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Abstract We present a study on predicting the concentra-
tion level of synthetic astaxanthin in fish feed pellet coat-
ing using multi- and hyperspectral image analysis. This was
done in parallel using two different vision systems. A new
instrument for hyperspectral imaging, the SuperK setup,
using a super-continuum laser as the light source was intro-
duced. Furthermore, a parallel study with the commercially
available multispectral VideometerLab imaging system was
performed. The SuperK setup used 113 spectral bands
(455–1,015 nm), and the VideometerLab used 20 spectral
bands (385–1,050 nm). To predict the astaxanthin concen-
tration from the spectral image data, the synthetic astaxan-
thin content in the pellets was measured with the established
standard technique; high-pressure liquid chromatography
(HPLC). Regression analysis was done using partial least
squares regression (PLSR) and the sparse regression method
elastic net (EN). The ratio of standard error of prediction
(RPD) is the ratio between the standard deviation of the ref-
erence values and the prediction error, and for both PLSR and
EN both devices gave RPD values between 4 and 24, and with
mean prediction error of 1.4–8.0 parts per million of astax-
anthin concentration. The results show that it is possible to
predict the synthetic astaxanthin concentration in the coat-
ing well enough for quality control using both multi- and
hyperspectral image analysis, while the SuperK setup per-
forms with higher accuracy than the VideometerLab device
for this particular problem. The spectral resolution made it
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possible to identify the most significant spectral regions for
detection of astaxanthin. The results also imply that the pre-
sented methods can be used in general for quality inspection
of various coating substances using similar coating methods.
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1 Introduction

Astaxanthin is a naturally occurring carotenoid with a high
antioxidant activity essential for growth and survival and it
is important for the development of colour in salmonid fishes
[35]. The primary use of astaxanthin within aquaculture is as
a feed additive to ensure that farmed salmon and trout have
similar appearance to their wild counterparts [38]. The colour
appearance of fish products is important for customers as a
quality indicator [16,29,34]. Astaxanthin is very expensive
[2] and therefore optimisation of its use in fish feed produc-
tion is of importance.

Synthetic astaxanthin is more easily available and costs
slightly less than natural astaxanthin and is therefore used
more often in industry. However, there is a demand for nat-
ural astaxanthin for the organic salmonid fish market, where
natural astaxanthin is mandatory.

Today, chemical measurement of astaxanthin is done by
high-pressure liquid chromatography (HPLC). HPLC is a
well-established technique for measuring synthetic astaxan-
thin content in fish oil. However, when measuring astaxan-
thin concentration in fish feed pellets, an additional step
for extraction of the oil is necessary, and this is why
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measurements of astaxanthin from fish feed pellets are less
accurate and more labour intensive.

An automatic vision system for at-line pigment quality
control of astaxanthin coating concentration level would be
of great benefit to the industry, in relation to both process
control and process optimisation.

The aim of this study is to investigate the possibility of pre-
dicting the concentration level of synthetic astaxanthin coat-
ing on aquaculture feed pellets by spectral imaging. Since
HPLC is used for measuring astaxanthin coating content in
the industry, we used this as a reference method.

Spectral imaging is called multispectral when using a
small number of spectral bands (e.g. less than about 50), and
hyperspectral when using a large number of spectral bands
(e.g. hundreds).

Previous studies on feed pellet monitoring by spec-
tral analysis include near infra-red (NIR) reflectance spec-
troscopy for classification of feed material and feed pellets
by Fernández-Ahumada et al. [12], and predicting chemical
information in pharmaceutical pellet core and coating using
NIR imaging by Sabin et al. [31].

Previous work on multi- and hyperspectral image analysis
of astaxanthin coating by Ljungqvist et al. [22,23] has shown
promising results for screening of the concentration level.
However, those studies did not use hyperspectral imaging in
the visual part of the spectrum. In [23] only the NIR range
was analysed, and in [22] only 20 wavelengths were analysed
in the visual and parts of the NIR range. Neither of them
used chemical measurements for validation of the astaxanthin
coating level.

For the previous work using the visual part of the spectrum
[22], the spectral bands were located at predefined wave-
lengths due to instrument setup, chosen without the knowl-
edge of the particular problem. The few spectral bands used
may not be the ones that give the greatest ability to quantify
the contents of astaxanthin. Thus, a more detailed study is
called for, and here we report the characteristics for a new
imaging method based on diffused laser light with more spec-
tral bands. The study is focused on the visual region of the
electromagnetic spectrum due to function of astaxanthin as
a pigment.

Vision systems have previously been implemented for
quantisation of chemical contents, and a number of light-
source options exist. In this paper, we present the use of a
super-continuum light source for full-field illumination. The
super-continuum laser, combined with an acousto-optical
tunable filter (AOTF) provides a broadband tunable light
source. This form of light source is often used for confo-
cal microscopy [32], fluorescence lifetime imaging [24], and
measurement of subsurface laser scattering (SLS) [26,27];
also known as diffuse reflectance. To apply the light-source
for full-field illumination, the small beam from the AOTF
box is simply expanded and made diffuse.

A parallel study with a commercially available multispec-
tral system called VideometerLab was also performed. The
performance of this device has been validated for similar
surface chemistry applications [6–9,11,15,17,21].

Since the hyperspectral imaging device records more
spectral bands than a multispectral device, it would give more
detailed information for measuring the astaxanthin coating
concentration.

The presented work thus investigates both the possibility
of examining astaxanthin contents by hyperspectral image
analysis, and a comparison of the two modalities (multi- and
hyperspectral imaging) for astaxanthin prediction.

2 Materials and methods

2.1 Material

The pellets used in this study were produced for the pur-
pose of this experiment, and the recipe was based on normal
commercial fish feed for salmonid fish. The pellets had the
approximate production diameter of 4.5 mm, and were coated
with fish oil.

