediction for bn component. This may
happen in ANN due to the inappropriate initial point or a
convergence to a local minimum. Among the tested ANNs, the
GRNN (CVSG) shows the lowest performance. Like linear models,
the non-linear models work fine on the training data. The best

training results are obtained from the CVHQ, CVHB and CVHA and
for the test data, the best two models are the CVHQ and CVHB. The
best ΔEts was 3.85 obtained by CVHQ. The average training results
are satisfactory however, the test results are not better than the
linear models using all the 20 wavelengths (see the appendix).
One reason can be the high number of input variables. Regarding
the higher complexity of the ANNs than the linear models,
reducing their input variables may improve the results.

6.5. SVM results

Fig. 9 shows the box plots of R2 test results for the three
components using SVM. The results of the SVM regression model
does not show a significant improvement compared to the
previous methods. During training the model, a linear kernel
obtained the best result and was used in the final model. In

Fig. 11. The frequency map of the selected wavelengths by EN and lasso in four iterations for each of the 25 sets.
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contrast to the previous models, there are no outliers in the output
results.

6.6. Feature selection results

The proposed supervised feature selection strategy based on
EN and lasso in Section 5 as well as PCA were used to reduce the
number of wavelengths. Then the resulting reduced spectral data
was employed in training the models.

First, a PCA analysis was performed on each of the 25 data
sets. The 97% of the variation was explained just by the first two
PC components in all cases, which was a very significant
reduction in data dimension. Fig. 10 shows the average of the

selected PCs in the 25 data sets with respect to the wavelengths.
As can be seen, both PCs enhance the higher part of the
wavelengths corresponding to the NIR wavelengths. The first
PC which describes more than 90% of the variations has another
peak around the red color area, that corresponds to the different
color ranges of the meat samples and can explain the correlation
with the an component. However, the second component shows
a negative correlation peak in the red color area. It also has two
small peaks in blue and yellow ranges which explains the bn

color component.
The second and third sets of reduced features were formed

using the Algorithm 2 in a supervised approach. Fig. 11 shows the
frequency map of the 20 wavelengths by EN and lasso. Similar to
the PC components, the near infra-red wavelengths have high
frequencies in all cases specially, for the an component. In addition,
some visible bands were among the high frequent wavelengths.
These frequencies were sorted in a descending order and their
corresponding 20 wavelengths were also re-ordered. Then, for
each of the 25 training sets, a candidate subset of the top
wavelengths were considered and an EN regression was applied
for 4 iterations. The candidate subset length was varied from 1 to
20. The average RMSE results of these 20 candidate subsets are

Fig. 12. The average RMSE results of EN and lasso regression for 20 candidate subsets of the sorted wavelengths.

Table 3
The number of top wavelengths selected by EN and lasso.

Component EN lasso

Ln 16 12
an 8 12
bn 13 13
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illustrated in Fig. 12. The minimum RMSE corresponds to the best
number of top wavelengths. Table 3, shows the final number of
selected bands for each component.

The reduced sets of features obtained from the PCA and the
proposed method were used to build the prediction models. Fig. 13
shows the box plots of the R2 test results for linear, non-linear and
SVM regression methods. This figure just shows the results of the
EN-based feature selection. In the case of linear models, we can
see that by using less bands, the results are better than Fig. 6,
except for the two sparse methods, EN and lasso, as we expected.
Comparison of Fig. 8 with this figure shows that, the use of less
wavelengths did not made considerable changes in the median for
non-linear models. Many outliers can be seen in the both box plots
of the ANN methods. The lowest median among all methods was
for CVSG in all the three components. Comparing Fig. 9 for SVM
with this figure does not show important differences.

The complete results are presented in the appendix. The PCA
did not improve the results in almost all cases. Comparing the
results for the ANN models show some improvements in the
maximum averages obtained on the test sets. This does not mean
that all the non-linear models results were improved by the
proposed features. In the case of SVM results, the most prominent
improvement obtained for the an component. Comparing all the
results, the best ΔEts was 2.87 obtained from the ridge regression
using the EN-based feature selection.

6.7. Comparison with RGB images

In order to investigate the effect of the number of wavelengths
in the accuracy of the regression models, we have extracted the
RGB components from the 20 original bands. Then, these pseudo
RGB features were used to perform Lnanbn prediction using the
best linear and non-linear models from the previous experiments

as well as the SVM method. The average results over the 25 data
sets are presented in Table 4. The prediction result in the case of
Ln component, is good, showing that for brightness component,
the use of three RGB bands may be enough. The results for the
chromatic components are worse than the multispectral bands
specially in the case of the bn component. We can see that the
complex non-linear methods can do significantly better predic-
tions on the features from the limited RGB bands for the chromatic
components, compared to the linear and kernel-based models.
All the ΔEts values are above 4.

