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Meat traceability is important for linking process and quality parameters from the individual meat cuts back to
the production data from the farmer that produced the animal. Current tracking systems rely on physical tagging,
which is too intrusive for individualmeat cuts in a slaughterhouse environment. In this article, we demonstrate a
computer vision system for recognizing meat cuts at different points along a slaughterhouse production line.
More specifically, we show that 211 pig loins can be identified correctly between two photo sessions. The pig
loins undergo various perturbation scenarios (hanging, rough treatment and incorrect trimming) and ourmeth-
od is able to handle these perturbations gracefully. This study shows that the suggested vision-based approach to
tracking is a promising alternative to the more intrusive methods currently available.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, traceability has become an increasingly important
aspect of the meat industry. For consumers, meat safety and quality is
a persistent concern strengthened by reoccurring food recalls and scan-
dals as well as increased animal welfare awareness (Vanhonacker,
Verbeke, Poucke, & Tuyttens, 2008). In Western markets, this public
concern has lead to legislations and regulations regarding food trace-
ability to ensure quality and safety standards (Trienekens & Zuurbier,
2008). For producers, traceability adds extra value to their end products
(Wang & Li, 2006). Demand for traceability information is on the rise
yielding a competitive advantage to the producers who can deliver bet-
ter guarantees of origin and handling (Buhr, 2003; Carriquiry & Babcock,
2007; Pouliot & Sumner, 2008).

In industrial abattoirs individual meat cuts become hard to trace
after having cut up the carcass. Today most tracking systems are based
on secondary systems like boxes or Christmas trees with RFID technol-
ogy or conveyor belts. These systems offer only batch-level tracking of
meat cuts because the secondary devices cannot be attached to the
products individually.

In this work we propose a new technology for enabling meat trace-
ability of individual meat cuts in slaughterhouse environments. Our ap-
proach is based on modern methods from the field of computer vision
and image processing. Instead of attaching identification information
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to an object in order to track it we capture an image of the object and
can identify the same object at a later point by capturing a new image.
That is, we extract a description of an object from its appearance and
use it as identifier for that object. We believe that this approach offers
attractive advantages compared to current technology. While our ex-
periments are limited to tracking pork loins, the method is sufficiently
generic to be applied in other domains where the objects exhibit ade-
quate diversity in appearance like themeat cuts considered in thiswork.
1.1. Related work

Food traceability has been approached from many angles with dif-
ferent applications in mind. This has led to a diverse literature with a
limited agreement on how to implement food traceability. For an over-
view of food traceability literature, we refer to Karlsen, Dreyer, Olsen,
and Elvevoll (2013).

In this article, we focus on a single aspect of traceability in the meat
industry; the technology that enables object tracking along a production
line. In recent literature, the use of RFID tags as underlying food tracking
technology is dominating (Cimino &Marcelloni, 2012; Lefebvre, Castro,
& Lefebvre, 2011; Regattieri, Gamberi, &Manzini, 2007). However, RFID
tagging of meat in a slaughterhouse environment has drawbacks for
mainly one reason: Tags may disappear into the meat product and
turn up on the consumer's plate. This is a very critical point with the
consequence that slaughterhouses avoid tagging meat cuts directly; in-
stead they attach a tag to the device carrying the meat.

Regarding tracking technology in the meat industry, the following
approaches have been suggested. Mousavi, Sarhadi, Fawcett, Bowles,
and York (2005) present a conveyor belt system capable of tracking
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Fig. 1. Pork loins are stored overnight on Christmas trees between the two photo sessions.
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Fig. 2. Camera setup. Pork loins are placed on the table and are photographed from above.
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meat cuts in a boning hall. To facilitate the tracking, RFID chips are em-
bedded in carrier hooks for the meat cuts. Fröschle, Gonzales-Barron,
McDonnell, andWard (2009) examine the usability of barcodes printed
on the beak and legs of chickens. This approach does not generalizewell
to othermeat tracking scenarios because it requires themeat product to
have non-edible parts suitable for barcode printing. Arana, Soret, Lasa,
and Alfonso (2002); Suekawa et al. (2010) perform breed identification
of beefs based on DNA analysis, and Tate (2001) investigates the possi-
bility of using DNA analysis for tracing individual meat cuts back to the
original carcass. Our vision-based approach is reminiscent of DNA iden-
tification in theway identification is derived from the object rather than
from a tag attached to the object. However, DNA identification is still a
cumbersome process for a slaughterhouse environment.

