
Deep Belief Nets
Topic Modeling

Lars Maaløe

Kongens Lyngby 2014
IMM-M.Sc.-2014

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk IMM-M.Sc.-2014

Summary (English)

This thesis is conducted in collaboration with Issuu, an online publishing company.
In order to analyze the vast amount of documents on the platform, Issuu use
Latent Dirichlet Allocation as a topic model.

Geoffrey Hinton & Ruslan Salakhutdinov have introduced a new way to perform
topic modeling, which they claim can outperform Latent Dirichlet Allocation.
The topic model is based on the theory of Deep Belief Nets and is a way of
computing the conceptual meaning of documents into a latent representation.
The latent representation consists of a reduced dimensionality of binary numbers,
which proves to be useful when comparing documents.

The thesis comprises the development of a toolbox for the Deep Belief Nets for
topic modeling by which performance measurements has been conducted on the
model itself and as a comparison to Latent Dirichlet Allocation.

ii

Summary (Danish)

Denne afhandling er udarbejdet i samarbejde med Issuu, et online publicerings-
firma. For at analysere den store mængde af dokumenter på platformen, bruger
Issuu Latent Dirichlet Allocation som emne model.

Geoffrey Hinton & Ruslan Salakhutdinov har indført en ny måde at gennemføre
emne modellering, som de hævder kan udkonkurrere Latent Dirichlet Allocation.
Emne modellen er baseret på teorien om Deep Belief Nets og er en måde at
beregne den begrebsmæssige betydning af dokumenter til en latent repræsentation.
Den latente repræsentation består af en reduceret dimensionalitet af binære tal,
som viser sig at være meget nyttig, når man sammenligner dokumenter.

Afhandlingen omhandler udviklingen af en værktøjskasse til Deep Belief Nets for
emne modellering, fra hvilken målinger er blevet gennemført på selve modellen
og som en sammenligning til Latent Dirichlet Allocation.

iv Summary (Danish)

Nomenclature

Following is a short description of the abbreviations and mathematical notations
that are frequently used throughout the thesis.

ANN Artificial Neural Network.
DBN Deep Belief Net.
RBM Restricted Boltzmann Machine.
RSM Replicated Softmax Model.
DA Deep Autoencoder.
LDA Latent Dirichlet Allocation.
DBNT Deep Belief Net Toolbox.
FFNN Feed-forward neural network.
D The number of input/visible units of a network. Also denotes the

number of attributes in a BOW matrix.
M The number of hidden units in a hidden layer. A superscript (1) is given

for the first layer etc.
K The number of output units of a network. Also denotes the dimension-

ality of the output space.
N The number of data points in a dataset.
x̂ The vector x̂ = [x1, ..., xD] denoting the input vector to a FFNN or

DBN.
data The real data.
recon The reconstructed data.
X A matrix of input vectors x̂n so that X = [x̂1,, x̂N].
t̂ The vector t̂ = [t1, ..., tK] denoting the target values of a FFNN or DBN.
T A matrix of target vectors t̂n so that T = [t̂1,, t̂N].
ẑ The vector ẑ = [z1, ..., zM] denoting the hidden units of a FFNN or

DBN.
ŷ The vector ŷ = [y1, ..., yK] denoting the output units of a FFNN or

DBN.
W The weight matrix, containing all weight interactions between units in

a layer. Layers are denoted with a superscript (1) etc.
ŵ Bias vector of FFNN or DBN. Layers are denoted with a superscript

(1) etc.
w The weight and bias parameters of a network in a matrix.
v̂ The vector v̂ = [v1, ..., vD] denoting the visible units of a RBM or RSM.
ĥ The vector ĥ = [h1, ..., hM] denoting the hidden units of a RBM or

RSM.
b̂ The bias vector of the visible layer in a RBM or RSM.
â The bias vector of the hidden layer in a RBM or RSM.
y(x̂,w) The output of a network.
E(w) The predicted error of a model given w.
σ The logistic sigmoid function.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics. The work was carried out in the
period from September 2013 to February 2014.

Lyngby, 28-February-2014

Lars Maaløe

vi

Acknowledgements

First and foremost, I would like to thank my supervisor Ole Winther and my
external supervisor Morten Arngren from Issuu for the discussions and guidance
during the development of this thesis. Furthermore I would like to thank Andrius
Butkus from Issuu for his assistance on providing useful insight to the current
topic model. Last but not least I would like to thank Geoffrey Hinton and Nitish
Srivastava from the University of Toronto for the mail correspondance, where
they pointed me in the right direction for implementing the Replicated Softmax
Model.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Related Work . 5

2 Theory 7
2.1 Latent Dirichlet Allocation . 8

2.1.1 Discussion . 12
2.2 Artificial Neural Networks . 15

2.2.1 Feed-Forward Neural Network 17
2.2.2 Error Function . 21
2.2.3 Training . 23

2.3 Deep Belief Nets . 26
2.3.1 Restricted Boltzmann Machines for Pretraining 27
2.3.2 Deep Autoencoders for Finetuning 31
2.3.3 Replicated Softmax . 32
2.3.4 Discussion . 36

2.4 Deep Belief Net Toolbox . 39
2.4.1 Data Processing . 39
2.4.2 DBN Training . 41
2.4.3 Testing Framework . 43

x CONTENTS

3 Simulations 47
3.1 MNIST . 49
3.2 20 Newsgroups & Reuters Corpus 52
3.3 Wikipedia Corpus . 63
3.4 Issuu Corpus . 69

4 Conclusion 75
4.1 Future Work . 78

A Appendix A 79
A.1 Principal Component Analysis 80
A.2 Boltzmann Distribution . 81
A.3 Gibbs Sampling . 82
A.4 Batch Learning . 83
A.5 Artificial Neural Networks and Biology 83
A.6 Binary Threshold Neuron . 84
A.7 Optimization Algorithms . 85
A.8 Training Example . 87