Although a real RGB image captured by a CCD camera may not be
exactly the same as the images we formed by band extraction over
the multispectral images, the poor prediction results for the color
components compared to the results using multispectral bands, can
demonstrate the superiority of the multispectral imaging.

6.8. Displaying Lnanbn components

In order to visualize the results of the Lnanbn color predictions, we
made a prediction for all the pixels of a meat sample. To form these
images, one of the trained ridge models on the EN-based feature
selection method was used for each of the three components. Fig. 14
illustrates the pseudo RGB image and the corresponding images of
the Lnanbn components. In the Ln image, the main structure of the
marbled meat is distinguishable. In the an and bn image, we can
observe the color variation in different parts of the meat.

6.9. Discussion

We investigated the use of multispectral images of raw meat for
Lnanbn color prediction. Considering the variation in the results of the
same methods on the 25 random sets, the important role of an
appropriate training set, covering the existing variation of the
population, in success of the prediction model becomes clear.
Another point is that, comparison of the best results of different
models show that, the use of a sub-set of features can improve the
results. In our work, the proposed supervised linear feature selection
algorithm outperformed the PCA for all tested methods. However,
the best results were obtained by applying a non-sparse linear
regression method like ridge on these features. SVM was the next
best method for the selected features. Although the non-linear
methods are more complex and more time-consuming in training,

Fig. 13. R2 box plots of the test data using EN-based Feature selection for linear, non-linear and SVM methods.

Table 4
Average R2 and ΔEts of the test data on pseudo RGB features.

R2 Ridge EN Lasso CVHB CVHQ SVM

Ln 87.53 87.34 87.60 88.13 86.48 87.10
an 47.35 35.03 33.96 49.06 62.00 31.87
bn 14.02 9.11 10.33 28.87 20.84 7.95
ΔEts 4.68 4.95 4.92 4.38 4.30 4.99
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they did not obtain higher results in average, compared to the two
other methods. Their box plots show that, an inappropriate initial
point or a convergence to a local minimum may affect the final
model dramatically and their average results may not improve due to
these few poor outliers. On the other hand, the results show that
more complex models work better on limited number of features.
The Lnanbn predictions from pseudo RGB features support this.

In addition, we found that for prediction of the Ln component,
simple RGB bands give good average result. But, they fails to gain
acceptable results for the chromatic components.

Another important point in terms of the reduction in wave-
lengths is that, for each of the three components, the reduced
number of wavelengths by the proposed method can perform an
acceptable prediction. The best average test results of the all three
strategies and their combination with the pre-processing methods
are compared in Fig. 15. In addition, the comparison of the best
ΔEts of these four approaches are presented in Fig. 16.

The selected features in Fig. 11, showed high frequencies in
selection of the NIR wavelengths together with some visible bands
in all cases. This shows the importance of the spectral imaging.

Fig. 14. (a) The RGB image of a meat sample and (b–d) its corresponding predicted Lnanbn components, respectively.

Fig. 15. Comparison of the best average R2 test results for the linear, non-linear and SVM methods and their combinations with the feature selection (FS) methods.
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In Cao and Jun (2008), the GRNN (CVSG) was suggested for
CMYK color conversion into the Lnanbn. Considering the tested
non-linear models, we can see that in the case of multispectral
images of meat, this model shows the lowest performance
compared to the other models. However, there was no comparison
in Cao and Jun (2008) between different ANN models. In Larrain
et al. (2008), the regression of colorimeter measurements on RGB
images of only beef samples gained the highest R2 for an compo-
nent (96%), while for the two other components it was less than
60%. In our work, the best R2 was also obtained for an component
and the R2 of the two other components was higher. However, the
best ΔEts in our work was less than that work (2.87 and 1.57
respectively). The main reasons are the random division and
averaging over 25 test sets and also the use of different meat
types (veal, beef, chicken, pork, etc.) than one item, makes the
fitting task with the prediction models more difficult.

We believe that, the mismatch between the regions where
measurements were performed and the ROI regions are likely one
main source of error in our models. In addition, as stated before,
the random division of the original data set,with limited samples
of many varieties, into training and test sets can be another source
of error. Because it raises the possibility that some of the training
sets do not cover the existing variability inside the original data set
and therefore, the average results be decreased.

7. Conclusion

In this paper, multispectral images of different kinds of raw
meat were used for prediction of the Lnanbn color components,
which is useful for food quality inspection. The use of meat images
was preferred over the use of standard color checkers due to the
special characteristics of raw meat such as transparency and fiber
structure. Results from the experiments supports this. Three
regression strategies, linear, non-linear and kernel-based (SVM)
were compared for color conversion. In addition, finding a sparse
solution with a minimum number of wavelengths is important,
since they are economically more effective for industrial
vision systems. Therefore, a supervised linear feature selection
algorithm was proposed. This method was compared with PCA
using all three strategies. In order to generalize the results and
make a reliable comparison between different methods, the
original data set was randomly divided 25 times into training
and test sets. Comparison of the results showed that the proposed
feature selection strategy with non-sparse linear regression

gained the best average results for all the color components.
Finally, comparison with the pseudo RGB data showed the super-
iority of the multispectral data for prediction of the chromatic
components.
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Appendix A

See Tables A1–A10.

