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Abstract

Among the top performing automated hippocampal segmentation methods from
structural Magnetic Resonance Imaging (MRI), are multi-atlas segmentation
methods, which rely on manual annotations.

In this thesis two fundamentally different multi-atlas segmentation methods
are implemented, N-L Patch and BrainFuseLab. In N-L Patch, each voxel is
segmented using information from atlases which have been coarsely aligned using
affine registrations. BrainFuseLab aligns atlases using non-rigid registrations,
and is thus comparatively slower. To make a fair comparison, both methods will
use the same atlases from a new Harmonized Hippocampal Protocol (HHP).

Method parameters are optimized in a leave-one-out cross-validation using two
different atlas sets. Based on volume overlap with the manual annotations, N-L
Patch is chosen to segment a standardized ADNI dataset containing 1.5T MRIs
from 504 diagnosed subjects (169 cognitively normal (CN), 234 mild cognitive
impairment (MCI), 101 alzheimer’s disease (AD)) at baseline, month 12 and
month 24. Hippocampal atrophy calculated as percentage volume change from
baseline to follow-up is estimated. Based on a statistical analysis, the diagnostic
group separation capabilities of N-L Patch are compared to two state-of-the-art
methods, cross-sectional FreeSurfer and longitudinal FreeSurfer.

Including the HHP annotations in N-L Patch yielded significantly better group
separation than cross-sectional FreeSurfer in separating AD from CN and AD
from MCI. This illustrates the longitudinal robustness of segmentations when
annotations from the new hippocampal standard are included in automated
segmentation methods. Also longitudinal FreeSurfer exploiting baseline and
follow-up simultaneously showed no diagnostic improvement over N-L Patch.
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Resumé

Multi-atlas segmenteringsmetoder med manuelle annoteringer er blandt de bed-
ste automatiske hippocampus segmenteringsmetoder til strukturel Magnetisk
Resonans (MR) billeder.

I denne afhandling er to fundamentalt forskellige multi-atlas segmenteringsme-
toder implementeret, N-L Patch og BrainFuseLab. I N-L Patch er hver voxel
segmenteret ved at bruge information fra atlaser, der er groft rettet ind ved affine
registreringer. BrainFuseLab retter atlaserne ind ved brug af ikke-rigide reg-
istreringer og er derfor relativt langsommere beregningsmæssigt. Begge metoder
benytter de samme atlaser fra en ny Harmoniseret Hippocampus Protokol (HHP).

Metodeparametre er optimerede i en leave-one-out krydsvalidering. Baseret
p̊a volumenoverlap med de manuelle annoteringer er N-L Patch valgt til at
segmentere et standardiseret ADNI datasæt der indeholder 1.5T MR billeder
fra 504 diagnostiserede forsøgspersoner (169 kognitiv normal (CN), 234 mild
kognitiv forringelse (MCI), 101 alzheimers sygdom (AD)) ved udgangspunktet,
m̊aned 12 og m̊aned 24. Hippocampusatrofi, beregnet som den procentvise
forskel fra udgangspunktet til opfølgning, er estimeret. Ud fra en statistisk
analyse, er N-L Patchs diagnostiske separationsevne sammenlignet med to state-
of-the-art metoder, cross-sectional FreeSurfer og longitidinal FreeSurfer.

Ved at inkludere HHP annoteringer i N-L Patch f̊as signifikant bedre adskillelse
af AD fra CN og AD fra MCI end for cross-sectional FreeSurfer. Dette illustr-
erer segmenteringsrobusthed over tid n̊ar annoteringer fra den nye hippocampus
standard inkluderes i automatiske segmenteringsmetoder. Ogs̊a longitudinal
FreeSurfer, der bruger information fra udgangspunkt og opfølgning samtidig,
viste ingen forbedret diagnostisk separationsevne i forhold til N-L Patch.
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Chapter 1

Introduction

In the United States, 45% of all people above 85 years suffer from the most
common form of dementia, Alzheimer’s disease (AD). The prevalence increases
with the average lifetime year by year.
Payments for AD patients care for 2012 were estimated to be $200 billion in the
United States, but the amount is expected to increase to $1,1 trillion in 2050
(in 2012 dollars) if medication is not improved [20].

AD is pathologically characterized by the presence of intracellular neurofibrillary
tangles made of tau protein, extracellular amyloid plaques and decreasing brain
volume (atrophy) due to death of brain cells (neurons). The steadily decreasing
number of neurons affect a persons behavior, memory and ability to think clearly.
At some point, the brain changes impair the ability to carry out basic functions
such as swallowing and ultimately AD is fatal. At the moment no cure for AD
is on the market [20].
Figure 1.1 illustrates that deaths caused by AD have continued to rise, while
other major causes of death have decreased in the past years. This clarifies the
need for developing new medication, which can cure AD or significantly decrease
the disease progression rate.

One of the subcortical brain structures showing early pathological atrophy in
AD is hippocampus, which is associated with consolidation of information from
short-term memory to long-term memory and spatial navigation.
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Figure 1.1: Percentage changes in selected Causes of Death (All
ages) between 2000 and 2008 [20].

Hippocampal volumetry derived from structural Magnetic Resonance Imaging
(MRI) has been endorsed by the new AD diagnostic guidelines as a radiological
marker of disease progression [27] and proposed as a part of a new criteria to
allow diagnosis of AD to be made earlier than it would be possible on pure
clinical grounds [3]. Therefore, it is needed to segment the structure from T1-
weighted MRI to analyze shape, volume and texture changes. A delimitation of
hippocampus (blue) from MRI in a coronal, sagittal and transversal view can
be seen in Figure 1.2. As the figure illustrates, a person has two hippocampi,
one in each brain hemisphere.

Figure 1.2: Segmentation of hippocampus (blue) from T1-weighted
MRI, coronal, sagittal and transversal view.

Manual segmentations of subcortical structures are very time consuming and
are subject to errors [4]. To be practicable for studies with many subjects and
in clinical applications, automated segmentation is needed [15]. This thesis will
concern automated hippocampal segmentation from T1-weighted MRI.
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1.1 Clinical background

In recent years, AD research has emphasized that decline in pathological pro-
cesses and clinical functions occur gradually with dementia representing the end
stage of many years of accumulation of these pathological changes. The patho-
logical changes begin to occur decades before the earliest clinical symptoms [24].
The hypothesis is, that the pathological changes begin with abnormal process-
ing of amyloid precursor protein (APP). APP leads to excess production or
reduced clearance of β-amyloid (Aβ) in the cortex. Some of the Aβ-residues,
especially Aβ42, are highly hydrophobic and forms oligomers and fibrils, which
accumulate as extracellular plaques. Furthermore, the Aβ oligomers lead to a
cascade characterized by abnormal tau aggregation called neurofibrillary tangles
(NFTs) inside the neurons, synaptic dysfunction, cell death, localized atrophy
and eventually whole brain atrophy. Whole brain atrophy and enlarged ventri-
cles are signs of AD progression and can be seen from MRI. In Figure 1.3 an
AD and a normal aging subject’s MRI can be seen. Both subjects are 84 years.

Alzheimer’s Subject

Normal Aging

Figure 1.3: Coronal, sagittal and transversal view of a AD (row
1) and a normal aging (row 2) brain from T1-weighted MRI. Both
subjects are 84 years. Blue arrows indicate whole brain atrophy
and red arrows indicate enlarged ventricles.
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In less than 1% of all who develop AD, the disease is caused by genetic mutations.
In these cases disease symptoms tend to develop early, sometimes as early as age
30. In the more common form of AD called late-onset AD, symptoms normally
occur at age 65 or older [20].

The clinical disease stages of AD can be divided into 3 stages. The first is a
pre-symptomatic phase in which people are Cognitively Normal, CN. However,
some have pathological changes in the brain. The second stage Mild Cognitive
Impairment, MCI, is characterized by the onset of the earliest cognitive symp-
toms that do not meet the criteria of dementia. The third and final phase is AD
dementia, defined as impairments in multiple domains that are severe enough
to cause loss of function [24].

AD biomarkers, both chemical and imaging, do not peak simultaneously but
rather in an ordered manner. Figure 1.4 illustrates the proposed dynamic view
of AD in the forms of biomarkers, memory and clinical functions as a function
of disease stage.

Figure 1.4: Dynamic view of AD biomarkers, memory and clinical
function as a function of clinical disease stage [24].

Volumetric measures of brain atrophy show a strong correlation between the
severity of atrophy and the severity of cognitive impairment in patients along
the continuum from CN to AD. Hippocampus is in this context an interesting
structure, because it is affected early and severely [26].
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1.2 Current method

In recent years, many have developed automatic segmentation methods of struc-
tural T1-weighted MRI. A selection of these methods are explained in Chapter
2. One current and well-recognized method is FreeSurfer, [19], [4]. FreeSurfer
is used at the company Biomediq A/S to segment subcortical brain structures
including hippocampus. Segmentations are used in Biomediq’s own pipeline
for further analysis. This includes atrophy calculations between time points
and analysis of shape and texture to distinguish AD from other clinical groups,
and ultimately test if AD medication is effective. Texture and shape analysis
are done from hippocampal segmentations, whereas atrophy calculations are
done using hippocampal segmentations as well as other subcortical structures.
FreeSurfer will be used as a reference method is this thesis, accordingly it is not
the intension to give a detailed description of the steps. A part of the FreeSurfer
pipeline will be used to preprocess the images, these steps are explained in Chap-
ter 4.

Segmentation of subcortical structures are done using both cross-sectional and
longitudinal FreeSurfer (v.5.1.0) [4]. In both methods, a neuroanatomical label
is assigned to each image voxel. Longitudinal FreeSurfer uses information from
more than one time point simultaneously to do segmentation of a single time
point, whereas cross-sectional FreeSurfer does segmentation based on a single
time point. The FreeSurfer pipeline contains 31 steps in total. The following
main steps are performed in FreeSurfer:

1. Affine transformation to a standard space (atlas).

2. Bias field correction.

3. Intensity normalization.

4. Skull stripping (whole brain segmentation).

5. Linear and non-linear registration to a brain atlas.

6. Final labeling of brain structures.

At Biomediq A/S, the entire FreeSurfer program package is run for every dataset.
However, it is primarily the subcortical segmentations and the intensity im-
ages after bias field correction that are used to make further analysis. Figure
1.5 shows some images and segmentations of a single subject obtained using
FreeSurfer. The corresponding hippocampal segmentations in 3D are illustrated
in Figure 1.6.
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(a) Original. (b) Bias field corrected.

(c) Skull-stripped. (d) Subcortical segmentations.

(e) Hippocampus. (f) Hippocampus border super-
imposed on bias field corrected
image.

Figure 1.5: Different images obtained using FreeSurfer from T1-
weighted MRI. e) Left hippocampus: light blue. Right hippocam-
pus: red.
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Figure 1.6: 3D hippocampus segmentation using FreeSurfer.
Right: Red arrow. Left: Blue arrow. The same subject as il-
lustrated in Figure 1.5.

1.2.1 Undesirable features

Overall FreeSurfer is reliable. However, to ensure satisfying segmentations it
is necessary to visually inspect all subjects for segmentation errors. Below are
listed some of the experienced problems and undesirable features regarding hip-
pocampal segmentation.

1. Hippocampal segmentation is too rough in some slices, Figure 1.7. In some
cases, this is due to bad image contrast. Generally, FreeSurfer has difficul-
ties in segmenting brains of elderly subjects and especially AD brains due
to pathological changes observed in these subjects, e.g. enlarged ventricles
and whole brain atrophy, Figure 1.3.

2. Developed to segment all brain structures, which potentially hampers a
good segmentation of a specific structure (hippocampus).

3. Computation duration takes 11+ hours.

4. Limited access to change parameter settings and no possibility to change
source code.

5. Original image resolution is conformed to 1x1x1 mm3.

6. Voxels are interpolated during registrations and intensities are changed
during e.g. bias correction and intensity normalization, which affects es-
pecially texture analysis.
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Figure 1.7: 3D illustration of a segmentation from FreeSurfer. The
segmentation of hippocampus is too rough (blue arrow).

1.3 Project goals

Biomediq’s goal is to have their own segmentation pipeline, accordingly, they
aim at eliminating the use of FreeSurfer. A segmentation pipeline includes
preprocessing as well as segmentation. In this project, focus will be on segmen-
tation. Based on the company needs, the project goals are:

1. Robust automated segmentation of T1-weighted MRI subcortical brain
structures.

2. Main focus in segmentation of hippocampus, but the method should po-
tentially be extended to other structures if needed. It is better to improve
the segmentation of hippocampus significantly, than making a mediocre
segmentation of all structures.

3. Use two state-of-the-art methods and compare to FreeSurfer.

4. Computation duration preferably faster than 11+ hours.

5. More control with segmentation process. Capability to change parameters
and code.

Hippocampal segmentation has been the focus of this thesis, accordingly other
subcortical structures have not been segmented.
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1.4 Thesis overview

The following gives a brief overview of the chapters and appendices in the thesis.

• Chapter 2 - State-of-the-art summarizes the current state-of-the-art
segmentation methods and their performance. This leads to a selection of
two methods.

• Chapter 3 - Data and Atlases introduces the data and the atlas used
for segmentation.

• Chapter 4 - Preprocessing describes the MRI preprocessing (biascor-
rection and skull-stripping) and the transfer of atlas labels and MRI to
different segmentation spaces using affine and rigid registrations.

• Chapter 5 - Segmentation covers theory of the two methods used to
segment hippocampus.

• Chapter 6 - Parameter and method selection estimates the optimal
method parameters based on leave-one-out cross-validation with two atlas
sets. Based on this analysis an evaluation is made and one method is
selected to segment the entire dataset.

• Chapter 7 - Final results evaluates the segmentation results based on
volume and atrophy by making a comparison to FreeSurfer segmentations.
A statistical analysis is performed. Finally, the results are discussed.

• Chapter 8 - Conclusion gives the conclusion together with a proposal
for future work.

• Appendix A contains tables with demographics of the atlases used.

• Appendix B contains tables and figures of the statistical analysis in
Chapter 7.

• Appendix C contains a CD with the volume segmentations at several
time points and the atrophy scores between time points. Furthermore,
the Non-Local Patch-based segmentation source code is included. The
CD also contains the R-code and the m-code made for statistical analysis.
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Chapter 2

State-of-the-art

Established methods for segmenting brain volumes from MRI can be classified
into two groups: Basic tissue classification and anatomical segmentation, Figure
2.3, row one.
Automated basic tissue classification is done based on intensity information and
can be used to distinguish brain from non-brain, and within the brain, White
Matter (WM), Grey Matter (GM) and CerebroSpinal Fluid (CSF) [14].