B Appendix B 89
B.1 MNIST . 90
B.2 20 Newsgroups . 91
B.3 Wikipedia . 92

B.3.1 Wikipedia Large Corpus 94

C Appendix C 97
C.1 Technical Specifications . 97
C.2 Replicated Softmax Model . 98
C.3 Restricted Boltzmann Machine 100
C.4 The Pretraining Process . 102
C.5 Compute Gradient and Error for Finetuning Document Data . . 103
C.6 Forward-pass in Deep Autoencoder for Document Data 105
C.7 Accuracy Measurement . 106

Bibliography 107

Chapter 1

Introduction

Issuu is a digital publishing platform delivering reading experiences of magazines,
books, catalogs and newspapers to readers across the globe. Currently Issuu has
more than 16 million (Feb. 2014) publications on their site, which is a number
increasing by approximately 25, 000 a day (Feb. 2014). It has come to be the
YouTube of publications.

The source of revenue is from the publishers and advertisers. The publishers
can pay a premium subscription, allowing them to get an Issuu reader, free of
advertisements, embedded on their website. Furthermore the publishers will
get themselves promoted on Issuu’s website. If the publishers do not purchase
the premium subscription, advertisements will be added to the Issuu reader
providing revenue for the advertisers.

Issuu wants to deliver an optimal reading experience to the readers; thus without
readers there would be neither publishers nor advertisers. In order to get the
readers feeling inclined to read, Issuu recommend documents that the reader
will find interesting. One way of doing so, is to recommend a document from
the same or similar topic that the reader has already read. Besides providing
the user with useful recommendations, the knowledge of knowing the related
documents to a specific document gives Issuu insight in the interests of the users.
They can analyze a cluster of documents similar to the one that is read and label
a topic accordingly. When the users are profiled, Issuu can provide targeted

2 Introduction

advertisements.

The amount of finely grained topics within a dataset of this magnitude are vast,
making it intractable for Issuu to predefine all possible topics and label each
document accordingly. Issuu needs a method to map documents into a space
corresponding to their semantics. The idea is that documents that are placed in
proximity to each other, will be of a similar topic. Topics can be added manually
by analyzing the clusters in space after the processing of documents. Fig. 1.1
show how documents can be represented as word-distributions that are mapped
into a subspace. From this mapping, documents with similar word distributions
can be retrieved.

Figure 1.1: Issuu publications represented as word-distributions. The word-
distributions are mapped into a subspace. From this subspace,
publications with similar semantics can be retrieved.

Topic models refer to a broad definition: ... topic models are a suite of algorithms
whose aim is to discover the hidden thematic structure in large archives of
documents [2]. There exist multiple approaches on how to define a statistical
model that can achieve the properties of the definition. A widely used approach
is topic models that assume a finite number of topics in the dataset and output a
topic distribution for each document. Another approach is to assume the dataset
to have infinite topics in a hierarchy, known as Hierarchical topic models [2].
Finally a model that can map document data into a low -dimensional subspace
according to semantics, can be interpreted as a topic model. In this thesis we
refer to a topic model as just that.

Topic models are trained iteratively on a dataset to adjust model parameters.
The training dataset must contain a true distribution, ensuring that the model
can anticipate all types of data and perform a correct mapping into the subspace
after training. The mapping into subspace must be accurate in order to capture
the granularity within a topic, i.e. a recommendation for a document about
golf is not very useful for a user who find football interesting, even though both
documents fall under the sports category. The quality of the topic model is

3

highly dependent on the dimensionality of the subspace. Thus a subspace can
be of such low dimensionality that it is impossible for the model to represent
the diversity of the documents. On the other hand, a low-dimensional subspace
provides benefits in terms of runtime and space consumptions.

There exist several topic models for mapping documents in a low-dimensional
latent representation. Latent Semantic Analysis (LSA) was one of the first
[6]. Instead of computing a similarity between documents based on word-
counts, LSA manages to compute similarities based on the conceptual content
of the documents. By using Singular Value Decomposition, LSA computes an
approximation of the word-document co-occurrence matrix [15]. LSA is trained
by computing low-dimensional codes that are reconstructed to an approximation
of the input document. The goal of the training is to adjust the model parameters,
so that the difference between the input and the reconstructed document are
minimized. The restrictive assumption of LSA is that the reconstructed document
is computed through a linear function of the low-dimensional codes [15]. Other
topic models has later been introduced and they have proven to outperform LSA
for reconstructions and retrieving semantically similar documents [15].

Latent Dirichlet Allocation (LDA) is a mixture model used by Issuu for topic
modeling in their production system [4]. They have defined the model to a
150-dimensional topic distribution that can be mapped into a subspace. The
LDA is trained on the English version of the Wikipedia dataset containing
more than 4.5 million articles. LDA is a bag-of-words-model (BOW) since each
document is represented by a vector of word counts and the ordering of words
are not considered. Issuu consider 80, 000 words in the LDA model and have
computed 150-dimensional topic distributions for all documents, so that they
can retrieve similar documents in a subspace through a distance metric.

