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ABSTRACT 

Light scattering in turbid media can be related to the microstructure of media. Thus, light scattering can 

potentially be used for process control of products where the structure is a key component. However 

process control requires robust and sensitive input data to function properly. In this study we investigate 

different decomposition methods for extracting light scattering information from images of diffuse 

reflectance. Both well-established theoretical methods and data driven methods are considered and 

evaluated based on their robustness and sensitivity to changes in light scattering properties. 

1 Introduction 

Many food processes can be seen as controlled efforts to preserve, destroy, or transform structure 

(Aguilera et al. 1999). According to (Bourne 2002) the textural properties of foods can be derived from their 

structure, and is one of the most important factors concerning consumer acceptability. Microstructure in 

particular affects the physical properties of a material. Concerning food products the microstructure can affect a 

lot of the quality parameters we associate with a product, such as nutritious properties, stability, and physical 

properties (Aguilera 2005). Thus, there is incentive for having improved control of the structural changes during 

food processing in order to ensure high and consistent quality. 

In this paper we investigate the potential for process control of structural changes using a novel 

hyperspectral imaging modality. The method is applicable for homogenous turbid media, and incorporates 

elements from optics and hyperspectral imaging. Data from this modality is highly dependent on the optical 

properties. Typically changes in the optical properties have been characterized by looking at: changes in diffuse 

reflectance (Payne et al. 1993), the transport mean free path (mfp’) derived from speckle dynamics (Weitz et al. 

1993, Alexander et al. 2006), and absorption (μa) and reduced scattering (μs’) (Farrell et al. 1992, Wang et al. 

1995). In terms of interpretability the extraction of mfp’, μa, and μs’ makes it easier to relate optical properties to 

chemical and structural properties of turbid media. However modelling physical parameters will often introduce 

model variance, which can affect the robustness of the parameter estimation. 

Hyperspectral imaging is a technique that integrates conventional imaging and spectroscopy. It has 

become increasingly popular within the field of food science during the last two decades due to speed and also 

non-contact assessment (Sun 2010). Gowen et al. (2007) gives an overview of recent publications within the 

hyperspectral imaging field, which exclusively covers heterogeneous materials such as vegetables and fruit. As 

we are dealing with homogenous turbid media, we take a different approach than conventional hyperspectral 

imaging. Rather than capturing images of a material in full field illumination, we shine a coherent, collimated 

light (laser) into the material and capture an image of the spatial distribution of the diffuse reflectance. These 

images make up the data used in our analysis. 

Instead of using entire images for the analysis, a common step is to decompose an image into a number 

of features. This can reduce the computational load as well as provide higher level of interpretation of the 

diffuse reflectance images. Well-founded theoretical models will be considered for this decomposition step. 

These usually operate on one-dimensional intensity profiles. Also considered, are the data-driven methods that 

can be seen as empirical methods. These consider more of the information in the diffuse reflectance images. 
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The goal of this paper is to investigate different decomposition methods and evaluate their sensitivity 

towards changes in the scattering properties. The goal is also to determine how robust the decomposition 

schemes are. In order to use the image features for process control, a reasonable signal-to-noise ratio (SNR) 

must be established (MacGregor et al. 1995). The turbid media considered in this paper are fat emulsions. 

However, we expect that the methods presented here apply to homogenous turbid media in general. In terms of 

structure prediction, we assume that all structural information can be related to scattering. 

2 Material 

2.1 Diffuse Reflectance Images 

When light refracts into a turbid medium it is either scattered or absorbed when interacting with the 

particles in the medium. Whereas absorption is highly dependent on the chemical composition of the material, 

scattering is highly dependent on the size, shape, and density of the particles. Thus scattering can be correlated 

to the microstructural properties of a material. If light only scatters, it will eventually emerge at the surface at a 

point different from the point of entry. The emergent light is known as the diffuse reflectance. The spatial 

distribution of the diffuse reflectance will typically follow an anisotropic diffusion process, which emanates 

from the point where the light was incident. Light close to the point of incidence has typically scattered a few 

times, whereas light far away from the point of incidence has scattered multiple times. 

