A modelling framework for
Synthetic Biology

Jakob Jakobsen Boysen
Sune Mglgaard Laursen

DTU

Kongens Lyngby 2014

Technical University of Denmark
DTU Compute,
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Synthetic biology is the field of engineering new biological functions through
composition and regulation of genes. The current trend of an exponential de-
crease in the cost of the enabling technologies indicates that sophisticated CAD
tools will soon be of significant importance which will require the involvement
of computer scientists and software engineers.

The overall goal of this thesis is to establish a foundation for the construction
of these kinds of CAD tools in order to enable computer scientists and software
engineers to more easily get engaged in the field of synthetic biology.

This thesis examines and explains how to model and simulate these gene com-
positions and how parallels to electronic design automation can be drawn by
treating the simulated behaviour as logical lows and highs. By doing that new
compositions of genes fulfilling some behavioural specifications can be proposed
automatically.

The modelling framework DTU-SB employs many of the classical approaches to
simulation as well as modelling and contributes with a novel way of performing
genetic technology mapping oriented towards the practical issues that may arise
in large gene compositions.

Keywords: Synthetic biology; Gene regulated networks; Stochastic simulation; Petri
net modelling; Genetic design automation; Genetic logic synthesis

Summary (Danish)

Syntesebiologi er en ingenigrvidenskabelig tilgang til at konstruere nye biologi-
ske funktioner gennem sammensatning og regulering af gener. Den nuveerende
eksponentielt faldende udvikling af prisen for at benytte stgtteteknologierne in-
dikerer, at sofistikerede CAD-veerktgjer snart vil blive efterspurgt og derved
kreeve involvering af dataloger og softwareingenigrer.

Det overordnede mal for denne afhandling er at etablere et fundament for kon-
struktionen af denne type CAD-veerktgjer, s dataloger og softwareingenigrer
nemmere kan engagere sig i syntesebiologi.

Denne afhandling undersgger og redeggrer for, hvordan disse gensammensaet-
ninger kan modelleres og simuleres og, hvordan paralleller til elektronisk design
automatisering kan drages ved at opfatte den simulerede opfgrsel som logisk lav
og hgj. Derved kan nye gensammensatninger, der opfylder en gnsket adfserd
automatisk foreslas.

Modelleringsrammeveerktgjet DTU-SB indarbejder mange af de klassiske til-
gange til simulering samt modellering, og bidrager med en ny made at udfgre
genetisk technology mapping, som er orienteret mod de praktiske problemer, der
kan opsta i stgrre gensammensatninger.

Nggleord: Syntesebiologi; Genregulerede netveerk; Stokastisk simulering; Petri net mo-
dellering; Genetisk design automatisering; Genetisk logisk syntese

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring a M.Sc. in Computer Science and Engineering.

This thesis serves educational purposes and is aimed at computer scientists and
software engineers wishing to emerge into the field of synthetic biology.

We wish to express our sincere gratitude towards our thesis supervisor, professor
Jan Madsen, for his dedicated guidance through our lengthy discussions and for
providing thorough feedback within very short time-frames up to the thesis
deadline.

We would also like to thank professor Chris J. Myers from University of Utah

and author of the textbook Engineering Genetic Circuits for taking the time to
answer some of our questions regarding modelling of genetic engineered devices.

Lyngby, 14-03-2014
W Sow, M e

Jakob Jakobsen Boysen & Sune Mglgaard Laursen

Contents

Summary (English)

Summary (Danish)

Preface

1 Introduction
1.1 Background
1.2 Problem and contributions oo
1.3 Work process
1.4 Reading guideo

2 Biology
2.1 DNA .
2.2 Genes
2.3 Gene expression oo
24 Generegulation oL oL oL o

Engineering Biology

3.1 Enabling technologies
3.2 Tool-chain
3.3 Abstractions
3.4 Discussion

Petri Nets

4.1 Reaction equations L oo
4.2 Petri net definition Lo
4.3 Ratesoffiring
44 Discussion e

Quantitative Analysis
5.1 Law of mass action

iii

<

T LW N =

10
11
16

19
19
22
22
25

27
27
28
32
32

35

viii CONTENTS
5.2 Deterministic methods 37
5.3 Stochastic methods 38
5.4 Discussion 43

6 Modelling 45
6.1 Abstraction level 46
6.2 SPNrepresentation L. 50
6.3 Parameterso 54
6.4 Example: Oscillator 59
6.5 Discussion e e 60

7 A framework: DTU-SB 63
7.1 Requirements Lo 63
7.2 Architecture and data flow. 65
7.3 Review of formats and third-party libraries 66
7.4 Implementation details L oo 67
7.5 Usage e 70
7.6 Evaluation: Simulating a NOR-gate 71
7.7 Concluding remarks L oL 73

8 Genetic Logic Synthesis 77
8.1 Logicsynthesis 78
8.2 Genetic design automation oo 78
8.3 Library based technology mapping 83
8.4 Characterisation and evaluation 91
8.5 Implementation 102
8.6 Discussion Lo 103

9 Conclusion 107
9.1 Logic synthesis L o 108
9.2 Related work 109
9.3 Reflections. 110
9.4 Future directions Lo 111

A Modelling examples details 113

B Email from Chris J. Myers 115

C Evaluation data for OR-gate 11 117

D DTU-SB GDA Tutorial 121

Bibliography 127

Glossary 136

CHAPTER 1

Introduction

Synthetic biology is the engineering of, possibly new, biological organisms by
altering or defining its DNA. Few such examples already exists such as rice en-
riched with vitamin A for third world countries or tomatoes with prolonged ex-
piration dates. Once the field of synthetic biology has matured enough to allow
us to engineer more complex systems, it has the potential to contribute in mul-
tiple ways, e.g. development of personalised medicine for more efficient disease
treatment or development of biosensors that can be used to detect biomolec-
ular species in patients and characterise appropriate medical treatments. An
entire research field in synthetic biology aims at modularising components of
biosensors to be able to rapidly tailor new custom biosensors.

Engineered biological applications can revolutionise the efficiency of conven-
tional devices, e.g. biological signal processing in the inner ear of a human con-
sumes about 14uW while a computer with similar floating point performance
needs 50 W, Sarpeshkar (2006). This serves as another motivation for utilising
existing biological functions into completely new applications.

Other synthetic biology applications are already in the works or just needs
commercialisation:

e Professor Jay Keasling from UC Berkeley works with commercialising so-
lutions to synthesise artisiminin. Artisiminin is a critical ingredient for

2 Introduction

anti-malaria medicine and is currently harvested from the herb worm-
wood. Cultivating this herb is relatively difficult making the availability
and prices very unstable which in turn can lead to fatal consequences. In
2006 Keasling’s group engineered an entire strain of yeast able to synthe-
sise artisiminin, Keasling et al. (2006), and the company Amyris Biotech-
nologies established by Keasling and three of his postdoctoral students
now produces artisiminin on a large-scale!.

e Another team of researchers from UC Berkeley have modified the bacteria
E. Coli to automatically synthesise bio-diesel from sugar found in crops,
Howard et al. (2013). Currently this is an infeasible process, requiring
more fuel from harvest and transportation of the crops than what is syn-
thesised, but the team have dedicated the next 3-5 years on improving the
yield?.

e The Arsenic Biosensor Collaboration?® is a team composed of three previ-
ous 1GEM winner teams that works on creating bacterias that are triggered
by the presence of arsenic to emit pigment visible to the human eye which
in turn can be used to create simple and cheap water quality tests for use
in third world countries.

Many additional applications are surveyed in Ahmad S. Khalil (2010) and Bald-
win et al. (2012).

1.1 Background

The first enabling technologies that allowed sequencing, synthesis and merging of
DNA were discovered in the 1970s and were initially quite unreliable and costly
which for long have been the determining factor of realisable complexity. Due to
continuous technological improvements the cost is now outpacing Moore’s law
while the reliability is also improving, see Fig. 1.1.

This turns the attention to how these complex systems can be designed without
having to manually define the base-pair sequence of DNA strings through trial
and error, and instead focus on the desired behaviour of these systems.

Regulatory genes control the synthesis of proteins on the basis of other proteins
being present which conceptually is similar to the behaviour of an electric tran-
sistor. This similarity has already been used to design the necessary logic gates

Ihttp://www.amyris.com/Products/176/Artemisinin
2http://www.bbc.com/news/science-environment-22253746
Shttp://arsenicbiosensor.org/

http://www.amyris.com/Products/176/Artemisinin
http://www.bbc.com/news/science-environment-22253746
http://arsenicbiosensor.org/

1.2 Problem and contributions 3

Cost per Raw Megabase of DNA Sequence

Moore's Law

NI H National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 1.1: Cost of DNA sequencing vs. Moore’s law. DNA synthesis follows
a similar pattern, (Baldwin et al., 2012, p. 45). Figure from KA
(2014).

to — in theory — mimic the complexity of any electronic circuit. For digital elec-
tronics many layers of abstractions have already been developed, e.g. CAD tools
for designing hardware as well as software that runs on top of these electronic
circuits. The software is typically compiled to binary code from programming
languages specified at high abstraction levels, so instead of manually defining
functions from wires and transistors we can simply write a program that do
not prerequisite any knowledge about electrical engineering and are many times
faster to deliver.

1.2 Problem and contributions

There is still many difficulties involved in treating regulatory genes as simple
digital logic which limits what is currently realisable to a very few and very
simple systems. These difficulties are very dynamic and arise from environmen-
tal changes such as temperature, crosstalk from nearby genes, type of cell and
output concentration levels. In order to overcome these challenges we need to
be able to predict the outcome of specific designs, or more precisely we need an
accurate and efficient model able to account for these factors.

Similar to digital electronics, in synthetic biology CAD tools allowing us to

4 Introduction

create biological systems from abstract high-level specifications are naturally a
necessity for effectively designing new, complex biological systems. In this thesis
we will first investigate synthetic biology with focus on being able to explain
the necessary theories and processes involved to identify the open challenges in
the field, and from that propose a modelling technique for modelling of genetic
devices. On the basis of this we will propose a modular and extensible modelling
framework that easily can serve as test-bench for biologists to develop new
improved models. Further we will propose how these models can be used to
perform genetic design automation (GDA) where entire designs can be created
from simple behavioural descriptions.

This thesis also serves educational purposes and tries to ease the transition for
computer scientist and software engineers to the field of synthetic biology.

The code repository and documentation for the modelling framework DTU-
SB can be found at https://bitbucket.org/jboysen/dtu-sb and http://
jboysen.github.io/dtu-sb-docs respectively.

1.3 Work process

The reason for creating our own framework instead of altering an existing was
to gain a broader perspective by delving into all the details to better identify
interesting areas to investigate further. Therefore we established an initial plan
of carrying out the thesis with two milestones:

1. Establish the required knowledge of biology, possible modelling techniques
and simulation algorithms to be able to create a framework for simulation
of genetic devices.

2. On the basis of the insight gained by creating the framework, identify an
area to investigate further.

The first milestone was planned to take 2/3 of the available time to complete
and the second milestone the remaining 1/3. The work carried out in chapters
2-7 corresponds to the first milestone and chapter 8 to the second.

Although we have worked in very close collaboration in researching, implemen-
tation and writing this thesis, the main responsibility of the chapters have been
divided as follows:

https://bitbucket.org/jboysen/dtu-sb
http://jboysen.github.io/dtu-sb-docs
http://jboysen.github.io/dtu-sb-docs

1.4 Reading guide 5

Jakob Biology (Ch. 2), Modelling (Ch. 6) and Implementation (Ch. 7).

Sune Engineering Biology (Ch. 3), Petri Nets (Ch. 4) and Quantitative Anal-
ysis (Ch. 5).

The remaining chapters, including Genetic Logic Synthesis (Ch. 8), have been
produced in complete cooperation.

1.4 Reading guide

In Ch. 2 the basic concepts of gene expression including DNA, RNA, tran-
scription, translation and the genetic parts will be explained. In Ch. 3 the
foundational technologies used for engineering DNA will be presented and con-
venient abstraction levels will be established. In Ch. 4 the fundamentals of the
petri net — with focus on stochastic petri nets — will be described and it will
be motivated how petri nets can be used as modelling language for modelling
of genetic devices. In Ch. 5 it will be explained how these petri nets can be
analysed using stochastic simulation algorithms and in Ch. 6 it will be shown
how gene expression and genetic devices can be modelled with stochastic petri
nets. In Ch. 7 the implementation details of the DTU-SB Framework imple-
menting the theories from the preceding chapters will be explained. Finally in
Ch. 8 we will use the same theories and show how new biological devices can
be synthesised by specifying behaviour by simple truth-tables.

The chapters 2, 3, 4 and 5 can be read independently or alternatively skipped
if the reader already has knowledge about these topics. The remaining chapters
prerequisites a foundation as established in these preliminary chapters.

This thesis includes a glossary where the definition of some less common terms
can be looked up. The first use of such term in each chapter is written with the
typography as in e.g. "Brownian dynamics" and links directly to the glossary
in the electronic version. Likewise all abbreviated terms are written in their
full-form in italics with the abbreviation in parenthesises at their first use in
each chapter.

Introduction

CHAPTER 2

Biology

This chapter serves as an introduction to concepts not familiar by computer
scientists. We will go over the basics of DNA and form the foundation for being
able to understand the remaining chapters. In the following sections we assume
the reader has basic knowledge about chemistry and biology, i.e. corresponding
to high school level.

This chapter will evolve around the Central Dogma of Molecular Biology stated
by Francis Crick in 1958 and later reformulated in Crick (1970). The dogma
is summarised in Fig. 2.1, and shows how sequential information stored in the
DNA passed into the protein cannot escape again.

The terms DNA, RNA and protein will be explained and we will go in depth with
how information is stored in DNA, what the information is, how this information
flows in biological systems and how it is important in the process of protein
generation. Furthermore we will go through what a gene is and how genes can
produce protein.

The cell, referred to in Fig. 2.1, is considered the smallest piece of life that
exists, inside this the information store is DNA and its function is carried out
by proteins, e.g. the protein insulin helps metabolise food. There are two types
of cells: prokaryotic, which can be found in bacteria and eukaryotic, which can
be found in e.g. animals and plants. In 1997 the complete DNA sequence for

8 Biology

!
/

NA
S

1
2

-

)
PROTEIN

<=0

Figure 2.1: The Central Dogma of Molecular Biology. The diagram shows how
information can flow in the cell. The circular arrow on the DNA
shows DNA replication. We will focus on the solid arrows, so-
called general transfers, which can occur in all cells. The dashed
arrows refer to special transfers which do not occur in most cells.
Figure from Crick (1970).

the bacteria Escherichia coli (E. coli), widely used in synthetic biology, was
published in Blattner et al. (1997). In general there is a great understanding of
the prokaryotic cell and it is used as host of genetic devices in many applications
and experiments in synthetic biology, which is why we in this thesis refer to the
prokaryotic cell when we refer to the cell.

Several sources of literature have been used to compose this chapter: (Baldwin
et al., 2012, Ch. 1), Medicine (2013), Institute (2013), Gregory (2013), Bryce
and Pacini (1998) and (Karp, 2009, Ch. 10-11).

2.1 DNA

DNA is short for the molecule deoxyribonucleic acid that stores information
in biological systems. On its own DNA cannot do anything but in the protein
generation process DNA plays a vital role as information storage. DNA is one of
three important macromolecules — the others being protein and RNA, of which
RNA also is a nucleic acid just like DNA. Macromolecules are just molecules with
a high relative molecular mass composed of many molecules with low relative
molecular mass.

DNA is composed of two complementary strands; each being a chain with links
of nucleotides: each nucleotide contains a phosphate group, a sugar group and a
nitrogenous base. The chain of nucleotides is linked together by the phosphate

2.1 DNA

and the sugar from two nucleotides. The important part here is the nitrogenous

base, as the sugar and the phosphate are always the same. In DNA there
are four different nitrogenous bases: adenine (A), thymine (T), guanine (G)
and cytosine (C). The sequence, or order, of the nucleotides determines the
information stored in the DNA, later we shall see how this information can be
used.

Phosphate

I5' end
Figure 2.2: Simplified schema of the DNA structure. Black lines are chemical
bindings between bases, sugar and phosphate. The big O at the

bottom of the sugar molecule is Oxygen, and the numbers refer to
the carbon atoms in the sugar molecule.

The two strands are twisted in a double-helix structure and are tied together by
hydrogen bonds between the bases on each strand. Two bases held together by
hydrogen bonds are called base pairs. There is only two possible combinations
of pairs, which is an important feature of DNA; A can only pair with T, and C
can only pair with G and vice versa. This is crucial as it means a cell always
has two copies of the information sequence stored in the DNA, which in turn
means that if one strand is damaged, that strand can be repaired directly by
the other strand just by filling in the missing base in each pair. The reason only
these base pairs can exist is because of the hydrogen bonds between the bases;
between A and T there are two bonds, and between C and G there are three

10 Biology

bonds. Informally speaking the DNA structure is like a twisted ladder with the
sides being the sugar and phosphate and the base pairs being the rungs.

As we can see in Fig. 2.2 the two strands run in opposite directions and the ends
of the strands are named 3’ and 5’ referring to the 3rd and 5th carbon atom
in the sugar molecule facing towards the ends. The sugar molecule contains 5
carbon atoms in a chain, where the numbering starts at 1’, where the nitrogenous
bases bind. The numbering of 3’, 4’ and 5’ can be a bit confusing but essentially
the carbon in the CHyOH-group (not shown in Fig. 2.2) attached to the 4’
carbon is the 5’ carbon. The 3’ and 5’ ends are used when we talk about which
direction to read the strands, more on that later.

2.2 Genes

With a basic understanding of what the DNA molecule is composed of and
how it is structured, we now turn to genes. A gene is a stretch of the DNA
molecule including requlatory elements, which means that DNA contains many
genes. In the previous section we saw that DNA is the information store and
cannot do anything on its own. The gene produces a functional gene product
using the information from the DNA in a process called gene expression. The
gene product is either RNA or protein. We call genes that generate proteins for
protein-coding genes, these are the genes we will be focusing on in this thesis.

Replication

@\IA Transcription RNA Translation Protein

Figure 2.3: DNA replication and the steps in gene expression. Refering to Fig.
2.1 on page 8, this is the same figure without the dashed arrows.

Fig. 2.3 shows the steps transcription and translation in gene expression which
will be explained in the next section. The replication step is a process which
only DNA can undertake when the cell containing the genes is divided. In this
thesis we will not go into detail with DNA replication as the process is somewhat
similar to gene expression explained below.

The most simple gene consists of the parts promoter, ribosome binding site
(RBS), protein coding sequence (PCS) and terminator. The parts are placed on

2.3 Gene expression 11

the stretch of the DNA molecule sequentially in the order just presented, e.g.
the RBS is often a six to seven base long nucleotide sequence placed about eight
bases upstream' from the PCS. These parts will be explained and mentioned in
the following sections.

2.3 (Gene expression

Protein-coding genes can translate its DNA to protein by first transcribing
the DNA sequence into an RNA molecule and after that translating this RNA
molecule into amino acids which in turn is what proteins are composed of.

In gene expression the RNA (ribonucleic acid) molecule plays an important role
in several parts of the process. There are different kinds of RNA molecules of
which we will mention mRNA (messenger), sSRNA (small) and tRNA (transfer).
mRNA contains genetic information just like DNA; in fact it is a copy of one
of the DNA strands in the gene and is recognized by a ribosome that translates
it into amino acids. sRNA is, as the name indicates, small non-coding RNA
molecules produced naturally by sRNA-encoding genes in E. coli, Hershberg
et al. (2003). sRNA can be used to regulate gene expression. tRNA transports
the amino acids to the ribosomes during the protein synthesis.

The RNA molecule is, just like DNA, a chain of nucleotides. The main differ-
ences between RNA and DNA is that the sugar molecule in the nucloetides in
RNA is ribose whereas in DNA it is deozyribose, in RNA the nucleotide thymine
(T) is replaced with uracil (U) which also binds with adenine (A) and at last
RNA only has one strand whereas DNA has two.

2.3.1 Transcription

In the transcription process an mRNA molecule is synthesised from the DNA.
The DNA strand with the same sequence of nucleotides as the mRNA strand
(but with T replaced by U) is called the coding strand, the opposite DNA strand
is called the template strand.

1. The process is initiated by proteins called sigma factors binding to the
promoter in the DNA. There are several sigma factors, the specific sigma
factors used depend on the specific gene and the surrounding environment.

1Here upstream just means before.

12 Biology

2. The promoter will identify the strands and the direction to copy in, af-
terwards the enzyme RNA polymerase will bind to the promoter. RNA
polymerase always works in the direction from the 5’ end to the 3’ end,
thus this is the direction of synthesis. Polymerase is an enzyme that cre-
ates a chain of molecules, e.g. RNA polymerase will create the mRNA
molecule which consists of many nucleotides.

3. RNA polymerase is now bound to the template strand and moves towards
the 3’ end of the coding strand while it adds complementary RNA nu-
cleotides to the template strand. Starting at the promoter site the DNA
will unwind by breaking the hydrogen bonds between the base pairs on
each strand. This can involve many RNA polymerases at once, meaning
that several mRNA molecules can be synthesised at once, where the first
molecule is called the primary mRNA.

Coding
5 Se— — Strand 3
, (bt AEEEEEEEEEEEEEEEERS
3 .A CGTG.. 5
5 Template
Strand

Figure 2.4: Transcription. RNAP is the RNA polymerase that unwinds the
DNA strands (black), creates the mRNA (blue) from the template
strand and detaches the mRNA again. Figure from Forluvoft
(2007).

4. The RNA polymerase will break the hydrogen bonds between the new
complementary nucleotides to the nucleotides on the template strand and
they will form an mRNA strand held together by sugar and phosphate,
just like DNA.

5. The transcription will stop when the RNA polymerase reaches a char-
acteristic sequence of nucleotides on the template strand, also known as
the termination sequence, and shortly after the mRNA is detached com-
pletely from the template strand, the strands of the DNA rewinds to its
usual structure again.

The transcription process described above is depicted in Fig. 2.4. The next
step in gene expression is translation of the mRNA to protein, but before we
explain that, we will in the next section explain how the chain of nucleotides in
the mRNA codes for amino acids.

2.3 Gene expression 13

2.3.2 The genetic code

The information in the mRNA molecule is determined by the sequence of the
nucleotides, in pairs of three the nucleotides codes for an amino acid which is the
building blocks for proteins. A sequence of three nucleotides is called a codon.
Consequently there must be three reading frames on the mRNA strand, i.e. if
the starting point on the mRNA has not been identified yet, each nucleotide in
the mRNA can be used in three different codons, see Fig. 2.5. Because of this
we need a way to determine the correct first codon on the mRNA strand.

5’éG(ﬂ‘TGéﬂAfmGﬂéé(ﬂCC Té éTTéGﬂ?

Figure 2.5: Three (blue, red and green) reading frames of the mRNA. E.g.
the third nucleotide, G, can be used in all of the three frames.
Figure from Akos (2011).

The first amino acid on each protein is Methionine corresponding to the codon
AUG (in mRNA; in DNA this corresponds to the codon ATG), this means that
the frames to read can be determined by looking for the AUG codon. How this
process carries on will be explained in the next section.

As mentioned, proteins are composed of amino acids of which there are 20
different kinds. There are four different nucleotides in mRNA, namely A, C, G
and U, this gives 43 = 64 different codons, which in turn means that several
codons code for the same amino acid. Fig. 2.6 shows all amino acids decoded
from codons including the three stop-codons UGA, UAG and UAA which is
used in the translation process.

2.3.3 Translation

Translation is the last step in gene expression. Here the sequence of nucleotides
in the mRNA is translated into amino acids using the genetic code described
above and tRNA transporting the amino acids. The process takes place in the
ribosome, which is a so-called molecular machinery that catalyses the creation
of the chain of amino acids (this chain is also called a polypeptide chain) that
forms a protein. The ribosome binds to the gene at the RBS and consists of
two subunits: a small subunit reading the mRNA and a large subunit linking
the amino acids together to the polypeptide chain. The large subunit consists
three sites: E, P and A, each containing a tRNA. Each tRNA contains an
anticodon matching a codon on the mRNA and one amino acid associated with

14 Biology

Figure 2.6: The genetic code. The diagram should be read from the center
and towards the edge of the circle, where the amino acid coded
from a codon can be read. E.g. the codon CUA codes for the
amino acid Leucine. Figure from Alves (2010).

the anticodon. E.g. the anticodon UAC matches the codon AUG which in turn
matches the amino acid Methionine.

1. The process is initiated by the small ribosomal subunit binding to tRNA
with the amino acid Methionine and finding the so-called Shine-Dalgarno
sequence on the 5’ end on the mRNA. This sequence, AGGAGG, is usually
located 8 nucleotides upstream of the correct start codon AUG. The small
ribosomal unit now binds to the mRNA and the large ribosomal subunit
binds to the small so that the tRNA is located in the P site of the large
subunit.

2. A tRNA matching the codon located at the A site binds to the ribosome,
while the amino acids attached to the tRNA at the P and A site will create
a link in the polypeptide chain. The binding between the amino acid and

2.3 Gene expression 15

Ribosome

SER

tRNA released GLY .
after amino Growing]
acid removed polypeptide

chain

Figure 2.7: Translation. The ribosome part above the mRNA strand is the
small subunit and the part below is the large subunit. Minor
details are omitted, e.g. here the polypeptide chain does not start
with Methionine. Figure from Nave (2013).

the tRNA located at the P site now breaks and the ribosome will move
one codon towards the 3’ end of the mRNA. The tRNA located in the P
site will move to the E site and leave the ribosome shortly after and the
tRNA in the A site will move to the P site. Now a new matching tRNA
will enter the A site and the previous process will be repeated.

3. When the ribosome has encountered one of the three stop codons no
matching tRNA can be found and proteins called release factors will enter
the ribosome causing it to detach from the mRNA and the polypeptide
chain to detach from the ribosome.

After this process the chain of amino acids will now fold into a protein. The
process described above is carried out by several ribosomes, thus several copies
of the same gene are generated. In the prokaryotic cell mRNA has a relatively
short life time, which is why the translation process takes place at the same time
the mRNA is being transcribed. After the translation has finished the mRNA
dissolves and the nucleotides in the mRNA are ready to be used in new gene
expressions.

In the processes transcription and translation there are some inherent delay, e.g.
when the tRNAs are moving into the correct positions in the cell, these delays
can cause random fluctuations of how much protein is generated.

16 Biology

2.3.4 Decay

Both mRNA and protein will decay over time, this means that protein will only
be produced as long as there is mRNA available, which only happens when
transcription is enabled. In the next section we shall see how transcription can
be blocked. Furthermore decay of protein also means protein must be produced
continuously if it is required at all times.

The decay rate expresses lifetime or the stability of a product. The lifetime of
mRNA in prokaryote is relatively short, varying from a few seconds to about an
hour, Rauhut and Klug (1999). We will not go into details with how decay of
mRNA happens, but just note that the decay of mRNA plays a very important
role in the regulation of gene expression.