An extruder machine was used for the pellet production.
The feed material was extruded through a die plate with holes
of a specific diameter which determined the diameter of the
pellets. On the other side of the disk, there was a set of rotat-
ing knives that cut the material into shorter, cylinder-shaped
pellets.

The synthetic astaxanthin used was cold water dispersible
(BASF SE, Germany), and in total seven different levels of
synthetic astaxanthin concentration were added to the fish oil
coating. The highest synthetic astaxanthin level in fish oil was
100 parts per million (ppm), and then the oil was diluted so
that the concentration level became half of the original. This
was repeated to achieve the seven nominal levels of synthetic
astaxanthin concentration in the fish oil coating, where the
last level was 0 ppm, see Table 1.

Fish oil in itself typically contains a small amount of nat-
ural astaxanthin, however, this is assumed to be less than
1 ppm and is here referred to as a coating of 0 ppm concen-
tration. Astaxanthin is commonly measured in ppm, and it is
measured in mass so here ppm corresponds to mg/kg.

Between production and image acquisition, the pellets
were stored at 2 ◦C in a dark environment for 2 months.
They were stored in plastic bags where the oxygen had been
pumped out and the bags were filled with nitrogen to min-
imise the oxidation process and quality reduction during stor-
age.

The spectral reflection of the pellets is a mix of the pel-
let compound (recipe) and the reflection of astaxanthin. The
light captured by each pixel is thus assumed to be a linear
combination of two main components; the pellet compound
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Table 1 Data overview of the seven pellet groups (nominal concentration levels) and the number of images taken (of different samples) with
VideometerLab and SuperK, respectively

Synthetic astaxanthin concentration (ppm)

Levels 0 3.125 6.25 12.5 25 50 100

Number of images

VideometerLab 30 30 30 30 30 30 30

SuperK 10 10 10 10 10 10 10

Added synthetic astaxanthin to the fish oil coating in ppm

and the astaxanthin coating. Due to the production method,
the coating is neither evenly distributed among the pellets,
nor uniformly on each pellet.

In the extrusion process, parts of the astaxanthin coating
will go inside the pellet, while we only measure reflection
from the surface. However, the industry is interested in the
total amount of astaxanthin in the pellets. Therefore, the sur-
face reflection is assumed to be linearly related to the total
amount of astaxanthin in the pellets.

It is assumed that most of the quantity of synthetic astax-
anthin on each pellet can be estimated by measuring the coat-
ing surface of each pellet. For practical use, however, it is not
interesting to estimate the quantity on each single pellet, but
rather on a larger amount of pellets, and calculate an ensem-
ble average.

2.2 Equipment

2.2.1 SuperK

The hyperspectral imaging system consists of four parts: light
source, spectral filter, diffuse filter and camera. The illumina-
tion system is based on a SuperK Extreme (NKT Photonics
A/S, Denmark) super-continuum white light laser produc-
ing a quasi-continuous output. The super-continuum light is
filtered using a SuperK Select (NKT Photonics A/S, Den-
mark), where an AOTF is used for spectral filtering of the
beam. The combined light source and filtering box provides
a wavelength tunable laser beam delivered in a photonic crys-
tal fibre (PCF) by a Fiber Delivery System (NKT Photonics
A/S, Denmark). The combined system provides 0.5–6.5 mW.

In combination, this system provides light in the visual
and NIR region, ranging from 455 to 1,015 nm. A step size
of 5 nm was used as the spectral resolution, resulting in 113
spectral bands. The bandwidth grows linearly as a function
of wavelength; at 500 nm it is 3.5 nm, at 900 nm it is 14 nm.

The spectrally filtered light from the Fiber Delivery Sys-
tem forms a Gaussian fundamental transverse electromag-
netic (TEM00) beam. This is transformed to illuminate a
square area below the camera using an engineered diffuser

(ED1-C20-MD, Thorlabs, Sweden). This diffusing method
has a high power transmission onto the sample.

The illumination does not form a perfectly uniform inten-
sity distribution; it produces a gradient due to the projection
caused by the oblique incidence of the beam onto the cam-
era field of view. It also produces a short distance intensity
fluctuation. To minimise the latter effect, the Gaussian beam
delivered after the AOTF box is expanded using a −50 mm
focal length negative lens (LC1439, Thorlabs, Sweden). By
illuminating the engineered diffuser, the short distance inten-
sity fluctuations are minimised and become insignificant for
this application.

Image capturing is done using a Grasshopper GRAS-
20S4M grey-scale charge-coupled device (CCD) camera
(Point Grey Research Inc, Canada), which uses a 12-bit ana-
logue to digital converter (ADC) with a 16-bit output. The
image resolution is 1,600 × 1,200 pixels with a pixel size of
approximately 0.028 × 0.028 millimetres. For an overview
of the SuperK setup see Fig. 1.

2.2.2 VideometerLab

To compare the result of the SuperK setup, the commer-
cially available multispectral VideometerLab (Videometer
A/S, Hørsholm, Denmark) was also used for image acquisi-
tion. It uses 20 wavelengths distributed over the ultra-violet
A (UVA), visual and NIR region: 385, 430, 450, 470, 505,
565, 590, 630, 645, 660, 700, 850, 870, 890, 910, 920, 940,
950, 970, 1,050 nm.

This system uses a Point Grey Scorpion SCOR-20SOM
grey-scale CCD camera. The objects of interest are placed
inside an integrating sphere (Ulbricht sphere) with uniform
diffuse lighting from light sources placed around the rim of
the sphere [5]. All light sources are light-emitting diodes
(LED) except for 1,050 nm, which is a diffused laser diode.

The curvature of the sphere and its matt-white coat-
ing ensure a uniform diffuse light so that specular effects
are avoided and the amount of shadow is minimised. The
device is calibrated radiometrically with a following light
and exposure calibration according to the National Institute
of Standards and Technology (NIST). The system is also
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Fig. 1 Overview of the SuperK setup showing the supercontinuum
light delivery, negative lens, optical diffuser, camera, and sample posi-
tion

Fig. 2 The VideometerLab setup showing a cross section of the inte-
grating sphere, light sources, camera, and sample position

geometrically calibrated to ensure pixel correspondence for
all spectral bands [13]. For an overview of the Videometer-
Lab setup see Fig. 2.