Our aim is to extract information on the optical properties from the diffuse reflectance. The system works 

by shining a laser with tuneable wavelength into the sample material at an oblique incident angle (45°). High 

Dynamic Range (HDR) images (Mann and Picard 1994) of the resulting diffuse reflectance are captured by a 

CCD camera (Grasshopper CCD Cam, Point Grey Research Inc., Richmond, Canada) with a zoom lens 

(23FM50L, Tamron Co. Ltd., Saitama, Japan) installed in front of the CCD with a 6.5cm spacer. The HDR 

images are 1200 by 1600 pixels, with a physical pixel size of 3.2μm. The light delivery system is based on a 

super continuum light source (SuperK Extreme, NKT Photonics, Birkerød, Denmark), filtered by an acousto-

optic tunable filter (SuperK Select, NKT Photonics, Birkerød, Denmark). At the moment the system potentially 

covers the wavelengths 450nm to 1050nm with a spectral resolution down to 5nm. As this paper is about the 

decomposition of the diffuse reflectance images, we will only consider a small selection of wavelengths. 

A simplified schematic of the system is shown in Fig. 1 alongside an example of the diffuse reflectance 

images. The system is a research platform, which can be used to design cost-efficient vision systems with 

geometry and wavelengths optimized for a specific process. More information on the vision system is provided 

by Nielsen et al. (2011). 

2.2 Intralipid Data Set 

The data set of this paper consists of different dilutions of Intralipid (Intralipid 20%, Fresenius Kabi, 

Bad Homburg, Germany). Intralipid is a highly stable and standardized fat emulsion and approved for direct 

intravenous infusion for patients who are unable to get nutrition via an oral diet. It is also often used to simulate 

the optical properties of turbid media, as it mainly contributes as a scattering compound in the visible regime. 

Turbid media are generally highly scattering materials with low absorption characteristics, i.e. the reduced 

scattering coefficient μs’ dominates over the absorption coefficient μa, and incorporates many biological samples 

including a wide variety of food products (fruit, vegetables, dairy products, emulsions), when considering the 

 

 

 

Fig. 1 Left: Schematic of the hyperspectral vision system. Right: Example of a logarithmic transformed diffuse reflectance 

image. The light is shone from the bottom of the image, and the point of incidence is the area with largest pixel intensity (red 

colour). 
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visible spectrum. For our experiment we made 21 graduated water dilutions of Intralipid. The dilutions were 

made to have linearly increasing scattering properties covering the range of milk and fermented milk products. 

Seven repeated measurements were made for each of the 21 dilutions, and the 21 dilutions were split into three 

scattering regimes of equal size, with “low”, “medium”, and “high” scattering properties. All dilutions were 

recorded at three different wavelengths (500, 700, and 900nm). The theoretical reduced scattering coefficients 

for the data set were calculated based on Lorenz-Mie theory (Frisvad et al. 2007, Michels et al. 2008), and are 

summarized in Table 1.  

Table 1 The theoretical reduced scattering coefficient intervals for the three selected scattering 

regimes at three different wavelengths. All reported intervals have the unit [cm-1] 

 Low scattering regime Medium scattering regime High scattering regime 

500nm 

700nm 

900nm 

[7.2 ; 31.3] 

[6.4 ; 22.2] 

[6.0 ; 16.9] 

[35.0 ; 63.0] 

[24.6 ; 42.9] 

[18.6 ; 31.3] 

[67.5 ; 87.5] 

[45.8 ; 59.0] 

[33.3 ; 42.4] 

3 Methods 

It is hard to obtain information about material properties directly from the diffuse reflectance images, so 

the images were decomposed into compact representations (features). Two different decomposition strategies 

were considered. First, the theoretical models, which are commonly used for decomposing light diffusion 

signals into μa and μs’. These models are typically only based on what corresponds to intensity profiles in the 

images. Hereby they only utilise a fraction of the data available from our images. The second strategy therefore 

consisted of data-driven approaches, which utilise different parts of the images. These more empirical features 

are typically a mixture of the absorption and scattering properties, and can therefore be harder to interpret 

compared to the theoretical models. We consider different approaches to both the theoretical modelling and 

empirical strategies in the following. All methods are implemented using Matlab (MathWorks, Natick, 

Massachusetts, U.S.A.). 