2.4 Gene regulation

One very important ability of genes is their ability to regulate, i.e. to turn on
and off as needed. Cancer is the result of a erroneous always on-regulation,
Gregory (2013). The regulation happens by operators close to the promoter
(the regulatory element briefly mentioned earlier) and occurs on basis of certain
protein concentrations. For instance in E. coli enzymes for converting lactose
to glucose are only being synthesised if there is not sufficient available glucose
while lactose is present. The operator is located downstream of the promoter
on the DNA.

When repressor protein is bound to the operator, the operator effectively reg-
ulates gene expression by physically denying RNA polymerase to bind to the
promoter on the gene. There are two types of operators:

Inducible By default the repressor protein is bound to the operator, i.e. tran-
scription is repressed. To unbind the repressor protein from the operator
an inducer protein must bind to the repressor. See illustration in Fig. 2.8.

Repressible By default the repressor protein is not bound to the operator, i.e.
transcription is active. When a co-repressor is present it becomes active
and binds the operator. See Fig. 2.9

Inducers and co-repressors are practically equivalent; it is the repressor protein
that determines whether it is inducible or repressible. It is important to note

2.4 Gene regulation 17

that these repressor proteins are specific in the sense that they only bind to some
specific operators and can only be repressed or induced by some specific inducer
or co-repressors. This is illustrated in Fig. 2.8 and 2.9 by their puzzle-shapes.

Figure 2.8: 1: RNA Polymerase, 2: Inducible repressor, 3: Promoter, 4: Op-
erator, 5: Inducer, 6,7,8: PCS.
Top) The repressor prevents the transcription process by blocking
the promoter.
Bottom) An inducer becomes present, so the repressor unbinds
from the operator to bind with the inducer. Transcription can
now occur. Figure altered from RAJU.

The time from releasing a regulatory protein, e.g. an inducer, to a complete
switch can be observed, is typically in the order of minutes.

Some secondary regulation can occur outside the operator sequence due to ex-
ternal changes. For instance the rate of transcription can also be influenced by
other proteins and temperature changes but is usually not as determining as
regulating the operator directly.

The regulation described above is usually referred to as transcriptional regula-
tion, another type of regulation is referred to as translational requlation. One
example of this is SRNA base-pairing with mRNA thus influencing translation
or mRNA stability, effectively repressing gene expression, Shimoni et al. (2007).

As the behaviour of gene regulation is like that of an electric transistor, logic
gates can also be created by genes hence, in theory, arbitrarily complex biological
systems can be created. This leads us to the next chapter on engineering.

18 Biology

Figure 2.9: 1: RNA Polymerase, 2: Repressible repressor, 3: Promoter, 4:
Operator, 5: Co-repressor, 6,7,8: PCS.
Top) The repressor is inactive but present.
Middle) A co-repressor becomes present which binds to the repres-
sor thus enables binding to the operator.
Bottom) The repressor binds to the operator and blocks further
transcription. Figure altered from RAJU.

CHAPTER 3

Engineering Biology

This chapter describes the foundational technologies for engineering DNA strands,
how computer-tools can aid the design process, through which simplifying ab-
stractions biological systems can be regarded and finally some of the difficulties
in engineering biological systems will be discussed.

Several sources of literature have been used to compose this chapter: (Baldwin
et al.,, 2012, Ch. 2-3,5), Beal et al. (2012), Beal et al. (2011), Densmore and
Hassoun (2012) and Pedersen and Phillips (2009).

3.1 Enabling technologies

The technologies in this section are the technologies that allow us to read, write
and combine DNA fragments. Some of these are quite complex and therefore
only briefly described while referring to more comprehensive literature on the
matter.

20 Engineering Biology

3.1.1 DNA sequencing

Sequencing is the process of obtaining the base pair representation of a given
DNA strand. Many DNA sequencing methods exist, each with varying accuracy,
cost, speed and read length. Advances in DNA sequencing currently receive a lot
of focus as it is believed to be the foundation of (near) future disease diagnosis
by sequencing the entire genome and prescribe accordingly. The widely used
Sanger sequencing method basically works as follows:

1. Split the double stranded DNA into a template strand and a complemen-
tary strand by applying heat.

2. Put the template strand mixture in 4 different containers along with some
polymerase.

3. Put some nucleotides (A, C, G and T) as well as one unique type of PCR
terminating nucleotide (A, C, G or T) in each container.

4. Now the template strand will try to repair itself but will randomly get
terminated by the PCR terminating nucleotide unique to that container.

5. By gel-electrolysis, which sorts the partial strands on their weight, it is
now possible to identify the positions of the labeled nucleotides hence the
location of all complementary nucleotides.

6. Merging the results from each of the containers now yields the complete
sequence of DNA.

More details can be found in (Baldwin et al., 2012, Appendix 1) and detailed
comparison of novel methods can be found in e.g. Liu et al. (2012).

3.1.2 DNA synthesis

Synthesis is the process of creating artificial DNA strands. Typically oligonu-
cleotide synthesis by McBride and Caruthers (1983) is used which is a chemical
process to produce short strands of 15-20 base pairs by treating nucleotides as
building blocks that can be sequentially coupled in a growing order using four
chemical processes for each addition. In general the majority of the synthesis
methods are only able to produce small strands to avoid introducing errors why
the assembly methods is of great importance to the synthesis of large strands.

3.1 Enabling technologies 21

3.1.3 DNA assembly

DNA assembly is the process of merging two strands. There are numerous ways
to assemble DNA strands. One of the more intuitive, compelling methods is
the standard assembly method which uses restriction enzymes to merge DNA
strands as illustrated in Fig. 3.1. This method is cheap, but prone to errors,
Densmore and Hassoun (2012). Some of the available assembly methods are
compared in Baldwin et al. (2012).

PN
B

NN

cueE

®
D4 fragments jein /

8t sticky ends
Stickyend

Stekven l
INONONY

Recormbinant NS

e ([T
@

Restriction Enzyme
Action of EcoRI

Figure 3.1: The standard assembly method. EcoRi enzymes seek and remove
the AATTC from 3’ strands and the complementary TTAAG se-
quence from 5’ strands. This forces the strands to combine. Fig-
ure from Excellence.

BioBrick™ is an interface for painless assembly of biological parts. It works
by having some universal defined DNA sequence appended to both ends of
the part sequence with the ability of forming stable bonds with other parts
that implement the same interface. The design along with the behavioural
characteristics of these parts are stored and made available in rapidly increasing
databases, e.g. the Registry of Standard Biological Parts'. A goal from the
foundation behind the BioBrick, the BioBricks Foundation, is to make it possible
to engineer entire organisms just from these parts.

lhttp://parts.igem.org

http://parts.igem.org

22 Engineering Biology

3.2 Tool-chain

Effectively engineering biological systems requires extensive tool-chains able to
model and simulate the complex nature of biology at suitable abstractions. Typ-
ical tool-chains have the structure illustrated in Fig. 3.2.

parts database

SPECIFICATION COMPILE SIMULATE

ASSEMBLY
DATA

Figure 3.2: A typical tool-chain for synthetic biology. A high-level specifica-
tion of some biological system is compiled into a more suitable in-
ternal representation using an existing parts-database. This inter-
nal representation can either be emitted as assembly instructions
or simply be simulated in order to determine how well the design
works. These results can then be used to refine the compilation
by selecting alternative parts until the desired design requirements
are met.

The actual synthesis and assembly, whether it being automated or manual, is
still quite costly in time and money why the simulation process is of great impor-
tance in order to eliminate weak design candidates before wet-lab experiments.
Naturally a successful simulation is no guarantee for the design actually being
realisable in a wet-lab experiment, why if possible several design alternatives
are often emitted.

3.3 Abstractions

In order to support the high-level descriptions for a biological compiler, we
need to break up and simplify the problem into biological defining functions.

3.3 Abstractions 23

Similar to designing circuits in a hardware description language, to simplify the
process and increase the achievable complexity one usually do not build new
circuits entirely from scratch, but rather uses existing modules such as adders,
10-modules, etc. From the bottom and up we have parts, devices and systems.
BioBricks implement the same level of abstractions.

Parts are the smallest biological building block found in genes and have one of
the following four biological functions:

Promoter Initialises the transcription and instructs it to start. Several oper-
ators can be chained to the promoter in order to control the rate of tran-
scription from concentrations of nearby DNA binding proteins in complex
manners. For the sake of simplicity the chain of operators is considered
as a part of the promoter.

Ribosome Binding Site (RBS) Gathers and initiates ribosomes for DNA trans-
lation.

Protein Coding Sequence (PCS) The strand from which the ribosomes should
translate protein.

Terminator Indicates the end of the gene expression.

Some of the part names above should be recognised from earlier; the promoter
is found upstream of the other parts on the DNA, RBS is where the the gene
expression occurs, PCS is the codons coding for the protein and the terminator
is just the end of the transcription.

In many cases several alternative base pair representations exist of similar parts,
but with different resistances and susceptibility to different DNA binding pro-
teins and/or external environments, so one of the engineering difficulties is also
to select the correct encoding of the different parts to avoid interference while
maintaining an acceptable degree of performance.

The graphical notation using Pigeoncad by Bhatia and Densmore (2013) has
been adapted and can be seen in Fig. 3.3. This notation is greatly inspired by
the SBOL Visual standard from Quinn et al. (2013).

Devices, sometimes referred to as genetic devices, are a combination of parts
with some biological function. The generic feedback device in Fig. 3.4 ensures a
more or less constant concentration of a given protein, i.e. when the concentra-
tion of produced protein is high the promoter is repressed hence stops further
transcription until the concentration has decayed enough to continue.

24 Engineering Biology

— - B T

(a) Promoter (b) RBS (¢) PCS (d) Terminator

Figure 3.3: Graphical notation of parts

On the device in Fig. 3.4 there is an arc from the PCS to the promoter with a
vertical bar at the end. This arc can be seen as the protein produced repressing
the promoter, i.e. the arc represents a regulation. An arc with an arrow from
a PCS to a promoter means that the protein produced from the PCS activates
the promoter thereby allowing gene expression. No incoming arcs to a promoter
means it will constantly initiate transcription, these promoters are called con-
stitutive promoters. Several of these arcs can point to a promoter, meaning that
several proteins can initiate the gene expression.

—— Protein

Concentration

- Time

Figure 3.4: Generic feedback device and its expected behaviour.

Systems are combined of several devices in order to achieve a more complex
behaviour such as the generic NOR-gate system in Fig. 3.5.

Out

Figure 3.5: Logic NOR-gate system. Any of the two input proteins inl or
in2 may initiate transcription which is inverted giving the desired
NOR-behaviour of the output protein Out.

3.4 Discussion 25

3.4 Discussion

Promoters are usually very context sensitive in the sense that temperature,
nearby proteins and other environmental changes easily can influence the tran-
scription of the coding sequence possibly leading to domino effects that can
influence a larger system. Therefore even wet-lab experiments are quite unpre-
dictable and imposes huge future challenges for future real-world realisations.

When designing digital circuits we have the problem of cross-talk when the
signal in a wire is disturbed due to electromagnetic interference from another
wire. This is generally avoided by increasing the shielding and/or placing the
wires more apart — something the CAD tools relatively easy can account for.
But in synthetic biology we do not have these possibilities as we cannot shield
reactions or guarantee that reactions will occur within a certain distance.

To reduce cross-talk in wet-lab experiments typically these simple techniques
are used:

e If the host is a well-studied mechanism, such as E.coli, where all embed-
ded protein coding sites have been identified, it is possible to create an
orthogonal system by using parts known not to interfere with those of the
host.

e Physically isolation by placing smaller quantities in lesser populated areas
of the cell.

A few entirely different approaches are mentioned in Sec. 9.3 on page 110.

In designing digital electronics it is easy to reuse parts and pipe-line execution
as every executional step happens within a predefined cycle defined by a global
clock. A difficulty in synthetic biology is that every reaction happens at different
rates depending on the specification of the parts used and this can still vary quite
much due to the different external factors just described, making it very hard
to pipeline systems and even guarantee a consistent output.

26

Engineering Biology

CHAPTER 4

Petri Nets

The Petri net (PN) was developed to illustrate and model chemical processes
and was formally presented in Petri (1966). Due to its ability to describe con-
current processes in a concise way, many other scientific fields have also adopted
its notation. In this chapter the required fundamentals of the PN will be de-
scribed in order to motivate its use as a modelling language and intermediate
representation as further described in Ch. 6 and 7 respectively. Some necessary
extensions to the core PN will be introduced. Ch. 5 will show how PN with
associated rate functions can be analysed. This chapter is based on Blitke et al.
(2011), Heiner et al. (2008) and Petri and Reisig (2008).

4.1 Reaction equations

Consider the following chemical reactions:

S1+2Sy — S3
S1 — 0
They describe a system consisting of two concurrently enabled reactions with the

behaviour that the two reactant species S and Sy in the respective quantities of
1 and 2 can react to form the product species S as well as that species S1 may

28 Petri Nets

decay. This notation is typically used to describe chemical equations. Below we
will see how these kinds of reactions can be illustrated as PNs.

4.2 Petri net definition

A PN is given by the quadruple PN = (P, T, f,mgo) where P is a set of places,
T is a set of transitions, f is a function that describes a set of directed arcs by
non-negative integer values f : ((P x T) U (T x P)) — Ny and finally mg is an
initial marking of the places mg : P — Np.

A PN is illustrated using the following elements:

O [] — o

Place Transition Arc Token

Places A place p can contain any discrete amount of tokens and may have arcs
pointing to any number of transitions.

Transitions A transition ¢ may have arcs pointing to any number of places.

Arcs Arcs are used for pointing places to transitions and vice versa. The multi-
plicity of the edge from place p to transition ¢ is denoted f(p, t), likewise the
multiplicity of (¢,p) is denoted f(t,p). The multiplicity of non-connected
components is by definition 0.

Tokens Tokens indicate the marking of a given place. The marking of place p
is denoted m(p).

Let m be the current marking of the PN (initially mg) and let ¢ denote the
pre-places of transition t: the set of places that have outgoing arcs connected
to t. Similarly te is the post-places of transition t.

The firing rule describes the dynamics of a PN: a transition ¢ is enabled for
the marking m if all of its post-places contains sufficient tokens, i.e. if Vp €
ot : m(p) > f(p,t), otherwise it is disabled. Thus a transition without any
pre-places is always enabled.

A transition that is enabled may fire. If a transition ¢ fires, the multiplic-
ity of each incoming arc is subtracted from its corresponding pre-place and

4.2 Petri net definition 29

the multiplicity of each outgoing arc is added to its corresponding post-places
to obtain a new current state m’, i.e. when ¢ fires then Vp € P : m/(p) =
m(p) — f(p,t)+ f(t,p). This means that the amount of tokens is not necessarily
preserved.

The firing of an enabled transition takes no time and happens non-deterministically
as there is no timing requirements of transitions firing when enabled. Only one
transition is allowed to fire at any given time instant.

A set of chemical reactions is represented as a PN by representing each molecule
as a place. The reaction arrow is represented by a transition with ingoing
arcs from places representing reactants and outgoing arcs to places representing
products. Fig. 4.1 represents the simple reaction system from Sec. 4.1 as a PN.

Sa

S3

S1

Figure 4.1: PN of two simple chemical reactions. Notice the multiplicity on
the ingoing arc from S, to the transition.

4.2.1 Example: predator-prey

Now consider a simple predator-prey model described by the following reaction
equations:

Prey — 2 Prey
Prey + Predator — 2 Predator
Predator — ()

That is, prey can reproduce at will, the predators need to eat a prey in order to
reproduce and the predators die. Notice that it is assumed that preys do not die
unless eaten.

These equations translate into the PN illustrated in Fig. 4.2 by using reactions
as transitions and reactants and products as places. Fig. 4.2 assumes an initial

30 Petri Nets

state of 2 Prey and 1 Predator.

Prey Predator

birth predation death

Figure 4.2: The predator-prey model as a PN.

The PN is formally described as:

P = {Prey,Predator}

T = {birth,predation, death}

f = {(Prey,birth) =1,
(Prey,predation) = 1,
(Predator, predation) = 1,
(Predator,death) = 1,
(birth,Prey) = 2,
(predation,Predator) = 2}

m = mgy = {Prey = 2,Predator = 1}

Initially all of the transitions in 7" are enabled. Assuming that predation fires
gives rise to the state my = {Prey = 1, Predator = 2} still leaving all
transitions enabled. Assuming predation fires again gives mos = {Prey = 0,
Predator = 3} leaving only death enabled. Now death fires 3 times yielding
ms = {Prey = 0, Predator = 0}.

4.2.2 Extensions

In order to extend the expressiveness some typical extensions to the core PN lan-
guage are introduced. With the introduction of the inhibitor arc PNs becomes
turing complete, Zaitsev (2013), why any other extensions introduced can be
regarded as macros of this set and will not be formally introduced.

4.2 Petri net definition 31

4.2.2.1 Inhibitor arc

The inhibitor arc disables transition ¢ if any of its pre-places are connected with
an inhibitor arc to ¢ while having sufficient tokens. With this addition we now
have: PN = (P, T, f,i,mp), where i is a set of directed inhibitor arcs by a non-
negative integer value i : (P x T') — Ny. Let xt denote the pre-places to t from
i.

Transition ¢ is now only enabled if Vp € ot : m(p) > f(p,t) and Vp € *t : m(p) <
i(p,t) as illustrated in Fig. 4.3.

O @ 40

©— O

Figure 4.3: Behaviour of the introduced inhibitor arc.
Top left) The transition is enabled.
Bottom left) The transition taken.
Right) Transition is disabled.

4.2.2.2 Read arc

The read arc can fire transition ¢ (if enabled) without removing any of its pre-
place tokens. Fig. 4.4 illustrates its graphical representation and how it can be
regarded as just a macro of the already introduced components.

O—a T

Figure 4.4: Left) The read arc. Right) Semantically equivalent.

32 Petri Nets

4.3 Rates of firing

For the PNs to be of any use in modelling we need to specify firing rates for
the transitions. A firing rate)\; for transition ¢ can either be a constant value
or some expression that depends on the individual markings of et. Further,
the type of firing rate instructs how to analyse the PN, where the type can
be either continuous or stochastic giving rise to continues petri nets (CPN) and
stochastic petri nets (SPN) respectively. Both types are formally introduced and
discussed in Ch. 5. The visual representation of such PNs remains unchanged
but for reaction equations the firing rate is written above the reaction arrow as
follows:

Sl+521>53

With knowledge of such rates the modifier arc is introduced. It has no influence
on transitions and places, thus transitions with only ingoing modifier arcs are
always enabled and do not consume any tokens upon firing. The modifier arc is
used in models to alter the reaction rates and is often used to model inhibition
using inverse rate functions as explained in Sec. 6.2 on page 50.

Figure 4.5: The modifier arc

4.4 Discussion

The expressiveness of the inhibitor arc becomes greatly limited with the in-
troduction of rates and is most likely to be replaced by network constructs or
modifier arcs with inverse rate functions that are in better cohesion with the
kinetics. We have included the inhibitor arc to inform about its behaviour as it
is very often encountered in literature. Some PN editors such as Snoopy, Heiner
et al. (2012b) do not support the inhibitor arcs during exportation to SBML and
only uses them internally for simulation using a custom behavioural definition
of the arc.

The reasons for employing PNs instead of just using reaction equations are
two-fold:

e It makes the creation of models more intuitive as one easily can see how

4.4 Discussion 33

the species are connected as well as allowing animating token movements
of simulation traces for debugging of designs.

e It is highly analysable where for example liveness, reachability and bound-
edness easily can be assessed using available third-party tools. These types
of analysis can be used as foundation for genetic compiler optimisations.

34

Petri Nets

CHAPTER 5

Quantitative Analysis

We turn the attention on how to analyse petri nets (PNs) to give predictions on
how the amount of involved species will evolve over time. Manual or automated
inspection of such time-series can then asses the quality of the given model
compared to some desired specifications such as behaviour, latency and resulting
strength of protein concentrations. Much like voltages in electric circuit design.

In Sec. 4.3 we mentioned two types of PN with associated rate functions, namely
continuous petri net (CPN) and stochastic petri net (SPN). These types are
nothing more than instructions on how they should be analysed; CPNs should
be analysed using continuous and deterministic approaches and SPNs should
be analysed using stochastic approaches. Examples of both approaches are
presented in this chapter.

Such analysis methods are not exclusive to the PN structure and are therefore
presented using the following notation: a system consists of N chemical species
S1, ..., SN interacting through M reaction channels Ry, ..., Ry; with associated
kinetic functions A1, ..., A\ps as well as the state-change vectors vy, ..., v where
v; = V14, ...,Un; and v;; denotes the change in species S; when firing reaction
R;. X (t) is the state at time ¢ and denotes the individual markings of the N
species X (t) = {X1(t), ..., Xn(¢)}.

Biochemical systems are often composed of relatively few molecules from a few

36 Quantitative Analysis

reactant species, Gillespie (1977), so in order to understand the need for stochas-
tic approaches it is motivated why the deterministic and continuous solution
alone often are insufficient for models having these characteristics. Solutions
obtained using these two approaches are fundamentally different in the sense
that the deterministic approach gives a single solution whereas a stochastic sim-
ulation gives rise to single random trajectory. The later is usually repeated in
order to obtain a representative average.

Both methods assumes that the systems are well stirred, or spatially homoge-
neous, as it is otherwise needed to track the position and speed of each molecule
which quickly can become intractable. Some approaches removing this spatial
constraint have been developed and are discussed in the end of this chapter
along with other more novel approaches.

Due to the desire to solve increasingly large and detailed biochemical systems
we also present run-time analysis of the presented algorithms.

5.1 Law of mass action

Relating to PNs and letting the transition p relate to reaction R, often the rate
function of reaction R, is somehow dependent on the markings of the reactant
species oy. In the predator-prey example from Sec. 4.2.1, such functions can be
used to describe the following logical deduced population characteristics:

1. The rate of any prey to reproduce increases with the amount of prey
present.

2. The rate of any predator to reproduce, by consuming a prey in the process,
increases with the number of prey and predators present.

3. The rate of any predator to die increases with the number of predators
present.

The kinetics of R,, denoted A, may be determined using the law of mass action
by Waage and Gulberg (1864) which, although developed for chemistry, gener-
alises these types of observations and is applicable to many types of population
dynamics. The law basically states that for R,, the rate function A, can be
determined as:
M=k [X (5.1)
Sicop

5.2 Deterministic methods 37

That is, A, is the product of a reaction specific constant %, and the product of
all the reactant species.

5.2 Deterministic methods

CPNs can be analysed using ordinary differential equations (ODE). These equa-
tions are relatively straightforward to solve numerically but will not be able to
capture the typical non-negligible fluctuations occurring in biochemical systems
of smaller quantities, Levine and Hwa (2007); McAdams and Arkin (1997).

To motivate these problems further, consider the predator-prey example. The
model from this example can be analysed by applying Eq. (5.1) the law of mass
action to 1)-3) as follows :

d[lzl Zey] = ky[Prey] — ko[Prey][Predator]
W = ka[Prey][Predator] — ks[Predator]

Here k; describes the rate of 1) and represents the rate of Prey birth, ko the
rate of Predation of 2) and k3 the rate of Predator death of 3). Given the initial
condition that Prey = Predator = 100 as well as setting k; = 10, k3 = 0.01 and
ks = 10 gives rise to the numerically obtained solution depicted in Fig. 5.1.

—— Prey — Predator ‘
6,000 = 7 7 T 3

N
o
(==
[«

2,000

Concentration

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

Figure 5.1: Numerical solution of the ODE based Predator-Prey model. The
highly cyclic behaviour continues indefinitely.

38 Quantitative Analysis

Inspection of Fig. 5.1 reveals that both populations gets quite close to extinction
in each cycle. Population dynamics at this level of coarseness is in reality consid-
ered a somewhat random process so it can be expected that in some trajectories
extinction could actually occur, i.e. the following three types of trajectories
should be possible:

e All prey get eaten so no one will be left to reproduce and all the predators
will eventually starve to death.

e All predators die so no one will prevent the population of prey from in-
creasing indefinitely.

e While both species are present in the system, oscillating behaviour similar
to that of Fig. 5.1 will occur.

As Fig. 5.1 reveals the deterministic solution is unable to describe the (propa-
gating) effects from the random fluctuations, hence the first two types of solution
trajectories will never be observed.

Another problem with the deterministic approach is that it gives rise to con-
tinuous values that can cause imprecision in small molecular quantities that
only make sense to measure in discrete quantities as for example the binding of
promoters. Also notice how the ODE based model cannot satisfy the discrete
valued edge multiplicities as e.g. any non-zero real concentration of prey influ-
ences the birth rate of further preys as in the case where 0.2 Prey leads to a
Prey birth even though the PN dictates that 1 Prey is necessary. To overcome
these shortcomings we turn the attention to stochastic methods.

5.3 Stochastic methods

SPNs are analysed using either the chemical master equation (CME) or by
a stochastic simulation algorithm (SSA) that simulates a random trajectory.
Two equivalent and exact! SSAs were presented in Gillespie (1977): the direct
method SSA and the first reaction method SSA. These algorithms are today
considered the gold standard in stochastic simulation and are used as foundation
for numerous refined approaches. In this section we present and analyse the
CME and the direct method SSA.

The stochastic models calculate the likelihood of reacting by the elapsed time it
has been enabled, so that the longer the reaction has been enabled, the greater

LGeneralises the CME.

5.3 Stochastic methods 39

the probability is for it being fired. Such behaviour is expressed by a poisson
process using an exponential distributed random variable T, € [0, 00) that de-
notes the waiting time that has to elapse before firing reaction R,. So T, has
the probability distribution:

fr, (1) = Ay - e AT (5.2)

5.3.1 Propensity

In the context of stochastic analysis the rate function A is often referred to as
a propensity function as it now expresses a likelihood or inclination towards
firing. In the remainder of this thesis a will denote the stochastic rate function.
Again the law of mass action is a very common scheme that gives rise to the
propensity a, of reaction R, often being defined as:

ap = cuh(p) (5.3)

That is, the product of a stochastic reaction rate constant c, as well as a com-
bination function A typically defined as the law of mass action:

hp) = H Xi (5.4)

Sicop

The calculation of ¢, for a bimolecular reaction on the form Sy + S5 SN S3+ ...
was derived in Gillespie (1977) as:

cp = Q tr(ry + 7“2)2612])” (5.5)

Using the simplifying assumptions of Brownian dynamics that relates reaction
rates to spherical collisions in a constant volume €2 with radii ; of the molecules
and the average relative speed Sy sees S; moving at 12 as well as the proba-
bility p,, of firing if colliding. Naturally Eq. (5.4) cannot directly account for
bimolecular reactions when S; = S5 so here a, = ¢, (h(p) —1)/2.

. Cp .
For a monomolecular reaction on the form S; — S, + ... where reactions occur
spontaneously, the constant c, relates to the quantum mechanical workings of

Si.