Table A1
Average R2 of the training and test data for linear models.

R2% OLS Ridge EN Lasso PLS

Training
Ln 96.64 94.19 91.00 91.67 92.90
an 97.87 96.84 94.82 96.13 96.46
bn 92.98 86.66 82.73 83.47 84.12

Test
Ln 83.40 89.04 87.40 87.27 86.52
an 80.45 87.26 87.13 88.56 86.11
bn 62.61 68.61 67.16 69.33 64.39

Table A2
Average RMSE and ΔE of the training and test data for linear models.

RMSE OLS Ridge EN Lasso PLS

Training
Ln 1.51 1.98 2.45 2.37 2.17
an 0.80 0.97 1.25 1.08 1.03
bn 0.67 0.93 1.05 1.03 1.02
ΔEtr 1.59 2.09 2.61 2.47 2.30

Test
Ln 3.23 2.65 2.80 2.83 2.97
an 2.11 1.75 1.77 1.67 1.80
bn 1.51 1.39 1.44 1.38 1.49
ΔEtr 3.61 3.12 3.26 3.18 3.38

Fig. 16. Comparison of the best average ΔEts for the linear, non-linear and kernel-based methods and their combinations with the feature selection (FS) methods.
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Table A3
Average R2 of the training and test data for ANN models.

R2% CVHA CVHM CVSG CVHB CVHQ

Training
Ln 95.87 93.93 91.27 94.53 99.82
an 96.04 94.77 92.69 96.03 99.70
bn 91.25 91.40 75.45 92.00 98.15

Test
Ln 73.18 73.88 68.65 81.68 79.96
an 73.94 81.13 50.86 79.65 74.59
bn 69.72 53.29 18.00 56.60 70.86

Table A4
Average RMSE and ΔE of the training and test data for ANN models.

RMSE CVHA CVHM CVSG CVHB CVHQ

Training
Ln 1.63 1.98 2.21 1.89 0.23
an 1.07 1.25 1.42 1.08 0.19
bn 0.70 0.74 1.15 0.72 0.26
ΔEtr 1.84 2.18 2.49 2.04 0.26

Test
Ln 3.82 3.89 4.34 3.37 3.59
an 2.38 2.13 3.39 2.21 2.43
bn 1.37 1.60 2.30 1.55 1.33
ΔEtr 3.90 3.99 5.19 3.70 3.85

Table A5
Average results for the training and test data by SVM regression.

Component R2
tr% RMSEtr Rts% RMSEts

Ln 89.74 2.62 87.49 2.79
an 88.11 1.90 75.71 2.44
bn 82.55 1.07 67.78 1.41
ΔEtr 3.073
ΔEts 3.62

Table A6
Average R2 of the training and test data for linear models using the selected
features.

R2% OLS Ridge EN Lasso PLS

Training
Ln EN 95.25 93.92 90.48 90.88 92.97

Lasso 94.68 93.67 90.48 90.92 93.20
PCA 85.45 85.45 85.15 85.13 85.31

an EN 95.47 95.46 89.53 89.39 95.21
Lasso 96.95 96.65 90.32 89.79 96.61
PCA 75.19 75.19 15.46 14.10 38.62

bn EN 90.46 87.57 84.45 83.60 85.34
Lasso 90.45 86.72 83.32 83.83 85.90
PCA 57.28 57.28 55.15 55.06 28.98

Test
Ln EN 85.10 89.30 87.69 88.03 86.57

Lasso 87.50 88.91 87.63 88.03 87.33
PCA 83.47 83.48 84.38 84.38 84.51

an EN 91.42 91.46 76.53 76.43 88.18
Lasso 91.70 91.19 79.88 79.01 90.58
PCA 62.71 62.75 �1.68 �3.27 19.43

bn EN 75.73 73.57 69.26 68.36 73.54
Lasso 75.71 71.69 68.78 68.16 71.20
PCA 44.25 44.32 46.98 47.86 �0.77

Table A7
Average RMSE of the training and test data for linear models using the selected
features.