Of the three tracking technologies mentioned above, the conveyor
belt system is most representative of current slaughterhouse practice.
Typically, meat cuts are tracked individually or in a batch by attaching
a tag to the container or carrier device. A drawback of this method is
that it is prone to accidents where pieces are lost or exchanged between
carrier devices. Such accidents may happen since the meat cuts cannot
be directly connected to the carrier device at all times. With a vision-
based approach, this scenario will not be a problem since the meat cut
carries identification in its appearance.

For both the food and the non-food industry we have not been able
to find examples of visual recognition methods similar to ours applied
in a tracking/identification setup. Weichert et al. (2010) propose com-
bining RFID trackingwith a vision system that can recognize and decode
2D barcodes. Using cheap cameras they can offer a more continuous
identification and localization of the products and thereby improve
fault detection. Again, this approach is not viable for meat cuts as the
goal is to avoid foreign objects (both barcodes and RFID tags) that can
end up in the product. Therefore, to the best of our knowledge, tracking
from visual recognition of the products directly has not been attempted
before.

1.2. Contributions

In this work we investigate a new technology for enabling traceabil-
ity of individual meat cuts in a slaughterhouse environment. The inves-
tigation extends the work presented by Hviid, Jørgensen, and Dahl
(2011) by scaling up the experiment to 211 pork loins and introducing
nuisance factors to simulate a slaughterhouse environment. We show
that the pork loins can be recognized and identified correctly between
the two photo sessions. These results indicate that current computer vi-
sion methods for object recognition are mature for integration in pro-
duction lines.

2. Experiment setup

The dataset for our experiment is constructed using 211 pig loins.
The pig loins are photographed in two sessions separated by 1 day.
Overnight, the loins are hanging on Christmas trees stored in a chill
room, see Fig. 1.

The photographing setup (see Fig. 2) is the same for both photo ses-
sions.We use the popular and inexpensiveMicrosoft Kinect camera that
captures a depth map along with a standard RGB image of the loin. Ex-
amples of both images are shown in Fig. 3. Next to the camera a fluores-
cent tube is mounted spreading light at a wide angle. The loins are
photographed separately by placing them one by one on a table and
capturing a photo.

A selection of the loins undergoes different perturbation scenarios in
an attempt to simulate slaughterhouse treatment. All perturbations
occur after the first and before the second photo session. The perturba-
tions are:

Rough treatment 19 loins are knocked hard onto a table before the sec-
ond photo session.
orrect trimming Pieces of meat and bones are cut off from 18 loins
before the second photo session.

orrect hanging 19 loins are stored overnight by hanging them side-
ways on Christmas trees which causes bends.

image of Fig.�2


Fig. 3. RGB and depth images of a pork loin as captured by the Kinect camera.

1 Source code available at http://compute.dtu.dk/~abll/meat_recognition.

Fig. 4. Pork loin segmentation. Top image shows the segmentationmask derived from the
depth image (see Fig. 3). Bottom image shows the pork loin cut out using the segmenta-
tion mask.
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Illumination and orientation changes 37 loins are rotated between
45° and 180° around the optical axis before being
photographed. This creates variations in lighting
because the light falls differently on a rotated ob-
ject. Moreover, the rotated loins serve as a check
to see if our algorithm is invariant to different ob-
ject orientations.