Trimolecular reactions and higher can then just be considered as a sequence of
bimolecular reactions. This formulation requires only a constant ¢ to be uniquely
supplied for each reaction where Gillespie (1977) also showed how the stochastic-
and deterministic-constant ¢ and k respectively relate: for monomolecular re-
actions ¢, = k, and for bimolecular reactions ¢, = k,/2. Any n-molecular
reaction should be considered as a chain of bimolecular reactions so ¢,, Q1

40 Quantitative Analysis

An important thing to note is that a deterministically obtained rate constant k&
is not necessarily directly applicable as the constant ¢ in a stochastic analysis.
A very common mistake or assumption made is to treat these as equal due to
the difficulty of obtaining rates as will be further elaborated in Sec. 6.3. As
the ratio between constants is the most determining factor, the effect of this
mistake or assumption is typically negligible but depends on the particular case
as explained in Wu et al. (2011) which also presents a method to convert these
rates between a stochastic- and deterministic model.

5.3.2 Chemical master equation

As X(t) is a discrete jump Markov process, the probability of each transition
is only determined on the current state and do not take history into account —
although the input network can be modelled to accommodate for this with the
risk of state-space explosion.

The CME describes the probability P(z,t|xq,to) of the system to be in the state
X(t) =z given X (tp) = xg as

dP(z, t|xg, t "
dP(,tlzo,to) _ 3" aj(@ —v;)P(e — v, tlzo, to) — a;(x) P(w, tlzo, to) (5.6)
dt =~

That is, the probability of arriving at x at time ¢ is the probability of arriving at
x from the associated state-change vector v; to reaction R; minus the probability
of leaving x by v;.

The CME implicitly calculates every possible trajectory of the systems which is
intractable for all but the smallest examples.

5.3.3 Gillespie’s direct method

This SSA simulates a single trajectory true to the CME so repeating and aver-
aging approximates the solution obtained from the CME.

Instead of solving with a sufficiently low dt to capture the dynamics, often re-
calculating the same state multiple times, this method only needs to recalculate
the current state after a reaction has occurred, see Algorithm 1. Gillespie’s al-
gorithm basically progresses by repeatedly asking the two questions: 1) which
reaction is the next to occur? and 2) when does it occur? These questions

5.3 Stochastic methods 41

Algorithm 1 Gillespie’s direct method
Input propensity functions to a; (j=1,...,M)
Input initial markings X (0)
Sett =0
Initialize URN
repeat
Calculate a; (j=1,....M)
Set apg = Z]A/il Qj
Generate 1 and ro from URN
Take 7 = (1/ag) In(1/r1)
Find p, the smallest integer satcisfyingz:?:1 a;j > roag
Generate the state X (t +7) = X (t) + v,.
Putt=t+r
until Satisfactory results

are answered probabilistically by the joint probability density function (PDF)
P(u,7) where p indicates that reaction R, occurs at time 7.

ag is here defined as the sum of all propensities:

M
agp = Za] (5.7)
=1

r1 and ro are two random numbers in the range [0;1] drawn using a uniform
random number (URN) generator. 7, the time for the next reaction to occur, is
then determined as:

7= (1/ap)In(1/ry) (5.8)
Fig. 5.2 illustrates how aq affects 7. Finally reaction R, is identified as being
the reaction with the smallest p fulfilling the following:

m
Z a; > r2a9 (59)
j=1

Which describes a PDF of the form a,/ag. So if e.g. a9 = 225 and a; = 50,
az = 75 and az = 100. Then the probability of selecting reaction R3 becomes
100/225 ~ 0.45.

5.3.3.1 Run-time analysis

As each of the operations have the following complexities the run-time complex-
ity for performing one step is linear to the number of reactions O(M):

42

Quantitative Analysis

10-2 |— @0 =50—ag="T5——ao =100 |
8‘ \ \ \ T

T

Figure 5.2: Illustrating Eq. (5.8) on how aq affects the choice of 7. Here

depicted for ag = 50, 75 and 100. 7 is the URN r; so that if
r = 0.40 and ag = 100 then 7 = 0.01

Calculating the M propensity values requires O(M) time. As at most two
molecules are allowed to collide in a single step the propensity function
will take constant time to calculate?.

Calculating ag requires summing each of the M propensity values O(M).
Calculating 7 takes constant time.

Retrieving u requires O(M) as each of the M reactions may need to be
evaluated.

Updating the current markings takes O(N) time as a single reaction is
allowed to have up to N species as products. As degradations always
should be specified for each species we have that N < M hence in total
O(M).

Due to the stochastic nature it is difficult to statically make bounds of the
number of steps required to simulate a given interval, and as formulated in
Gillespie (2007) "Any procedure that simulates every reaction event one at a
time, no matter how efficiently it does that, is simply too slow for many practical
applications” so we have to take a look at improving this simulation algorithm.

2 Assuming it only consists of constant time arithmetic.

5.4 Discussion 43

5.3.3.2 Refinements and extensions

Below are some typically encountered refinements and extensions to the Gillespie
algorithm:

Next Reaction Method Gibson and Bruck (2000) By only updating the re-
actions whose propensity has changed, while using a binary search tree
to retrieve u, brings down the asymptotic running-time to O(log(M)) per
step for weakly coupled networks (reactants and products in any reaction
are bound by a constant) and O(M) otherwise.

Composite-Rejection Slepoy et al. (2008) By maintaining a grouping of reac-
tions by their current propensity and employing techniques similar to the
Next Reaction Method, it is possible to bring down the running-time to an
expected O(1) per step for weakly coupled networks and O(M) otherwise.

Tau-leaping Gillespie (2001) This method trades exactness for simulation speed
by setting 7 to a predetermined interval instead of going to the next reac-
tion firing, allowing multiple reactions to fire within a single leap. This has
been shown to speed up the simulation by up to 4 orders of magnitudes
without experiencing a significant loss in approximation. As reactants can
be consumed more times within a leap than what is available, tau-leaping
introduces the risk of observing negative populations. Several fixes to this
shortcoming have been proposed in Tian and Burrage (2004); Chatterjee
et al. (2005). Much ongoing SSA enhancement research refines or extends
this idea of tau-leaping.

Delayed Stochastic Simulation Bratsun et al. (2005) Extends the Gillespie
algorithm to account for delayed kinetics. This addition allows users to
specify a minimum time from a given reaction is enabled to it is allowed
to fire.

These techniques can be combined into very expressive and efficient ways of sim-
ulating. Due to the low implementation overhead a combination of Tau-leaping
and the Next Reaction Method is widely used in many stochastic simulation
applications.

5.4 Discussion

Hybrid approaches that use both deterministic and stochastic methods have
been proposed in e.g. Alfonsi et al. (2004); Menz et al. (2012) often referred to

44 Quantitative Analysis

as slow-scale SSA. Solving a system deterministically is orders of magnitudes
faster than using any explicit stochastic simulation approach. The idea is to
switch methods when sufficiently large quantities of species becomes present
as the stochastic effects here becomes negligible anyway. Gillespie (2007) also
proved this to work while employing tau-leaping.

Recent developments on both reducing the dimensionality of the CME as well
as developing numerical solvers and heuristics tailored for it, shows promising
results. The Finite State Projection Method by Munsky and Khammash (2006)
is one such example that in some selected cases outperforms the SSAs based on
tau-leaping.

Modelling cell divisions and growth rates are deemed important when the reac-
tions rates in comparison are slower as can be the case for protein production
from infrequently expressed genes. A modification to Gillespie based SSAs tak-
ing this into account is presented in Lu et al. (2004).

Simulation methods taking full spatial information into account are in general
computationally limited to handle only very small quantities of species. In order
to overcome this, models which only partially considers the spatial attributes
are being considered, Burrage et al. (2011); Wylie et al. (2006), but are still
very computational demanding. The main driving-force of these methods is to
group the spatial inhomogeneous compartments into less inhomogeneous sub-
compartments where the coarseness of these groupings are determined by the
available computational resources. Each of these sub-compartments can then be
solved in conventional manor where crosstalk is modelled as additional reactants
with reaction rates corresponding to their spatial attributes. Having to support
spatial heterogeneous systems also introduces the difficulty of having to capture
the spatial attributes.

CHAPTER 6

Modelling

Because of the inherent stochastic behaviour in biochemical systems such as gene
expression, the stochastic petri net (SPN) described in the previous chapters is
an excellent fit to be used to model and describe gene expression in general and
genetic devices composed of parts in particular.

In this chapter we will present how the different parts and processes involved
in gene expression can be modelled as networks, how parameters for the models
can be found and what these parameters represent. Furthermore we will go into
details with a case study of a genetic device, namely a negative feedback device
for which a SPN model, the parameters for the model and simulations of it will
be shown.

In the prokaryotic cell the processes transcription and translation of gene expres-
sion have been demonstrated noisy, i.e. stochastic, in several experiments, e.g.
McAdams and Arkin (1997); Elowitz and Leibler (2000). Furthermore fluctua-
tions of the concentration levels are very common in gene expression, Chalancon
et al. (2012), these fluctuations can be caused by e.g. the low concentration of
molecules causing the reactions to be less predictable. The fluctuations can also
be a result of the cellular environment in general, which is never completely
homogeneous across different cell populations. The stochastic behaviour of bio-
chemical systems in general and gene expression in particular makes SPNs an
excellent choice as model.

46 Modelling

A model based on SPN is highly extensible, thus a SPN model of gene expression
can always be extended with more details, e.g. the entire process of translation
happening in the ribosome, how the RNA polymerase binds to operators and
initiates or represses transcription or how the protein folds after translation
has finished. The SPN model is intuitively understandable and is a great way
to explain rather complex processes happening in biochemical systems. Using
SPNs to model these biochemical systems also enables easy model checking and
verification of certain mathematical properties of the models.

6.1 Abstraction level

Gene expression can be modelled on many levels of abstraction, e.g. Roussel and
Zhu (2006) models all stages of the transcription process described in Sec. 2.3.1
on page 11: RNA polymerase binding to the promoter, the RNA polymerase
moving down the DNA and finally termination of the transcription. Another
paper, Arkin et al. (1998), models how the ribosome binds to the mRNA and
translates the codons into amino acids.

Common for these different models is that they can be described as biochemical
reactions, which in turn can be expressed as SPNs. The following reactions
describing gene expression are adapted from Ribeiro et al. (2006):

RNAP(t) + Pro(t) 2 Pro;(t +71) + RNAP(t + 72) + niri(t +73) (6.1)
LN (6.2)

In Reaction (6.1) gene expression of gene i is described, where RNAP is RNA
polymerase, Pro; is the promoter site, r; is the protein created during the
translation of the mRN A created during transcription. t is the time, 71, 72 and
73 are the times for each of the products in the reaction to become available
in the system. n; is a constant associated with the rate of translation and
transcription describing the protein production rate. k; is the rate constant
for RNAP to bind to the promoter site on the DNA. Note that in one step
this reaction expresses how RN AP binds and how transcription and translation
produces protein. A lot of details are omitted here, e.g. the inherent delay in
gene expression when ribosomes start translation. Reaction (6.2) represents the
decay of the protein happening with the rate constant £; ».

Note that we are not providing any information about which rate laws are used
with the rate constants k; and k; 2. The law of mass action explained in Sec.
5.1 is often used as rate law, thus in the remainder of this chapter we will use

6.1 Abstraction level a7

¢; above the reaction arrow when the symbol should be used as rate constant in
the law of mass action and if a custom rate function is used we use a;.

Referring to Reaction (6.1) we want to abstract away the RNAP binding to the
promoter site, but we want to be more specific on mRNA production and decay.
The following altered, simplified biochemical reactions take this into account:

DNA *% DNA + mRNA (
mRNA =5 mRNA + r (
mRNA 25 () (

r =250 (

These reactions describe the central dogma, refer to Ch. 2 on page 7, with decay
of the mRNA and the gene product r. The rate function a; represents the
constant transcription rate of the specific DNA when the promoter is available,
c1 represents the translation rate of the mRNA and the rate constants ¢o and
c3 represent the decay rates of mRNA and the gene product r respectively.

Here a; is a rate function because the availability of the promoter decides if
transcription is enabled, thus the rate function a; should evaluate to 0 when the
promoter is unavailable and greater than 0 otherwise. The other rate constants
¢; are used with the law of mass action.

We will focus on simple models with simple pathways, which is why we in the
following sections build models with a few assumptions:

e Constant temperatures in the cell environment.
e Only one cell is considered, i.e. no cell-to-cell interactions are modelled.

e No protein-protein interactions, e.g. reactions between different proteins,
do not happen unless specified.

6.1.1 Case study: Negative feedback loop

The reactions above omit details about regulation. In this section we show
an example of a gene with a negative feedback loop where the promoter is
negatively regulated by the protein produced by the gene itself. This gene is
part of a genetic oscillator device (device A), Stricker et al. (2008), though we
have slightly simplified the model to be able to incorporate modelling parameters
from another genetic oscillator device (device B), Elowitz and Leibler (2000).

48 Modelling

Device A, see Fig. 6.1, consists of three identical hybrid promoters repressed by
Lacl protein in the absence of isopropyl S-D-1-thiogalactopyranoside (IPTG)
and activated by AraC protein in the presence of arabinose. The protein coding
sequences araC!, lacl and yemGFP? were placed under control of these promot-
ers, thus co-regulating each other. The system exhibit positive feedback when
AraC is produced and negative feedback when Lacl is produced.

a + Arabinose

e oz

- IPTG

'I'_m-_
1

(a) Device A. The small, light colored boxes represent the promoters and the other

boxes represent the protein coding sequences. Figure from Stricker et al. (2008).
IPTG

Arabinose l

l
\J

araC lact yemGFP

(b) Device A in the format used in this thesis.

Figure 6.1

Device B, see Fig. 6.2, contains a cyclic negative feedback loop with the pro-
tein Lacl from E. coli repressing transcription of TetR from the tetracycline-
resistance transposon Tnl0 gene, which in turn represses expression of Acl from
the lambda phage gene which finally represses Lacl expression in E. coli. The
genes are manipulated to align the overall behaviour enabling oscillations, i.e.
the behaviour is described by the rates of transcription, translation and decay.

1In general when referring to proteins the first letter is capitalised, e.g. AraC, and when
referring to genes (or protein coding sequences) the first letter is small, e.g. araC.
2Producing green fluorescent protein, used as a reporter gene.

6.1 Abstraction level 49

P lac01

amphf
tetR-lite

28C101

- WP
origin R

lacl-lite

A cl-lite

P, tet01

(a) Device B, here depicted in plasmids. The diagram in the middle shows how the
different genes repress each other. Figure from Elowitz and Leibler (2000).

|

I—’mln—\Tl;’.-:[I:.-I

tetR lacl lambda_cl

(b) Device B in the format used in this thesis.

Figure 6.2

Because we only want to show the negative feedback loop we make assumptions,
abstract details away from device A and incorporate some details from device
B:

e In wet-lab experiments the yemGFP gene is very important, as this is
used to determine the protein levels at certain time intervals, in computer
simulations we can read the levels directly, thus we will not model this
part.

e Presence and absence of IPTG and arabinose is not modelled, we assume
the rate constants chosen will reflect this.

e In device B the three genes behave alike, we use this fact to replace the
hybrid promoter from device A with the lacl promoter from device B. This
promoter also exhibits repression from the Lacl protein.

e The promoter from device B is assumed to have two operator sites, to

50 Modelling

simplify the model we assume only one operator site is present.

The resulting gene described above and its reactions describing promoter regu-
lation is shown in Fig. 6.3. Here the species Py, - Lacl indicates that Lacl has
been bound to P,.. The rate constant c4 typically will be close to 0 because
Lacl represses the promoter. The rate constants co and c3 represent the rate
of binding and unbinding. ¢; is the transcription rate constant and cs is the
translation rate constant. cg and c; are decay rate constants. If the promoter is
strongly regulated by the protein the rate constant co will be considerably larger
than c3, meaning the protein binds to the promoter almost instantly when it is
present and unbinds at much lower frequency.

The rates of these reactions do not follow the Reactions (6.3)-(6.6), but the
modelling parameters given in Elowitz and Leibler (2000) require the reactions
to have rates on this form.

Prac <% Plgc + mRN A
Proc + Lacl 225 Py, - Lacl
Piac - Lacl 25 Py + Lacl
Pia. - LacI %% Py - Lacl + mRN A
:A_-J mRNA % mRNA + Lacl
Plac mRNA =5 ¢

lacl o
Lacl =5 ()

Figure 6.3: Negative feedback device and its reactions.

Note that we are fully aware that these alterations of the genes might not be
possible in wet-lab experiments, but for now this case study is used as proof-of-
concept of how we can model genetic devices with SPNs. Later we will argue
why this suffices.

6.2 SPN representation

Now we will show how we can make a one-to-one mapping from biochemical
reactions to SPNs. Biochemical reactions map to SPN similar to how chemical
reactions map to PN, see Sec. 4.2. In the following we will name transitions as
well, to indicate which reaction is occurring.

6.2 SPN representation 51

6.2.1 Parts and processes

SPN models of different genetic devices will share some similarities, e.g. a
model of a repressed promoter in one genetic device will have a certain design
that might only be slightly different than the model of a repressed promoter
in another genetic device. Each of the transcription, translation and decay
processes will also often be modelled identically in different SPN models.

To ease the construction of new models of genetic devices we have modelled
these general parts and processes here. These models can serve as templates for
new models.

The promoter is modelled by one place Pro or several places Pro_i, i € N,
indicating different states of the promoter, i.e. if RNA polymerase can begin
transcription or not. Thus the promoter places will not represent a molecule,
but will function as a kind of Boolean operator turning something on and off,

which is exactly the way a promoter can be explained: turning a gene on and
off.

Constitutive promoter This can be modelled with the marking m(Pro) =1
and a read arc from the Pro place towards the transcription transition.
The read arc ensures that mRNA can be transcribed at all times because
the token is not consumed.

©—

Pro transcription

Negatively regulated promoter The protein negatively regulating the pro-
moter is represented by the place P and the place Pro_2 represents the re-
pressed promoter. The regulation transition is only enabled when there
is protein present, if this is the case the token from Pro_1 will be con-
sumed, a token from P will be consumed and a token will be produced at
Pro_2, and transcription will not be possible. The marking m(Pro_1) =1
indicates that the promoter initially is available for transcription.

52 Modelling
regulation P
unbinds Pro_2 transcription_repressed
O, o]
Pro_1 transcription mRNA

Sometimes transcription also takes place when the promoter is bound (but
at a low rate), this can easily be modelled by adding a low rate transition
with Pro_2 as reactant and mRNA as product. Negative regulation can also
be modelled without places representing promoters by adding modifier
arcs directly from the repressor protein to the transcription transition,
an example of this including an appropriate rate function is outlined in
Sec. 6.4 on page H9.

Positively regulated promoter The protein positively regulating the pro-

moter is represented by the place P, here with the marking m(P) = 1
indicating that the promoter is available. In this model the promoter will
only be available when the protein is present as the regulation transi-
tion produces tokens in the Pro place and the arc from the promoter to
the transcription transition is a regular arc, i.e. the token from Pro is
consumed every time an mRNA molecule has been produced.

regulation

—0

Pro transcription mRNA

We are aware this has low coherence with reality, as the promoter is not
"consumed" but available for transcription, but for modelling purposes
this is fine. If finer control is needed a new place Pro_2 representing
the non-active promoter could easily be introduced making it possible to
model unbinding of the protein from the promoter. This illustrates how
the flexibility of SPNs makes them a great choice for modelling of genetic
devices.

6.2 SPN representation 53

Transcription and translation The transcription transition produces to-
kens in the mRNA place which will enable the translation transition, which
will produce tokens in the protein place P.

mRNA P
transcription translation

The read arc from mRNA to the translation transition makes sure that
no mRNA is consumed when the transition is fired. Here the firing rate can
be a constant not taking mRNA into account. Another design choice could
be to move control into the firing rate by replacing the read arc with a
modifier arc. In this way the transition will always be enabled but only
fire when the firing rate is greater than 0, hence the firing rate needs to
take the mRNA place into account, e.g. mRNA-k where k is some translation
rate. The rate of translation depends on the amount of mRNA, meaning
that the firing rate often would be similar to the latter case.

Decay In the model shown above mRNA will keep growing as there is only an
outgoing read arc from the place. mRNA (and protein) degrades over time,
hence we need to model this behaviour. With an arc from the respective
place to a transition with no outgoing arcs, we ensure that the molecules
will go away over time. In the model below decay of a protein P is modelled.

decay_P

6.2.2 Case study continued

The next step in the creation of the model of the negative feedback device
presented earlier is creating the SPN. Fig. 6.4 shows how the device can be
modelled as a SPN. The model is created by considering the models of parts
proposed above and the reactions from Sec. 6.1.1 one at a time.

The reactions in Fig. 6.3 on page 50 correspond to each of the transitions
in Fig. 6.4. The negatively regulated promoter is modelled as shown above:
the regulation transition will be enabled whenever the marking of the places

54 Modelling

/

regulatio:

unbinds Plac_LacI

repressed_transcripti¢n

{—

Plac transcriptio: mRNA translation LacI

i

decay_mRNA decay_LacI

Figure 6.4: Negative feedback device as SPN. This is the SPN of the device
and its reactions from Fig. 6.3 on page 50.

Plac and LacI is greater than 0. The place Plac_LacI represents the repressed
promoter, which can exhibit transcription through the transition repressed_-
transcription. When the unbinds transition is fired the token from Plac_-
LacI will be consumed and a token at Plac and LacI will be produced.

6.3 Parameters

The SPN models of processes in gene expression described in the previous sec-
tion expresses the flow of the different species in genetic devices. To enable
simulations of the SPN models the firing rate for the transitions need to be
determined by different parameters describing the speed at which the different
processes take place.

We have previously discussed how the deterministic and stochastic rate-constants
relates, here we will explain how the deterministic rates for the biochemical re-
actions transcription, translation and decay presented in the previous section
can be interpreted. Often the change of amounts of species involved in the pro-
cesses mentioned can be explained using the law of mass action introduced in
Sec. 5.1.

Transcription The reaction rate for transcription is constant, i.e. it is not
dependant on the concentration of the reactants involved in the process,

6.3 Parameters 55

only on other factors, e.g. temperatures as mentioned before:
DNA % DNA + mRNA

Here it is not clear that the mRNA is only transcribed when the promoter
on the DNA is activated, this means the transcription is constant but
only when promoter is available. The amount of DN A will not change
over time but the amount of mRNA will, thus we define the reaction rate
as:

d/mRNA] d[DNA]
= a,
dt dt

=0

Where a is the transcription rate which is a constant and the change of
DNA is 0 as this amount will remain the same at all times. The equations
above only express the rates when certain processes can take place, a
model using these rates must accommodate for the lack of expressiveness
of when these processes can take place.

Translation As several ribosomes can translate one mRNA molecule at a time,
the translation rate must be dependant on the amount of present mRNA
molecules:

mRNA X mRNA +r
dr] d[mRNA|

7 = kmRNA], ==

=0
dt

Here k is some translation rate constant used in conjunction with the law
of mass action and r is the protein produced.

mRNA and protein decay The reaction above lacks information on change
of mRNA per time unit. Decay can be expressed as:

mRNA %5 ¢
w — _k[mRNA|

Where k is some decay constant. This gives us the total change of mRNA:

d[mRNA|

— o — k[mRNA
o a — k[mRNA]

The same holds for protein r mentioned in translation above.

Some of the rates above are described by the law of mass action but other rate
functions are allowed as well. In the law of mass action only the reactants in

56 Modelling

the chemical reaction in question are involved, but the general rate function for
biochemical reactions allows other variables than the reactants. Referring to Sec.
4.3 on Rates of firing in SPNs, these variables are usually called modifiers and are
not part of the biochemical reaction itself but might be products or reactants in
other biochemical reactions in the system and influence the biochemical reaction
because of its presence in the system. Fig. 6.5 is an example of how the rate
function can include a modifier variable.

IInducerProtein
|
|
: ﬁ : DNA % DNA + mRNA
d[mRNA] .
Pro transcription mRNA - k - InducerProtein

Figure 6.5: Positively regulated transcription. Only presence of Inducer-
Protein (and the promoter Pro) will result in transcription. No
InducerProtein or Pro is consumed by this transition. Here the
transition will only be enabled when Pro is present, and the rate
is following the amount of InducerProtein present.

6.3.1 Identifying rates

The simulation of the models should give an idea of how the synthetic engineered
genetic devices will behave when wet-lab experiments are carried out. Preferably
the parameters used to derive rate constants should be identified in other wet-
lab experiments to give the most accurate models. In a system of biochemical
reactions the ratio between rates should reflect the ratio between one reaction
happening more often than another. This means that often different parameters
with different units for different reactions have to be related to one another to
make them usable in simulations. The process of finding parameters for these
models to be used in computer simulations is not trivial and several challenges
have appeared:

e One huge challenge is the current lack of experimental data that can be
used to set the parameters of these models. Resources such as BioNum-
bers?, Milo et al. (2010), contains a lot of raw parameters from different

Shttp://bionumbers.hms.harvard.edu/

http://bionumbers.hms.harvard.edu/

6.3 Parameters 57

experiments, e.g. rates of transcription in different media expressed as
nucleotides per second can be found.

e The problem with data from sources like BioNumbers is that experiments
show that these parameters rely heavily on cell environment, temperatures,
protein concentrations and other factors.

e Different data have to be related to each other. E.g. the unit nucleotides
per second mentioned above needs to be related to e.g. translation ex-
pressed as amino acids per second.

e When relevant experiments have been found, the process of fitting the
data from the experiments and estimate parameters is quite complex as
well, Weiss et al. (2005); Lillacci and Khammash (2010).

The task of finding the accurate parameters for the rates boils down to reviewing
existing literature and experiments and fitting the data and results to get the
desired behaviour of the model. But if relevant data is lacking an experiment
has to be carried out, thus the task of identifying the correct parameters is a
huge area by itself and often detailed understanding of biology and performing
wet-lab experiments is needed.

Another difficulty, as mentioned in Ch. 5, is that empirically obtained deter-
ministic rates cannot always be used directly as stochastic rates although they
often make a good approximation.

6.3.2 Case study continued

We will now return to the previous case study of the negative feedback device.
Table 6.1 shows the rates for the biochemical reactions involved in the negative
feedback loop. The rates are based on the modelling parameters from Elowitz
and Leibler (2000) which in turn is based on the components used to compose
the oscillator.

The unit of the different rates above indicate that the law of mass action has
been used as rate function. It should be clear that the SPN combined with the
rates here model a behaviour where LacI is increasing or decreasing constantly,
thus experiencing negative feedback. Of course the rate constants presented
here play an important part in simulation of the model, e.g. if the half-time of
mRNA is too low translation might never be exhibited.

