
Software for in Silico Testing
of an Arti�cial Pancreas

Master's Thesis

By Stefan Høngaard Andersen

Student id: s082878
Supervisor: John Bagterp Jørgensen
Institute: DTU COMPUTE
Submission Date: 30-05-2014

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk

Frontpage picture: http://healthhub.brighamandwomens.org/

Abstract

Tight glycemic control of people su�ering from Type 1 diabetes remains a chal-
lenge despite recent developments within diabetes treatment. A fully automated
closed-loop Arti�cial Pancreas (AP) has the potential to become the new stan-
dard of care for people with type 1 diabetes. This through a tight glycemic
control which resembles the control of a healthy individual. The road towards
a commercial-viable AP is long and costly but In silico simulations has the
potential to speed up the development of a commercial-viable AP.

The purpose of this thesis is to develop a software and a simulation framework
which can become a benchmarking platform and an experimental playground
for future in silico testing of the AP. This ensures a consistent testing standard
of the AP, while mimicking the setup of clinical trials at a fraction of the cost.
The simulation framework developed consist of 6 principal components;

1. A cohort of virtual patients (n = 50 adults) based on actual patient data
spanning the observed metabolic variability of key physiological parame-
ters.

2. A mathematical model to describe the glucose-insulin dynamics of a pa-
tient su�ering from Type 1 Diabetes.

3. A model representing the usage of a Continuous Glucose Monitor.

4. A model to represent the usage of a subcutaneous insulin pump.

5. The implementation of an insulin administration strategy.

6. A set of outcome metrics allowing investigation of the performance of the
AP.

ii

These 6 principal components provides a comprehensive in silico simulation
framework for closed-loop testing. Thus, a time- and cost-e�ective tool for
performance testing of various APs tested in various user-de�ned scenarios prior
to their clinical implementation.

The software has been implemented in the programming language Java using
the open source numerical library Apache Commons Mathematics. The software
has been constructed such that execution from Matlab is possible. Additionally,
the software has been optimised to ensure fast runtime by the implementation
of multi-threading.

The simulation framework would need future clinical validation. However, the
�ndings from this thesis show that realistic computer simulations can provide
valuable information about safety and the limitation on closed-loop control sys-
tems in a time- and cost-e�ective way. Hereby, the simulation software developed
in this thesis serves as a strong tool in guiding and assessing clinical studies,
why this thesis brings an e�cient testing tool to the development of the AP.

Preface

This Master's thesis was conducted by Stefan Høngaard Andersen at the de-
partment of Applied Mathematics and Computer Science (DTU COMPUTE)
at the Technical University of Denmark (DTU) in ful�lment of the requirements
for acquiring a Master's degree in Mathematical Modelling and Computation.

The project is written under supervision of Associate Professor John Bagterp
Jørgensen. The project was carried out in the period December 2013 to May
2014. The workload of this project is equivalent to 30 ECTS.

Lyngby, 30-05-2014

Stefan Høngaard Andersen

iv

Acknowledgements

First, I would like to thank John Bagterp Jørgensen for proposing this project
to me. Without Johns input and support the project would never have been
possible.

Bernd Dammands valuable insight in High Performance Computing has been
very motivating and I want to thank him for his guidance and interest in the
project. In addition, the several employees at DTU High Performance Comput-
ing also deserves a thank for the assistance throughout the project.

Ian Jørgensen1 and Lars Norbert Petersen2 has both been very helpful in their
respective area of knowledge. Ian is an outstanding graphics expert and has
given me valuable sparring in the development of plots. Lars is a control guru
and has been a valuable help within the area of control systems.

My good friends Søren Olofsson3 and Nicolai Troensegaard4 also deserves a
thanks. Each has assisted me with insight and discussions in their respective
�eld of expertise. Søren has been a skilled support in the domain of computer
science while Nicolai has been a great support in report writing and structuring.

Finally, I would like to thank my girlfriend Stephanie for an invaluable support
throughout the project.

Thank you
1Linehq.com
2PhD-student at DTU
3Netcompany A/S
4A.T Kearney A/S

vi Acknowledgements

Abbreviations

ACM Apache Commons Mathematics
ADRR Average Daily Risk Range
AP Arti�cial Pancreas
BG Blood Glucose
BW Body Weight
CGM Continous Glucose Monitor
CR Insulin-to-Carbon Ratio
CSII Continuous Subcutaneous Insulin Infusion
CSV Comma Separated Values
HBGI High Blood Glucose Index
IVP Initial Value Problem
JDRF Juvenile Diabetes Research Foundation
JVM Java Virtual Machine
LBGI Low Blood Glucose Index
MBG Mean Blood Glucose
ODE Ordinary Di�erential Equation
PID Proportional Integral Derivative
RK Runge-Kutta
SMBG Self Monitoring of Blood Glucose
T1D Type 1 Diabetes
T1DMS Type 1 Diabetes Metabolic Simulator
UML Uni�ed Modelling Language

Bold symbol indicates a vector.
(±SD) after a number indicates the standard deviation.

viii

Contents

Abstract i

Preface iii

Acknowledgements v

Abbreviations vii

1 Introduction 1

1.1 Problem Statement . 2
1.2 Problem Scope . 3
1.3 Structure of the Report . 4
1.4 Conceptual Clari�cation . 4
1.5 Contributions . 5

2 Background 7

2.1 Diabetes . 7
2.2 Diabetes Treatment . 9
2.3 The AP progress and related work 13
2.4 Summary . 16

3 Physiological Model 17

3.1 The Hovorka Model . 17
3.2 Continous Glucose Monitor Model 25
3.3 Performance Metrics . 26
3.4 Summary . 30

x CONTENTS

4 Methodology 31
4.1 Explicit Runge-Kutta Methods 31
4.2 Newton-Raphson's Method . 37
4.3 Insulin Administration Strategy 41
4.4 Apache Commons Mathematics Library 43
4.5 Summary . 44

5 Developing a Software for In Silico Testing for an Arti�cial
Pancreas 45
5.1 Requirements and Functionalities 45
5.2 Implementation . 50
5.3 Multi-threading . 57
5.4 Con�guration-system . 63
5.5 Summary . 65

6 Experimental testing 67
6.1 In Silico Testing for an Arti�cial Pancreas 67
6.2 Software Runtime Testing . 84
6.3 Summary . 88

7 Closure 91
7.1 Thesis Perspective . 91
7.2 Returning to the Problem Statement 94

8 Conclusion 95

List of Figures 100

List of Tables 102

A Steady State for The Hovorka Model 103

B UML Sequence diagram notation 107

C Javadoc 109

D Complete User manual 111

E Software Exceptions and solutions 119

F Source Code and Experiments 121

G Apache Commons Mathematics Source Code 123

Bibliography 125

Chapter 1

Introduction

Diabetes is a disease a�ecting over 300 million people worldwide of which ap-
proximately 10% su�ers from Type 1 Diabetes (T1D) [17]. T1D is characterized
by the total absence of endogenous insulin production and consequently T1D
patients fully rely on external insulin for survival. A potential future treat-
ment solution for T1D patients is an AP. An AP is a system which mimics the
behaviours of a human pancreas. This ensures automatic continuous insulin in-
fusions with little or no human interference. The three principal components of
the AP are: 1) a glucose monitor which ensures real-time glucose measurements
from the subcutaneous tissue; 2) an insulin pump which ensures insulin injec-
tions subcutaneously; and 3) a control system that decides when and how much
insulin to infuse in the patient su�ering from T1D. The AP is still not com-
mercialised. However, trends within the �eld of the AP points in the direction
of better and more accurate Continues Glucose Monitors (CGM), Continuous
Subcutaneous Insulin Infusion (CSII) pumps and more e�cient control systems.
This will potentially lay the foundations for a commercial-viable AP within a
few years and consequently a potential new standard of care of T1D.

Pre-Clinical and clinical trials with an AP have already been undertaken and
several studies suggests that the AP is e�ective in managing a patient su�ering
from T1D [38, 40]. Much progress has been made but more intensive testing
is essential before the AP can become commercially-viable. Pre-clinical and
clinical trials are very comprehensive with respect to both time and costs though

2 Introduction

an essential part of proper evaluation and documentation of any medical device.
A cost-e�ective solution which can speed up the process towards a commercial-
viable AP is needed. In silico1 testing could accelerate the development of
the AP in two ways. First, by substituting pre-clinical studies. Second, by
predicting the outcome of real life clinical trials and consequently assist in the
design of actual clinical studies [19]. Hereby, in silico testing provides valuable
information at a fraction of the time and cost compared to conventional pre-
clinical and clinical studies. Thus, in silico testing could serve as a tool which
can speed up the process towards a commercial-viable AP .

The DIACON Group is a Copenhagen based research consortium consisting of
researchers from the Technical University of Denmark, Hvidovre Hospital and
diabetes related companies. The DIACON group's focus is to develop tech-
nologies that can support the treatment for T1D. This thesis will focus on the
development of software speci�cally for research conducted by the DIACON
group. The software can potentially be used as a substitute for pre-clinical tri-
als and as a support in predicting the outcome of actual clinical experiments.
The software will be independent such that no interference with intellectual
property rights in commercial contexts will appear. Consequently, this software
enables experimental testing of user-de�ned scenarios for in silico testing of the
AP.

The subsequent chapters presents the problem statement, the problem scope, a
conceptual clari�cation and �nally the contributions of this thesis.

1.1 Problem Statement

The aim of this thesis is to develop a software which can resemble the usage
of an Arti�cial Pancreas and simulate the glucose-insulin dynamics of a virtual
cohort. This will be done by implementing a proof-of-concept Arti�cial Pancreas
consisting of a glucose monitor, an insulin infusion pump and a simple control
algorithm.

In order to ensure that the simulation will be realistic the virtual cohort must
be representative of the target population. Thus, the software should introduce
an experimental playground where virtual subjects can be created and modelled
on a user-de�ned basis.

Several performance metrics will be established to enable easy evaluation across
tests. The software should be build platform and license independently such

1Test executed in a virtual computer environment.

1.2 Problem Scope 3

that the software in commercial contexts does not interfere with intellectual
property rights. As part of being time-e�cient the software must also be able
to conduct the simulation in a few minutes.

1.2 Problem Scope

The subject of simulation is broad and includes many areas of research. There-
fore, it is important to narrow the subject further. This thesis seeks to develop
and implement a simulation framework for in silico testing of an AP consisting
of the following 6 principal components:

1. A cohort of virtual patients.

2. A mathematical model to describe the glucose-insulin dynamics of a T1D
patient.

3. A model representing the usage of a Continuous Glucose Monitor.

4. A model to represent the usage of a subcutaneous insulin pump.

5. The implementation of an insulin administration strategy, also denoted as
a controller.

6. A set of performance metrics to evaluate the performance of the AP such
that di�erent insulin administration strategies can be compared.

The software will be developed in Java. Java has been chosen for two reasons.
First, Java is a high-level programming language which makes implementation
far more simple compared to low-level language such as C. Second, Java is
platform independent such that the software can be used across platforms. This
means that the software developed can be used on both Windows and Linux
2. To deviate from interference with intellectual property rights in commercial
contexts, the software will be based on open source numerical algorithms.

This thesis will limit its focus on three aspects. First, focus will not be on con-
trol systems and the theory related to this �eld. However, a proof-of-concept
scenario with the implementation of a simple PID (Proportional Integral Deriva-
tive) controller will be made. Second, this thesis will not focus on creating a
Graphical User Interface for the interaction with the software. Both subjects
will be entrusted to future research. Third, this thesis will consider the imple-
mentation of a single-hormone physiological model.

2This includes derivative platforms from linux such as Mac OS or UNIX.

4 Introduction

1.3 Structure of the Report

This thesis has been written such that the reader can follow the string of
thoughts and arguments in reaching the goal of developing a feasible and usable
software for in silico testing of an AP.

The thesis is organized as follows. Chapter 2 presents the basic physiological
dysfunctionalities in the human body for people with T1D. Additionally, Chap-
ter 2 gives an overview of the current treatment available and the context of the
AP. The same chapter also looks into a selected literature review.

Chapter 3 and Chapter 4 describe the theory and methods used throughout
this report. Chapter 3 presents the mathematical model used to describe pa-
tients with T1D. Additionally, Chapter 3 de�nes the virtual cohort and the
performance metrics used to evaluate the in silico tests. Chapter 4 explains
and justi�es the various numerical methods used in the software including the
insulin administration strategy implemented in this software.

Chapter 5 focuses on the development of the software. This includes the im-
plementation of the theory and methods from Chapter 3 and Chapter 4 in the
programming language Java. Chapter 6 presents and discusses tests of the soft-
ware and the results obtained using the software. Chapter 7 rounds o� this
thesis with a perspective on the project and ideas for future work.

In Chapter 8 a conclusion on the thesis �ndings is presented.

1.4 Conceptual Clari�cation

This section seeks to give a brief clari�cation of the concepts used throughout
this chapter.

A system is a collection of entities as proposed by Schmidt and Taylor in [39].
The entities in this system are: The mathematical physiological model, the
CGM, the inuslin pump and the controller. The system will receive some input
or events, evaluate changes and return an output as shown in Figure 1.1. In this
thesis the input are made up of a meal intake, d, the insulin infusion, u, and
the virtual cohort. The virtual cohort consist of a subset of virtual patients each
composed by a set of physiological parameters, θ. The output of the system is an
evaluation of the system performance. The system which we seek to analyse is
a continuous system, that is, a system which changes continuously with respect

1.5 Contributions 5

SYSTEM
INPUT OUTPUT

Figure 1.1: This �gure shows the conceptual understanding between input, system
and output that will be used throughout this thesis.

to time.

The actual system is one or more patients su�ering from T1D currently comply-
ing treatment with an AP. Even though testing on the actual system is possible
it comes with a large time and economic burden. On the contrary a model,
which is used to describe the actual system, can test the system in a cost and
time e�cient manner. The model is composed of state variables, which indicates
the system states over time. By numerically challenging the model with various
input it is possible to simulate the output performance of the actual system.
As a �nal remark is the usage of commercial viability and standard of care.
Standard of care refers to an authority-approved and usable treatment option
for T1D. Additionally, the treatment has become the actual preferred standard
by professionals in treating patients su�ering from T1D. For a treatment to be-
come commercial viable means that the treatment is competing e�ectively with
other existing treatment options and are pro�table.

1.5 Contributions

This thesis contributes to the DIACON Group and their research by developing
a cost- and time-e�cient simulation framework, as depicted in Figure 1.2. The
simulation framework seeks to predict the outcome of actual clinical studies by:

1. Developing a data management system that enables creation of virtual
cohorts which are representative of a target population.

2. Implementing open-source numerical methods for simulation purpose while
refraining from con�ict with intellectual property rights.

3. Developing an analytical tool package for evaluation of in silico testing of
an AP.

6 Introduction

Simulation Framework

Virtual Cohort Simulation
Performance
Evaluation of

Simulation Ouput

Controller

Meal Profile

Insulin infusion

Carbohydrate intake

Blood
glucose

Figure 1.2: This �gure shows the schematic representation of the contribution to
the DIACON groups research. The simulation framework is a cost- and
time-e�ective solution for designing and testing components of the AP,
hereby predicting the outcome of actual clinical studies.

Chapter 2

Background

The purpose of this chapter is to give an overview of the problem domain of
this thesis. The chapter is organized as follows. Section 2.1 is dedicated to
an introduction of the biological dysfunctionalities related to diabetes. Section
2.2 looks into the current treatment options and technologies available. Finally,
Section 2.3 presents a selected review on the AP project.

2.1 Diabetes

Diabetes is a dysfunctionality of the body's regulation of blood sugar levels.
Diabetes is conventionally divded into two types: Type 1 and Type 2 diabetes
(T1D and T2D). T1D is characterized by the total absence of insulin production
in the pancreas [8]. Consequently, patients su�ering from T1D must administer
the infusions of external insulin themselves. In contrast, people su�ering from
T2D still produce insulin in the pancreas but typically su�ers from insulin intol-
erance, i.e. insensitivity to insulin. This means that the body's natural insulin
production is insu�cient to regulate the blood sugar level.
T1D will be the focus of this thesis. Figure 2.1 shows the carbohydrate metabolism
in the human body. The carbohydrate metabolism has two main functionalities.
First, it ensures a constant supply of energy to the cells in the human body. Sec-

8 Background1. Introduction

Figure 1.1: Blood glucose regulation in healthy people [1].

number of people with diabetes in the USA, Europe, India, China, Brazil
and Africa for 2010 and 2030 is shown in Fig 1.2.

Type 1 diabetes (also previously known as juvenile diabetes or insulin-
dependent diabetes) represent 5-10% of diabetes. In Denmark, the number
of people with type 1 diabetes is estimated to 30,000 [4]. Type 1 diabetes is
an autoimmune disease caused by the destruction of the insulin-producing
β-cells in the pancreas. Therefore, people with type 1 diabetes do not pro-
duce insulin, and need frequent injections of exogenous insulin to survive.

Presently, people with type 1 diabetes have the responsibility of deciding
on their insulin dosage. Too little insulin may lead to periods of high
blood glucose (hyperglycemia), which has long-term complications, such
as blindness, nerve disease or kidney disease. Conversely, overdosing the
insulin may lead to low blood glucose, which has immediate effects, such as

2

Figure 2.1: The carbohydrate metabolism in a healthy individual. The disturbances
in the glucose level is counteracted by the action of the pancreas [16].

ond, the carbohydrate metabolism ensures that the blood glucose (BG) levels in
the human body stabilizes after external in�uences such as food intake, fasting
or exercise [13]. Insulin and glucagon are the two key hormones regulating this
system. They ensure that the BG level is kept within a range between 4-10
mmol/L [13]. If the BG level drops below normal, α-cells in the pancreas re-
lease glucagon. This stimulates the release of glucose from the liver to the blood
stream, and thus normalises the BG level. If the BG level is too high, β-cells in
the pancreas secrete insulin which stimulates the uptake and storage of glucose
in several cell types in the body, thus decreasing the BG level. The glucose
metabolism hereby works as a physiological feedback mechanism ensuring that
the BG levels will stay within a range of 4-10 mmol/L while providing the hu-
man body with a constant supply of energy. As the β-cells in T1D patients are
destroyed, the patient consequently have no insulin secretion. This leads to a
dysfunctional glucose metabolism with highly variable BG levels. Thus, T1D
patients are fully dependent on external insulin injections for survival. The Di-
abetes Control and Complication Trial Research Group (DCCT) has identi�ed

2.2 Diabetes Treatment 9

two important factors to minimize long term complications for T1D patients.
The �rst factor is to keep the BG levels within the euglycemic range, i.e. 4-10
mmol/L. The second factor is to lower the glycemic variability, that is, �uctu-
ations between lows and highs [23]. Hence, the DCCT denotes that the tighter
BG control a T1D patient can achieve, the fewer complication can be expected.
BG levels outside the euglycemic range can lead to severe complications. A too
low BG level, called Hypoglycemia, may incur seizures or coma which may lead
to brain damage and ultimately death. This is due to a lack of energy supply to
the nerve cells in the human body. A too high BG level, called Hyperglycemia,
leads to more subtle and long term complications. This includes but is not
limited to vascular diseases, vision disorders, nerve degeneration and the like.
People su�ering from T1D have a three to �ve fold risk of su�ering from such
complications compared to healthy people [23].

2.2 Diabetes Treatment

The previous section determined that patients su�ering from T1D are in con-
stant need of external insulin to survive. Additionally, compliance with the
treatment and tight glycemic control are important elements in reducing the
complications related to T1D. This section will look into some of the treatment
options available for T1D.

2.2.1 The Current Treatment Solutions

Tradional T1D treatment is done by regular Self Monitoring of Blood Glucose
(SMBG) and insulin injections. SMBG is usually done with a �nger stick and
gives a measurement of the BG level. The SMBG assist the T1D patient in de-
termining the BG level such that a decision on insulin injections can be made.
Patients su�ering from T1D needs to regulate their BG levels often to mimick
the function of their pancreas [8]. This is usually done by combining rapid and
slow acting insulin. During morning hours, the slow acting insulin is injected
such that a constant basal rate of insulin is ensured throughout the day. During
meals the rapid acting insulin is injected to compensate for the carbohydrates
in the meal intake. Compliance and tight BG control with this technique can
be challenging. As a tight control of BG is important for T1D patients, more
patients starts combining Continous Glucose Monitors (CGM) and Continous
Subcutaneous Insulin Infusion (CSII) pumps to dose and infuse insulin during
the day [42]. The CGM ensures continuous readings of the BG level while the
CSII ensures the infusion of insulin to the body. Figure 2.2 gives an example of

10 Background

Figure 2.2: The Dexcom G4r Continous Glucose Monitor assist diabetics monitor
their blood glucose in real-time [6].

Figure 2.3: The ACCU CHEKr insulin pump which contains the insulin in a small
compartment. Insulin dosage will be decided by the patient [2].

a CGM, the Dexcom G4 CGM. CGMs are less accurate than SMBG and must
be calibrated several times a day. For patients with CGMs, the SMBG is used
for calibration of the CGM signal. The CGM sensor detects the glucose level
in the subcutanoues tissue which leads to a signal lag of approximately 10-15
minutes [32].
Insulin pumps allow the patient to control the dose of insulin to infuse. Many
factors in�uences the dosage of insulin and modern insulin pumps usually con-
siders parameters such as the insulin-to-carbohydrate ratio (CR), insulin sen-
sitivity and recent bolus history to estimate the recommended insulin bolus.
Figure 2.3 shows an example of a CSII pump, the Roche CSII pump [2]. The
CR is the ratio describing the amount of insulin needed to cover the carbohy-
drate intake for a meal while the insulin sensitivity is a measure of the patients
responsiveness to insulin. Parameters like these are known to vary signi�cantly
between patients and they are also known to vary within patients over time.

2.2 Diabetes Treatment 11

Figure 2.4: The Medtronic Minimedr pump with the Enilte CGM. The system mon-
itors blod glucose and previous injections and assist the T1D patient in
deciding insulin dosage [11].

Nevertheless, commercialisation of basic diabetes management systems already
exist. These systems can take some decisions on behalf of the T1D patient.
An example of such a system can be seen in Figure 2.4 which is the Medtronic
Minimedr insulin pump with an Enliter sensor. The system can assist with ba-
sic recommendations and disable the infusion of insulin if the BG level becomes
lower than a threshold value. The Medtronic Minimedr automates only some
elements of the diabetes management and accordingly the patient still need to
be part of the daily treatment [11].

2.2.2 An Arti�cial Pancreas

An Arti�cial Pancreas combines the use of a CGM, a CSII pump, and a control
algorithm to automatically control the BG levels of a T1D patient. This is
illustrated in Figure 2.5. Hereby the AP serves to substitute the functionality of
a healthy pancreas. As denoted in Figure 2.1 the pancreas has several important
functionalities but it is the absence of insulin production which the AP seek to
substitute. Development of two-hormone AP also exist and includes the usage of
glucagon as a counterbalance to the e�ect of insulin [38]. Whether the AP uses
one or two hormones the goal with an AP is, �rst, to improve compliance with
diabetes treatment. Second, to ensure glycemic control such that it resembles
the one of a healthy individual. Third, to improve the quality of life for patients
with T1D.