This thesis will investigate a method for topic modeling defined by Geoffrey
Hinton & Ruslan Salakhutdinov, which use the theory of Deep Belief Nets (DBN).
The DBN can be considered as a successor of the Artificial Neural Network
(ANN). DBNs can be used to represent a low-dimensional latent representation
of input data. It applies to many types of data, where we focus on document
data. However, in the process of explaining the DBN and showing that it works
we will also explain the use of DBNs on image data. As the name implies,
the DBN is based upon a deep architecture, which results in a highly non-
linear dimensionality reduction. Hinton and Salakhutdinov claim that DBNs
outperform the LDA model in terms of correctly predicting similar documents,
runtime performance and space allocation [15]. The main objective of this thesis
is to implement a Deep Belief Nets Toolbox (DBNT) to perform dimensionality
reduction on document data (cf. Fig. 1.2). The compressed representation of the
documents must represent the conceptual meaning, so that similar documents can
be retrieved from a distance measurement. We will use the DBNT to investigate

4 Introduction

different properties and test how DBN performs compared to the LDA model.

Figure 1.2: Documents are modeled by a Deep Belief Net in order to output
a low-dimensional representation, where the conceptual meanings
are represented.

In Sec. 2 the theory behind the LDA model is introduced. Next we introduce
the ANN, elaborating on different components and how to train the networks.
The section continues by explaining the basics of the DBN. The training is
explained by two processes: pretraining and finetuning. As a fundamental
part of pretraining, the Restricted Boltzmann Machine (RBM) is introduced.
The Replicated Softmax Model (RSM) is explained as a successor of the RBM.
Following the description of the pretraining, the section introduce finetuning with
the theory on the Deep Autoencoder (DA). The section concludes in a description
of the DBNT. Sec. 3 gives an introduction to the simulations performed. The
section is split corresponding to the datasets that are modeled. Each section
analyze and discuss the results. In Sec. 4 a conclusion is drawn on the results of
the thesis and whether this model is a viable topic modeling approach for Issuu.

1.1 Related Work 5

1.1 Related Work

In this section we give a short introduction to the work that has shaped the
theory of the DBN. The theory that are referred to will be explained in detail in
Sec. 2.

Smolensky introduced the RBM [26] and Hinton introduced a fast learning
algorithm called Contrastive Divergence for the RBM [8]. In the past, neural
networks have had the drawbacks of converging extremely slowly, due to inade-
quate learning algorithms. Instead of training a multi-layered artificial neural
network as a single entity, Hinton and Salakhutdinov introduced the pretraining
process, by stacking a number of RBMs [14]. They trained each RBM separately
by applying the Contrastive Divergence algorithm. This proved to provide a
crude convergence of the parameters to an initialization for the finetuning. The
finetuning process is very similar to the original learning algorithms for ANNs.
By using an optimization framework, the parameters converges to reconstruct
the input. Hinton and Salakhutdinov trained on the MNIST dataset, where they
show how they reduce the dimensionality of the 784-dimensional input vectors to
a 2-dimensional output vector that represents the data good in a 2-dimensional
space, in terms of spreading the data corresponding to labels in output space (cf.
Fig. 1.3) [14].

Figure 1.3: The results by Hinton and Salakhutdinov in [14] Left: PCA (cf.
Sec. A.1) on the 784-dimensional input vectors from the MNIST
dataset. Right: The 2-dimensional output of the DBN.

Hinton and Salakhutdinov described the use of DBNs as a tool for dimensionality
reduction on document data [22]. They introduced the Constrained Poisson

6 Introduction

Model as a component of the RBM to model word count data. This approach
was later rejected by Hinton and Salakhutdinov because of its inability to define
a proper distribution over word counts [23]. Instead Hinton and Salakhutdinov
introduced the RSM [23]. Later the RSM was introduced as the first component
in the pretraining process of a DBN [15]. Hinton and Salakhutdinov provided
results on two datasets: 20 Newsgroups and Reuters Corpus Volume II (cf. Fig.
1.4). In [22] Hinton and Salakhutdinov expanded the framework to produce
binary values, referred to as Semantic Hashing. This enables the distance
measurement between similar documents to be computed through a hamming
distance.

Figure 1.4: The results by Hinton and Salakhutdinov in [15]. A 2-dimensional
representation of the 128-dimensional binary output vectors from
the 20 Newsgroups dataset.

Chapter 2

Theory

In this section we describe the DBN for topic modeling in detail. We will start
by introducing the LDA model, since it is used as a reference model. Next we
provide an overview of the ANN, in which all necessary components and the
concepts behind training are explained. Then we explain the theory of DBNs,
with all its building blocks, and the different phases in training. Finally we
provide an introduction to the DBNT implemented for this thesis.

8 Theory

2.1 Latent Dirichlet Allocation

LDA is a mixture model that can be used to discover the thematic structure
of documents [4]. The objective of the LDA model is to take each word from
a document and assign it to a topic. The topic is an entity trying to quantify
interactions between words, so it denotes a distribution over a fixed vocabulary
[2]. The LDA model is a probabilistic generative model, since it is able to model
the input and the output distributions [1]. It is thereby possible to generate a
synthetic dataset in the input space from sampling. In a classification problem,
inference in a probabilistic generative model is solved by finding the posterior
class probabilities through Bayes’ theorem [1]

p(Ck|x̂) =
p(x̂|Ck)p(Ck)∑K
k p(x̂|Ck)p(Ck)

, (2.1)

where Ck denotes the class and k ∈ {1, ...,K}, where K denotes the number of
classes.

Blei propose an example to explain the intuition of the LDA model (cf. Fig.
2.1) [2]. Imagine that each word in a document is highlighted with a color
corresponding to its meaning. The colors reflect topics. After highlighting all
words, a distribution of topics are generated. A document is assumed generated
from a distribution of topics, which means that the document is represented as
a mixture of topics.

Figure 2.1: Blei’s example of the intuitions of the LDA model [2].

2.1 Latent Dirichlet Allocation 9

Each topic of the LDA model is defined as a distribution over a fixed vocabulary.
From the example in Fig. 2.1, four topics are defined

1 data analysis,

2 evolutionary biology,

3 genetics,

4 computer science.