VideometerLab has the advantage that the intensity is cal-
ibrated with respect to the sensitivity of the CCD and the
intensity of the light sources, which means that the result-
ing reflection spectrum can be compared with, e.g. a spec-
troscopy spectrum.

The image resolution is 1,200 × 1,200 pixels. In this sit-
uation, one pixel represents approximately 0.072 × 0.072
millimetres. The Scorpion camera has a 12-bit ADC, and the

system uses 8-bit data output from the camera. After calibra-
tion correction, the reflectance intensity output is at 32-bit
precision.

2.2.3 Spectroscopy

To explore the spectral properties of astaxanthin further, and
to assist in the interpretation of the spectral image results, a
spectrometer was used in the visual and NIR range. Absorp-
tion spectra of synthetic astaxanthin in a solution of fish oil
along with plain fish oil were recorded using a NIRSystems
6500 absorption spectrometer (Foss NIRSystems Inc, USA)
with a spectral resolution of 2 nm. The absorption spectra
were transformed to reflection values using the standard rela-
tion A = − log(R), where A is the absorption value and R
is the reflection value.

2.2.4 High-pressure liquid chromatography

To calibrate the hyperspectral imaging prediction method,
an HPLC analysis of the synthetic astaxanthin concentration
in pellets was performed. By analysing samples from each
concentration level, we could estimate the average astaxan-
thin content in the pellets, which can be used to validate the
nominal levels used in the production. To reduce the effect of
the analysis method, we used two independent HPLC mea-
surements from different parties.

The HPLC analysis was done at the National Food Insti-
tute, Division of Industrial Food Research at the Technical
University of Denmark (Lyngby, Denmark) using an Agilent
1100 series HPLC (Agilent Technologies, Palo Alto, CA,
USA), equipped with a UV diode array detector. The oil was
extracted from the pellets using acetone and homogenised
to a concentrate, which was analysed for synthetic astaxan-
thin content, according to the modified protocol of Bligh and
Dyer [3].

A fraction of the lipid extract was evaporated under nitro-
gen and redissolved in 2 mL of n-heptane before injection.
Astaxanthin content was determined after injection of an
aliquot (50 µL) of the n-heptane fraction into a LiChrosorb
Si60-5 column (100 mm × 3 mm, 5 µm) equipped with
a Cromsep Silica (S2) guard column (10 mm × 2 mm;
Chrompack, Middelburg, The Netherlands) and eluted with
a flow of 1.2 mL/min using n-heptane/acetone (86:14, v/v)
and detection at 470 nm. Concentrations of astaxanthin were
calculated using authentic standards from Dr. Ehrenstorfer
GmbH (Augsburg, Germany).

Furthermore, HPLC analysis was also made at Eurofins
A/S (Galten, Denmark), which is a commercial laboratory.
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2.3 Image acquisition

Images of petri dishes (plastic, diameter of 9 cm) filled
with pellets were captured using both the SuperK setup and
the VideometerLab. For each concentration level, 10 images
of different pellets were captured using both SuperK and
VideometerLab, then an additional 20 images were captured
with VideometerLab, see Table 1. In total, 70 SuperK pellet
images and 210 VideometerLab pellet images were captured
over two consecutive days.

The concentration level sequence was randomised, and
samples were interleaved two at a time. The pellets were at
normal room temperature during image acquisition.

A filled petri dish resembles the rapid inspection that the
industry would desire for this application.

The pellet cluster inside the petri dish in each image was
segmented from the light-grey background using a grey-scale
threshold, using the band of 500 nm for the SuperK images
and the band of 470 nm for the VideometerLab images. The
threshold segmentation was complemented with the morpho-
logical methods erosion and dilation using a disk as structur-
ing element [33]. Furthermore, the topmost layer of pellets
was segmented to remove parts with less light, and in this
way also avoid some of the granulometry information in the
image. Since the SuperK images contained some specular
reflections due to the direct lighting, the strongest specu-
lar effects were also removed by a threshold for both the
VideometerLab and SuperK images.

The mean spectrum of the pixels in each segmented image
was used as samples. In this way, the impact of the pattern
from the diffuse filter used by the SuperK setup was reduced
and was assumed not to impact the results of the image analy-
sis.

Standard red–green–blue (sRGB) colour image represen-
tations of the VideometerLab images for this paper were
done by multispectral colour-mapping using penalised least
square regression described in Dissing et al. [10]. Since the
SuperK setup is not calibrated towards the CCD, sensitivity-
standardised colour mapping was not possible, instead non-
standard RGB images were made to visualise the images.

2.4 Data analysis

The number of samples is denoted by n and the number of
variables (the wavelengths) is denoted by p. The stored data
of n samples and p variables are denoted as matrix X. The
ground truth reference values (concentration level) are stored
in vector y with length n. The predicted (estimated) value of
y is denoted ŷ.

For ground truth reference values, the nominal values in
Table 1 were used.

For the VideometerLab data p is 20 and n is 210. To com-
pare the VideometerLab data with the SuperK data, the 70

images corresponding to the same petri dishes of pellets for
both methods were used in the analyses; n = 70. For the
SuperK data p is 113 and n is 70, this results in an ill-posed
problem with more variables than observations (p � n).

Two different regression methods were used to estimate
the concentration level of synthetic astaxanthin in the pel-
let coating. Both methods produce linear prediction models,
but they calculate the models in different ways, as described
below.

All image analyses and statistics were carried out using
Matlab 7.9 (The Mathworks Inc., Natick, MA, USA).