A key challenge in making an AP successful is to accommodate the di�erences
between the individual patients. Elements such as meals, stress, exercise and

12 Background

Figure 2.5: This �gure shows the components of the Arti�cial Pancreas. In this
picture a Medtronic device is used as glucose sensor and insulin pump.
An iphone 4s is schematised to contain the control algorithm. It could
also have been embedded in the pump [29].

Continous Glucose
Monitor

CGM reading

Insulin Pump

Actual blood glucose

Controller
Predicted insulin delivery

Target
BG Insulin infusion

T1D patient -
Dynamic physiology:

Eating, exercise, stress
etc.

Figure 2.6: This �gure represent the closed-loop system of the Art�cial Pancreas.

other life events are known to impact the BG levels very di�erently across in-
dividuals [18, 28]. The AP must take this variability into consideration by a
continuous evaluation of the patient. Figure 2.6 identi�es the main loop of the
AP. The system is said to be closed-loop. This indicates that the system re-
ceives continuous feedback from the patient and continuously adjust the system
output accordingly. The system output in the AP is the insulin to be delivered.

2.3 The AP progress and related work 13

1 2 3 4 65

Second generation Third generationFirst generation

Very low Glucose
Insulin Off Pump
Pump shuts off
when user not
responding to
low-glucose alarm

Hyperglycemia
Minimizer
Predictive
hypoglycemia
causes alarms
followed by
reduction or
cessetion of insulin
delivery below low
threshold

Hypoglycemia/
Hyperglycemia
Minimizer
Same as Product #2
but added feature
allowing insuin
dosing above high
threshold (e.g.,
200mg/dl)

Automated
Basal/Hybrid
Closed Loop
Closed Loop at all
times with meal-
time manual
assist bolusing

Fully Automated
Insulin Closed
Loop
Manual meal-time
bolus eliminated

Fully Automated
Multi-Hormone
Closed Loop

1

Figure 2.7: The 6 step plan proposed by the JDRF [8].

2.3 The AP progress and related work

The Juvenile Diabetes Research Foundation (JDRF) has recently been very
focused in their funding of research and development within the to �eld of the
AP. In 2006 the JDRF launched the Arti�cial Pancreas Project to [8]:

�accelerate the development of a commercially-viable arti�cial pancreas as a
system to ultimately mimic the biological function of the pancreas for patients

with type 1 diabetes.�

The JDRF denoted a 6 step plan towards a commercial-viable AP. The 6 step
plan can be seen in Figure 2.7. The 6 step plan proposed a �rst generation AP
which would prevent hyper- or hypo- glycemia by causing alarms or ultimately
shutting o� the insulin pump. The �rst generation AP is largely scoped by the
Medtronic Minimedr as reviewed in Section 2.2. The second and third gen-
eration AP propose the step towards fully automated solutions. Clinical trials
are being conducted these years with focus on second and third generation AP
[38, 40]. A lot of this research is conducted in the JDRF established consor-
tium of university centres1 to conduct closed-loop glucose research [8, 7]. This
consortium drives a large part of the research currently being conducted in the
research topic of the AP.

The JDRF has identi�ed that one of the main challenges with the AP project
is that the current CGM accuracy and reliability is insu�cient for ensuring
a fully automated closed-loop AP [8]. A recent review by Damiano et al. in
[20] compared three commercially available CGMs and concludes a CGM mean

1The JDRF Consortium consist of, e.g., University of Virginia, University of Boston, and
University of Cambridge.

14 Background

absolute relative error between 10− 15%. The CGM inaccuracy is considered a
major challenge in the AP development and consequently a lot of attention has
been brought to in silico testing of the inaccuracy of the CGM. Kovatchev and
Breton gives a mathematical model which can simulate the inaccuracy derived
from the CGM sensor noise, thus, testing the controller using noised CGM
readings [32]. Dalla Man et al. compare this model with a real sensor noise
from a FreeStyle Navigatorr CGM and concludes that no signi�cant di�erence
exist between the simulated and the real distribution of the sensor error [19].
Conducting experiments in silico is becoming frequently more used. Cobelli
et al., Hovorka et al. advocate that the introduction and development of in
silico methods will speed up the commercialisation of the AP [18, 28]. The
current physiological models available is feasible to simulate T1D patients and
to asses the performance of control algorithms. However, they are not su�cient
to describe inter individual variability. For this reason further research within
the �eld of in silico simulation systems is essential for further development of
control algorithms [28].

2.3.1 In Silico Simulation Systems

In this section we review a selected list of in silico simulators currently available
on-line.

AIDA Diabetes Simulator

An early attempt to create an AP simulator is the interactive simulator AIDA2

[3]. AIDA is a patient simulator which makes type 1 diabetes simulation pos-
sible. The AIDA simulator is simple and has a user-interface which makes the
modi�cation of meal input and insulin types (slow vs. rapid acting insulin) easy.
However, AIDA neither enables the implementation of various insulin adminis-
tration strategies nor does it allow variations in patient physiology. This means
that AIDA is very usable for illustrative and educational purposes but does not
serve as a testing facility for control systems. The software is freely available
from AIDA's homepage.

2URL: http://www.2aida.org/

http://www.2aida.org/

2.3 The AP progress and related work 15

Maxsim2

A recent development from the University of Chalmers is the Maxsim23 [10].
Maxsim2 has a very speci�c purpose, which is to simulate pharmaco-kinetic and
-dynamics in various testing environments such as animals and humans. This
software can be used to compare di�erent scenarios of new pharmaceuticals but
cannot be used in a full AP simulation study.

Type 1 Diabetes Metabolic Simulator

In a recent contribution from the Epsilon Group, the development of the Type
1 Diabetes Metabolic Simulator4 (T1DMS) enables testing of insulin adminis-
tration strategies and various patient variabilities [12]. The T1DMS has been
approved by the Food and Drug Administration as a substitute for pre-clinical
animal studies for glucose control scenarios. For this reason the T1DMS serves
as a strong tool to asses and evaluate proposed insulin administration strategies
considering the inter individual variability. As expressed by Dalla Man et al.
in [19] software of this kind sets a precedent for future preclinical studies thus
leading to the paradigm that [19]:

1. �In silico modelling could produce credible preclinical results that could sub-
stitute certain animal trails, and

2. in silico testing yields these results in a fraction of the time required for
animal trials.�

The software is developed with the main focus to reduce the need for animal tri-
als such that new AP systems can be tested in a much faster and more convenient
way. T1DMS describes much of the inter individual variability which exist be-
tween patients [12]. The T1DMS is not freely available. Furthermore, T1DMS
builds on Matlab's Simulinkr network making the installation of Matlabr a
prerequisite.

3URL: http://www.maxsim2.com/
4URL: http://tegvirginia.com/solutions/t1dms/

http://www.maxsim2.com/
http://tegvirginia.com/solutions/t1dms/

16 Background

2.4 Summary

In this chapter we have provided a brief background introduction to the dys-
functionality in the human body in people su�ering from diabetes. It was found
that T1D patients needed continuous insulin administration for survival and that
continuous BG monitoring was necessary to obtain proper treatment. Compli-
ance and tight glycemic control were the most important elements in diabetes
treatment. One way of obtaining such treatment would be through the AP.
The AP would completely substitute human intervention in the treatment of
T1D. Lastly, a literature review con�rmed that a lot of attention exist in the
development of the AP and that a simulation tool is considered very usable in
the road towards a commercial-viable AP. The development and testing of such
a simulation tool will be the focus of the remaining part of this thesis.

Chapter 3

Physiological Model

The objective of this chapter is twofold. First, we introduce the physiological
model used to simulate a virtual patient. This includes the implementation of a
CSII pump, a CGM and a de�nition of a virtual cohort. Second, the objective
is to de�ne a set of performance metrics to evaluate simulations. This chapter
is organised as follows. Section 3.1 presents the physiological model used to
represent the glucose-insulin dynamics in a T1D patient. Additionally, Section
3.1 describes the insulin absorption by using a CSII pump and also establish a
virtual cohort. Section 3.2 presents the CGM model used. Finally, Section 3.3
explains the performance metrics applied to evaluate simulations.

3.1 The Hovorka Model

In recent years, many physiological models have been developed with the pur-
pose of describing the glucose-insulin dynamics of a human body. In this section,
we present the model developed by Hovorka andWilinska and revised by Boiroux
[16, 25]. The model is used in this thesis to determine the glucose-insulin dy-
namics of a virtual patient su�ering from T1D. The model will be referred to
as �the Hovorka model�.

18 Physiological Model

Figure 3.1: A compartment diagram of the Hovorka model [16].

The model is a nonlinear system of di�erential equations and can be summarized
by the compartment diagram in Figure 3.1. The model consist of three subsys-
tems; the carbohydrate absorption, the subcutaneous insulin and the glucose-
insulin regulatory system. There are two external inputs: The oral intake of
carbohydrate and the subcutaneous insulin injections. The model has two ex-
ternal outputs: The BG level and the plasma insulin level. The model describes
accurately the glucose-insulin dynamics of the human biological system [25].

3.1.1 Carbohydrate Absorption

The meal input, d(t) [g/min], indicates the intake of carbohydrates per unit of
time. The absorption and conversion of the carbohydrate from the oral food
intake to the glucose is modelled by a two-compartment model:

dD1

dt
(t) = AgD(t)− D1(t)

τD
(3.1)

3.1 The Hovorka Model 19

dD2

dt
(t) =

D1(t)

τD
− D2(t)

τD
(3.2)

07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30

20

40

60

80

100

120

140

160

180

G
lu

co
se

 in
 c

om
pa

rt
m

en
t [

m
m

ol
]

Hours

D

1

D
2

Figure 3.2: This �gure show the glucose response of 25g of carbohydrate ingested
between 07:00 and 07:20.

D(t) [mmol/min], denotes the oral intake of carbohydrate in glucose equivalents
and is de�ned as D(t) = 1000

Mwg
· d(t), where Mwg = 180.16 is the molecular

weight of glucose. D1(t) [mmol] and D2(t) [mmol] denote the amount of glucose
in compartment one and compartment two at time t, respectively. Ag is a
utilization factor of the absorption of carbohydrate to glucose and τD [min] is
a time constant. The representation of the absorption of carbohydrate in the
two compartments can be seen in Figure 3.2. The rate of appearance of the
absorption of glucose in the blood stream, UG [mmol/min] is de�ned as:

UG(t) =
D2(t)

τD
(3.3)

Figure 3.3 shows the absorption rate from the gut for three di�erent meal pro�les
ingested at 07:00-07:20.

3.1.2 Subcutaneous Insulin Absorption

The external insulin injected by a CSII pump, u(t) [mU/min], is modelled by
absorption through two compartments, S1(t) [mU] and S2(t) [mU]:

dS1

dt
(t) = u(t)− S1(t)

τS
(3.4)

dS2

dt
(t) =

S1(t)

τS
− S2(t)

τS
(3.5)

(3.6)

20 Physiological Model

07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30
0

0.5

1

1.5

2

2.5

3

3.5

U
G

 [m
m

ol
/m

in
]

Hours

75g
50g
25g

Figure 3.3: This �gure show the glucose absorption from the gut with 25g, 50, and
75g of carbohydrate ingested between 07:00 and 07:20.

τS [min], is a time constant. The absorption rate of insulin in the blood stream,
UI(t) [mU/min], is given by:

UI(t) =
S2(t)

τs
(3.7)

The dynamics for the plasma insulin concentration, I(t) [mU/L], is given by:

dI

dt
(t) =

UI(t)

VI
− keI(T) (3.8)

VI [L], is the insulin distribution volume and ke [min−1], is an insulin elimination
rate. Figure 3.4 illustrates the response of three subcutaneous insulin boluses
on top of a basal injection in the human body.

07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30
5

6

7

8

9

10

11

12

I [
m

U
/L

]

Hours

1U
0.5U
0.25U

Figure 3.4: This �gure show plasma insulin concentration for a insulin injection at
07:00 of 1U , 0.5U and 0.25U respectively on top of a basal injection.

3.1 The Hovorka Model 21

3.1.3 Gluco-Regulatroy System

The absorbed glucose distributes through the gluco-regulatory system as follows.
The two state variables Q1(t) [mmol] and Q2(t) [mmol] indicate the glucose in
the main bloodstream and the peripheral tissue, respectively. The rate of change
for compartment one is de�ned as follows:

dQ1

dt
(t) =UG(t)− (F c01(t) + FR(t) + x1(t)Q1(t)) + k12Q2(t) + EGP (3.9)

3.9 includes the glucose absorption from the gut, UG(t), the consumption of glu-
cose by the central nervous system, F c01 [mmol/min], the renal glucose excretion,
FR(t) [mmol/min], the uptake of glucose to the peripheral tissue, x1(t)Q1(t)
[mmol/min], the transfer of glucose from the peripheral tissue to the blood-
stream, k12Q2(t) [mmol/min], and �nally the endogenous release of glucose by
the liver, EGP = EGP0(1 − x3(t)), extrapolated from the zero insulin release
of glucose. x1(t) and x3(t) are remote e�ects on the peripheral tissue and the
endogenous glucose production, respectively. As the glucose concentration in-
creases in the main bloodstream, the glucose distributes into the peripheral
tissue as well. The dynamic system for the peripheral tissue is represented as
follows:

dQ2

dt
(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t) (3.10)

x1(t)Q1(t) [mmol/min], is the uptake of glucose to the peripheral tissue from
the bloodstream and, k12Q2(t) [mmol/min], is the transfer of glucose from the
peripheral tissue back to the bloodstream. x2(t)Q2(t) [mmol/min] is the move-
ment of glucose out of the gluco-regulatory system. x2(t) is a remote e�ect on
the disposal of glucose.

In reference to (3.9), the consumption of glucose by the central nervous systems,
F c01, is de�ned as:

F c01(t) =

{
F01 if G(t) ≥ 4.5mmol/L
F01

G(t)
4.5 otherwise

(3.11)

The renal glucose excretion FR(t) is only present with a glucose level higher
than 9 mmol/L:

FR(t) =

{
0.003(G(t)− 9)VG if G(t) ≥ 9mmol/L
0 otherwise

(3.12)

The linkage to the glucose concentration, G(t) [mmol/L], is given by:

G(t) =
Q1(t)

VG
(3.13)

22 Physiological Model

Table 3.1: The parameters for the Hovorka model.

Parameter Unit Description

EGP0 mmol/min Liver production of glucose at zero insulin
F01 mmol/min Non-insulin dependent glucose consumption

k12 min−1 Fractional transfer rate parameter

ka,1 min−1 Deactivation rate parameter

ka,2 min−1 Deactivation rate parameter

ka,3 min−1 Deactivation rate parameter

SI,1 min−1/mU/L Transport insulin sensitivity

SI,2 min−1/mU/L Disposal insulin sensitivity
SI,3 L/mU EGP insulin sensitivity

ke min−1 Elimination rate of insulin
VG L Distribution volume of glucose
VI L Distribution volume of insulin
τS min Insulin absorption constant
τD min Carbohydrate time constant
Ag − Carbohydrate absorption constant

Q1(t) is the glucose in the main bloodstream and VG [L] is the glucose distribu-
tion volume. The glucose distribution volume depends on the individual body
weight, BW [Kg].

As brie�y mentioned in (3.9) and (3.10), the glucose insulin system has three
external impacts. These are; the glucose distribution, x1(t), the glucose disposal,
x2(t), and the endogenous glucose production x3(t):

dx1

dt
(t) = −ka1x1(t) + kb1I(t) (3.14)

dx2

dt
(t) = −ka2x2(t) + kb2I(t) (3.15)

dx3

dt
(t) = −ka3x3(t) + kb3I(t) (3.16)

kb1 = ka1SI1, kb2 = ka2SI2, and kb3 = ka1SI3. All the parameters in the
Hovorka model are summarized in Table 3.1. The entire set of parameters
will be refereed to as the vector θ(t). The vector is time dependent as the
physiological parameters will vary over time.

3.1.4 The Hovorka Model as an Initial Value Problem

The state variables in the Hovorka Model are:

x(t) = [D1(t) D2(t) S1(t) S2(t) Q1(t) Q2(t) I(t) x1(t) x2(t) x3(t)]′ (3.17)

Furthermore, the physiological parameters is given by θ(t), the insulin dosage
by u(t) and the meal intake by d(t). The notation for the entire system of

3.1 The Hovorka Model 23

di�erential equations can be de�ned as an Initial Value Problem (IVP) as seen
in (3.18):

x(t0) = x0 (3.18)

ẋ(t) = f(t,x(t), u(t), d(t),θ(t))

x ∈ Rnx , and the manipulated variables; u ∈ Rnu , d ∈ Rnd , and θ ∈ Rnθ .
The system in (3.18) is solved numerically by discretization and thus must be
formulated as an IVP in discretized form. In this thesis the usage of zero-
order hold piecewise constant discretization is used, where the time interval
[t0, tmax] is divided into K intervals with a constant length of Ts. This means
that the manipulated variables is constant between time intervals tn and tn+1,
n = 0, 1, ..,K − 2,K − 1. Therefore, (3.18) can be rewritten to the expression
given in (3.19).

x(t0) = x0 (3.19)

ẋ(t) = f(x(t), un, dn,θn), tn ≤ t < tn+1

3.1.5 Steady State

A property of the Hovorka model is its steady state, that is, an equilibrium
where the states variables are unchanged over time. To obtain a steady state
for the model the state vector from (3.17) must be constant. This means that
the derivative vector must remain zero:

ẋ(t) = f(x(t), un, dn,θn) = 0 (3.20)

In addition the BG level would remain steady around a �xed level. Typically
this would vary between individuals denoted r. The BG level is calculated from
(3.21):

Q1(t)

VG
= r ↔ Q1(t)

VG
− r = 0 (3.21)

From here it is assumed that there will be no food intake, d = 0, and the
parameters will be constant. A system of nx equations with nx + 1 variables
can be established by combining (3.21) and (3.20):[

f(t,x(t), uk, dk,θk)
Q1(t)
VG
− r

]
=

[
0
0

]
(3.22)

The system de�ned in (3.22) consists of nx + 1 equations and nx + 1 variables.
This system can be reformulated to a univariate expression of the unknown
variable uk. Solving the univariate expression of (3.22) gives the basal insulin
rate uss. The derivation of (3.22) to a univariate function can be found in
Appendix A.

24 Physiological Model

Table 3.2: The extended parameters for the Hovorka model.

Parameter Unit Distribution Variability (z, U)

EGP0 mmol/min ∼ N(0.0169, 0.00392) 5%, U(0, 3 hours)
F01 mmol/min ∼ N(0.0111, 0.00072) 5%, U(0, 3 hours)

k12 min−1 ∼ N(0.00649, 0.002822) 5%, U(0, 3 hours)

ka,1 min−1 ∼ N(0.0055, 0.00562) Stationary

ka,2 min−1 ∼ N(0.0683, 0.05072) Stationary

ka,3 min−1 ∼ N(0.0304, 0.02352) Stationary

SI,1 min−1/mU/L ∼ N(0.00512, 0.001312) 5%, U(0, 3 hours)

SI,2 min−1/mU/L ∼ N(0.00082, 0.000322) 5%, U(0, 3 hours)
SI,3 L/mU ∼ N(0.052, 0.01252) 5%, U(0, 3 hours)

ke min−1 ∼ N(0.14, 0.0352) 5%, U(0, 3 hours)
VG L exp(VG) ∼ N(1.16, 0.232) Stationary

VI L ∼ N(0.12, 0.0122) Stationary

τS min 1
TS
∼ N(0.018, 0.00452) Stationary

τD min ln
(

1
TD

)
∼ N(−3.689, 0.0252) Stationary

Ag , 0.8 20%, U(0, 24 hours)
BW kg N(74.9, 14.4) Stationary

3.1.6 Virtual Cohort of people with T1D

This section de�nes a virtual cohort of people with T1D. The sample size of
the cohort is 50 (n = 50). The virtual cohort consist of virtual patients indi-
vidually de�ned by a set of physiological parameters given by θ(t). In practice
the physiological parameters are experimentally collected during studies with
T1D patients. This done by �tting the physiological model to the individual
patients. The model parameters estimated by Hovorka et al. are used to es-
timate the population in this thesis [26, 28]. Hereby, the virtual population
approximately models an actual population. The physiological parameters are
estimated from probability distributions as shown in Table 3.2. In addition to
being randomly distributed interpersonally the parameters are added with intra-
individual variability such that selected parameters oscillates over time. This
biological phenomenon is usually refereed to as the Circadian Rhythm. Here, a
parameter value, pn, oscillates by a sinusoidal oscillation as seen in (3.23).

pn = p0 + sin

(
π · t

60 · U

)
A (3.23)

Here the wave length is de�ned by the parameter, U , and the amplitude A =
p0 · z, where z denotes the percentage size of the amplitude in relation to the
initial parameter size, p0. All physiological parameters and their respective
inter and intra variability are given in Table 3.2. Figure 3.5 illustrates how the
parameter variations looks for two arbitrary individuals. Figure 3.5 shows how
the variation in the insulin parameters SI1, SI2, SI3 during a 5 hour period. Note
how the thickness of the line symoblises the relative size of the parameter SI3.
As shown the parameters varies across individuals but also within individuals.

3.2 Continous Glucose Monitor Model 25

4.9 5 5.1 5.2 5.3 5.4

x 10
−3

7.8

8

8.2

8.4

8.6

8.8

9

x 10
−4

S
I1

S
I2

Insulin sensivity Patient 1

Start
End
S

I3
, max(S

I3
)= 0.0546, min(S

I3
) = 0.0494

4.9 5 5.1 5.2 5.3 5.4

x 10
−3

7.8

8

8.2

8.4

8.6

8.8

9

x 10
−4 Insulin sensivity Patient 2

S
I1

S
I2

Start
End
S

I3
, max(S

I3
)= 0.054604, min(S

I3
) = 0.049404

Figure 3.5: An example of the intra variability which exist between the virtual pa-
tients. The insulin sensitivity SI1, SI2, SI3 in a 5 hour period for two
individuals is shown. Notice how the thickness of the line displays the
relative size of SI3.

3.2 Continous Glucose Monitor Model

To simulate the real life usage of a CGM sensor noise a CGM model proposed
by Kovatchev and Breton adds an additional state to the Hovorka model [32].
The CGM tracks the glucose level in the interstitial �uid to asses the value of
the BG. This creates a lag modelled by (3.24)

dGI
dt

(t) = − (GI(t)−G(t))

τI
(3.24)

τI [min] represents the time lag between the plasma and interstitial �uid and
GI(t) is the interstitial glucose and G(t) is the BG. From here Kovatchev and
Breton proposes a non-Gaussian noise using an autoregressive moving average
process.

en =

{
vn if n = 1
0.7 · (en−1 + vn) otherwise

(3.25)

Where vn ∼ N(0, 1). The �nal de�nition of the noise becomes:

εn =

(
ξ + λ · sinh

(
en − γ
δ

))
(3.26)

Combining the CGM signal lag modelled by (3.24) and the CGM signal noise
modelled by (3.26) the simulated CGM signal is de�ned by (3.27).