All loins except those subject to incorrect hanging are photographed
normally on day 2 before any perturbations occur. Because some loins
are reused inmultiple perturbation scenarios (e.g. a loin is photographed
at a different orientation and again after a trimming), we cannot perform
a matching on all 211 loins by combining all perturbations. Instead, we
combine each perturbation scenario with the remaining unperturbed
images from day 2 in 4 separate experiments. This means that for the in-
correct hanging scenario we want to match all 211 loins whereas for the
other scenarios we want to match 192 loins.

3. Visual recognition method

The purpose of the visual recognition method is to match the pork
loin images correctly between the two photo sessions. Our recognition
method is divided into 4 steps listed here as an overview.

1. Segmentation. First, we perform a segmentation of the pork loin. That
is, we cut the pork loin out from the background image pixels.

2. Canonization. The segmented pork loin images are then brought to a
canonized form thatminimizes variability from external sources, e.g.
illumination.

3. Description. From the canonized images we generate a description of
the image structure.

4. Matching. Finally, we perform the pork loin matching by comparing
the descriptors from the previous step.

In total, the recognition method takes under 2 s per image in pro-
cessing time on a 2.67 GHz CPU. It should be possible to speed this up
significantly since our method has not been implemented with speed
efficiency as a priority. Note that we have made all implementation de-
tails available online.1

3.1. Segmentation

To separate the loin from the background we use the depth image
provided by the Kinect camera. We know the depth of the table surface
which makes it easy to differentiate between the surface and the meat.
To account for noisy depth data, we employ themax-flow/min-cut graph
cut algorithm to perform segmentation of the depth image (Boykov &
Kolmogorov, 2004). This yields a binary mask specifying which pixels
belong to the loin andwhich pixels belong to the background. The result
of the segmentation algorithm is shown in Fig. 4.

3.2. Canonization

The goal of the canonization step is to bring the pork loin images to a
common form making them invariant to changes in illumination, rota-
tion and size.

Since the pork loin primarily consists of red color nuances we can
discard the colors by converting the image to greyscale without losing
significant information. Moreover, we perform a histogram equalization
to increase the contrast and compensate for differences in lighting.

To ensure the sameorientation for all pork loins, we use the segmen-
tation mask and calculate the image moments of the mask region. The
second-order moments can be used to derive the covariance matrix of
the image region. The dominant orientation of the region is then calcu-
lated from the angles of the covariance matrix eigenvectors. We rotate
the loin such that the dominant orientation is parallel to the x axis,
that is, the loin is orientated horizontally along its broad side. Notice
that this rotation does not consider if the loin is placed upside-down.
We handle this situation by performing a pixel-wise comparison of
a loin image with the average of 20 upright loin images. If a loin is
pixel-wise closer to the upside-down version rather than upright ver-
sion, it should be rotated 180°.

http://compute.dtu.dk/~abll/meat_recognition
image of Fig.�4


Fig. 5. The result of the canonization step. Top image shows an average of 20 pork loin im-
ages with the same orientation. The average image is used to check if loin images are
placed upside down. Bottom image shows a canonized loin image.

369A.B.L. Larsen et al. / Meat Science 96 (2014) 366–372
Finally, the pork loin images are trimmed to remove the background
border followed by a scaling to 600 × 180 pixels giving all loins the same
dimensions. An example of the canonization is shown in Fig. 5.

3.3. Description

In the image description step we seek to achieve an image repre-
sentation that captures the image structure in a manner suitable for
comparative purposes. E.g., the standard pixel representation is not suit-
able because it is sensitive to object translations.

We employ the popular bag-of-words approach (Prince, 2012) and
perform K-means clustering on image patches extracted from 30 out of
the 211 loin images. The cluster centers yield a finite set of different
image patches (the visual vocabulary). An image can now be described
by extracting numerous image patches and mapping each patch to its
nearest entry (aka. visual word) in the vocabulary and counting the
number of occurrences of each visual word. The bag-of-words image
characterization thus constitutes a histogram over visual words. An
overview of bag-of-words description is shown in Fig. 6.