2.4.1 Principal component analysis

The multivariate data from the images were analysed using
principal component analysis (PCA) for exploratory pur-
poses [14]. PCA is an unsupervised method, and the most
optimal method with respect to maximising the variance in
the data [18]. If the relation of interest contains large vari-
ations, then PCA is a good method for analysing the data.
The pre-processing method, called standard normal variate
(SNV) [30], was used, followed by PCA. SNV is performed
by subtracting the mean from each sample, and normalising
using the standard deviation (SD) of the sample spectrum.

2.4.2 Model selection and validation

To calibrate the statistical model parameters, a calibration
set of 70 % of the samples was used (nc). Then, the chosen
model was validated on the remaining 30 % of the samples
(nv). For the VideometerLab data with a total of 210 samples,
nc = 147 and nv = 63, and for the VideometerLab data using
70 samples, nc = 49 and nv = 21. For the SuperK data with
a total of 70 samples, nc = 49 and nv = 21.

The calibration and validation set was chosen randomly,
but with all concentration levels present in both. The same
corresponding samples for both devices were present in both
the calibration and the validation set.

For parameter calibration, two different methods were
used in parallel. First, the leave-one-out cross-validation
(LOOCV) method was used on the calibration set, where
each sample is used as validation once.

Second, what can be called a group-fold cross-validation
(GFCV) was used both for parameter calibration and to inves-
tigate how the prediction generalises on unseen concentra-
tion levels (validation). The GFCV was performed so that all
samples with one concentration level, a group, were left out
during training of the model, and then the left out group was
used for prediction.

Two nested GFCV:s were used, one for calibrating a PLSR
model, and one for the final validation and generalisation. For
every iteration, a PLSR model was calibrated using GFCV
on six levels, and then the validation was done on the left
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Fig. 3 Schematic overview of the group-oriented cross-validation
GFCV for calibration and validation of the prediction. The GFCV is
used both for calibration and for generalisation validation. The data con-
tain seven different concentration levels, groups, and the middle five of
these are used for generalisation validation. Each group consists of ten
samples. Calibration is performed on six groups at a time. One group
at a time is left out for validation. Synthetic astaxanthin concentration
in ppm

out level. For each iteration, one of the five middle levels
(3.125, 6.25, 12.5, 25, 50 ppm) was left out at a time to see
how a model predicts on an unseen concentration level. The
highest and lowest concentration levels were not used for the
validation/generalisation part since we are not interested in
extrapolation of the model. This procedure renders a result
in terms of a pooled prediction error of the five group tests.
For an overview of the GFCV scheme see Fig. 3.

2.4.3 Partial least squares regression

The first method for analysing the concentration level was
the partial least squares regression (PLSR) method [18,37].
The data were mean centred, and the number of components
to be used in the PLSR model was decided using LOOCV,
and likewise GFCV, on the calibration set while minimising
the mean of the residual sum of squares (RSS), see Eq. 1.
A modified version of the ’one standard error rule’ [18] for
selection was used: The least number of components with
RSS value inside the range of two SDs of the lowest value of
RSS was selected.

For the VideometerLab data, the number of components
(factors) n f tested in the calibration step was varied from 1
to 20. For the SuperK data containing 113 variables and a
calibration set of 49 samples; 47 was used as the maximum
number of components tested.

The chosen value of n f was used on the calibration set
and the resulting prediction model was then validated on the
validation set.

The coefficient of determination R2 is a measure of how
much variation is explained by the model and was calculated
for the prediction of the validation set. R2 is basically the ratio
of the RSS and the total sum of squares (TSS), see Eq. 1.

R2 = 1 − RSS

TSS
= 1 −

∑
nv

(y − ŷ)2

∑
nv

(
y − 1

nv

∑
nv

y
)2 . (1)

Furthermore, the ratio of the standard error of prediction
and standard deviation (RPD) was calculated as a measure of
how well the model predicts. The RPD is the ratio between
the SD of the original data y (the reference values) and the
standard error of prediction (SEP), see Eqs. 2 and 3.

SEP = RMSEP =
√

1

nv

∑

nv

(y − ŷ)2. (2)

RPD = SD

SEP
. (3)

The SEP is equal to the root mean square error of predic-
tion (RMSEP). An RPD value of 1.0 means that the model
cannot predict accurately, since this means that the mean
error is equal to the SD of the reference values. An RPD
value higher than 2.5 is considered satisfactory for screen-
ing, and the values of 5–10 are adequate for quality control
[39].

To further see what range of the spectrum is relevant for
the prediction of astaxanthin concentration, we used interval
PLS (iPLS) regression where the spectrum is divided into
a number of regions and PLSR is performed on each region
individually [28]. While the VideometerLab data has too few
spectral bands for this method, we can investigate what parts
of the SuperK spectrum give best prediction. We used 20
intervals and a PLSR model was calibrated for each of them.

2.4.4 Elastic net regression

To identify which wavelengths are of most interest, the elas-
tic net (EN) was also used for regression analysis [41]. The
EN is a sparse statistical method and performs variable selec-
tion while doing regression. In contrast to PLSR it does not
use linear combinations of all variables, it uses only a few
variables which are found important; non-zero coefficients.
In this way, EN excludes variables that do not contribute to
the result and thus are potential noise.

EN tends to select variables that are correlated with each
other, and this is suitable for spectral data with intrinsic cor-
relation. This grouping effect would make the result suitable
for an optical filter implementation.

EN needs two model parameters: λ1 for the L1 norm for
determining the number of non-zero coefficients, and λ2 for
the Euclidean L2 norm for regularisation. The regularisation
is suitable for the ill-posed problem. The regression model
consists of the variable weights (coefficients) in βen, see
Eq. 4.

βen
j = argmin

β j

(‖y − Xβ j‖2
2 + λ2‖β j‖2

2 + λ1‖β j‖1). (4)

The estimated coefficients are then multiplied by (1+λ2)

to get the final EN solution.
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The two parameters were selected using LOOCV on the
calibration set. The λ1 parameter steers the selection of vari-
ables and was calculated so that the number of selected vari-
ables was varied from 1 to 20. The λ2 parameter was varied
with 12 logarithmic steps from 10−7 to 10. The data matrix
X was normalised, and the reference values y were centred
for each calculation of the EN.