GCGM (t) = GI(t) + εn (3.27)

26 Physiological Model

Table 3.3: CGM model parameters

Parameter Value
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444

07:00 08:00 09:00 10:00 11:00 12:00
4

5

6

7

8

9

10

G
lu

co
se

 C
on

ce
nt

ra
tio

n[
m

m
ol

/L
]

Hours

Blood Glucose
Glucose interstitial
CGM signal
Meal + Bolus

Figure 3.6: This �gure shows the Continous Clucose Monitor Model with noise. It
shows the lag to interstitial �uid and the sensor noise for a single 50 g
meals and 1 U meal bolus.

Kovatchev and Breton also gives a set of parameters displayed in Table 3.3
which they consider realistic to simulate the implementation of a CGM. Figure
3.6 shows the BG and interstitial glucose plotted with the noised CGM signal
in a 70 kg virtual patient with one meal and one insulin bolus at 07:00.

3.3 Performance Metrics

The physiological model with the noised CGM signal has been de�ned. Thereby
it is now possible to simulate a virtual patient. This leads to the need for meth-
ods to evaluate how the simulated patients handle their T1D. The evaluation
of a run and how well the treatment of the T1D patient is conducted will be
denoted as the performance of a run. Hence, a performance of a run indicates
whether a T1D patient is treated well or bad. The performance metrics has
been selected to re�ect the main factors which explains much of the complica-
tions related to T1D. As described in Section 2.1 minimization of complications
is related to hypo- and hyper-glycemia and glycemic variability. Hence, the

3.3 Performance Metrics 27

Table 3.4: The performance metrics that will be used to evaluate simulations.

Abbreviation De�nition
TIZ Time In Zone
TATx Time Above Threshold Tx
TBTy Time Below Threshold Ty
MAGE Mean Amplitude of Glycemic Excursion
ADRR Average Daily Risk Range
LBGI Low Blood Glucose Index
HBGI High Blood Glucose Index
HbA1c Glycated hemoglobin

metrics seeks to show either hypoglycemia, hyperglycemia, glycemic variability
or a combination of these factors. In Table 3.4 the list of performance metrics
are shown.

TIZ is an expression of the time the BG level is between 4-10 mmol/L. TATx
denotes the time spend above a threshold, Tx, while TBTy indicates the time
spend below a threshold Ty. TIZ, TATx and TBTy are used to identify if hypo-
or hyper-glycemia is present in a T1D patient. MAGE indicates an average value
of the �uctuations of the BG level. MAGE is calculated as a mean value of the
distance between the highest and lowest BG value in 6 hours intervals [14].
Additionally standard statistical measurements are available, such as; Mean
Blood Glucose, median and standard deviation.

3.3.0.1 Blood Glucose Risk Space (ADRR, LBGI, and HBGI)

The Average Daily Risk Range (ADRR) is a measure of variability. The ADRR
is in practice computed from SMBG data and developed by Kovatchev et al. in
[31]. The development of ADRR has been done in a clinical environment and
the ADRR showed a superior balance in predicting hypo- and hyper-glycemia
for people with T1D. This means that a T1D patient can use ADRR to indicate
a risk category of either hyper- or hypo-glycemia [31].

The idea behind the ADRR is to transform the BG readings to depict a risk
measure. The transformation of the BG to a risk measure is done through 3.28
which is an asymmetric function that will penalize low BG values more relative
to high BG:

f(BG) = 1.509 ·
[
ln(BG · 18.0182)1.084 − 5.381

]
(3.28)

28 Physiological Model

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
2

4

6

8

10

12

14

B
lo

od
 G

lu
co

se
 C

on
ce

nt
ra

tio
n[

m
m

ol
/L

]

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
0

10

20

30

H
B

G
I

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

0

10

20

30

LB
G

I

Hours

Figure 3.7: The Risk Space LBGI and HBGI (bottom) as a function of the blood
glucose levels (top) over a 2 day period with a total of 7 meals. Note how
the asymmetric risk space gives more weight on low BG levels especially
around 01:30 during night.

From here the rl and rh can be calculated:

rl(BG) =

{
10 · (f(BG))

2 if f(BG) < 0
0 otherwise

(3.29)

rh(BG) =

{
10 · (f(BG))

2 if f(BG) > 0
0 otherwise

(3.30)

(3.31)

rl and rh represent the elements of f(BG) below and above zero respectively.
Hereby, rl and rh gives a metric for the low and high BG levels respectively.
Low and High Blood Glucose Index (LBGI and HBGI) is denoted as the
average value of rl and rh respectively. Figure 3.7 graphically show the risk
space as a function of the BG level. Note that lower BG level gives a higher
penalty compared to higher BG level. This is particular noticeable around night
time where the BG level becomes below 4 mmol/L. This is in correspondence
with the fact that hypoglycemia is considered more dangerous compared to
hyperglycemia. Let xjl be a BG reading from a CGM where j ∈ J is the
reading number on day l ∈ L. Kovatchev et al. notes that a minimum of 3
measurements per day over a minimum of 14 days is required for a valid use of

3.3 Performance Metrics 29

Table 3.5: The translation of risk for ADRR.

Range Risk of hypo/hyper-Glycemia
ADRR < 20 Low

20 ≤ ADRR ≤ 40 Medium
40 < ADRR High

this method. The ADRR can be found by (3.32)

ADRR =
1

M

M∑
l=1

(LRl +HRl) (3.32)

Where M is the cardinality of L, that is M = |L| and

LRl = max
∀j∈J

(rl(xjl)) ∀l ∈ L (3.33)

HRl = max
∀j∈J

(rh(xll)) ∀l ∈ L (3.34)

The translation of ADRR to a risk-measure is evaluated in Table 3.5

3.3.0.2 HbA1c

HbA1c is a measure used to identify the historical average BG level by measuring
the glycated hemoglobin [37]. In assessing glycemic control, HbA1c has been
identi�ed by the DCCT to be an important measure is assessing the patients
risk of complications. This means that HbA1c is a commonly used metric in
the evaluation of T1D patients health. HbA1c is calculated using a theoretical
estimation based on the Mean Blood Glucose (MBG) levels. A comprehensive
analysis of the relationship between the estimated HbA1c level and the MBG
using data from 1.441 T1D subjects during a 5 week period has been proposed
by Rohl�ng et al. based on a linear regression analysis (r = 0.82)[37]. At the
time of publication this study was the �rst to introduce this many data points
for the estimation of HbA1c. The estimation became:

HbA1c =
MBG+ 4.29

1.98
(3.35)

Kilpatrick et al. noted that the results from Rohl�ng et al. was inconsistent
between patient groups and that the relationship between the MBG and Hb1Ac
was depended on the glycemic control of the population being studied [30].

30 Physiological Model

Hence they proposed a new calculations depending on the treatment type:

HbA1c =

MBG+0.10

1.54 Conventional therapy

MBG−0.47
1.23 Intensive therapy

MBG+3.61
1.87 Combined

(3.36)

All four evaluation methods will be available. However an average of the four
methods will be used going forward. A slight drawback with this estimation
method is that interpersonal variability will be eliminated as the method is an
estimation across many patients. The HbA1c nonon-diabetics is typically in the
range of 5.7%. Diabetics typically has a HbA1ac in the range between 6.5%
- 7%. For people su�ering from T1D a HbA1c value below 7% is considered
within reasonable glycemic control.

3.4 Summary

In this chapter the Hovorka model from Boiroux and Hovorka and Wilinska
for people with T1D has been presented. The model described the glucose-
insulin dynamics in people with T1D and consisted of three subsystems. The
carbohydrate absorption, the insulin absorption from a CSII pump, and the
glucose-insulin regulatory system. Additionally, a CGM model was added. The
Hovorka model can be formulated as an IVP:

x(t0) = x0 (3.37)

ẋ(t) = f(t,x(t), d(t),θ(t)) (3.38)

f(t,x(t), d(t),θ(t)) : (R,Rnx ,R,Rnθ) 7→ Rnx (3.39)

Several performance metrics are presented to evaluate simulations. This in-
cluded standard statistical measurements and other risk parameters such as
ADRR and HbA1c.

Chapter 4

Methodology

The objective of this chapter is to deal with three numerical challenges. First,
to solve the non-sti� system of di�erential equations presented in the previous
chapter. Second, to solve the steady state problem using an iterative root �nd-
ing method. Third, to present the PID controller used in this software. This
chapter is organized as follows. Section 4.1 explains the numerical integration
algorithm. Section 4.2 describes an iterative root �nding method. Section 4.3
describes the PID controller. Finally, Section 4.4 looks into the implementation
of these methods in the programming language Java using the Apache Commons
Mathematics Library.

4.1 Explicit Runge-Kutta Methods

The Dormand Prince 54 (DoPri54) method, belongs to the family of Runge-
Kutta (RK) methods, and is chosen as the default ODE solver in this thesis. It
were developed by Dormand and Prince in 1980 [21] and are currently part of
the standard ODE solver library in e.g. Matlabr.

The general idea behind any numerical integration method is to compute an
approximate solution xn of the true value x(tn) for some point tn, n ∈ N given

32 Methodology

an initial condition, thus, denoted an IVP in the form:

x(t0) = x0

ẋ(t) = f(t,x(t))

f(t,x(t)) : (R,Rnx) 7→ Rnx

Where x0 is the initial vector. The basics of the Explicit RK methods, and for
the DoPri54 for that fact, is given by the next step calculation in (4.1) to (4.5).

Ti = tn + cihn i = 2, .., s (4.1)

T1 = tn

Xi = xn + hn ·
i−1∑
j=1

aij · f(Tj ,Xj) i = 2, .., s (4.2)

X1 = xn

xn+1 = xn + hn ·
s∑
j=1

bj · f(Tj ,Xj) (4.3)

x̂n+1 = xn + hn ·
s∑
j=1

b̂j · f(Tj ,Xj) (4.4)

en+1 = xn+1 − x̂n+1 = hn ·
s∑
j=1

djf(Tj ,Xj), dj = bj − b̂j (4.5)

The step size is denoted as: tn+1− tn = hn. The coe�cients, aij , bj , b̂j , ci, and
dj are given by the Buthcer's Tableau. The explicit methods that will be used
here have a Butcher's tableau that is a strictly lower triangle matrix as shown
in Table 4.1. The classical RK method uses only (4.1) to (4.3) to estimate
the solution of the IVP since the classical RK method does not estimate the
truncation error which is given by (4.4) to (4.5). The classical RK method is
explicit and has s = 4 stages. The method has a �xed step size such that hn = h.
The coe�cients for the classical RK method is given by the coe�cients in Table

Table 4.1: Butcher's tableau for the Explicit RK method.

0 0
c2 a2,1

...
...

. . .
cs as,1 . . . as,s−1 0
x b1 bs
x̂ b̂1 b̂s
ê d̂1 d̂s

4.1 Explicit Runge-Kutta Methods 33

Table 4.2: Butcher's tableau for the Classic Runge Kutta method

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

x 1
6

1
3

1
3

1
6

Table 4.3: Butcher's tableau for DoPri 54 method

0 0 0 0 0 0 0 0

1
5

1
5

0 0 0 0 0 0

3
10

3
40

9
40

0 0 0 0 0

4
5

44
45

−56
15

32
9

0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

0 0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

0

x 5179
57600

0 7571
16695

393
640

−92097
339200

187
2100

1
40

x̃ 35
384

0 500
1113

125
192

−2187
6784

11
84

0

4.2. The DoPri54 method di�ers from the classical RK method in several ways.
The DoPri54 method uses the Butcher's Tableau given by Figure 4.3 and uses
an adaptive step size [21]. The DoPri54 method advances the solution with a
�fth order accuracy and creates the error estimate with a fourth order accuracy
as denoted in (4.5). The method is explicit and has s = 7 stages. An example
of an IVP is given in (4.6).

x(0) = 0,

d

dt
x(t) = (x(t)− 1)

2 · (t− 1)
2 (4.6)

with the analytical solution as found in Mapler:

x(t) =
t ·
(
t2 − 3t− 3

)
t3 − 3t2 + 3t+ 3

(4.7)

Figure 4.1 identi�es the global truncation error for the classical RK and DoPri54
method respectively for the problem in (4.6) in comparisment with the analytical
solution from (4.7). Note from the �gure that the slope represent the fourth and

34 Methodology

10
−3

10
−2

10
−1

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Step Size

G
lo

ba
l T

ru
nc

at
io

n
E

rr
or

RK4, slope = 4
DP54, slope = 4.7

Figure 4.1: This �gure shows convergence for the classical RK and DoPri54 method
respectively. Note how the global truncation error is fourth and �fth order
accurate.

�fth order accuracy of the two methods. The DoPri54 uses an adaptive step
size potentially changing the step size hn at each iteration. The adaptive step
size has two advantages. First, it helps increase the solution accuracy since it
will take shorter and more accurate steps when needed. Second, it reduces the
computation time as it allows for larger step size when possible. As the analytical
solution is unknown the truncation error is estimated as the di�erence between
the �fth and fourth order estimate as shown in (4.5). The step size is chosen
such that the norm of the estimated error, en+1 is smaller than some threshold
tolerance. In (4.8) the tolerance term is de�ned. Note that i indicates the i'th
element of the state vector.

toli = absTol + resTol ·max((xn)i, (xn+1)i) (4.8)

Then the error ratio, r is de�ned by (4.9).

rn+1 =

√√√√ 1

nx
·
nx∑
i=1

(en+1)i
toli

(4.9)

Where (en+1)i denotes the value of the error from (4.5) and nx is the dimension
of the state variable x(t). toli is a combination of the absolute and the relative
tolerance term. If the previous solution, (xn)i or the current solution, (xn+1)i
is large, the relative tolerance will be the dominating part and the absolute
tolerance otherwise. Hence, the error estimation (en+1)i will be seen relative
to the size of the solutions generated. (4.9) can be seen as a ratio between the

4.1 Explicit Runge-Kutta Methods 35

Algorithm 1 Dormand Prince 54 - Step size control
1: Input: xn, en+1, hn, maxStep, minStep, relTol, absTol
2: Evaluate:

rn+1 ←

√√√√ 1

nx
·
nx∑
i=1

(en+1)i

toli

3: if rn+1 > 1 then
4: Reject step, reduce step size and try again.
5: Evaluate:

γ ←
(

ε

rn+1

)1/p

factor ← min (maxStep,max (minStep, γ))

hn ← factor · hn

6: else
7: Accept step
8: Update solution: xn+1, and time: tn+1 = tn + hn
9: end if

actual error and the tolerance. The error ratio, rn+1, de�nes whether a step
should be accepted or rejected. If rn+1 > 1 the step will be rejected. This
means that the solution will be computed again with a new reduced step size.
On the other hand, if rn+1 ≤ 1 the step size will be accepted and the algorithm
will continue the next iteration.

In the case where the estimated error ratio rn+1 is larger than 1, the value of
hn will be reduced by a factor γ as denoted in (4.10).

γ =

(
ε

rn+1

)1/p

(4.10)

Here ε = 0.9 is a safety factor and p is the order of the method as de�ned in
[33]. The step size control can be see in Algorithm 1.

The DoPri54 method is the standard ODE solver in many mathematical soft-
ware's as e.g. Matlabr, GNU Octave and Simulinkr, though with a slightly
di�erent step size calculation. As seen in Figure 4.1 the DoPri54 method has a
global truncation error of O(h5) which means that reducing the step size with
h reduces the error with h5. This is superior to the classical RK method for
comparison. One of the drawbacks with the DoPri54 method is that the num-
ber of steps can become unpredicted and therefore the computational time can
become unpredicted as well. For this reason it is important to state a reason-
able absolute and relative tolerance such that the method will execute with a
reasonable running time. The full algorithm of the DoPri54 method as imple-
mented in the numerical library used in this thesis can be seen in Algorithm

36 Methodology

Listing 4.1: De�nition of ODE in Java

1 private static class ExampleODE implements ...
FirstOrderDifferentialEquations {

2

3 private double c;
4

5 // Constructor of ODE
6 public ExampleODE(double c) {
7 this.c = c;
8 }
9

10 // Dimension of state variable
11 public int getDimension() {
12 return 1;
13 }
14

15 // Here goes ODE such that yDot = f(t,y)
16 public void computeDerivatives(double t, double[] y, ...

double[] yDot) {
17 yDot[0] = Math.pow((y[0]−c),2.0) * Math.pow((t−c),2.0);
18

19 }
20

21 }

Listing 4.2: Instantiate ODE function.

1 ExampleODE ode = new ExampleODE(1);

2. The implementation of the Hovorka model in Java is extensive. Instead the
example from (4.6) is used to show the implementation of an ODE and the
subsequent usage of the DoPri54 solver in Java. Please refer to Appendix F for
the Java implementation of the Hovorka model. First, we de�ne the ODE using
the FirstOrderDifferentialEquations interface as shown in Listing 4.1.

Then, the function must be instantiated as shown in Listing 4.2. From this
point the algorithm can be executed by the command in Listing 4.3. Notice
that the solver will simply update the state variable x.

4.2 Newton-Raphson's Method 37

Listing 4.3: Solving the ODE.

1 // ...
2 // First instantiate the integrator:
3 FirstOrderIntegrator dp = new
4 DormandPrince54Integrator([minstep],
5 [maxstep],[abstol],[reltol]));
6

7 // Solve from tzero to tmax. x will be updated.
8 dp.integrate(ode, tzero, x, tmax, x);
9 // ...

Algorithm 2 Dormand Prince 54 - Explicit Runge-Kutta Method
1: Input: xn, tn, tmax (�nal time)
2: while tn < tmax do

3: Evaluate:

T1 ← tn

X1 ← xn

4: for i = 2→ s do
5: Evaluate:

Ti ← tn + cihn

Xi ← xn + hn ·
i−1∑
j=1

aij · f(Tj ,Xj)

6: end for

7: Evaluate:

xn+1 ← xn + hn ·
s∑

j=1

bj · f(Tj ,Xj)

x̂n+1 ← xn + hn ·
s∑

j=1

b̂j · f(Tj ,Xj)

en+1 ← hn ·
s∑

j=1

djf(Tj ,Xj)

8: Evaluate step size control, Algorithm 1
9: end while

10: return xtmax

4.2 Newton-Raphson's Method

This section deals with the implementation of the Newton-Rhapson's method
to �nd the steady state of the Hovorka model in Java. The Newton-Rhapson's

38 Methodology

method is an iterative root �nding method for non-linear equations. In this
thesis the Newton-Rhaphson's method is used to compute the steady state for
the system of nonlinear equations de�ned in (3.22) from Section 3.1.5:[

f(x(t), uk, dk,θk)
Q1(t)
VG
− r

]
=

[
0
0

]
(4.11)

This system has nx + 1 equations with nx + 1 variables. This system could
be solved using the multivariate Newton-Raphson's method, where the general
de�nition is:

f(x) = 0 (4.12)

f : Rnx 7→ Rnx (4.13)

The multivariate iterative root �nding method is based on following approxima-
tion:

xk+1 = xk − J−1(x)f(x) (4.14)

However, since the univariate case of the Newton-Rhaphons method is more
simple to implement in Java, (4.11) must be revised to a univariate expression.
The full transformation can be seen in Appendix A. The univariate function,
q(u), derived from (4.11) becomes:

q(u) =− F c01 − FR −
r · VG · kb1 · uk
VI · ke · ka1

(4.15)

+ k12 ·
r · VG · kb1 · uk

ka1VIke

(
k12 + kb2

u
ka2VIke

)
+ EGP0 ·

(
1− kb3 · u

VI · ke · ka3

)
Where the derivative of q(u) becomes.

dq(u)

du
=− r · VG · kb1

VI · ke · ka1
(4.16)

+
k12 · r · VG · kb1

ka1VIke

(
k12 + kb2

uk
ka2VIke

)
+

(
−kb2 · k12 · r · VG · kb1 · u

ka2ka1

(
VIkek

−1
12 + kb2k

−1
a2 u

)2
)

− EGP0 · kb3
VI · ke · ka3

4.2 Newton-Raphson's Method 39

Algorithm 3 Newton-Rhaphson's method to �nd the approximate steady state
bolus, uss
1: READ ε← tolerance, kmax ← max evaluations, u0 ← Initial guess .
2: Evaluate:

q(u0)← Equation (4.15)

q′(u0)← Equation (4.16)

k ← 0, h←
q

q′
, u← u0

3: while k ≤ kmax or |h| ≥ ε do
4: Evaluate:

u← u− h
q(u)← Equation (4.15)

q′(u)← Equation (4.16)

h←
q

q′

k ← k + 1

5: end while

6: return u

The problem which we seek to implement and solve in Java can then be de�ned
as a univariate case:

q(u) = 0 (4.17)

q(u) : R 7→ R

Essentially this will return the basal insulin rate, uss. Solving (4.17) by Newton-
Rhapson's method can be done from de�nition 4.3.1 in Lars Eldén and Nielsen
the general formula for the approximation of the root is given by the iterative
Newton method de�ned as follows [33]:

uk+1 = uk −
q(uk)

q′(uk)
(4.18)

uk is the current approximation and we seek to �nd a step h such that q(uk+h) =
0. Since h can be expected to be small the Taylor approximation gives a good
estimate of the function value q(uk+h) ≈ q(uk)+q′(uk)h. Setting the left hand
side to zero allow us to �nd that h = q(uk)

q′(uk) and hence uk+1 will become the new
approximate solution to the root. The algorithm for the method is described
in Algorithm 3. One challenge with the Newton-Rhapson's method, is its usage
of the �rst order derivative. However, in this thesis the derivative was possible
to �nd making it easy to implement. The implementation in Java are done in
two steps. First, is the de�nition of the function and its derivative as shown in
Listing 4.4 Second step is the actual execution of the solver initially by de�ning
the function, followed by the solver as showed in Listing 4.5.

40 Methodology

Listing 4.4: Implementing basal function in Java.

1 // Class which implements the UnivariateDifferentiableFunction ...
interface

2 public class HovorkaBasalState implements ...
UnivariateDifferentiableFunction {

3

4

5 public double value(double u) {
6 // here goes q(u)
7 }
8

9 public DerivativeStructure value(DerivativeStructure t) {
10 // here goes q'(u)
11 }
12

13 }

Listing 4.5: Execution of Newton-Rhapson's method in Java.

1 // ...
2 // Instantiate function to solve
3 HovorkaBasalState f = new HovorkaBasalState([ode ...

parameters],[target BG]);
4

5 // Instantiate solver
6 NewtonRaphsonSolver newton = new NewtonRaphsonSolver();
7

8 // Solve
9 double uss = newton.solve(maxeval,f,min,max,x0);

10 // ...

4.3 Insulin Administration Strategy 41

Optional: Feedforward

PI(D)-
Controller

Kd

-

+
+

+

+

+ Logic:

Satur-
ation

+
-

Ts/Tt

Figure 4.2: This �gure shows the insulin administration strategy used the Proof-Of-
Concept AP. It consist of a PID controller, a saturation and some logic.
An optional Feed Forward mechanism can be used.

