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Abstract The quality of stored minced pork meat was
monitored using a rapid multispectral imaging device to
quantify the degree of spoilage. Bacterial counts of a total
of 155 meat samples stored for up to 580 h have been
measured using conventional laboratory methods. Meat
samples were maintained under two different storage con-
ditions: aerobic and modified atmosphere packages as well
as under different temperatures. Besides bacterial counts, a
sensory panel has judged the spoilage degree of all meat
samples into one of three classes. Results showed that the
multispectral imaging device was able to classify 76.13 % of
the meat samples correctly according to the defined sensory
scale. Furthermore, the multispectral camera device was
able to predict total viable counts with a standard error of
prediction of 7.47 %. It is concluded that there is a good
possibility that a setup like the one investigated will be
successful for the detection of spoilage degree in minced
pork meat.

Keywords Multispectral imaging . Meat spoilage .

Chemometrics . Computational biology . Meat quality .

Non-invasive methods . Converging technologies .

Predictive modelling

Introduction

So far, more than 50 chemical, physical and microbiological
methods have been proposed for the detection and measure-
ment of bacterial safety or spoilage in meat (Ellis and
Goodacre 2001; Byun et al. 2003; Nychas et al. 2008).
However, most of these methods are time-consuming and
provide retrospective information, so they cannot be used
on- or at-line (Ellis et al. 2002, 2004; Nychas et al. 1998,
2008). Additionally, the development in food processing
and preservation technologies [e.g., vacuum packaging
(VP), modified atmosphere packaging (MAP), active pack-
aging, etc] as well as the storage temperature either misused
or even abused in the meat chain (Koutsoumanis and
Taoukis 2006) make it evident that the important and urgent
task of identifying safety and spoilage indicators is a com-
plicated proposition. On the other hand, the meat industry
needs rapid analytical methods or tools for quantification of
these indicators in order to determine and select suitable
processing procedures for their raw material and to predict
the remaining shelf life of their products. The use of micro-
bial metabolites as well as the quantification of fingerprint-
ing e.g. with vibrational spectroscopy instruments in meat
has been continuously recognized as a potential means for
assessing meat quality (Dainty 1996; Nychas et al. 2008).

Recently the potential of using image analysis of digital
colour pictures has been applied for assessing the quantitative
distribution of different tissues in the surface of hams prior to
salting (Sánchez et al. 2008) and for the quantification of fat
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content in salmon fillets (Stien et al. 2007). It is, however, still
difficult with most vision technologies to reliably distinguish
small differences in the appearance of food products, because
the visual variation is typically within shades of red, shades of
green, shades of yellow, or in the case of fried meat within
shades of greyish-brown. A way to combine the strengths of
vision technology and spectroscopy is to use multispectral
imaging in the visual and near infrared range of wavelengths.
This is the case with a videometer, an instrument able to record
spectral reflection properties in narrow bands, thereby making
it possible to assess the surface chemistry maps or hypecubes
of the object of interest (Carstensen et al. 2006; Chevallier et
al. 2006). In short, multispectral images can provide not only
spatial information, such as regular imaging systems, but also
spectral information for each pixel in an image. Thus, using
hyperspectral images, it is possible to assess physical and
geometric characteristics such as colour, size, shape and tex-
ture. Several publications have been written on the subject of
using multispectral imaging for food control (Gowen et al.
2007; Daugaard et al. 2010; Taghizadeh et al. 2010). Multi-
spectral images are a natural source of massive, high dimen-
sional datasets, which may be analyzed using specific
techniques. A discipline, which is gaining ground in the area
of chemical and biological analysis, is the discipline of ma-
chine learning that covers advanced statistical and numerical
methods such as support vector machines, cluster analysis,
neural networks, partial least squares and logistic regression.
Both supervised as well as unsupervised statistical methods
are considered, and may be used in conjunction with multi-
spectral image analysis to relate multispectral images to
chemical reference measurement values or sensory labels.
Clustering algorithms based on data from multispectral
images have been thoroughly investigated to assess food
quality (Tran et al. 2005). In this study, the potential of
multispectral imaging techniques was exploited for the assess-
ment of spoilage degree in pork meat. The specific objective
was to evaluate pork meat quality based on spectral as well as
spatial information using various chemometric techniques,
namely regression and clustering. The aim was to find a
method that would be able to evaluate meat spoilage regard-
less of storage temperature (0, 5, 10, 15 and 20 °C) as well as
different package types (aerobic and modified atmosphere).
The evaluation was based on predicting microbial growth as
well as on classifying between different quality classes as
evaluated by a sensory panel.