58 Modelling
Reaction Rate Comment
Piac RN Pige +mRNA 0.5s! Transcription from un-
occupied promoter.
Pioc + Lacl 22 Pioc - Lacl 1nM~ts™1 Binding.
Piac - LacI 225 Pia. + Lacl 951 Unbinding.
Pioc - Lacl sy Pioc - LacI + mRNA 5-107%s7! Transcription from re-
pressed promoter.
mRNA = mRNA + Lacl 0.167s 1 Translation.
c log(2
mRNA % (199(2) _ (005851 mRNA decay: 2 min
2-60 utes half-life.
log(2
Lacl =5 0 L() =0.0012s"! Protein decay: 10 min-
10- 60 utes half-life.
Table 6.1: Rates for the negative feedback device.
6.3.2.1 Simulation

Finally we have a complete model with the SPN model in Fig. 6.4 on page 54 and
the parameters for the transition in Table 6.2. The model has been simulated
using the framework presented in Ch. 7. Fig. 6.6 shows one simulation and Fig.
6.7 shows the average of 10 simulations.

Transition Firing rate function
transcription 0.5*Plac

regulation 1*xPlac*LacI

unbinds 9xPlac_LacI
repressed_transcription 5%10~(-4)*Plac_LacI
translation 0.167*mRNA
decay_mRNA 0.0058*mRNA
decay_LacI 0.0012*LacI

Table 6.2: The firing rate functions for each of the transitions.

Fig. 6.6 with one simulation clearly shows how there is some correlation between
the mRN A and Lacl concentration levels: Lacl is produced when there is small
spikes of mRN A, and decay of Lacl happens when there is no spikes of mRN A,
just as expected. Fig. 6.7 with 10 simulations shows the average behaviour of the
negative feedback device: a fairly stable production of Lacl in the concentration
level interval [320;370]. Again this is just as expected. Parameters of the model
can be tuned to exhibit more extreme behaviour, e.g. if the binding of Lacl
to the promoter is very strong, there will be a much greater span between the
minimum and maximum concentration levels of Lacl, see Fig. 6.8 where the
firing rate function of the unbinds transition is multiplied by 10! and the rate
function of the repressed_transcription is multiplied by 102.

6.4 Example: Oscillator 59

— mRNA— Lacl

400 - .

300 - .

200 |- .

Concentration

100 |- y

0, -~ -

| | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

Time

Figure 6.6: 1 simulation of the model of the negative feedback device.

— mRNA— Lacl
400 [T T T]

300 - a

200 |- .

Concentration

100 .

| | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

Time

Figure 6.7: 10 simulations of the model of the negative feedback device.
6.4 Example: Oscillator

Here we show how a genetic device can be modelled differently than shown up
until now. This example goes through the oscillator device used to construct
the negative feedback device studied in this chapter. The oscillator has already
been modelled by Elowitz and Leibler (2000), a description of the model has

60 Modelling

— mRNA — Lacl

Concentration

O - n A | = W |

| | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

Time

Figure 6.8: 1 simulation of the model of the negative feedback device with
stronger promoter binding.

been submitted to the BioModels Database* which we will be studying here.

Here it is interesting how relatively simple the model is: promoters and binding
of proteins to promoters are not modelled by transitions and places but simply
by rate functions on the transitions ts_LacI, ts_cI, etc. E.g. the rate function
(transition ts_LacI) for transcription of Lacl is described by:

ag - KM

Oy 4 —r " BAT
O+ 0§ o

(6.7)
This rate function is explained in detail in Appendix A, but it should be ob-
vious that transcription is decreasing when the concentration of ¢l increases.
The more simpler modifier arcs are used instead of e.g. read arcs, because the
behaviour of the model is primarily described by the rate functions (and not the
design of the SPN).

6.5 Discussion

In this chapter we have seen how we can go from a set of biochemical reactions
with rates to a complete SPN describing a desired behaviour. The mapping
from biochemical reactions to SPNs is unproblematic as SPNs are an extension
of PNs which originally were invented for chemical reactions. The challenge is to
define a satisfiable set of biochemical reactions defining the behaviour we want.

4http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012, the SBML format will be fur-
ther described in the next chapter about the implementation.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012

6.5 Discussion 61

cay_LacI
- - decay_mRNA_TetR
LacI
ts_
;U tl_Lacl mRNA_TetR
\
RNA_LacI t1l_TetR
s_LacI 7 TetR
\ ’ decay_TetR
\
ts_cIl
cl ---
tl_cI NA_cI

decay_cI
decay_mRNA_cI

Figure 6.9: The SPN model of the oscillator.

Initially the goal was to standardise how the different parts can be modelled,
but we soon realised that to do this we always need to be certain that specific
parameters can be obtained for specific reactions. There is a great challenge in
finding these parameters: often it is not possible to find the parameters that
fit in the specific reaction and the model needs to be modified to reflect the
available parameters.

Another issue arose in our review of different literature: there is no de facto
standard of describing the internal mechanics of parts in synthetic engineered
devices. Hence different literature describe these details of the parts and the
processes of gene expression on very different levels.

The purpose of modelling synthetic devices is to be able to predict the behaviour
of a device before the device is constructed in wet-labs and by that hopefully
save both money and time. This scenario is greatly desirable but the reality
is that this is still one of the main challenges in synthetic biology: to get the
level of understanding of biological systems to be able to construct a model with
all important interactions and parameters, see the email from professor Chris

62 Modelling

J. Myers, author of Engineering Genetic Circuits, in Appendix B. Currently it
is still very hard to find literature with experiments and models with complete
justification of all parameters that simulate the behaviour of the experiment
(Lodhi and Muggleton, 2010, Ch. 2).

The consequence of this is that detailed, e.g. time-series with protein levels,
comparisons of simulations of these models with wet-lab experiments is not
always meaningful, on the other hand the overall behaviour of these models can
still be compared with the desired behaviour of the wet-lab devices.

The case study of the negative feedback device shows that a SPN model with
appropriate parameters exhibit the desired behaviour, which is why we in the
remainder of this thesis assume the modelling techniques proposed here are
usable for modeling of genetic devices.

CHAPTER 7

A framework: DTU-SB

In this chapter we present a framework: DTU-SB!. The purpose of this frame-
work is to model synthetic engineered genetic devices and make simulations of
these models. In this chapter we will list the requirements for the framework,
sketch the overall architecture of it, go into details with some interesting parts
of the implementation and finally we will list how the framework can be used in
different use cases.

7.1 Requirements

The framework should be able to simulate arbitrary complex models of real
genetic devices. This means the theory from the previous chapters on SPNs,
modelling and simulation should be used to construct the framework.

The simplest form of the framework should be able to take some specification
of a model as input, internally this specification should be transformed to a
SPN, which in turn should be simulated using Gillespie’s direct method SSA
explained earlier. At last the result of the simulation should be presented in
some pre-defined format.

IShort for DTU Synthetic Biology.

64 A framework: DTU-SB

To allow comparisons with other tools, a very important requirement is that
input parsers and output formatters should be modularised. Specifically the
framework should allow the following modules:

e It should be possible to define custom parsers for arbitrary input speci-
fication languages. This allows support for an endless amount of model
specification languages.

e It should be possible to define a custom algorithm or easily modify or
extend existing algorithms for the simulator. This allows optimisations of
existing algorithms and experimenting with new algorithms.

e It should be possible to define custom output formatters.

e It should be possible to add intermediate compilers of the SPN models
produced by the input parsers. These compilers could be used to e.g. hook
up a database with additional information or by making optimisations on
SPN models.

One might notice that the framework sketched here differ from the proposed
tool-chain in Fig. 3.2 on page 22 in that the output here focuses on simu-
lation results rather than complete DNA sequences describing some synthetic
engineered biological function.

In addition to the requirements of the behaviour and features of the framework
described above, there is also some requirements to how the framework should
be implemented to achieve these features. As the framework is not only in-
tended as proof-of-concept but should form the basis for a long living modelling
framework for synthetic biology, the following requirements capture how this
can be achieved:

Maintainable It should be easy to modify, update and fix the current be-
haviour.

Flexible It should be possible to add functionality purely by adding new mod-
ules, not by modifying existing modules.

Testable It should be possible to verify the internal logic of the framework
components through test cases.

Wide OS Support The user’s operating system should not be an obstacle to
the availability of this framework.

7.2 Architecture and data flow 65

Maintainability, flexibility and testability often go hand in hand and can be
obtained simply by making the framework modular by implementing the de-
pendency injection design pattern. To support as many operating systems as
possible we choose Java as programming language, which run on the Java Vir-
tual Machine (JVM) on several operating systems. This choice also allows future
usage of the framework in the functional programming language Scala, which
compiles into Java bytecode (which can be run on the JVM), thus Java code
can be used directly in Scala code.

7.2 Architecture and data flow

Based on the requirements above we sketch the design of the foundation of the
DTU-SB Framework. Fig. 7.1 shows the steps involved in a simulation of a
model in the framework. The parts PARSER, OUTPUT FORMATTER and ALGORITHM
are all modules which allows custom made versions of these parts. To add
further extensibility the COMPILER consists of a chain of compiler modules as
well.

INPUT SPN

SPECIFICATION PARSER COMPILER
SPN
v
DATA SIMULATION INPUT
|f\‘j <—— (wmen [« DATA SIMULATOR > ALGORITHM
RESULT
S — -—) - J

Figure 7.1: Data flow from the specification of the model to the final result of
the simulation.

The SPECIFICATION is a model specification in an arbitrary specification lan-
guage. The PARSER will translate this specification into a stochastic petri net
(SPN), which will be verified by the COMPILER. One could imagine that the
COMPILER could have several other uses as well, e.g. adding more informa-
tion about specific modelling parts. The COMPILER will output a modified SPN
which the SIMULATOR can use as input. The SIMULATOR simulates the SPN us-
ing the ALGORITHM and outputs data that can be formatted using the OUTPUT
FORMATTER. The SPN used here will support regular arcs, modifier arcs, read

66 A framework: DTU-SB

arcs, places and transitions with rate constants and functions.

7.3 Review of formats and third-party libraries

We will not introduce any new formats or standards but leverage the formats
already used by the biology community. To avoid spending time on writing
parsers from the bottom-up, we will make use of third-party libraries for these
formats as well.

7.3.1 Input formats

By easily exposing the simulator to as many frontends and pre-defined setups as
possible, verification and comparison becomes much more manageable. Below
there is a short review of some popular description formats supported by various
applications.

SBML Systems Biology Markup Language, Finney et al. (2001), is an XML
based language for describing biological processes. It implements MathML
for describing mathematical relations such as reaction rates.

CellML The goal of CellML is similar to that of SBML but is more general
and have a more flexible syntax. SBML is practically a subset of CellML.
The teams behind SBML and CellML work in close collaboration and are
discussing the possibilities of merging the two languages.

PNML Petri Net Markup Language is an XML based language focused on
describing petri nets. PNML is similar to SBML in many ways but lacks
details about rates, thus the compiler must accommodate for this.

For now the framework will support SBML out of the box as it seems to be the de
facto standard with approximately 300 software tools making use of it. Several
libraries for reading, manipulating and writing SBML are available, specifically
we can make use of JSBML for Java. Furthermore many tools for converting
CellML to SBML are freely available on the Internet.

7.4 Implementation details 67

7.3.2 Intermediate format

The compiler compiles the specifications to an intermediate representation (IR)
which the simulator uses as input format. As the diagram in Fig. 7.1 indicates,
we use a custom defined SPN on the form of a simple Java data-holder class as
our IR.

Some of the advantages of using a custom defined SPN is that we can incorporate
special operations in the SPN and it allows seamless translation to PNML for
quantitative analysis and model checking using third-party tools as well as easy
visualisation, e.g. by using the DOT format (a graphics description language).

7.3.3 Simulation output formats

The raw format of the output from the simulations should be time series of
concentration levels of different interesting species involved in the reactions.
The comma-separated values (CSV) format is a common plain-text file-format
used to store tabular data such as time-series, which we will provide as one
output format.

To enable easy, immediate visualisation of the simulations we also provide a
GUI with a graph based on the JFreeChart library.

7.4 Implementation details

The class diagram in Fig. 7.2 shows the overall design of how the implemen-
tation support the data flow shown in Fig. 7.1, and how the different parts of
the framework are completely decoupled, making the framework maintainable,
flexible and testable as desired.

The diagrams in Fig. 7.2 and 7.3 capture the most important parts of the entire
framework. Each of the abstract classes and the Compiler- and Simulator-class
also have a method setParams(Parameters params) that can be used to pass
in an object with custom parameters — this avoids endlessly recompilations and
endless command line arguments when several simulations are required to find
the optimal simulation parameters.

In the diagrams the data-holder classes StochasticPetriNet, SimulationResult
and PlotPoint are shown (there are a few others not shown here). These classes

68 A framework: DTU-SB

triNet

<<Abstract>> <<Abstract>>
AbstractParser AbstractCompiler (<—< Compiler Simulator
| <<Abstract>>
SBMLParser VerifyCompiler GillespieAlgorithm _{> Algorithm

Figure 7.2: Class diagram showing the main parts of the implementation. The
classes in the boxes with bold borders are concrete implementa-
tions of the abstract classes.

<<Abstract>>
AbstractOutput- K> SimulationResult K> PlotPoint
Formatter
csv GraphGUI

Figure 7.3: Class diagram showing how output formatters are implemented.
Here CSV and GraphGUI are concrete implementations of the
AbstractOutputFormatter.

primarily holds data and implement methods making the data more accessible,
e.g. a method getSpecies() for extracting only the names of the species in-
volved in a simulation can be found in SimulationResult.

In the following we give a brief overview of how the different modules can be
implemented.

7.4 Implementation details 69

7.4.1 Input parser

Custom parsers can be implemented by extending the abstract class Abstract-
Parser and implementing the method parse (). We provide a parser for SBML,
namely the SBMLParser-class which takes input on the SBML form and translate
it into a SPN defined by the class StochasticPetriNet. The JSBML library,
Driger et al. (2013), has been used to parse the SBML into concrete Java classes,
which are used to form the SPN. We will not go into detail with how the SBML-
files are parsed, but just give a short review of some of the elements considered
in the SBML-format below:

e The compartment element (Hucka et al., 2010, p. 40) is ignored as we
only consider systems designed in one bacteria cell, thus we will ignore
the position of the different species in the cell.

e The initialAmount attribute on the species element is used as the initial
marking of the places in the SPN.

e We assume the SBML input is valid, thus we will not validate that a
species identifier used in a reaction is actually present.

e Rate functions on reactions consist of several elements holding different
parameters. These are recursively looked up until no more parameters can
be found — the remaining parameters are interpreted as unknown variables,
typically these will be species concentrations that change over time.

7.4.2 Compiler

Custom compilers can be implemented by extending the abstract class Abstract-
Compiler and implementing the method compile(StochasticPetriNet spn).
If errors happen in the compilation a CompilerException should be thrown.

7.4.3 Simulation and algorithms

The Simulator-class uses an algorithm specified in the Parameters-object. The
simulator can run several simulations of the same model at a time by spawning
several threads, usually the number of cores on the host will limit the number
of concurrent threads. Algorithms should extend the abstract class Algorithm
which in turn implements the Runnable-interface in order to be able to run
several instances of the algorithm in parallel. Specifically the run()-method

70 A framework: DTU-SB

needs to implement the details of the algorithm. The input to the algorithm
is shared among all instances of the algorithm, hence the input must not be

manipulated in the run() method.

7.5 Usage

The modularised design of the framework allows several ways of use. The Main-
class implements the default usage shown as data flow in Fig. 7.1. The Main-
class can be invoked from the command-line with several arguments: e.g. show
debugging information with the argument -debug and show a graph with the
simulation result with the argument -graph.

The framework can also be used as a Java library, the different components of
the framework do not depend on each other, meaning that e.g. the Compiler
can be completely omitted.

600
M Truth Table | | Description | SPN Graph simulation Parameters
(Load from SBML] | simulation 1 _[ISimulation2) [save | | Load |
130 Sh :
Library | Reload Library | low species: Iterations
= 120 () atc A
aTe = (GFP) Oa 41l
aTc = (GFP) 110 O o
\ toptime
Cl= (aTc) + (Ara) 100 \aan (] PBAD_Tet Pt .
Cl = @TO + (Ara) 7 WIN ™ ve 5,000|[s)
Cl= (GFP) + (Ara) 3N i () mRNA_CI Timeout i
GFP = (TetR) 8 o - - .
[YFP = (Ara' aTc) 2) Ara 60|[3)
Ara = (PTG lac) = 704l | () P_YFP_bound -
€ | - Output steps
£ 50l | Doy .
2 | 100][3
B 5o () mRNA_YFP &
g i
] [Threshold
g
g 404 | 8
8 | 0.05(3)
(Load Library Part 304
| Max threads
20 .
D | aie)
6 104f -
S . 0 [simulate | | stop
YFP = (Ara’ aTc) 500 1,000 1,500 2,000 2,500 3,000 3500 4,000 4,500 5000 -
Cost time [s] . N "
o Initial species concentrations.
e
Input species arc
aTe, Aral [0f On @
Intermediate species Debug info: (&) On () OFf | Clearlog | -
1
] 10:27:54.936 [poo]-3-thread-1] DEBLG > Gillespiealgorithn: Thread start: 30
Output species 001 -3-thread-3] DEBUG > Gillespiealgorithn: Thread start: 32
Yep ead-2] DEBUG > Gillespiealgorithn: Thread start: 31
ead-4] DEBUG > Gillespiealgorithn: Thread start: 33 e
ead-2] DEBUG > Gillespiealgorithn: Thread done: 31 in 10171 steps
ead-4] DEEUG > Gillespiealgorithn: Thread done: 33 in 10343 steps JE On @t
ead-1] DEBUG > Gillespiealgorithn: Thread done: 30 in 1LL4D steps O}
ead-3] DEBUG > GillespieAlgorithn: Thread done: 32 in 10939 steps
o ~pool-1-thread-5] INFO > Simulator: Simulation ended in: 21lns

Figure 7.4: This graphical user interface is just a frontend using some of the
components of the framework. The Load from SBML-button uses
the SBMLParser and the Simulate-button uses the Simulator and
GillespieAlgorithm.

To illustrate how the framework easily can be leveraged as engine in a third-

7.6 Evaluation: Simulating a NOR-gate 71

Input A | Input B | Output
1 1 0
1 0 0
0 1 0
0 0 1

Table 7.1: Truth table for the NOR-gate.

party tool a GUI has been built using the framework as back-end engine, see
Fig. 7.4.

We refer to the documentation? and code repository® for further details on
usage.

7.6 Evaluation: Simulating a NOR-gate

In this example we will show the construction of a model of a genetic device
with NOR behaviour and show simulations of it using the DTU-SB Framework.
Table 7.1 shows the behaviour of a NOR-gate.

Fig. 7.5 is a diagram showing the genetic NOR-gate described in Tamsir et al.
(2011). The two inputs arabinose (Ara) and anhydrotetracycline (aTc) posi-
tively regulate (induce) the two promoters Pgap and Pre;. The output of the
device is the yellow fluorescent protein (YFP). The input promoters are placed
in tandem, expressed as Ppap — Pre:, meaning that the promoters are located
right next to each other and that the repressor protein C'I is only produced
if either or both of these promoters are positively regulated, i.e. they do not
interfere with each other. The promoter Py pp is repressed by C1I, hence the
yellow color will only be present if none of the inputs Ara and aTc are present.
It should be clear that the NOR-device is composed of two genes, one producing
C1T and one producing Y F'P.

The promoters of this device can be interpreted as input, Tamsir et al. (2011)
states that the device can be engineered to use other promoters as input, making
it possible to use this device in context with other devices. The output as well
can be changed by replacing the YFP producing gene with another gene, e.g.
one that produces a protein that regulates another promoter. This modularity
is greatly desirable, but obviously also imposes some challenges that is out of

2http://jboysen.github.io/dtu-sb-docs
3https://bitbucket.org/jboysen/dtu-sb

http://jboysen.github.io/dtu-sb-docs
https://bitbucket.org/jboysen/dtu-sb

72 A framework: DTU-SB

Ara aTe ‘
.) s ™ a =)
PBAD PTet PYFP
c YFP
Figure 7.5: Genetic NOR-device. The protein Ara and the antibiotic aTc pos-
itively regulate (induce) the promoters PBAD and PTet respec-
tively. If the concentration of Ara and aTc is > 0, the repressor
protein is produced and YFP is not produced, otherwise it is.

scope of this thesis — in the next chapter we will discuss this subject further.

Based on the modelling section explaining how to construct a SPN of a gene,
we present the model of the genetic NOR-gate in Fig. 7.6. We will not go
into detail with the model as it should be self-explanatory and the focus of this
section is on simulation — this also means that the rates chosen for the model
are not shown.

7.6.1 Simulations

The purpose of this example is to show the output of simulations made with
the DTU-SB Framework, and show how different simulation parameters can be
changed to receive different output. The graph in Fig. 7.7a shows how several
iterations per simulation often give a clearer picture of the behaviour of the
simulated device.

7.6.2 Verification of simulations

To verify that the implementation of Gillespie’s direct method stochastic simula-
tion algorithm (SSA) is correct, we have compared simulations of the NOR-gate
made with the DTU-SB Framework to simulations made with Snoopy, Heiner
et al. (2012b), an editor/simulator of petri nets. Snoopy implements two SSAs:
fast adaptive uniformization (FAU) and Gillespie’s, of which we will only eval-
uate our implementation against their implementation of Gillespie’s SSA.

In Fig. 7.8 we show the exact same simulations as in Fig. 7.7. These graphs

7.7 Concluding remarks 73

Ara aTc
ara_p aTc_p decay_mRNA_CI
tl CI

PBAD_Tet +tc_CI mRNA_CI

P_YFP t cYFPEﬂRNAYFP t1_YFP ‘ YFP

decay_mRNA_YFP decay_YFP

Figure 7.6: SPN of genetic NOR-gate.

clearly shows that there is a coherence between our and Snoopy’s implementa-
tion. Stochastic simulations can of course not be completely identical, but the
overall behaviour is clearly identical, with Snoopy’s simulations consequently
having concentration levels somewhat under our simulations.

Note that this verification is by no means thorough, as we have presented the
formalities of Gillespie’s algorithm in previous chapters, and our implementation
of it is not efficient but usable.

7.7 Concluding remarks

In this chapter we have seen how the DTU-SB Framework has been imple-
mented with modularity and extensibility in mind. The framework can be
used as library for third-party applications or it can be used as standalone
application either by using it from the command-line or by using the graphical

74 A framework: DTU-SB
|— YFP(1) — YFP(10) | —YFP—CI
T T T T 60 [T I]
5 150 .
£ 100} |40 i
S
S 50| -+ 20 l
S
0p \ \ \ L 0p \ \ \ L
0 2,000 4,000 6,000 0 2,000 4,000 6,000
Time Time

(a) The numbers in the parenthesises in (b) One simulation with 10 iterations.
the legends indicate the number of it-
erations per simulation.

Figure 7.7: The graph in (a) contains two simulations of the NOR-gate with
no Ara or aTc present, thus YFP is high.
The graph in (b) contains one simulation of the NOR-gate with
aTc present, this YFP is low.

|— YFP(1)— YFP(10) | —YFP—CI
150 ! T T] T T
<
8 40 - -
E 100 | -
<
S 50f 4 201]
S
0L | | | L 0p | [[L
0 2,000 4,000 6,000 0 2,000 4,000 6,000
Time Time

(a) This graph is directly comparable to (b) This graph is directly comparable to
the graph in Fig. 7.7a. the graph in Fig. 7.7b.

Figure 7.8: Simulations with Snoopy.

user interface provided. As mentioned the code repository is located at https:
//bitbucket.org/jboysen/dtu-sb and the documentation for the framework
can be found at http://jboysen.github.io/dtu-sb-docs. To get a head start
by avoiding to set up development environments and compilation of java-files
the file DTU-SB-GUI.zip containing a pre-compiled JAR-file with belonging li-
brary of small genetic devices can be downloaded at https://bitbucket.org/
jboysen/dtu-sb/downloads.

The implementation of Gillespie’s direct SSA has been evaluated by comparing

https://bitbucket.org/jboysen/dtu-sb
https://bitbucket.org/jboysen/dtu-sb
http://jboysen.github.io/dtu-sb-docs
https://bitbucket.org/jboysen/dtu-sb/downloads
https://bitbucket.org/jboysen/dtu-sb/downloads

7.7 Concluding remarks 75

simulations of devices with simulations of the same devices using Snoopy. The
evaluation is by no means thorough but purely serve the purpose of establishing
confidence in our implementation.

In the next chapter Genetic Logic Synthesis will be explained thoroughly, and
the results of it has been incorporated into the framework as well, see Appendix
D for a tutorial on this matter.

76

A framework: DTU-SB

CHAPTER 8

Genetic Logic Synthesis

The theory established in the preceding chapters will here be utilised to per-
form genetic design automation (GDA) so that systems of genetic devices can
be synthesised automatically using a logic function as target and a library of
pre-defined genetic devices. The main idea is to perceive each genetic device as
a logical gate that can be specified by a truth-table where low and high respec-
tively represent absence or presence of certain proteins . These devices are then
combined to express the target-function. Such abstractions are not unrealistic,
e.g. Bonnet et al. (2013) have shown how several genetic devices quite precisely
followed their predicted logical behaviour.

Perceiving the genetic behaviour logically allows us to reuse the widely devel-
oped theory for electronic design automation (EDA). Further the desired ap-
plications for synthetic biology are something that is often easily expressible
as logical problems, for example the biosensor that detects presence of certain
combinations of material and takes action accordingly (whether that is emitting
fluorescent material signalling the need for external intervention or synthesising
material that can react in-place).

Different genes with different promoters can have widely different activation
levels why it is not immediately clear what the concentration levels of absence
or presence specifically represent for a set of genetic devices. The examples
throughout this chapter all assume compatible concentration levels where the

78 Genetic Logic Synthesis

general case will be discussed further in Sec. 8.6.

This chapter will first establish a suitable level of abstraction while explaining
an overall approach to the problem, then propose a simple prototype method
while explaining the similarities to EDA tools and finally discuss how this could
be improved.

8.1 Logic synthesis

In electronics, logic synthesis is the process where a high-level description of
a design is converted into an optimised composition of gates found in a given
library, these gates are typically referred to as library parts or just parts. The
composition is found using a technology mapper, and the high-level description
can be specified as e.g. a truth-table. Typically some optimisation can be done
on the high-level description by minimising the expression.

Both of these steps might output several design candidates, so objective func-
tions are used to evaluate the order from best to worst according to some given
criteria. The theory behind minimisation and technology mapping have roots
in digital electronics where commercial VHDL and Verilog IDE’s such as Altera
and Xilinx employ these techniques to either minimise or promote factors such
as cost, delay, die-area, speed and fault-tolerancy of a given chip design. Often
the actual synthesis engines used in these tools are both more efficient and more
sophisticated than those presented here.

8.2 Genetic design automation

With an overall idea of how logic synthesis proceeds in EDA we outline the key
differences that are crucial to take into consideration when designing a GDA
synthesis tool:

Compatibility: In electronic circuits the output from one arbitrary gate can
always be used as input to another gate. In GDA compatibility between
input- and output-proteins of the library parts must be ensured.