4.3 Insulin Administration Strategy

As part of the aim of this thesis, as described in Section 1.1, is the implemen-
tation of a PID controller which are part of the Proof-Of-Concept AP imple-
mented.

The control algorithm used is based on the PID controller described by Witten-
mark et al. in [43]. Some improvements to this PID controller has been made
and this section seeks to give a brief overview of the controller implemented and
the improvements made shown by Figure 4.2.

� Input: As described in Section 2.2.2 Figure 2.6 the control system receives
the CGM signal, ŷ from the simulated T1D patient and potentially a meal
input d. The input, ŷ, is subtracted the set point value r to calculate the
error. The error term is given as input to the PID controller.

� PID-controller: The PID controller consist of three elements. The pro-
portional term, P , the Integral term, I, and the derivative term, D. In
this example the derivative term, D, has been disabled, in practice making
this a PI-controller. The goal with the PI controller is to calculate an out-
put value based on the di�erence between r and ŷ. From a computational

42 Methodology

standpoint the PI-controller looks as shown in (4.19) to (4.22).

P = K · (r − ŷ) (4.19)

I = Iold +
K · h
Ti

(r − ŷ) +
h

Tt
· (û− v) (4.20)

FF = Kd · CR · d (4.21)

v = P + I + FF (4.22)

Where, K, is the gain, h, is the sampling period, Ti, is the integral time,
Tt, is the reset time, CR, is the insulin-to-carbon ratio, and Kd, is the Feed
Forward gain. The CR is an estimation of the insulin dosing to eliminate
a 50 g meal and indicates the ratio between the meal intake and the size
of the bolus.

� Feed Forward: The Feed Forward mechanism is optional and simply
adds an input based on the meal input as shown in (4.21) and (4.22). The
meal bolus will be estimated by calculating CR for each virtual patient.
Calculation of the CR has been done by developing a heuristic for estima-
tion of the CR which can be seen in Algorithm 4. The algorithm estimates
the CR given a 50 g meal. After 180 minutes the BG levels are evaluated.
If the BG levels are within acceptable range the CR will be estimated,
otherwise the algorithm will continue until tolerance is satis�ed.

� Saturation: The saturation determines a limit for the received signal i.e.
a limit on the actual output value. In this case the limit is given by the
physical dosing limit by the pump such that 0 mU ≤ û ≤ 300 mU.

� Anti wind-up: The anti wind-up mechanism reduces the oscillation of
the controller. Here the signal v and û is used to determine the anti
wind-up.

� Logic: The logic is a method to shut o� the insulin infusion pump if the
CGM value, ŷ, is lower than 4 mmol/L.

� Output: The output value, u, indicates the insulin dosage calculated by
the insulin administration system measured in mU/min.

The controller has been tuned by visually inspecting the ADRR performance of
an average individual adjusting the parameters K, Ti, Tt and Kd.

4.4 Apache Commons Mathematics Library 43

Algorithm 4 Algorithm for estimation of optimal Insulin-to-Carbon Ratio
1: Input: ubasal, BGbasal

2: d← 50g, u← 1U , t0 ← 0, tmax ← 180
3: BG← array for storage
4: A1, A2, A3 ← false

5: while A1&A2&A3 not true do

6: BG← Simulate patient with d, u from t0 → tmax

7: if 0.85 ·BGbasal ≤ BGend ≤ 1.1 ·BGbasal then

8: A1 ← true

9: end if

10: if minBG < 5 then
11: u← u− 0.01
12: else

13: A2 ← true

14: end if

15: if maxBG > BG0 + 4 then
16: u← u+ 0.01
17: else

18: A3 ← true

19: end if

20: end while

21: CR← d
u

22: return CR

4.4 Apache Commons Mathematics Library

The described numerical methods for solving the IVP and the univariate root
�nding problem from Section 4.1 and Section 4.2 have been implemented in Java
using the open source Apache Commons Mathematics library (ACM) [4]. The
library is a formerly Fortran based library that has been translated, expanded
and developed especially for Java purposes. The library is well supported and, of
the authors understanding, the best known practice within the �eld of numerical
methods, solvers, optimization tools and more for Java. The motivation behind
choosing the ACM Library is threefold:

� Documentation: The �rst and foremost reason for choosing the ACM
lies in the extensive documentation available. This ensures easy educa-
tion, reduction of potential bugs and ease in implementation. In addition
Apache Commons is part of the Apache license which in practice makes it
free of charge [5]. One of the bene�ts of the Apache License is that it al-
lows work or derivative work of Apache license products to be redistribute
under the condition that the Apache license is quoted in the license itself.

� Implementation: The methods in the ACM library is relatively easy to
implement for an experienced Java programmer. This is especially due to
the JavaDoc documentation available at their homepage.

44 Methodology

� Future development: The ACM library is updated at a regular basis
and the source code can be assessed directly which means that contri-
butions to the ACM library can be made and submitted online. The
submissions will be veri�ed by the ACM team to ensure consistency in
every update.

Based on above motivational points it appears that the ACM library is a well
documented, updated and free library. Therefore, the ACM library has been
considered very suitable for this thesis. The entire source for the ACM library
can be found in Appendix G.

4.5 Summary

In this chapter the numerical method for solving the IVP is presented. The IVP
will be solved with the DoPri54 method with adaptive step size. The steady
state for the IVP is found using the Newton-Rhapsons iterative root �nding
method. Additionally, a PID controller with Feed Forward was introduced as
part of the proof-of-concept AP. The numerical methods is implemented using
the open-source ACM library to ensure proper implementation, documentation
and future reliability. The next chapter will initiate the development of the
software for in silico testing for an AP.

Chapter 5

Developing a Software for

In Silico Testing for an

Arti�cial Pancreas

The objective of this chapter is to present the development of the software
for in silico testing for an AP. The conceptual clari�cation from Section 1.4
is a prerequisite for reading this chapter. The chapter is organised as follows.
Section 5.1 analyse the requirements of the software. Section 5.2 implements
the requirements in Java. Section 5.3 implements multi-threading and �nally
Section 5.4 introduces a con�guration-system.

5.1 Requirements and Functionalities

The overall purpose of this software is to mimic the clinical setup of a closed-
loop study such that the software imitates the actual �ow of data between the
virtual patient, the CGM device, the insulin administration strategy and the
insulin pump. The software framework developed consist of following 6 principal
components:

1. The virtual cohort as described in Subsection 3.1.6.

46 Developing a Software for In Silico Testing for an Arti�cial Pancreas

2. The mathematical model described in Section 3.1 to simulate the glucose-
insulin dynamics of patients su�ering from T1D.

3. The Insulin infusion pump de�ned by the subcutaneous insulin infusion
described in Subsection 3.1.2.

4. The CGM model as de�ned in Section 3.2.

5. The Insulin Administration Strategy as described in Section 4.3.

6. Performance Metrics to evaluate simulation of the system as described in
Section 3.3.

As the Graphical User Interface (GUI) is out of scope of this thesis Matlabr

will be used as a substitute. This means that Java will be called from Matlab.
Additionally, all plotting is done in Matlab.

Throughout the remaining part of this chapter the description will be divded
into three key areas. The input - containing principal component 1. The system
- containing Principal compoent 2-5 and �nally the output - containing principal
component 6.

5.1.1 Input - Principal component 1

The �rst principal component is the virtual cohort which consist of the following
elements:

� Virtual Patient: As a central part of the AP system is the ability to
de�ne a patient. A patient is a de�nition of two key elements:

� Physiological Parameters: A set of individual physiological pa-
rameters that can vary over time as the physiological composition of
the patient change. This also includes the bodyweight of an individ-
ual.

� Meal Pro�les: One or more set of meals with an associated start
time of meal, an amount of carbohydrate in the meal [g], and a du-
ration of the meal [min].

The virtual patient can be summarised by a domain model. Figure 5.1 shows
the domain model of the software and the data structures used. Note that for
one patient, many variations in meal pro�les and continuous changes in the

5.1 Requirements and Functionalities 47

Virtual Patient

patientNumber : int
Meals : ArrayList<Meal>
Parameters : ArrayList<ParameterList>

Physiological Parameters

startTime : DateTime
parameters : double[]

Meal Profile

startTime : DateTime
duration : int
amount : double
endTime : DateTime

BodyWeight : double

1..*1..*

Figure 5.1: This �gure show the domain model for the software and the datastruc-
tures used. Note that a patient can consist of many meals and many
parameters as denoted by 1..?.

Table 5.1: Meal pro�le input

Time Duration [min] CHO [g]
07:00 20 60

10:00 10 10
12:00 30 50
18:00 25 55

Table 5.2: Parameter input

Time EGP0 F01 · · · Ag
07:00 0.0161 0.0097 · · · 0.8
07:15 0.0161 0.0097 · · · 0.78
...

...
...

. . .
...

physiological parameters exist. This is natural in the sense that meal pro�les
across individuals are very di�erent. Additionally, the physiological parameters
changes over time due to the variation as a consequence of lifestyle changes or
biological events. The user must be able to make the decision on how the virtual
T1D patient is composed such that modelling of the cohort can be done easily.
An intuitive way to retrieve this input is by allowing the user to create �les
in Comma Separated Values (CSV) format as depicted in Table 5.1 for meal
pro�les and as in Table 5.2 for the parameter de�nitions. Table 5.1 is the layout
for the meal pro�les for a single day containing information on when a meal is
consumed, the length and the size of the meal. Figure 5.2 shows the parameter
values for speci�c times during a day. This would be possible to load into the
domain model and the respective data structures. The data structure DateTime
is for calender calculations. The drawback with the domain model proposed is
that it need to be transformed to be usable in the numerical methods. Thus,
after loading the data into the domain model the data is transformed. The
transformation simply ignores the calender time and instead uses the zero-order

48 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Table 5.3: Transformed CSV �le. One �le indicates one virtual patient su�ering from
T1D.

Start time t CHO [g] EGP0 F01 · · · Ag
12-02-2014 07:00 0 15 0.0161 0.0097 · · · 0.8

5 15 0.0161 0.0097 · · · 0.8
10 15 0.0161 0.0097 · · · 0.8
15 15 0.0161 0.0097 · · · 0.78
20 0 0.0161 0.0097 · · · 0.78
...

...
...

...
. . .

...

hold piece wise constant principle as depicted in Table 5.3. Notice from Table
5.3 how the breakfast meal from Table 5.1 is divided into equal amounts over
the duration of the meal. In practice it is now possible to create as many virtual
patients as possible to form a cohort. However, it is rather comprehensive to
do this for, lets say, 500 virtual patients, that is, de�ning CSV �les for each
individual. Thus, some additions to the previously described requirements must
be considered:

� Reuse meal pro�les: It should be possible to simply create one day of
meals and reuse this meal pro�le for several days across individuals. In
addition it should be possible for several individuals to use the same meal
pro�les, hereby the user needs only to make the meal pro�les once.

� An easy way of changing parameters: Creating individual physio-
logical parameters for 500 virtual patients with the CSV method above
is very time consuming. Instead the program should be able to handle a
vector input with the parameter values as a function of time.

� Study protocol: The user should be able to initiate trials composing of
several patients. A trial is speci�ed by having a start time, an end time
and a time between measurements (step size), and �nally the number of
patients that participate in the trial.

A transformed �le in the form presented in Table 5.3 corresponds to a single
virtual individual from the trials starts to the trial ends. The transformed �le
thus contains data on meal input and the physiological parameters for each time
step, Ts.

5.1 Requirements and Functionalities 49

5.1.2 System - Principal Component 2-5

Input from each virtual patient for each time step Ts is the input to the system.
The system simulates the T1D patient by simulation of the glucose-insulin dy-
namics considering the input �les. The system should take following elements
into consideration:

� Physiological model: Simulate a patients glucose-insulin dynamics by
implementing the simulation models described in Section 3.1.

� CGM model: Consider the irregularities of a CGM such as lag and noise
by implementing the CGM model proposed in Section 3.2.

� Insulin Administration: Be able to make decision on insulin dosage by
implementing the insulin administration strategy proposed in Section 4.3.

At this point the simulation should be conducted and the simulated BG stored.
However, the user requires to also have:

� Software con�gurability: The software should be easy to con�gure.
This could for instance be the tolerance of the numerical integrator or the
directory for which the �les will be exported to.

� High performance: To increase the usability of the software the software
must execute within a few minutes.

5.1.3 Output - Principal Component 6

As a the system has been conducted the software should analyse and evaluate
the system performance:

� Outcome Evaluation: As the trial is conducted it must be evaluated on
individual patient basis. A variety of statistical measures and risk metrics
as proposed in Section 3.3 should be implemented.

The proposed requirements creates a platform in which closed-loop control sys-
tems can be tested. The next section will consider the implementation of the
described requirements and functionalities in Java.

50 Developing a Software for In Silico Testing for an Arti�cial Pancreas

5.2 Implementation

Uni�ed Modelling Language (UML) Sequence Diagrams will be used to illustrate
the series of steps which the program will execute. Steps in this context can be
functionalities, work �ow or messages. Appendix B gives a brief overview of the
notation of the UML Sequence Diagrams. This Section has been divided into
three areas corresponding to the three di�erent functionalities of the program.
The three areas can be summarized as follows:

1. Input: As described in Section 5.1 the user should be able to enter one
or more input �les for one or more virtual patients. In addition the user
de�nes a trial that gathers all individual patients under one test. This
step should transform Table 5.1 and Table 5.2 to the output depicted in
�gure 5.3.

2. System: This functionality models the system behaviour which is the
dynamics of one or more T1D patients based on the input received. The
system should handle the inputs and model the physiological behaviour
for each T1D patient. As the system will receive various input the system
will simulate one or more patients and handle the system entities. The
system simulation will be stored in a csv �le or in memory depending on
the user needs.

3. Output: The �nal functionality gathers the output from the system sim-
ulation into relevant performance metrics for each patient in the trial.

Each of the above mentioned functionalities will be described in detail in the
next three subsections. This will be done in coherence by the current best
practice in the UML notation as described by Bell in [15]. Please note for
easy reading each subsection is numbered in correspondence with the �gures.

5.2.1 Input

Figure 5.2 shows the execution process of this part of the software. The param-
eters for this call should be:

� The number of virtual patients

� The sampling time (step size)

� The body weight for each patient

5.2 Implementation 51

� The number of days that the trial should last

� A start and end time of the trial.

This functionality also propose an easy way to handle continuous input such as
the physiological parameters which varies over time. This is done by including
an optional vector with physiological parameters.

5.2.1.1 1 through 2 - Figure 5.2

Upon execution of the input program the program will loop over all participating
patients. Initially a patient is instantiated. As a patient is associated by one or
more meals and by one or more set of parameters each patient is associated with
all available meals and parameters. The meals and parameters will be loaded
from a prede�ned directory. If the number of meals or parameters available
are zero the program will throw an InsufficuentInputException and termi-
nate. The InsufficuentInputException is thrown speci�cally if bad input is
received. In the case that the user speci�es to few or to many meals than the
number of days the trial runs the program will not terminate but instead take
this into consideration by either reusing or skipping meals. In the same manner
if the number of patients de�ned is lower than the number of available meal
pro�les and parameters, the program will simply duplicate the existing patient
meals and parameters and reuse them for other patients. This can be very use-
ful if one seeks to test the same meal pro�le for many di�erent patients. Since
every meal pro�le and every parameter is associated with a time it is possible
to point each meal and parameters to a calender date using the datastructure
DateTime. Since the time interval N and the step size Ts is known the idea is
to de�ne the trial length as a calender interval. Hereby it is possible to �nd the
number of minutes between the start and end time such that a time interval
[t0, tmax] can be de�ned. Thanks to the Java library Joda time [9] it is possible
to point a location in the calender for each meal and each set of parameters.
Each information will be stored for each virtual patient in the data structure as
depicted in the domain model in Figure 5.1 in Section 5.1.

5.2.1.2 3 through 4 - Figure 5.2

Once all the virtual patients has been associated with the content loaded from
the CSV �les the next step will be to consider whether the user have speci�ed
an optional vector with parameters. This is shown as the logical alternative
condition. parametersToChange:addToArray is a the reference to instance of

52 Developing a Software for In Silico Testing for an Arti�cial Pancreas

U
se
r

Fa
ct
or
y

p
 :

P
at

ie
n

t

Im
p
or
t

m
 :

M
ea

l

p
 :

P
ar

am
e

te
rs

Cr
ea
te
CS
V

Ex
ec

ut
eT

ri
a

l

lo
o

p

[A
ll

p
at

ie
nt

s]

2:
 g

et
Pa

ti
en

t(
d

ir
ec

to
ry

 f
o

r
pa

ti
e

nt
 i)

lo
o

p

[A
ll

d
ay

s]

2.
2:

 <
<

cr
e

at
e

>> 2.
3:

 <
<

cr
e

at
e

>>

2.
4:

 p
 :

p
at

ie
n

t

4:
 r

et
ur

n
 A

rr
ay

Li
st

<p
at

ie
n

ts
>

2.
1:

 [
IF

 :
d

ir
ec

to
ry

 =
 n

ul
l]

 t
hr

o
w

 In
su

ff
ic

ie
nt

In
p

u
tE

xc
e

pt
io

n
()

;

1:
 <

<
cr

e
at

e
>>

al
t

[p
ar

2c
ha

n
ge

 =
=

 n
ul

l]

[p
ar

2c
ha

n
ge

 !
=

 n
ul

l]

3a
: w

ri
te

To
C

sv
(p

at
ie

n
ts

, s
te

p
si

ze
, p

ar
a

m
et

er
sT

o
ch

an
ge

)

3b
: C

re
at

e
CS

V
(p

at
ie

n
ts

, s
te

p
si

ze
)

Ex
ec

u
te

Tr
ia

l(
st

ep
Si

ze
, n

um
b

er
O

fD
a

ys
,

d
ay

s,
 s

ta
rt

Ti
m

e
, e

n
d

Ti
m

e
, p

ar
am

et
er

sT
o

C
h

an
ge

)

Ti
m
eA

rr
ay

3a
.1

: t
im

eA
rr

a
y(

m
,p

,p
ar

a
m

et
er

sT
o

C
ha

n
ge

)

3b
.1

: t
im

eA
rr

a
y(

m
,p

)

Figure 5.2: Sequence diagram for the input handle.

5.2 Implementation 53

an addToArray. addToArray is a very useful object that ensures that if the
user speci�es one or more parameters to be changed these will be incorpo-
rated in the output �le. Method overload has been introduced with the calls
timeArray(m:ArrayList<Meals>, p:ArrayList<Parameters>, pararameters:double[][])

and timeArray(m:ArrayList<Meals>,p:ArrayList<Parameters>) which then
transforms each Patient into a transformed output. The calender system
makes it possible to discretize the time interval into K intervals with a con-
stant length of Ts such that n = [0, 1, . . . ,K − 2,K − 1]. In practice this means
that the n elements can be stored such that a time array T can be generated:
T = [t0, t0 + Ts, . . . , tmax − Ts, tmax] . As exporting starts each meal and pa-
rameters are simply associated with a location in the vector T and printed to
that location in the csv �le.

This hereby ensures that the system, described in the next section, receive
input which have been piecewise constant descritized. The reasoning behind
this discretization is elaborated in details in Section 3.1.5. The proceeding
Subsection 5.2.2 will describe how the input will be handled in the system.

5.2.2 System

Before execution of the simulator it is assumed that the input has already been
discretized as described in Subsection 5.2.1. The input must be placed in a
csv �le format in a speci�ed folder which the system will gather data from.
Figure 5.3 depicts the sequence diagram for the system. The system is the most
computational heavy of this entire software. This is due to the fact that the
numerical methods will be conducted here.

5.2.2.1 1 through 3 - Figure 5.3 and Figure 5.4

Upon execution the startText() will print all relevant information to console.
From here a loop will run through each patient. The function run() initiates
the simulation of each patient. Each patient is executed as a individual thread.
Each thread has the same code tot execute and Figure 5.4 indicates the sequence
diagram for an individual thread. Since each patient is executed in a concurrent1

manner the methods accessing shared variables in run() must be thread-safe.
Section 5.3 goes into details on this matter. From here a system of ODEs are
created for each patient and the steady state, as described in Section 3.1.5, is
computed. From here all elements in the discretized input time array T will be

1Concurrent will be used to state the simultaneous execution of one or more threads.
Concurrency must be supported by the processor to be executed parallel.

54 Developing a Software for In Silico Testing for an Arti�cial Pancreas

U
se
r

Si
m
u
la
to
r

m
 :

M
u

lt
it

hr
ea

d
S

:
Se

m
ap

h
or

e
Ex

p
or

t

1:
 s

ta
rt

Te
xt

()
;

ex
e

cu
te

Si
m

u
la

to
r(

 n
um

b
er

O
fP

a
ti

en
ts

, s
te

p
Si

ze
, B

o
dW

ei
gh

t)

2:
 <

<
cr

e
at

e>
>

ex
ec

ut
eS

im
u

la
to

r

lo
o

p

[A
ll

p
at

ie
nt

s]

lo
o

p

[A
ll

p
at

ie
nt

s]

3:
 <

<
cr

e
at

e
>>

3.
1:

 r
un

()
;

re
f:

 e
xe

cu
te

M
o

d
el

3.
2:

 p
()

;

5:
 v

()
;

6:
 e

n
d

Te
xt

()
;

4:
 e

xp
or

t(
);

Figure 5.3: Sequence diagram for the system.

5.2 Implementation 55

looped through to conduct the simulation corresponding to each time for the
CGM to make a reading. At each step the insulin controller will be evaluated
such that a decision on insulin infusion can be made.

5.2.2.2 4 through 6 - Figure 5.3

Even though each element of run() is concurrent the function export() will
export each patient information once each thread terminates. Fortunately each
print is associated with a patient number such that the virtual patients remain in
the correct order. It is possible to change the program to save the simulations to
the temporary memory instead of writing to a csv �le. This should only be done
if the user is certain that the memory would �t the data. The con�guration-
system will be explained in details in Section 5.4. However, the program must
synchronize threads in order to terminate properly. The synchronization process
is done by alignment of the semaphore that is controlled by p() and v() and
will be described in details in Section 5.3. As a concluding part of the system
the program will write a simulation summary to console by execution of the
endtext().

56 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Si
m
u
la
to
r

re
f:

 e
xe

cu
te

M
o

d
el

(p
at

ie
nt

s,
 i,

 s
te

p
Si

ze
, B

G
)

[p
ar

a
m

et
er

s]

3.
1:

 r
un

()
;

o
 :

O
D

E

O
D

Es
o

lv
er

b
 :

B
as

al
Co

n
tr

ol
le

r
Im

p
or

t

3.
1.

1.
1:

 g
et

Fi
le

s(
);

3.
1.

1:
 i

m
p

or
t(

);

3.
1.

1.
2:

 r
et

ur
n

: a
rr

ay
s

t,
d

,u
,p

ar
a

m
et

er
s

3.
1.

2:
 <

<
cr

e
at

e
>>

3.
1.

3:
 <

<
cr

e
at

e
>>

3.
1.