Materials and Methods

Experimental Design and Sample Preparation

Fresh minced pork (Sus scrofa domesticus, pH 5.6–5.8)
obtained from different carcasses was purchased immediately

after grinding from the central meat market in Athens and
transported under refrigeration to the laboratory within
30 min. Minced pork was divided in portions of 50 g, packed
individually and stored under controlled isothermal conditions
at 0, 5, 10, 15 and 20 °C in high precision (± 0.5 °C)
incubators (MIR-153, Sanyo Electric Co., Osaka, Japan) for
up to 580 h, depending on storage temperature, until spoilage
was pronounced (intense discolouration and presence of off-
odours) either aerobically (AIR) or modified atmosphere
packaging (MAP). For aerobic storage, meat samples were
placed on Styrofoam trays which were subsequently wrapped
manually with air-permeable polyethylene plastic film. The
underlying objective of the treatment was to simulate the pre-
packagedmeat available in retail outlets. Samples packaged in
MAP were also enclosed in plastic pouches with oxygen
permeability of 6 cm3 m−2 24 h−1 at 20 °C and 50 % RH,
flushed with a gas mixture of 60%CO2/20 %O2/20%N2 and
heat-sealed with a HencoVac machine (Howden Food Equip-
ment BV, The Netherlands). This mixture is a typical gas
mixture used in the meat industry. Oxygen was used in the
packages to maintain the desirable red colour of themeat while
carbon dioxide was used for antimicrobial purposes and nitro-
gen to get a rigid pack. For every time point two samples were
withdrawn for further analysis. The first sample was divided
into two portions; one portion was used for microbiological
analysis and the other for image analysis. The second sample
was also divided into to two portions; one portion was used for
microbiological analysis and the other portion for sensory
analysis. It was assumed that the microbial population in the
first portion of the meat would be representative of the micro-
bial population in the other portion of the meat subjected to
image analysis or sensory analysis. Samples stored at AIR
packaging at 5 and 0 °C were analyzed approximately every
12 and 24 h, respectively, whereas samples stored at 10 and
15 °C were analyzed every 6–7 h. Finally, samples stored at
20 °Cwere analyzed every 4 h. For samples stored atMAP at 0
and 5 °C, analysis was undertaken approximately every 24 h,
whereas samples stored at 10 °C were analyzed every 8 h.
Samples stored at 15 and 20 °C were analyzed every 5 h. In
total, 310 meat samples (160 samples stored in AIR and 150
samples stored in MAP) underwent microbiological analysis
(results are shown as mean values) for all temperatures and
packaging conditions tested. Specifically, 32 and 30 meat
samples were analyzed from each storage temperature at aer-
obic and MAP conditions, respectively.

Microbial Analyses

Duplicate packages from each storage temperature and
packaging condition were analyzed at appropriate time
intervals to allow for efficient kinetic analysis of different
microbial groups. In this study only total viable counts
(TVC) were used for the development of models, although
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Enterobacteriaceae, lactic acid bacteria, pseudomonads,
Brochothrix thermosphacta and yeasts were also analyzed
(Papadopoulou et al. 2011). In particular, in order to esti-
mate the number of viable cells, minced meat samples (25 g)
were weighed aseptically, added to sterile quarter strength
Ringer's solution and homogenized in a stomacher (Lab
Blender 400, Seward Medical, London, UK) for 60 s at
room temperature. Serial dilutions were prepared with the
same Ringer’s solution, and duplicate 0.1- or 1-ml samples
of the appropriate dilutions were spread or mixed on the
following media: plate count agar (PCA, Biolife 4021452,
Milano, Italy) for total viable counts, incubated at 30 °C for
48–72 h; Pseudomonas agar base selective supplement
(PAB, Biolife 401961, Milano, Italy) for Pseudomonas
spp., incubated at 25 °C for 48–72 h; streptomycin thallous
acetate actidione agar (STAA, Biolife 402079, Milano,
Italy) for B. thermosphacta, incubated at 25 °C for 72 h;
violet red bile glucose agar (VRBGA, Biolife, 402185,
Milano Italy) for Enterobacteriaceae counts, overlaid with
the same medium and incubated at 37 °C for 18–24 h; and
de Man–Rogosa–Sharp medium with pH adjusted at 5.7
(MRS, Biolife, 4017282, Milano, Italy) for lactic acid bac-
teria, overlaid with the same medium and incubated at 30 °C
for 48–72 h. Growth data from plate counts were log-
transformed and fitted to the primary model of Baranyi
and Roberts (1994) using the DMFitprogram (available at
www.combase.cc) to determine the kinetic parameters of
microbial growth (maximum specific growth rate and lag
phase duration). In parallel with microbiological analyses,
the pH value of minced pork meat was recorded with a
digital pH-meter (Metrohm pH Lab, Switzerland), the glass
electrode of which was immersed in the homogenised meat
sample after the end of microbiological analysis.