Orthogonality: Cross-talk can have devastating effects on circuits of genetic
devices, so parts with the same intermediate proteins are not allowed in
the circuit and neither should library parts be allowed to be reused except
for amplification of protein concentrations.

8.2 Genetic design automation 79

Size: The designs derived should fit in a single cell. Currently only 20 orthog-
onal promoters have been identified, Rhodius et al. (2013), which acts as
an upper limit of what is possible within a single cell. As our knowledge
and models get better this value will most likely increase. If translational
regulation using sSRNA is considered as well, this limit might be increased
as the promoters are not influenced by sRNA.

For the sake of simplicity it is assumed that these three requirements need to be
strictly enforced. In reality, the size requirement can be relaxed as some models
allow inter-communication of cells using chemical signals enabling much richer
complexity of circuits, Tamsir et al. (2011). With models taking the timings into
consideration it will also be possible to relax the orthogonality requirement if
guarantees of the behaviour can be established using e.g. a model checker.

8.2.1 A work-flow

The requirements above must be taken into consideration when designing a
system for logic synthesis. The diagram in Fig. 8.1 shows the overall work-flow
for a GDA synthesis tool.

fﬁ
SoP of minimised expression Technology Mapping

Simulation

Truth table

Library of genes:
- SoP representation
- Involved proteins

- Cost

Yes

l

Figure 8.1: Overall design of a system for a GDA synthesis tool.

80 Genetic Logic Synthesis

The input to the system in Fig. 8.1 is a truth-table describing the behaviour of
the desired logical function. To ensure a general low complexity of the synthe-
sised devices the input is initially minimised to a minimal sum-of-products (SoP)
Boolean expression, this expression is given to a technology mapper that will
output one or more devices that can be simulated using the DTU-SB Frame-
work. The technology mapper will use the parts defined in the library.

Due to the coarse assumption of considering simulated behaviour as just logical
highs and lows as well as the inherit highly stochastic effects of these genetic
circuits, the outputted devices cannot be guaranteed to perform as the target
function hence validation through simulation is necessary. If the simulation is
acceptable a wet-lab experiment is carried out and if the result of this is also
acceptable the design is saved as a part in the library for later use.

8.2.2 Representation of library parts

In Sec. 3.3 we saw how a gene can be represented on parts level with promoters,
RBSs, PCSs and terminators. There is a close connection between the complex-
ity of the technology mapping and how the parts in the library are represented.
In general a library part is just a gene that expresses a logical function with in-
and output proteins. Below we outline three different options to how the parts
can be represented:

8.2.2.1 Option 1

Abstract away all input and output proteins and populate the database with
a few generic genes (i.e. AND and OR) under the assumption that protein
interactions always can be established using e.g. the BioBricks interface. This
solution enables usage of the existing tools and algorithms used for technology
mapping in electronics. The actual gene interactions can then be resolved in a
post-processing step. Thus all genes will in theory be compatible.

The drawback is that too many practical details are abstracted away and that
this assumption conflicts with some findings indicating that promoters and pro-
tein coding sequences (PCSs) not always can be replaced without introducing
(currently) unpredictable or unwanted behaviour, e.g. Tamsir et al. (2011) shows
that a certain combination of promoters placed in tandem do not function as
predicted, see Fig. 8.2 for an explanation.

Option 1 is used by Weiss et al. (1999) and partly by Marchisio and Stelling

8.2 Genetic design automation

81

a o
Lllm
Py Paown
N&/
OR Gate
b ay =1
Experimental ap =1
o
T

sl

Arabinose

c — 103
s 10
)
Q
=
<
o 102}
T
o
-]
=
e
S 101
)
k=]
E;
=
o
c 10°
=
B 8B 2 w 2 B R
2 B2 2 2 L
L o -
- o -
<= 4 @ @ w < <4< o
i F 2 2 2 F 5 8
o - S S -~
o o, @ oy ey
Pasn Pret Pl

Best Fit
a, = 0.002
ap =0.881

[
Q
2

H
o
2
Fluorescence (au)

=
Q
=}

a) The diagram shows how two
promoters placed in tandem
with one promoter upstream,
P,p,, and one promoter down-
stream, Py, can repress (or
interfere with) each other, and
thereby not exhibit additive
transcription. The ap and
ay are factors in a linear
transfer function on the form
X = OZUX;}%HPU —I—OZDXgaIPD
describing the amount of pro-
tein generated, where X" is
the maximum protein gener-
ation from the ith promoter
at steady-state and P; is the
probability for the ith promoter
being ready to transcribe.

b) The FEzperimental graph
shows the behaviour of a gene
with the tandem promoter
Pr.i — Ppap. The desired
behaviour is shown in the OR
Gate graph, where the promot-
ers do not affect each other.

c¢) The diagram shows how

the interference is almost
non-existent for all tandem
promoters except for the

Pr.; — Pgap tandem promoter.

Figure 8.2: Figure from (Tamsir et al., 2011, Supplementary Figure 3).

(2011), meaning they have an unlimited number of available logical gates en-

abling easy realisation of new devices.

8.2.2.2 Option 2

Create models on parts level, i.e. promoter, RBS, PCS and terminator which
can be put in arbitrary order. This solution will have a very high expressiveness
but will share many of the drawbacks of option 1 and will make the problem of
finding correct parameters even more noticeable.

82 Genetic Logic Synthesis

Option 2 is also used by Marchisio and Stelling (2011) and gives the same
advantage as of option 1. Option 1 and 2 are theoretically optimal, but to
work in practice it will require much more precise models than what is available
today. Once more precise models are developed these options will clearly be
advantageous.

8.2.2.3 Option 3

Use only genetic logic gates that have been successfully realised in wet-lab ex-
periments. Due to the fewer protein compositions that need to be established
this will incur only a minimum of unpredictability to the realised design candi-
dates. The drawback is that we only have a very limited library of parts and
need to tailor the technology mapping phase.

Option 3 takes the current lack of a precise models into account by disallowing
unspecified /generic devices and genes that have not been proven to work in iso-
lation. To the best of our knowledge this approach have not yet been proposed.
We have chosen option 3 with the belief that the need for doing logic synthesis
could arise before a model accurate enough to support option 1 or 2 can be
established.

8.2.3 Technology mapping strategy

Technology mapping is crucial for GDA synthesis. There are several options on
how to do this which are outlined and discussed below:

1. Implement a simple technology mapping algorithm: Possibly by
modifying existing algorithms used in technology mapping tools for EDA
to enforce compatibility, orthogonality and size. This approach requires
much effort, but will potentially be very efficient and precise depending on
the actual implementation. It will also ease future changes or relaxations
of the three requirements. It should be noted that altering existing algo-
rithms may invalidate their optimality properties and should be formally
verified after each alteration.

2. Use existing technology mapping tool for electronics: Use an ex-
isting tool to output all possible solution candidates and remove those
candidates violating the compatibility, orthogonality and size constraints
in a post-processing step. The state space that needs to be explored can
here be much larger than for the other two alternatives. A more practical

8.3 Library based technology mapping 83

problem with this approach is that the seemingly only free and mature
tool, ABC, only outputs the best candidate and have no options to emit
all possible designs thus making this approach impractical.

3. Formulate the problem to be interpreted by a solver: These types
of problems can typically be specified as constraint satisfaction problems
(CSPs) or Boolean satisfiability problems (SATs). Though most solvers
are very efficient, it is very difficult to predict the performance of solving
a particular problem potentially making the problems intractable. Some
of the properties, such as how to capture the structure of a Boolean ex-
pression can be very hard to formulate as a CSP or SAT.

In order to get a very efficient solution with complete transparency for further
extensions we have chosen option 1; to implement a simple technology mapping
algorithm by tailoring existing EDA algorithms.

8.3 Library based technology mapping

Given a logic function f, technology mapping is the process of composing a
layout of logic gates from a library LL to express f. Often several solutions exists
to this kind of problem why this process is instructed by an objective function
to find the best solution.

This is a four-step procedure (heuristic):

1. Minimisation: Represent f as a minimal SoP.

2. Decomposition: Represent the minimised SoP as an and-inverter graph

(AIG).
3. Partitioning: Translate the AIG into a forest of single output AIGs.

4. Covering: Cover each of these AIGs with parts from L.

Several minimal expressions may exists where we — due to the increased difficulty
of finding valid designs in GDA mapping compared to EDA mapping — need to
examine all minimal forms of a given function.

84 Genetic Logic Synthesis

8.3.1 Minimisation

Several methods for minimising Boolean equations have been developed. Some
of the best know are the exact but inefficient Quine-McCluskey algorithm® from
Meccluskey (1956) and the inexact though efficient Espresso heuristic from Bray-
ton et al. (1984). Here exactness refers to the ability of finding the minimal ex-
pression in terms of literals and offers a trade-off where larger chip designs often
have to rely on "near optimum algorithms" to be tractable to layout. Muroga
(1979) surveys many of the classical minimisation methods. As will be shown
in Sec. 8.3.2 the complexity of the synthesised system is very much dependent
on the format of the used SoP. In GDA where it is crucial to keep the general
complexity at a minimum selecting a good minimisation procedure is of great
importance.

As these genetic systems often will be quite simple, at least compared to the
complexity of micro-chips, we will rely on the exact Quine-McCluskey algorithm
which is a three-step procedure:

1. Produce a minterm expansion (SoP form) of the function f.

2. Eliminate as many literals as possible by systematically applying XY +
XY’ = X to obtain the prime implicants.

3. Use a prime implicant chart to select a minimum set of prime implicant
that when ORed together produce f, and that contains a minimum number
of literals.

The following explanation of these steps is greatly inspired by Frenzel using the
truth-table below as example:

1Originally named The method of prime implicants but also referred to as The Tabular
Method of Minimisation.

8.3 Library based technology mapping 85

A|B|C|D| f
mog |0 |0 |0 |0 |0
m; |0 |00 |10
mg |0 |0 |1 |0 |0
mg |0 |0 |1 1|0
my |0 |1 |00 ||1
ms |0 |1 |0 |1 |0
meg |0 |1 |1 [0 O
mr; |0 |1 111]1 |0
mg |1 |0 [0]0 ||1
™o 1 0 0 1 -

mio 1 0 1 0 1
mi1 1 0 1 1 1
mig |1 |1]0 0|1
mis 1 1 0 1 0
mi4 1 1 1 0 -
mis 1 1 1 1 1

Where each row is a called a minterm mgy — mq5 and where "-" means don’t care

and is interpreted as f is allowed to be either true or false. The term implicant
is used to describe contractions of one or more minterms. A truth-table is often
specified in the equivalent but more compact representation:

f(A,B,C,D) = m(4,8,10,11,12,15) + Y ~d(9,14)

1. Minterm expansion

The minterm expansion SoP of this expression is obtained by simply selecting
each true minterm:

fapcop=ABCD +AB'C'D' + AB'CD' + AB'CD + ABC'D' + ABCD'

2. Identifying the Prime Implicants

In order to minimise this expression all true and don’t care minterms are put
in a minterm table which is a table grouped on the number of 1s in the minterm:

86 Genetic Logic Synthesis

Group | Minterm | Representation
1 my 0100
mg 1000
2 mg 1001
mio 1010
mio 1100
3 mi1 1011
14 1110
4 mis 1111

The rule XY + XY’ = X is applied repeatedly to create as large contractions
as possible by comparing the implicants that only differs in a single bit position.
For example the two minterms m4 = 0100 and m15 = 1100 only differs in the
most significant bit, thus it can be represented by the single implicant my4, mis =
—100. The minterm table grouping makes applying this rule efficient as only
the neighbour group to each group needs to be checked.

The first stage of contraction yields:

Implicant | Representation
My, M2 -100
meg,mg 100 -
mg,Mmio 10-0
msg,mi2 1-00
mg, M1 10-1
mio,M11 101 -
mio, M14 1-10
mi2, M4 11-0
mi1,M15 1-11
mi4,M15 111-

And the second stage, where each of the first stage contractions are tried reduced
further yields:

Implicant Representation
mg, Mg, M10, M11 10--
ms, M10, M12, M14 1--0
Mg, M11, M14, M15 1-1-

These stages continue until no new reductions can be made. In this case no new
reductions can be made after the second stage.

8.3 Library based technology mapping 87

Now the prime implicants, which is all the implicants that cannot be reduced
further, simply can be identified by selecting implicants from the highest possible
stage until all minterms have been covered. For example none of the second stage
implicants cover m4 hence the my, mi5 implicant from the first stage is selected:

fapop=AB +AD + AC + BC'D'

3. Selecting the minimum set of Prime Implicants

The current expression is already greatly reduced compared to the minterm ex-
pansion SoP, but it is possible to reduce it further using a prime implicant chart
that is used to analyse which prime implicants cover the necessary minterms,
ignoring don’t care minterms, i.e. mg and mq4.

| ma ms mig mi mip mas

AB’ X X X

AD’ X X X

AC X X X
BC'D" | X X

If a minterm is covered by only one prime implicant, that prime implicant is
called an essential prime implicant and have to be a part of the minimal ex-
pression, thus these are identified first. In this case the BC'D’ and AC are
identified because only my4 and mi5 cover the minterms respectively. These
two implicants cover in total the minterms my, m19, m11, M12, M15 where the
remaining minterm mg should be covered using the remaining prime implicants.
Here both AD’ and AB’ cover mg and are therefore both valid candidates. Thus
the two minimal SoPs become:

fl(A,B,C,D) = AB' + AC + BC'D’

faa,B.c.p) = AD' + AC + BC'D’
In more advanced examples, selecting the minimal set of prime implicants cov-
ering all remaining minterms is not necessarily trivial. These situations are typ-

ically resolved using either an exhaustive approach or using Petrick’s method
introduced in Mccluskey (1956).

8.3.2 Decomposition

The minimal SoP is translated into an AIG as this is the de facto standard
data-structure for EDA based technology mapping. The popularity of this rep-

88 Genetic Logic Synthesis

resentation stems from its very efficient mapping algorithms as well as ability
to easily perform optimisations by rewriting.

An AIG is a directed, acyclic graph that by its structure implements logical
expressions. An AIG only have two types of nodes; namely the two-input And-
node as well as the Inverter-node. Creating an AIG-representation of f is
relatively straightforward using DeMorgan’s theorem and basic propositional
algebra, informally summarised as every AND-gate can be replaced by an OR-
gate with inverters on all in- and outputs. See an example in Fig. 8.3.

A __]
A
- 1
o o
C |'> c
(a) Regular layout (b) In AIG

Figure 8.3: Equivalent representations of O = (AB) + C’

Unfortunately these kinds of translations are non-canonical when the sum has
more than two products or these products have more than two literals. Conse-
quently the AIG is not as general as the SoP since an ordering is imposed upon
how to convert N-input gates to 2-input gates. Fig. 8.4 illustrates this. This can
cause the pattern-matching to not necessarily find viable designs. Within the
world of digital electronics this fact is typically only of minor concern as these
situations typically are solved by just using the layout leading to the shortest
delay (or another objective). Such criteria can here be stated as there typically
is an enormous amount of reusable gates available which can be arranged in any
order.

Synthesis of genetic systems is somewhat different as we usually have a very lim-
ited number of parts that only can be arranged in specific arrangements due to
the constraining protein-interactions and orthogonality requirements presented
in Sec. 8.2. Henceforth each possible permutation of the AIG should be ob-
tained and tried matched, where each gate with a fan-in of more than 2 causes
exponential increase in the amount different AIGs. For larger systems this can
lead to an intractable amount of matching where the canonical AIG-With Choice
representation by Chatterjee (2007) could prove beneficial as this is specifically
developed to overcome this problem by enabling multiple AIGs to be encoded
in a singe AIG-With Choice by detecting and storing functional equivalences for
each node. Further discussion of the benefits of using different data-structure
can be found in Sec. 8.6.

8.3 Library based technology mapping 89

Figure 8.4: Left) Canonical representation of a 3-input OR-gate
Right) Two examples of possible conversions using 2-input OR-
gates (non-canonical).

8.3.3 Partitioning

As the output of f is not limited to a single output protein®, the corresponding
AIG does not necessarily need to be a tree which makes the problem of matching
NP-hard. As a result the AIG is partitioned into a forest of trees allowing
seamless top-down matching that can be solved within polynomial time, Keutzer
(1987).

A trivial partition strategy is to break the graph at all multiple fanout points and
introduce intermediate inputs as needed, see example in Fig. 8.5. This approach
is quite natural for GDA as the intermediate input introduced corresponds to
intermediate proteins that needs to be mapped anyway. Unfortunately this can
result in a lot of small trees, which in general cannot be covered as well (with
respect to an objective function) as a few larger trees can, Alpert and Kahng
(1995). More sophisticated strategies, such as the single-cone partitioning, du-
plicate some of the logic in-order to obtain as few trees as possible — but it is
not directly clear whether this approach is applicable in GDA partitioning as
the library parts, as opposed to EDA, are large indivisible entities. An exten-
sive survey of partitioning strategies has been conducted by Alpert and Kahng
(1995) and could serve as inspiration for further research.

2In which case the minimisation procedure gets somewhat more complex than otherwise
explained in Sec. 8.3.1. Techniques to solve this can be seen in e.g. Jiang et al. (2002). For
any practical purposes one can think of the minimised result as a set of SoP expressions

90 Genetic Logic Synthesis

Figure 8.5: Example of naive partitioning strategy. The AIG is partitioned
into three AIG-trees at the multiple fan-out node by introducing
the intermediate input 4.

It should be clear that a general limitation to partitioning is that a subset of
exact solutions to a partitioned problem do not guarantee an exact solution to
the problem itself.

8.3.4 Covering

The last step is to cover each of the trees using the parts from L. This happens
recursively using Algorithm 2 by initiating it on the output-node. As mentioned
previously this covering step is different from that of digital electronics, as or-
thogonality and protein-compatibility also have to be ensured. This is reflected
in the library part selection method. An unmatched branch "b" refers to the
sub-tree spawning from node b. The algorithm relies on a procedure to deter-
mine whether a given part can be placed at a branch b. Given the AIG structure
this is basically just a matter of doing tree pattern-matching.

An example of this algorithm can be seen in Fig. 8.6. This example is somewhat
simplified by just showing how to find a single structural solution.

In EDA it is very common to optimise the AIG by e.g. applying structural hash-
ing that identifies repeated patterns and compact accordingly. Due to the quite
strict orthogonality enforcement these repeated patterns will never occur but
one could imagine these requirements being relaxed in the future thus making
structural hashing applicable to GDA technology mapping as well.

8.4 Characterisation and evaluation 91

Algorithm 2 Technology Mapping

1: procedure MATCH(B) > B is a set of unmatched branches
2 for Each unmatched branch b € B do

3 for Each compatible and orthogonal part [€ L do

4 if [can be placed at b then

5: B’ «+ unmatched branches from placing [at b.

6 MatcH(B’) > Determines whether b can be matched
7 end if

8 end for

9: end for

10: if all unmatched branches in B could be matched then

11: Record the set of used library parts.

12: return B could be matched.

13: else

14: return B could not be matched.

15: end if

16: end procedure

8.4 Characterisation and evaluation

Characterising library parts is an important discipline as these characterisations
are used by the technology mapper. The devices found by technology mapping
should be evaluated primarily with respect to how well they behave like the
input truth-table. The evaluation could be done either manually by inspecting
time-series or automatically by making calculations on the time-series, the result
hereof should obviously be used in the characterisation of library parts as well.

8.4.1 Characteristics

A library part is typically one or more genes composed to express some Boolean
function. Library parts have some characteristics:

e Number of promoters.
e Number of involved proteins.

e Well defined input-, intermediate- and output-proteins.

A behaviour expressed by a Boolean function or a truth-table.

e The protein-levels considered as logical high and low.

92

Genetic Logic Synthesis

Figure 8.6:

Top) Library with #1: X = (AB), #2: O = (X)+ (Y'), #3: Y =
(C") + (D') and #4: O = (Y') + (CD).

Bottom) Simplified mapping process of 1: O = (AB) + (CD).

2: #2 and #4 can be placed at the top, try #4. Unfortunately
there are no further parts that can complete the partial match as
the output = of #1 is not compatible with the input y of #4.

3: Roll back and try #2 instead, due to the greedy nature there are
two possible placements of the children of #2 so both placements
are recursively tried matched.

4: With #2 at the top and the "correct placement of its children",
#1 and #3 completes the mapping by propagating the inverters
to the input-proteins and makes up a valid solution.

e At what time-point the library part can be considered steady, i.e. where
the output-protein level is steady enough to decide whether the input
proteins yield a high or low output.

The NOR-gate in Sec. 7.6 from the Implementation Chapter is an example of
a device that could function as a library part as all of the characteristics above
can be identified by inspecting the model and the simulations of it. On the other
hand the oscillator device (Fig. 6.2 and Sec. 6.4) used to construct the negative
feedback device in Ch. 6 on Modelling cannot function as a library part due to
no steady-state can be found, see Fig. 8.7.

8.4 Characterisation and evaluation 93

Q 1 AR JOMMM”OWW&W WM y/j\&w |

Figure 8.7: Output of the oscillator device. There is no steady-state, thus the
output cannot be described by Boolean logic as opposed to the
device giving rise to the behaviour in Fig. 8.8.

The characteristics above indicate that the protein levels are very important
when parts are evaluated, mainly the possibility to distinguish steady high and
low levels and the time-span where levels are still not steady. Marchisio and
Stelling (2011) is used to define some of these characteristics: Signal separation
(o) is the absolute difference between output concentration levels of the minimal
logical 1 steady-state (minl) and maximal logical 0 steady-state (maz0), see Fig.
8.8. Signal separation has to reach a certain level to be practically detectable
in wet-lab experiments.

Note that the time-series in the figure are just examples of five different sim-
ulations of a genetic device: in three of the simulations the inputs cause high
output and in the remaining two they cause low output. The behaviour of
the low outputs can be caused by the design of the genetic device: output is
expressed but after some time the inputs to the device cause expression of an
intermediate protein which in turn represses expression of the output.

One last characteristic of a model is the settling time illustrated in Fig. 8.8 as
well. Before this point the output is still not steady, consequently this point can
serve as guideline to the minimum length of simulations.

94 Genetic Logic Synthesis

140
120 max1
\ <) /j\\/\
A N NN
100 /_‘,V \/ 7 o /\ /‘V\
/ X/ S
=
S 80 / A mind
N
5
8
£ 60
Q
40 Settling time Signal separation
20
0 ' max0
in0
0 500 1000 1500 2000 2500 3000 " 3500 4000

Time
Figure 8.8: All logical 1 outputs are between the lines max1 and min1, and all
logical 0 outputs are just 0, i.e. min0 = max0 = 0. The settling
time is where the concentration levels will not change significantly
anymore, regardless of whether high or low output is observed.
Figure altered from Marchisio and Stelling (2011).

8.4.2 Objective function

The technology mapper needs to differentiate between several parts with the
same Boolean function, thus each part in the library need to be evaluated based
on some parameters. Marchisio and Stelling (2011) discusses how to achieve
this, below we summarise and adapt some of these techniques. Furthermore
the objective function is also used to rank designs proposed by the technology
mapper, thus in the following the objective function can be used to both rank
existing library parts and new designs.

The score is used to find the best design if several designs are proposed by the
technology mapping:

S=2Na' 12N 4 N+ N, (8.1)

Here Ngr, N4, N; and Ny, is the total number of repressor promoters, activator
promoters, locks and keys respectively. The locks and keys are sSRNA base-
pairing with mRNA, i.e. translational regulation of gene expression, refer to
Sec. 2.4. The score S represents the complexity or the realisability of the part
design, not the quality, thus a high score will mean a lower complexity of part
design realisability.

8.4 Characterisation and evaluation 95

It should be clear that the score S from Eq. (8.1) reflects that regulation through
locks and keys is better than through protein interactions. We redefine the score
S above and call it the cost C' of realising a design or part:

C=2Nr 4 oNa L Nyup (8.2)

Here we have introduced the new variable Njj;p representing the number of
intermediate proteins. Further it should be obvious that, opposed to the score
S, the lower the cost the lower realisabilty complexity of the part. As we only
employ regulation via protein interaction, the number of locks and keys from
the score S in Eq. (8.1) are removed from the cost C' in Eq. (8.2). Further it
should be noted that with better understanding of the complexity of realising
the designs in the laboratory, the objective function can be updated accordingly.

When the cost is dependant on the number of intermediate proteins designs
composed of few library parts are automatically favored, as there will be fewer
internal protein interactions, thus less internal complexity.

8.4.3 Evaluation

The purpose of evaluating designs is two-fold: 1) decide whether the design is
actually exhibiting the behaviour described by the truth-table and 2) find the
the characteristics of the new design. Many of the characteristics can be found
by just looking at the new design, e.g. by counting the intermediate proteins,
etc.

If a library part should be evaluated we already know some of its characteristics
and can assume the behaviour of the part follows the truth-table attached to it.
What is interesting is at what input concentration levels the part will function as
described. Many of the parts used in the prototype shown in Sec. 8.5 have logical
high concentration levels at approximately 100 and logical low concentration
levels at 0, but as we shall see in the next section these levels can vary due to
the different designs of the parts and the genes composing these parts.

8.4.3.1 Case study: Evaluating OR-gates

The prototype outlined in Sec. 8.5 contains a library with different parts, their
characteristics according to the previous sections and SBML models. In this
section we will investigate three OR~gates and see how different modelling tech-
niques often cause different behaviour. Further we will explain how character-
istics can be identified and behaviour verified. The OR-gates will be referred to

96 Genetic Logic Synthesis

as OR-gate #1, #2 and #113. The genetic devices and their behaviour can be
seen in Fig. 8.9.

Ara - ale alc | Ara | C1

l l 0 0 0

0 1 1

I ! & - | 1 0 1

1 1 1
cr (b) Truth-table describing
(a) A single gene expressing CI, the promoter is the overall behaviour of
induced by either aTc or Ara. OR-gate #11 the devices in (a) and

conforms to this design. (c).

Ara aTc

l l
IZ.-TF’--T

cr

(¢) Two genes expressing C1, induced by aT'c or Ara respectively. OR-gate #1 and
#2 conform to this design.

Figure 8.9

We evaluate the OR-gates by looking at the output graphs. We know their
behaviour is correct, but we need to define the concentration levels. In Fig. 8.10
the behaviour of the gates when Ara and aT'c are present is outlined. We can
clearly see that gates #2 and #11 reach a steady-state approximately at time
1000, whereas gate #1 is a bit slower and reaches a steady-state approximately
at time 4000.

In Fig. 8.10 we can see the concentration levels when Ara and aT'c are high.
We need to be more thorough and identify all possible concentration levels, thus
we need to simulate all rows of the truth-table. In Fig. 8.11 we have simulated
all rows of the truth-table for OR-gate #1, thus we can identify minl ~ 37 and
max0 = 0, this means all CI concentration levels > 37 can be considered high.
The different concentration levels is a result of the gate design shown in Fig.
8.9¢, where two independent genes express C'I when their promoter is activated.

OR-gate #2 is designed equivalently to OR-gate #1. In Fig. 8.12 we investigate
what happens if the inputs are between low and high. The graph is composed

3The numbers represent the IDs of the parts in the small library created for the GDA
tool-chain prototype.