Automated segmentation of subcortical brain structures is comparatively chal-
lenging. Signal intensities alone are not sufficient to distinguish between struc-
tures, because they show considerable overlap, [4], [31]. Even distinct anatomical
structures can have the same MRI signal properties. Figure 2.1 illustrates the
intensity histograms of different brain structures from T1-weighted MRI. The
overlap of hippocampus (Hp) and and the structure lying next to it, amygdala
(Am), is almost total, and many of the other structures are considerable overlap-
ping. Furthermore, a structure can be composed of more than one tissue type,
which prevents the use of simple intensity based approaches. Hippocampus is
especially difficult to segment due to its small size, high variability, low contrast
and discontinuous boundaries on MRI [8]. The hippocampal surface volume ac-
counts for approximately 10 % of the volume of the entire structure. Therefore,
even small impressions in segmentation can affect the result significantly.



12 State-of-the-art

Figure 2.1: Intensity histograms from T1-weighted MRI for White
Matter (WM), cortical Gray Matter (GM), Lateral Ventricle (IV),
Thalamus (Th), Caudate (Ca), Putamen (Pu), Pallidum (Pa), Hip-
pocampus (Hp) and Amygdala (Am) [4].

Figure 2.2 shows the MRI of both amygdala and hippocampus in a slice, together
with segmentations which distinguishes between the two structures. The images
illustrate the difficulty in distinguishing between the structures - not all edge
structures are visible on MRI, e.g a part of hippocampus’ border with amygdala
is usually invisible.

Figure 2.2: MRI slice, coronal view. Left: MRI of amygdala and
hippocampus. Right: corresponding segmentation. Red: Amyg-
dala. Green: Hippocampus.
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Automatic 3D subcortical methods can incorporate the use of statistical models
of intensity and shape, machine learning techniques, level sets, region growing
or anatomical atlases. Most techniques can be divided into 3 categories. 1)
Deformable models. 2) Appearance-based models or 3) Atlas-based/template-
warping techniques, Figure 2.3, row two.

Basic	  'ssue	  
classifica'on	  	  

Anatomical	  
segmenta'on	  

Deformable	  
models	  

Appearance-‐
based	  models	  

Atlas-‐based	  
models	  

Probabilis'c-‐
atlas	   Single-‐atlas	   Mul'-‐atlas	  

Figure 2.3: Overview of different classification methods used to
automatically segment brains.

Deformable models are curves or surfaces in an image domain, which can move
within the influence of different forces (from the model itself or from the image).
In [13] a deformable contour technique is used to customize a balloon model to
a subject’s hippocampus.

Appearance-based models establish correspondences across a training set and
learns the statistics of shape and intensity variations using PCA models [5].

In atlas-based segmentation, prior knowledge is available in an atlas. An atlas
is a manual annotation of anatomical structures of interest by expert operators,
accordingly additional information is augmented besides the voxel intensities
alone. An atlas MRI corresponds of two images: MRI and the corresponding
manual annotations/labels. Different forms of atlases can be used for segmen-
tation, 1) a probabilistic atlas 2) a single-atlas or 3) multi-atlases, Figure 2.3,
row three.

Probabilistic atlases contain pre-computed statistics of a set of labeled images,
atlases, which are registered using non-rigid registration. In probabilistic atlases
the cross-subject averaging may remove potentially useful information. The
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probabilistic atlases can be used to incorporate structure specific models using
Markov Random Fields in a Baysian framework [4].

In single- and multi-atlas techniques, the atlas MRI (training image) is registered
to a test image (image to be segmented) usually by optimizing an intensity-
based similarity measure. The transformation is then used to deform the atlas
labels to the test image. However, the segmentation result using one atlas is
sensitive to the manual segmentation, the image registration procedure and
considerable differences between the test image and the atlas image anatomy
[1]. One manual labeling is seldom enough to make a rich representation of
an entire population. Figure 2.4 shows some examples from the ADNI dataset
(explained in Chapter 3) illustrating a wide range of morphological variations
in hippocampus. Preferable, these variations should all be represented in the
atlas used.

Figure 2.4: Examples from the ADNI dataset (explained in Chap-
ter 3) which illustrates the wide range of morphological variation
in hippocampi. A) A large hippocampal cyst and lack of temporal
horn. B) Malrotation (tall and narrow). C) Normal hippocam-
pus. D) MCI hippocampus (considerable atrophy) and E) AD
hippocampus (atrophy) [25].

To account for the anatomical variations between subjects, the segmentation
can be improved by using a multi-atlas segmentation approach, where multiple
atlases are registered to the test image and the deformed labels are combined
by label fusion strategies. The steps in a typical multi-atlas approach can be
seen in Figure 2.5. Multi-atlas segmentation is reported to be among the best
when dividing the whole brain into multiple segments [14] or when targeting
individual structures, e.g hippocampus [31], [6]. Multi-atlas segmentation has
shown to outperform other state-of-the-art methods [5].
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Figure 2.5: Steps in a typical multi-atlas segmentation method
with label fusion [18].
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In most multi-atlas methods the registration is non-rigid, which means the com-
putational cost of registering many atlas images to a test image is high. Further-
more, segmentation based on dissimilar images can lead to incorrect segmenta-
tion based on the choice of label fusion strategy. Therefore, Aljabar et al. [1]
proposed a method using only the most similar atlases. The similarity measure
was either based on image similarity measures prior to detailed non-linear reg-
istration or based on meta-data such as subject age. In [33] a low dimensional
representation of the data is used to find morphologically similar datasets. An
image is only registered to similar atlases, and label propagation is performed,
creating new segmentations which can serve as atlases in further registrations
and label propagations.

Different label fusion strategies exist. The simplest fusion technique is Majority
Voting. Each voxel in the test image are given the label that is represented
most times in the warped atlases. In weighted averaging the training subjects
more similar to the test subjects carry more weight in the final label fusion.
The similarity measure includes using the entire image to determine one global
weight for each training subject, employing local image intensities to determine
the weight of each voxel or combining the segmentations based on a probabilistic
model e.g. STAPLE [28].

Recently, Non-Local Patch-based segmentation techniques have been proposed.
These models do not need the computational heavy non-rigid registrations. A
label is obtained for every voxel by using similar image patches from coarsely
aligned atlases using affine registrations [8].

2.1 Method choice

Since multi-atlas techniques have outperformed other state-of-the art methods,
multi-atlases techniques will be used in this thesis. Registration is often compu-
tational heavy in these methods. If a method should be used in the clinic, the
segmentations should preferably be available immediately after the images were
acquired. Therefore, it will be analyzed how a less computational heavy method
only using affine registrations to align images performs, compared to a method
using non-rigid registrations. The method using affine registration will be an im-
plementation of the Non-Local Patch-based segmentation from [8]. Of non-rigid
methods, BrainFuseLab [28] has shown promising results and is furthermore
developed to use FreeSurfer preprocessed images as input. The BrainFuseLab
code is available online [17], whereas a Non-Local Patch-based method must be
implemented. To make a fair comparison, both methods should use the same
atlases. The methods will be explained in Chapter 5.



Chapter 3

Data and Atlases

3.1 Data

Data used in the preparation of this thesis were obtained from the Alzheimer’s
disease Neuroimaging Initiative ADNI database (adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, positron emission tomogra-
phy, biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor their effec-
tiveness, as well as lessen the time and cost of clinical trials.

Three different large ADNI studies have been conducted - ADNI-1, ADNI-2 and
ADNI-go. Three diagnostic groups are available in the ADNI data - People with
Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI) and Cognitively
Normal (CN). The pathological differences between these groups are explained
in Section 1.1. The ADNI data include clinical, imaging, genetic and biochemical
biomarkers. In this thesis, only T1-weighted 1.5T MRI will be analyzed. Since
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the ADNI study is a multisite study, the T1-weighted MRIs are acquired at dif-
ferent MRI systems (General Electric (GE) Healthcare, Philips Medical Systems,
Siemens Medical Solutions) with a repeated Magnetization Prepared Rapid Gra-
dient Echo (MP-RAGE REPEAT) sequence. The image dimensions vary from
scanner to scanner with resolution in the range [0.94, 1.35]×[0.94, 1.35]×1.2mm3.

A standardized part of the ADNI-1 dataset is used, 2-year annual complete,
(baseline, month 12 and month 24 scans). A standardized dataset is made to
ensure a meaningful methodological comparison, thereby mitigating the risk that
differences in algorithm performance are an artifact of the use of different input
[34]. The dataset consist of 504 subjects, 169 CN, 234 MCI and 101 AD and
will thus be denoted ADNI504. All subjects were included in the standardized
dataset if the MRI of at least one of the two replicate T1-weighted scans passed
the QC control. Each subject should have all their scans performed at the
same scanner, due to variations in images not only from system to system, but
also from scanner to scanner. The mean age, gender and Mini-Mental State
Examination (MMSE) score of the subjects in the three diagnostic groups at
baseline are listed in Table 3.1. MMSE is a cognitive test, including questions
in arithmetic, memory and orientation, used to screen for cognitive impairment
and to follow cognitive changes in a person over time. It is possible to achieve a
maximum MMSE score of 30 points. Table 3.1 includes basic statistics between
groups. It should be noted that the MCI group contains a significantly larger
percentage of men than the CN group and the AD group, respectively.

Group
CN(n=169) MCI(n=234) AD(n=101)

Age, yr ±σ 76.0 ± 5.1 74.9 ± 7.0 75.3 ± 7.4
Men (%) 50.9 66.7 50.5
MMSE ±σ 29.2 ± 1.0 27.1 ± 1.7 23.2 ± 1.9

Statistics (p-value)
CN vs. MCI CN vs. AD MCI vs. AD

Age, yr ±σ 0.066 0.318 0.631
Men (%) 0.002 1 0.008
MMSE ±σ <0.001 <0.001 <0.001

Table 3.1: ADNI504: Baseline demographics (age, gender) and
clinical parameters (MMSE) as well as statistics between groups.
χ2-test was applied to obtain the p-value for gender while two
sample two sided t-tests were used for the remaining parameters.
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3.2 Atlases

To get good segmentation results it is important to select an atlas dataset which
represents the variability that corresponds to the population to be segmented.
Not many atlases are available for download, and the few available are most often
based on healthy young subjects, who have brains dissimilar to the population
of greatest risk developing AD, elderly people.
It is hard to distinguish hippocampus from its surrounding structures, even
experts do not agree on an unequivocal definition. Therefore, it is extremely
difficult to establish ground truth by manual segmentations which is reflected
in various definitions of atlases used for automated segmentation. An atlas set
consists of two sets of images: 1) Manual labels and 2) the corresponding MRI.

3.2.1 Harmonized Hippocampal Protocol

A new initiative, A Harmonized Protocol for Hippocampal Volumetry: an EADC-
ADNI Effort [12], has been establish in recent years to make a streamlined man-
ual segmentation protocol. The goal is to agree on the anatomical landmarks
and measurement procedure. By elaborating this protocol, it will be possible to
directly compare the effect of different drugs in slowing down neurodegenerative
processes and further define the golden standard for automated segmentations
[22].

A web-based qualification system is made, which allows tracers worldwide to
learn manual hippocampal segmentation based on the harmonized protocol.
In connection with the protocol, manual segmentations of at the moment 100
ADNI images (35 more to come) have been released. The released labels cover a
wide range of physiological variability and are therefore suited for training and
validation of automated algorithms.

A subset of these manual annotations will serve as the atlas set in this thesis.
These manual segmentations are chosen as atlas set in this work, because they
include both AD, MCI and CN of elderly subjects and they are as close as one
can get to a hippocampal segmentation golden standard. Since the labels have
just been made publicly available in August 2013, this work will be one of the
initial studies that evaluates how the labels perform as atlas set in state-of-the-
art automated segmentation methods. The manual segmentations will be used
as atlas set in the two methods explained in Chapter 5. A coronal, sagittal
and transversal view of a CN, MCI and AD subject is shown in Figure 3.1. The
manual hippocampus labels (red) are superimposed on the underlying MRI. The
corresponding 3D illustrations of the manual labels can be seen in Figure 3.2.
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Two different atlas sets are used in this thesis. Both sets are subsets of the
released manual labels from the Harmonized Hippocampal Protocol (HHP). At-
las15 includes 15 manual segmentations - these scans are not part of ADNI504.
Atlas40 includes 40 manual segmentations, some of them are part of ADNI504.
Information of each subject in these atlas sets can be found in Appendix A. The
mean age, gender, MMSE score and hippocampal volume of the cognitive state
(CN, MCI and AD) for the two atlas sets can be seen in Tables 3.2 and 3.3.

Group
CN(n=6) MCI(n=2) AD(n=7)

Age, yr ±σ 76.3 ± 7.9 72.7 ± 1.1 75.7 ± 8.0
Men (%) 33.4 100 77.8
MMSE ±σ 28.7 ± 1.0 27.0 ± 1.4 24.3 ± 2.8
Volume (mm3)± σ 8127± 1240 7953 ± 1392 6952 ± 772

Table 3.2: Atlas15: Age, gender, MMSE score and hippocampal
size for CN, MCI and AD.

Group
CN(n=12) MCI(n=11) AD(n=17)

Age, yr ±σ 76.9 ± 6.2 70.9 ± 6.8 74.2± 8.6
Men (%) 41.7 54.6 47.1
MMSE ±σ 28.8 ± 1.2 27.6 ± 1.2 24.0 ± 2.7
Volume (mm3)± σ 8176 ± 996 7708 ± 769 6887 ± 1080

Table 3.3: Atlas40: Age, gender, MMSE score and hippocampal
size for CN, MCI and AD.
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CN MCI AD

Figure 3.1: Coronal, sagittal and transversal view of manual la-
bels from the Harmonized Hippocampal Protocol. The atlas set
consists of manual labels of hippocampus (red) and the underly-
ing MRI. CN: Column 1. MCI: Column 2. AD: Column 3. View
(X=70,Y=117, Z=69).
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(a) CN (b) MCI (c) AD

Figure 3.2: 3D illustrations of the manual labels from Figure 3.1.