RSS was used to find the optimal parameter set. If more
than one combination of the number of selected variables
and λ2 was found to give the best calibration result, then the
lowest number of selected variables and the highest value of
λ2 were used, giving the least complex model.

The implementation by Sjöstrand et al. [36] was used for
calculations of the EN.

3 Results

3.1 SuperK power stabilisation

To estimate the acquisition reproducibility, the same sam-
ple was repeatedly imaged for ∼11 h, and the mean image
intensity was measured. To compare across wavelengths, we
report the variation relative to the mean intensity of the given
wavelength; the ratio denoted as a percentage (%). The result-
ing SDs are presented in Fig. 4 showing the image acquisition
reproducibility.

Compared to the precision that is desired in estimating
astaxanthin coating concentration (∼ 1 %), we suspect that
the wavelengths below 470 nm will be too noisy for mod-
elling the concentration level. For the regression models this
will automatically mean a reduced weighting for these bands.
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Fig. 4 SuperK stability measurement. Standard deviation of the mean
image intensities (%) of the power-normalised image data for each
wavelength

Fig. 5 SRGB representation of a VideometerLab image of pellets
coated with synthetic astaxanthin of 50 ppm

Depending on which wavelength is chosen during mod-
elling, and since we only apply linear models, the reported
SD as a function of wavelength indicates the precision of
∼0.3 % as a limit of the acquisition process itself.

3.2 Chemical measurement

The results from the two independent HPLC measurements
of the synthetic astaxanthin coating concentration both show
lower values than the nominal values, and DTU shows lower
values than Eurofins. However, both HPLC measurements
are linear to the nominal values, see Table 2, which means
that the nominal values are valid as reference values for the
regression.

3.3 Image analysis

Background and dark sample parts were segmented out using
threshold and morphological operations. Example results of
a segmented VideometerLab image can be seen in Figs. 5
and 6, as well as for SuperK in Figs. 7 and 8. RGB versions of
the captured images for all seven concentration levels visu-
alising the differences in pigment concentration can be seen
in Fig. 9 for VideometerLab, and in Fig. 10 for the SuperK
images.

The spectrometer spectra of fish oil with added synthetic
astaxanthin and plain fish oil are presented in Fig. 11, which
shows that the largest separation is in the range of 490–
610 nm.

Investigating the reflection spectra of the pellets coated
with synthetic astaxanthin shows similar characteristics to
the spectroscopy results of astaxanthin in fish oil, see Fig. 12.
Looking at the difference of the concentration levels’ reflec-
tion spectra in Figs. 13 and 14 reveals that the largest differ-
ence between concentration levels is around 505 nm for the
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Fig. 6 SRGB representation of the segmented version of the Videome-
terLab image in Fig. 5 with pellets coated with synthetic astaxanthin of
50 ppm

Fig. 7 RGB representation of a SuperK image of pellets coated with
synthetic astaxanthin of 50 ppm

Fig. 8 RGB representation of the segmented version of the SuperK
image in Fig. 7 with pellets coated with synthetic astaxanthin of 50 ppm

VideometerLab data, and between 500 and 520 nm for the
SuperK data. This corresponds well with regions of differ-
ence in the reflection spectrum in Fig. 11.

From the explorative analysis of the concentration level
of synthetic astaxanthin coating using PCA, score scat-
ter plots using all combinations of PC1 to PC6 were

investigated (results not shown). PC2 seems to describe the
concentration scale well for the SuperK data, and PC2 in
combination with PC3 for the VideometerLab data. How-
ever, both show some small overlap—mostly for the lower
concentration levels, see Figs. 15 and 16. This concludes that
the variation between the concentration levels is the second
largest variance in the image data (PC2), next to the total
intensity variation (PC1), which corresponds well with the
two spectra mentioned above.

Calibrating the PLSR model by LOOCV gives an opti-
mum of three components for the VideometerLab data, and
seven components for the SuperK data, see Fig. 17. It also
shows that the calibration error drops significantly around
three components for both modalities.

Regression analysis of the synthetic astaxanthin coating
concentration level using the whole images as samples shows
good results. PLSR using LOOCV shows an R2 value of pre-
diction above 0.94 for VideometerLab and 0.99 for SuperK,
see Table 3, where VideometerLab uses three PLSR com-
ponents and SuperK uses seven PLSR components.The EN
using LOOCV has an R2 around 0.97 for VideometerLab
and 0.99 for SuperK, see Table 3, whereas the Videometer-
Lab data uses eight non-zero coefficients, and the SuperK
data uses 19 coefficients.

For the VideometerLab data, the RPD is between 4 and
9 for both PLSR and EN, while for the SuperK data the
RPD value is almost 24 for PLSR and 21 for the EN. The
mean prediction error is 7.6 ppm for VideometerLab using
210 samples, and 8.0 ppm when using 70 samples. For the
SuperK data using 70 samples, the mean prediction error
is 1.4 ppm. The synthetic astaxanthin coating concentration
prediction using PLSR and EN can be seen in Figs. 18 and 19,
illustrating that the predicted levels correlate well with the
nominal levels. For the SuperK data, three PLSR components
were also tested resulting in an R2 of 0.97, SEP of 3.8, and
an RPD of 9, see Table 3.

The RPD for different numbers of PLSR components can
be seen in Fig. 20, where it shows that RPD above 5 is
achieved for SuperK using only two components, and using
four components for VideometerLab.