The fixed vocabulary is the same across topics and each topic is distributed
differently over the vocabulary. So the topic computer science has a high
probability over the words data and computer as opposed to organism.

The LDA model assumes that a document is produced by deciding a number
of words and each word in the document is picked from a topic on the basis
of the probabilities. A document reflects a distribution over multiple topics.
If we reverse the assumption to the the real scenario, where documents are
known beforehand and the topic distributions are unknown, the documents are
the visible distribution and the topics are the hidden structure of the model
[4]. The goal of inference is to compute the hidden structure that has highest
probability of having generated the visible distributions, the input data. To
infer the hidden variables, a posterior distribution is computed. It denotes the
conditional distribution of the hidden variables given the visible variables [2].

We denote the distribution of each topic k as βk where k ∈ {1, ...,K}. K is a
predefined parameter deciding the number of topics to be considered by the LDA
model. In Blei’s example (cf. Fig. 2.1) a topic distribution for the computer
science topic is represented as in Fig. 2.2. The mixture of topics of a document

Figure 2.2: An example of the topic distribution βk for topic k ∈ {1, ...,K}. N
denotes the number of words considered by the model. The topic
distribution reflects the computer science topic from the example
in Fig. 2.1.

10 Theory

d is denoted θd. In the example a document may be represented as a mixture of
topics as shown in Fig. 2.3.

Figure 2.3: An example of the document distribution θd for a document d.
K denotes the number of topics considered by the model. The
document distribution reflects topics from the example in Fig. 2.1.

The topic assignment for the dth document is denoted zd. wn denote the nth
word of document d. The Dirichlet prior is denoted α. α is the parameter of
the Dirichlet distribution Dir(α), and is represented by a vector of positive real
numbers with a size corresponding to the number of topics K. α influence how
the documents are distributed on the simplex.

Figure 2.4: The Dirichlet distribution Dir(α) for K = 3 and different α’s [5].

In Fig. 2.4 is an example, where K = 3. Here we can see how the data points are

2.1 Latent Dirichlet Allocation 11

uniformly distributed when αk = 1 for k ∈ {1, 2, 3} (cf. Fig. 2.4 (left)). If the
values of αk < 1 we see how the concentration of data points are in the corners
of the simplex (cf. Fig. 2.4 (middle)). Finally if the values of α are increased,
we can see that the distribution has a tendency to concentrate in a cluster of the
simplex (cf. Fig. 2.4 (right)). In the context of the LDA model α can be decided
in order to influence the model to distribute the concentration of documents
towards a certain bias, e.g. in a K = 3 LDA model where α1 < 1, α2 > 1 and
α3 > 1, the LDA model would have a certain bias towards topic 1.

The joint probability between the visible and hidden variables in the LDA model
is [4]

p(βk, θd, zd, wd) =

K∏
k=1

p(βk)

D∏
d=1

p(θd)(

N∏
n=1

p(zd,n|θd)p(wd,n|βk, zd,n)), (2.2)

where the subscript d, n denotes the nth word in document d and n ∈ {1, ..., N}.
Note that K and α are predefined. The probabilistic assumption given in the
equation can be explained as a graphical model, where the hidden variables have
directed connections to each of the visible variables. The dependencies between
the model parameters of the LDA model are shown in Fig. 2.5.

Figure 2.5: The plate notation for LDA. The N plate denotes the collection
of words in a document and the D plate denotes the collection of
documents [3] [4].

The posterior distribution can be expressed by [2]

p(βk, θd, zd|wd) =
p(βk, θd, zd, wd)

p(wd)
. (2.3)

The conditional distribution express a probability of the hidden variables given
the probability of seeing the observed collection of words. p(wd) denotes the
probability of observing the corpus under any topic model. This posterior
distribution is intractable to compute and must be approximated through a
learning algorithm [2].

To approximate the posterior distribution a Gibbs Sampling algorithm can be
applied (cf. App. A.3). Thereby the posterior distribution is approximated with
an empirical distribution.

12 Theory

When processing a document the output of the model will be a latent representa-
tion with a dimensionality corresponding to the amount of topics K. The latent
distribution for a document θd will lie in a simplex, thus it will sum to 1 (cf. Fig.
2.7). The LDA model can be considered as a statistical model for dimensionality
reduction of documents in the sense that each document are represented as a
K-dimensional topic distribution, where K is usually less than the length of each
document.

Figure 2.6: A graphical representation of the LDA output represented as a
topic distribution lying in a simplex of 3 topics. x corresponds to
a document and the · is the similar documents.

2.1.1 Discussion

Hinton highlights two drawbacks to the LDA model. The first drawback is that
the LDA model tends to resort to slow or inaccurate approximations of the
posterior distribution [15]. The second drawback is in the case where each word
in a document has a general distribution across topics, but the joint combination
of words has a precise conceptual meaning, the LDA model is unable to capture
this intersection [15]. Hinton denotes this concept conjunctive coding. So a
document can have a conceptual meaning across a mixture of topics that the
LDA model is unable to capture. The LDA model performs a disjunctive coding,
meaning that the the model defines that a word comes from a single topic. To
illustrate we use a LDA model trained on the Wikipedia Corpus representing a
topic distribution of K = 150 topics. We define three documents:

Name Text
doc 1 apple orange
doc 2 apple orange computer
doc 3 apple orange computer java

2.1 Latent Dirichlet Allocation 13

A first glance at the three documents imply they are highly ambiguous in terms
of conceptual meanings. E.g. the conceptual meaning of doc 1 can be about
fruits, or about technology and fruits and so forth. Despite ambiguity a human
perception can introduce two topics to the documents: fruits and technology. If
we compute the topic distribution of the three documents, we see that doc 1 is
within the fruits topic (cf. Fig. 2.7 (top)). By adding the word computer to
the document, the topic representation show that the words apple and computer
forms a disjunctive coding so that they are only represented in the technology
topic, in which apple refer to the computer company (cf. Fig. 2.7 (middle)). doc
2 is still represented in the fruits topic because of the word: orange. Adding the
word java, which may refer to a programming language or coffee, we see how
all words form a disjunctive coding, meaning that doc 3 is mainly represented
by the technology topic (cf. Fig. 2.7 (bottom)). If the conceptual meaning of
doc 3 is about fruit and technology, the LDA model is unable to capture the
conjunctive coding, resulting in documents being represented by a suboptimal
latent representation.