3.1 Farrell Model Decomposition (FM) 

General cases of light scattering and absorption in turbid media can be described analytically by the 

radiative transfer equation (Chandrasekhar 1960). However this expression is difficult to solve and 

computational inefficient for use in real time applications. For materials where scattering is dominant (μs’ >> 

μa), the light transport can be considered a diffusion process. By assuming that diffusion is isotropic the 

radiative transfer equation can be simplified significantly. While this simplification cannot accurately model the 

diffuse reflectance near the point of incidence, it provides an efficient way of estimating μa and μs’.  

Farrell et al. (1992) derived an analytical solution for the diffusion approximation to describe the diffuse 

reflectance at the surface of a semi-infinite turbid medium, when illuminated by a ray of light at normal 

incidence. The reduced scattering coefficient was estimated by partly following the fitting routine used in the 

work by Qin and Lu (2004). An inherent problem with the Farrell decomposition is that it requires absolute 

values of the diffuse reflectance in order to estimate the actual reduced scattering coefficient. However, for 

some applications it should be sufficient to look at relative estimates of the reduced scattering coefficients.  

3.2 Oblique Model Decomposition (OM) 

The technique of oblique incidence angle (Wang et al. 1995) is an extension of the original method by 

Farrell et al. (1992), in which the symmetry break between single scattered light near the entry point is measured 

relative to the diffuse part of the profile. The symmetry break allows an indirect measurement of the mean free 

path that eliminates the need for absolute intensity measurements. A major benefit to this is that it generally 

lowers the practical requirements of the vision system. 

3.3 Loglog Model Decomposition (LM) 

Carstensen and Møller (2009) proposed the loglog model. It models the decay of the light intensity far 

away from the point of incidence A double logarithmic transformed intensity profile (log(log(I+2)), where I is 

the pixel intensity) is extracted orthogonal to the scattering direction and through the point of incidence. A 

robust linear model is fitted to this profile, and the extracted feature is the slope parameter of this model. We 

have previously experienced very robust results with this decomposition method (unpublished). 
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3.4 Patch Average Decomposition (PA) 

A point measurement from the diffuse reflectance images resembles the measurements made by fibre 

optic probes, where light is sent into the sample using one fibre and the diffuse reflection is collected by another 

fibre some distance from the incident light. The more times the light is scattered the lower the observed intensity 

will be. This is the main idea behind the work by Payne et al. (1993), which has proven itself useful in regard to 

determining the optimal cutting point during cheese making. As a light collecting fibre will often have a field of 

view, we select an image patch (50 by 50 pixels) orthogonal to the scattering direction and calculate a Gaussian 

weighted average of that patch. The patches will be extracted at different distances from the light incident point. 

3.5 Intensity Spread Decomposition (IS) 

A simple way to utilise a lot of the available image data is to consider histograms of the pixel intensities 

in the diffuse reflectance images. The histograms are created by masking out circular regions centred on the 

point of incidence. Typically histograms are quantified using first order statistics, however these are very 

sensitive to outliers. Since the distribution of the pixel intensities is heavy tailed, robust statistics should be 

considered. In the case of measuring the spread of the histogram we can use the median absolute deviation 

(MAD): 

              (|        ( )|)    (1) 

Which is the median of the absolute deviations from the median of the data (X). The intensity spread will give 

an estimate of how the reflection intensity has developed after a given distance from the incident light point. As 

with the patch average decomposition, we consider different variations of the decomposition method, in this 

case by considering masks with different radii. 