8.4 Characterisation and evaluation 97

|— CI#1) —CI(#2) — CI(#11) |

100 |- *

50 |- /
0 .
| | |

| | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time

Concentration

Figure 8.10: OR-gates simulated using the DTU-SB framework. Ara and aT'c
inputs are high, each simulation is repated 12 times. The num-
bers in the parenthesises represent the ID of the gate associated
with the time-series.

80 [~ T T T -]
8 sl | alc | Ara | CI
S 1 0] 0 | 0
s e L T 0 [100 | ~37
§ 200 /7 i 3100 0 | ~37
of £ | [4[100] 100 | ~75

| | | |
0 2,000 4,000 6,000 8,000

Time

Figure 8.11: OR-gate #1. Here we can see how the concentration of C'I is
stronger when both inputs aT'¢ and Ara are present.

of 4 simulations. If aTc¢ and Ara were injected during the simulations the
concentration levels would change more smoothly. The table on the right sum-
marises the behaviour where each row corresponds to the time-intervals [0; 2000],
]2000; 4000],]4000; 6000] and |6000; 8000] respectively. From this graph it should
be clear that correct concentration levels need to be identified to correctly decide
whether a gate design corresponds to the expected behavior.

The last OR-gate #11 evaluated has more unambiguous outputs with minl = 80
and max0 = 0. OR-gate #11 is only composed of one gene, see design in Fig.
8.9a, this gives the same output concentration levels regardless of the input.
Furthermore this OR-gate only exhibits CI expression when the input levels
are > 100, i.e. the behaviour of OR-gate #2 cannot be exhibited.

98 Genetic Logic Synthesis

—CI—aTc Ara ‘
I I I I

& 100l Vaenead | aTc | Ara | CI
E 0 | 0 0
T sl i 0 | 50 | ~30
§ 0 100 | ~60

o “ i ‘ - 100 | 100 | ~120

0 2,000 4,000 6,000 8,000
Time

Figure 8.12: OR-gate #2. Here we can see that C1 is present even at smaller
amounts of Ara.

\—1—2 34
T

100 T T I
g PRIV N ARIRK aTc [Ara | CT
E / 1000
R | [2] 0 [100 ~80
E 3100 | 0 | ~80
of | 4100 [100 | ~80

| | |
4,000 6,000 8,000

Time

|
0 2,000

Figure 8.13: OR-gate #11. Here we can see that the concentration level of
C1 is either steady at 0 or approximately 80 when the inputs are
absent or present respectively.

In Table 8.1 the characteristics and behaviour of the three gates are summarised.

OR-gate #1 | OR-gate #2 | OR-gate #11
#Promoters 2 2 1
Intermediate 0
Input {aTc, Ara}
Output CI
max(0
minl ~40 ~60 ~80
Settling time ~4000 ~1000 ~1000
Cost 6 6 4

Table 8.1: Characteristics of the three OR-gates evaluated.

8.4 Characterisation and evaluation 99

8.4.3.2 Automatic evaluation

Automising the evaluation process is an important step in the GDA tool-chain.
Evaluation — both automatic and manual — of new designs should follow a certain
approach described below.

1. Simulate all rows of the truth-table.

2. For each simulation smooth the output graph to remove fluctuations and
highlight trends. This process will have less impact the more iterations
per simulation.

3. Identify change-points, i.e. where concentration levels change drastically
within short time, refer to settling time in Fig. 8.8.

4. Decide from the number of change-points identified whether the design
has a steady-state or not:
Has steady-state: Concentration levels should be characterised and
compared to the expected output, i.e. does the design follow the be-
haviour specified by the truth-table.
No steady-state: The design should be discarded.

The first step is straight-forward, but the subsequent steps should be completed
by employing sophisticated methods. In the following we will show a naive ap-
proach to implementing automatic evaluation, this approach does not guarantee
that identified characteristics are correct. In the discussion in Sec. 8.6 we refer
to more sophisticated methods for doing automatic evaluation.

Step 2: Smoothing graph

Simple moving average (SMA) is a simple method for smoothing graphs. SMA
is the unweighted mean of the last n data points {Xi, Xo,..., X,,} in a time-
series. To accommodate for the shift in time, often the mean is taken from an
equal amount of data around the central data point:

C Xinppt Xoppt o+ X
n

SMA

The larger n the more fluctuations are removed. Fig. 8.14a is OR-gate #11
with high output and two SMAs with different n applied.

100 Genetic Logic Synthesis

‘—Origmal—n—él n =10

100 []
Wv‘\f)" AN\/”'\VAVAA ok o
- 80 - .
2
S 60| .
8 —100 |- -
Q 40 | -
: ¢ S
O O
20 - .
| | | | | —200 - |
0 2,000 4,000 6,000 8,000 | | | |

|
0 2,000 4,000 6,000 8,000

Time

Time
(a) OR-gate #11 with high output.
The two SMA graphs with n = 4 (b) A CUSUM chart of the SMA n =

and n = 10 illustrate how more 10 graph.
fluctuations are removed as n gets
larger.

Figure 8.14

Step 3: Identify change-points

To identify change-points the change in concentration per time should be ob-
served, we assume that huge changes indicate change-points. A cumulative sum
(CUSUM) chart can be used to identify these points, Taylor (2000). The cu-
mulative sums Sy, S1, ..., Sy, are calculated using the data-points X7, X5, ..., X,
(here n represents all data-points):

1. Calculate the average X.
2. Set SQ =0.

3. Calculate S; by summing the previous cumulative sum and the difference
between the current data-point and the average: S; = S;—1 + (X; — X)

Refer to Fig. 8.14b for the CUSUM chart based on the SMA data-points for
OR-gate #11 with n = 10. The data-points used for the graphs in Fig. 8.14
and the corresponding SMAs and CUSUM can be found in Appendix C. The
average used for calculations of CUSUM is X = 83.87.

A section with downward slope on CUSUM charts indicates that the data is
below average at that point, and a section with upward slope indicates data

8.4 Characterisation and evaluation 101

above the average. A sudden change in direction indicates a change-point. Fig.
8.14b clearly indicates a change-point at time ~ 700, but we cannot really be
sure that this is the only change-point. A bootstrap analysis can be carried out
to establish a confidence level for the change-point.

A bootstrap analysis reorders the data-points randomly and CUSUM charts
are created from these orderings. The idea is that these CUSUM charts most
likely will contain no significant change-points, thus the CUSUM chart for a
bootstrapping sample will be more horisontal flat. The difference Sq; s between
the minimum S; and maximum S; for ¢ = {1,2,...,n} for the original data-
points can be used as estimator of the change. For each bootstrapping sample,
let S? be the CUSUMs and Sgiff be the equivalent to Sg;ss for the original
data-points. Now for each bootstrapping sample where SY, fr < Sqirs we are
confirmed that the original data-points have a change-point.

To establish a confidence-level typically around 1000 bootstrapping samples
should be investigated. The confidence-level can be established by:

N o

100 -
1000

Where N is the number of bootstrapping samples where SY, 7 < Sairf- Typ-
ically a confidence-level above 90-95% is required to be sure that a significant
change occured.

A simple method to identify the change-point from this data is by finding the
absolute maximum cumulative sum:

|Si| = max |
1=0,...,n

For OR-gate #11 this corresponds to time = 640 where m = 8 and |S,,| =
215.24. Now this step should be repeated by splitting the data by the change-
point identified into two sets and perform this analysis on both sets again. When
no more change-points can be identified proceed with the next step.

Step 4: Characterise design

A part or design with well-defined input and output can have a different number
of change-points (with the assumption that all output concentrations start at
0):

0: No change at all: steady-low.

102 Genetic Logic Synthesis

1: Changing from rising to steady-high, assuming the rising starts immedi-
ately at time 0.

2: Changing from rising to falling and steady-low, rising for a short period
and then repressed.

The above only applies in best-case simulations, one could easily imagine that
devices with >2 change-points still exhibit a steady-state, but it just takes some
time to stabilise.

The number of change-points for OR-gate #11 is only one, thus we can conclude
that there is a rise in output. At last the stable output concentration level needs
to be found. A simple method for doing so is to find the mean for all data-points
after the change-point, i.e. m + 1 from the previous step, this corresponds to
time > 640. The mean based on data-points where time > 640 can then easily
be calculated:

X1+ Xopp2 + .+ X,y 85.754+86.71 + ... +85.74

n—m B 99 — 8
The mean above applies for the row in the truth-table where Ara and aT'c are
high, to make a complete characterisation all other rows should be simulated

and evaluated as well. Two other interesting numbers in this context are max1
and minl:

~ 86.24

maxrl = max (X;) = 88.93

i=m+1,...,n
minl = min (X;) = 83.66
i=m+1,....,n
Usually an error-margin should be applied to these values to be certain that
output concentration levels are interpreted correctly.

8.5 Implementation

A simplified prototype of the GDA tool-chain proposed in Sec. 8.2 has been
made using the library based technology mapping approach explained in Sec.
8.3 where the Quine-McKlusky minimisation is performed using a third-party
implementation?.

This tool depends on the DTU-SB Framework, leveraging its I/O capabilities
and simulation engine. The independent GUI explained in Ch. 7 has been

4https://github.com/qtstc/Circuit-Simulation/tree/master/
Quine-McCluskeyJavaSampleCode.

https://github.com/qtstc/Circuit-Simulation/tree/master/Quine-McCluskey Java Sample Code
https://github.com/qtstc/Circuit-Simulation/tree/master/Quine-McCluskey Java Sample Code

8.6 Discussion 103

altered to support this extension. A tutorial describing how to use this tool can
be found in Appendix D.

The key limitations of this prototype are:

e The input truth-table do not support don’t cares.

e Only a single minimal form is used even though several may exist for a
given truth-table.

e Partitioning is not implemented, thus only expressions with a single output
protein are allowed.

e Due to the non-canonical nature of AIGs only SoP expressions with at
most two products with at most two literals each are solved deterministi-
cally. Larger expressions may be decomposed into different AIG layouts
each time, hence it may not necessarily find solutions even though such
exists.

e The AIG based approach suffers from structural bias so finding a satisfying
composition, if such exists, cannot be guaranteed.

e Currently our prototype does not support automatic evaluation of pro-
posed designs, so the quality of the synthesised devices needs to be man-
ually assessed.

Each of these points are naturally subject to further work. The implementation
contains a small library of parts as well.

8.6 Discussion

The proposed synthesis heuristic makes no guarantees about optimality or even
finding a solution if such exists. Although these genetic circuits are asynchronous
in their very nature we have here focused on using technology mapping tech-
niques developed for synchronous circuits as it is well-tested, comprehensible
and easy to implement. Using theory of synchronous circuits will ultimately —
compared to the theory of asynchronous circuits — result in additional (invalid)
design candidates that need to be assessed by the simulator and therefore in-
crease the overall complexity of the process. Further research could look into
how the mapping techniques developed for asynchronous circuits, e.g. Nelson
(2004); chun Chou et al. (1999); Siegel et al. (1993), can be applied.

104 Genetic Logic Synthesis

8.6.1 Parts characterisation

It should also be mentioned that this approach naturally will only work for parts
reaching a steady-state meaning they can be summarised in a truth-table. Parts
with no steady-sate, such as oscillators, cannot be handled properly although
future research could look into extending the input format to also support ar-
bitrary mathematical functions such as GFP = Ara — sin(aT¢) for synthesis.

Consider the case where a composition of parts, each logical describable, cannot
work in conjunction as the output concentration of one part never reaches a
level to fully activate another part. Fig 8.15a shows the behaviour of such an
example where the library parts #3: Ara = (lacI GFP), #4 aTc = (GFP’)
and #11: CI = aTc+ Ara, do not work as intended as part #4 do not produce
enough aT'c to fully activate part #11.

|— CI = (GFP)) + (IPTG lacl) | |— CI = (GFP') + (IPTG lacl) |

S T T T T § 100 T \ —
T 20| 1=
£ T 50| |
S 10f 4§
Q Q
S 5
D 0 C [| | [D O C [| | [

0 2,000 4,000 6,000 0 2,000 4,000 6,000

Time Time
(a) Parts #3, #4 and #11. (b) Parts #3, #4 twice and #11.

Figure 8.15: Composite behaviour of different quantities of library parts #3,
#4 and #11 during absence of GF'P, lacl and IPTG.

With knowledge about the required activation- and output-levels it will be possi-
ble to extend the technology mapping phase to easily account for this by simply
putting duplicate library parts in the design until the required activation level
has been reached. Fig. 8.15b shows the composite behaviour using part #4
twice which is enough to drive the output to a steady-state.

Duplicating parts with the theory used in the simulator will just result in am-
plification of the respective concentrations without introducing side-effects. In
practice there might be issues with concentrations much higher than required
as it is uncertain if the Brownian dynamics is still applicable and whether it
will introduce additional cross-talk. Wet-lab experiments should reveal if these
issues should be accounted for.

Even though this can dramatically increase the amount of possible design can-
didates for a given target function, there will still be cases where this theory
is inadequate as in the case of the oscillator from Fig. 6.2, where three parts

8.6 Discussion 105

easily describable by logical functions in composition no longer are describable
by simple Boolean logic, see its oscillating behaviour in Fig. 8.7. Further, only
output proteins in library parts can be amplified, it cannot solve the problem of
too low initial concentrations of input protein(s) to activate any of the available
library parts.

8.6.2 Technology mapping

The mapping approach suffers from structural bias which means that the com-
bination of parts making up a solution is very dependent on the structural
representation, and not necessarily the actual semantics, of the AIG. Other is-
sues include the non-canonical nature of the AIG as well as its lack of support
for don’t cares. Some of these issues could be eliminated by storing/considering
parts with bridged or short-circuited inputs leading to new AIG representations.

Alternative solutions overcoming many of these shortcomings in EDA, though
NP-hard, are surveyed in Benini and De Micheli (1997). These are all based on
the canonical binary decision Diagram (BDD) representation instead of using
AIG but requires more sophisticated algorithms for mapping library parts. It is
not immediately clear how to modify these to support the protein-compatibility
requirement during matching.

BDDs do not receive as much attention as AIGs as they can make the layout
calculation intractable for even the simplest microprocessor design, but we be-
lieve they are worth investigating further as the complexity of genetic layouts
are orders of magnitudes simpler than that of even legacy microprocessors and
they will be able to solve the shortcomings mentioned here, i.e. that the decom-
position to AIGs are non-canonical and that the mapping suffers from structural
bias and thus possible solutions (to more complex layouts) are not guaranteed
to be found.

8.6.3 Automatic evaluation

Concerning automatic evaluation of parts and new designs, there exists several
alternative methods to the proposed naive method. The proposed method is
composed of several ideas and is rather expensive as several thousand random
samples of the data need to be analysed to be able to establish a confidence level
about the given characterisation. In the consideration of alternative methods
it should be noted that often a method is well-suited for special cases, e.g.
some methods work very well on simulations where a steady-state can be found,

106 Genetic Logic Synthesis

Goldsman (2010). When evaluating genetic designs we cannot be certain that
the simulation has a steady-state.

The most important — and probably the hardest — task of automatic evaluation
is deciding whether a simulation has a steady-state or not. Development of a
more sophisticated approach should involve sequential change-point detection
algorithms to identify the number of change-points and on the basis of that
decide whether a steady-state is present. If it turns out that the simulation
most likely is steady steady-state analysis algorithms such as the batch means
method should be used to find the output concentration level. If the automatic
evaluation gives a negative answer, we cannot be completely certain that the
answer is correct, as the simulation can turn out differently when the simulation
time is increased. Evaluation of designs is an important, time-consuming step
in a GDA-tool so developing sophisticated automatic evaluation methods is of
great importance.

CHAPTER 9

Conclusion

In this thesis we establish a biological foundation to give an insight into the world
of synthetic biology and better understand some of the challenges that are inherit
in this area. The class of stochastic petri nets (SPNs) is formally introduced
to ensure the reader prerequisites the necessary knowledge for modelling the
biological pathways as networks.

SPNs are analysed using stochastic simulation algorithms (SSAs). Gillespie’s
SSA that generalises the chemical master equation (CME) and works for systems
describable by Brownian dynamics has been found useful in this context, as
interactions of proteins in biological systems are often described by Brownian
dynamics. Several, mainly performance, improvements to this SSA are surveyed
in Sec. 5.4.

Usually when developing models, regardless of the scientific discipline, the mod-
els are compared to some real-world measurements to asses their quality. As
we did not have access to perform wet-lab experiments ourselves we have spend
weeks searching for comparisons of such real-world behaviour and pre-modelled
behaviour without any luck. Finally we contacted Chris J. Myers author of
Myers (2011) whom told us that the modelling of synthetic biology is still in
such a early stage that this is even far from possible, see Appendix B. At the
current stage the models are created from experimental data, not vice versa.

108 Conclusion

This indicates that many great difficulties and challenges lie ahead of estab-
lishing more accurate models. The choice of the very generic, extensible and
intuitively easy-understandable SPN representation for our models has ensured
that future detailed findings for specifying models can easily be supported ei-
ther by embedding new transition formulas or altering the SPN networks, and
thereby laying the foundation for a long-living framework. Using these SPNs we
have surveyed several approaches to model the biological pathways in Ch. 6, in
the remainder of the thesis we assumed that the modelling technique presented
is usable for modelling genetic devices.

On the basis of the research summarised above, we have made a sound and
modular framework, DTU-SB Framework, that implements many of the ideas
and theories presented in this thesis including a prototype of the proposed tool-
chain from Fig. 8.1 for genetic logic synthesis. The framework accepts the widely
used SBML format as input and can thereby easily be compared to similar
tools and frameworks. We verified that the implementation of Gillespie’s SSA
corresponded to Snoopy’s implementation by comparing simulation outputs. All
simulation graphs shown in this thesis are created with the DTU-SB Framework.

Referring to the discussion on modelling, evaluations of predictive-simulations
and real-world experiments still show too low cohesion to be of use. Although the
simulated behaviour and compositions obtained using the DTU-SB Framework
will not necessarily work in practice, the framework can still be used to give
guidance and identify some compositions that will clearly not work and thereby
reduce the amount of required wet-lab experiments to be performed.

9.1 Logic synthesis

Assuming a correct model we have proposed how to automate the synthesis of
new biological systems by leveraging behavioural knowledge of existing parts
obtained by evaluating simulations. This behaviour is specified using Boolean
logic, we are thereby able to draw parallels to electronic design automation
(EDA) and thus in theory support synthesis of arbitrary complex systems. Nat-
urally this approach have its limitations as not all parts can be sufficiently
described by just Boolean logic. We call this genetic design automation (GDA),
which involves minimisation of Boolean expressions, finding designs with the
desired behaviour and simulation, characterisation and evaluation of these de-
signs.

Technology mapping algorithms used in EDA has been deemed unsatisfactory
as they do not account for challenges inherit in connecting different parts, thus

9.2 Related work 109

we suggested a new technology mapping method taking these challenges into
account. When researching for the construction of this new method we saw that
the and-inverter graph (AIG)-data structure received a lot of positive attention
and that nearly all commercial EDA tools made use of this representation.
Based on this the decision was made to employ this data-structure as it required
little effort, using this representation, to alter the existing technology mapping
algorithms developed for EDA to enable GDA.

The AIG structure have some drawbacks resulting in not necessarily all possible
solutions to a target function can be found. The canonical AIG- With choice and
binary decision diagram (BDD)-data structure should be further researched to
see if their associated technology mapping algorithms can be altered to support
GDA. If this is the case, all the issues of our proposed approach can be eliminated
and hence guarantee finding solutions if such exists.

The technology mapper needs well-defined library parts, which is why we have
outlined the important characteristics that need to be identified for these parts,
and how these characteristics can been identified using automatic evaluation.
Evaluation also plays an important role in deciding whether proposed designs
adhere to desired Boolean behaviour specified. The technology mapper can
be further improved by incorporating even more different characteristics, e.g.
activation levels of parts can help the technology mapper decide if a certain
protein concentration level should be amplified by using the same library part
several times.

9.2 Related work

Numerous tools and modelling frameworks for use in the field of synthetic biol-
ogy already exists where some of the most noticeable are the following:

iBioSim Myers et al. (2009) A framework for analysis and design of genetic
circuits developed by Myers Research Group from University of Utah. All
research carried out in this group have been implemented in this frame-
work and have by now a comprehensive list of advanced features: GDA,
alternative simulation strategies, parameter estimation, genetic classifica-
tion and automated evaluation of genetic circuits.

Snoopy Heiner et al. (2012a) A lightweight petri net editor with a built-in
stochastic simulator. This tool supports a myriad of petri net variants
that can be exported using the SBML standard.

110 Conclusion

GEC A programming language developed at Microsoft Research including a
prototype compiler- and simulator-suite. The programming language op-
erates on parts level, see Sec. 3.3, and supports specification of protein
variables that can be resolved in a compilation step using a database of
parts.

Eugene Bilitchenko et al. (2011) A CAD tool using a mixture between imperative-
and constraint-programming that operates on both devices and individual
parts, see Sec. 3.3. Eugene is greatly inspired by EDA tools and uses
design space exploration to come up with candidate compositions.

COPASI A simulator for general biological devices with built-in support for
parameter estimation and optimisation as well as many visualisation op-
tions.

Tinkercell Chandran et al. (2009) A comprehensive CAD tool with a very
user-friendly design and an exposed API for integration.

The implementation of the theory in chapters 2-7, corresponding to the first
milestone, is very similar to the functionality found in any of the above tools.
DTU-SB differs from these tools by the way we perform genetic logic synthesis,
explained in Ch. 8.

9.3 Reflections

In this cross-disciplinary approach to synthetic biology we have encountered
some noticeable differences in how to approach scientific problems: the world
of biology is much more driven by empirical experiments (top-down) whereas
the area of computer science engineering typically aim for being able to explain
every phenomenon (bottom-up). This difference has been very apparent in the
biological literature we have read and have at times caused minor frustrations
over having to accept some behaviour without further explanation.

The development of this framework and thesis have been driven by the desire to
have it being of practical use and educational value to other computer scientists
who currently do not have the time or courage to review biological literature in
detail, but that wish to emerge into the field of synthetic biology.

This thesis takes a classical approach to managing the complexity of the models
by assuming the existing circuits in the cell are always orthogonal to the model
we wish to implement and thereby never exhibit external interference. In prac-
tice this can be obtained by creating a minimal cell; a cell acting as a container

9.4 Future directions 111

stripped of all non-essential behaviour. Noticeable alternatives to managing the
complexity includes:

e Using a Lab-On-Chip where the genetic circuit is split into multiple cells
placed in different micro-fluid chambers which are then routed to give the
desired behaviour while introducing a minimum of interference, Huang
et al. (2013).

e By rewiring, so instead of designing these genetic circuits from scratch,
simply rewire the existing circuits of the cells. Naturally selecting cells
with behaviour close to the target function requires less effort and risk,
Nandagopal and Elowitz (2011).

We believe that computer scientists and software engineers in the future will
be able to contribute greatly to research of areas within synthetic biology, es-
pecially by applying the typical bottom-up approach where models are created
and simulated and by that predictions can be made with some certainty before
realising designs in wet-lab experiments.

9.4 Future directions

Each chapter discusses areas that need further work, here are the most important
parts summarised:

e Improve the precision of the technology mapping by investigating the ap-
plicability of the BDD-data and AIG-with choice structures with their
related mapping techniques to overcome the issues mentioned in Sec. 8.5.

e Research applicability of EDA techniques developed for asynchronous cir-
cuits to GDA.

e Implement automatic evaluation from Sec. 8.4 to automatically asses the
quality of the simulations of the synthesised circuits using their desired
behaviour as target and thereby making the framework fully automated.

e Increase the simulation performance by e.g. GPGPU based simulation
algorithms as in Komarov and D’Souza (2012), employing 7-leaping and
the use of hybrid petri net that dynamically switches between using a
stochastic solver for small concentrations and a continuous solver for high
concentrations as proposed in e.g. Herajy and Heiner (2012).

112 Conclusion

e In the context of the framework being of educational value a future ex-
tension could involve a SPN editor for direct interaction with and under-

standing of the models. Currently we create models in Snoopy and export
them to SBML.

e Implement various SPN-based model checkers to analyse the models and
give guarantees about properties such as liveness and timings.

e Further investigate whether employing translational regulation with sRNA
can construct even more complex devices, Marchisio and Stelling (2011),
possibly overcoming the size requirement in Sec. 8.2. The SPN models
can easily be extended to account for this.

APPENDIX A

Modelling examples details

The rate function Eq. (6.7) on page 60 for the oscillator is the Hill equation
describing binding. The following variables are used in the equation:

a0y, is the transcription rate from a fully repressed promotor.
a4 is the transcription rate from a free promotor.

KM is the number of repressor molecules per cell giving half maximal repres-
sion. It represents the concentration of an inhibitor substance that is re-
quired to suppress 50% of an effect.!

n is the Hill coefficient describing cooperativity.

cl is the protein repressing this transcription.

All of these definitions can be found on the BioModels page for this device:
http://www.ebi.ac.uk/biomodels-main/BIOMDO000000012.

1From http://www.ebi.ac.uk/sbo/main/SB0:0000288.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012
http://www.ebi.ac.uk/sbo/main/SBO:0000288

114 Modelling examples details

APPENDIX B

Email from Chris J. Myers

Hi,
Thanks for your interest in my textbook. You are correct that it is hard to find
many good studies that compare models to experiments. Unfortunately, there
are very few biological systems that we understand well enough to construct
complete and accurate models. The phage lambda is one of these examples
where there is sufficient knowledge to build and test such models, as was done
by Arkin and repeated by us using improved abstractions. There are some recent
promising developments, see for example the Karr et al whole cell model from
Stanford that was recently published in Cell. Most studies like that of lambda
and the whole cell model construct models that yield results that compare with
existing experimental knowledge. While this can be valuable as it gives you some
insight into the mechanisms that may be producing the observed behavior, there
are few studies which actually have shown how a model can make a prediction
that is "later" validated in the laboratory. I think the main challenge to this
effort continues to be the difficulty in gaining sufficient understanding of the
system to construct a complete model that includes all important interactions,
not to mention getting rate parameters which is very challenging.

I believe the reason for this is that evolution produces extremely complex sys-
tems. When I presented my phage lambda results, the speaker before me, Drew
Endy, commented that he had become frustrated that his models produced re-

116 Email from Chris J. Myers

sults that did not agree with his models. He decided that perhaps these systems
were not designed very well, and he could re-engineer them to agree with his
models. This comment he used to motivate his work in synthetic biology. While
certainly meant as a bit of a joke, there is some truth in this. Developing models
of things we have not designed is very difficult, but models of things we have
designed is much easier. For this and other reasons, I've focused my recent
modeling work to help support synthetic biology where we have a better chance
of building predictive models. However, I still think Systems Biology is very
important and will continue to improve its modeling efforts as our experimental
methods improve.

I hope this helps. Please feel free to contact me with further questions as your
work progresses.

Best of luck.