Sensory Analysis

Sensory evaluation of pork samples was performed during
storage by a sensory panel composed of five members (in-
house trained staff from the laboratory) at the same time
intervals as for microbiological analyses as described else-
where (Argyri et al. 2010). The same trained persons were
used in each evaluation, and all were blinded to the meat
sample tested. The sensory evaluation was carried out in
artificial light, and the temperature of the packed product
was close to ambient. The descriptors selected were based
on the perception of colour, smell and taste. The first two
descriptors were assessed before and after cooking for 20 min
at 180 °C in a preheated oven, while the last descriptor was
evaluated only after cooking. Each sensory attribute was
scored on a three-point hedonic scale corresponding to fresh,
semi-fresh and spoiled. The first vague indication of meat
spoilage occurred at the point labelled semi-fresh. Odour
characteristics of minced pork, as determined by special

samples kept frozen and thawed prior to each sensory evalu-
ation, were considered as fresh. Putrid, sweet, sour or cheesy
odours were regarded as indicative of microbial spoilage and
classified the samples as spoiled. Bright colours typical of
fresh oxygenated meat were considered fresh, whereas a per-
sistent dull or unusual colour rendered the sample spoiled
(Skandamis and Nychas 2002; Ammor et al. 2009; Argyri et
al. 2010). Overall, 155 minced porkmeat samples were scored
by the taste panel and discriminated into the pre-defined
groups as fresh (18), semi-fresh (64) and spoiled (73).

Multispectral Imaging System

The data acquisition was done using VideometerLab
(Carstensen and Hansen 2003; Videometer 2009), which
acquires multi-spectral images in 18 different wavelengths
ranging from 405 to 970 nm. The spectral radiation of
the 18 bands is not uniformly distributed over the sampling
area, but rather at wavelengths 405, 435, 450, 470, 505, 525,
570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and
970 nm. The acquisition system records surface reflections
with a standard monochrome charge coupled device chip,
nested in a Point Grey Scorpion camera. The object of interest
is placed inside an integrating or Ulbricht sphere in which the
camera is top-mounted. The sphere has its interior coated with
a matt coating. The coating together with the curvature of the
sphere ensures a uniform reflection of the cast light, and
thereby a uniform light in the entire sphere. At the rim of the
sphere, light emitting diodes (LEDs) with narrow-band spec-
tral radiation distribution are positioned side by side. The
LEDs are placed in a pattern which distributes them uniformly
around the entire rim. When an image is obtained, the LEDs
are turned on successively, and the reflection from that spe-
cific wavelength is recorded by the top-mounted camera. The
result is a monochrome image with 32-bit floating point
precision for each LED type, giving in the end a hyperspectral
cube of dimensionality 1280×960×19. The system is first
calibrated radiometrically and geometrically using well-
defined standard targets, followed by a light setup based on
the type of object to be recorded (Folm-Hansen 1999). The
homogeneous diffuse light, together with the calibration steps,
ensures an optimal dynamic range and minimizes shadows
and shading effects as well as specular reflection and gloss-
related effects. The system has been developed to guarantee
the reproducibility of images collected, which means it can be
used in comparative studies of time series or across a large
variety of different samples (Hansen et al. 2005; Clemmensen
et al. 2007; Gomez et al. 2007; Dissing et al. 2009).