Figure 2.7: Topic distribution of three different documents computed by a
LDA model trained on the Wikipedia Corpus, considering K = 150
topics.

Another possible drawback of the LDA model, is that the output space is a
simplex, which implies a constrain to the interval in which mappings are situated.
Thus all values of the K-dimensional latent representation sums to 1. This may
inflict with the models ability to map the granularity of the true distribution
into output space, since it map into a confined interval. A solution would be to
increase the number of dimensions K at the risk of splitting topics into subtopics.

Finally the LDA model may have a drawback in terms of dimensionality reduction.
The graphical representation of the LDA model can be viewed as the hidden

14 Theory

topic variables having directed connections to the visible variables [15]. Model
inference is between the visible and hidden variables. Thus there is only one
connection in the model to perform dimensionality reduction. Note we thrive
towards a low value of K, where the approximated posterior distribution is still
close to the real. Our assumption is that if the number of hidden variables
K are decreased to a very small number, it becomes increasingly difficult to
approximate the true posterior distribution because of an increasing difference
in the size between the input layer and the output layer K. So there may be
a boundary to the value of K that inflicts with the ability to compute a large
dimensionality reduction.

2.2 Artificial Neural Networks 15

2.2 Artificial Neural Networks

The ANN is a statistical model inspired by the human brain. ANNs refer to a
broad family of models with many different capabilities. This thesis concern the
use of ANNs as statistical models that can be trained to perform dimensionality
reduction on datasets. The trained ANN will accept high-dimensional data and
recognize patterns, to output a low-dimensional latent representation of the data
(cf. Fig. 2.8). The human brain is extremely good at identifying patterns in
data. The structure of the ANN, provide an unique ability to perceive data like
the human brain (cf. App. A.5) [13]. We will start by giving a general overview
of the ANN, followed by subsections concerning one of the most common ANNs
within the field of pattern recognition, the Feed-forward Neural Network (FFNN).
The theory of the FFNN acts as the foundation of the DBN.

Figure 2.8: The graphical representation of the ANN as a direct acyclic graph.
Nodes correspond to units and edges correspond to connections
between units.

There exist a wide variety of units for ANNs, where the linear neuron is the
simplest. The mathematical function for computing the output y of a linear
neuron is given by

y = b+
∑
i

Wixi, (2.4)

where b is the bias and Wi is the weight between the linear neuron and its input
xi where i ∈ {1, ..., D}. The function of the linear neuron will later be referred
to as an activity. More complex units will all have the activity as a part of their
equations. A difference between the linear neuron and the human brain neuron
is that the human brain neuron only emits a signal upon depolarization, where
the linear neuron will always emit a continuous number. This does not make the
linear neuron very plausible in terms of achieving the same functionality from an

16 Theory

ANN as a human brain. Pitts and McCullochs definition of a binary threshold
neuron has slightly more similarity to a human brain neuron A.6 [20]. It is very
similar to the equation of the linear neuron, despite the fact that the output y is
binary dependent on the bias b. Later we will elaborate on more complex units
that are useful for training an ANN.

The field of machine learning concern two main types of learning a statistical
model: supervised and unsupervised [1]. When training a model through super-
vised classification, the goal is learning to predict a class label t from an input
vector x̂. A drawback to supervised learning is that the training dataset must
be labeled. When training a model through unsupervised learning, the goal is
to find a hidden structure in an unlabeled dataset. The goal of this thesis is
to train a statistical model on an unlabeled dataset x̂ = [x1, ..., xD] in order to
map a latent representation ŷ = [y1, ..., yK] into a K-dimensional subspace. The
data points ŷ in subspace are mapped so that data points with similar features
lies next to each other. It is possible to find similar data vectors by computing
distance measurements (i.e. Euclidean distance) in the subspace.

ANNs are trained by adjusting the weights and biases of each unit (cf. App.
A.8). The simplest model using the theory of ANNs is called the Perceptron [21].
The Perceptron is a single unit supervised classifier. The unit in the Perceptron
is a binary threshold unit. Because the Perceptron model only consist of one unit
it is only able to distinguish between two classes, hyperplane separation. The
function computing the binary output y of the unit (cf. Eq. (A.13)) is referred
to as a transfer-function. In Fig. 2.9 is a visualization of the Perceptron model.

Figure 2.9: The Perceptron model, in which weights and biases are applied to
the input of the unit. The information is summed and compared
to a threshold, which decides the output emitted.

2.2 Artificial Neural Networks 17

2.2.1 Feed-Forward Neural Network

The Feed-Forward Neural Network, also referred to as a Multilayer Perceptron,
is a directed acyclic graph (DAG), where nodes are the units and edges are the
connections between units. In Fig. 2.10 is an example of a FFNN consisting
of three layers. A FFNN has an input layer (bottom), an output layer (top)
and a variable amount of hidden layers (middle). All units in the lower layer
are connected to all units in the next layer. There are no connections between
units in the same layer. The data is processed through the input layer, and then
the overlying hidden layers to finally being emitted by the output layer. This
procedure is referred to as a forward-pass.