Chris

APPENDIX C

Evaluation data for
OR-gate 11

Time | CI CI(n=4) | CI(n=10) | CUSUM

80 | 8.383409 | 84 84 ~75.47138162
160 | 31.117693 | 31 31 -128.3427632
240 | 48.948135 | 37.958391 | 49 -163.2141449
320 | 63.384327 | 54.25020125 | 63 -184.0855265

400 73.55065 | 67.6166215 | 66.2071648 | -201.7497433
480 84.583374 | 77.32013525 | 74.3706275 | -211.2504974
560 87.76219 | 83.8082235 | 80.0486612 | -215.0732178
640 89.33668 | 87.256186 83.7065167 | -215.2380828
9 | 720 87.3425 88.026015 85.7470574 | -213.362407

10 | 800 87.66269 | 88.5899765 | 86.7122234 | -210.5215652
11 | 880 90.018036 | 88.230314 86.435519 -207.9574278
12 | 960 87.89803 | 87.7763615 | 86.0138456 | -205.8149638
13 | 1040 | 85.52669 | 86.8081225 | 85.6122086 | -204.0741369
14 | 1120 | 83.789734 | 85.104191 85.3551796 | -202.5903389
15 | 1200 | 83.20231 | 83.583766 84.7593836 | -201.7023369
16 | 1280 | 81.81633 | 83.0884575 | 84.062962 -201.5107565
17 | 1360 | 83.545456 | 83.4711015 | 84.0326355 | -201.3495026
18 | 1440 | 85.32031 | 83.8635765 | 84.547775 -200.6731093
19 | 1520 | 84.77221 | 83.8356765 | 84.9989936 | -199.5454973

00 J O Ui W N =

118

Evaluation data for OR-gate 11

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
55
56
o7
o8
99
60
61
62
63

1600
1680
1760
1840
1920
2000
2080
2160
2240
2320
2400
2480
2560
2640
2720
2800
2880
2960
3040
3120
3200
3280
3360
3440
3520
3600
3680
3760
3840
3920
4000
4080
4160
4240
4320
4400
4480
4560
4640
4720
4800
4880
4960
5040

81.70473
83.05382
87.594765
90.678085
88.30192
88.94797
87.297775
88.746994
90.39386
89.84266
91.435524
86.0763
82.95189
79.00917
76.4375
79.17508
86.372185
88.116875
88.53563
84.27098
86.20533
85.558
87.90682
91.57812
90.06345
88.06177
85.27804
83.74878
92.41585
91.13936
84.13557
84.049805
86.219055
82.36523
80.50126
81.957634
86.10216
92.24397
93.833015
89.42982
87.36689
87.41414
83.34817
87.65592

83.7127675
84.28138125
85.75785
87.4071475
88.880685
88.8064375
88.32366475
88.84664975
89.07032225
90.1047595
89.437086
87.5765935
84.868221
81.118715
79.39341
80.24848375
82.52541
85.5499425
86.8239175
86.78220375
86.142485
85.9852825
87.8120675
88.7765975
89.40254
88.745345
86.78801
87.37611
88.1455075
87.85989
87.93514625
86.3859475
84.192415
83.2838375
82.76079475
82.731571
85.201256
88.53419475
90.40224125
90.71842375
89.51096625
86.889755
86.44628
86.448666

85.5735596
86.1217041
86.6418579
87.1492129
87.6562579
88.6293373
88.9315853
88.4672978
87.3004063
86.1139643
85.1366753
85.0441163
84.9811044
84.7952814
84.2381134
83.715094
83.663264
84.158757
85.415652
86.778247
87.666916
87.5575015
87.120692
87.508714
88.195552
87.988576
87.8377565
87.66898
86.747691
85.791472
85.1810584
85.2634704
86.1129894
86.2547059
86.0837519
86.4068839
86.7433174
86.4562289
86.9852979
87.6728153
88.1922399
88.1411334
87.6485984
86.7882529

-197.8433193
-195.5929968
-192.8225205
-189.5446893
-185.759813

-181.0018573
-175.9416536
-171.3457374
-167.9167128
-165.6741301
-164.4088364
-163.2361017
-162.1263789
-161.2024792
-160.8357474
-160.992035

-161.2001526
-160.9127772
-159.3685069
-156.4616415
-152.6661071
-148.9799872
-145.7306768
-142.0933445
-137.7691741
-133.6519797
-129.6856048
-125.8880064
-123.0116971
-121.0916067
-119.7819299
-118.3898411
-116.1482333
-113.7649091
-111.5525388
-109.0170365
-106.1451007
-103.5602534
-100.4463372
-96.64490348
-92.3240452

-88.05429342
-84.27707664
-81.36020536

119

64
65
66
67
68
69
70
71
72
73
74
(6]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

5120
5200
5280
5360
5440
5520
5600
5680
5760
5840
5920
6000
6080
6160
6240
6320
6400
6480
6560
6640
6720
6800
6880
6960
7040
7120
7200
7280
7360
7440
7520
7600
7680
7760
7840
7920

87.376434
87.15188
85.591095
87.31862
85.22956
85.182594
82.906456
82.066666
85.140335
89.501884
90.441826
88.89851
92.5
88.54176
86.268074
83.61474
82.93738
83.96908
86.27612
87.89011
88.04748
88.671295
86.156334
83.77334
84.39643
85.94095
86.20028
85.05932
88.19381
86.43367
82.79189
84.019554
83.20158
85.91134
88.95826
86.61612

86.383101
86.94383225
86.85950725
86.32278875
85.83046725
85.1593075
83.846319
83.82401275
84.90383525
86.78767775
88.49563875
90.335555
90.095524
89.052086
87.7311435
85.3404885
84.1973185
84.19933
85.2681725
86.5456975
87.72125125
87.69130475
86.66211225
85.74934975
85.0667635
85.07775
85.399245
86.34859
86.47177
85.6196725
85.359731
84.1116735
83.981091
85.5226835
86.171825
87.16190667

86.3635303
85.9174869
85.3827395
85.561956
85.7465524
86.0530916
86.2277546
86.9186451
87.0409591
87.1448105
86.9880251
86.9911175
87.1813589
87.2949374
87.13376
86.8943254
86.8716039
86.2372373
85.7603953
85.5732309
85.8058519
86.1321419
86.2411659
86.4329349
86.2872909
85.7617319
85.2965578
85.0010824
85.2148824
85.6710654
85.7385824
85.68728267
85.765778
85.41891629
85.24979067
85.7413708

-78.86805668
-76.8219514

-75.31059352
-73.62001914
-71.74484836
-69.56313838
-67.2067654

-64.15950192
-60.98992444
-57.71649556
-54.59985208
-51.4801162

-48.17013892
-44.74658314
-41.48420476
-38.46126098
-35.4610387

-33.09518302
-31.20616934
-29.50432006
-27.56984978
-25.3090895

-22.93930522
-20.37775194
-17.96184266
-16.07149238
-14.6463162

-13.51661542
-12.17311464
-10.37343086
-8.50623008

-6.690329033
-4.795932653
-3.248397988
-1.869988941
2.39048E-07

120 Evaluation data for OR-gate 11

APPENDIX D

DTU-SB GDA Tutorial

This tutorial will explain how to perform GDA synthesis with the DTU-SB
framework.

Fig. 1: Open the Truth Table tab on the left where a default example truth-
table is shown. We will use that example as well as the default library (that can
be viewed on the SBML tab).

Fig. 2: Clicking the To SoP button shows the minimised SoP expression: CI =
(GFP') + (IPTG lacI). Clicking Find from SoP yields four different design
candidates for this SoP ordered by their cost. Details about e.g. the library
parts used to realise the selected design can be seen on the bottom left. Here
we select Design 1 composed of Part 8 and Part 8 and click Load selected
design.

122

DTU-SB GDA Tutorial

| sw. [Trth Table} Simulation Parameters
New TT Examples... v
e e .
GFP IPTG lac CT 4E]
000 1
001 1 Stoptime.
010 1 -
T 5.000/3])
100 0 Timeout
101 0 -
110 0
1111 Qutput steps
=
0,05 %
=
+
Results
Simulate Stop
Initial species concentrations
Load selected design
ID and description
SoP
Debuginfo: @ On () Off Clearlog
Cost
Input species
Intermediate species
‘Output species

| sam.| Truth Table

Figure 1

New T Examples. . v

[The last column is the output.

[oad selectad design

products: {id_3_pro=1}
id_4_repressed_transcription, rate:
Reactants:

Products

did: id_3_tc_ara, rate: 0.012+id_3_pro

Reactants: {id 3 pro=1}

Products: {id_3_meNA_Ara-1}

id: 1d_3_decay_mRNA_Ara, rate:

Reactants: {id_3_mRNA_Ara-1}

products: {}

id: 1d_4_decay_mRNa, rate: 0.006%id_4_meNa
{1d_4_mRNA=1}

{1

nitial markings:

0.01*1d_3_mRNA_Ara

{cI=0, aTc=0, 1d_3_mRNA_Ara=0, lacI=0, GFP=0, id_4_Pro=

510A(-7)*1d_4_Pro_GFp

1,
. d_2_pBAD_Tet=0,

Simulation Parameters

Rows withfaise output can be omitted Products: {id_4_mRNA=1} Iterations
id: id_4_regulation, rate: 1%id_4_Pro®GFP*10000 P
e IPTG lacT CI Reactants: {GFP=l, id_4_pro=1}]
oot 1 Products: {id_4_Pro_GFP-1 Stoptime
010 1 id: id_2_decay_CI, rate: 0.011*CT =
oot Reattaris: (i
nr e Products: {} F—
101 0 dd: id_2_decay mRNA_CI, rate: 0.011%id_2_mRNA_CT
%0 Reactants: (14 2 nRNA/CIZ1}
e Products:
dd: id_2_tc CI, rate: 0.009*id_2_PBAD_Tet Output steps
Reactarts: (12 o et 1)
Products: {id_2_mRNA_CI=1}
id: id_d_transcription, rate: 0.45%id_4_pro Threshold
Reactants: =
CI = (GFP') + (IPTG lacI) products: {id_4_mrNa=1} 0,05
id: id_4_decay_aTc, rate: 0.14*aTc Max threads.
Reactants: {aTc=1}
LS|

Initial species concentrations
GFP.

—c

Part3; Part 4 Part 2;

Cost id_2_mRNA_CT=0, Ara=0, id_3_Pro=0, id_d_Pro_oFi
P 1pTG=0, 1d_4_mRNA=0} v
e Debuginfo: @ On ()Off Clearlog lac!
llacl, GFP, IPTG] 09:51:46.848 [SwingWorker-poo]-2-thread-1] DEBUG » RateFunction: to calculia OH @®L
: . 51:46.851 [Swi 1-2-thread-1] DEEUG > to caleul:
Intermediate species 51:46.921 [Swingwarker-poo]-2-thread-1] DEBUG » RateFunctian to calauls
T 51:46.922 [SwingWorker-poo]-2-thread-1] DEBUG > RateFunction to calul:
faTc, Ara] 51:46.923 [Swi b ad-1] DEBUG > i to calaule
Output species 51:46.925 [SwingWorker-poo]-2-thread-1] DEBUG » RateFunction to calaule | jprg
L 51:46.926 [Sws 1-2-thread-1] DEBUG ~ to caleuls
<l 51:46.927 [Swingworker-pool-2-thread-1] DEBUG » RateFunction to calauls OH ®L
GRS 151:46.928 [SwingWorker-pool-2-thread-1] DEEUG > RateFunction: to calculd
< >

Figure 2

Pressing Simulate using the default species concentrations (absence of all species)
defined on the lower right, yields a graph similar to that of Fig. 3, which clearly
indicates a high level of CT as expected due to the (GF P’) implicant.

123

Desarpton | 5PN Gragh | Simuation

Simulation Parameters

Smulation 1 %

The tss column is e output.
Rows with false output can s omitied
GFP IPTG lac I

000 1

Composed of PartIDs

Parts; Part3;

=
s
s
Cost
10
Input species
[lacl, GFP,IPTG]
Intermediate species
[Ara]
Output species
cl

n [moleculles]

Cl= (GFF') + (IPTG lacl)

2,000 3.000

4,000
time [s]

Ierations
A

Stoptine

Dere

Cea Timeout.

(3 e s

Oaa Output steps

s

[Jid_3Pro Threshold

[Jd_8pro_sra

[]id_8.Pro_GFe || Maxthreads

Ot =)

Initial species concentrations
GFP

L BEon e

Ooff

pool-3-thr ead-1;
poo]-3-thread-3:
poo]-3-thread-2
po0]-3-thread-4:
pool-3-thread-4]
poo]-3-thread-1
poo]-3-thread-3:
pool-3-thread-2
SwingHorker-poo

DEBUG > GillespieAlgorithn:

DEBUG > GillespieAlgorithm
DEBUG > GillespieAlgorithm
DEBUG > GillespieAlgorithm
DEBUG > GiTl. 1gorithm

espi
DEBUG > GillespieAlgorithm: Tt
ieAlgorithm:

DEBUG > GillespieAl.

DEBUG > GillespieAlgorithm:

Thread
Thread

-2-thread-4] INFO > Simulator: Simulation ended

IPTG.

[E—

Figure 3

Selecting absence of GF P but presence of both lacI and IPTG yields a be-
haviour similar to that of Fig. 4. Here we see that the C1 level is higher than
that of Fig. 3, this is due to both implicants (GFP’) and (IPTG lacl) evaluate
to true where the given design just emits twice the C'1.

Desaripton | 57 Graph | Simulation

Simulation Parameters

The last colum is the output.
Rows with false output can be omitied.
GEP IPTG lacI €I

000 1

=

o

o
Cost
10
Input species
[lacl, GFP,IPTG]
Intermediate species
[Ara]
Output species
cl

Composed of PartIDs

Parts; Part3;

Examples... v | [Smlaton 1 x | Smuiaton 2 % |

Cl= (GFF') + (IPTG lacl)

Iterations
Clids.pro 4]
Stoptime
2 Timeout
E
3
S Outputsteps
= [Jid_8_nrna
2 [Jid_3_pro Threshold
= []4d_8_Pro_Ara 0,053
g []id_8_Pro_GFP Max threads.
3 e 4t
Initial species concentrations
2,000 3.000 oFp
time [s]
OH ®L
Export to CSV

Ooff

poo]-4-thr ead-2.
poo]-4-thread-1:
pool-4-thread-4:
poo]-4-thread-3;
poo]-4-thr cad-2
poo]-4-thread-1;
poo]-4-thread-4:
poo1-4-thread- 3
Swingworker-poo

DEBUG > GillespieAlgorithm:
DEBUG > GillespieAlgorithm:
DEBUG > GillespieAlgorithm:
DEBUG > GillespieAlgorithm:

Thread start: 32
Thread start: 31
Thread start: 34
Thread start: 33

: Thread done: 32 in
: Thread done: 31 in

hn: Thread done: 34 in

0:
&0
&0t
62

-2-thread-5] INFO > Simulator: Simulation ended it

>

[— T

T

&

— YT

Figure 4

124 DTU-SB GDA Tutorial

Finally selecting presence of GF'P but very low concentrations (10) of both
lacl and T PTG yields something similar to Fig. 5, which can be interpreted as
absence of CI due to the very low concentrations.

‘Descrption | SPN Graph | Simulation Simulation Parameters
[NewT | [Examps... v | [simiation 1 x | Simulaton 2 x | Smuation 3 % | [sme]
The tast cotumn is e output. C1=(GFP') + (IPTG lacl)
Rows with false output can be omitied. show species: Iterations
GFP 1PTG lac cT Dldsrmo pe
001 1 Stoptime
010 1 -
o 1 5.000 /%]
100 0 v Timeout
101 0 e =
110 0 El s mana_sre
111 1 5 °
e Caa Output steps.
=7 s reva
5
o 2 ° [RLELY Threshold
CI = (GEP') + (IPTG lacI) £ 5 []id_s_pro_sra 0,055
N Diarogy | ememt
s =
Resuts: o3 Orre =
I ign 1
Design 2
Design 3
Design 4 I Initial species concentrations
time [s]
on Ot
Cost Export o sV
10
ot - Debuginfo: @ On () OFf Clearlog l3c!
[1ac, GFP, IPTG] 09 [pool-5-thread-1] DEBUG > Gil Tthn: Thread OH OL
. . o [pool -5-thread-3] DESUG ~ GillespieAlgorithm: Thread
Intermediate species o [pool-5-thread-4] DESUG > GillespieAlgorithm: Thread
- o [poo]-5-thread-2] DEBUG ~ GillespieAlgorithm: Thread
TAra] o [pool-5-thread-1] DEBUG > Gillespiealgorithm: Thread
Output species o [poo] -5-thread-2] DESUG » GillespieAlgorithm: Thread PTG
o o [pool -5-thread-4] DESUG ~ GillespieAlgorithm: Thread
<l 09:55:49.979 [pool-5-thread-3] DEBUG » GillespieAlgorithm: Thread done: 38 in 40: OH OL
of PartiDs. 09:55:49.980 [Swinguorker-pool-2-thread-6] INFO > Simulator: simulation ended i
Part; Part 3; < I >

Figure 5

‘Desaription | SPN Graph| Simulation Simulation Parameters
M ET | St 1 x | Siuiston2 x| Smuation 3 x | Smiston 4 x | Fe =
The last column is he output. Cl=(GFP') + (IPTG lacl)
Rows withfaise output can be omitied. Show species: Iterations.
GFP IPTG lacI CI e
H Date =
oo1 1 Ciaa Stoptime
o1 1 - Oa= 5000
100 0 v d_iLmAva_Cr | Tmeout
101 0 z [Jid_11_mRna_C .
110 0 g Oere
1111 < Emmrn
= [mara_ara
g
rom 2 Oer Threshold
CI = (GFP') + (IPTG lacl) = [Jid4Pro 00515
3 Max threads
H Hesrre <
S []id_4Pro_GrP #2
[Jid_11.p_act
stop
D urms re
d_4 mRNA - . o
[id_sm Initial species concentrations
2.000 3.000 4.000 oFp
time [s]
OH @L
cost Export o sV
1
e Debuginfo: @ On ()Off Clearlog lac!
[lacl, GFP, IPTG] 12:46: [pool-6-thread-1] DEGUG > Gil ithm: Thread ~ OH ®L
N 5 12:46 [poo]-6-thread-2] DEEUG > GillespieAlgorithm: Thread
Intermediate species 12:46 [pool-6-thread-4] DESUG > GillespieAlgorithm: Thread
T 12:46 [poo] -6-thread-3] DEEUG » GillespieAlgorithm: Thread
faTc, Ara] 12:46. [pool-6-thread-1] DEBUG > Gillespiealgorithm: Thread
Output species 12:46 [poo]-6-thread-3] DESUG > Gillespiealgorithm: Thread PTG
L 12:46 [poo]-6-thread-4] DEEUG > GillespieAlgorithm: Thread
<l 12:46: [pool-6-thread-2] DESUG > GillespieAlgorithm: Thread done: OH @®L
GRS 12:46 [5wingiorker pool -2-thread-6] TNF0 > Sinulator: Simulation ended 1t
Part3; Part 4 Part 11; < I >

Figure 6

125

These three cases behaved as expected but if we instead selected Design 2 and
absence of all initial concentrations we get the low and fluctuating C'I behaviour
in Fig. 6, which is somewhat unexpected and do not adhere to the target
function. This can be explained by compatibility problems between Part 11
and Part 4, although they both work fine in isolation. Part 11 is never fully
triggered due to the long settling time of Part 4 which is something that logical
analysis cannot immediately reveal. This stresses the importance of simulating
every combination of inputs in order to asses the quality of a given design.

The oscillator in Fig. 8.7 on page 93 is another example where three inverter
parts, each describable by truth-tables, give rise to oscillating behaviour that
cannot be described by a logic function.

126 DTU-SB GDA Tutorial

Bibliography

ABC. ABC: A system for sequential synthesis and verification, release
70930. http://www.eecs.berkeley.edu/ alanmi/abc/. URL http://www.
eecs.berkeley.edu/ alanmi/abc.

James J. Collins Ahmad S. Khalil. Synthetic biology: applications come of age.
Nature Reviews Genetics, (5):367-379, 2010. doi: 10.1038/nrg2775. URL
http://www.nature.com/nrg/journal/v11/n5/full/nrg2775.html.

Aurélien Alfonsi, Eric Cancés, Gabriel Turinici, Barbara Di Ventura, and Wil-
helm Huisinga. Exact simulation of hybrid stochastic and deterministic mod-
els for biochemical systems. Rapport de recherche RR-5435, INRIA, 2004.
URL http://hal.inria.fr/inria-00070572.

Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partition-
ing: A survey. Integration: The VLSI Journal, 19:1-81, 1995.

Altera. Quartus ii. http://www.altera.com/products/software/
quartus-ii/web-edition/qts-we-index.html.

J. Alves. Genetic code bw. http://openclipart.org/detail/95197/
genetic-code-bw-by-j_alves, November 2010.

A. Arkin, J. Ross, and HH McAdams. Stochastic kinetic analysis of develop-
mental pathway bifurcation in phage lambda-infected escherichia coli cells.
GENETICS, 149(4):1633-1648, 1998. ISSN 00166731, 19432631.

G. Baldwin, P.S. Freemont, and R.I. Kitney. Synthetic Biology: A Primer.
Imperial College Press, 2012. ISBN 9781848168633. URL http://books.
google.dk/books?id=VoOCywAACAAJ.

http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc
http://www.nature.com/nrg/journal/v11/n5/full/nrg2775.html
http://hal.inria.fr/inria-00070572
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://openclipart.org/detail/95197/genetic-code-bw-by-j_alves
http://openclipart.org/detail/95197/genetic-code-bw-by-j_alves
http://books.google.dk/books?id=Vo0CywAACAAJ
http://books.google.dk/books?id=Vo0CywAACAAJ

128 BIBLIOGRAPHY

Jacob Beal, Andrew Phillips, Douglas Densmore, and Yizhi Cai. High-level
programming languages for biomolecular systems. In Heinz Koeppl, Gi-
anluca Setti, Mario di Bernardo, and Douglas Densmore, editors, Design
and Analysis of Biomolecular Circuits, pages 225-252. Springer New York,
2011. ISBN 978-1-4419-6765-7. doi: 10.1007/978-1-4419-6766-4 11. URL
http://dx.doi.org/10.1007/978-1-4419-6766-4_11.

Jacob Beal, Ron Weiss, Douglas Densmore, Aaron Adler, Evan Appleton,
Jonathan Babb, Swapnil Bhatia, Noah Davidsohn, Traci Haddock, Joseph
Loyall, Richard Schantz, Viktor Vasilev, and Fusun Yaman. An end-to-end
workflow for engineering of biological networks from high-level specifications.
ACS Synthetic Biology, 1(8):317-331, 2012. doi: 10.1021/sb300030d. URL
http://pubs.acs.org/doi/abs/10.1021/sb300030d.

Luca Benini and Giovanni De Micheli. A survey of boolean matching techniques
for library binding. ACM Trans. Des. Autom. Electron. Syst., 2(3):193-226,
July 1997. ISSN 1084-4309. doi: 10.1145/264995.264996. URL http://doi.
acm.org/10.1145/264995.264996.

Swapnil Bhatia and Douglas Densmore. Pigeon: A design visualizer for synthetic
biology. ACS Synthetic Biology, 2(6):348-350, 2013.

Lesia Bilitchenko, Adam Liu, Sherine Cheung, Emma Weeding, Bing Xia,
Mariana Leguia, J. Christopher Anderson, and Douglas Densmore. Eu-
gene - a domain specific language for specifying and constraining synthetic
biological parts, devices, and systems. PLoS ONE, 6(4):e18882, 04 2011.
doi: 10.1371/journal.pone.0018882. URL http://dx.doi.org/10.1371%
2F journal .pone.0018882.

MA Bléatke, M Heiner, and W Marwan. Tutorial - Petri Nets in Systems Biol-
ogy. Technical report, Otto von Guericke University Magdeburg, Magdeburg
Centre for Systems Biology, August 2011.

F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley,
J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W.
Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao.
The complete genome sequence of Escherichia coli K-12. Science (New York,
N.Y.), 277(5331):1453-1462, September 1997. ISSN 0036-8075. URL http:
//dx.doi.org/10.1126/science.277.5331.1453.

Jerome Bonnet, Peter Yin, Monica E. Ortiz, Pakpoom Subsoontorn, and Drew
Endy. Amplifying Genetic Logic Gates. Science, 340(6132):599-603, May
2013. ISSN 1095-9203. doi: 10.1126/science.1232758. URL http://dx.doi.
org/10.1126/science.1232758.

Dmitri Bratsun, Dmitri Volfson, Lev S. Tsimring, and Jeff Hasty. Delay-induced
stochastic oscillations in gene regulation. Proceedings of the National Academy

http://dx.doi.org/10.1007/978-1-4419-6766-4_11
http://pubs.acs.org/doi/abs/10.1021/sb300030d
http://doi.acm.org/10.1145/264995.264996
http://doi.acm.org/10.1145/264995.264996
http://dx.doi.org/10.1371%2Fjournal.pone.0018882
http://dx.doi.org/10.1371%2Fjournal.pone.0018882
http://dx.doi.org/10.1126/science.277.5331.1453
http://dx.doi.org/10.1126/science.277.5331.1453
http://dx.doi.org/10.1126/science.1232758
http://dx.doi.org/10.1126/science.1232758

BIBLIOGRAPHY 129

of Sciences of the United States of America, 102(41):14593-14598, 2005. URL
http://www.pnas.org/content/102/41/14593.abstract.

Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,
and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Norwell, MA, USA, 1984. ISBN 0898381649.

C.F.A Bryce and D. Pacini. The Structure and Function of Nucleic Acids. The
Biochemical Society, 1998. ISBN 0904498344.

Kevin Burrage, Pamela Burrage, Andre Leier, Tatiana Marquez-Lago, and
Dan Nicolau Jr. Stochastic simulation for spatial modelling of dynamic
process in a living cell. In H. Koeppl, D. Densmore, G. Setti, and
M. di Bernardo, editors, Design and Analysis of Biomolecular Circuits: Engi-
neering Approaches to Systems and Synthetic Biology, pages 43—62. Springer
Science+Business Media, 2011. URL http://eprints.qut.edu.au/45889/.

Guilhem Chalancon, Charles N. J. Ravarani, S. Balaji, Alfonso Martinez-Arias,
L. Aravind, Raja Jothi, and M. Madan Babu. Interplay between gene expres-
sion noise and regulatory network architecture. TRENDS IN GENETICS, 28
(5):221-232, 2012. ISSN 01689525.

Deepak Chandran, Frank Bergmann, and Herbert Sauro. TinkerCell: modular
CAD tool for synthetic biology. Journal of Biological Engineering, 3(1):19+,
2009. ISSN 1754-1611. doi: 10.1186/1754-1611-3-19. URL http://dx.doi.
org/10.1186/1754-1611-3-19.