Image Processing and Statistical Analysis

An example of a recorded multispectral image is seen in
Fig. 1a, where the channels are listed according to
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wavelengths mentioned in the previous section. Moreover,
Fig. 1b, c illustrates the mean reflectance spectrum, with
error bars indicating one standard deviation for three differ-
ent locations in the same piece of meat. The mean spectra
are calculated as mean values of all the pixels within each of
the three squares indicated in Fig. 1b. The diversity of
spectra contained within each image may be appreciated
when looking at the difference between these mean spectra.
The largest difference between the spectra is a scaling,
which basically indicates how much light is reflected in
general in a point or in other words the luminosity. Scaling
differences has many causes, but two essential causes are
shadow effects as well as light-scattering effects due to the
topology of the surface. In order to compensate for such
influences, a simple pre-processing step, commonly known
as autoscaling or simple standardization of data (Hastie et al.
2009), which centers all spectra and ensures unit variance,
has been used on the images. Such a pre-processing step will
help enhance the true differences in the spectra, and thereby
improve the later signal processing. Figure 2 shows an
overview of the entire data processing pipeline which has

been performed in order to quantify the spoilage degree. The
images are initially segmented or divided into regions of
interest. This means dividing the images into foreground
and background, meaning only the meat area, except fat
areas, is to be considered in the further statistical analysis.
It is common to use orthogonal transformations such as
principal component analysis to find similar tissues in the
multispectral image space. However, PCA creates orthogo-
nal projection vectors based on a variance maximizing cri-
terion and does not take spatial information into account.
The maximum noise fraction (MNF) (Green et al. 1988) is a
related method, also belonging to the orthogonal transfor-
mation function family, which seeks to maximize the signal
to noise ratio (SNR) instead of the variation. This is done by
estimating the covariance matrix of the spectra,Σ, as well as
the covariance matrix of the noise ΣΔ (Nielsen 1999) and
finding vectors, b, that maximize the ratio of these (the
Rayleigh quotient).

RðbÞ ¼ bTΣΔb

bTΣb

Fig. 1 a All channels, ranging from 410 to 970 nm. b Channel recorded at 525 nm with squared annotation areas. cMean spectra of square areas in (b)
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When the noise covariance structure is estimated as the
covariance of the difference of neighbouring pixels, the
MNF reduces to the maximum autocorrelation factor
(MAF). A maximization of the signal to noise ratio is then
achieved by minimizing the autocorrelation between neigh-
bouring pixels. This optimally finds projection directions of
similar neighbouring reflection properties. Two compo-
nents are used to cut away background as well as fat
tissue, where an adaptive thresholding technique (Otsu
1979) is used to transform components into masks
which indicate pure meat. Before clustering the spectra,
a standardization of the spectra as previously described
is performed. All pixels are finally mapped to identify clus-
ters to indicate areas of spoilage in order to improve predict-
ability of the entire sample image. The model used was not
aware of any conditions the meat was treated under. An
unsupervised K-means algorithm was used to find a set of
clusters based on the recorded spectral images. These clusters

merely describe a spectral grouping, thus completely disre-
garding packaging conditions and temperature. The number
of pixels in the images belonging to the various clusters was
counted which showed correlation with spoilage degree. The
size of these areas was then used in a regression model with
output being spoilage degree. In this sense, when a new
spectral image is acquired, all pixels in the new image must
be mapped to one of the analysed clusters and counted, and
finally the spectral image may be predicted to a spoilage
degree.

Results and Discussion

Development of Microbial Association

The microbial association during storage of minced pork
meat under aerobic and MAP condition is described

Segment
background and

fat away

Do spectral
preprocessing

Identify clusters Map spectra to
clusters

Count spectra
belonging to
each cluster

Classify image
into one of

three classes

Extract mean
spectra of

spoil age area

Predict total
microbial
growth

Sensory

Microbial counts

Multispectral images

Fig. 2 Schematic structure of
processing pipeline

Table 1 Estimated kinetic parameters of total viable counts (TVC) in minced pork meat stored aerobically and under modified atmospheres at
various temperatures