Figure 2.10: Example of a 3-layered FFNN. It forms a direct acyclic graph,
where data is emitted from the bottom units towards the top
units. W1 and W2 are the weights corresponding to each weight
layer. ŵ(1) and ŵ(2) are the biases for the input and hidden layer.

Each layer consists of a variable amount of units. The size of the input unit vector
x̂ = [x1, ..., xD] is defined by the dimensionality D of the input data vectors. So
if a 28 × 28 image is the input data, the amount of input units are D = 784.
The hidden layer units ẑ = [z1, ..., zM] and the output units ŷ = [y1, ..., yK] can
be defined as a training parameter.

The FFNN is able to solve much more complicated tasks than the Perceptron
model. With its multilayered architecture and more complex transfer-functions it
can obtain complex non-linear patterns in the dataset. The ability to hold more
units within the final layer also gives it the ability to be a multi-class classifier.

18 Theory

In Fig. 2.11 is an example of a linear (left) and non-linear (right) separable
classification problem.

Figure 2.11: Left: Classification problem that can be solved by the Perceptron.
Right: Classification problem that can be solved by a FFNN.

The processing of data that is conducted by the units of a layer can be described
through mathematical functions. The units of a layer computes M linear
combinations, referred to as activities act. The activities are calculated for each
j ∈ {1, ...,M} unit in a hidden layer for the input vector x̂ = [x1, ..., xD]

actj = ŵj +

D∑
i=1

Wijxi, (2.5)

Wij is the weight between visible unit i and hidden unit j and ŵj the bias
attached to hidden unit j. After the activities have been computed, they are
applied to a non-linear differentiable function h, the transfer-function

zj = h(actj). (2.6)

This way the output of a unit varies continuously but not linearly. There exist
many different types of units. What defines the non-linearity of the unit is the
transfer-function. The most commonly known functions are the step function
(cf. Eq. (A.13)), logistic sigmoid function and the tangent hyperbolic function

σ(act) =
1

1 + e−act = (1 + e−act)−1 (2.7)

tanh(act) =
exp(act)− exp(−act)
exp(act) + exp(−act)

(2.8)

For the binary threshold neuron, the step function is used, as it transfers whether
the unit is on or off. For training frameworks where an optimization algorithm
is applied (cf. Sec. 2.2.3), it is necessary to use a differentiable transfer-function.
Both the logistic sigmoid function and the tangent hyperbolic function are
continuously differentiable. The main difference between the two functions

2.2 Artificial Neural Networks 19

is that the logistic sigmoid function outputs in range [0, 1] and the tangent
hyperbolic function outputs in range [−1, 1]. In Fig. 2.12 is the plots of the
three functions.

Figure 2.12: Left: Logistic Sigmoid Function. Middle: Tangent Hyperbolic
function. Right: Step function.

In this thesis we will only focus on the logistic sigmoid function. We refer to units
using the logistic sigmoid functions as sigmoid units. The 1st order derivative of
the logistic sigmoid function is

∂σ(act)
∂act

=
−1(−e−act)

(1 + e−act)2
(2.9)

= (
1

1 + e−act) · (e−act

1 + e−act) (2.10)

= (
1

1 + e−act) · ((1 + e−act)− 1

1 + e−act) (2.11)

= (
1

1 + e−act) · (1 + e−act

1 + e−act ·
−1

1 + e−act) (2.12)

= σ(act)(1− σ(act)) (2.13)

We will use this equation for training purposes (cf. Sec. 2.2.3).

The stochastic binary unit has the same transfer function as the sigmoid unit,
but it will compute a binary output. The binary output is decided by comparing
the output of the logistic sigmoid function, which is always in the interval [0, 1],
with a random number in the same interval. If the output of the logistic sigmoid
function is higher than the randomly generated number, the binary output of
the unit will evaluate to 1 and vice versa (cf. Algo. 1). The stochastic process
employ randomness to the network, when deciding the values that should be
emitted from a unit.

In order to process data where more classes are represented, the softmax unit,

20 Theory

Data: The input data from units x1, .., xD.
Result: An output variable out of value 0 or 1.

1 actj = ŵj +
∑D
i=1Wijxi;

2 z = σ(actj) = 1
1+e−actj ;

3 r = random number in the interval [0, 1];
4 out = None;
5 if z ≥ r then
6 out← 1;
7 else
8 out← 0;
9 end

Algorithm 1: The pseudo-code for the stochastic binary unit.

with its softmax activation function is applied

yk =
eactk∑K
q=1 e

actq
, (2.14)

where

actk = ŵk +

M∑
j=1

Wijzj . (2.15)

The softmax unit is typically used as output units of FFNNs. An output unit is
reliant on the remaining units in the layer, which means that the output of all
units are thereby forced to sum to 1. This way the output units in the softmax
layer represents a multinomial distribution across discrete mutually exclusive
alternatives. When the softmax output layer concerns a classification problem,
the alternatives refer to classes.