Abhijit Chatterjee, Dionisios G. Vlachos, and Markos A. Katsoulakis. Bino-
mial distribution based I,-leap accelerated stochastic simulation. The Journal
of Chemical Physics, 122(2):024112, 2005. doi: http://dx.doi.org/10.1063/
1.1833357. URL http://scitation.aip.org/content/aip/journal/jcp/
122/2/10.1063/1.1833357.

Satrajit Chatterjee. On Algorithms for Technology Mapping. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2007. URL http://www.
eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-100.html.

Wei chun Chou, Peter A. Beerel, and Kenneth Y. Yun. Average-case technology
mapping of asynchronous burst-mode circuits. IJEEE TRANS. ON CAD, 18:
143-4, 1999.

F. H. C. Crick. Central dogma of molecular biology. Nature, 227(5258):561-563,
1970. doi: 10.1038/227561a0. URL http://dx.doi.org/10.1038/227561a0.

D. Densmore and S. Hassoun. Design automation for synthetic biological sys-
tems. Design Test of Computers, IEEE, 29(3):7-20, 2012. ISSN 0740-7475.
doi: 10.1109/MDT.2012.2193370.

http://www.pnas.org/content/102/41/14593.abstract
http://eprints.qut.edu.au/45889/
http://dx.doi.org/10.1186/1754-1611-3-19
http://dx.doi.org/10.1186/1754-1611-3-19
http://scitation.aip.org/content/aip/journal/jcp/122/2/10.1063/1.1833357
http://scitation.aip.org/content/aip/journal/jcp/122/2/10.1063/1.1833357
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-100.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-100.html
http://dx.doi.org/10.1038/227561a0

130 BIBLIOGRAPHY

Andreas Dréger, Nicolas Rodriguez, Marine Dumousseau, Alexander Dorr,
Clemens Wrzodek, Nicolas Le Novére, Andreas Zell, and Michael Hucka. Js-
bml: a flexible java library for working with sbml. Bioinformatics - Ozford,
27(15):2167, 2013. ISSN 13674803, 13674811.

M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. NATURE -LONDON-, (6767):335-338, 2000. ISSN 0028-0836,
00280836, 14764687.

Access Excellence. Restriction enzyme - action of ecori. http://www.
accessexcellence.org/RC/VL/GG/restriction. php.

Andrew Martin Finney, Mike Hucka, Herbert M. Sauro, John Doyle, Hiroaki
Kitano, and Hamid Bolouri. The systems biology markup language. Molecular
Biology of the Cell, 12(Supplement):130a, 2001. ISSN 10591524, 19394586.

Forluvoft. Simple transcription elongation. https://en.wikipedia.org/wiki/
File:Simple_transcription_elongationl.svg, October 2007.

Kurt Frenzel. Lecture 9 from ece 349 - background study in digital com-
puter fundamentals. URL http://www.mrc.uidaho.edu/mrc/people/jff/
349/1lect.09.

M.A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. Journal of Physical Chemistry
A, 104(9):1876-1889, 2000. ISSN 1089-5639. URL http://pubs3.acs.org/
acs/journals/doilookup?in_doi=10.1021/jp993732q.

D. T. Gillespie. Stochastic simulation of chemical kinetics. ANNUAL REVIEW
OF PHYSICAL CHEMISTRY, 58:35-56, 2007. ISSN 0066-426X, 0066426x,
15451593.

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340-2361, 1977. doi: 10.1021/
j100540a008. URL http://pubs.acs.org/doi/abs/10.1021/j100540a008.

F. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. J Chem Phys, 115:1716-1733, 2001.

Dave Goldsman. Simulation output analysis, lecture slides module 9,
2010. URL http://www2.isye.gatech.edu/ sman/courses/Mexico2010/
Module09-0OutputAnalysis_100526.pdf.

Michael J. Gregory. Course: General biology 1 (bio 101). http:
//faculty.clintoncc.suny.edu/faculty/michael.gregory/files/
Bi0%20101/bio_1_menu.htm, September 2013.

http://www.accessexcellence.org/RC/VL/GG/restriction.php
http://www.accessexcellence.org/RC/VL/GG/restriction.php
https://en.wikipedia.org/wiki/File:Simple_transcription_elongation1.svg
https://en.wikipedia.org/wiki/File:Simple_transcription_elongation1.svg
http://www.mrc.uidaho.edu/mrc/people/jff/349/lect.09
http://www.mrc.uidaho.edu/mrc/people/jff/349/lect.09
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp993732q
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp993732q
http://pubs.acs.org/doi/abs/10.1021/j100540a008
http://www2.isye.gatech.edu/~sman/courses/Mexico2010/Module09-OutputAnalysis_100526.pdf
http://www2.isye.gatech.edu/~sman/courses/Mexico2010/Module09-OutputAnalysis_100526.pdf
http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/Bio%20101/bio_1_menu.htm
http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/Bio%20101/bio_1_menu.htm
http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/Bio%20101/bio_1_menu.htm

BIBLIOGRAPHY 131

M Heiner, D Gilbert, and R Donaldson. Petri Nets for Systems and Synthetic
Biology, volume 5016 of LNCS, pages 215-264. Springer, 2008. URL http:
//dx.doi.org/10.1007/978-3-540-68894-5_7.

Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin Schwarick.
Snoopy - a unifying petri net tool. In Petri Nets, pages 398-407, 2012a.

Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin Schwarick.
Snoopy a unifying petri net tool. In Serge Haddad and Lucia Pomello, ed-
itors, Application and Theory of Petri Nets, volume 7347 of Lecture Notes
in Computer Science, pages 398-407. Springer Berlin Heidelberg, 2012b.
ISBN 978-3-642-31130-7. doi: 10.1007/978-3-642-31131-4 22. URL http:
//dx.doi.org/10.1007/978-3-642-31131-4_22.

Mostafa Herajy and Monika Heiner. Hybrid representation and simulation of
stiff biochemical networks. Nonlinear Analysis: Hybrid Systems, 6(4):942-959,
November 2012. URL http://dx.doi.org/10.1016/j.nahs.2012.05.004.

R. Hershberg, S. Altuvia, and H. Margalit. A survey of small rna-encoding genes
in escherichia coli. NUCLEIC ACIDS RESEARCH, 31(7):1813-1820, 2003.
ISSN 03051048, 13624962. doi: 10.1093/nar/gkg297.

Thomas P. Howard, Sabine Middelhaufe, Karen Moore, Christoph Edner, Dag-
mara M. Kolak, George N. Taylor, David A. Parker, Rob Lee, Nicholas
Smirnoff, Stephen J. Aves, and John Love. Synthesis of customized petroleum-
replica fuel molecules by targeted modification of free fatty acid pools in
Escherichia coli. Proceedings of the National Academy of Sciences, 110(19):
76367641, May 2013. ISSN 1091-6490. doi: 10.1073/pnas.1215966110. URL
http://dx.doi.org/10.1073/pnas.1215966110.

Haiyao Huang, Swapnil Bhatia, Ahmad Khalil, and Douglas Densmore. Fluigi:
a computer aided design framework for combining microfluidics and synthetic
biology. poster presented at the 6th International Meeting on Synthetic Biol-
ogy (SB6.0), July 2013. URL http://cidarlab.org/wp-content/uploads/
2013/09/HuangSB62013. pdf.

Michael Hucka, Frank T. Bergmann, Stefan Hoops, Sarah M. Keating, Sven
Sahle, James C. Schaff, Lucian P. Smith, and Darren J. Wilkinson. The
systems biology markup language (sbml): Language specification for level 3
version 1 core. 2010.

National Human Genome Research Institute. Fact sheets about genetic and
genomic science. http://www.genome.gov/10000202#al-1, September 2013.

Gao Jiang Jiang, M. Gao, J h. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha,
T. Villa, and R. Brayton. Optimization of multi-valued multi-level networks,
2002.

http://dx.doi.org/10.1007/978-3-540-68894-5_7
http://dx.doi.org/10.1007/978-3-540-68894-5_7
http://dx.doi.org/10.1007/978-3-642-31131-4_22
http://dx.doi.org/10.1007/978-3-642-31131-4_22
http://dx.doi.org/10.1016/j.nahs.2012.05.004
http://dx.doi.org/10.1073/pnas.1215966110
http://cidarlab.org/wp-content/uploads/2013/09/HuangSB62013.pdf
http://cidarlab.org/wp-content/uploads/2013/09/HuangSB62013.pdf
http://www.genome.gov/10000202#al-1

132 BIBLIOGRAPHY

Wetterstrand KA. Dna sequencing costs. http://www.genome.gov/
sequencingcosts/, 2014.

Gerald Karp. Cell and Molecular Biology: Concepts and Experiments (Karp,
Cell and Molecular Biology). Wiley, 2009. ISBN 0470483377.

Jay D. Keasling, Dae-Kyun Ro, Eric M. Paradise, Mario Ouellet, Karl J. Fisher,
Karyn L. Newman, John M. Ndungu, Kimberly A. Ho, Rachel A. Eachus,
Timothy S. Ham, James Kirby, Michelle C. Y. Chang, Sydnor T. Withers,
Yoichiro Shiba, and Richmond Sarpong. Production of the antimalarial drug
precursor artemisinic acid in engineered yeast. Nature, 440(7086):940-943,
2006.

Kurt Keutzer. Dagon: Technology binding and local optimization by dag match-
ing. In DAC, pages 341-347, 1987. URL http://dblp.uni-trier.de/db/
conf/dac/dac87.html#Keutzer87.

Ivan Komarov and Roshan M. D’Souza. Accelerating the gillespie exact stochas-
tic simulation algorithm using hybrid parallel execution on graphics processing
units. PLoS ONE, 7(11), 11 2012.

Erel Levine and Terence Hwa. Stochastic fluctuations in metabolic pathways.
Proceedings of the National Academy of Sciences, 104(22):9224-9229, May
2007. URL http://dx.doi.org/10.1073/pnas.0610987104.

Gabriele Lillacci and Mustafa Khammash. Parameter estimation and model
selection in computational biology. PLoS Computational Biology, 6(3):—, 2010.
ISSN 1553734X, 15537358. doi: 10.1371/journal.pcbi.1000696.

Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua
Lu, and Maggie Law. Comparison of next-generation sequencing systems.
Journal of biomedicine & biotechnology, 2012:1-11, 2012. ISSN 1110-7251.
URL http://dx.doi.org/10.1155/2012/251364.

Huma M. Lodhi and Stephen. Muggleton. FElements of computational systems
biology. Wiley, 2010. ISBN 0470180935, 9780470180938. URL http://vcp.
med.harvard.edu/papers/misb.pdf.

Ting Lu, Dmitri Volfson, Lev Tsimring, and Jeff Hasty. Cellular growth and
division in the gillespie algorithm. In IEFE Systems Biology, pages 121-128,
2004.

Mario A. Marchisio and Jorg Stelling. Automatic design of digital synthetic
gene circuits. PLoS Computational Biology, 7(2), 2011. URL http://dblp.
uni-trier.de/db/journals/ploscb/ploscb7.html#MarchisioS11.

H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression.
PROCEEDINGS- NATIONAL ACADEMY OF SCIENCES USA, 94(3):814—
819, 1997. ISSN 0027-8424.

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/
http://dblp.uni-trier.de/db/conf/dac/dac87.html#Keutzer87
http://dblp.uni-trier.de/db/conf/dac/dac87.html#Keutzer87
http://dx.doi.org/10.1073/pnas.0610987104
http://dx.doi.org/10.1155/2012/251364
http://vcp.med.harvard.edu/papers/misb.pdf
http://vcp.med.harvard.edu/papers/misb.pdf
http://dblp.uni-trier.de/db/journals/ploscb/ploscb7.html#MarchisioS11
http://dblp.uni-trier.de/db/journals/ploscb/ploscb7.html#MarchisioS11

BIBLIOGRAPHY 133

L.J. McBride and M.H. Caruthers. An investigation of several deoxynucleo-
side phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetra-
hedron Letters, 24(3):245 — 248, 1983. ISSN 0040-4039. doi: http://dx.
doi.org/10.1016 /S0040-4039(00)81376-3. URL http://www.sciencedirect.
com/science/article/pii/S0040403900813763.

E. J. Mccluskey. Minimization of Boolean functions. The Bell System Technical
Journal, 35(5):1417-1444, November 1956.

U.S. National Library Of Medicine. Handbook - help me understand genetics.
http://ghr.nlm.nih.gov/handbook.pdf, September 2013.

S. Menz, J. Latorre, C. Schatte, and W. Huisinga. Hybrid stochastic—
deterministic solution of the chemical master equation. Multiscale Model-
ing € Simulation, 10(4):1232-1262, 2012. doi: 10.1137/110825716. URL
http://epubs.siam.org/doi/abs/10.1137/110825716.

Ron Milo, Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer.
Bionumbers-the database of key numbers in molecular and cell biology. NU-
CLEIC ACIDS RESEARCH, 38(Suppl. 1):D750-D753, 2010. ISSN 03051048,
13624962.

Munsky and Khammash. The finite state projection algorithm for the solution
of the chemical master equation. Journal of Chemical Physics, 124(4):44104—
1-13, 2006. ISSN 00219606, 10897690.

Saburo Muroga. Logic Design and Switching Theory. John Wiley & Sons, Inc.,
New York, NY, USA, 1979. ISBN 0471044180.

Chris J. Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Mad-
sen, and Nam-Phuong D. Nguyen. ibiosim. Bioinformatics, 25(21):2848-2849,
November 2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp457. URL
http://dx.doi.org/10.1093/bioinformatics/btp457.

C.J. Myers. Engineering Genetic Circuits. Chapman & Hall/CRC Mathematical
and Computational Biology. Taylor & Francis, 2011. ISBN 9781420083255.
URL http://books.google.dk/books?id=UoCqéFeTeHkC.

Nagarajan Nandagopal and Michael B. Elowitz. Synthetic biology: Integrated
gene circuits. 333(6047):1244-1248, 2011. doi: 10.1126/science.1207084.

Carl Rod Nave. Translation or protein synthesis. http://hyperphysics.
phy-astr.gsu.edu/hbase/organic/translation.html, October 2013.

C.A. Nelson. Technology Mapping of Timed Asynchronous Circuits. Department
of Electrical and Computer Engineering, University of Utah, 2004. URL
http://books.google.dk/books?id=I86XYgEACAAJ.

http://www.sciencedirect.com/science/article/pii/S0040403900813763
http://www.sciencedirect.com/science/article/pii/S0040403900813763
http://ghr.nlm.nih.gov/handbook.pdf
http://epubs.siam.org/doi/abs/10.1137/110825716
http://dx.doi.org/10.1093/bioinformatics/btp457
http://books.google.dk/books?id=UoCq4FeTeHkC
http://hyperphysics.phy-astr.gsu.edu/hbase/organic/translation.html
http://hyperphysics.phy-astr.gsu.edu/hbase/organic/translation.html
http://books.google.dk/books?id=I86XYgEACAAJ

134 BIBLIOGRAPHY

Michael Pedersen and Andrew Phillips. Towards programming languages for
genetic engineering of living cells. Journal of The Royal Society Interface,
6, April 2009. URL http://rsif.royalsocietypublishing.org/content/
early/2009/04/14/rsif .2008.0516.focus.

C. Adam Petri and W. Reisig. Petri net. 3(4):6477, 2008.

Carl Adam Petri. Communication with automata. PhD thesis, Universitit
Hamburg, 1966.

Jacqueline Quinn, Jacob Beal, Swapnil Bhatia, Patrick Cai, Joanna Chen, Kevin
Clancy, Nathan Hillson, Michal Galdzicki, Akshay Maheshwari, Umesh P,
Matthew Pocock, Cesar Rodriguez, Guy-Bart Stan, and Drew Endy. Syn-
thetic biology open language visual (sbol visual), version 1.0.0. bbf rfc 93.
http://hdl.handle.net/1721.1/78249, 2013.

T A RAJU. Lac operon. http://en.wikipedia.org/wiki/Regulation_of_
gene_expression.

R. Rauhut and G. Klug. mrna degradation in bacteria. FEMS MICROBI-
OLOGY REVIEWS, 23(3):353-370, 1999. ISSN 01686445, 15746976. doi:
10.1016/50168-6445(99)00012-1.

Virgil A. Rhodius, Thomas H. Segall-Shapiro, Brian D. Sharon, Amar Gho-
dasara, Ekaterina Orlova, Hannah Tabakh, David H. Burkhardt, Kevin
Clancy, Todd C. Peterson, Carol A. Gross, and Christopher A. Voigt. De-
sign of orthogonal genetic switches based on a crosstalk map of sigmas, anti-
sigmas, and promoters. Molecular Systems Biology, 9(1), October 2013. URL
http://dx.doi.org/10.1038/msb.2013.58.

Andre Ribeiro, Rui Zhu, and Stuart A. Kauffman. A general modeling strat-
egy for gene regulatory networks with stochastic dynamics. JOURNAL OF
COMPUTATIONAL BIOLOGY, 13(9):1630-1639, 2006. ISSN 10665277,
15578666. doi: 10.1089/cmb.2006.13.1630.

Marc R. Roussel and Rui Zhu. Stochastic kinetics description of a simple tran-
scription model. BULLETIN OF MATHEMATICAL BIOLOGY, 68(7):1681—
1713, 2006. ISSN 00928240, 15229602. doi: 10.1007/s11538-005-9048-6.

R. Sarpeshkar. Brain power - borrowing from biology makes for low power
computing [bionic ear|. Spectrum, IEEE, 43(5):24-29, 2006. ISSN 0018-9235.
doi: 10.1109/MSPEC.2006.1628504.

Yishai Shimoni, Gilgi Friedlander, Guy Hetzroni, Gali Niv, Shoshy Altuvia,
Ofer Biham, and Hanah Margalit. Regulation of gene expression by small
non-coding rnas: a quantitative view. Molecular Systems Biology, 3:138, 2007.
ISSN 17444292.

http://rsif.royalsocietypublishing.org/content/early/2009/04/14/rsif.2008.0516.focus
http://rsif.royalsocietypublishing.org/content/early/2009/04/14/rsif.2008.0516.focus
http://hdl.handle.net/1721.1/78249
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
http://dx.doi.org/10.1038/msb.2013.58

BIBLIOGRAPHY 135

Polly Siegel, Giovanni De Micheli, and David L. Dill. Automatic technology
mapping for generalized fundamental-mode asynchronous designs. In DAC,
pages 61-67, 1993. URL http://dblp.uni-trier.de/db/conf/dac/dac93.
html#SiegelMD93.

Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. A constant-
time kinetic monte carlo algorithm for simulation of large biochemical re-
action networks. The Journal of Chemical Physics, 128(20):205101, 2008.
doi: http://dx.doi.org/10.1063/1.2919546. URL http://scitation.aip.
org/content/aip/journal/jcp/128/20/10.1063/1.2919546.

Stricker, Cookson, Bennett, Mather, Tsimring, and Hasty. A fast, robust and
tunable synthetic gene oscillator. Nature, 456(7221):516-519, 2008. ISSN
00280836, 14764687.

Alvin Tamsir, Jeffrey J. Tabor, and Christopher A. Voigt. Robust multicellular
computing using genetically encoded nor gates and chemical ’'wires’. NA-
TURE, 469(7329):212-215, 2011. ISSN 00280836, 14764687. doi: 10.1038/
nature09565.

Wayne A. Taylor. Change-point analysis: A powerful new tool for detecting
changes, 2000. URL http://www.variation.com/cpa/tech/pattern.html.

Tianhai Tian and Kevin Burrage. Binomial leap methods for simulating stochas-
tic chemical kinetics. The Journal of Chemical Physics, 121(21), 2004.

P. Waage and CM Gulberg. Studies concerning affinity. JOURNAL OF CHEM-
ICAL EDUCATION, 63(12):1044-1047, 1864. ISSN 00219584, 19381328. doi:
10.1021/ed063p1044.

Ron Weiss, George E. Homsy, and Thomas F. Knight. Toward in vivo Digital
Clircuits, pages 275-279. DIMACS Workshop. Springer, 1999. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9888.

Ron Weiss, Subhayu Basu, and David Braun. Parameter estimation for two
synthetic gene networks: A case study. ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Proceedings, V:V769-V772,
2005. ISSN 15206149. doi: 10.1109/ICASSP.2005.1416417.

Jialiang Wu, Brani Vidakovic, and Eberhard O. Voit. Constructing stochas-
tic models from deterministic process equations by propensity adjustment.
BMC' systems biology, 5(1):187+, 2011. ISSN 1752-0509. doi: 10.1186/
1752-0509-5-187. URL http://dx.doi.org/10.1186/1752-0509-5-187.

Dennis C. Wylie, Yuko Hori, Aaron R. Dinner, and Arup K. Chakraborty. A
hybrid deterministica™’stochastic algorithm for modeling cell signaling dy-
namics in spatially inhomogeneous environments and under the influence of

http://dblp.uni-trier.de/db/conf/dac/dac93.html#SiegelMD93
http://dblp.uni-trier.de/db/conf/dac/dac93.html#SiegelMD93
http://scitation.aip.org/content/aip/journal/jcp/128/20/10.1063/1.2919546
http://scitation.aip.org/content/aip/journal/jcp/128/20/10.1063/1.2919546
http://www.variation.com/cpa/tech/pattern.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9888
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9888
http://dx.doi.org/10.1186/1752-0509-5-187

136 Glossary

external fields. The Journal of Physical Chemistry B, 110(25):12749-12765,
2006. doi: 10.1021/jp056231f. URL http://pubs.acs.org/doi/abs/10.
1021/§p056231f. PMID: 16800611.

Xilinx. Ise. http://www.xilinx.com/products/design-tools/
ise-design-suite/ise-webpack.htm.

D.A. Zaitsev. Toward the minimal universal petri net, 2013. ISSN 2168-2216.

Hornung Akos. A simple explanation of how the dna can be read by the
transcription machinery. https://en.wikipedia.org/wiki/File:Reading_
Frame.png, December 2011.

http://pubs.acs.org/doi/abs/10.1021/jp056231f
http://pubs.acs.org/doi/abs/10.1021/jp056231f
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
https://en.wikipedia.org/wiki/File:Reading_Frame.png
https://en.wikipedia.org/wiki/File:Reading_Frame.png

Glossary

Asynchronous circuits A digital circuit that operates without clock signals.
In theory these circuits can be faster and more power efficient but practical
issues concerning hazard-handling often remove these advantages. 103, 111

Bimolecular reaction Reactions with two reactants, i.e. S; 4+ .5; — products.
39

Biochemical reactions Chemical reactions happening in the cell. 46

Brownian dynamics A simplified model of molecular motion that can be de-
scribed solely by radius, volume and speed. 39, 104, 107

DeMorgan’s theorem Rules of propositional negation that states The nega-
tion of a conjunction is the disjunction of the negations and The negation
of a disjunction is the conjunction of the negations. So for example any
OR-gate is equivalent to an AND-gate with its inputs and output negated.
88

Enzyme A protein that catalyses chemical reactions. 12

IGEM The international genetically engineered machine competition a student
competition in synthetic biology. 2

Markov process A stochastic memory-less process that can make prediction
of the future based solely on the current state. 40

Monomolecular reaction Reactions with one reactant, i.e. S; — products.
39

138 Glossary

Real-world Typically real-world experiments refer to experiments in real living
organisms. 25, 107

Sum-of-products A convenient way to express boolean expression using only
AND, OR or NEG operators in a specific arrangement. 80

Synchronous circuits A digital circuit that is synchronised by a clock so that
every execution is performed in clock-steps. This type of circuit is very
common and is used in nearly every consumer product. 103

Turing complete A term meaning that this programming language or au-
tomata can simulate any other programming language or automata. 30

Wet-lab Typically wet-lab experiments refer to experiments in glass, i.e. in an
artificial laboratory setting where the unit of interest is isolated. 22, 49,
80, 107

	Summary (English)
	Summary (Danish)
	Preface
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem and contributions
	1.3 Work process
	1.4 Reading guide

	2 Biology
	2.1 DNA
	2.2 Genes
	2.3 Gene expression
	2.3.1 Transcription
	2.3.2 The genetic code
	2.3.3 Translation
	2.3.4 Decay

	2.4 Gene regulation

	3 Engineering Biology
	3.1 Enabling technologies
	3.1.1 DNA sequencing
	3.1.2 DNA synthesis
	3.1.3 DNA assembly

	3.2 Tool-chain
	3.3 Abstractions
	3.4 Discussion

	4 Petri Nets
	4.1 Reaction equations
	4.2 Petri net definition
	4.2.1 Example: predator-prey
	4.2.2 Extensions
	4.2.2.1 Inhibitor arc
	4.2.2.2 Read arc

	4.3 Rates of firing
	4.4 Discussion

	5 Quantitative Analysis
	5.1 Law of mass action
	5.2 Deterministic methods
	5.3 Stochastic methods
	5.3.1 Propensity
	5.3.2 Chemical master equation
	5.3.3 Gillespie's direct method
	5.3.3.1 Run-time analysis
	5.3.3.2 Refinements and extensions

	5.4 Discussion

	6 Modelling
	6.1 Abstraction level
	6.1.1 Case study: Negative feedback loop

	6.2 SPN representation
	6.2.1 Parts and processes
	6.2.2 Case study continued

	6.3 Parameters
	6.3.1 Identifying rates
	6.3.2 Case study continued
	6.3.2.1 Simulation

	6.4 Example: Oscillator
	6.5 Discussion

	7 A framework: DTU-SB
	7.1 Requirements
	7.2 Architecture and data flow
	7.3 Review of formats and third-party libraries
	7.3.1 Input formats
	7.3.2 Intermediate format
	7.3.3 Simulation output formats

	7.4 Implementation details
	7.4.1 Input parser
	7.4.2 Compiler
	7.4.3 Simulation and algorithms

	7.5 Usage
	7.6 Evaluation: Simulating a NOR-gate
	7.6.1 Simulations
	7.6.2 Verification of simulations

	7.7 Concluding remarks

	8 Genetic Logic Synthesis
	8.1 Logic synthesis
	8.2 Genetic design automation
	8.2.1 A work-flow
	8.2.2 Representation of library parts
	8.2.2.1 Option 1
	8.2.2.2 Option 2
	8.2.2.3 Option 3

	8.2.3 Technology mapping strategy

	8.3 Library based technology mapping
	8.3.1 Minimisation
	8.3.2 Decomposition
	8.3.3 Partitioning
	8.3.4 Covering

	8.4 Characterisation and evaluation
	8.4.1 Characteristics
	8.4.2 Objective function
	8.4.3 Evaluation
	8.4.3.1 Case study: Evaluating OR-gates
	8.4.3.2 Automatic evaluation

	8.5 Implementation
	8.6 Discussion
	8.6.1 Parts characterisation
	8.6.2 Technology mapping
	8.6.3 Automatic evaluation

	9 Conclusion
	9.1 Logic synthesis
	9.2 Related work
	9.3 Reflections
	9.4 Future directions

	A Modelling examples details
	B Email from Chris J. Myers
	C Evaluation data for OR-gate 11
	D DTU-SB GDA Tutorial
	Bibliography
	Glossary