3.6 Feature Evaluation 

The extracted features should be sensitive towards changes in scattering, such that small changes can be 

precisely assessed. They should also be robust with little variation within the same sample. We use the Rayleigh 

quotient, also known as the Fisher Criterion (Hastie et al. 2011) evaluate this property. It can be seen as an 

analogue to the signal-to-noise ratio (SNR), as it evaluates the between-class variance relative to the within-

class variance. In the univariate case the Rayleigh quotient can be found as B/W, where B and W are the 

between- and within-class variances respectively. For best discrimination between different samples we want to 

have a large numerator and small denominator. In addition to the Rayleigh quotient we will also report the 

average leave-one-out classification results using linear support vector machine (SVM) classifiers (Chang and 

Lin 2011), to evaluate how well the different intralipid dilutions can be distinguished. The Rayleigh quotient 

and the SVM classification rates will be reported for the three different scattering regimes in the intralipid data 

set. Lastly we expect the 21 intralipid dilutions to have linearly increasing scattering properties. To verify this 

we report the correlation coefficient for the features in the entire scattering regime of the data set. 

4 Results and Discussion 

The results are summarized in Table 2. Overall the methods perform better in the low scattering regimes, 

and typically also at the higher wavelengths. These general observations hold true for the theoretical models 

(FM and OM). The two methods show similar trends both in terms of Rayleigh quotient and classification rates. 

They perform well in the low scattering regime, but degrade significantly when moving to the medium and high 

scattering regimes. The theoretical models behave well in terms of the expected linearity, and the low linearity 

for OM is simply because of large variance in the feature estimates. In general the theoretical models show more 

within class variation compared to the other methods. An example of the OM decomposition is shown in Fig. 2. 

The LM decomposition performs well overall for the low and medium scattering regime in terms of 

classification. There is a significant drop in the Rayleigh quotient when going from the low to the medium 

scattering regime, hinting that while the method is robust, the sensitivity toward scattering changes is not as 

pronounced compared to PA or IS. However the linearity assumptions are maintained well, as can be seen in 

Fig. 2. 

PA decomposition works very well for the low scattering regime and has the highest Rayleigh quotients 

in this regime. For the medium and highly scattering regimes there is a significant drop in performance, and 

there seems to be a serious problem in terms of linearity. This is especially prevalent when the patch is extracted 

far away from the point of incident. This is most likely because if a sample is highly scattering, the majority of  
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the diffusion dynamics happens close to the point of incidence, leaving very little variation between samples in 

the areas far from the point of incidence. Thus, feature estimates can reach a plateau when the scattering 

becomes sufficiently high. An example for PA with high discrimination (and reasonable linearity) for the low 

scattering regime, but bad linearity for entire regime can be found in Fig. 2. 

The overall performance of the IS decomposition is good and it shows the best results throughout the 

entire scattering regime, while retaining the expected linear behaviour. This is especially true when looking at 

900nm. The method performs best when the mask radius is large. Compared to PA the sensitivity is not as great 

in the low scattering regimes. The best performing IS decomposition example can be seen in Fig. 2. 

From these results it is clear that no single decomposition method does not stand out as the better 

solution for the presented data set. It really depends on the considered scattering regime, the used wavelength, 

and the needed sensitivity and robustness. While the FM, OM, and LM decompositions are fairly fixed in the 

way they are extracted, the sampling schemes used for the PA and IS decompositions could have been done 

differently. Additionally two-dimensional spatial features have not been considered in this contribution. 

Furthermore the geometry of the vision system can also be changed, and especially increasing the amount of 

zoom used for the camera should significantly enhance the performance. More zoom would allow capturing 

Table 2 Evaluation of the different decomposition method at three different wavelengths. Each cell reports three 

numbers, one number for each of the three different scattering regimes (“low”/”medium”/”high”). Further a 

parameter, β, is provided for PA and IS. For PA it denotes how far away (in pixels) from the point of incident the 

patch is extracted, and for IS it denotes the radius (in pixels) of the applied mask. 