The softmax transfer function is closely related to the logistic sigmoid function.
If we choose 1 output unit, we can set a second output unit of the network to 0
and then use the exponential rules to derive the logistic sigmoid transfer function

yi =
eactk∑K
q=1 e

actk
=

eactk

eactk + e0
=

1

e−actk + 1
(2.16)

Like the logistic sigmoid function, the softmax function is continuously differen-
tiable [1]

∂yk
∂actk

= yk(1− yk) (2.17)

As mentioned earlier a forward-pass describes the processing of an input vector
through all transfer functions to the output values y1, ..., yK . A forward-pass can

2.2 Artificial Neural Networks 21

be described as a single non-linear function for any given size of neural network.
If we consider a FFNN with one hidden layer and sigmoid transfer functions, the
output can be described as

yk(x̂,w) = σ(

M∑
j=1

W
(2)
kj σ(

D∑
i=1

W
(1)
ji xi + ŵ

(1)
j) + ŵ

(2)
k), (2.18)

where (1) and (2) refers to the layers in the network. The inner equation results
in the output vector ẑ = [zj , ..., zM] of the hidden layer, which is given as input to
the second layer. The outer equation computes the output vector ŷ = [y1, ..., yK]
of the next layer, which is the output of the network. w is a matrix containing
all weights and biases for simplicity [1]. The equation can be simplified by
augmenting the bias vector into the weight matrix. By adding an additional
input variable x0 with value x0 = 1, weights and bias can now be considered as
one parameter

yk(x̂,w) = σ(

M∑
j=0

W
(2)
kj σ(

D∑
i=0

W
(1)
ji xi)), (2.19)

Now we have defined the FFNN as a class of parametric non-linear functions
from an input vector x̂ to an output vector ŷ.

2.2.2 Error Function

Training an ANN requires a measure of the predicted error, which gives an
insight into the current location on the error surface. The location on the
error surface is dependent on the model parameters w. Given a set of input
vectors X corresponding to X = [x̂1, ..., x̂N] and a set of target vectors T
where T = [t̂1, ..., t̂N] we can define the error E(w). E(w) can be defined in
different ways, where we will stick to the frequentist approach, in which we
use a maximum likelihood estimator. The likelihood function is defined upon
the choice of probability distribution, where a common choice is the Gaussian
distribution

N (x̂ = [x1, ..., xD]|µ,Σ) =
1

(2π)
D
2

1

|Σ| 12
e−

1
2 (x̂−µ)T Σ−1(x̂−µ). (2.20)

If we have a set of training data X with corresponding target values T, the goal is
to find the set of parameters that explains the data best [1]. If we assume that T
is Gaussian distributed and y(x̂n,w) is the output of the model ŷn = [y1, ..., yK]n,
where n ∈ {1, ..., N}, we can provide a definition on the probability of t̂n given
x̂n and w [1]

p(t̂n|x̂n,w, β) = N (t̂n|y(x̂n,w), β−1), (2.21)

22 Theory

where β is the precision calculated as the inverse of the variance σ2 of the
distribution. The likelihood function is [1]

p(T|X,w, β) =

N∏
n=1

N (t̂n|y(x̂n,w), β−1). (2.22)

For convenience it is easier to take the logarithm of the likelihood function in order
to create a monotonically increasing function [1]. Note that the maximization
of a function is the same as the maximization to the log of the same function
[1]. If we apply the logarithm to the above likelihood function generated for a
Gaussian distribution we get

ln p(T|X,w, β) = −β
2

N∑
n=1

(y(x̂n,w)− t̂n)2 +
N

2
lnβ − N

2
ln(2π). (2.23)

This can be used to learn w and β. Instead of maximizing the logarithm to
the likelihood, it is preferred to minimize the negative of the logarithm to the
likelihood

ln p(T|X,w, β) =
β

2

N∑
n=1

(y(x̂n,w)− t̂n)2 +
N

2
lnβ − N

2
ln(2π), (2.24)

which is equivalent to the sum-of-squares error estimate [1]

E(w) =
1

2

N∑
n=1

(y(x̂n, w)− t̂n)2. (2.25)

This is a widely used error estimate for Gaussian distributions. By minimizing
E(w) the maximum likelihood of the weights wML can be found. The sum-of-
squares error measure is linked to the assumption of having Gaussian distributed
input data X.

For other distributions, such as the binary Bernoulli distribution, the negative of
the logarithm to the likelihood is calculated differently. The Bernoulli distribution
is defined as

p(t̂n|x̂n,w) = y(x̂n,w)t̂n(1− y(x̂n,w))1−t̂n . (2.26)

If we take the negative to the logarithm of the likelihood function, we get the
cross-entropy function for binary output units

E(w) = −
N∑
n=1

t̂n ln y(x̂n,w) + (1− t̂n) ln(1− y(x̂n,w)). (2.27)

For a multi class classification problem where each input is assigned to one of K
mutually exclusive classes, the distribution is different, thus the cross-entropy

2.2 Artificial Neural Networks 23

error function is

E(w) = −
N∑
n=1

K∑
k=1

t̂kn ln yk(x̂n,w). (2.28)

This version of the cross entropy error function is very useful for DBNs with
softmax output units, as we will show later. The sum-of-squares error estimate
can also be applied on networks with softmax output units.

In Fig. 2.13 is the comparison between the sum-of-squares and the cross-entropy
error functions. From the figure it is shown that the gradient increases as the
output y(x̂n,w) moves away from the target t̂n. The big difference between the
two functions is that the cross-entropy gradient increases much more than the
one for the sum-of-squares function and that the cross-entropy function is not
differentiable in zero. The larger gradient gives the possibility of faster training
of the network.

Figure 2.13: Comparison between the sum-of-squares and the cross entropy
error functions where the target is 1.

2.2.3 Training

To perform training on an ANN we need data where the input and output is
known before feeding it to the network. This way it is possible to adjust the
parameters of the network by comparing the expected data to the data emitted
by the network. The weights and bias parameters are to be adjusted during

24 Theory

training. The parameters can be considered as w. By adjusting the model
parameters w it is possible to configure the transfer-functions throughout the
network to fit the dataset. A popular learning algorithm for the FFNN is the
backpropagation algorithm.