3.2.2 FreeSurfer atlas

Cross-sectional and longitudinal FreeSurfer will be used as reference methods in
this thesis. Both FreeSurfer methods uses the same probabilistic atlas, Chapter
2. Therefore, it has not been possible to include Harmonized Hippocampal
Protocol atlases in this segmentation method, thus the hippocampal definition
in the FreeSurfer atlas is different than the atlas set used in BrainFuseLab
and Non-Local Patch-based segmentation. 39 subjects are used to build the
FreeSurfer atlas. They are a combination of healthy subjects as well as patients
of various ages with probable or questionable AD [4]. The atlas includes 37
subcortical brain structures, and segmentations of all 37 structures are thus
available. In this thesis, only hippocampal segmentations will be considered
and serve as a reference.



Chapter 4

Preprocessing

Due to large intensity differences in MRI, the test data and the training data
(atlases) must be preprocessed before segmentation is carried out with the var-
ious methods used in this thesis. Initially, the atlases and the preprocessed
MRIs are not in the same space, thus they must be transformed to a common
space prior to segmentation. Preprocessing will be explained in this chapter and
involves:

1. MRI preprocessing (bias field correction and skull-stripping).

2. Transformation of atlas labels and preprocessed MRI to a common seg-
mentation space.

4.1 MRI preprocessing

MRI preprocessing is done with FreeSurfer (v.5.1.0). Cross-sectional and longi-
tudinal FreeSurfer segmentations are thus obtained from the same preprocessed
images as the segmentations obtained with the two methods explained in Chap-
ter 5. This reduces the factors which can explain differences in segmentation
results.
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The first step is to conform the original MRI resolution, which is in the range
[0.94, 1.35] × [0.94, 1.35] ×1.2 mm3, to isotropic voxels, 1 × 1 × 1 mm3. The
image dimensions are changed to 256×256×256 voxels. During preprocessing,
intensity normalization is done multiple times, where the MRI is scaled ac-
cording to peak values within White Matter (WM), Grey Matter (GM) and
CerebroSpinal Fluid (CSF).

4.1.1 Bias Field Correction

A MRI varies in both intensity and contrast across the 3D image. This spatial
intensity inhomogeniety is called the bias field effect. The bias field effect is
proportional to the scanners field strength and is caused by the Radio Frequency
field inhomogeneities. Due to the bias fields effect, intra-class homogeneity can
not be assumed and accordingly identical tissue types will vary in intensities
as a function of their spatial location. This is an undesirable condition for any
segmentation method, where intensity information is used to classify voxels into
different tissue types. The bias field effect is unique for each subject, which
makes it challenging to correct it. FreeSurfer uses the non-parametric non-
uniform intensity normalization, N3 [30], to correct for the bias field effect. The
method is based on the following assumed model of MRI formation:

v(x) = u(x)f(x) + n(x) (4.1)

Where x is the location, v is the measured signal, u is the true signal, f is
an unknown smoothly varying bias field, and n is white gaussian noise. To
correct for the bias field, f must be estimated. In Equation 4.1 the bias field
is interfered by both an additive and multiplicative component, therefore, a
noise-free additive model is used instead, with the notation û(x) = log(u(x)):

v̂(x) = û(x) + f̂(x) (4.2)

U ,V and F are the probability densities of û, v̂ and f̂ , respectively. û and f̂ are
approximated uncorrelated random variables, and the distribution of their sum
is found by convolution:

V (v̂) = F (v̂) ∗ U(v̂) =

∫
F (v̂ − û)U(û)dû (4.3)

The task is to restore the frequency content of U , to get from the observed
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distribution V to the true distribution U . However, it is unknown which fre-
quency components of U that need to be restored. The approach is to find
the smooth slowly varying field, f̂ , that maximizes the frequency content of U .
This is done by sharpening the distribution of V, estimate the corresponding
f̂ , which produces a distribution of U close to the one suggested. F is assumed
to be Gaussian, having zero mean and a given variance, which means it is only
necessary to search the space of distributions U corresponding to the properties
of F. A MRI prior to and after bias field correction can be seen in Figure 1.5
(a) and (b), respectively.

4.1.2 Skull-stripping

Whole-brain segmentation (skull-stripping) is an important discipline in analy-
sis of neuroimaging data. During skull-stripping brain tissue is removed from
non-brain tissue such as skull, eyeballs and skin. In FreeSurfer a watershed al-
gorithm combined with a deformable model is used to peel the skull [29]. Two
assumptions are made:

1. Connectivity of WM is assumed, bordered by GM and CSF.

2. The brain surface, which distinguish non-brain from brain, is a smooth
manifold with relatively low curvature.

Before the watershed algorithm is applied, some parameters must be computed,
these include an upper intensity bound for CSF, the centroid of the brain, an
average brain radius, lower and upper bound for white matter intensity and
a global brain minimum within a cubic region centered at the centroid of the
brain.

The watershed algorithm:
Because white matter connectivity is assumed, WM surrounded by lower inten-
sity GM and even lower intensity CSF in T1-weighted MRI, can be interpreted
as a hill in a 3-dimensional landscape. By inverting the grey-scale values, the
WM hill becomes a valley. The concept of pre-floating height is introduced.
Prior to finding a connectivity path, each basin in the landscape is flooded up
to a certain height above its bottom, the pre-floating height hpf . The default
value of hpf is 25, corresponding to 25 % of the maximum intensity. If the
pre-floating height is at a higher altitude than the the basin border, the basin
cannot hold water, and it will be merged with the deepest neighboring basin. If
it holds water, it will be regarded as a separate region. Voxels are connected in a
path, even if a lower intensity than the darkest of the two points are present up
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to a maximum difference, the pre-floating height. After the watershed transfor-
mation has been applied, the segmented volumes still contain non-brain tissue
such as CSF, some parts of the skull and often the entire brain-stem. The re-
sult of the watershed algorithm can be seen in Figure 4.1. The output of the
watershed algorithm will serve as an initialization for a deformable model.

Figure 4.1: Before and after watershed transformation. The black
cross points out the centroid of the brain. White arrows indicate
non-brain regions, which have not been removed by the watershed
transformation [29].

Deformable surface algorithm:
The segmented volume from the watershed algorithm is used to initialize a
deformable balloon-like template using active contours. The initial brain surface
model is an icosahedron with 10242 vertices. This template is centered at the
centroid of the brain, with a radius that includes the whole previously segmented
brain. The template is then gradually transformed through a series of iterative
steps. In each iteration the coordinate of each vertex is updated according to
three forces, a smoothness force Fs, a MRI-based force FMRI that drive the
template towards the true brain boundary and an atlas force FA that ensures
the deformed template has the shape of a brain within a certain tolerance. An
example of a deformation process can be seen in Figure 4.2. The deformed
template is then used to skull-strip the three dimensional MRI by removing the
voxels outside the estimated surface, 4.3.
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Figure 4.2: Template deformation process. Left: initial template
(icosahedron). Right: Final template [9].

Figure 4.3: Final skull-stripping: Final deformed template (left)
[29]. Middle and Right: Skull-stripped brain (red) superimposed
on the original MRI

4.2 Registration and label transformation

The harmonized hippocampal standard manual segmentations are done by ex-
pert operators in a standard space called MNI space. Prior to the manual
segmentation, the MRIs have been aligned to a template containing an average
of 152 brains in MNI space. This template can be seen in Figure 4.4
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Figure 4.4: Coronal, sagittal and transversal view of the MNI tem-
plate found by averaging of 152 brains. Originally, the HHP atlases
are in this space. Image dimensions: 197×233×189.

To use the manual segmentations as atlases in the automated segmentation
methods, it is necessary to get them and the FreeSurfer preprocessed MRIs to a
common space. Since the preprocessed MRI is already in FreeSurfer space, the
labels will be taken to this space. This involves transforming labels from image
dimensions 197×233×189 to 256×256×256. The atlases will in this thesis be
aligned using two different registrations. The first is a rigid-body transformation,
whereas the other is an affine transformation.

Two steps are involved in registering a pair of images, registration and transfor-
mation. In the registration, a set of parameters describing the transformation
are estimated. In the transformation, one of the images is transformed accord-
ing to the estimated parameters. Both the registration and transformation are
done using SPM [21],[2].

4.2.1 Rigid-Body Registration

Rigid-body or rigid transformations are a subclass of affine transformations. For
each point in an image (x1, x2, x3) an affine mapping into the co-ordinates of
another space (y1, y2, y3), can be represented as:


y1

y2

y3

1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1



x1

x2

x3

1

 (4.4)
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Rigid-body registrations consist of only translation and rotation and involves
estimating 6 parameters (3 for translation, 3 for rotation).

Translation: The translation of a point x by q units, is given by:
y1

y2

y3

1

 =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1



x1

x2

x3

1

 (4.5)

Rotation: The object can be rotated around three orthogonal planes (axes)
in three dimensional images. Rotation matrices of q4, q5 and q6 radians around
the x-axis, y-axis and z-axis respectively are given by:

1 0 0 0
0 cos(q4) sin(q4) 0
0 −sin(q4) cos(q4) 0
0 0 0 1

 ,

cos(q5) 0 sin(q5) 0

0 1 0 0
−sin(q5) 0 cos(q5) 0

0 0 0 1

 and

cos(q6) sin(q6) 0 0
−sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1


(4.6)

Multiplication of these matrices combines rotations. The order of the multipli-
cation influences the result.

4.2.2 Affine Registration

In affine transformation 12 parameters have to be estimated (3 translation, 3
rotation, 3 scaling and 3 shearing). The translation and rotation is calculated
in the same way as described for rigid-body registration.

Scaling: Scaling is needed to change the size of the image. Scaling can be
represented as: 

y1

y2

y3

1

 =


q7 0 0 0
0 q8 0 0
0 0 q9 0
0 0 0 1



x1

x2

x3

1

 (4.7)

Shear: Shear mapping by parameters q10, q11 and q12 are given by:
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y1

y2

y3

1

 =


1 q10 q11 0
0 1 q12 0
0 0 1 0
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x1

x2

x3

1

 (4.8)

4.2.3 Optimization

Optimization is done to find the optimal parameters q. One image (source
image) is spatially transformed so it matches another image (reference image)
by minimizing or maximizing some function or parameter. The usual approach is
to do iteratively searching from an initial parameter estimate. At each iteration
a judgement is made, before moving on to the next iteration. In both the
affine and rigid-body registrations, Gauss-Newton optimization is done based
on minimizing the sum of squared differences (SSD) dissimilarity measure.

The Gauss-Newton idea consists of linearizing the function (by Taylor expansion
to first order). The parameters are updated by solving a set of linear equations
obtained from setting the first order derivatives equal to zero.
bi(q) is the SSD describing the difference between the source and the reference
image at voxel i, when the model parameters have values q. The method esti-
mates the values of t in order to minimize

∑
i bi(q− t)2. This is done from the

following sets of equations:


∂b1(q)
∂q1

∂b1(q)
∂q2

. .
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 (4.9)

The parameters q are updated using an iterative scheme. For iteration n the
parameters q are updated as:

q(n+1) = q(n) − (ATA)−1ATb (4.10)

where

A =


∂b1(q)
∂q1

∂b1(q)
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b1(q)
b2(q)
.
.

 (4.11)
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This is repeated until SSD can no longer be decreased or a maximum of 64
iterations is reached. However, the algorithm can be caught in a local minimum
and therefore, there is no overall guarantee that the best global minimum is
calculated.

4.2.4 Transformation

Interpolation for each voxel in a transformed image is used to determine the
corresponding intensity in the original image. In this thesis, labels and images
are interpolated using B-splines. B-splines are given by:

βn(x) =

n∑
j=0

(−1)j(n+ 1)

(n+ 1− j)!j!
max

(n+ 1

2
+ x− j, 0

)n
(4.12)

The degree, n, can be varied. n=0 corresponds to nearest neighbor interpola-
tion, n=1 corresponds to trilinear interpolation and n=2 corresponds to cubic
interpolation. In nearest neighbor interpolation the original voxel intensities are
preserved. The value at each sample point is found by taking the value of the
closest voxel. Trilinear and cubic interpolation is slower than nearest neighbor
and uses the known intensities around the sample point to estimate the intensity
at the sample point. The B-splines for n = {0, 1, 2} in 1-dimension is illustrated
in Figure 4.5.
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(a) n=0. (b) n=1.

(c) n=2.

Figure 4.5: B-splines with different degrees of n found using Equa-
tion 4.12. n=0: Nearest neighbor. n=1: Trilinear. n=2: Cubic.

The binary manual segmentations are transformed using nearest neighbor inter-
polation, whereas the MRI is transformed using cubic interpolation. Trilinear
interpolation of the manual labels could have been an option, but this had in-
volved determining an appropriate threshold to separate the transformed labels
into object and background.

4.2.5 Illustrations

The atlases consist of manual segmentations and their corresponding MRI in
MNI space. The same subjects are downloaded and preprocessed in FreeSurfer
and are then in subject FreeSurfer (FS) space. Thus, the MRI of the same
subjects are in two spaces.
Transfer of manual segmentations to a common segmentation space involves a
combination of an intra-subject and an inter-subject registration whereas the
FreeSurfer preprocessed MRI is transformed using only the inter-subject regis-
tration. The intra-subject registrations are always rigid-body transformations,
whereas the inter-subject registration can be either a rigid-body transformation
or an affine transformation. The registrations and transformations of MRIs and
the manual labels for subject 003 S 0931 are illustrated in Figures 4.6, 4.7 and
4.8. The intra-subject registration, Figure 4.6, is done to find the transforma-
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tion from MNI space to the the same subject in FS space registering original
MRI conformed to isotropic voxels. The inter-subject registration, Figure 4.7,
is done to find the transformation from a subject in FS space to another subject
(Atlas) in FS space registering preprocessed FreeSurfer Norm MRIs (bias cor-
rected, skull-stripped and intensity normalized). Transformations T1 and T2,
Figures 4.6 and 4.7, are combined in Figure 4.8 by:

T3 = T2(M/T1) (4.13)

If the labels are transferred from MNI space to Atlas FS space, Figure 4.8 , then
M is a transformation matrix that maps voxel coordinates from the isotropic
MNI image to a space whose axes have parallel image axes, origin is at the
center of the image and distances are measured in millimeters. M is given by:

M =


1 0 0 −DIM1/2
0 1 0 −DIM2/2
0 0 1 −DIM3/2
0 0 0 1

 (4.14)

where DIM1, DIM2 and DIM3 are the image dimensions.

Figure 4.6: Intra-subject Registration using rigid-body reg-
istration (illustrated by T1 arrow) between two different spaces.
Result: Red channel - Transformed MRI using T1 transformation
and cubic interpolation. Green channel - Target image.
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Figure 4.7: Inter-subject Registration using affine registra-
tion (illustrated by T2 arrow) between two different spaces. The
registration can also be a rigid-body registration. Result: Red
channel - Transformed Norm MRI using T2 transformation and
cubic interpolation. Green channel - Target image (Norm MRI:
bias corrected, intensity normalized and skull-stripped).