500nm 
    Decomposition type β Rayleigh quotient Classification rates [%] Linearity 

Farrell model (FM) -- 378.1 / 11.3 / 1.6 95.5 / 55.1 / 14.3 0.97 

Oblique model (OM) -- 119.6 / 1.3 / 0.1 97.8 / 64.4 / 0 0.27 

loglog model (LM) -- 1397.7 / 92.5 / 0.6 100 / 95.9 / 34.7 0.92 

 
100 254.1 / 183.6 / 29.3 100 / 91.8 / 59.2 0.86 

Patch average (PA) 300 343.4 / 10.1 / 57.7 100 / 46.9 / 81.6 0.17 

  500 254.2 / 44.1 / 15.7 79.6 / 65.3 / 77.6 0.39 

 
100 152.0 / 54.8 / 10.3 100 / 77.6 / 42.9 0.97 

Intensity Spread (IS) 300 200.3 / 207.4 / 27.5 100 / 83.7 / 53.1 0.93 

 
500 252.1 / 235.2 / 34.4 100 / 91.8 / 73.5 0.88 

700nm 
   

  

Farrell model (FM) -- 84.1 / 20.6 / 1.5 98.0 / 57.1 / 20.4 0.93 

Oblique model (OM) -- 73.4 / 6.2 / 0.7 90.5 / 62.5 / 20.5 0.64 

loglog model (LM) -- 694.6 / 254.5 / 3.4 100 / 98.0 / 57.1 0.95 

 
100 1127.8 / 186.6 / 119.2 100 / 98.0 / 93.4 0.91 

Patch average (PA) 300 3158.2 / 24.9 / 337.3 100 / 53.1 / 67.3 0.57 

  500 3325.6 / 13.6 / 36.0 100 / 30.6 / 89.8 0.08 

 
100 156.8 / 44.6 / 12.6 100 / 85.7 / 61.22 0.95 

Intensity Spread (IS) 300 722.3 / 354.1 / 94.5 100 / 100 / 87.8 0.94 

 
500 1263.4 / 511.3 / 212.4 100 / 100 / 89.8 0.92 

900nm    
 Farrell model (FM) -- 31.7 / 12.3 / 1.4 69.4 / 69.4 / 28.6 0.98 

Oblique model (OM) -- 65.4 / 25.9 / 3.9 100 / 72.5 / 43.3 0.97 

loglog model (LM) -- 632.7 / 493.5 / 43.2 100 / 100 / 93.9 0.96 

 
100 556.7 / 354.8 / 45.7 100 / 95.9 / 89.8 0.99 

Patch average (PA) 300 2004.5 / 209.1 / 2.9 100 / 85.7 / 14.3 0.89 

  500 2646.0 / 9.2 / 33.4 100 / 44.9 / 44.9 0.64 

 
100 134.52 / 31.3 / 9.2 100 / 79.6 / 42.9 0.99 

Intensity Spread (IS) 300 564.26 / 205.3 / 69.5 100 / 100 / 93.9 0.99 

 
500 1042.6 / 372.8 / 113.0 100 / 100 / 96.0 0.99 

Fig 2. Examples of how different methods perform. The bars indicate the standard deviation for the feature estimates of 

the seven replicates for each dilution. The dotted lines indicate the different scattering regimes.  
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more details of the diffusion dynamics, which should increase the performance when the scattering becomes 

“too high”. This especially holds true for the theoretical models, as their underlying models depend on 

modelling these dynamics. 

5 Conclusions 

In this paper we have demonstrated some of the potential in using diffuse reflectance images. Both 

theoretical and data-driven decomposition methods were demonstrated and tested in practice. It was seen that by 

sacrificing some of the interpretability (and some practical advantages in the case of the oblique decomposition 

method) provided by the theoretical methods, significant increases in both robustness and sensitivity could be 

achieved. While some data driven methods successfully covered the entire considered scattering range, no single 

decomposition method performed best in all the considered data sets. This emphasises the advantage of 

considering diffuse reflectance images, when designing or optimizing instruments based on light reflectance 

methods. 
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