Temperature (°C) Packaging Lag phase (h) y0
a (log cfu/g) yend

b (log cfu/g) μmax
c (h−1) Standard error R2

0 AIR 74.1±23.75e 5.95±0.24f 9.68±0.22e 0.045±0.008e 0.332 0.947

5 AIR 21.6±6.42 5.62±0.27 9.64±0.11 0.093±0.008 0.255 0.974

10 AIR 2.3±6.84 5.39±0.23 9.34±0.20 0.146±0.016 0.369 0.933

15 AIR 1.7±5.51 5.37±0.01 9.51±0.17 0.205±0.026 0.404 0.930

20 AIR 3.8±3.30 5.88±0.05 9.42±0.11 0.325±0.038 0.327 0.938

0 MAP 6.1±78.04 5.57±0.08 7.20±0.195 0.008±0.001 0.258 0.830

5 MAP –
d 5.65±0.38 7.78±0.09 0.027±0.005 0.246 0.902

10 MAP 7.8±9.11 5.46±0.17 7.94±0.10 0.082±0.009 0.251 0.929

15 MAP 1.7±6.07 5.50±0.07 8.26±0.10 0.126±0.015 0.266 0.928

20 MAP – 5.36±0.06 8.32±0.11 0.218±0.048 0.366 0.877

a,b Initial and final population estimated by the Baranyi and Roberts model
cMaximum specific growth rate
d Not detected
e Standard error
f Standard deviation
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elsewhere (Papadopoulou et al. 2011). In brief, the initial
microbiota of minced pork consisted of Pseudomonas spp.,
B. thermosphacta, lactic acid bacteria and Enterobacteria-
ceae. In general, aerobic storage of minced pork at all
temperatures allowed the members of microbial association
to reach higher population levels in comparison with sam-
ples stored at MAP conditions. At air packaging, Pseudo-
monas spp. were the dominant microorganisms followed by
B. thermosphacta, whereas lactic acid bacteria and Enter-
obacteriaceae remained at lower levels. On samples stored
under modified conditions, lactic acid bacteria became the
dominant bacteria throughout storage, together with B. ther-
mosphacta (data not shown). This is in line with the existing
data from previous studies dealing with the meat spoilage

and the contribution of the ESO (Ercolini et al. 2006;
Nychas et al. 2008; Doulgeraki et al. 2010). The kinetic
parameters estimated by the Baranyi model fitted the exper-
imental data well, as can be inferred by the low values of the
standard error of fit and the high values of R2 (Table 1). In
more detail, pronounced lag phase was evident at 0 °C, the
duration of which was greatly reduced or not observed at all
at higher temperatures. A progressive increase of maximum
specific growth rate (μmax) was observed with increasing
storage temperature (Table 1).

The sensory panel judged a meat sample as semi-fresh or
spoiled on different time points for each temperature and
packaging condition. Specifically, the sensory panel judged
a sample as semi-fresh after 108, 48, 21.5 and 16 and 12 h at 0,
5, 10, 15 and 20 °C, respectively, for samples stored under
aerobic conditions, while for samples stored under modified
atmospheres the corresponding time was 118.5, 97, 65, 36 and
16 h, respectively. In addition, at the time of sensory rejection
(meat characterized as spoiled), the mean value of total viable
counts was ca. 8 log cfu/g at all storage temperatures. This
observation is in agreement with those by previous researchers
who concluded that bacterial counts of 7–8 log cfu/g can cause
noticeable off-odours and slime (Koutsoumanis et al. 2006,
2008), whereas others have reported that proteolytic changes
do not occur until bacterial counts reach approximately 9 log
cfu/cm2 (Brooks et al. 2008).

Imaging Analysis

Based on pre-processed spectra originating from the pure
meat area, a large variation in the pixels is still found;
however, it is more subtle. By empirically looking at spectra

Fig. 3 Spectral characteristics of the five meat types. The dotted line
indicates the spectrum for spoiled meat types