3.3.1. Feature description
Instead of using raw image patches asmentioned above, we perform

feature description of these patches. Feature description yields a low-
dimensional representation of an image patch that attempts to capture
the image structurewhile being invariant to various image perturbation
factors. A wide selection of feature descriptors exists in the literature
but their performance varies only little for general applications (Dahl,
Aanæs, & Pedersen, 2011; Kaneva, Torralba, & Freeman, 2011). We use
the DAISY descriptor (Tola, Lepetit, & Fua, 2010) as it is formulated for
dense extraction. However, we use our own variation of DAISY since
the original is based on unsigned gradient orientations spanning 180°
(whereas signed orientations span 360°). Unsigned orientations offer
invariance towards more complicated illumination situations where
light areas become dark and vice versa due to surface reflectance prop-
erties. Our scenario is sufficiently constrained allowing us to benefit
from signed orientations.
Feature descriptiorsImage

Fig. 6. Overview of the description pipeline. From the raw image we perform a dense extraction
Finally the occurrences of visual words are summarized in a histogram that becomes the final
DAISY follows a popular approach to feature description based on
image gradient orientations summarized in histograms. From an image
I we can extract the x and y directional derivatives,

Lx ¼
∂Gσ

∂x � I ; Ly ¼
∂Gσ

∂y � I ; ð1Þ

by convolving the imagewith a GaussianwindowG differentiated along
the x and y axis respectively. * denotes convolution and σ adjust the
width of theGaussian kernel, i.e., the scale atwhichwe extract thederiv-
atives.We can then calculate the image gradient orientations θ and their
magnitude m from

θ ¼ arctan 2 Lx; Ly
� �

; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2x þ L2y

q
: ð2Þ

To describe the gradient orientation statisticswe select a number of bins
N in the angular range. For each angle ai,i = {1,…,N} we calculate the
bin contribution bi using the circular normal distribution to smooth
out contributions among neighbor bins to be invariant towards small ro-
tations. Moreover, we weigh the bin contributions by the gradient mag-
nitude such that small gradients have less influence than large gradients.

bi ¼ exp κ � cos θ−aið Þð Þ∘m ð3Þ

° denotes the element-wise product. κ adjusts the scale of the bin
smoothing in the angular range. To gather bin contributions spatially,
we convolve with a Gaussian window of scale γ.

bγ;i ¼ Gγ � bi ð4Þ

Finally, we assemble a histogram at the spatial location (u,v) from

hγ u; vð Þ ¼ bγ;1 u; vð Þ;…;bγ;N u; vð Þ
h i

: ð5Þ

To perform DAISY description of an image patch, we sample hγ in a
log-polar grid similar to the original formulation. The histogram vectors
are then concatenated and the entire descriptor vector is L1-normalized.
This normalization makes the descriptor invariant to affine illumination
variations.

Feature descriptors like DAISY have become very popular for visual
recognition. They are effective at capturing both texture information
and local image structure while being robust towards various image
perturbations.

3.3.2. Pork loin image representation
The bag-of-words representation disregards all spatial layout of the

extracted image patches. This is good for achieving invariance to object
translations, but not so good for providing a distinctive object descrip-
tion.We reestablish some of the spatial layout information by sampling
multiple bag-of-words histograms at different positions in the image.
More specifically, we generate 8 histograms from the pork loin image
by weighing the different histogram contributions using Gaussian win-
dows placed in a 2 × 4 grid to reflect the oblong shape of a pork loin. See
Fig. 7. The reason for using Gaussian windows to gather bin contribu-
tions is because the smoothed weighting handles object translations
more gracefully leading to a more robust description.
Visual words Histogram

of local feature descriptors. The feature descriptors are then quantized into visual words.
image description.

image of Fig.�5
image of Fig.�6


Fig. 7. The visual word contribution to each bag-of-words histogram is weighted using a
Gaussian window. Visual words that lie outside the segmentation have 0 weight.
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The final description of a pork loin image is the concatenation of the
8 bag-of-words histograms. Our bag-of-words vocabulary consists of
1500 visual words meaning that each histogram can be represented
by a 1500-dimensional vector. Thus, the concatenation of the 8 bag-
of-words histograms yields a 12,000-dimensional image description
vector.