3.
1:

 b
.s

o
lv

e(
);

3.
1.

3.
2:

 r
et

ur
n

: b
as

al
In

su
lin

, b
as

al
St

at
es

lo
o

p

[t
im

e]

3.
1.

5:
 g

et
st

at
e

s(
o

, t
, d

, u
, p

ar
a

m
et

er
s)

;

3.
1.

4:
 g

et
U

()
;

3.
1.

4.
1:

 r
et

ur
n

3.
1.

5.
1:

 r
et

ur
n

: S
ta

te
s

3.
1.

7:
 g

et
B

G
()

;

3.
1.

8:
 r

et
ur

n

Figure 5.4: Sequence diagram for the execution of run();

5.3 Multi-threading 57

Table 5.4: Selected evaluation calls with input and output.

Call [Metrics.] Input output
ADRR Blood Glucose [LBGI HBGI ADRR]
inZone Blood Glucose, min, max TIZ

belowZone Blood Glucose, min TB
aboveZone Blood Glucose, max TA
hb1ac Blood Glucose Hb1Ac
auc Blood Glucose, step size AUC

MAGE Blood Glucose, step size MAGE

5.2.3 Output

The �nal stage of the software package is an evaluation tool package. This
serves as a purpose to conduct all the evaluations as described in Section 3.3.
Essentially this part of the program can be seen as a library containing the
relevant metrics. Table 5.4 gives an overview of the most important of these
evaluation metrics, the call and the input needed. As with other libraries in
Java the call is [library name].method.

The next section will go into details on the implementation of multi-threading
to reduce the runtime of the most computational heavy elements of the software.

5.3 Multi-threading

In recent time multi core processors has become widely standardized both in the
academic �eld as well as in personal computers. This leads to the development
of multi-threaded2 software which seeks to take full advantage of the individual
cores. Unlike sequential programming where a program is executed in a series of
steps a multi-threaded program is the process of executing steps simultaneously.
The operating system will distribute the various tasks of the program across the
cores [36] as shown in a sequential manner in Figure 5.5 and in a multi-threaded
manner in Figure 5.6.

The input and output element in this software is not as computational heavy
as the system itself. The system will handle large amounts of data and require
numerical methods which are computational demanding. Implementing multi-
threading potentially can reduce the run time if compatible with the hardware.
Therefore, the software has been decomposed such that each virtual patient will

2The term concurrency may also be used. The term indicates when several computations
are executed simultaneously.

58 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Thread 1 Thread 2 Tread 3

Main thread

Start

Figure 5.5: Sequential execution of pro-
gram

Thread 1

Thread 2

Tread 3

Main thread

Start

Figure 5.6: Non-synchronized
multi-threaded exe-
cution of program

be executed as an individual thread. The reason for making the decomposition
on patient basis is that each patient symbolizes an individual process and they
are independent of each other thus suited for multi-threading. However, solving
problems in a concurrent manner leads to challenges which needs to be handled
as the concurrency is implemented. This leads to the usage of di�erent tools
and methods which ensures proper execution of a multi-threaded program. The
basic method for securing individual access control is the usage of locks and
synchronization methods.

5.3.1 Locks

Locks is a simple synchronization method used to communicate between the
individual threads. The goal with a locking mechanism is to limit the access
to certain elements of a code by mutual exclusion. The locking mechanism has
been implemented in the method getFiles() shown in Figure 5.4 and seen
in Listing 5.1 by two operations. First a locking operation, followed by an
unlocking operation using a semaphore as a key. The �rst thread to enter this
speci�c piece of code will be allowed access and lock this piece of code to other
threads. Other threads will meet the lock and will have to wait until the �rst
thread unlocked. The �rst thread will identify the �les available in a speci�c
folder. Thus, the �rst thread has exclusive access to the call listOfFiles =

folder.listFiles() as seen in the bottom of Listing 5.1. Hence, the �rst
thread identi�es to all the other threads which �les are available in the speci�c
folder. All other threads will instead read the value stored in the variable
listOfFiles. The Java implementation of the lock can be seen in Listing
5.1.

5.3 Multi-threading 59

Listing 5.1: Lock implemented in the call of getFiles().

1 // Define key − one thread may enter
2 private static Semaphore fileLock = new Semaphore(1);
3 private static File[] listOfFiles;
4

5

6 public static File[] getFiles() {
7

8 if (listOfFiles != null) {
9 // return the File[] array with the files.

10 return listOfFiles;
11 }
12 try {
13 // Lock. one thread will pass.
14 fileLock.P();
15 } catch (InterruptedException e) {
16 // If calling semaphore fails print stacktrace.
17 e.printStackTrace();
18 }
19

20 // main place of n − 1 thread to terminate.
21 if (listOfFiles != null) {
22 fileLock.V();
23 return listOfFiles;
24 }
25 // Only one thread will enter
26 File folder = new File(Simulator.exportDirectory);
27

28 // Create file array consisting of all filenames.
29 listOfFiles = folder.listFiles();
30

31 // Store files in accordance to name
32 Arrays.sort(listOfFiles);
33

34 // Unlock
35 fileLock.V();
36 return listOfFiles;
37 }

60 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Algorithm 5 Dijkstra's Semaphore
1: READ s← initial value of s

2: P():
3: while s = 0 do
4: wait()
5: end while

6: s← s− 1

7: V():
8: s← s+ 1

Thread 1

Thread 2

Tread 3

Main thread

Start

WAIT

Main thread

Figure 5.7: Final synchronization of threads

5.3.2 Synchronization of threads with Dijkstra's Semaphore

In extension of the locking mechanism is the usage of a semaphore. Previously
we used the semaphore as a locking mechanism, but semaphore can also be
used for synchronization. Dijkstra's Semaphore is a very easy-to-implement
method for synchronizing the individual threads and introduced in 1968 by
Edsger Dijkstra [24]. The principle behind the semaphore is a locking mechanism
and the classical implementation can be seen in Algorithm 5.

In short, the algorithm relies on a shared variable, s, and two functions, P() and
V() both which can manipulate the value of s. When a thread executes V() the
function will increment s while calling P() will decrement s under the condition
that s > 0. In the case that s = 0 the thread will be forced to wait until V()
will be called. In this software the semaphore has been used to synchronize the
threads. More speci�cally the main program will wait until P() and V() has
been called a similar number of times. Figure 5.7 shows how the principle would
work extending from the two previous �gures. Referring back to the sequence
diagram in Figure 5.3 from Subsection 5.2.2 the main thread is executed in a
sequential manner. The method 3.1. run() shown in Figure 5.4 shows the

5.3 Multi-threading 61

simulation of each individual thread that is executed concurrently. The main
thread must be stalled as long as threads are being executed to ensure that
the main thread will not terminate before all individual threads has terminated.
The semaphore V() operation is called once each simulation is started, while the
P() operator is called just after the simulator. This ensures the main thread will
not terminate before all individual threads has terminated. The implementation
can be seen in Java in Listing 5.2 and Listing 5.3.

5.3.3 Non-blocking methods

As a �nal tool in the implementation of multi-threading is the usage of non-
blocking algorithms. This ensures that no con�ict occurs between the di�erent
threads. Additionally non-blocking methods eliminate the waiting time unlike
the locking and synchronization mechanisms. Non-blocking algorithms are used
through hash tables to store data from the individual threads. Hash tables
has been object of research within the last decade and recently newer more
e�cient methods has been implemented in the standard libraries [41]. The hash
table data structure in Java which provides thread-safety is ConcurrentHashMap
which has been used to link each run with a speci�c data allocation.

5.3.4 Implementation and Expectations

The implementation of multi-threading has been done with the class Thread,
which is a build-in class in Java while the implementation of locks and synchro-
nization has been speci�cally coded for this software. Listing 5.2 and Listing
5.3 shows the implementation in Java. Note that some of the code content has
been omitted for simpli�cation purpose. From Listing 5.2 the main thread is
located. Once it enters the �rst for loop each thread will be executed immedi-
ately by the command m.start(). Note from Listing 5.3 that each thread calls
the p.V() operation after execution has been conducted. Then, as the main
thread exit from the loop it will initiate the next for loop containing the p.P()
operation. Here the main thread will stall until all threads has been executed.
Thus, synchronising the entire operation.

The Conversion of a sequential algorithm or program to a multi-threaded, as
previously explained, can increase the running time theoretically de�ned by
Amdahl's law [22]. Amdahl's law states that given the fraction Fs, which is the
computing time needed for the sequential part of the program, and the parallel
fraction 1− Fs, where Fs + (1− Fs) = 100% then the parallel execution time is

62 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Listing 5.2: Implementation of semaphore that will force wait for main thread.

1 // ...
2 // Instantiate semaphore operation
3 Semaphore p = new Semaphore(0);
4 // Main loop which will call the Multithread class with ...

interface thread.
5 for (int i = 1; i ≤ numberOfPatients; i++) {
6 // Create new multi thread m
7 MultiThread m = new MultiThread(BW[i − 1], i, stepSize, p, ...

BGstorage);
8

9 // run();
10 m.start();
11 }
12 // This for loop will force main thread to wait.
13 for (int i = 0; i < numberOfPatients; i++) {
14 // Decrement semaphore
15 p.P();
16 }
17 // ...

Listing 5.3: Multithread class extending Thread.

1 public class MultiThread extends Thread {
2 // Private variables has been omitted for simplification
3 public MultiThread(double BW, int i, int stepSize, Semaphore p,
4 double[][] BGstorage) {
5 // Content omitted for simplification
6 }
7 public void run() {
8 try {
9 // Run virtual patient simulation

10 BGstorage[i − 1] = Simulator.executeModel(BW, i, ...
stepSize);

11

12 } catch (Exception e) {
13 e.printStackTrace();
14 } finally {
15 // Increments semaphore
16 p.V();
17

18 }
19

20 }
21 }

5.4 Con�guration-system 63

the sum of the part that is sequential and the part that can be made parallel:

Tp = T

(
Fs +

1− Fs
P

)
(5.1)

Where P is the number of cores available and the theoretical runtime improve-
ment is given by:

Sp =
T

T
(
Fs + (1−Fs)

P

) (5.2)

However, introducing concurrency to a code introduces communication overhead
lowering the actual speed up such that the �nal speed-up ratio will be de�ned
as:

Sp =
T

T
(
Fs + (1−Fs)

P

)
+ TC

(5.3)

Where TC denotes the communication overhead related to concurrency of the
code. In this thesis the running time analysis using Oracle Analyzerr has show
that Fs = 0.01. From (5.2) we know that as p→∞ the parallel execution time
approaches that of the sequential runtime. This leads to the conclusion that
this program has a theoretical running time improvement of no more than Sp ≤
1
Fs

= 100 from the sequential running time assuming that an in�nite number of
cores were available. While this is a theoretical limit the actual speed-up ratio
would likely be much lower due to two reasons. First, unexpected overhead in
context with concurrent programming denoted as the communication overhead
TC . Overhead is a term used for the time required to coordinate the individual
threads and it potentially will have a large impact on the �nal computation
time. Secondly, the Java class Thread cannot distribute computational burdens
across di�erent computers. Hence, the program may not take full advantage of
the hardware available.

5.4 Con�guration-system

A �nal consideration in the software is the implementation of a con�guration
system. In short the con�guration system is implemented with the Properties
class which makes it very easy to load and store settings for a program [1].
The con�guration �le must be located in the same folder as the .jar �le3 and
the program will automatically look into the con�guration �le and �nd the

3An exception to this is when executing from Matlab, then the con�guration �le must be
in the same folder as the Matlab script itself.

64 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Listing 5.4: Con�guration system by using the Properties class.

1 // ...
2 Properties prop = new Properties();
3

4 // Instantiate a File input
5 FileInputStream configFile = new ...

FileInputStream("configuration.xml");
6

7 // Load from configuration file
8 prop.loadFromXML(configFile);
9

10 // extraction example:
11 String solver = prop.getProperty("solver");
12 // ...

relevant values. The con�guration �le is based on XML, originally developed
as a data sharing system, and thus a entry key is linked to some value <Entry

key>[value]</entry> such that the program looks for a key and return the
value as a string. Some example of con�gurations possible in the con�guration
�le configuration.xml:

<entry key="multithread">Y</entry>

<entry key="solver">dp54</entry>

<entry key="minstep">1.0e-6</entry>

Here it would be possible to change the program from running parallel to se-
quential by changing the value Y under the key multithread to N. More con�g-
urations can be modi�ed including the numerical integrator to use (e.g. dp54

or Euler) or the minimum step (default is 1.0e-6). Other elements that can
be changed in the con�guration systems is the PID controller and the related
parameters. Finally, the working directories for import and export are also
de�ned in the con�guration.xml �le. The con�guration system was made such
that the software could have some prede�ned default values while ensuring these
default values could be easy changeable in the future. The Properties class
showed very useful for this purpose especially due to the entry key feature that
exist in XML and its simple way of implementing and using. The usage of the
con�guration can be seen in Listing 5.4 where the variable solver is de�ned.

5.5 Summary 65

5.5 Summary

In this chapter the framework and software capable of testing an AP has been
proposed. First, a descriptive analysis was made to identify the requirements
needed for the software. These requirements was then implemented in Java and
divided into three main functionalities: Input, System and Output. Dividing
the software into these three functionalities ensured that each speci�c part could
be used separately. The software was then optimized by implementing multi-
threading and a con�guration-system to easily change parameters.
The next chapter will test the software in two ways. First, a test of the software's
ability for testing of an AP. Second, a test of the performance gain from multi-
threading.

66 Developing a Software for In Silico Testing for an Arti�cial Pancreas

Chapter 6

Experimental testing

The objective of this chapter is twofold. First, Section 6.1 gives two case studies
for in silico testing of an AP on a virtual cohort. Second, Section 6.2 give a test
of the performance gain by implementation of multi-threading.

6.1 In Silico Testing for an Arti�cial Pancreas

The overall scope with this section is to show a user case of this software.
Additionally, it also gives an impression of the capabilities of the software.
This section is organised as follows. Subsection 6.1.1 de�nes the testing pro-
tocol. Subsection 6.1.2 explains the software execution process. Subsection
6.1.3 presents the results and �nally, a discussion based on the �ndings will be
given in Subsection 6.1.4.

6.1.1 Testing Protocol

For this in silico case study following protocol will be used:

68 Experimental testing

� A cohort of 50 patients su�ering from T1D, as described in Subsection
3.1.6, are used for this trial.

� Two treatment options will be compared on the cohort. Using the method
from Section 4.3 this trial compares Feed Forward versus No Feed Forward.

� The Trial will be conducted over a period of 35 days (5 weeks).

� The starting time will be 18-03-2014 at 00:00, and the end time will be
22-04-2014 at 23:59.

� A 7 day meal pro�le as shown in Table 6.1 to Table 6.3 will be used for
each patient. The consecutive 4 weeks will simply be repeated.

� A sampling time of 5 minutes will be used, that is Ts = 5.

6.1.2 Execution of Software

As the software is executed from Matlabr some description of the actual exe-
cution process will be made. The explanation is ordered as follows:

1. Setting up the con�guration system.

2. Initialisation of the trial.

3. De�ning the virtual cohort.

4. Execution of simulation.

5. Evaluation of simulation results.

A full user guide containing more detailed information and descriptions can be
seen in Appendix D.

1. Con�guration system
At �rst a working directory for the software must be de�ned. This is important
since the software will import meal and parameter �les for the prede�ned virtual
patients. There are four working directories of importance and they can all be
modi�ed in the con�guration.xml �le. One of these four working directories will
be introduced here:

<entry key="directory">[your directory]/matlab/Patients/Patient</entry>

6.1 In Silico Testing for an Arti�cial Pancreas 69

directory is the directory for the location of patient data and also de�nes the
name of the sub-folder containing patient data. Additonal directories includes
load_directory, export_directory, and final_export_directory. Each di-
rectory has a speci�c purpose e.g. directory for export to CSV. Refer to the
user manual in Appendix D for a comprehensive description.

2. Initialisation
In Matlab it is possible to add the content from the .jar �les to the Java Virtual
Machine (JVM) nested within Matlab as shown in Listing 6.1.

Listing 6.1: Initialization of .jar �les and functionalities to Matlab JVM

1 javaaddpath('..\binJava\Trial.jar') % Import input
2 javaaddpath('..\binJava\patient_Simulator.jar') % Import system ...

/ output
3 import functionality.*; % Import functionality package
4 import domain.*; % Import domain package
5 import simulationModels.*; % Import simulation model package
6 import inputOutput.*; % Import input / output package

The import statements is needed to ensure that all content from the .jar �les
are imported to the Matlab workspace and consequently saved to memory. This
enables Matlab to access all classes and methods from the .jar �les. Next, is the
de�nition of the trial which we seek to perform. Listing 6.2 shows the de�nition
of the trial.

Listing 6.2: Trial de�nition

1 stepSize = 5; % Step size, Ts
2 startHours = 00; % Start time (HH)
3 startMinutes = 00; % Start time (MM)
4 endHours = 23; % End time (HH)
5 endMinutes = 59; % End time (MM)
6 numberOfPatients = 50; % Number of patients to participate
7 days = 35; % The number of days for the trial to run

As of now the trial has been de�ned and the next step is to de�ne the virtual
cohort.

3. Virtual cohort
Since all virtual patients will have the same meal pro�le, a single prede�ned
folder containing 7 CSV �les has been made. Each �le has a layout as shown
below and are stored in the directory de�ned by the con�guration �le. For a
more detailed description on how to set up meals and physiological parameters
please refer to the user manual in Appendix D.

70 Experimental testing

Time;Duration;CHO

07:00;10;45

10:30;20;20

12:30;20;60

17:00;10;10

19:30;20;60

Table 6.1, Table 6.2 and Table 6.3 shows the content of each of the 7 CSV �les.

Table 6.1: Meal pro�les for Monday, Tuesday and Wednesday.

Monday Tuesday Wednesday

Time Duration Amount Time Duration Amount Time Duration Amount
07:00 10 45 07:00 10 10 07:00 10 45
10:30 20 20 10:30 10 30 10:30 20 20
12:30 20 60 13:30 10 75 12:30 20 60
17:00 10 10 18:30 10 75 17:00 10 10
19:30 20 60 21:30 10 15 19:30 20 60

Table 6.2: Meal pro�les for Thursday and Friday.

Thursday Friday

Time Duration Amount Time Duration Amount
07:10 15 30 07:10 15 30
11:30 20 60 10:00 5 25
15:00 10 30 12:30 20 60
19:30 20 60 15:00 10 10

19:30 20 70

Table 6.3: Meal pro�les for Saturday and Sunday.

Saturday Sunday

Time Duration Amount Time Duration Amount
09:10 15 45 11:00 25 75
11:30 20 10 15:30 20 50
12:30 20 10 19:00 10 55
13:30 20 10 21:30 20 10
15:30 20 10
18:30 20 10
20:30 20 50

The next step is to de�ne the physiological parameters. The physiological pa-
rameters will follow the virtual cohort de�nition from Subsection 3.1.6. This
means that the parameters will vary between individuals and oscillate over time
within individuals. First, is to notify the software on which parameter to vary
as shown in Listing 6.3.

6.1 In Silico Testing for an Arti�cial Pancreas 71

Listing 6.3: Parameter de�nition part 1. De�ning the parameter names to be
changed.

1 par = [java.lang.String('F01');
2 java.lang.String('EGP0') ;
3 java.lang.String('K12');
4 java.lang.String('SI1');
5 java.lang.String('SI2');
6 java.lang.String('SI3');
7 java.lang.String('ka1');
8 java.lang.String('ka2');
9 java.lang.String('ka3');

10 java.lang.String('Ke');
11 java.lang.String('VI');
12 java.lang.String('VG');
13 java.lang.String('TauD');
14 java.lang.String('TauS');
15 java.lang.String('AG')];

After de�ning the string array containing the names of the parameters which
will be variable, the next step is to feed this into the software as seen in List-
ing 6.4. Note that one would easily be able to change what parameters to
vary by changing the name variable par from Listing 6.3 and amending the
GenerateParameters in Listing 6.4.

Listing 6.4: Parameter de�nition part 2. Adding the parameters software.

1 % Notify program of parameters by instantiating AddToArray
2 p = AddToArray(par);
3

4 % Generate parameters
5 parameters = GenerateParameters(p,numberOfPatients,days,stepSize);

For this run, patient 1 has been withdrawn from the cohort for descriptive pur-
pose. Patient 1 has a BW of 77.03 kg and a CR of 16.18. The physiological
parameters which are constant over time for virtual patient 1 can be seen in
Table 6.4. Figure 6.1 and Figure 6.2 shows the variable parameters for virtual
patient 1. While Figure 6.1 shows the variation of the insulin sensitivities SI1,

Table 6.4: The physiological parameters which are constant for patient 1.

VI VG ka1 ka2 ka3 τd τs
Value 0.11993 0.13748 0.00551 0.06674 0.02995 39.99293 55.57602

SI2, SI3 and the endogenous glucose production EGP , Figure 6.2 shows the
variation in glucose consumption F01, the transfer rate parameter k12, the in-
sulin elimination rate ke and the food absorption constant Ag. The parameters
are shown over a 24 hour period.

72 Experimental testing

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
7.6

7.8

8

8.2

8.4

8.6

8.8
x 10

−4

S
I2

0.049

0.05

0.051

0.052

0.053

0.054

0.055

S
I3

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

5

5.2

x 10
−3

S
I1

Hours (HH:MM)

0.016

0.017

0.018

0.019

E
G

P

Figure 6.1: This �gure shows four di�erent physiological parameters in a 24 hour
period for patient 1. From the top sub plot the blue line indicates SI2

and the black line, SI3. In the lowest plot the blue line indicates the
variation in SI1 and the black line the variations in EGP .

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0.009

0.01

0.011

F
01

0.06

0.065

0.07

k 12

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

0.135

0.14

0.145

K
e

Hours (HH:MM)

0.6

0.7

0.8

0.9

1

A
g

Figure 6.2: This �gure shows four di�erent physiological parameters in a 24 hour
period for patient 1. From the top sub plot the blue line indicates the
variation in F01 and the black line k12. The lowest plot the blue line
indicates the variation in ke and the black line the variations in Ag.

6.1 In Silico Testing for an Arti�cial Pancreas 73

4. Simulation execution
As of now the program is informed of the virtual cohort by de�nition of the
meal pro�les and physiological parameters and the next step is to execute the
program as shown in Listing 6.5

Listing 6.5: Program execution.

1 % First the input will be created
2 Execute.CollectPopulation(numberOfPatients, ...

stepSize,days,startHours,startMinutes,endHours,endMinutes,BW,p);
3

4 % Second the simulation will be conducted
5 Simulator.execute(numberOfPatients,stepSize,BW);

The program will now execute and the results will be available as variables in
the Matlab workspace. If the con�guration �le has not been de�ned properly
or faulty input has been provided the program may throw an exception and
terminate. Appendix E gives an overview of the most common exceptions and
related solutions.

5. Simulation evaluation
As a �nal element is the call of the various output evaluation parameters. Ad-
ditonally, some standard plot commands has been made. The calls are shown
in Listing 6.6.