Fig. 4 a Binary mask for a piece
of spoiled meat having TVC of
9.83 log cfu/g. A greyscale image
of this same piece of meat is seen
in (b) where the recording at
590 nm is shown. The binary
mask indicates where in the
image meat is located, which is
used in further analysis. c Spatial
distribution of how pixels have
been mapped to identified
clusters. There is a total of five
clusters. Dark areas indicate
spoiled meat, while lighter areas
represent more fresh meat. d
Spatial distribution of clusters in
a fresh portion of pork meat. The
clusters are colour coded in the
same order as in (c), i.e. light
clusters indicate fresh meat. The
difference in cluster colours in the
two images is very clear
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Fig. 5 Meat area size as a function of total viable count with correlations 0.68, −0.49, 0.55, −0.058 and −0.67. Each plot represents a meat area
assigned to a similar Euclidean. Fresh (Δ), semi-fresh (o) and spoiled (x) samples
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as well as colour-transformed images, it was found that five
different types of meat was the optimal subdivision of meat
types existing across the meat samples. These types of meat
were basically very bright areas with high fat content, more
pure meat, which had been oxidized, areas which appeared
very spoiled with abnormal meat colours and two interme-
diate types. A K-means algorithm (Hastie et al. 2009) was
used to identify the cluster centers shown in Fig. 3 as
normalized spectra. A specific cluster center is shown as a
dashed line, which indicates areas of meat with a spoiled
appearance. Carefully inspecting the characteristics of this
spectrum reveals a higher response in the area of shorter
wavelengths corresponding to blue and a lower response
from 600 to 800 nm resembling the reddish colours. Fur-
thermore, it then seems to shift in the high, near infrared
area, indicating a higher response here compared to the
remaining four cluster centers. These characteristics resem-
ble quite well an intuitive understanding of the appearance
of spoiled meat as being less red and more green/blue.

Having normalized images as well as identified cluster
centers, a mapping of each recorded spectrum in each pic-
ture may be done by calculating either true or approximated
Euclidean distances and assigning each pixel to its closest
cluster. This process creates a further segmented image,
where it is possible to estimate the distribution of different
types of meat surface in each image. This distribution may
then directly or indirectly be used to classify the image as
being fresh, semi-fresh or spoiled, for example, or to quan-
tify the amount of bacterial growth on the meat by predict-
ing the total viable counts, which are both shown as the two
output boxes in Fig. 2. The actual classification of images,
and prediction of total viable counts, was done using a
logistic regression model (Hastie et al. 2009) and a partial
least squares model (Hastie et al. 2009), respectively.
Figure 4a shows a binary mask of the meat sample in
Fig. 4b. The mask indicates the areas which represent only
meat, i.e. no background or fat. This mask was created using
a maximum autocorrelation transformation, which decom-
poses a multispectral image into similar tissue types, the first
step in the spectral process line (Fig. 2). This specific piece
of meat is very spoiled, having a total viable count of 9.8 log
cfu/g. A graphical representation of the image after each
pixel has been assigned to a cluster center is shown in
Fig. 4c. The image contains five levels of greytone, each
corresponding to a cluster center. The very dark area repre-
sents spoiled meat, while the very bright area represents less
spoiled meat. For comparison a fresh piece of meat is seen
in Fig. 4d, with TVC measured to 5.6 log cfu/g. A clear
difference is seen as the meat area generally appears much
brighter in the fresh sample (Fig. 4d) compared to the
spoiled image in Fig. 4b. Thus, the majority of pixels in
the two images have been assigned to different clusters. The
dark edges of the fresh piece of meat might be due to an

initial spoilage, but may also be due to scattering effects as
well as shadow effects caused by the change in topology in
these regions. Being able to spatially determine areas of
spoilage enables spatial inference on the images. This means
e.g. that it is possible to count how many pixel occurrences
of each meat type there exist in the image, and estimate the
total area percentage covered by a specific meat type. Doing
this for all types of area on all images, and plotting it as a
function of total viable count, is seen in Fig. 5. In Fig. 5 the
meat area for cluster 1 shows an increase in area as TVC
increases, while the area for cluster 5 shows a linear de-
crease as TVC increases. The area size for the intermediate
clusters shows little or no development as TVC increases.
The trends of clusters 1 and 5 are interpreted as a spoiled
meat cluster and a fresh meat cluster. In order to extract the
best features for a prediction model of TVC, as well as for a
classification model of sensory labels, the mean spectrum of
the area of spoiled meat in all images is used as a feature
space. A logistic regression model using the extracted fea-
tures as covariates was used to classify the pork samples into
three sensorial categories (fresh, semi-fresh and spoiled).
For comparison, a logistic regression was similarly used to
classify the same samples into the same categories using the
four microbial measurements as independent variables. Due
to the small number of samples, both classification models
were assessed using leave-one-out cross-validation in order

Table 3 Logistic regression on sensory labels using microbial refer-
ence data

From/to Fresh Semi-
fresh

Spoiled Row
total

Sensitivity
(%)

Fresh 12 6 0 18 66.6

Semi-fresh 6 46 12 64 71.8

Spoiled 0 7 66 73 90.4

Column total 19 61 75 155

Specificity
(%)