Figure 4.8: Label transfer combining T1 and T2 registrations
from Figures 4.6 and Figures 4.7. Hippocampus (red) is superim-
posed on MRI in MNI space and on Norm MRI (bias corrected,
intensity normalized and skull-stripped) in Atlas FS space.
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Different combinations of the above illustrated transformations are used in the
various segmentation methods in this thesis. However, in all cases, only one
nearest neighbor interpolation is used to transfer the manual labels prior to
segmentation to avoid loosing to much information. The transfer of labels for
each segmentation method will be described in Chapter 5.

Since the binary labels are isotropic voxels in both their original space (MNI
space) and FreeSurfer space after intra-subject transformation using only rigid
transformation (T1), the number of voxels should ideally be the same in both
spaces after nearest neighbor interpolation. In Table 4.1 the mean ±σ voxel
difference (MNI space volume - FreeSurfer subject space volume) for the hip-
pocampal labels can be seen for Atlas15 and Atlas40 introduced in Section 3.2.
The table illustrates small volume differences, but they are within an acceptable
range compared to the total hippocampal volumes of the two atlases, referenced
in Table 3.2 and 3.3, typically 6500-8500 mm3.

Mean ±σ
Atlas15 -1.47 ± 11.34
Atlas40 -0.03 ± 13.34

Table 4.1: Mean ±σ voxel difference (mm3) of hippocampal labels
(MNI space volume - volume of transformed labels to FS space)
for Atlas15 and Atlas40.
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Chapter 5

Segmentation methods

Based on the content of Chapter 2, a multi-atlas Non-Local Patch-based seg-
mentation method and a multi-atlas segmentation method using non-rigid reg-
istrations are tested. The Non-Local Patch-based segmentation (N-L Patch)
is implemented from scratch and can be found on the CD in Appendix C,
whereas the multi-atlas segmentation using non-rigid registration (BrainFuse-
Lab) is available for download. The atlases from the Harmonized Hippocampal
Protocol described in Chapter 3 will be used in both methods. Both methods
use preprocessed images from FreeSurfer (bias field corrected, intensity normal-
ized and skull-stripped) as explained in Chapter 4. This chapter describes the
fundamental aspects of the segmentation methods.

5.1 Non-Local Patch-based segmentation

Segmentation is based on a Non-Local Patch-based framework using manual
segmentations as priors [8] [7]. These models do not need the computational
heavy non-rigid registrations, which are used in a majority of other multi-atlas
approaches and are therefore considerably faster.

A label is obtained for every voxel by using similar image patches from coarsely
aligned atlases. When the patch under study resembles a patch in an atlas,
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their central voxels are considered to belong to the same structure. The patch
that resembles the test patch is used in the estimation of the final label. Several
patches from each atlas can be used during the label fusion of a single voxel,
which increases the number of sample patches involved in the final label es-
timation compared to other multi-atlas approaches where each atlas typically
weights a voxel ones. The term non-local indicates that the spatial distance
between the center of the patches is not taken into account. The weight of each
sample is solely depending on the intensity similarities between patches. The
steps in the Non-Local Patch-based segmentation are explained below and can
be seen in Figure 5.2. The optimal parameters will be found in Chapter 6.

Linear registration to one atlas:
Two sets of images need to be transformed to the same space, manual hippocam-
pal labels and test MRI. The manual labels are transformed by combining T1
and T2, as illustrated in Figure 4.8, Chapter 4. Initially, the MRIs are prepro-
cessed in FreeSurfer space and therefore only T2 transformation is needed to
get the MRI to the atlas segmentation space, Figure 4.7. Both a rigid as well
as an affine transformations are tried for T2, Chapter 6.

Initialization mask:
Due to computational issues, the segmentation will only be applied to voxels
inside an initialization mask. The initialization masks are a union of the coarsely
aligned atlases for left and right hippocampus, respectively.

Figure 5.1 illustrates three subjects registered with an affine registration to the
same space with the initialization mask overlaid (blue).

Figure 5.1: Three subjects registered to the same space with the
initialization mask overlaid (blue).

Subject selection:
Due to computational cost, only a certain number of atlases, N , that resembles
the subject under study the most, are used in the final non-local means label
fusion. The similarity based measure used is the sum of squared differences
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(SSD) across the initialization mask. SSD is used, because it is sensitive to
e.g. contrast, which is an important factor in the label fusion. The subject
selection is done for left and right hippocampus separately, which means that
the same atlas subjects not necessarily contribute to both the right and the left
hippocampus segmentation of a test subject.

Search volume:
A search for similar patches should be done in the entire image under study.
However, this is computationally expensive. Therefore, only a limited search
volume, Vi, is used defined as a cube centered at the voxel under study, xi.
Thus within the N closest selected atlases, the search for similar patches is in
a cubic region around the voxel under study. The search volume must reflect
the inter-subject variability, which can increase when pathological changes are
present, e.g. in AD, and according to the structure under study.

Preselection:
In order to reduce the computational time, a preselection of patches are done
discarding the most dissimilar patches. The preselection criteria is based on
simple statistics such as mean and variance and can be seen below:

ss =
2µiµs,j
µ2
i + µ2

s,j

× 2σiσs,j
σ2
i + σ2

s,j

(5.1)

where µ represents the means and σ represents the standard deviation of patches
centered on voxel xi (voxel under study) and voxel xs,j at location j in subject
s. If the value of ss is higher than a given threshold, the intensity distance
between patches in the non-local means label fusion is calculated by Equation
5.3. The threshold is set to 0.95.

Non-local means label fusion:
The non-local means estimator is used to perform a weighted average of the
labels based on the intensity distance between patches. The decision function
v(xi) is given by:

v(xi) =

∑N
s=1

∑
j∈Vi

w(xi, xs,j)ys,j∑N
s=1

∑
j∈Vi

w(xi, xs,j)
(5.2)

where ys,j is the manual annotation given to voxel xs,j at location j in subject
s. w(xi, xs,j) is the weight assigned to ys,j by patch comparison. The weight is
computed as:

w(xi, xs,j) =

{
exp

−‖P (xi)−P (xs,j)‖22
h2 if ss > th

0 else
(5.3)

where P (xi) represents the cubic patch centered at xi and ‖ . ‖22 is the normal-
ized L2 norm (normalized by the number of elements) computed between each
intensity element of patches P (xi) and P (xs,j).
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If the labels are considered to be binary, 0 corresponding to background and 1
to object, then:

L(xi) =

{
1 v(xi) > 0.5
0 v(xi) < 0.5

(5.4)

h in Equation 5.3 is the decay parameter. When h is low only a few samples
are taken into account, whereas a large value of h indicates that all samples
have the same weight, and the estimation becomes a simple average. If patches
very similar to the patch under study are estimated, h should be decreased to
reduce the influence of other patches. When no similar patches are available,
h should be increased to ensure that more patches are used in the label fusion.
The estimation of h(xi) is done using:

h2(xi) = λ2 × arg min
xs,j

‖ P (xi)− P (xs,j) ‖22 +ε (5.5)

where ε is a small constant to ensure stability in case the patch under study is
present in the training data. λ=0.5 as proposed in [7].

Figure 5.2 illustrates the patch-based segmentation.
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Figure 5.2: Overview of the Non-Local Patch-based segmentation.
Segmentation of voxel xi. The patch (green) is compared with all
patches within the search volume of the N closest subjects. Highest
weights are obtained by the most similar patches (blue) [8].
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5.2 BrainFuseLab

As described in Chapter 2, many multi-atlas segmentation methods exist. In
this thesis, BrainFuseLab (BFL) is chosen [28]. A test image is registered with
each training subject using a diffeomorphic registration from ITK [16]. Using
this transformation, the manual annotations are propagated to novel image co-
ordinates approximately corresponding to the test subject’s coordinates. Label
fusion is reduced to a local weighted averaging, where training subjects that are
locally more similar to the test subject in terms of intensity get more weight.
The method is developed to use bias field corrected, intensity normalized, skull-
stripped images with isotropic voxels preprocessed in FreeSurfer as input. The
original code uses an atlas set with several subcortical structures. Therefore,
the code has been changed slightly since only hippocampal labels are available
in the HHP atlases.

Transfer of manual annotations:
The MRI is preprocessed in FreeSurfer as described in Chapter 4. To get the
manual labels to FreeSurfer space, a rigid-body registration, T1, is computed,
as in illustrated in Figure 4.6. This transformation is used to move the manual
segmentations to FreeSurfer space using nearest neighbor interpolation.

Subject selection:
Initially, all atlases are registered to the test subject using an affine registra-
tion. Sums of squared differences (SSD) across an initialization mask (the skull-
stripped brain mask) are calculated and the N closest subjects are selected. The
affine parameters are saved and used later.

Non-rigid registration:
The non-rigid registration is an ITK-based implementation of a Demon’s-based
registration algorithm which can be found in [32]. In brief, this registration
scheme a stationary velocity field (SVF) setting where paths of diffeomorphism
are generated using one parameter subgroups through the Lie group exponential.
The Lie group exponential is realized through a series of self compositions of
a warp function. The warp Φ is parameterized with a smooth stationary field
v : R3 7→ R3 via an Ordinary Differential Equation (ODE):

∂Φ(x, t)

∂t
= v(Φ(x, t)) (5.6)

where the warp is defined as Φ(x) = exp(v)(x) with v being the velocity field.

Since the unidirectional registration is asymmetric due to the integral over dif-
ferent volume forms, symmetry is ensured by transforming target volume form
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during the optimization using the Jacobian of the transformation. The follow-
ing cost function is used to solve the variational problem to obtain an optimum
velocity field:

v̂n = arg min
v

∑
y∈Ω

[
(I(y)− Ĩn(exp(v)(y))

]2
+
[
(I(exp(−v)(y))− Ĩn(y)

]2
det(∇exp(−v)(y))

+4λσ2
∑

j,k=1,2,3

( ∂2

∂x2
j

vk(x) |x=y

)2

(5.7)

where λ > 0 is the regularization parameter. xj and vk denotes the jth and
kth dimension of the spatial position x, n is the nth training image, v is the
velocity, σ2 is the stationary noise variance, In denotes the N training images
and Ĩn is the N training images where the spatial mapping from the test subject
coordinates to the coordinates of the nth training images, Φn : Ω 7→ R3, is
unknown. Regularization is achieved by convolving the velocity field updates
with a Gaussian: K(x) ∝ exp(−α

∑
n=1,2,3 x

2
i ), where α = γ/8λσ2 at every

optimization step. α determines the smoothness of the final warp and γ > 0
controls the size of the Gauss-Newton step. Different values of γ are tried out
in Chapter 6. Gauss-Newton scheme, section 4.2.3, is used to solve the ODE.

In Figure 5.3 a test subject and the corresponding closest training subject prior
to and after warping the training image to the test image coordinates using the
non-rigid registration can be seen.
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Test Training Test+Training

Test Warped
training

Test+Warped

Figure 5.3: Subject 003 S 0931 and the training image before
(row1) and after warping (row2). Red channel: Test subject.
Green channel: Training image.

Local Weighted Voting Label Fusion:
The label fusion method is derived within a probabilistic framework. The goal
is to estimate the label map L associated with the test image I, which can be
achieved via a maximum-a-posterior (MAP) estimation.

L̂ = arg max
L

p(L, I; {Ln, In}) (5.8)

Where In denotes the N training images with corresponding label maps Ln, n
= 1,. . . ,N.

In the following M : Ω 7→ {1, . . . , N} denotes the latent random field that for
each voxel in the test image I specifies the index of the training image In it
was generated from. The image I and the label map L can be generated from
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a mixture model, given a prior on M .

p(L, I; {Ln, In}) =
∑
M

p(M)p(L, I |M ; {Ln, In}) (5.9)

It is assumed that each voxel is generated from a single training subject in-
dexed with M(x), i.e., p(L(x) | M ; {Ln}) = pM(x)(L(x);LM(x)) and p(I(x) |
M ; {In}) = pM(x)(I(x); IM(x)). Inserting this into 5.9 gives:

p(L, I; {Ln, In}) =
∑
M

p(M)
∏
x∈Ω

pM(x)(L(x);LM(x))pM(x)(I(x); IM(x)) (5.10)

The final cost function is achieved by substituting 5.10 into 5.8:

L̂ = arg max
L

∑
M

p(M)
∏
x∈Ω

pM(x)(L(x);LM(x))pM(x)(I(x); IM(x)) (5.11)

Equation 5.11 has 3 individual terms, image likelihood (pM(x)(I(x); IM(x))),
label prior (pM(x)(L(x);LM(x))) and membership prior p(M). Variations in
these terms gives different label fusion strategies.

For local weighted voting, M(x) is independent and identically distributed ac-
cording to an uniform distribution over all labels for all x ∈ Ω, which means the
membership prior becomes:

p(M) =
1

N |Ω|
(5.12)

This reduces Equation 5.11, with L denoting the number of labels including
background, to:

L̂(x) = arg max
l∈{1,...,L}

N∑
n=1

pn(L(x) = l;Ln)pn(I(x); In) (5.13)

The image likelihood serves as weights and is modeled as a Gaussian distribution
with stationary variance σ2:

pn(I(x); In) =
1√

2πσ2
exp
[
− 1

2σ2

(
I(x)− Ĩn(Φn(x))

)2]
(5.14)
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The label prior term serves as votes and is given by:

pn(L(x) = l;Ln) =
1

L∑
l=1

(
ρD̃l

n(Φn(x))
)exp(ρD̃l

n(Φn(x))
)

(5.15)

where Ĩn is N training images where the spatial mapping from the test subject
coordinates to the coordinates of the nth training images, Φn : Ω 7→ R3, is
unknown. D̃l

n denotes the distance transform of label l in training subject n. ρ
is a slope constant.