The PLSR components’ weights show the contribution of
different spectral regions to the model, and thus their signif-
icance. Similar to the difference from the grand mean, Figs.
13 and 14, we rediscover the importance of the blue and
green regime between 450 and 590 nm, but see distinctions
also in the NIR measurements for the two instruments, see
Figs. 21 and 22. For the VideometerLab data the largest PLSR
weights are at 385 and 505 nm, while for the SuperK data the
largest PLSR weights are around 550 nm and around 860 nm.
The importance of the visual range of the spectrum was con-
firmed by the iPLS regression of the SuperK data returning
the lowest LOOCV calibration error around 545–575 nm, see
Fig. 23.
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Fig. 9 SRGB representation of cropped VideometerLab images of the pellets with seven different levels of synthetic astaxanthin coating concen-
tration. From left to right: 0, 3.125, 6.25, 12.5, 25, 50, 100 ppm

Fig. 10 RGB representation of cropped SuperK images of the pellets with seven different levels of synthetic astaxanthin coating concentration.
From left to right: 0, 3.125, 6.25, 12.5, 25, 50, 100 ppm
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Fig. 11 Mean reflection spectra of synthetic astaxanthin coating in fish
oil, as well as plain fish oil, using a spectrometer. No pellets were used
here. The bands of the VideometerLab are marked by vertical lines

The EN regression coefficients βen that constitute the pre-
diction model show similar results for both VideometerLab
and SuperK data, see Fig. 24. For the VideometerLab data
the largest coefficient is at 565 nm, and the second largest
at 505 nm. For the SuperK data the largest coefficient is at
550 nm. Both systems show similar clusters of spectral bands
with high emphasis in the visual regime.

The results also show that using the 16 bands that are
the same for both the VideometerLab and the SuperK setup
(470, 505, 565, 590, 630, 645, 660, 700, 850, 870, 890, 910,
920, 940, 950, 970 nm) gives acceptable results for quality
control with an RPD value of 2.6 for VideometerLab, and 8.3
for SuperK. The VideometerLab images got an R2 of 0.84
using 2 PLSR components, and the SuperK images got R2

of 0.94 using 4 PLSR components, see Table 3.
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Fig. 12 Mean reflection spectra of the different concentration levels
of synthetic astaxanthin in pellet coating, using image mean of the
VideometerLab images, n = 70

By leaving out one concentration level for validation using
GFCV and PLSR, it was tested how the prediction performs
on unseen concentration levels. Using LOOCV, all concen-
tration levels have been used for calibration by leaving out
one sample at a time, and for comparison with GFCV here 0
and 100 ppm have been left out when performing the valida-
tion. When using GFCV all concentration levels have been
used for calibration while leaving out one concentration level
at a time, and all concentration levels but 0 and 100 ppm
have been used for validation, one at a time. We see that the
pooled SEP of GFCV is larger than the corresponding SEP of
LOOCV for both systems, as can be seen in Table 4. For the
VideometerLab using LOOCV, the SEP is 5.5, and for GFCV
the pooled SEP is 14. For the SuperK data using LOOCV,
the SEP is 1.3, and for GFCV the pooled SEP is 9.6.
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Table 2 HPLC measurement of the synthetic astaxanthin present in the
pellets, carried out by two different parties

Nominal HPLC HPLC
Values DTU Eurofins

0 0 0

3.125 1.90 3.07

6.25 4.36 5.88

12.5 9.56 11.6

25 19.44 24.8

50 42.64 49.3

100 90.46 95.1

Added synthetic astaxanthin to the fish oil coating in ppm
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Fig. 13 The difference in reflection spectra from the concentration
level of 0 ppm of the different concentration levels of synthetic astax-
anthin coating, using the VideometerLab images, n = 70. Normalised
by the SD of each level

Visualisation of the spatial distribution of synthetic astax-
anthin coating on the pellets was done using the PLSR pre-
diction result for VideometerLab and SuperK, and can be
seen in Figs. 25 and 26. Spectral images from the validation
set and all different concentration levels have been projected
using the PLSR components. This should only be seen as a
visualisation, since the PLSR models are calibrated on image
mean values and then used for prediction on pixel values. The
visualisations clearly show larger values for the higher con-
centration levels of synthetic astaxanthin.

4 Discussion

The results from the multispectral VideometerLab and the
hyperspectral SuperK indicate that it is possible to predict
synthetic astaxanthin coating on pellets.
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Fig. 14 The difference in reflection spectra from the concentration
level of 0 ppm of the different concentration levels of synthetic astax-
anthin coating, using the SuperK setup, n = 70. Normalised by the SD
of each level
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Fig. 15 Scatter plot of synthetic astaxanthin coating using PC2 and
PC3 from a PCA on whole image samples using the VideometerLab,
n = 70

The design has minimised the structure of the semi diffuse
illumination used in the SuperK setup so it visually becomes
insignificant. It is evident that the presented technique using
an engineered diffuser provides a sufficient trade-off between
a smooth uniform illumination and high power transmission.

In addition, the SuperK system’s image acquisition repro-
ducibility was investigated. The results presented in Figure
4 show low variation above 470 nm.

In industry, it is desired to know the astaxanthin coat-
ing level with an accuracy of roughly 1 ppm, which corre-
sponds to a sensitivity of 1 % of the pixel intensity for the
present study. For this reason, it was satisfactory that the
reproducibility SD of the power stabilised SuperK images
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Table 3 PLS and EN regression for synthetic astaxanthin coating concentration level prediction using LOOCV. PLS regression was also done
using only the 16 bands that are in common for VideometerLab and SuperK

Device Samples n Method Comp. coef. R2 calibr. R2 pred. SEC SEP RPD pred.