Listing 6.6: Program evaluation.

1 % Evaluate performance metrics
2 PMetrics(1:numberOfPatients,SaveMethod,Metrics,stepSize);
3

4 % Plot commands
5 plotindividual
6 plot_all
7 Bench_plots

The plots will be printed to an output folder and the results will be shown in
the next section.

6.1.3 Results

This subsection presents the results generated using the test protocol de�ned
in the previous subsection. Once again, to ease understanding virtual patient

74 Experimental testing

Table 6.5: Percentage of time in di�erent zones for the single patient case.

BG Range [mmol/L] No Feed Forward Feed Forward Change [pp]
10 > 20% 15% −5

8− 10 10% 11% 1
4− 8 44% 49% 5
3− 4 14% 16% 2
0− 3 12% 9% −3

Table 6.6: Performance metrics for virtual patient 1.

No Feed Forward Feed Forward

B̄G 6.78 ±(3.81) 6.48 ±(3.24)
low 1.45 1.77
high 22.7 19.65
HBA1c 5.19 5.00
ADRR 29.17 23.85
MAGE 20.11 15.82

1 will be considered as an initial example. Thereafter, the simulation results of
the entire cohort will be provided.

6.1.3.1 Considering Patient 1

Patient 1 has a BW on 77.03 kg and a CR on 16.18. The two control strategies
are performed on the same patient. The results for patient 1 can be summarized
in Table 6.5 and Table 6.6. The two tables essentially state that the control
strategy in both cases gives a bad performance, that is, a poor glycemic control.
Noticeable is the hypo- and hyperglycemia identi�ed from Table 6.5 as the
amount of time spent below 3 mmol/L and above 10 mmol/L, respectively. From
Table 6.6 noticably is the risk parameter ADRR which indicates a medium to
high risk for the both control strategies since the value is in the range 20 to
40. Additionally parameter MAGE indicates a large glycemic variation as the
average change in a 6 hour period is in average 20.11 and 15.82 respectively.
Finally, the low BG values indicate hypo glycemia in both cases. Ultimately,
the performance metrics illustrates very well the concerns in the treatment for
virtual patient 1. The poor glycemic control can be veri�ed by looking at Figure
6.3 and Figure 6.4.

Figure 6.3 and Figure 6.4 shows the �rst 7-31 hours of the trial using the insulin
administration strategy without and with Feed Forward. Figure 6.3 and Figure
6.4 has three subplots. The top part identi�es the BG value and the CGM
signal. The CGM signal is the input to the insulin administration strategy
which output is seen in the lowest plot in both �gures, namely the insulin

6.1 In Silico Testing for an Arti�cial Pancreas 75

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

10

15

20

B
lo

od
 G

lu
co

se
 [m

m
ol

/L
]

BG − No feedforward
CGM signal

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

d[
g/

m
in

]

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

10

15

In
su

lin
 d

os
ag

e
[m

U
/m

in
]

Hours (HH:MM)

Figure 6.3: This �gure shows the simulation during the �rst day without Feed For-
ward. Poor glycemic control is evident. The top part shows the BG and
the CGM signal. The middle plot shows the carbohydrate intake and the
lowest plot shows the control output.

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

10

15

20

B
lo

od
 G

lu
co

se
 [m

m
ol

/L
]

BG − Feedforward
CGM signal

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

d[
g/

m
in

]

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

50

100

In
su

lin
 d

os
ag

e
[m

U
/m

in
]

Hours (HH:MM)

Figure 6.4: This �gure shows the simulation during the �rst day for patient 1 using
Feed Forward. The top part shows the BG and the CGM signal. The
middle plot shows the carbohydrate intake and the lowest plot shows the
control signal. Better glycemic control can be seen from this �gure.

dosage uk. The middle plot indicates the meal pro�le of that particular day.

76 Experimental testing

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000
No feedforward

F
re

qu
en

cy

Blood Glucose [mmol/L]
0 5 10 15 20

0

1000

2000

3000

4000

5000

6000

7000

8000
Feedforward

F
re

qu
en

cy

Blood Glucose [mmol/L]

Figure 6.5: This �gure shows a histogram of the BG level for the two control strate-
gies. Both indicate poor glycemic control. Feed Forward does show a bit
more tight glycemic control.

In both cases the patient can be identi�ed as having poor glycemic control.
Nevertheless, the glycemic control with Feed Forward does seem slightly better
than the case without Feed Forward. This is con�rmed by the BG histogram in
Figure 6.5. Figure 6.5 identi�es a more frequent sampling around the target BG
level of 5 mmol/L and especially less BG readings below 3 mmol/L and above
20 mmol/l for the case with Feed Forward. To summarize the performance of
virtual patient 1; the glycemic control is bad for both strategies. This is both
identi�ed from the actual BG reading but additionally also from the performance
metrics. Nevertheless, Feed Fordward does perform better and does to some
extend avoid hyper- and hypoglycemia. Next subsection present the result for
the entire cohort.

6.1 In Silico Testing for an Arti�cial Pancreas 77

Table 6.7: Percentage of time in di�erent zones for the entire virtual cohort.

BG Range [mmol/L] No Feed Forward Feed Forward

10 > 17%(±5%) 14%(±6%)
8− 10 11%(±2%) 10%(±2%)
4− 8 41%(±7%) 46%(±10%)
3− 4 14%(±2%) 15%(±3%)
0− 3 17%(±7%) 14%(±8%)

6.1.3.2 The Entire Virtual Cohort

The entire cohort has a ¯BW = 73.26 kg(±14.81 kg) with a minimum value
of 39.98 kg and a maximum value of 104.80 kg. The cohort has a C̄R =
18.89(±5.52) with a minimum value of 12.25 and a maximum value of 40.65. The
simulation can be summarized into Table 6.7 and Table 6.8. We will consider
a one sided paired Z-test for comparison of the two methods using a signi�-
cance level, α = 0.05. We construct the statistical hypothesis assuming that
the Feed Forward method performs better, thus the reason for using a one sided
Z-test. Overall, Table 6.7 and Table 6.8 show a level of variation across the
entire cohort. Table 6.7 does show a better performance for Feed Forward in
the mean cases but the standard deviation pictures that much variation exist
an that performance are not good for all cases. Table 6.8 also show some per-
formance metrics to be signi�cantly di�erent (highlighted with bold). These
are HbA1c, MAGE and HBGI. These metrics represent a statistical signi�cant
performance improvement for the Feed Forward case. However, ADRR and
LBGI does not show to be signi�cantly di�erent between strategies. This is an
interesting observation. This means that the risk parameters ADRR and LBGI
does not acknowledge Feed Forward to perform better. As one look at Figure
6.6 and Figure 6.7 showing the two scenarios for the �rst 7-31 hours Figure 6.7
appears to have better glycemic control. This is in contradiction with the risk
parameter ADRR from Table 6.8. Nonetheless, this may indicate that the risk
parameter ADRR are good to identify the actual performance of the treatment.
the top plot in Figure 6.6 shows the mean BG across the cohort with the error-
bars representing the standard deviation of the entire cohort. The lower part of
Figure 6.6 represent the mean insulin infusion with the errorbars representing
the standard deviation for the entire cohort. Figure 6.6 is for the case with no
Feed Forward. Figure 6.7 is the case with Feed Forward.

An interesting parameter is the HbA1c as seen plotted as a histogram in Figure
6.8. Even though both groups is in risk of hyper- and hypo-glycemia, denoted
by several of the previously mentioned performance metrics, the HbA1c values
are normal. The Feed Forward strategy gives a slightly better HbA1c - though
both are within normal range. This is an interesting observation and may show
that HbA1c, in this case, does not consider risk very well. Intuitively this makes

78 Experimental testing

Table 6.8: Performance metrics of entire cohort.

No Feed Forward Feed Forward Paired Z-test

HbA1c 4.98(±0.24) 4.84(±0.26) p = 0.0026
MAGE 20.17(±7.28) 17.24(±6.49) p = 0.017
ADRR 60.60(±72.38) 52.08(±66.30) p = 0.2709
LBGI 10.42(±6.52) 9.06(±6.26) p = 0.1446
HBGI 4.26(±2.24) 3.44(±2.16) p = 0.0384

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

10

15

20

B
lo

od
 G

lu
co

se
 [m

m
ol

/L
]

µ

BG

σ
BG

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

10

20

30

Hours

In
su

lin
 [m

U
/m

in
]

µ

U

σ
U

Figure 6.6: This �gure shows the average BG level with the standard deviation in the
case without Feed Forward.

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

5

10

15

20

B
lo

od
 G

lu
co

se
 [m

m
ol

/L
]

µ

BG

σ
BG

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
0

50

100

150

Hours

In
su

lin
 [m

U
/m

in
]

µ

U

σ
U

Figure 6.7: This �gure shows the average BG level with the standard deviation for
the Feed Forward case of the virtual population.

sense since HbA1c is estimated from the mean BG level which are within glycmic
range for all individuals. Figure 6.9 summarizes all parameters into a single
plot and show the mean BG level as a function of the risk parameter ADRR.
Additionally, the size of the circles notes the glycemic variability by the standard

6.1 In Silico Testing for an Arti�cial Pancreas 79

4.5 5 5.5 6 6.5
0

2

4

6

8

10

12
No feedforward

F
re

qu
en

cy

Hb1Ac
4 4.5 5 5.5 6 6.5

0

2

4

6

8

10

12

14
Feedforward

F
re

qu
en

cy

Hb1Ac

Figure 6.8: This �gure shows a histogram for the HbA1c frequency for each of the
two groups.

deviation of the BG readings. Overall, it can be seen that a selected number
of patients has a very good performance as the ADRR is below 20. This is the
group which has excellent glycemic control. The rest of the group appears to be
in risk both for the Feed Forward and the Non Feed Forward case. From Figure
6.9 it is also noted that there exist a clear connection between the BG variation
and the level of risk represented by ADRR. The subsequent Section will give a
discussion of the results presented.

80 Experimental testing

50 100 150 200 250 300 350

6

6.5

7

7.5

8

8.5

ADRR

M
ea

n
B

G

No feedforward
Feedforward

Figure 6.9: This �gure shows the two groups and their mean BG value as a function
of the ADRR risk measure. Furthermore, the size of the dots represent
the BG standard deviation.

6.1 In Silico Testing for an Arti�cial Pancreas 81

6.1.4 Discussion of the Results

Previous section showed a Proof-Of-Concept implementation of an AP tested
on a virtual cohort. The results showed that it is possible to test various control
strategies against each other across individuals while ensuring inter- and intra-
variability based on key metabolic parameters. It was identi�ed that only a
limited number of the virtual patients actually obtained a good glycemic control.
Most likely this is caused by the fact that the PID controller were tuned on
the average population. Hence, patients having closer to average physiological
parameters will have a tendency to perform better compared to individuals
outside the average. Therefore, one may argue that the tuning strategy must
be individualized. Additionally, the control strategies implemented did show to
perform good in some metrics and bad in other metrics. HbA1c, for example,
did not show any risk of elevated mean BG levels. Since HbA1c is de�ned
as a theoretical relation between the MBG, the HbA1c may be higher in an
actual patient. Additionally, the usage of HbA1c as a performance metric can
only identify if the BG levels are elevated over a longer period of time. For
this reason Hb1Ac should be accompanied by other relevant risk metrics. The
risk parameter ADRR (including LGBI) did show relevant results as a metric.
Referring to Table 6.7 it is noted that the average time spend in the low and
high zones are high for both group. Conclusively both groups are generally to
be said to be in poor glycemic control. This point is extracted directly from
the risk parameter ADRR from Table 6.8. The high average and large standard
deviation reveals that a lot of the virtual subjects are in very bad glycemic
control. One may additionally argue that due to this large variation in ADRR
the paired Z-test may not be well suited due to the fact that the data unlikely
is normally distributed, one of the fundamental assumptions of the Z-test. As a
consequence one may seek to investigate the performance metrics and relevant
statistical measures further.
Essentially, every single performance metric gives a di�erent perspective on the
glycemic control and variability of a patient. Hb1Ac are good to investigate
if the BG levels are elevated over longer periods of time, MAGE is ideal for
tracking glycemic variability and ADRR is good to test the overall glycemic
control of the virtual patient. Consequently, it is paramount to have several
metrics to evaluate the simulations as each metrics show di�erent perspectives.

While the simulator has shown to be a valuable tool it can be used to more than
testing of controllers. To further explore the usage of the simulator we propose
another in silico experiment in the subsequent subsection.

82 Experimental testing

6.1.4.1 A conceptual experiment of fast acting insulin

This experiment is based on the same virtual cohort as the one de�ned in Sub-
section 3.1.6. The experiment seeks to test an insulin bolus calculator, which
is currently prescribed and used by physicians and automated devices, such as
the Medtronic Minimedr [35]. The bolus calculator is de�ned as follows:

bolus =
d

CR

d [g], is the meal intake and CR is the insulin-to-carbohydrate ratio estimated
by Algorithm 4. This bolus calculator is fairly simple and we seek to test
the bolus calculators performance if fast acting insulin hits the market in the
future. We simulate fast acting insulin products by variation in the insulin
absorption constant τs and the elimination rate of insulin ke in the Hovorka
model. This experiment seeks to test the consequence of using the same bolus
when the insulin becomes fast acting. From Figure 6.10 and 6.11 the results
of the experiments can be seen, as the maximum and minimum BG versus the
average insulin absorption constant τ̄s. Figure 6.10 gives the experiment for
a lower insulin elimination rate, ke, compared to Figure 6.11. Essentially, the
fast acting insulin reduces the maximum BG values for the virtual cohort. An
insulin absorption constant at least equal to the glucose absorption constant (i.e.
τs = 40 minutes) completely removes hyperglycemic events. A lower elimination
rate ke gives a lower minimum BG value (seen by comparing the right plot on
Figure 6.10 with Figure 6.11) and may compromise the current bolus calculator
- especially for larger meals. Finally, if τs is very small (i.e. τ̄s < 30 min) we
see a drop in the minimum BG. These observations may lead to the conclusion
that the insulin is absorbed too fast and therefore a pre-meal drop in BG level is
observed. Neither way the simulations have shown that one must be particular
careful if new insulin products should be introduced on the market. One may
consider using more sophisticated bolus calculators to adjust the meal bolus
accordingly.

6.1 In Silico Testing for an Arti�cial Pancreas 83

20 30 40 50 60
4

6

8

10

12

14

16

18

M
a
x
im

u
m

b
lo
o
d
g
lu
c
o
se

[m
m
o
l/
L
]

τ̄s

k̄e =0.10188

75 g CHO
50 g CHO
25 g CHO

20 30 40 50 60
0

1

2

3

4

5

6

7

M
in
im

u
m

b
lo
o
d
g
lu
c
o
se

[m
m
o
l/
L
]

τ̄s

k̄e =0.10188

75 g CHO
50 g CHO
25 g CHO

Figure 6.10: This �gure shows the standard deviation range of the maximum
and minimum glucose value for the virtual cohort, where ke ∼
N(0.1, 0.0352).

20 30 40 50 60
4

6

8

10

12

14

16

18

M
a
x
im

u
m

b
lo
o
d
g
lu
c
o
se

[m
m
o
l/
L
]

τ̄s

k̄e =0.20707

75 g CHO
50 g CHO
25 g CHO

20 30 40 50 60
0

1

2

3

4

5

6

7

M
in
im

u
m

b
lo
o
d
g
lu
c
o
se

[m
m
o
l/
L
]

τ̄s

k̄e =0.20707

75 g CHO
50 g CHO
25 g CHO

Figure 6.11: This �gure shows the standard deviation range of the maximum
and minimum glucose value for the virtual cohort, where ke ∼
N(0.2, 0.0352).

84 Experimental testing

6.2 Software Runtime Testing

This test investigates how well the software deals with the implementation of
multi-threading. This section �rst gives a presentation of the hardware used
to conduct the experiments. Secondly, the testing methods will be explained
followed by a presentation of the results.

6.2.1 Hardware

Two systems has been used in this testing section. The systems chosen is:

� System one (S1): Lenovo Thinkpadr T410 with Intelr i5 CPU @
2.67GHz with 4 cores (2 cores with hyper-threading). 4GB of RAM
running windows 7 64-bit and JAVA SE Runtime Environment (build
1.7.0_11b21).

� System two (S2): Intelr Xeonr CPU E5-2665 @ 2.40GHz with a total
of 8 cores. 64GB of RAM running on Scienti�c LINUX 6.4 and JAVA SE
Runtime Environment (build 1.6.0_17-b04).

Two di�erent hardware essentially ensures that the software will be tested in a
consistent manner across hardware and platforms. The next section describes
the test protocol in details.

6.2.2 Testing Protocol

The following set of methods and principles were used during the conduction of
the experimental performance test:

� The software is compiled in Java 1.6 to ensure compatibility on both S1
and S2.

� JAVA Heap Space and the number of garbage collectors has been max-
imised on each system. This has been done on S1 by changeing the Java
Heap Space in system preferences and on S2 by using the call: unset

JAVA_TOOL_OPTIONS.

6.2 Software Runtime Testing 85

� To reduce simulation variability during runtime tests, the virtual patients
have been constructed with the same physiological composition's and meal
pro�les.

� The trial is conducted in a 14 day period with a sampling time, Ts = 5,
corresponding to approximately 0.45 mb of data per patient.

� The program runtime has been calculated using Matlab's tic and toc.

� The runtime includes reading input from csv �les and simulations of pa-
tients.

� Each runtime is calculated as an average of 3 runs. R̄s and R̄p denotes
the average of the sequential and parallel runtime respectively.

� The speed up ratio is de�ned as Sp = R̄s
R̄p

.

6.2.3 Runtime Test Results

Figure 6.12 and 6.13 shows the runtime tests on S1 and S2 respectively. From the
top part of Figure 6.12 the black line indicates the average sequential runtime,
R̄s, while the blue line indicates the parallel runtime, R̄p, conducted on S1.
Figure 6.12 shows that the runtime has been improved by the implementation
of multi-threading. Amdahl's law, from (5.3), states a minimum bound on
the runtime achievable. Amdahl's law indicates that there exist a di�erence
between R̄p and the theoretical limit. This phenomenon can also be seen in
the lower part of Figure 6.12 indicating the speed up ratio, Sp. The average
speed ratio through all runs is S̄p = 2.44(±0.47). While the theoretical value
of the speed up ratio is S∗p = 3.88, given by (5.2). The observed average speed
up ratio, S̄p, is approximately 63% of the Amdahl's. Figure 6.12 also shows
that the Sp is decreasing as the number of patients increase. An explanation to
this phenomenon could be that as the number of threads increases the level of
overhead becomes relatively larger hereby forcing the speed up ratio to become
lower.

The results generated from S2 are presented in Figure 6.13. Figure 6.13 contains
the same elements as the ones presented in Figure 6.12, that is, the average
sequential run time, R̄s, the parallel runtime R̄p and Amdahl's law. From
Figure 6.13 a higher performance increase is seen compared to S1. This is
intuitively also expected as the processing power is increased with a factor of
2 and the RAM amount is increased with a factor of 16. The average speed
up ratio over all runs is S̄p = 5.08(±0.68). While the speed up ratio given by
Amdahl is, S∗p = 7.48 with p = 8 this means that the speed up ratio achieved is

86 Experimental testing

20 40 60 80 100 120 140
0

20

40

60

80

100

R
un

tim
e

[s
]

Runtime tests conducted on S1

R̄s

R̄p

Amdahls Law

20 40 60 80 100 120 140
0

2

4

S
p

Patients/Threads

Figure 6.12: This Figure shows the runtime for S1 as a function of the number of
patients. The upper �gure represent the total run time while the lower
�gure represent the speed up ratio Sp. Amdahl's law represent an upper
bound on the ratio S∗p = 3.88 with P = 4 processors and a lower bound
on the runtime.

approximately 68% of Amdahl's. The speed up ratio does not decrease as the
patients increase for S2. This may be due to the extensive level of RAM in S2.

In both S1 and S2 a signi�cant performance improvement were achieved by
multi-threading. Even though the theoretical runtime given by Amdahl's law
in practice is impossible to reach the runtime improvement is still far from the
theoretical given by Amdahl's law [22]. This may indicate that the overhead
in the program is consistent between systems. To investigate this further it
is interesting to see why the speed up ratio were lower than anticipated. An
analysis on the computational workload is given by Table 6.9 performed on the
pro�ling tool Oracle Solaris Studio Performance Analyzerr. A pro�ler makes
it possible to investigate how much computational time is used on the various
tasks in a software. The analysis is conducted on S2 and shows the di�erent
time consuming task in the sequential and concurrent execution. The import
of data indicates that reading from the disc is a relatively larger part of the
runtime. This is caused by the fact that reading from the disc cannot be done in
a concurrent matter leading to a performance bottleneck. The JVM, which also
includes the Java Garbage Collector, indicates that the programming language
Java does have a high level of overhead related to its environment. From Table

6.2 Software Runtime Testing 87

20 40 60 80 100 120 140
0

20

40

60

80

R
un

tim
e

[s
]

Runtime tests conducted on S2

R̄s

R̄p

Amdahls Law

20 40 60 80 100 120 140
0

2

4

6

8

S
p

Patients/Threads

Figure 6.13: This Figure shows the runtime for S1 as a function of the number of
patients. The upper �gure represent the total run time while the lower
�gure represent the speed up ratio Sp. Amdahl's law represent an upper
bound on the ratio S∗p = 7.48 with p = 8 processors and a lower bound
on the runtime.

6.9 it also observed that the numerical computations are the single largest part
of the entire computation load.

6.2.4 Discussion of the Runtime Results

Overall the implementation of multi-threading has shown to give a signi�cant
performance increase on the systems tested. The results shows that the imple-
mentation of concurrency has a great potential even with an object oriented
program as Java. The performance of multi-threading was not as close to the
theoretical runtime as anticipated. Table 6.9 identi�ed that 63 − 72% of the
total computational time was used on the actual computations while the rest
was used on di�erent tasks, including import of data and garbage collecting.
This potentially indicates two things. First, that Java has some related over-
head to its execution and second, that the software developed may not be fully
optimised. While the import of data cannot be executed in a concurrent man-
ner there may be more performance potential in the Java platform, including
optimisation of the garbage collector. This however, is out of scope of this the-

88 Experimental testing

Table 6.9: Percentage of running time used on di�erent tasks performed in a sequen-
tial and Multi-threading matter. Pro�ling has been conducted on S2 and
using 30 patients for a 14 day period with a sampling time Ts = 5.

Subject Sequential Multi-threading
Runtime R̄s = 18.0s R̄p = 3.67s
Import of data 5% 12%
Numerical Computations 72% 63%
Java Virtual Machine 13% 12%
Other 10% 13%
Total 100% 100%

sis. Java does have a signi�cant portion of overhead related to its environment,
which we saw from Table 6.9. This does reduce the overall performance of the
software. Together with the import this probably describes the overhead related
to multi-threading and why we only achieved around 65% of Amdahl's law.
An interesting further analysis would be to test this software on an even more
powerful system than S2. This would identify if the speed up ratio would con-
tinue to improve as the number of cores increased even further. This could lay
the foundation for further optimization of the program. Especially interesting
could be to use another numerical library which makes use of more speed opti-
mised methods. This could also include comparing libraries written in low-level
languages such as C to compare the numerical performance to the one achieved
in Java.