Chapter 6

Parameter and method
selection

To find the best method to segment ADNI504, the appropriate parameters used
in Non-Local Patch-based segmentation (N-L Patch) and BrainFuseLab must
be found. To find these parameters, leave-one-out cross-validation is done. In
leave-one-out cross-validation (LOOCV) one single observation from a dataset
is used as test data, and the remaining observations are used as training data.
This is repeated until each observation in the dataset is used once as test data.
Due to computational cost, LOOCV will initially be done on 15 atlases, Atlas15.
When the appropriate parameters have been found, LOOCV will be done using
Atlas40. ADNI504, Atlas15 and Atlas40 are explained in Chapter 3. Through
this chapter cross-sectional FreeSurfer will be used as reference. Longitudinal
FreeSurfer segmentations are not available for the atlases - only one time point
scan is available for some of the atlases. Based on LOOCV, one method will
be selected to segment ADNI504 and atrophy will be estimated and compared
to cross-sectional and longitudinal FreeSurfer in Chapter 7. To compare the
different methods and parameters, a volume overlap measure known as Dice
score is used to evaluate the quality of the segmentations. Given an automatic
segmentation L̂ and the corresponding manual segmentation L, the Dice score
of label l is given by [28]:
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Dice(l; L̂, L) = 2
|{x ∈ Ω|L(x) = l&L̂(x) = l}|

|{x ∈ Ω|L(x) = l}|+ |{x ∈ Ω|L̂(x) = l}|
(6.1)

where Ω ⊂ R3 is a finite grid where the test subject is defined. The Dice
scores varies between 0 and 1, where 0 indicates 0 % overlap with the manual
segmentation and 1 indicates 100 % overlap with the manual segmentation -
thus a perfect segmentation.

6.1 Atlas15 - Leave-one-out cross-validation

LOOCV with 15 atlases will be done on both N-L Patch and BrainFuseLab to
find the appropriate parameters. These parameters will be applied in a LOOCV
of Atlas40 in Section 6.2. The parameter annotation is the same as used in
Chapter 5.

6.1.1 Non-Local Patch-based segmentation

N closest subjects:
Initially, a rigid-body registration is used to do both the intra- and inter-subject
registration to one of the atlases in the atlas dataset, Figures 4.6 and 4.7. The
labels and MRIs are transformed using the calculated transformation. The
number of N closest atlases found under pre-selection can be varied from 1
to 14. The patch size and the search volume are set to 7×7×7 and 9×9×9,
respectively, as suggested in [8]. Figure 6.1 illustrates mean Dice score after
segmentation of 15 atlases as a function of a varying number of most similar
atlases, N, from 1 to 14 after LOOCV. Dice scores are shown for both left and
right hippocampus.
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Figure 6.1: Mean Dice scores of 15 atlases as a function of vary-
ing number of most similar atlases, N, after leave-one-out cross-
validation. Red: Left hippocampus. Blue: Right: hippocampus.
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Figure 6.1 illustrates that after using approximately N=9 closest atlases in the
segmentation, a steady state is reached. Therefore, N=9, will be used in N-L
Patch.

Search volume and patch size:
The search volume (sv) can be viewed as the inter-subject variability of the
structure. Since the hippocampus has a large variability, especially in patholog-
ical brains, one would expect that the search volume should be large compared
to other structures with less variability. 3 different search volumes with side
length 9, 11 or 13 are tested. For each search volume, 3 different patch sizes
(ps) with side length, 3, 5 or 7 are tested. The Dice scores for left and right
hippocampus with varying parameters can be seen in Table 6.1. N=9 closest
subjects are used in the segmentation. The approximate segmentation compu-
tation duration in minutes per subject is shown in the table as well (Time).

Search Volume 9
Patch size 3 5 7

Dice score left ±σ 0.829 ± 0.027 0.856 ± 0.026 0.853 ± 0.028
Dice score right ±σ 0.836 ± 0.032 0.863 ± 0.027 0.858 ± 0.030
Time (min) 32 40 80

Search Volume 11
Patch size 3 5 7

Dice score left ±σ 0.825 ± 0.030 0.856 ± 0.025 0.854 ± 0.028
Dice score right ±σ 0.831 ± 0.035 0.863 ± 0.027 0.858 ± 0.029
Time (min) 43 72 181

Search Volume 13
Patch size 3 5 7

Dice score left ±σ 0.816 ± 0.033 0.854 ± 0.025 0.852 ± 0.028
Dice score right ±σ 0.821 ± 0.040 0.859 ± 0.028 0.856 ± 0.029
Time (min) 68 126 308

Table 6.1: Search volume and patch size impact on Dice score. A
patch size of e.g. 3 corresponds to a 3×3×3 volume. Dice scores for
left and right hippocampus as well as the duration of segmenting
both left and right hippocampus for one subject can be seen.

Based on both precision in terms of Dice score and time, a patch volume of side
length 5 and a search volume of side length 9 will be used.

Affine vs. rigid registration:
The inter-subject registration can be done using a rigid-body registration or



6.1 Atlas15 - Leave-one-out cross-validation 51

an affine registration, Figure 4.7. To test the impact on the precision, both
registrations are tried out in LOOCV, Figure 6.2. Mean Dice scores are denoted
by the horizontal line in the figure and can be seen in Table 6.2 as well.

(a) Right (b) Left

Figure 6.2: Dice scores as a function of atlas number. Segmentation
of the 15 atlases using inter-subject rigid registration (red) or affine
registration (blue). LOOCV using N=9, sv=9, ps=5. Mean Dice
scores are denoted by the horizontal line.

Mean Dice score ±σ
Right Left

Affine 0.875±0.019 0.867±0.017
Rigid 0.863±0.026 0.856±0.025

Table 6.2: Mean Dice scores of LOOCV using 15 atlases where
labels are aligned using affine or rigid registration.

Since an affine registration results in both a larger mean Dice score and a smaller
standard deviation, Table 6.2, than using a rigid registration, affine registration
will be used to do the inter-subject registration to transform labels and MRIs.

Align labels to test subject or standard atlas:
Two different ways in aligning the atlases and test subject to a segmentation
space have been tested. Dice scores as a function of atlas number can be seen in
Figure 6.3. In Figure 6.3 (a), both the test subject and the atlases are aligned
to the first atlas in the atlas set, atlas1 (Affine to atlas1), blue. In Figure 6.3
(b), all the atlases are aligned to the test subject (Affine to subject), red. The
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corresponding mean Dice scores are denoted by the horizontal line and is stated
in Table 6.3.

(a) Right (b) Left

Figure 6.3: Dice scores as a function of atlas number. Red: Test
subjects and atlases are all aligned to atlas1 using affine registra-
tion (affine to atlas1). Blue: Atlases are aligned to the test subject
using affine registration (affine to subject).

Mean Dice score ±σ
Right Left Time (min)

Affine to atlas1 0.875±0.019 0.867±0.017 40
Affine to subject 0.876±0.018 0.868±0.017 60

Table 6.3: Mean Dice scores of LOOCV using 15 atlases where la-
bels are aligned using affine transformation to either atlas1 (Affine
to atlas1) or the test subject (Affine to subject). Furthermore, the
computation time of segmenting both left and right hippocampus
in a subject is stated (Time).

As Figure 6.3 and Table 6.3 illustrates, doing the inter-subject registration of
all atlases to atlas1 once or doing the registration of all atlases to the test
subject, gives the same results. Aligning all atlases to atlas1 only has to be done
once. Segmentation of a new test subject then only requirers one registration,
which takes the test subject’s coordinates to atlas1’s coordinates. This approach
is considerably faster than aligning all atlases to the test subject each time.
Therefore, aligning to atlas1 will be used onwards.
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Threshold of non-local means estimator:
According to [8], the threshold of the non-local means estimator v(xi), Equation
5.4, decides if a voxel belongs to the object (L=1) or the background (L=0).
This threshold is suggested to be 0.5 in [8]. To verify if this is the optimal value
for this implementation, the threshold of v(xi) is varied from 0 to 1, which leads
to a number of slightly different segmentations. The total Dice score (both left
and right hippocampus) with the manual segmentations are calculated. The
plot of Dice scores as a function of the threshold of v(xi) can be seen in Figure
6.4.

Figure 6.4: Dice scores as a function of varying threshold v(xi) of
Atlas15. Each curve illustrates the behavior of one atlas.

The maximum Dice score and the corresponding threshold v(xi)max of each
atlas is found. The 15 v(xi)max have a mean value of 0.42. This results in a
mean Dice score of 0.875. A threshold of 0.5 as suggested in [8] results in a mean
Dice score of 0.871. Since it is only the 3. decimal that is affected by changing
the threshold from 0.42 to 0.5, a threshold of 0.5 will be used as suggested in
[8].

Removal of small connected components:
Many segmentations have speckle patterns (black) as illustrated in row 2 in
Figure 6.5. Therefore, a modification of the original method is made. Connected
components are found using a 6-connectivity neighborhood and are removed if
their total volume is less than 100 voxels. The Dice scores, before and after
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removal can be seen in Table 6.4. The table indicates, that the removal does
not affect Dice scores. However, a visually more satisfying result is achieved
after removal, row 3 Figure 6.5, and therefore a removal of small connected
components will be performed on top of N-L Patch.

Mean Dice score±σ
Right Left

Before removal 0.875±0.019 0.867±0.017
After removal 0.875±0.019 0.868±0.017

Table 6.4: Mean Dice scores of LOOCV using 15 atlases before and
after removing connected components with volumes less than 100
voxels.

6.1.2 BrainFuseLab

BrainFuseLab has many parameters that can be varied in wide ranges, Section
5.2. According to [28] it is especially the following parameters which affect
the result: γ that controls the step size in the gauss-newton optimization, and
the standard deviation σ in the Gaussian Image Likelihood term used for label
fusion, Equation 5.14. To make a fair comparison with N-L Patch, N=9 closest
atlases will be used. The settings in the downloaded demo (γ = 20, σ = 5)
and the default values (γ = 150, σ = 10), have been tested. LOOCV using the
default and demo parameters can be seen in Figure 6.6. Notice, that the y-axis
has been changed due to very low Dice-scores compared to Figure 6.3. The
mean Dice scores ±σ can be seen in Table 6.5.
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Manual segmentations

Before removal of Connected Components

After removal of Connected Components

Figure 6.5: 3D illustrations of removal of connected components
(black, row 2) from two subjects left and right column respec-
tively. Top: Manual segmentations. Middle: Segmentations (red)
with connected components < 100 voxels (black). Bottom: After
removal of connected components.
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(a) Right (b) Left

Figure 6.6: Dice scores as a function of atlas number. BrainFuse-
Lab LOOCV with demo parameters (red) and default parameters
(blue).
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Mean Dice score ±σ
Right Left

Demo parameters 0.798±0.025 0.775±0.043
Default parameters 0.763±0.066 0.765±0.058

Table 6.5: Mean Dice scores of LOOCV with BrainFuseLab. Demo
parameters and default parameters are tested.

Based on these findings, the demo parameters will be used further on.

6.2 Atlas40 - Leave-one-out cross-validation

25 extra atlases are introduced and LOOCV is done. The optimal parameters
found using Atlas15 are used to do N-L Patch segmentation as well as segmen-
tation with BrainFuseLab (BFL). As suggested as future work in e.g. [8], the
non-rigid registration from BrainFuseLab are combined with N-L Patch. The
transformed labels for N closest atlases using BrainFuseLab are collapsed into
a mask that serves as initialization mask for N-L Patch. The segmentation of
both left and right hippocampus is done using the N closest atlases found in
BrainFuseLab.
The Dice scores with the manual HHP labels, false positive error (FP) and false
negative error (FN) with N-L patch, BFL, combination of non-rigid registration
from BFL and N-L patch (Non rigid + N-L Patch) and cross-sectional FreeSurfer
(FS Cross) can be seen Table 6.6. Furthermore, a box plot of the Dice scores of
the different methods can be seen in Figure 6.7. When calculating Dice scores,
there has not been distinguished between right and left hippocampus as done
in most of section 6.1.
Notice that the number of atlases and number of closest atlases are fundamen-
tally different for cross-sectional FreeSurfer, Table 6.6. Cross-sectional FreeSurfer
uses a probabilistic atlas build from 39 atlases as explained in Section 3.2.2,
which means averaged information from all these atlases are used in the seg-
mentation. The FreeSurfer Dice scores are obtained by calculating the overlap
of segmentations with the HHP labels, even though FreeSurfer uses another
atlas to do segmentation with a different definition of hippocampus. By do-
ing this, the FreeSurfer segmentation consensus with the new label standard is
illustrated.
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Method Atlas N
Mean Dice
score ±σ Mean FP ±σ Mean FN ±σ

N-L Patch 40 9 0.868 ± 0.019 0.125 ± 0.025 0.138 ± 0.028
BFL 40 9 0.827 ± 0.027 0.139 ± 0.040 0.203 ± 0.034
Non rigid +
N-L Patch

40 9 0.857 ± 0.016 0.106 ± 0.021 0.177 ± 0.023

FS Cross 39 - 0.781 ± 0.031 0.158 ± 0.030 0.270 ± 0.052

Table 6.6: Atlas40 LOOCV. Atlas: Number of atlases available
during preselection based on SSD. N closest: Number of closest
atlases based on SSD used in segmentation. FP: False Positive
error. FN: False negative error.

Figure 6.7: Box plot of the Dice scores with different methods.
Boxes represents the lower quartile, the median (red line) and
the upper quartile. Whiskers indicate the extreme values within 1
times the interquartile range. Outliers (red +) are the data values
beyond the end of the whiskers.
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As seen in Table 6.6, the best mean Dice score is achieved using N-L patch.
However, the mean Dice score is approximately the same as the one achieved
using 15 atlases (mean Dice score = 0.871). On the other side, the mean Dice
score has increased for BFL. This indicates, that N-L patch due to the fact
that it can use more than one similar patch from each atlas, do not need as
many available atlases in order to perform well as methods that only uses in-
formation once for each atlas to segment a voxel. It should further be noticed,
that combining the non-rigid registration from BrainFuseLab and N-L patch in-
creases the Dice score compared to BFL from a mean of 0.827 ± 0.027 to 0.857
± 0.016. This illustrates N-L Patch’s label fusion capabilities compared to the
local weighted voting label fusion used in BrainFuseLab.

The approximate computation times can be seen in Figure 6.7. The codes are
all a single core CPU implementation on a 2.5 GHz Xeon.

Method Computational time (hours)
N-L Patch ∼ 0.7
BFL ∼ 5
Non rigid + N-L Patch ∼ 5.5
FS Cross ∼ 11

Table 6.7: Computational times for each subject with different
methods. It should be noticed that FS Cross segments 37 subcor-
tical structures incl. the hippocampi, whereas the other methods
only segments two: left and right hippocampus.

Statistics:
Paired t-tests between methods based on Dice scores from LOOCV using 40
atlases have been made independent of CN, MCI and AD, Table 6.8. The p-
values are < 0.001 for N-L patch vs. all other methods, which according to the
null hypothesis means that equal means can be rejected.