VideometerLab

210 PLS 3 0.9483 0.9479 7.6916 7.6180 9.1292

70 PLS 3 0.9598 0.9421 6.9785 8.0281 4.2588

210 EN 8 0.9729 0.9728 5.4904 5.5053 6.1094

70 EN 8 0.9853 0.9702 4.0426 5.7571 5.9387

SuperK

70 PLS 7 0.9990 0.9982 1.1345 1.4278 23.9466

70 PLS 3 0.9788 0.9872 5.0698 3.7728 9.0622

70 EN 19 0.9989 0.9976 1.1093 1.6209 21.0926

VideometerLab-16

70 PLS 2 0.8441 0.8432 13.5960 13.2122 2.5877

SuperK-16

70 PLS 4 0.9850 0.9848 4.3091 4.1108 8.3170

Synthetic astaxanthin concentration in ppm

Table 4 Generalisation test with GFCV using PLS regression for syn-
thetic astaxanthin coating concentration level prediction. The pooled
SEP of GFCV is compared to the corresponding prediction error of
LOOCV, where only the middle concentration levels (3.125, 6.25, 12.5,
25, 50 ppm) have been used for validation for both methods

Device CV type Samples n Comp. n f SEP

VideometerLab

LOOCV 70 3 5.4971

GFCV 70 2 14.0364

SuperK

LOOCV 70 7 1.3240

GFCV 70 1.6 9.5813

The mean number of PLSR components used for GFCV is presented.
Synthetic astaxanthin concentration in ppm

taken over long acquisition times (11 h) proved to be below
1 %, see Fig. 4.

For each image acquisition, the two systems examined
different numbers of pellets due to the difference of field of
view. However, this difference was not significant since a
large number of pellets were investigated in each image.

Previous studies of astaxanthin [1,4,40] found absorbance
peaks of astaxanthin of around 450–505 nm and secondary
peaks of around 500–600 nm for various solvents, as well
as at 870 nm. This corresponds with the spectrometer results
seen in Fig. 11.

To continue the data exploration, we have presented the
spectral difference of the different synthetic astaxanthin
coating concentration levels, seen in Figs. 13 and 14. For
both modalities, the largest discrimination between data was
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Fig. 16 Scatter plot of synthetic astaxanthin coating using PC2 and
PC4 from a PCA on whole image samples using the SuperK, n = 70

present in the ∼500–550 nm wavelength range. This is in
good agreement with the difference in spectroscopy spectra,
presented in Fig. 11, of fish oil with and without synthetic
astaxanthin. Since astaxanthin is a pigment, it makes sense
that the visual range of the spectrum is of importance in the
results.

The two vision systems presented very similar characteri-
sations of the samples. Spectral response from both systems
shows a clear separation between concentration levels for
the wavelengths of about 510–530 nm, and also along the
entire spectrum. SuperK showed more distinction between
the small concentration levels, which can be seen both in the
difference spectra and the PCA plot, see Figs. 14 and 16.
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Fig. 18 Prediction of synthetic astaxanthin coating using LOOCV on
image samples from the VideometerLab, n = 70, using PLSR with
three components, and using EN with eight non-zero coefficients

For concentration prediction, PLSR and EN models were
trained on the data from each instrument and both systems
were able to perform results suitable for industrial screening
and quality inspection, as the high RPD values between 4
and 24 presented in Table 3 indicate.

PLSR components 1 and 2 include a small amount of all
spectral bands and these alone can explain a moderate part of
the variance in the data corresponding to the reference values,
see Figs. 21 and 22. This could be interpreted such that the
overall intensity in all spectral bands explains a part of the
synthetic astaxanthin concentration level. However, this is
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Fig. 19 Prediction of synthetic astaxanthin coating using LOOCV on
image samples from the SuperK, n = 70, using PLSR with seven com-
ponents, and using EN with 19 non-zero coefficients

0 2 4 6 8 10 15 20 25 30
0

5

10

15

20

25

Number of PLSR components

R
P

D

 

 

VideometerLab
SuperK

Fig. 20 RPD for different numbers of PLSR components. Using the
calibration and validation data set of VideometerLab and SuperK
respectively, n = 70. The first 30 components are shown for SuperK

not enough for quality control for the VideometerLab data
with respect to RPD value, and just enough for quality control
for the SuperK data, as can be seen in Fig. 20. This can be
compared to the results in [11] where they found astaxanthin
concentration in fish fillets to be strongly dependent on the
overall pixel intensity in multispectral images, stated both
for PC1 and PLSR component 1.

However, for astaxanthin in pellet coating, it seems as
if the concentration level has a more subtle dependency on
pixel intensity, since the characteristics appear first in PC2,
see Figs. 15 and 16, and in PLSR component 2 and onwards,
indicating that the concentration variance is a smaller portion
of the data variance. This is common for variance of inter-
est in image analysis [14]. In a previous study of astaxanthin
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Fig. 21 PLSR components for the prediction of synthetic astaxanthin
coating concentration level using LOOCV on image samples from the
VideometerLab, nc = 49, n = 70. Calculated on the calibration set,
showing the three PLSR components
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Fig. 22 PLSR components for the prediction of synthetic astaxanthin
coating concentration level using LOOCV on image samples from the
SuperK, nc = 49, n = 70. Calculated on the calibration set, here
showing the first five of the total seven PLSR components

coating, PC2 was also found to be of importance for detecting
the presence of astaxanthin [20,21]. Furthermore, for astax-
anthin coating concentration prediction, PLSR component 2
and onwards showed considerable characteristics for predic-
tion in [23] and component 4 and onwards in [22].

The RPD test shown in Fig. 20 illustrates that more than
about 10 PLSR components do not improve the results,
which is confirmed by Fig. 17. We therefore conclude that
the regression problem for this data has a low complexity
since 3 components suffice, though still with a considerable

prediction error, and this is considerably improved by a few
more components up to about seven or ten components.

The regression models show similar structures between
VideometerLab and SuperK, both using PLS regression and
EN regression. The PLS regression chose primarily two spec-
tral regions for discriminating between the coating concen-
trations. The weight of the PLSR components and EN coeffi-
cients corresponds well with the variance seen in the spectral
difference of the different astaxanthin levels shown in Figs.
13 and 14. The weight of the PLSR coefficients also cor-
responds well with the primary absorbance peaks found of
around 450–505 nm in previous studies of astaxanthin, and
both PLSR and EN coefficients correspond well with the
secondary absorption peaks of around 500–600 and 870 nm.
This also corresponds to the spectroscopy results in Fig. 11.