While Java is a high level, object oriented, platform independent language it
does include a large part of overhead. Java was chosen speci�cally in this thesis
due to its high level simplicity, the mathematical library's available and the fact
that it could be tested both on Linux and on windows machines unlike a high
level object oriented language such as C#. The documentation available for
programming in Java is comprehensive and a very solid reason that Java has
become preferred programming language for many programmers.

6.3 Summary

In this section two tests of the software were performed. First, a test on a cohort
of 50 virtual patients were conducted. The software enabled easy establishment
of many di�erent virtual patients with inter- and intra-personal variability. The
cohort were tested on two di�erent insulin administration strategies. The soft-
ware enabled easy assessment of the two strategies on various statistical and
risk measurements. Hereby, a Proof-Of-Concept implementation of an AP in

6.3 Summary 89

the simulation framework were performed. The entire source code including the
simulation runs from this experiment can be located in Appendix F. A runtime
test documented the performance improvement gained by the implementation
of multi-threading. The test showed a speed up ratio of a factor of 5 on the
hardware available. The test also recognised a potential in reducing the runtime
of the software even further.

90 Experimental testing

Chapter 7

Closure

This closure gives a perspective of the thesis �ndings followed by a return to the
problem statement. This chapter re�ects the authors ideas and thoughts about
the project.

7.1 Thesis Perspective

Before taking this software as a �gold standard� of benchmarking of the AP we
need to con�rm that the software can be descriptive of the actual system. Hence,
clinical validation of the software is paramount for the usability of this software.
Hovorka et al. describes in [28] how they conducted a clinical comparison with
the simulation framework they developed. Hovorka et al. were able to show
that simulated closed-loop study were not signi�cantly di�erent from the results
obtained from a clinical study (n = 12 adolescence)[28]. We note that this
sample is rather small, though the �ndings very appealing. Hovorka et al. also
noted that further validation studies should be undertaken to further asses the
a�ect of variations in the population on the di�erent control algorithms. If the
simulation software is a good indication of the actual patient variability it serves
as a strong tool in assessing the performance of di�erent AP in a very time- and
cost-e�cient way. Nonetheless, in silico trials will never fully substitute real life
trials as actual human trials are of high importance for the assessment of the

92 Closure

e�ect, safety and usability of closed loop insulin delivery systems [19, 27, 28, 34,
35].

7.1.1 Future work

The areas of future work can be divided into content development aspects and
software optimization aspects. The future work within the content development
aspects is actual improvements of the software seen from an AP testing per-
spective. Within the software optimization aspects is the elements which would
increase the usability of the software.

7.1.1.1 Content Development

� Control Strategies: As this software seeks to test various control strate-
gies, an adjacent point of future work is the development and implemen-
tation of other administration strategies. If the control strategy were
originally developed in C this could be integrated in Java using the Java
Native Interface or the MatlabControl class if developed in Matlab. Since
this software serves to test various AP it would be highly relevant to im-
plement a various set of control algorithms. Hereby, the software would
be able to test a various set of control strategies on the existing simulation
framework. This would make the simulation framework more adequate for
future assessment of the AP.

� Physiological models: Future projects could look into two elements.
First, is the development and additions to the existing model. Second, is
the implementation of new models. The physiological model implemented
only considered the single-hormone case and a future revision could in-
clude a dual-hormone physiological model considering also the dynamics
of glucagon. Hereby, the implementation of a dual hormone control strat-
egy could be implemented.

� Virtual Cohort: The patient variability is a key challenge for proper
glycemic control with the AP. Being able to describe many individuals
by a simulation tool serves as a strong platform for testing of closed-
loop control systems. The virtual cohort could be expanded either by
conducting clinical trials or a literature study. Expanding the virtual
cohort such that it included both children and adolescence could be of
interest as this would increase prediction horizon of the actual clinical
studies.

7.1 Thesis Perspective 93

� Performance metrics: Another area of attention could be adding addi-
tional performance metrics mapping the BG to a risk measure. From the
previous chapter we saw that di�erent performance metrics gave di�erent
results and interpretations and conclusions. Having a set of performance
metrics is paramount to test for the di�erent risk related elements, that is,
hyperglycemia, hypoglycemia and glycemic variation. In other words, the
performance metrics identi�es consistency of treatment across the cohort
in a fast manner.

� Other AP components: Other simulation systems available, such as
the T1DMS have a various set of components to chose from [12]. Thus,
one can test e.g. di�erent CGMs from di�erent manufacturers. Adding
di�erent commercial products to the simulation framework could be an
interesting addition in the future. Hereby, new equipment and devices
could be tested across a cohort and across closed-loop control algorithms.
This could also include a failure mode which would consider the failure
scenarios of the components.

7.1.1.2 Software Optimization

This subsection goes into details on further areas of improvements related to
the software.

� Graphical User Interface: Even though the GUI were out out scope
of this thesis it is still considered as a relevant addition. A GUI would
highly increase the usability of this software. This would make the daily
usage more e�cient and, thus, researchers with other backgrounds could
use this software, making the software more versatile. Additionally, this
would free the software from Matlab such that no commercial interference
exist.

� Further runtime improvements: As the software still have a high run-
time, a focus on reducing it further are still of much interest. Two focus
areas for further runtime improvements exist. First, is the improvement
of the existing algorithms and routines implemented including simpli�ca-
tions, re-factoring and tunings to speed up the existing program without
increasing the complexity. An example of this could be a data structure
simpli�cation. Second, is the implementation of work distribution between
network computers, such as Message Parsing Interface for Java. The cur-
rent multi-threaded setup does not support distribution of data and work-
load across machines. However, Java libraries such as JMS or Hazelcast
could distribute data and workload across several machines. Nonetheless,

94 Closure

the Message Parsing Interface for Java is still in its early phase and are not
part of the native Java libraries. Thus, caution should be on such imple-
mentation. Both elements could be interesting extensions to the current
software.

7.2 Returning to the Problem Statement

This thesis has shown a feasible implementation of a simulation framework for
in silico testing of an AP in Java resembling the usage of an AP in a virtual
cohort by:

� Implementing a Proof-Of-Concept AP.

� Creating a system for modelling of a virtual cohort which can be de�ned
to a target population

� Establishing several performance metrics such that easy evaluations across
virtual patients can be made.

� Remaining free of intellectual property rights. The use of Matlab for
execution is a limitation and must be substituted by a GUI for this to
become an entire reality.

� Reducing the runtime signi�cantly by implementation of multi-threading
in the software.

Chapter 8

Conclusion

The purpose of this Master's thesis was to develop a software for in silico test-
ing of an AP. The scope was to implement the six principal components of
the simulation framework in the programming language Java. Additionally,
this implementation should use open source numerical methods to refrain from
interference with intellectual property rights in commercial contexts. The im-
plementation of a Proof-Of-Concept AP was successfully conducted. Together
with the test procedure described, followed by the performance evaluation the
entire simulation framework were developed and tested.

The simulation framework has been presented and implemented. The main com-
ponents of the system were a mathematical model describing the glucose-insulin
dynamics of virtual subjects with T1D, a CGM model, and a CSII delivery
model. The virtual cohort were sampled from an actual population with ap-
propriate levels of inter- and intra-variability between subjects. This hereby
introduces an experimental playground for future modelling and creation of vir-
tual subjects.

To ensure standardised testing procedure of the AP, several performance met-
rics were introduced. This includes, but are not limited to, the Average Daily
Risk Range (ADRR) to determine the risk of hyper and hypo-glycemia, Mean
Amplitude of Glycemic Excursions (MAGE) to asses the variability of a virtual
subject, and the HbA1c to asses the mean BG value.

96 Conclusion

The �ndings of this thesis showed an example of a fast an easy assessment
of a two di�erent Proof-Of-Concept APs. The software successfully conducted
simulations, and performance metrics were used to assess the performance across
the two APs. The simulations were performed on a virtual cohort (n = 50 adults)
with both inter- and intra-individual variability. The tests showed that some
performance metrics, particular ADRR and LBGI, were better indicators of
risks than others. Therefore, various performance metrics are a key to assessing
the AP in the simulation framework for future use.

It were concluded that the virtual cohort could be expanded in the future to
include virtual subjects with various physiological compositions. In addition, a
future clinical validation of this software is paramount. A clinical assessment
would identify if the software is able to describe the actual physiological vari-
ability which exist in actual individuals. This would serve as the �nal acid test
for the validity of this software.

To conclude, the concept of testing closed-loop control algorithms in a computer
environment based on open source numerical methods has been proven valuable.
I am convinced that in silico testing, based on the same concepts from this thesis,
will be an essential part of medical device testing in the future.

List of Figures

1.1 This �gure shows the conceptual understanding between input,
system and output that will be used throughout this thesis. . . . 5

1.2 This �gure shows the schematic representation of the contribu-
tion to the DIACON groups research. The simulation framework
is a cost- and time-e�ective solution for designing and testing
components of the AP, hereby predicting the outcome of actual
clinical studies. 6

2.1 The carbohydrate metabolism in a healthy individual. The dis-
turbances in the glucose level is counteracted by the action of the
pancreas [16]. 8

2.2 The Dexcom G4r Continous Glucose Monitor assist diabetics
monitor their blood glucose in real-time [6]. 10

2.3 The ACCU CHEKr insulin pump which contains the insulin in a
small compartment. Insulin dosage will be decided by the patient
[2]. 10

2.4 The Medtronic Minimedr pump with the Enilte CGM. The sys-
tem monitors blod glucose and previous injections and assist the
T1D patient in deciding insulin dosage [11]. 11

98 LIST OF FIGURES

2.5 This �gure shows the components of the Arti�cial Pancreas. In
this picture a Medtronic device is used as glucose sensor and
insulin pump. An iphone 4s is schematised to contain the control
algorithm. It could also have been embedded in the pump [29]. . 12

2.6 This �gure represent the closed-loop system of the Art�cial Pan-
creas. 12

2.7 The 6 step plan proposed by the JDRF [8]. 13

3.1 A compartment diagram of the Hovorka model [16]. 18

3.2 This �gure show the glucose response of 25g of carbohydrate in-
gested between 07:00 and 07:20. 19

3.3 This �gure show the glucose absorption from the gut with 25g, 50,
and 75g of carbohydrate ingested between 07:00 and 07:20. . . . 20

3.4 This �gure show plasma insulin concentration for a insulin injec-
tion at 07:00 of 1U , 0.5U and 0.25U respectively on top of a basal
injection. 20

3.5 An example of the intra variability which exist between the vir-
tual patients. The insulin sensitivity SI1, SI2, SI3 in a 5 hour
period for two individuals is shown. Notice how the thickness of
the line displays the relative size of SI3. 25

3.6 This �gure shows the Continous Clucose Monitor Model with
noise. It shows the lag to interstitial �uid and the sensor noise
for a single 50 g meals and 1 U meal bolus. 26

3.7 The Risk Space LBGI and HBGI (bottom) as a function of the
blood glucose levels (top) over a 2 day period with a total of 7
meals. Note how the asymmetric risk space gives more weight on
low BG levels especially around 01:30 during night. 28

4.1 This �gure shows convergence for the classical RK and DoPri54
method respectively. Note how the global truncation error is
fourth and �fth order accurate. 34

LIST OF FIGURES 99

4.2 This �gure shows the insulin administration strategy used the
Proof-Of-Concept AP. It consist of a PID controller, a saturation
and some logic. An optional Feed Forward mechanism can be used. 41

5.1 This �gure show the domain model for the software and the datas-
tructures used. Note that a patient can consist of many meals
and many parameters as denoted by 1..?. 47

5.2 Sequence diagram for the input handle. 52

5.3 Sequence diagram for the system. 54

5.4 Sequence diagram for the execution of run(); 56

5.5 Sequential execution of program 58

5.6 Non-synchronized multi-threaded execution of program 58

5.7 Final synchronization of threads 60

6.1 This �gure shows four di�erent physiological parameters in a 24
hour period for patient 1. From the top sub plot the blue line
indicates SI2 and the black line, SI3. In the lowest plot the blue
line indicates the variation in SI1 and the black line the variations
in EGP . 72

6.2 This �gure shows four di�erent physiological parameters in a 24
hour period for patient 1. From the top sub plot the blue line
indicates the variation in F01 and the black line k12. The lowest
plot the blue line indicates the variation in ke and the black line
the variations in Ag. 72

6.3 This �gure shows the simulation during the �rst day without
Feed Forward. Poor glycemic control is evident. The top part
shows the BG and the CGM signal. The middle plot shows the
carbohydrate intake and the lowest plot shows the control output. 75

6.4 This �gure shows the simulation during the �rst day for patient
1 using Feed Forward. The top part shows the BG and the CGM
signal. The middle plot shows the carbohydrate intake and the
lowest plot shows the control signal. Better glycemic control can
be seen from this �gure. 75

100 LIST OF FIGURES

6.5 This �gure shows a histogram of the BG level for the two control
strategies. Both indicate poor glycemic control. Feed Forward
does show a bit more tight glycemic control. 76

6.6 This �gure shows the average BG level with the standard devia-
tion in the case without Feed Forward. 78

6.7 This �gure shows the average BG level with the standard devia-
tion for the Feed Forward case of the virtual population. 78

6.8 This �gure shows a histogram for the HbA1c frequency for each
of the two groups. 79

6.9 This �gure shows the two groups and their mean BG value as a
function of the ADRR risk measure. Furthermore, the size of the
dots represent the BG standard deviation. 80

6.10 This �gure shows the standard deviation range of the maximum
and minimum glucose value for the virtual cohort, where ke ∼
N(0.1, 0.0352). 83

6.11 This �gure shows the standard deviation range of the maximum
and minimum glucose value for the virtual cohort, where ke ∼
N(0.2, 0.0352). 83

6.12 This Figure shows the runtime for S1 as a function of the number
of patients. The upper �gure represent the total run time while
the lower �gure represent the speed up ratio Sp. Amdahl's law
represent an upper bound on the ratio S∗p = 3.88 with P = 4
processors and a lower bound on the runtime. 86

6.13 This Figure shows the runtime for S1 as a function of the number
of patients. The upper �gure represent the total run time while
the lower �gure represent the speed up ratio Sp. Amdahl's law
represent an upper bound on the ratio S∗p = 7.48 with p = 8
processors and a lower bound on the runtime. 87

B.1 UML Sequence diagram notation 108

List of Tables

3.1 The parameters for the Hovorka model. 22

3.2 The extended parameters for the Hovorka model. 24

3.3 CGM model parameters . 26

3.4 The performance metrics that will be used to evaluate simulations. 27

3.5 The translation of risk for ADRR. 29

4.1 Butcher's tableau for the Explicit RK method. 32

4.2 Butcher's tableau for the Classic Runge Kutta method 33

4.3 Butcher's tableau for DoPri 54 method 33

5.1 Meal pro�le input . 47

5.2 Parameter input . 47

5.3 Transformed CSV �le. One �le indicates one virtual patient suf-
fering from T1D. 48

5.4 Selected evaluation calls with input and output. 57

102 LIST OF TABLES

6.1 Meal pro�les for Monday, Tuesday and Wednesday. 70

6.2 Meal pro�les for Thursday and Friday. 70

6.3 Meal pro�les for Saturday and Sunday. 70

6.4 The physiological parameters which are constant for patient 1. . 71

6.5 Percentage of time in di�erent zones for the single patient case. . 74

6.6 Performance metrics for virtual patient 1. 74

6.7 Percentage of time in di�erent zones for the entire virtual cohort. 77

6.8 Performance metrics of entire cohort. 78

6.9 Percentage of running time used on di�erent tasks performed in
a sequential and Multi-threading matter. Pro�ling has been con-
ducted on S2 and using 30 patients for a 14 day period with a
sampling time Ts = 5. 88

D.1 Selected evaluation calls with input and output. 117

Appendix A

Steady State for The

Hovorka Model

Finding the steady state for the Hovorka Model entails the condition in equation
(A.1).

ẋ(t) =

D1(t)
dt

D2(t)
dt

S1(t)
dt

S2(t)
dt

Q1(t)
dt

Q2(t)
dt
I(t)
dt
x1(t)
dt
x2(t)
dt
x3(t)
dt

= 0 (A.1)

104 Steady State for The Hovorka Model

It also entails a steady state condition given some target BG value, r.

Q1(t)

VG
= r ↔

Q1(t)

VG
− r = 0

This leads to a system of 11 equations and 11 unknowns where d = 0 and θk = θ:[
f(x, u, 0, θ)
Q1(t)
VG
− r

]
=

[
0
0

]
(A.2)

0 indicates the zero vector. The unknowns are the 10 states, x and the insulin
dosage u. From Section 3.1 The Hovorka Model the derivation can be made.
First, from (A.2) we see that: Q1(t) = r · VG. This leads to the fact that
D1(t) = D2(t) = UG(t) = 0.

The derivation of an expression that can be used to �nd u and x will be per-
formed below. From equation (3.4) we see that

0 = u− S1(t)

τS
⇔ S1(t) = u · τS (A.3)

0 =
S1(t)

τS
− S2(t)

τS
⇔ S2(t) = u · τS (A.4)

(A.5)

Q1(t) and Q2(t) will be skipped for now. from (3.7) we arange such that;

UI(t) =
S2(t)

τS
⇔ UI(t) = u (A.6)

Above equation and equation (3.7) leads us to �nding that:

UI(t)

VI
−KeI(t) = 0⇔ u

VI
= KeI(T)⇔ I(t) =

u

VIKe
(A.7)

Now, it is possible to �nd the three remote e�ects on the insulin level in the
plasma by substituting (A.7) to (3.14)

Kb1I(t) = Ka1x1(t)⇔ x1(t) =
kb1

u
VIKe

ka1
(A.8)

Kb2I(t) = Ka2x2(t)⇔ x2(t) =
kb2

u
VIKe

ka2
(A.9)

Kb3I(t) = Ka3x3(t)⇔ x3(t) =
kb3

u
VIKe

ka3
(A.10)

105

Finally from equation (3.10) it is possible to isolate Q2(t),

Q2(t) =
x1(t)Q1(t)

k12 + x2(t)
=
k−1
a1 kb1

u
VIke

r · VG
k12 + k−1

a2 kb2
u

VIke

=
r · VG · kb1 · u

ka1VIke

(
k12 + kb2

u
ka2VIke

)
(A.11)

and substitute this equation and all of the above into (3.9) which is the function
we will use to �nd the optimal value for uk, denoted f(u):

q(u) =− F c01 − FR −
r · VG · kb1 · uk
VI · ke · ka1

(A.12)

+ k12 ·
r · VG · kb1 · uk

ka1VIke

(
k12 + kb2

u
ka2VIke

)
+ EGP0 ·

(
1− kb3 · u

VI · ke · ka3

)
Finding the derivative with respect to u of equation (A.12) function will be
needed.

The derivative of equation (A.12) can be found using the product and reciprocal
rule for di�erentiation. The two �rst elements of equation (A.12) disappears.
The third and �fth element is fairly easy and is a linear di�erentiation. However,
the fourth element is non-linear and requires some attention. Two new functions
are de�ned, the upper and lower part of the fraction:

v(u) = k12 · r · VG · kb1 · uk (A.13)

k(u) =
1

ka1VIke

(
k12 + kb2

uk
ka2VIke

) (A.14)

h(u) = v(u) · k(u) (A.15)

such that

h(u) = k12 ·
r · VG · kb1 · u

ka1VIke

(
k12 + kb2

u
ka2VIke

) (A.16)

Then each derivative is given by:

dv(u)

du
= k12 · r · VG · kb1 (A.17)

Using the reciprocal rule d
du ·

1
g(u) =

− dg(u)u

g(u)2 :

dk(u)

du
=

−ka1kb2k
−1
a2(

ka1VIkek12 + ka1kb2k
−1
a2 u

)2 =
−kb2

ka2ka1

(
VIkek

−1
12 + kb2k

−1
a2 u

)2
(A.18)

106 Steady State for The Hovorka Model

From the product rule it is given that dh(u)
du = dv(u)

du · k(u) + dk(u)
du · v(u), hence:

dk(u)

du
= (k12 · r · VG · kb1) ·

 1

ka1VIke

(
k12 + kb2

u
ka2VIke

)
 (A.19)

+ (k12 · r · VG · kb1 · u) ·

(
−kb2

ka2ka1

(
VIkek

−1
12 + kb2k

−1
a2 u

)2
)

=
k12 · r · VG · kb1

ka1VIke

(
k12 + kb2

u
ka2VIke

) +

(
−kb2 · k12 · r · VG · kb1 · u

ka2ka1

(
VIkek

−1
12 + kb2k

−1
a2 u

)2
)

The derivative of the basal insulin injection then becomes.

dq(u)

du
=− r · VG · kb1

VI · ke · ka1
(A.20)

+
k12 · r · VG · kb1

ka1VIke

(
k12 + kb2

uk
ka2VIke

)
+

(
−kb2 · k12 · r · VG · kb1 · u

ka2ka1

(
VIkek

−1
12 + kb2k

−1
a2 u

)2
)

− EGP0 · kb3
VI · ke · ka3

Appendix B

UML Sequence diagram

notation

Notation for UML sequence diagrams: Note that the term ":" on the left side
de�nes the name of the variable or instance and on right side the data type of
the variable.

108 UML Sequence diagram notation

Factory

p : Person

Static class

Instantiable class

Call method

Receive output

<<Create>>
Instantiate class

loop For or while loop

Alt Logical expression

Call method in
same class

Figure B.1: UML Sequence diagram notation

Appendix C

Javadoc

A full Java Documentation page has been made for this software to ensure
documentation of software for future usage. Due to the extend of the Java
documentation please refer to the disc attached to this report.

110 Javadoc

Appendix D

Complete User manual

This appendix present a complete user manual to the di�erent functionalities in
the software.
The �rst thing that need to be considered before executing the program is the
con�guration �le system.