Methods t-value p-value
N-L Patch vs. FS Cross 27.6346 <0.001
N-L Patch vs. BFL 13.5424 <0.001
N-L Patch vs. Non rigid + N-L Patch 7.6142 <0.001
BFL vs. FS Cross 12.9467 <0.001
BFL vs. Non rigid + N-L Patch -9.892 <0.001
FS Cross vs. Non rigid + N-L Patch -21.1403 <0.001

Table 6.8: Results of paired t-tests between Dice scores of different
methods.
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Illustrations:
Based on the FreeSurfer segmentations, the worst, median and best atlas subject
is selected. The segmentations of these three subjects segmented using different
methods are illustrated in a coronal, sagittal and transversal view, Figures 6.8,
6.9 and 6.10. Notice, that in order to illustrate the N-L Patch segmentations
in the same segmentation space as the other methods, they must be taken
back to the subjects FreeSurfer space, by applying the inverse transformation,
T2−1, from Figure 4.7. This involves a nearest neighbor interpolation. Due to
this interpolation, the mean Dice score changes from 0.868 ± 0.019 to 0.855 ±
0.021. However, as illustrated in Table 4.1 this only changes volume size a little.
Hippocampal volume size will be used to calculated atrophy. Furthermore, the
3D segmentations of the worst, median and best subject can be seen in Figure
6.11.

From Figures 6.8, 6.9, 6.10 and 6.11 it can be seen that both N-L Patch and
the non-rigid registration combined with N-L Patch, visually look most like
the manual segmentations (green). This is also reflected in the Dice scores
achieved with these methods. The FreeSurfer segmentations are rough, whereas
the BranFuseLab segmentations have some speckles after segmentation both at
the hippocampal borders as well as within the background labels.
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Figure 6.8: Worst subject 002 S 0938 (AD)

Manual segmentation

FreeSurfer. Dice = 0.696

BrainFuseLab. Dice = 0.766

Non-rigid registration + N-L Patch. Dice = 0.822

N-L Patch. Dice = 0.821
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Figure 6.9: Median subject 013 S 1276 (CN)

Manual segmentation

FreeSurfer. Dice = 0.788

BrainFuseLab. Dice = 0.847

Non-rigid registration + N-L Patch. Dice = 0.874

N-L Patch. Dice = 0.871
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Figure 6.10: Best subject 011 S 0002 (CN)

Manual segmentation

FreeSurfer. Dice = 0.827

BrainFuseLab. Dice = 0.867

Non-rigid registration + N-L Patch. Dice = 0.874

N-L Patch. Dice = 0.875
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Manual segmentations

Dice=0.696 Dice=0.788 Dice=0.827

FreeSurfer

Dice=0.766 Dice=0.847 Dice=0.867

BrainFuseLab

Dice=0.822 Dice=0.874 Dice=0.874

Non-rigid registration + N-L Patch

Dice=0.821 Dice=0.871 Dice=0.875

N-L Patch

Figure 6.11: 3D illustrations of left: Worst subject. Middle: Me-
dian subject. Right: Best subject. Selected based on FreeSurfer
LOOCV results.
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6.3 Evaluation

N-L Patch results in Dice scores significantly higher than all other methods
using paired t-tests between methods independent of diagnostic groups, Table
6.8. Furthermore, N-L Patch is the fastest method. Therefore, N-L Patch will
be implemented in Chapter 7.

Even though Dice scores are not improved by using 40 atlases compared to 15,
40 atlases will be used since this increases the library used for atlas preselec-
tion. Furthermore, the computation time is not increased more than a couple
of minutes using 40 atlases compared to 15 atlases, since the time is depending
most on the number of N closest atlases used in segmentation.

In [8] the best mean Dice score is reported to be 0.884. However, this score
is from LOOCV of 80 healthy young subjects (mean age: 25.09 ± 4.9 years)
and N=30 closest subjects. In this work a mean Dice score of 0.868 is achieved
from LOOCV of 40 subjects with pathological processes (mean age: 74.10±7.67
years) and N=9 closest subjects. The two numbers cannot directly be compared
since it is more difficult to segment brains of elderly people with pathological
processes then healthy young subjects due to large variability in the subjects.

Combining the non-rigid registration from BrainFuseLab with N-L Patch results
in a mean Dice score of 0.857 ± 0.016 compared to BrainFuseLab with a mean
of 0.827 ± 0.027. This indicates that the label fusion technique in N-L Patch
is better than the technique used in BrainFuseLab. Whether this is due to a
more comprehensive parameter optimization in N-L Patch or the fact that N-L
Patch also uses information from shifted voxels is hard to tell. Figure 6.12 illus-
trates the histogram of one subject inside the manual hippocampal mask (left)
and the corresponding histogram of the most similar atlas image (right) after
transformation of the atlas using the non-rigid registration in BrainFuseLab.
Large differences can not be observed between the histograms. This indicates
that the mediocre results obtained with BrainFuseLab cannot be explained by
the non-rigid registration.



66 Parameter and method selection

(a) Test (b) Warped

Figure 6.12: Histogram inside hippocampusmask. Left: Test sub-
ject. Right: Most similar warped atlas after non-rigid registration.



Chapter 7

Final results

In Chapter 6, Non-Local Patch-based segmentation (N-L Patch) was found to
be the most optimal method based on both precision (Dice scores) and com-
putation time. Therefore, N-L Patch will be used to segment ADNI504 at 3
time points, month 0 (baseline), month 12 (m12) and month 24 (m24). Atrophy
will be estimated between baseline-month 12 (bam12) and baseline-month 24
(bam24). Since manual segmentations are only available for very few MRIs in
ADNI504, no segmentation ground truth is available for the entire dataset, and
Dice scores cannot be calculated. The evaluation of the method will be based on
its diagnostic group separation capabilities compared to current methods used
at Biomediq A/S, cross-sectional FreeSurfer and longitudinal FreeSurfer.

In this chapter, adjustments in preprocessing, inter-subject registration and
skull-stripping, is done for some subjects to achieve the final segmentations
of ADNI504. Using the final segmentations, atrophy will be estimated and a
statistical analysis will be made to evaluate the diagnostic group separation ca-
pabilities of N-L Patch compared to cross-sectional FreeSurfer and longitudinal
FreeSurfer. Finally, the results are discussed.

In this thesis, longitudinal FreeSurfer segmentations are calculated exploiting
two time points simultaneously (baseline and m12 or baseline and m24) to seg-
ment one time point. This means, that the baseline volume used to calculate
bam12 is not the exact same as the baseline volume used to calculate bam24.
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7.1 Method

N-L Patch segmentation of ADNI504 is done with search volume = 9, patch
size = 5, number of atlases = 40, N closest atlases = 9 using an affine inter-
subject registration to one atlas as suggested in Chapter 6. 21 atlases in Atlas40
are also part of ADNI504. When these 21 subjects are segmented their atlas
is not used in the segmentation. Since a segmentation of one subject takes
about 40 minutes, the total computation time used to segment all subjects was
approximately 1000 hours.
After the initial segmentation, the hippocampal volume is estimated. If the total
subject hippocampal volume is below 3500 voxels, a rigid-body inter-subject
registration is done instead of the affine and the segmentation is done again. A
segmentation volume of 3500 voxels is considered to correspond to an extremely
insufficient segmentation, since the total hippocampal volume typically is 6500-
8500 mm3, as referenced in Table 3.2 and 3.3.
Since rigid registrations does not involve shearing and scaling, the registrations
are not as sensitive to e.g. insufficient skull-strippings or enlarged ventricles as
affine registrations. However, applying a rigid registration does not give good
results in all cases. If segmentation is still very poor (total hippocampal volume
below 3500 voxels and visual inspection) the preprocessed MRIs are inspected.
In all cases, the poor results were due to an insufficient skull-stripping. The
skull-stripping is changed by adjusting the watershed parameter, Section 4.1.2,
until the MRI is correctly separated into brain tissue and non-brain tissue. The
initial segmentation using affine registration is done again. Table 7.1 indicates
the number of times the registration is changed or skull-stripping is redone to
achieve the final results for ADNI504 at baseline, m12 and m24, respectively.
After fixing the skull-stripping good results were achieved in all cases.

Rigid Skull-strip

Baseline 6 0
m12 12 3
m24 12 4

Table 7.1: Number of times registration fails and either a rigid
registration is done or the skull-stripping is fixed. Rigid: If the
total hippocampus volume was below 3500 voxels after the initial
segmentation, then the inter-subject registration was changed to
a rigid registration and the segmentation was done again. Skull-
strip: If the result still was not satisfying after a rigid registration,
the skull-stripping was changed and the segmentation was done
again.
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Figure 7.1 illustrates the MRI of subject 109 S 1114 m12 before and after fix-
ing an insufficientt skull-stripping and Figure 7.2 illustrates the corresponding
segmentations.

Initial skull-stripping

Final skull-stripping

Figure 7.1: Coronal, sagittal and transversal view of subject
109 S 1114 m12 before (row1) and after (row2) an insufficient skull-
stripping has been fixed.
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Figure 7.2: Hippocampal segmentation of subject 109 S 1114 m12
before (left) and after (right) an insufficient skull-stripping has
been fixed, Figure 7.1.

To achieve the final segmentations, affine inter-subject registration was used
for most subjects, whereas rigid inter-subject registration was used for a mi-
nority of subjects when the affine registration failed. Since affine registration
involves scaling, the results achieved using an inter-subject affine registration
cannot volumewise be compared to the results achieved using an inter-subject
rigid registration. Thus, all segmentations are transformed back to the subject’s
FreeSurfer space, by applying the inverse transformation, T2−1, from Figure 4.7,
before the the total segmentation volume is estimated.

7.2 Segmentation results

The sum of voxels (1 voxel = 1mm3) for all 504 subjects at baseline, m12
and m24 for N-L patch, cross-sectional FreeSurfer and longitudinal FreeSurfer
can be found on the CD in Appendix C. The corresponding volume box plots
with the three methods at baseline can be seen in Figure 7.3 for AD, MCI
and CN. The longitudinal volumes are calculated exploring baseline and m12
simultaneously. The mean ± σ can be seen in Table 7.2. A corresponding ta-
ble containing m12 and m24 mean ±σ for diagnostic groups with N-L Patch,
cross-sectional FreeSurfer and Longitudinal FreeSurfer can be seen in Appendix
B. Furthermore, scatter plots of baseline hippocampal volume with N-L Patch
against cross-sectional FreeSurfer, Figure 7.4, and N-L Patch against longitu-
dinal FreeSurfer, Figure 7.5, can be seen. The scatter plots for N-L patch vs.
cross-sectional FreeSurfer and longitudinal FreeSurfer for m12 and m24 can be
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seen in Appendix B. The Figures and Tables illustrate that the volume with N-L
patch is generally larger than the volume obtained with the FreeSurfer meth-
ods. This is most likely due to the fact that N-L Patch uses another atlas than
FreeSurfer.

(a) AD (b) MCI

(c) CN

Figure 7.3: Boxplot of baseline volume for AD, MCI and CN with
three methods: N-L Patch, FS Cross and FS Long. Boxes rep-
resents the lower quartile, the median (red line) and the upper
quartile. Whiskers indicate the extreme values within 1 times the
interquartile range. Outliers (red +) are the data values beyond
the end of the whiskers.
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Volume (mm3)± σ
CN(n=169) MCI(n=234) AD(n=101)

N-L Patch 7860 ± 880 7166 ± 1083 6520 ± 1190
FS Cross 7210 ± 968 6313 ± 1263 5569 ± 1216
FS Long 7168 ± 1026 6117 ± 1083 5356 ± 1277

Table 7.2: ADNI504 baseline: Hippocampal volume for diagnostic
groups with different methods.

Figure 7.4: ADNI504 baseline: Hippocampal volume. N-L Patch
vs. FS Cross.
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Figure 7.5: ADNI504 baseline: Hippocampal volume. N-L Patch
vs. FS Long.

7.3 Statistical analysis

Based on the volume results, atrophy rate is estimated as percentage volume
change from baseline to m12 (bam12) and baseline to m24 (bam24).

atrophy(%) =
(Follow-up volume

Baseline volume
− 1
)
∗ 100 (7.1)

The corresponding atrophy histograms with 50 bins for N-L Patch, cross-sectional
FreeSurfer and longitudinal FreeSurfer can be seen in Appendix B. The segmen-
tations of a MCI subject, 130 S 0783, with N-L Patch at baseline, m12 and m24
can be seen in Figure 7.6. Bam12 atrophy = -2.15 % and bam24 atrophy =
-7.53 %. The subject is diagnosed with MCI at all 3 time points.
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(a) Baseline (b) m12 (c) m24

Figure 7.6: Segmentation of subject 130 S 0784 (MCI) with N-L
Patch at baseline (volume = 7234 mm3), m12 (volume = 7044
mm3) and m24 (volume = 6689 mm3). Bam12 atrophy = -2.15 %
and bam24 atrophy = -7.53 %.

Figure 7.6 illustrates the difficulty in visually seeing differences in volume be-
tween time points, even for this MCI subject with pathological changes in the
brain.

Based on the atrophy scores, a statistical analysis will be made to evaluate
the diagnostic group separation capabilities of N-L Patch compared to cross-
sectional and longitudinal FreeSurfer. The statistical analysis of each method
between diagnostic groups are done by performing two sample t-tests, AUCs and
Cohen’s Ds. Furthermore, an analysis between methods are done by comparing
Cohen’s Ds and AUCs. Bootstrapping is used to compare Cohen’s Ds between
methods, whereas DeLong test is used to compare AUCs between methods.