63.2 75.4 88

Total classification rate 80 %, Cohens kappa value 0.662

Table 2 Logistic regression on sensory labels using meat area
estimations

From/to Fresh Semi-
fresh

Spoiled Row
total

Sensitivity
(%)

Fresh 10 7 1 18 55.5

Semi-fresh 7 46 11 64 71.8

Spoiled 1 10 62 73 84.9

Column total 18 63 74 155

Specificity
(%)

55.56 73.02 83.8

Total classification rate 76.13 %, Cohens kappa value 0.598
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to obtain realistic and generalizable results. The classifica-
tion accuracy of the models is seen as confusion matrices
together with their sensitivity and specificity, and each meat
sample analyzed was determined by the bias and accuracy
factors (Ross 1996), the mean relative percentage residual,
the mean absolute percentage residual (Palanichamy et al.
2008) and finally the root mean squared error of prediction
and the standard error of prediction. A classification rate of
73.6 % for overall correct classification as seen in Table 2
was obtained. The sensitivity of the model was found to be
55.5 %, 71.8 % and 84.9 % for fresh, semi-fresh and spoiled
meat samples, respectively. This indicates fairly high uncer-
tainty for the fresh samples, which are frequently identified
as semi-fresh and vice versa. The sensory labels were based
on other organoleptic senses than visual appearance, such as
taste and odour, which are very subjective factors. The
number of fresh samples compared to the number of semi-
fresh and spoiled is very small, which gives a high

probability that even a small subset of semi-fresh samples,
which overlaps fresh samples in feature space, will affect the
fresh class sensitivity significantly.

It needs to be stressed that the developed model [a partial
least square regression (PLS-R) model] was not aware of
any conditions that the meat was treated. An unsupervised
K-means algorithm was used to find a set of clusters based
on the recorded spectral images. These clusters merely
describe a spectral grouping, thus completely disregarding
packaging conditions and temperature. The number of pix-
els in the images belonging to the various clusters was
counted which showed correlation with spoilage degree.
The size of these areas was then used in a regression model
with output being spoilage degree. In this sense, when a new
spectral image is acquired, all pixels in the new image must
be mapped to one of the analysed clusters and counted, and
finally the spectral image may be predicted to a spoilage
degree.

Table 4 Key values for the pre-
dictive performance of the TVC
model for all classes, including
overall predictive performance

O observed counts (log10cfu/g),
P predicted counts (log10cfu/g),
n number of samples

Expression Fresh Semi-fresh Spoiled All

Bias factor (Bf) 10
P

log P O=ð Þ n= 0.923 0.920 0.973 0.940

Accuracy factor (Af) 10
P

log P O=ð Þj j n= 1.114 1.209 1.103 1.152

Mean relative percentage residual
(MRPE %)

1
n �

P 100� O�Pð Þ
O −3.662 −4.153 −1.331 −3.005

Mean absolute percentage residual
(MAPR %)

1
n �

P 100� O�Pð Þj j
O 4.821 8.563 4.348 6.337

Root mean square error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

O�Pð Þ2
n

q
0.348 0.666 0.466 0.551

Standard error of prediction
(SEP %)

100
O

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

O�Pð Þ2
n

q 5.842 9.716 5.410 7.478

Fig. 6 a Regression results for total viable counts using a partial least
square. Model trained using cross-validation on a training set and
validated on an unknown test set. The plotted values are predicted
versus total viable counts. The lines show the line of equality, i.e. a

perfect fit, while the dashed lines represent ± 1 log cfu unit. b Relative
errors in % between observed and predicted total viable counts (TVC)
during storage of pork meat at different temperatures, atmospheres and
time spans. F fresh, SF semi-fresh, S spoiled meat samples
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For comparison, the actual microbial counts were likewise
used to classify the sensory labels, as seen in Table 3.
Slightly better results are seen for this set of predictors with
sensitivity of 66.6 %, 71.8 % and 90.4 %. Thus, the same
problem of differentiating between fresh and semi-fresh
classes exists for these predictors. Cohens kappa value
(Cohen 1960) was calculated to be 0.59 and 0.66, meaning
that both values lie in the region of substantial agreement
between predicted and observed classes. The prediction of
total viable counts as seen in Fig. 6a shows very small errors
around the line of equality, y 0 ax + b, a 0 1, b 0 0, all
within ± 1 log unit area shown with dashed lines. However,
three samples did fall outside the area of 1 log unit. A partial
least squares model was used for TVC prediction, which
requires a separate training and test set to select model
parameters and to evaluate the model. The selection of
parameters was done using leave-one-out cross-validation
on 2/3 of randomly selected data from the entire set of 155
samples. The remaining 52 samples were used for validating
the model. It is crucial that the data used for selecting model
parameters is not used for validating the model, as this will
clearly give a biased and over-fitted model. The PLS regres-
sion equation between total viable counts (TVC) and image
data is given by the following equation:

Y ¼ 0:6115� 10�5 � X1 � 0:5346� 10�5 � X2 þ 0:2147

� 10�5 � X3 � 0:0716� 10�5 � X4 þ 0:3073� 10�5 � X5

where Y is the total viable counts (log cfu/g) of the meat
samples and X1…X5 are the five clusters of pixels derived
from K-means clustering. The parameters in the above equa-
tion represent the beta coefficients of the PLS regression
equation and express the relative importance of each cluster
with regard to microbial counts.

The predictive performance of the TVC model is further-
more presented in Fig. 6b, where the relative error in per
cent is plotted as a function of the observed microbial
population. The errors are seen to be distributed equally
around 0, with 83 % of the predicted microbial counts
included within the±10 % zone of relative errors. Further
statistical values for the TVC prediction model are presented
in Table 4. Ross (1996) introduced bias factor and accuracy
factor as interpretable indices for average deviation or the
spread of the results about the prediction. Perfect agreement
between the predicted and observed values will lead to bias
factors of 1. The bias factor shows values slightly below 1,
indicating a very small tendency of underestimation for all
types of meat, including the overall bias factor. The accura-
cy factor furthermore shows that on average the predictions
were≈11.3 %, ≈ 20.8 % and≈10.3 % above the observed

values for fresh, semi-fresh, and spoiled meat samples,
respectively, while in total≈15 %. This is also confirmed
by the mean absolute percentage error, representing the
average deviation between observed and predicted counts.
The mean relative percentage residual index confirmed the
under-prediction for all classes, since they are all below 0.
The standard error of prediction index is a relatively typical
deviation of the mean prediction values and expresses the
expected average error associated with future predictions.
The model shows good predictive performance, i.e. below
10 % standard error of prediction for all three classes,
although especially for spoiled and fresh samples with only
a percentage standard error of 5.4 % and 5.8 %.

The multispectral imaging device recorded spectra in the
visible and the start of the near-infrared area, and these
images can be analysed in conjunction with various machine
learning and vision techniques. Features were extracted to
evaluate the spoilage process of the meat by predicting total
viable counts as well as classifying meat pieces into one of
three classes, namely fresh, semi-fresh or spoiled, with
ground truth being set by a sensory panel. For the multi-
spectral images, an overall classification performance of
76.1 % was achieved. For the microbial counts an overall
classification performance of 80.0 % was achieved. Thus,
considering the fact that the electromagnetic area was sam-
pled in only 18 distinct areas, mainly in the visible region, a
classification error of 76.1 % is a relatively good perfor-
mance. A very good discrimination between spoiled and
fresh pieces of meat was achieved, while semi-fresh meat
caused some misclassification, an issue that can be limited if
a significantly larger amount of samples could be introduced
for analysis. In conclusion, in contrast with the retrospective
and laborious microbiological analysis, the rapid non-
invasive equipment that has been used, requiring no sample
preparation and in which additional parameters have been
included in this work such as time, temperature and atmo-
sphere, provided a rather promising tool for assessing pork
spoilage. As indicated in Fig. 6a, b and Table 4, the predic-
tion performance on an unknown test set yielded good
results, especially for fresh and spoiled samples (standard
error of prediction under 6 %). The values of the bias factor
were close to unity, indicating good agreement between
predictions and observations. Thus, a setup as the one pre-
sented in this paper could in the future be used to satisfac-
torily predict microbial counts as well as sensory labels of
pork meat.

The version of the videometer technology used in this
work requires sampling of the product for at-line inspection;
however, adaption of the instrument to on-line measure-
ments is possible. An example which comes close to the
challenges in food processing is the use of the videometer
technology for automatic sorting of mink skins according to
length and colour.
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