Con�guration System

The con�gurations systems is simply a �le names configuration.xml where
the software will load some essential parameters. The con�guration �le is an
important element of this software since it allows you to change all sorts of
things, including but not limited to the directory of export, the solver to use,
to print to csv etc. The �le content looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>Configuration file for the AP system</comment>

<entry key="directory">[your directory]/matlab/Patients/Patient</entry>

<entry key="export_directory">[your directory]/matlab/ExportData/</entry>

112 Complete User manual

<entry key="final_export_directory">[your directory]/matlab/ExportData2/</entry>

<entry key="load_directory">[your directory]/matlab/Patients/</entry>

<entry key="multithread">Y</entry>

<entry key="tocsv">N</entry>

<entry key="model">H</entry>

<entry key="solver">dp54</entry>

<entry key="minstep">1.0e-6</entry>

<entry key="maxstep">1.0</entry>

<entry key="absolutetolerance">1.0e-6</entry>

<entry key="relativetolerance">1.0e-6</entry>

<entry key="eulerstep">1.0e-1</entry>

<entry key="newton_basal_min">0</entry>

<entry key="newton_basal_max">15</entry>

<entry key="newton_basal_startguess">5</entry>

<entry key="newton_maxeval">1000</entry>

<entry key="target">5.0</entry>

<entry key="PID">Y</entry>

<entry key="kgain">-0.25</entry>

<entry key="ngain">100</entry>

<entry key="Ti">349</entry>

<entry key="Td">0</entry>

<entry key="Kd">1</entry>

<entry key="Tt">5</entry>

<entry key="mealBolus">820</entry>

<entry key="tuningdays">3</entry>

<entry key="feedforward">Y</entry>

</properties>

The most important elements are directory - location and name of input fold-
ers, export_directory - location of output folders, final_export_directory -
location of �nal output folders and load_directory - the directory for patients.
directory speci�es the folder to locate the patients from and the last part of the
name Patient indicates the �lenames for the patients. export_directory gives
the directory for which the transformed �les should be loaded to. final_export_directory
gives the output folder for the simulation and �nally, load_directory indicates
what location patients should be imported from. Other important keys are the
tocsv which decides whether the simulation output should be printed to a CSV
output. If N the output will be stored in memory. The keys PID to feedforward
denotes elements of the PID controller which can be adjusted on-the-go for the
speci�c cohort.

The input part of the program serves as main purpose to transform data. From
a user-friendly input denoted in table 5.1 and 5.2 to the output ready for simu-

113

lation as shown in table 5.3.

Input

The input should be in the form as table 5.1 and 5.2 and should be located in
each separate folder. One csv �le corresponds to a single day. So if one wishes to
simulate 10 days one could de�ne parameters and meals for 10 days. However,
if only 5 days of csv �les are de�ned, the csv �les will simply be reused. The
meal pro�les �les (meal000.csv) should be arranged as follows:

Time;Duration;CHO

7:0;20;40.0

10:0;20;40.0

12:0;20;40.0

And the parameter �le (parameter000.csv):

Time;EGP0;F01;K12;Ka1;Ka2;Ka3;SI1;SI2;SI3;Ke;VI;VG;TD;TS;Ag

7:0;0.0161;0.0097;0.066;0.006;0.06;0.03;0.00512;8.2E-4;0.052;

0.138;0.12;0.16;40.0;55.0;0.8

10:0;0.0161;0.0097;0.066;0.006;0.06;0.03;0.00512;8.2E-4;0.052;

0.138;0.12;0.16;40.0;55.0;0.8

Since there is no GUI the �le input is only error checked in a very limited fashion.
One should therefore be very carefull when de�ning the values in the �les. A
�nal remark is the �le names. This is very important since sorting algorithms
will be used to sort the �les. Hence, if one seeks to have a certain number of
�les in a particular order it is very important to add numbers in the name such
that ordering can take place. If one seeks to create 14 meal �les one should
name the �les as follows:

meal00.csv

meal01.csv

...

meal14.csv

The important thing to remember is that all numbers is the �les must be of
similar length. Hence, �le meal01.csv must not be named meal1.csv - otherwise
the sorting algorithm consequently will fail.

114 Complete User manual

From here one can now execute the program:

Execution

In general there are two ways to execute the program. Either through the
terminal or through Matlab. Executing from the terminal would be done as
follows:

java -jar Trial.jar [input]

Here input indicates the optional input parameters that can be requested. The
input parameters is chronologically as follows: Number of patients to simulate,
the step size, the number of days, runner, start time (HH MM) and end time
(HH MM). The runner is a string which can be either be "C" for collect or "R"
for random indicating whether to collect a population or create one randomly.
The execution call from the terminal could look something like this:

java -jar Trial.jar 10 5 5 C 06 30 07 00

Simulating 10 patients in 5 days with a step size of 5 that will collect all infor-
mation from prede�ned �les starting at 06:30 today ending 07:00 5 days ahead.

Besides from terminal execution one can simply execute from Matlab. This is
done in following manner:

> javaaddpath('..\binJava\Trial.jar')

> import domain.*;

> import functionality.*;

> import inputOutput.*;

From here two calls exist, either collecting a pre-de�ned population or creating
one randomly:

% Initialize:

stepSize = 5;

startHours = 00;

startMinutes = 00;

115

endHours = 23;

endMinutes = 59;

numberOfPatients = 50;

days = 35;

BW = 74.9*ones(numberOfPatients,1)+14.4*normrnd(0,1,[1 numberOfPatients])';

% If you want to change the parameter input also remember to do this in

% GenerateParameters

par = [java.lang.String('F01');

java.lang.String('EGP0') ;

java.lang.String('K12');

java.lang.String('SI1');

java.lang.String('SI2');

java.lang.String('SI3');

java.lang.String('ka1');

java.lang.String('ka2');

java.lang.String('ka3');

java.lang.String('Ke');

java.lang.String('VI');

java.lang.String('VG');

java.lang.String('TauD');

java.lang.String('TauS');

java.lang.String('AG')];

% Notify java program on the parameters to change

p = AddToArray(par);

parameters = GenerateParameters(p,numberOfPatients,days,stepSize);

% Execute

Execute.CollectPopulation(numberOfPatients, stepSize,days,startHours,startMinutes,endHours,endMinutes,BW,p);

Simulator.execute(numberOfPatients,stepSize,BW);

% Save Metrics

p1 = PMetrics(1:numberOfPatients,SaveMethod,Metrics,stepSize);

The empty square in the end is important. Assume I would like to collect
a prede�ned population but I would like to vary some parameters across the
population. This would be done in following manner, assuming that the insulin
sensivity would vary over time as a function of sin(t):

parameters = ['SI1'];

par = AddToArray(parameters);

116 Complete User manual

par.addToArray(sin(t));

Execute.CollectPopulation(numberOfPatients, stepSize,days,...

startHours,startMinutes,endHours,endMinutes,BW,par);

The program will execute and print following message:

===================================TRIAL===================================

===================================INPUT===================================

MODEL: HOVORKA

Step size: 5 minutes

Number of patients: 10

The trials starts: [start time]

The trials end: [end time]

Total minutes: [Total number of minutes]

Total steps: [Total number of steps]

==============================PROGRAM STARTS===============================

PROGRAM COMPLETED SUCCESFULLY TIME[s]: 2.481

From here the simulator is executed and following message are received.

==============================PROGRAM REPORT===============================

Body weight:

Mean: 75.0kg +-(0.0kg).

High: 75.0kg.

low: 75.0kg.

Addr:

Mean: 260.0249787022015 +-(0.0).

High: 260.0249787022015

low: 260.0249787022015

Time in zone:

Mean: 1.1852260198456448% +-(0.0%)

High: 1.1852260198456448%

Low: 1.1852260198456448%

Time below 4 mmol/L:

Mean: 0.0% +-(0.0%)

117

Table D.1: Selected evaluation calls with input and output.

Call [Metrics.] Input output
ADRR Blood Glucose [LBGI HBGI ADRR]
inZone Blood Glucose, min, max TIZ

belowZone Blood Glucose, min TB
aboveZone Blood Glucose, max TA
hb1ac Blood Glucose Hb1Ac
auc Blood Glucose, step size AUC

MAGE Blood Glucose, step size MAGE

High: 0.0%

Low: 0.0%

Time above 10 mmol/L:

Mean: 98.81477398015436% +-(0.0%)

High: 98.81477398015436%

Low: 98.81477398015436%

==============================END OF PROGRAM===============================

Output

In the con�guration �le one can specify to print results to csv. One will get an
output �le in the format:

timestamp;mean;sigma;median;low;high;adrr;mage;cr;hb1ac;t;bg;d;u;cgm

The output �les will be save into the folder speci�ed in the con�guration system,
as described in D. Each output �le represent one patient and the output will be
in the following format (export0001.csv). If one does not wish to print to csv
the metrics can be called directory from memory. One can see this as a library
addition and the calls can be seen from the table below:

118 Complete User manual

Appendix E

Software Exceptions and

solutions

During testing a few error scenarios has been experienced. This appendix serves
to give solutions to the most common issues.

FileNotFound Exception

This exception is thrown when the program cannot create or locate the folders
for import and export of the CSV �les. Solutions is provided below:

Be sure that the directory path in the con�guration.xml �le has been entered
correctly. Close Matlab and move �les into another directory and retry running
the �le, while updating the con�guration �le to the correct directory.

IOException: Too many open �les

This is a problem on LINUX related machines. The error occurs due to a �le
limit in LINUX. Simply type following into the terminal and the problem should
be solved:

120 Software Exceptions and solutions

ulimit - n 32768

OutOfMemoryError: Java heap space

Simply allow the JVM enviroment more memory. If the program is executed
from the terminal do following:

java -Xms1200m -Xmx1300m -jar patient_Simulator.jar

This will set the memory to a range between 1.2 and 1.3Gb. Otherwise, if the
program is executed from Matlab go to preference → Java Heap Memory and
set the scale to the maximum value. Note that a restart of Matlab is needed.

JodaTimeException: Joda Time fails to load

If JodaTime fails to load, simply close Matlab and try again.

java.lang.NullPointerException

In the case, typically when a �le is open or no �les has been de�ned the software
will throw a null PointerException as shown below:

java.lang.NullPointerException

at inputOutput.CreateCsv.createCSV(CreateCsv.java:204)

at domain.Factory.executeTrial(Factory.java:219)

at functionality.Execute.CreateRandomPopulation(Execute.java:59)

The simple solution is to make sure that all CSV �les that the program need
access to is saved, closed and stored in the correct location.

Appendix F

Source Code and

Experiments

Due to the extend of the source code of the software please refer to the disc
attached to this report.

122 Source Code and Experiments

Appendix G

Apache Commons

Mathematics Source Code

Due to the extend of the ACM library please refer to the disc attached to this
report.

124 Apache Commons Mathematics Source Code

Bibliography

[1] Taming tiger: Loading properties from xml. https://www.ibm.com/

developerworks/library/j-tiger02254/. Accessed: January 2014.

[2] Accu-chek spirit insulin pump. https://www.accu-chekinsulinpumps.

com/ipus/products/insulinpumps/index.html. Accessed: February
2014.

[3] Aida type 1 diabetes simulator. http://www.2aida.org/aida/intro.htm.
Accessed: February 2014.

[4] Apache commons math. http://commons.apache.org/proper/

commons-math/, . Accessed: January 2014.

[5] Apache license. http://www.apache.org/licenses/LICENSE-2.0, . Ac-
cessed: January 2014.

[6] Dexcom g4 platinum. http://www.dexcom.com/dexcom-g4-platinum.
Accessed: February 2014.

[7] Jdrf arti�cial pancreas project consortium.
http://jdrfconsortium.jaeb.org/ViewPage.aspx?PageName=Home, .

[8] Arti�cial pancreas project research. http://jdrf.org/research/treat/

artificial-pancreas-project/, . Accessed: February 2014.

[9] Joda-time - java date and time api. http://www.joda.org/joda-time/.
Accessed: January 2014.

[10] Maxsim2 � interactive pkpd simulation. http://www.maxsim2.com/. Ac-
cessed: February 2014.

https://www.ibm.com/developerworks/library/j-tiger02254/
https://www.ibm.com/developerworks/library/j-tiger02254/
https://www.accu-chekinsulinpumps.com/ipus/products/insulinpumps/index.html
https://www.accu-chekinsulinpumps.com/ipus/products/insulinpumps/index.html
http://www.2aida.org/aida/intro.htm
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://www.apache.org/licenses/LICENSE-2.0
http://www.dexcom.com/dexcom-g4-platinum
http://jdrf.org/research/treat/artificial-pancreas-project/
http://jdrf.org/research/treat/artificial-pancreas-project/
http://www.joda.org/joda-time/
http://www.maxsim2.com/

126 BIBLIOGRAPHY

[11] Minimed® 530g with enlite®. http://www.

medtronicdiabetes.com/treatment-and-products/

minimed-530g-diabetes-system-with-enlite, note = Accessed:
February 2014.

[12] The epsiolon group - type 1 diabetes simulator. http://tegvirginia.

com/solutions/t1dms/. Accessed: February 2014.

[13] Yang Kuang Athena Makroglou, Jiaxu Li b. Mathematical models and
software tools for the glucose-insulin regulatory system and diabetes: an
overview. Applied Numerical Mathematics, 56, 2006.

[14] Peter A. Baghurst. Calculating the mean amplitude of glycemic excur-
sion from continuous glucose monitoring data: An automated algorithm.
DIABETES TECHNOLOGY and THERAPEUTICS, 13(3):296�302, 2011.
ISSN 15209156, 15578593. doi: 10.1089/dia.2010.0090.

[15] Donald Bell. Uml basics: The sequence diagram. IBM Developerworks,
2004. URL http://www.ibm.com/developerworks/rational/library/

3101.html.

[16] Dimitri Boiroux. Model predictive control algorithms for pen and pump
insulin administration. September 2012.

[17] WHO Media Centre. Diabetes fact sheet n312, December 2013.

[18] C. Cobelli, E. Renard, and B. Kovatchev. Arti�cial pancreas: past, present,
future. DIABETES -NEW YORK-, 60(11):2672�2682, 2011. ISSN 0012-
1797.

[19] Chiara Dalla Man, Boris P. Kovatchev, Marc Breton, and Claudio Cobelli.
In silico preclinical trials: A proof of concept in closed-loop control of type
1 diabetes. Journal of Diabetes Science and Technology, 3(1):44�55, 2009.
ISSN 19322968.

[20] Edward R. Damiano, Firas H. El-Khatib, Hui Zheng, David M. Nathan, and
Steven J. Russell. A comparative e�ectiveness analysis of three continuous
glucose monitors. Diabetes Care, 36(2):20251�259, 2013. ISSN 01495992,
19355548. doi: 10.2337/dc12-0070.

[21] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formu-
lae. Journal of Computational and Applied Mathematics, 6(1):19�26, 1980.
ISSN 0771050x.

[22] Victor Eijkhout. Introduction to High-Performance Scienti�c Computing.
Texas Advanced Computing Center Research O�ce Complex 1.101 J.J.
Pickle Research Campus, Building 196 10100 Burnet Road Austin, Texas
78758-4497, �rst edition edition, 2011.

http://www.medtronicdiabetes.com/treatment-and-products/minimed-530g-diabetes-system-with-enlite
http://www.medtronicdiabetes.com/treatment-and-products/minimed-530g-diabetes-system-with-enlite
http://www.medtronicdiabetes.com/treatment-and-products/minimed-530g-diabetes-system-with-enlite
http://tegvirginia.com/solutions/t1dms/
http://tegvirginia.com/solutions/t1dms/
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html

BIBLIOGRAPHY 127

[23] John Jian B.S. Firas H. El-Khatib, Ph.D. and Ph.D. Edward R Damiano.
Adaptive closed-loop control provides blood-glucose regulation using dual
subcutaneous insulin and glucagon infusion in diabetic swine. Journal of
Diabetes Science and Technology, 1(2), March 2007.

[24] S. Hodgson, N. Dunstan, and I. Fris. Extended semaphore operations. Con-
currency: Practice and Experience, 12(15):1495�1509, 2000. ISSN 1096-
9128. doi: 10.1002/1096-9128(20001225)12:15<1495::AID-CPE541>3.0.
CO;2-F. URL http://dx.doi.org/10.1002/1096-9128(20001225)12:

15<1495::AID-CPE541>3.0.CO;2-F.

[25] Ludovic J Chassin Ulrich Haueter Massimo Massi-Benedetti Marco Orsini
Federici Thomas R Pieber Helga C Schaller Lukas Schaupp Thomas Vering
Hovorka, Valentina Canonico and Malgorzata Wilinska. Nonlinear model
predictive control of glucose concentration in subjects with type 1 diabetes.
PHYSIOLOGICAL MEASUREMENT, 25, 2005.

[26] Roman Hovorka, Fariba Shojaee-Moradie, Paul V. Carroll, Ludovic J.
Chassin, Ian J. Gowrie, Nicola C. Jackson, Romulus S. Tudor, A. Mar-
got Umpleby, and Richard H. Jones. Partitioning glucose distribution/-
transport, disposal, and endogenous production during ivgtt. American
Journal of Physiology. Endocrinology and Metabolism, 282(5):E992�1007,
2002. ISSN 01931849, 15221555.

[27] Roman Hovorka, Ludovic J. Chassin, and Malgorzata E. Wilinska. In silico
testing-impact on the progress of the closed loop insulin infusion for criti-
cally ill patients project. Journal of Diabetes Science and Technology, 2(3):
417�423, 2008. ISSN 19322968.

[28] Roman Hovorka, Janet M. Allen, David B. Dunger, Carlo L. Acerini, Lu-
dovic J. Chassin, and Malgorzata E. Wilinska. Simulation environment to
evaluate closed-loop insulin delivery systems in type 1 diabetes. Journal of
Diabetes Science and Technology, 4(1):132�144, 2010. ISSN 19322968.

[29] John Bagterp Jørgensen. The art�cial pancreas - diabetes and control,
December 2013.

[30] Eric S. Kilpatrick, Alan S. Rigby, and Stephen L. Atkin. Variability in the
relationship between mean plasma glucose and hba(ic): Implications for the
assessment of glycemic control. CLINICAL CHEMISTRY, 53(5):897�901,
2007. ISSN 00099147, 15308561. doi: 10.1373/clinchem.2006.079756.

[31] B. P. Kovatchev, E. Otto, D. Cox, L. Gonder-Frederick, and W. Clarke.
Evaluation of a new measure of blood glucose variability in diabetes. DIA-
BETES CARE -ALEXANDRIA VA-, 29(11):2433�2438, 2006. ISSN 0149-
5992.

http://dx.doi.org/10.1002/1096-9128(20001225)12:15<1495::AID-CPE541>3.0.CO;2-F
http://dx.doi.org/10.1002/1096-9128(20001225)12:15<1495::AID-CPE541>3.0.CO;2-F

128 BIBLIOGRAPHY

[32] Boris Kovatchev and Marc Breton. Analysis, modeling, and simulation of
the accuracy of continuous glucose sensors. Journal of Diabetes Science
and Technology, 2(5):853�862, 2008. ISSN 19322968.

[33] Linde Wittmeyet-Koch Lars Eldén and Hans Bruun Nielsen. Introduction
to Numerical Computation. www.studentlitteratur.se, Lund, Sweden, �rst
edition edition, 2004.

[34] L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao, B. Kovatchev,
and C. Cobelli. Model predictive control of glucose concentration in type i
diabetic patients: An in silico trial. BIOMEDICAL SIGNAL PROCESS-
ING AND CONTROL, 4(4):338�346, 2009. ISSN 17468094, 17468108. doi:
10.1016/j.bspc.2009.04.003.

[35] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Co-
belli. The uva/padova type 1 diabetes simulator: New features. Journal of
Diabetes Science and Technology, 8(1):26�34, 2014. ISSN 19322968. doi:
10.1177/1932296813514502.

[36] Je� Meisel. Multithreaded programming. EE: Evaluation En-
gineering, 46(12):12 � 17, 2007. ISSN 01490370. URL http:

//search.ebscohost.com.globalproxy.cvt.dk/login.aspx?direct=

true&db=afh&AN=27898088&site=ehost-live.

[37] C. L. Rohl�ng, H-MWiedmeyer, R. R. Little, J. D. England, A. Tennill, and
D. E. Goldstein. Original articles - epidemiology/health services/psychoso-
cial research - de�ning the relationship between plasma glucose and hba1c:
Analysis of glucose pro�les and hba1c in the diabetes control and compli-
cations trial. Diabetes Care, 25(2):275, 2002. ISSN 01495992, 19355548.

[38] Steven J. Russell, Firas H. El-Khatib, David M. Nathan, Kendra L.
Magyar, John Jiang, and Edward R. Damiano. Blood glucose control
in type 1 diabetes with a bihormonal bionic endocrine pancreas. DIA-
BETES CARE, 35(11):2148�2155, 2012. ISSN 01495992, 19355548. doi:
10.2337/dc12-0071/-/DC1.

[39] J.W. Schmidt and R.E. Taylor. Simulation and analysis of industrial sys-
tems. Richard D. Irwin, 1970.

[40] Signe Schmidt, Dimitri Boiroux, Anne Katrine Duun-Henriksen, Lau-
rits Frøssing, Ole Skyggebjerg, John Bagterp Jørgensen, Niels Kjølstad
Poulsen, Henrik Madsen, Sten Madsbad, and Kirsten Nørgaard. Model-
based closed-loop glucose control in type 1 diabetes: the diacon experience.
Journal of Diabetes Science and Technology, 7(5):1255�1264, 2013. ISSN
19322968.

http://search.ebscohost.com.globalproxy.cvt.dk/login.aspx?direct=true&db=afh&AN=27898088&site=ehost-live
http://search.ebscohost.com.globalproxy.cvt.dk/login.aspx?direct=true&db=afh&AN=27898088&site=ehost-live
http://search.ebscohost.com.globalproxy.cvt.dk/login.aspx?direct=true&db=afh&AN=27898088&site=ehost-live

BIBLIOGRAPHY 129

[41] Nir Shavit, Maurice Herlihy, and Moran Tzafrir. Hopscotch hashing. Lec-
ture Notes in Computer Science (including Subseries Lecture Notes in Ar-
ti�cial Intelligence and Lecture Notes in Bioinformatics), 5218:350�364,
2008. ISSN 03029743, 16113349. doi: 10.1007/978-3-540-87779-0_24.

[42] John Walsh. Introduction to pumping - starting and success. 2007.

[43] Björn Wittenmark, Karl Johan Åström, and Karl-erik Årzén. Computer
control: An overview. 2009.

	Abstract
	Preface
	Acknowledgements
	Abbreviations
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Problem Scope
	1.3 Structure of the Report
	1.4 Conceptual Clarification
	1.5 Contributions

	2 Background
	2.1 Diabetes
	2.2 Diabetes Treatment
	2.3 The AP progress and related work
	2.4 Summary

	3 Physiological Model
	3.1 The Hovorka Model
	3.2 Continous Glucose Monitor Model
	3.3 Performance Metrics
	3.4 Summary

	4 Methodology
	4.1 Explicit Runge-Kutta Methods
	4.2 Newton-Raphson's Method
	4.3 Insulin Administration Strategy
	4.4 Apache Commons Mathematics Library
	4.5 Summary

	5 Developing a Software for In Silico Testing for an Artificial Pancreas
	5.1 Requirements and Functionalities
	5.2 Implementation
	5.3 Multi-threading
	5.4 Configuration-system
	5.5 Summary

	6 Experimental testing
	6.1 In Silico Testing for an Artificial Pancreas
	6.2 Software Runtime Testing
	6.3 Summary

	7 Closure
	7.1 Thesis Perspective
	7.2 Returning to the Problem Statement

	8 Conclusion
	List of Figures
	List of Tables
	A Steady State for The Hovorka Model
	B UML Sequence diagram notation
	C Javadoc
	D Complete User manual
	E Software Exceptions and solutions
	F Source Code and Experiments
	G Apache Commons Mathematics Source Code
	Bibliography