Initially, Bartlett’s test of variance inhomogeneity is made and can be found
in Appendix B. The low p-values reveal variance inhomogeneity between the
clinical diagnostic groups in N-L Patch and longitudinal FreeSurfer for both
bam12 and bam24 and cross-sectional FreeSurfer bam24. Variance homogeneity
cannot be rejected for cross-sectional FreeSurfer bam12. This will be considered,
when performing two sample t-tests between groups. The statistics calculated
based on atrophy bam12 and bam24 can be seen in Tables 7.3 and 7.4. A brief
analysis of the results will be given in the following sections.
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AD MCI CN

mean ±σ mean ±σ mean ±σ
N-L Patch -4.23 ±3.06 -2.39 ±3.28 -0.86 ±2.46
FS Cross -4.29 ±5.32 -3.69 ±5.48 -1.39 ±5.41
FS Long -4.83 ±3.74 -3.25 ±3.53 -1.63 ±2.54

AD vs. CN AD vs. MCI MCI vs. CN

t-test (p-value) t-test (p-value) t-test (p-value)

N-L Patch -9.36 (<0.001) -4.93 (<0.001) -5.33 (<0.001)
FS Cross -4.67 (<0.001) -0.92 (0.357) -4.16 (<0.001)
FS Long -8.35 (<0.001) -3.69 (<0.001) -5.08 (<0.001)

AD vs. CN AD vs. MCI MCI vs. CN

AUC (p-value) AUC (p-value) AUC (p-value)

N-L Patch 0.80∗∗ (<0.001) 0.66∗∗∗ (<0.001) 0.65 (<0.001)
FS Cross 0.69 (<0.001) 0.53 (0.404) 0.67 (<0.001)
FS Long 0.76 (<0.001) 0.62 (<0.001) 0.64 (<0.001)

AD vs. CN AD vs. MCI MCI vs. CN

Cohens’D Cohens’D Cohens’D

N-L Patch 1.21∗∗∗ 0.58∗∗ 0.53
FS Cross 0.54 0.11 0.42
FS Long 1.00 0.44 0.53

Table 7.3: Statistics based on atrophy (%) of ADNI504 between
baseline and month 12. The first value for each t-test is the t-value.
N-L Patch: DeLong test is done to compare AUCs between meth-
ods and bootstrapping is done to compare Cohens’ Ds between
methods. ** indicates significance of N-L Patch over FS Cross
with p-value: 0.001≤p-value<0.01; and *** indicates significance
of N-L Patch over FS Cross with p-value<0.001.
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AD MCI CN

mean ±σ mean ±σ mean ±σ
N-L Patch -7.55 ±4.97 -4.54 ±4.68 -1.86 ±2.61
FS Cross -9.40 ±6.72 -7.17 ±6.34 -3.15 ±5.24
FS Long -10.35 ±5.11 -7.24 ±5.85 -3.16 ±3.16

AD vs. CN AD vs. MCI MCI vs. CN

t-test (p-value) t-test (p-value) t-test (p-value)

N-L Patch -10.60(<0.001) -5.16 (<0.001) -7.28 (<0.001)
FS Cross -7.96 (<0.001) -2.81 (0.005) -6.94 (<0.001)
FS Long -12.71 (<0.001) -4.87 (<0.001) -8.98 (<0.001)

AD vs. CN AD vs. MCI MCI vs. CN

AUC (p-value) AUC (p-value) AUC (p-value)

N-L Patch 0.86 (<0.001) 0.69∗ (<0.001) 0.71 (<0.001)
FS Cross 0.82 (<0.001) 0.62 (<0.001) 0.73 (<0.001)
FS Long 0.89 (<0.001) 0.67 (<0.001) 0.73 (<0.001)

AD vs. CN AD vs. MCI MCI vs. CN

Cohens’D Cohens’D Cohens’D

N-L Patch 1.43∗ 0.62∗ 0.70
FS Cross 1.04 0.34 0.69
FS Long 1.69 0.57 0.87

Table 7.4: Statistics based on atrophy (%) of ADNI504 between
baseline and month 24. The first value for each t-test is the t-
value. DeLong test is done to compare AUCs between methods and
bootstrapping is done to compare Cohens’ Ds between methods.
* indicates significance of N-L Patch over FS cross with p-value,
0.01≤p-value<0.05.

Two sample t-tests:
For each method, two sample t-tests between two diagnostic groups at a time
is performed to test the hypothesis:

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 6= 0
(7.2)

Based on the results of Bartlett’s test, Appendix B, only variance homogeneity
between groups will be assumed for cross-sectional FreeSurfer bam12. The t-
values and p-values can be seen in Tables 7.3 and 7.4. Cross-sectional FreeSurfer
AD vs. MCI bam12 is the only test, that is not significant. Thus there is a
significant difference in atrophy rates for all other test scenarios.
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AUC:
Area Under a ROC Curve (AUC) is defined as the area under a Receiver Oper-
ating Characteristics (ROC) graph. ROC graphs are commonly used in medical
decision making to visualize a classifiers performance. The curve is achieved by
changing the threshold of the measure which is evaluated, and for each thresh-
old, calculate the false positive rate (x-axis) and the true positive rate (y-axis).
(0,1) corresponds to a perfect classification. y=x represent randomly guessing
a class. AUC will always be between 0 and 1, but since 0.5 corresponds to
random guessing, no realistic classifier should be below 0.5 [11]. A ROC curve
with corresponding AUC value can be seen in Figure 7.7. The remaining ROC
curves can be seen in Appendix B. All AUC scores with corresponding p-values
are stated in Tables 7.3 and 7.4. All combinations of diagnostic groups with the
different methods are significant except cross-sectional FreeSurfer bam12 AD
vs. MCI. Here, only an AUC of 0.52 is achieved, which almost corresponds to
random guessing. To compare AUCs between methods (derived from the same
subjects between diagnostic groups), DeLong test is used [10]. The test takes
into account the correlated nature of the data. N-L Patch AUCs are compared
to cross-sectional FreeSurfer and Longitudinal FreeSurfer. Significance between
methods, indicated by *, ** and *** in Tables 7.3 and 7.4, are found for N-L
patch and cross-sectional FreeSurfer bam12 for diagnostic groups AD vs. CN
and AD vs. MCI and bam24 AD vs. MCI. No significant difference is found
between N-L Patch and longitudinal FreeSurfer.

Figure 7.7: ROC curve. AD vs. CN for N-L Patch bam12. True
positive rate vs. false positive rate as a function of the threshold
of the measure that is evaluated.
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Cohens’ D:
Cohens’ D is a measure of effect size which indicates the strength of a phe-
nomenon. It is defined as the difference between two means, µ1 and µ2, divided
by a measure based on the standard deviations, σ1 and σ2, for the data.

Cohens′D =
µ1 − µ2√
σ2
1+σ2

2

2

, (7.3)

Cohens’ D are correlated with another statistical measure typically used in drug
testing, sample size. A low Cohens’ D indicates the necessity of a larger sample
size. Bootstrapping is used to compare Cohens’ Ds between methods. To com-
pute the p-value for bootstrapping, a two-tailed t-test for the null hypothesis
of equal measures N1-N2=0 is carried out, where N1 and N2 are independent
random measures. A probability distribution is computed for the difference
between the Cohens’ D for the two measures and computes the p-value as
p(N1 > N2) = 1 − cdfN1−N2(0) and p(N2 > N1) = 1 − p(N1 > N2), where
cdf is the cumulative distribution function.

N-L Patch Cohen’s Ds are compared to cross-sectional FreeSurfer and Longi-
tudinal FreeSurfer. Significance between methods, indicated by ** and *** in
Table 7.3 and by * in Table 7.4, are found for N-L patch and cross-sectional
FreeSurfer bam12 and bam24 for diagnostic groups AD vs. CN and AD vs.
MCI. No significant difference is found between N-L Patch and longitudinal
FreeSurfer.

7.3.1 Linear regression

In the following model, it is assumed that the hippocampal percentual loss per
year is constant. This means that the volume loss is an exponentially decaying
function. To find the rate, a straight line is fitted by least squares estimates
[23] to three points calculated as log(Follow-up volume/Baseline volume). At
baseline, the follow-up volume is equal to the baseline volume, accordingly, the
first point is always 0. The best fitted exponential line to the three target points
is found, where best is defined by the least squares estimates. The fitted lines
for the three methods can be seen in Figures 7.8, 7.9 and 7.10.
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Figure 7.8: N-L Patch: Blue dots: Volume, (log(follow-
up/baseline)), as a function of scan interval. Grey lines: Best fitted
lines to three time points using least squares estimates. Black line:
Mean.

Figure 7.9: FS Cross: Blue dots: Volume, (log(follow-
up/baseline)), as a function of scan interval. Grey lines: Best fitted
lines to three time points using least squares estimates. Black line:
Mean.
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Figure 7.10: FS long: Blue dots: Volume, (log(follow-
up/baseline)), as a function of scan interval. Grey lines: Best fitted
lines to three time points using least squares estimates. Black line:
Mean.

The rate per year for each subject is found by:
rate (%) = (exp(slope coefficient) - 1)*100. The mean rate for each diagnostic
group with N-L Patch, cross-sectional FreeSurfer and longitudinal FreeSurfer
can be seen in Table 7.5.

AD MCI CN

mean ±σ mean ±σ mean ±σ
N-L Patch -3.88 ±2.63 -2.32 ±2.45 -0.95 ±1.32
FS Cross -4.88 ±3.58 -3.71 ±3.31 -1.62 ±2.59
FS Long -5.36 ±2.74 -3.74 ±3.11 -1.61 ±1.62

Table 7.5: Statistics based on rate/year for ADNI504. The rate
is found by fitting a straight line to 3 time points calculated as
log(follow-up volume / baseline volume) using least squares esti-
mates.

From Figures 7.8, 7.9 and 7.10 it can be seen that the deviation looks larger
for cross-sectional FreeSurfer than N-L Patch and longitudinal FreeSurfer. Ac-
cording to the model, the lines found by least squares estimates should intersect
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(0,0). To test for bias, a two sided one sample t-test is used to test if the lines
intersections with the y-axis for each method is equal to zero. The result of the
test can be seen in Table 7.6.

One sample t-test

N-L Patch FS Cross FS Long

t-vale (p-value) -0.79 (0.432) 0.46 (0.649) 2.19 (0.029)

Table 7.6: Two sided one sample t-test for each method based on
the intersection with the y-axis of best fitted straight lines to three
time points using least squares estimates. Volume is defined as
log(Volume Follow-up/Volume Baseline).

From Table 7.6 it can be seen, that the null hypothesis, µ = 0, can be rejected
for FS long. This can be due to bias, uncertainties in measurements or a wrong
model assumption - the hippocampal volume is not an exponentially decaying
function.

7.4 Discussion

As stated in Section 7.2, the initial segmentations are insufficient in some cases
(total volume below 3500 voxels). It is not unusual that inter-subject registra-
tions fail, since large intensity differences between subjects can lead to a scenario
where the optimization can be caught at a local minimum as explained in Chap-
ter 4. However, when the skull-stripping is changed, the segmentations are good
in all cases. This could indicate the need to inspect all the skull-stripped im-
ages prior to segmentation or simply use another type of preprocessed images,
e.g. bias field corrected images. The argumentation for using skull-stripped
images in the first place is that the registration is not dominated by the high
intensity skull, thereby resulting in a better hippocampal alignment. A precise
hippocampal alignment is important to achieve good segmentation results since
N-L Patch only search for similar patches within a 9×9×9 voxels search volume.
Therefore, changing the input images to bias field corrected images might not
improve registration and thereby segmentation.

Segmentation with N-L Patch is in the same space after an affine inter-subject
registration, since all atlases and subjects are registered to one atlas. However,
when the inter-subject registration is changed to a rigid registration to the same
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atlas, no scaling and shearing is done, which means the segmentations results are
available in another space. Thus, the segmentations cannot directly be compared
in these cases, and must be taken to a standard space. Furthermore, doing a
comparison with the other methods involves taking the segmentations to subject
FreeSurfer space and doing an interpolation. This affects Dice scores with the
manual labels, which changes from 0.868 ± 0.019 to 0.855 ± 0.021 for Atlas40,
Chapter 6. This could be avoided if a computational heavier alternative was
used where atlases were registered to the test subject, as done in BrainFuseLab
and Section 6.1.1, and might accordingly be considered in future work.

From Tables 7.3 and 7.4 it can be seen that the standard deviations for N-L
Patch is increased for bam24 compared to bam12. This can be due to more
extreme outliers which can be seen from the histograms in Appendix B. These
outliers are not corrected, since the total hippocampal volume is not below 3500
voxels. Figure 7.11 illustrates a segmentation where the left hippocampus of an
AD subject, indicated by blue arrow, is not segmented properly, which leads to
a atrophy score from baseline to m24 of -31 %. The left hippocampus volume
decreases from 3867 to 1906 mm3, whereas the right decreases from 4562 to
3909 mm3. Since the left and right hippocampus should have approximately
the same volume, the fraction between the volumes could have been used as an
indicator to decide if the MRI should be inspected for e.g. an imprecise skull-
stripping. Figure 7.12 illustrates the transformed MRI, green, superimposed on
the test atlas, greyscale. In this case, it does not look like a faulty registration.
More likely, it is not possible to use affine registration to match the brain of this
subject, because the pathological brain changes are very large, e.g. enlarged
ventricles.
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(a) Baseline (b) m24

Figure 7.11: N-L Patch segmentation of 136 S 0426 at baseline and
m24 where total atrophy is estimated to -31%. Arrow indicates the
left hippocampus, which during two years has decreased 49 % in
volume.

Figure 7.12: 136 S 0426 registration m24. Warped subject MRI
(green) superimposed on test subject (greyscale).

N-L Patch yielded significantly better group separation than cross-sectional
FreeSurfer in separating AD from CN and AD from MCI for bam12 and bam24,
based on bootstrapping. Furthermore, N-L Patch also yielded significantly bet-
ter group separation than cross-sectional FreeSurfer in separating AD from CN
and AD from MCI for bam12 and AD from MCI for bam24, based on DeLong
test. Longitudinal FreeSurfer exploiting baseline and follow-up simultaneously
was tested and showed no diagnostic improvement over N-L Patch when doing
bootstrapping and Delong test between methods.

In N-L Patch, two fundamental aspects have been changed compared to cross-
sectional FreeSurfer: the method and the atlas. It is difficult to decide, if the
better results obtained with N-L Patch are due to the one or the other. To make
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a fair comparison, the methods should preferably use the same atlas. However,
since there is no access to the atlases used to build the probabilistic FreeSurfer
atlas, this has not been possible.
The new Harmonized Hippocampal Protocol (HHP) label definition is made
by many experts after evaluating a variety of segmentation protocols and then
agreeing on an equivocal definition. This suggests that the manual HHP seg-
mentations are more standardized and thereby better than the manual segmen-
tations used in FreeSurfer. Furthermore, HHP labels are considered the new
hippocampal golden standard. The cross-subject averaging done to make the
FreeSurfer atlas might have removed useful information. On the other hand,
the FreeSurfer atlas has been used for a long time, and the atlases used to make
this probabilistic atlas are used in other automated multi-atlas methods as well
e.g. [28], which illustrates their robustness in automated segmentation.