3.4. Matching

We assess the similarity of two pork loin images by calculating
the histogram distance between their two description vectors gener-
ated in the previous step. For every pork loin from day 1 a match is
established to the pork loin from day 2 with the smallest χ2 distance
defined as

χ2 x; yð Þ ¼
XD

n¼1

x nð Þ−y nð Þð Þ2
x nð Þ þ y nð Þ ; ð6Þ

where D is the dimensionality of the vectors x and y and x(n) is the
nth element of x.

4. Results

We run our recognition method on the 4 different experiments
listed in Section 2. In all experiments we are able to match all pork
loins between the two photo sessions correctly.

To demonstrate the visual impact of the perturbation scenarios, we
show examples of pork loins from both days in Fig. 8. We show the
(a) No perturbations. (b) Rough tr

(d) Incorrect hanging. (e) Illumination

Fig. 8. Examples of perturbation scenarios between day 1 (upper image) and day 2 (lowe
canonized versions rather than the original camera images as the can-
onization makes visual comparison easier.

Fig. 8 shows a loin without perturbations. i.e. proper hanging over-
night. We observe both local pixel translations due to minor object
deformations and global pixel translations due to improper alignment
in the canonization step. In Fig. 8b and c, we observe local deformations
caused by rough handling of the meat and incorrect trimming. Fig. 8d
shows perturbations due to incorrect hanging overnight. The twist
causes translation, local deformation in the right end of the loin, and
minor local rotation. Finally in Fig. 8e and f, the illumination changes
caused by object rotation are shown. These perturbations are signifi-
cantly diminished by the canonization step, however, we still see that
specularities and shadows change indicating that the experiment
setup could be improved with a more diffuse illumination.

To investigate the robustness of the recognition method we inspect
loins that have been poorly matched in our experiments. We measure
the quality of a match by its distinctiveness d computed by subtracting
the descriptor distance of the nearest incorrect match from the descrip-
tor distance of the correct match.

A large difference means that the matching pork loin image pair
from day 1 and 2 stands out from the rest of the loins. A small difference
means that there exists a mismatching loin from day 2 with an image
description similar to the pork loin from day 1. In Fig. 9, we show 3 ex-
amples of poorly matched pork loin image pairs alongwith the second-
closest match from day 2. In Fig. 9a and b we see two examples where
the appearances of the second-closest matches are similar to the loins
from day 1. If a human were to tell the loins apart, he/she would most
likely rely on smaller details in their appearances. In Fig. 9c a significant
bend affects the aspect ratio of the loin image leading to a poor canoni-
zation caused by improper alignment. Thus, it is the canonization rather
than the image description that fails.

Finally in Fig. 10, we illustrate the distinctiveness statistics for each
experiment. We see that our recognition method is very close to yield-
ing a fewmismatches as the distinctiveness of the lowest outliers come
close to 0 (a negative value means an incorrect match). However, the
main part of the remaining loins (around 200) arematchedwith a com-
fortable margin to the nearest incorrect match.

5. Discussion

In Fig. 8, we have seen examples of different perturbation scenarios
in a slaughterhouse environment. Our image description algorithm is
eatment. (c) Incorrect trimming.

 variations. (f) Same as (e) with original colors.

r image). Canonized images are shown for better visual comparison (except for (f)).

image of Fig.�8


(a) Rough treatment. (b) Incorrect trimming. (c) Incorrect hanging.

Fig. 9. Examples of pork loins for which our recognitionmethod yield image descriptionswith little distinctiveness compared to the other image descriptions. Top row shows the pork loin
on day 1. Middle row shows the same loin on day 2. Bottom row shows the closest candidate among the other loins.