RMSE% OLS Ridge EN Lasso PLS

Training
Ln EN 1.79 2.02 2.53 2.48 2.16

Lasso 1.90 2.06 2.54 2.48 2.14
PCA 3.13 3.13 3.16 3.17 3.15

an EN 1.17 1.18 1.78 1.79 1.21
Lasso 0.96 1.01 1.71 1.75 1.01
PCA 2.74 2.74 5.08 5.12 4.33

bn EN 0.79 0.90 1.01 1.03 0.97
Lasso 0.79 0.93 1.05 1.03 0.96
PCA 1.68 1.68 1.72 1.73 2.16

ΔEtr EN 1.99 2.18 2.95 2.91 2.36
Lasso 1.99 2.16 2.93 2.90 2.24
PCA 3.98 3.99 5.76 5.79 5.17

Test
Ln EN 3.02 2.60 2.76 2.73 2.96

Lasso 2.82 2.66 2.77 2.73 2.84
PCA 3.22 3.22 3.15 3.15 3.12

an EN 1.47 1.47 2.38 2.39 1.67
Lasso 1.45 1.48 2.23 2.28 1.54
PCA 3.03 3.03 5.15 5.19 4.48

bn EN 1.21 1.29 1.39 1.42 1.29
Lasso 1.21 1.33 1.39 1.41 1.34
PCA 1.85 1.85 1.83 1.82 2.52

ΔEts EN 3.11 2.87 3.54 3.54 3.22
Lasso 3.03 2.99 3.48 3.48 3.17
PCA 4.26 4.26 5.80 5.82 5.37

Table A8
Average R2 of the training and test data for ANN models using the selected features.

R2% CVHA CVHM CVSG CVHB CVHQ

Training
Ln EN 95.39 94.34 93.19 93.12 99.84

Lasso 95.55 92.59 92.80 94.20 99.73
PCA 85.57 87.54 86.54 86.87 91.70

an EN 95.33 93.87 94.42 95.58 99.16
Lasso 95.84 94.73 90.58 96.71 99.45
PCA 85.46 83.83 85.56 83.64 86.09

bn EN 91.65 90.80 70.88 91.67 98.64
Lasso 92.43 76.92 77.66 91.41 98.39
PCA 78.32 74.77 66.30 75.95 80.44

Test
Ln EN 75.63 78.24 68.70 83.45 81.97

Lasso 77.19 72.48 66.17 80.95 79.50
PCA 60.60 72.81 73.65 82.26 79.27

an EN 67.07 74.54 60.20 72.96 82.46
Lasso 78.49 67.59 57.37 76.65 77.17
PCA 35.04 42.97 54.16 61.84 61.77

bn EN 58.56 47.30 16.64 61.50 66.95
Lasso 57.90 37.95 15.37 66.10 68.42
PCA 25.73 41.49 36.18 33.72 48.39
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Table A9
Average RMSE of the training and test data for ANN models using the selected
features.

RMSE% CVHA CVHM CVSG CVHB CVHQ

Training
Ln EN 1.74 1.95 1.94 2.14 0.23

Lasso 1.71 2.06 2.00 1.94 0.31
PCA 3.03 2.88 2.96 2.96 2.34

an EN 1.18 1.35 1.19 1.14 0.42
Lasso 1.12 1.25 1.55 0.99 0.29
PCA 2.08 2.20 2.06 2.21 2.04

bn EN 0.73 0.77 1.24 0.73 0.23
Lasso 0.70 1.04 1.05 0.74 0.26
PCA 1.18 1.28 1.42 1.25 1.13

ΔEtr EN 2.01 2.23 2.23 2.22 0.49
Lasso 1.93 2.33 2.33 2.04 0.48
PCA 3.37 3.41 3.40 3.42 2.92

Test
Ln EN 3.79 3.60 4.37 3.23 3.37

Lasso 3.77 3.84 4.54 3.34 3.50
PCA 4.81 4.16 4.07 3.32 3.54

an EN 2.56 2.38 3.11 2.40 2.07
Lasso 2.24 2.68 3.14 2.33 2.34
PCA 3.79 3.56 3.32 3.03 3.01

bn EN 1.55 1.69 2.33 1.49 1.42
Lasso 1.59 1.84 2.35 1.42 1.38
PCA 2.10 1.88 2.01 2.02 1.80

ΔEts EN 4.10 3.94 5.02 3.64 3.66
Lasso 3.94 4.21 5.28 3.68 3.85
PCA 5.49 4.97 4.85 4.28 4.40

Table A10
Average results of the training and test data for SVM model using the selected
features.

Component Method R2
tr% RMSEtr Rts% RMSEts

Ln EN 89.83 2.62 87.32 2.79
Lasso 89.49 2.66 87.62 2.77
PCA 85.08 3.17 83.05 3.26

an EN 89.67 1.77 78.05 2.31
Lasso 95.64 1.15 90.46 1.55
PCA 73.70 2.82 62.34 3.08

bn EN 81.16 1.11 70.00 1.40
Lasso 80.91 1.12 68.12 1.41
PCA 56.06 1.70 44.68 1.84

ΔEtr EN 3.02
Lasso 2.71
PCA 4.03

ΔEts EN 3.55
Lasso 3.13
PCA 4.31
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