FreeSurfer and N-L Patch methods are fundamentally different. FreeSurfer uses
Markov Random Fields in a Baysian framework to do segmentation. Infor-
mation from intensity, prior probabilities at a voxel and labels of neighboring
voxels, is included in the model.
In its original form, the N-L patch method results in segmentations with speckle
patterns, as illustrated in Section 6.1. These areas are wrongly classified as
part of hippocampus because the method does not take labels of neighboring
classified voxels into account. However, the speckles can easily be removed au-
tomatically as done in this thesis. The segmentations obtained using FreeSurfer
are often rough and has branches of misclassified voxels, Figure 1.7. Since these
branches are not represented in the FreeSurfer atlas, they arise because of the
method. The branches are interconnected with the hippocampus border and
can only be removed by morphological operations, which effects the entire sur-
face volume. Since the surface volume accounts for approximately 10 % of the
total volume, this is not an optimal solution when estimating atrophy.

N-L Patch only uses affine registrations or the subclass, rigid registrations, and
is therefore considerably faster than methods using non-linear registration. No
general rule exist, but methods that uses a lot computational power are often
more precise than methods that use less. The question is if N-L Patch only
performs well because a good atlas from the HHP is available? In [8], N-L
Patch is used for ventricle segmentation with another atlas and gives good re-
sults. Segmentation of 80 elderly subjects with mild to moderate AD gives a
mean Dice score = 0.959. This indicates the possibility to extend the method
to other structures. However, the computational cost increases with structure
size. To make N-L Patch even faster in order to get segmentation results im-
mediately after the scan, the images could be cropped and the method could be
implemented on a GPU.



Chapter 8

Conclusion

The ambition behind this thesis was to improve automated segmentation of hip-
pocampus from T1-weighted Magnetic Resonance Imaging (MRI) compared to
the current method (FreeSurfer) used at the company Biomediq A/S. Biomediq
A/S strives at eliminating the use of FreeSurfer in their alzheimer’s diagnostic
pipeline.

In an initial literature study, multi-atlas segmentation methods were found to
be among the top performing automated hippocampal segmentation methods.
These methods rely on manual annotations called atlases. Two fundamentally
different multi-atlas methods were chosen, to analyze if the best performance
was achieved with 1) the relatively faster N-L Patch using affine registrations
to align MRIs and atlases or with 2) a computationally heavier method, Brain-
FuseLab, using non-rigid registrations to align atlases and MRIs. In N-L Patch
a label is obtained for every voxel by using similar image patches from coarsely
aligned atlases, whereas BrainFuseLab gives atlases with local similarity to the
test subject high weight when a voxel is labeled. For both methods, manual
annotations from a new Harmonized Hippocampal Protocol (HHP) were used
as atlases. These manual annotations include both subjects with alzheimer’s
disease (AD), mild cognitive impairment (MCI) and cognitively normal (CN),
and are furthermore considered the hippocampal golden standard.

Before segmentation the MRI data were preprocessed in several steps for both
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methods. This involved removal of spatial intensity inhomogeneities, skull-
stripping and transformation of atlases and MRIs to one segmentation space.

Method parameters were optimized in a leave-one-out cross-validation using two
different HHP atlas sets. A paired t-test between Dice scores of N-L Patch and
BrainFuseLab, showed significance (p<0.001), accordingly N-L Patch yielded
significantly higher Dice scores than BrainFuseLab. This illustrates, that heavy
computational methods not necessarily give better results than fast methods.
Based on Dice scores, computation time and visual inspection, N-L Patch was
chosen to be the optimal method. Furthermore, N-L Patch resulted in better
segmentation consensuses with the new hippocampal label standard than the
state-of-the-art method, cross-sectional FreeSurfer.

N-L Patch was used to segment a standardized ADNI dataset containing 1.5T
MRIs from 504 subjects (169 CN, 234 MCI, 101 AD) at baseline, month 12
and month 24. In cases, where the registration was considered to fail, either the
skull-stripping was redone or the registration was changed to a rigid registration
as it was considered that the scaling caused the fail. After these adjustments, no
insufficient segmentations were achieved with hippocampal volume below 3500
mm3.

Hippocampal atrophy rate calculated as percentage volume change from base-
line to follow-up was estimated. Based on a statistical analysis, the diagnostic
group separation capabilities of N-L Patch were compared to two state-of-the-art
methods, 1) cross-sectional FreeSurfer and 2) longitudinal FreeSurfer. Including
the HHP labels in N-L Patch yielded significantly better group separation than
cross-sectional FreeSurfer in separating AD from CN and AD from MCI. Also
longitudinal FreeSurfer exploiting baseline and follow-up simultaneously showed
no diagnostic improvement over N-L Patch. This illustrates the longitudinal ro-
bustness of segmentations when annotations from the new hippocampal label
standard are included in automated segmentation methods.

Two fundamentally different aspects were changed in N-L Patch compared to the
FreeSurfer methods: the method and the atlas. The definition of the HHP labels
have been agreed upon by many experts, which indicates that the atlases used in
N-L Patch are better than the probabilistic atlas used in FreeSurfer, where the
averaging of atlases might have removed usefull information. Based on the visual
segmentations, both N-L Patch and FreeSurfer have areas of misclassified voxels.
However, in N-L Patch these can easily be removed since they are not part of
the hippocampal border which is not the case in FreeSurfer. This indicates, that
the method used in N-L Patch results in better automated segmentations than
FreeSurfer.

Based on the results of this thesis, Biomediq A/S now has achieved a fast
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hippocampal segmentation method independent of the segmentation part of
FreeSurfer. Additionally, Biomediq A/S now has a method with full access to
the source code. However, the use of FreeSurfer is not eliminated as the MRIs
still need to be preprocessed. Developing a preprocessing pipeline might be con-
sidered in future work, if the use of FreeSurfer should be eliminated completely.
If atlases are available for other subcortical structures, the N-L Patch method
can easily be extended to segment such structures as well. A GPU implementa-
tion will decrease computation time further, with high clinical relevance, since
segmentations should preferably be available in the clinic immediately after
scanning.

Overall, hippocampal N-L Patch segmentation with HHP labels showed con-
vincing results, though, there is still room for improvements and new features
in the segmentation.

8.1 Future Work

Below is a list with possible elements for improving hippocampal N-L Patch
segmentations and steps in getting a better subcortical segmentation pipeline.

1. Include a similarity measure based on texture analysis of the test and
training subjects in the non-local means label fusion, Equation 5.2.

2. If many similar patches are found from the same training subject, it in-
dicates that this subject globally looks like the test subject. This could
be incorporated in the label fusion, so patches from that specific training
subject weights more in the final fusion of labels, Equation 5.2.

3. Optimize N-L patch code by cropping images around the structure of
interest and make a GPU implementation.

4. Extent the method to other structures. This involves finding good atlas
sets.



88 Conclusion



Appendix A

Atlas Demographics

This appendix includes the demographics of the manual segmentations from the
Harmonized Hippocampal Protocol used as atlas sets in this thesis. One atlas
set contains 15 atlases, Table A.1, the other contains 40 atlases, Table A.2.
MMSE score is explained in Chapter 3.

PatientID SeriesID Diagnosis Age Gender MMSE Hand
002_S_0816 29.612 AD 71,4630 1 26 1 Gender MMSE hand
003_S_0931 20.050 CN 86,2247 2 28 1 1 26 1
003_S_1059 22.301 AD 84,5616 2 25 1 2 28 1
003_S_1257 27.340 AD 85,1342 1 20 1 2 25 1
009_S_0842 18.870 CN 73,7151 1 28 1 1 20 1
009_S_0862 19.358 CN 73,4685 2 30 1 1 28 1
009_S_1030 21.823 MCI 67,5507 1 28 1 2 30 1
009_S_1334 50.567 AD	   64,8767 1 22 1 1 28 1
011_S_0002 9.107 CN 74,3863 1 28 2 1 22 1
013_S_0592 18.419 AD 78,1370 1 23 1 1 28 2
013_S_1276 27.641 CN 71,9644 2 30 1 1 23 1
016_S_1092 23.826 MCI 74,4685 1 26 1 2 30 1
016_S_1263 27.304 AD 64,8822 2 26 1 1 26 1
100_S_1062 66.023 AD 84,4712 1 28 1 2 26 1
100_S_1286 64.890 CN 77,7205 2 28 2 1 28 1

2 28 2

15	  pers
7	  AD
6	  CN
2MCI

Figure A.1: Atlas15 demographics. Gender: Male = 1, female =
2. Hand: Right = 1, left = 2.
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PatientID SeriesID Diagnosis Age Gender MMSE Hand
002_S_0295 13.408 CN 84,8904 1 28 1
002_S_0413 13.893 CN 76,3836 2 29 1
002_S_0782 17.835 MCI 81,7205 1 29 1
002_S_0816 29.612 AD 71,4630 1 26 1
002_S_0938 19.852 AD 82,3068 2 23 1
003_S_0907 19.728 CN 88,7260 2 30 1
003_S_0908 32.516 MCI 62,9616 2 29 1
003_S_0931 20.050 CN 86,2247 2 28 1
003_S_1057 23.345 MCI 61,3753 2 26 1
003_S_1059 22.301 AD 84,5616 2 25 1
003_S_1122 23.542 MCI 76,8055 2 28 1
003_S_1257 27.340 AD 85,1342 1 20 1
005_S_1341 27.673 AD 71,7151 2 24 1
007_S_0101 10.679 MCI 73,6356 1 27 1
007_S_0128 10.936 MCI 64,1288 2 29 1
009_S_0842 18.870 CN 73,7151 1 28 1
009_S_0862 19.358 CN 73,4685 2 30 1
009_S_1030 21.823 MCI 67,5507 1 28 1
009_S_1334 50.567 AD 64,8767 1 22 1
010_S_0067 10.344 CN 74,5562 1 27 1
011_S_0002 9.107 CN 74,3863 1 28 2
011_S_0010 8.800 AD 73,9699 2 24 1
011_S_0016 9.253 CN 65,4630 1 28 1
011_S_0183 12.000 AD 72,5452 2 21 1
011_S_0856 19.031 AD 60,3781 1 27 2
013_S_0592 18.419 AD 74,0000 1 28 1
013_S_1276 27.641 CN 71,9644 2 30 1
016_S_1092 23.826 MCI 74,4685 1 26 1
016_S_1263 27.304 AD 64,8822 2 26 1
098_S_0149 11.021 AD 87,8137 1 20 1
098_S_0172 11.812 CN 70,6384 2 29 1
100_S_0995 66.038 AD 81,0548 2 26 1
100_S_1062 66.023 AD 84,4712 1 28 1
100_S_1286 64.890 CN 77,7205 2 28 2
123_S_0050 10.053 MCI 77,7233 1 26 2
123_S_0091 15.898 AD 62,9616 1 25 1
123_S_0094 15.867 AD 71,3014 2 20 1
123_S_1300 27.689 MCI 73,5452 2 28 2
127_S_0259 12.137 CN 70,6301 1 30 1
127_S_0754 18.515 AD 67,7123 2 23 1

Figure A.2: Atlas40 demographics. Gender: Male = 1, female =
2. Hand: Right = 1, left = 2.
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Statistical Analysis

The results in this appendix are obtained from a statistical analysis of the final
segmentations from ADNI504 with Non-Local Patch-based segmentation (N-L
Patch), cross-sectional FreeSurfer (FS cross) and longitudinal FreeSurfer (FS
long) explained in Chapter 7.

B.1 Volume results

Tables B.1 and B.2 states the mean ±σ for N-L Patch, cross-sectional FreeSurfer
and longitudinal FreeSurfer for the diagnostic groups at m12 and m24, respec-
tively. The corresponding baseline table is Table 7.2. Since one patient is not
diagnosed at m24, the results are obtained using the baseline diagnostics.
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Mean volume (mm3)± σ
CN(n=169) MCI(n=234) AD(n=101)

N-L Patch 7792 ± 889 6996 ± 1096 6247 ± 1182
FS Cross 7107 ± 1018 6075 ± 1110 5330 ± 1197
FS Long 7055 ± 1052 5921 ± 1173 5105 ± 1276

Table B.1: ADNI504 m12: Mean hippocampal volume for diagnos-
tic groups with different methods.

Mean volume (mm3)± σ
CN(n=169) MCI(n=234) AD(n=101)

N-L Patch 7716± 908 6850 ± 1149 6034 ± 1223
FS Cross 6985 ± 1014 5869 ± 1161 5049 ± 1195
FS Long 6918 ± 1059 5702± 1220 4817 ± 1253

Table B.2: ADNI504 m24: Mean hippocampal volume for diagnos-
tic groups with different methods.

Scatter plots of N-L Patch volume against cross-sectional FreeSurfer or longitu-
dinal FreeSurfer at m12 and m24 can be seen in Figures B.1 and B.2, respec-
tively. The corresponding figures for baseline can be seen in Figures 7.4 and
7.5. Since one patient is not diagnosed at m24, the results are obtained using
the baseline diagnostics.



B.1 Volume results 93

Figure B.1: ADNI504 m12: Scatter plots. Top: Hippocampal
volume with N-L Patch vs. FS Cross. Bottom: Hippocampal
volume with N-L Patch vs. FS Long.
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Figure B.2: ADNI504 m24: Scatter plots. Top: Hippocampal
volume with N-L Patch vs. FS Cross. Bottom: Hippocampal
volume with N-L Patch vs. FS Long.

B.2 Atrophy histograms
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B.3 Bartlett’s Test

To test for variance homogeneity between groups, Bartlett’s test, is performed
on atrophy rates for the three diagnostic groups, AD, MCI and CN for each
method. The results of Bartlett’s test are shown in Tables B.3 and B.4. The low
p-values reveal variance inhomogeneity between the clinical diagnostic groups in
N-L Patch method and longitudinal FreeSurfer for both bam12 and bam24 and
cross-sectional FreeSurfer bam24. Variance homogeneity can not be rejected for
cross-sectional FreeSurfer bam12.

Segmentation Method p-value
N-L Patch <0.001
FS Cross 0.9469
FS Long <0.001

Table B.3: Bartlett’s tests of inhomogeneity of variances bam12.

Segmentation Method p-value
N-L Patch <0.001
FS Cross 0.007
FS Long <0.001

Table B.4: Bartlett’s tests of inhomogeneity of variances bam24.

B.4 ROC curves

ROC curves for bam12 and bam24 with corresponding AUC values can be seen
in Figures B.4 and B.5.
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Appendix C

Data CD

The enclosed CD contains the following:

• Volume results of ADNI504 at 3 time points with N-L Patch, FS cross and
FS long.

• Atrophy scores of ADNI504 (bam12, bam24) with N-L Patch, FS cross
and FS long.

• N-L Patch source code.

• R-code and m-code used for statistics.
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