371A.B.L. Larsen et al. / Meat Science 96 (2014) 366–372
constructed to be robust towards such perturbations and our experi-
ments have confirmed this. While our results seem promising, we
should note that we do not have sufficient image data to create proper
training, validation and test sets. Therefore, our method parameters are
likely to be overfitted because of improper training on the test set. How-
ever, as we consider this work a proof of concept, we still believe that
the results show that our approach is feasible. In this connection we
add that pork loins in slaughterhouses are typically processed in batches
of significantly fewer pieces than in our experiment.

From the results in Fig. 9c, we have identified an important short-
coming of our canonization method. The image alignment is not suit-
able for non-rigid deformations because it leads to improper scaling
and placement of the object. We consider this an important bottleneck
of our current recognitionmethod because bad alignment directly influ-
ences the image description.

It is possible to improve the recognition task even further by
disallowing a loin from day 1 to be matched to multiple loins from
day 2 and vice versa (by considering the problem an instance of bipartite
matching). However, since the experiment images do not challenge our
recognition method sufficiently, it will be difficult to draw conclusions
from improvements to themethod. It should be noted that by introduc-
ing bipartite matching, we lose the ability to perform any matching be-
fore all loins have been photographed for the second time. We have not
investigated whether this will be a critical point in practice along a pro-
duction line.
Incorrect trimming Rough treatment Incorrect hanging Illumination
0
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Fig. 10. A box plot describing the statistics of the match distinctiveness d for each experi-
ment. Rectangles represent the interquartile range IQR = Q3 − Q1. Thewhiskers are placed
at Q1 − 1.5 IQR and Q3 + 1.5 IQR. The plusses denote outliers.
5.1. Perspectives in a slaughterhouse environment

Based on our results, we believe that the proposedmethod is a com-
petitive alternative to current technology relying on RFID tags of carrier
devices. Vision-based tracking is less intrusive as it does not require
physical contact with the tracked objects. Moreover, our relatively sim-
ple camera setup should be easy to integrate in a production line. As our
experiments shows, ourmethod does not enforce strict requirements to
the camera stations wrt. lighting or light shielding. Though, one should
still strive for a good diffuse illumination of the objects as it improves
the matching distinctiveness.

Regarding the IT infrastructure needed to implement this system,we
believe that the requirements of vision-based tracking are similar to
what is currently required by RFID tracking. For both tracking methods
we need IT systems for bookkeeping to keep track of which products
have been seen where and when. A consequence of image-based iden-
tification is that the amount of identification data is many orders of
magnitude bigger than with physical tags (the entire image description
versus a single number per tag). With current computer networking
speeds, however, we do not believe that this will impose any problems.

We imagine that the visual recognition should supplement the RFID
tracking of carrier devices and ameliorate the tracking granularity from
batches to individual meat cuts. Thus, from the RFID tag we can identify
which batch is currently being processed and perform visual recogni-
tion within this batch. This is a subject for further investigation when
our approach is to be tested on a real production line.

So far, we have only experimentedwith pork loins that exhibit a very
characteristic image structure. It is likely that other meat cuts are more
difficult to represent distinctively using our method. More experiments
are needed to assess the robustness of our recognition method in more
challenging situations.

Finally, as a more speculative perspective, we imagine that the
image data gathered can be used for further analysis as a part of a qual-
ity assurance and process control stage. E.g. the fat percentage or the
quality of the cutting process could be quantified by an image-analysis
program using images from camera stations along the production line.

6. Conclusion

Tracking of individual meat cuts is an important part of facilitating
meat traceability from farmer to consumer. In this work we have dem-
onstrated a vision-based system that enables meat traceability in a
slaughterhouse environment. By combining off-the-shelf vision and
image processing technology we are able to track around 200 pig loins
between two points without errors. This approach is meant as an alter-
native to currentmore intrusive trackingmethods and our investigation
shows that it is feasible. Further experiments are needed to determine
the limitations of our method.
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