Since the PLSR component weights are somewhat clus-
tered to the above-mentioned regions, it makes sense to
use these regions for making optical filters for an industrial
inspection system. The weights of the EN coefficients are
clustered in two main parts with opposite signs in the visual
range for both modalities, which suggests that the predic-
tion in future could be made using two optical filters. Optical
filters can make the equipment cheaper and faster for indus-
trial quality inspection of astaxanthin. The optimum design
of such filters can be estimated using sparse methods such as
EN or filter-focused methods [19,23,25].

For the EN results it can be seen that the RPD increases
with the number of coefficients. While more coefficients in
some cases can increase the result, it also enables EN to select
different clusters of correlated variables.

To directly compare the performance of the two vision
systems, the overlapping 16 bands from the two were used
for prediction and the results are presented in Table 3. The
VideometerLab data show a prediction error of 13 ppm, while
the SuperK have a prediction error of 4 ppm. This is too high
for the industry and thus means that many spectral bands are
important for a result with high accuracy for this particular
prediction problem.

The SEP for the VideometerLab is about 5–8 ppm of syn-
thetic astaxanthin concentration using PLSR and EN, and
the SEP for SuperK with three PLSR components is about
3.7 ppm, which means that the error is larger than the smallest
level of synthetic astaxanthin; 3.125 ppm. This means that
the VideometerLab results are uncertain for this particular
level; perhaps this is the limit of the used system. It can be
noted that there is an overlap between the smallest astaxan-
thin concentration levels seen in the PCA plots in Figs. 15
and 16.

Both PLSR and EN perform well for the prediction prob-
lem presented. However, the EN prediction model (coeffi-
cients) is more interpretable than the PLSR model (compo-
nents); compare Figs. 21 and 22 with Fig. 24. While PLSR
includes all spectral bands in several components in the
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Fig. 23 The iPLS regression
calibration using LOOCV on
SuperK images illustrating the
error (RMSECV) of 20 different
regions in the spectrum,
nc = 49, n = 70. The optimal
number of PLSR components
chosen for each interval is
shown in italics
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Fig. 24 The coefficients in βen from the prediction model of synthetic
astaxanthin coating using EN regression with LOOCV on image sam-
ples, n = 70, from the VideometerLab using 8 non-zero coefficients,
and SuperK using 19 non-zero coefficients. The coefficients are nor-
malised for visualisation

prediction model, though weighted, EN selects just a few
spectral bands which make the model easier to interpret and
also makes it possible to use a low number of spectral bands.

For testing the generalisation of the PLSR prediction
model, a validation scheme here called GFCV was used for
leaving out one concentration level at a time for validation.
This gives an indication on how the prediction behaves for
unseen concentration levels. It is natural to expect a some-
what higher error in this case since the model has not been
trained on all concentration levels. However, the generali-
sation result of GFCV is considered a more honest result
than using LOOCV. It is shown that the pooled prediction
error of GFCV is much larger than the corresponding error
of LOOCV for both systems, see Table 4. The large differ-
ence in prediction error implies that the LOOCV scheme in

combination with data with many variables compared to the
number of samples gives some over-fitting. This can also be
assumed from the very optimistic results of both PLSR and
EN for the SuperK data with 113 variables, compared to the
VideometerLab’s 20 variables. The optimistic results using
LOOCV on all concentration levels are partly explained by
the fact that the study contained only one production batch. It
is clear that as the complexity of the reflection increases, the
background may have very different contributions from dif-
ferent chemical compounds that all contribute in the surface
reflection.

It is therefore concluded that to make a robust and precise
prediction model for synthetic astaxanthin coating concentra-
tion, it is important to use all target concentration levels, and
also that future work examines different production batches.

However, as mentioned previously, HPLC measurements
of astaxanthin from fish feed pellets are less accurate than
when measuring astaxanthin in oil. A clear difference could
be seen in the two measurements of the pellets in Table 2.
Therefore, spectral imaging could be a good complement for
screening of synthetic astaxanthin coating.

5 Conclusions

A new instrument for hyperspectral imaging, the SuperK
setup, based on a spectral broad laser light source, was
introduced together with a parallel study with the commer-
cially available multispectral VideometerLab imaging sys-
tem. We have shown that the new SuperK system can be used
for chemical surface inspection using hyperspectral image
analysis.

The results show that it is possible to predict the syn-
thetic astaxanthin concentration in the coating well enough
for quality control using either multi- or hyperspectral image
analysis. Results also show that the SuperK setup performs
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Fig. 25 Projected VideometerLab images using the PLSR model, visu-
alised using the jet colour map where 0 ppm astaxanthin is blue, and
100 ppm astaxanthin is shown as red. The images are taken from the

validation set, cropped, clamped and masked. The pellets with different
levels of synthetic astaxanthin coating concentration, from left to right:
0, 3.125, 6.25, 12.5, 25, 50, 100 ppm

Fig. 26 Projected SuperK images using the PLSR model, visualised
using the jet colour map where 0 ppm astaxanthin is blue, and 100 ppm
astaxanthin is shown as red. The images are taken from the validation

set, cropped, clamped and masked. The pellets with different levels of
synthetic astaxanthin coating concentration, from left to right: 0, 3.125,
6.25, 12.5, 25, 50, 100 ppm

with higher accuracy than the VideometerLab for predicting
the synthetic astaxanthin concentration in the pellets, while
the VideometerLab performs well enough for quality control.
The results were obtained by only measuring surface reflec-
tions, which in combination with the good results implies that
the methods can be used in general for quality inspection of
various coating substances using similar coating methods.

In addition, the higher spectral resolution of the SuperK
system combined with sparse statistics for analysing the sig-
nals made it possible to identify the most significant spectral
regions for the particular detection of astaxanthin. This is of
interest for a simple and robust commercial system.
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