Backpropogation is normally applied to supervised learning, thus we need to
know the target vectors T. Later we will show how to use the algorithm for
unsupervised learning by reconstructing the input (cf. Sec. 2.3.2). The algorithm
computes a forward-pass of the training data. The output of the network y(x̂n,w)
will be compared to the expected output t̂n in order to calculate the error
E(w). The error is propagated through the network allowing for adjustments of
individual weights. To optimize each weight Wij , we must find the derivative of
En(w) of the datapoint n ∈ {1, ..., N} with respect to the weight Wij [1]. We
can calculate this using the chain rule

∂En(w)

∂Wij
=
∂En(w)

∂actj
∂actj
∂Wij

. (2.29)

To simplify the notation we define

δj ≡
∂En(w)

∂actj
. (2.30)

We have defined actj (cf. Eq. (2.5)), which can be rewritten in a simpler form

actj =
∑
i

Wijzi, (2.31)

From this we can write [1]

zi =
∂actj
∂Wij

, (2.32)

which concludes in a simplified equation of finding the derivative of En(w) with
respect to the weight

∂En(w)

∂Wji
= δjzi. (2.33)

δj can be evaluated by calculating the derived transfer function h′(actj) and the
sum of the product between the weights and the δk of a higher layer

δj = h′(actj)
∑
k

Wkjδk. (2.34)

This means that the value δ is calculated by backpropagating δ’s from higher
up in the network [1]. The top level δk is calculated from the error function. In
case of the sum-of-squares error we define the top level δk as [1]

δk =
∂En(w)

∂actj
= ŷk − t̂k. (2.35)

2.2 Artificial Neural Networks 25

By using the backpropagation algorithm, we can adjust the weights and biases
w. The gradient information is used by an optimization algorithm to find the
weights that minimize the error of the network (cf. App. A.7). Within an
optimization algorithm we seek a minima in the error surface. In the error
surface shown in Fig. 2.14 (left) the optimization algorithm continues to go
towards the higher density of blue until it reaches a gradient evaluation of 0 or a
convergence criteria is met. If the gradient reaches 0, we know that we are in
a local or global minima or maxima. Though restrictions to the optimization
algorithms ensures that it is never possible to accept an increasing E(w), so it
only accept a step towards a minima [19]. In the error surface in Fig. 2.14 (left),
the local minima is also a global minima, which indicates that w are optimal.
The error surface given in Fig. 2.14 (right) is known as a saddle point, because
there is a 2-dimensional hyperplane indicating that this is a local minima [19].

Figure 2.14: Plots of example error surfaces. Left: Error surface having one
local minima and maxima that is also the global minima and
maxima. Right: Sample of an error surface, which is described
as a saddle point.

26 Theory

2.3 Deep Belief Nets

ANNs have always had a certain appeal to the research environment because of
their theoretical ability to recognize complex patterns in large amounts of data.
The problem is that the training of the ANN has been slow and performing
poorly [9]. Mostly very small networks, with at most one hidden layer, has been
used, due to convergence difficulties [9].

As explained in Sec. 2.2.3, the theoretical assumption on how to train an
ANN, such as the FFNN, is to generate data from a forward-pass and then
backpropagate the error signal to adjust the model parameters. The main
problems with this approach is that it requires labeled data that can be difficult
to obtain. The training time does not scale well, thus convergence is very slow in
networks with multiple hidden layers. The training has a tendency to get stuck
in poor local minima [9].

Hinton et al. developed a framework for training multilayered ANNs denoted the
DBN [14]. The structure of the DBN is very similar to the FFNN, besides the
fact that the top two layers form an undirected bipartite graph. For simplicity we
will work from an example of a 4-layered DBN (cf. Fig. 2.15 (left)). The DBN
contains 2000 input units x̂ = [x1, ..., x2000], three hidden layers with respectively
500 units ẑ(1) = [z

(1)
1 , ..., z

(1)
500], 250 units ẑ(2) = [z

(2)
1 , ..., z

(2)
250] and 125 units

ẑ(3) = [z
(3)
1 , ..., z

(3)
125] and an output layer with 10 units ŷ = [y1, ..., y10]. We will

refer to the network structure as a 2000-500-250-125-10-DBN. In this example,
2000 input data points {x1, ..., x2000} can be passed through the network and
10 output data points {y1, ..., y10} is outputted as a latent representation of the
input.

The main difference between the theory of the FFNN and DBN is the training
procedure. The training of the DBN is defined by two steps: pretraining and
finetuning.

In pretraining the layers of the DBN are separated pairwise to form two-layered
networks called Restricted Boltzmann Machines (RBM) (cf. Fig. 2.15 (middle)).
The pretraining will train each RBM independently, such that the output of the
lower RBM is provided as input for the next higher-level RBM and so forth.
This way the elements of the DBN will be trained as partly independent systems.
The goal of the pretraining process is to perform rough approximations of the
model parameters.

The model parameters from pretraining is passed on to finetuning. The network
is transformed into a Deep Autoencoder (DA), by replicating and mirroring

2.3 Deep Belief Nets 27

Figure 2.15: Adapted from [14]. Left: The structure of a 2000-500-250-125-
10-DBN. Middle: Splitting the DBN into RBMs for pretraining.
Right: Unrolling the DBN into a DA for finetuning.

the input and hidden layers and attaching them to the output of the DBN (cf.
Fig. 2.15 (right)). The DA can perform backpropagation on unlabeled data,
by computing a probability of the input data p(x̂) instead of computing the
probability of a label provided the input data p(t̂|x̂). This way it is possible to
generate an error estimation for the backpropagation algorithm by comparing
the real input data with the output probability.

2.3.1 Restricted Boltzmann Machines for Pretraining

An RBM is a stochastic neural network consisting of two layers, the visible layer
v̂ = [v1, ..., vD] and the hidden layer ĥ = [h1, ..., hM]. Each unit in the visible
layer is connected to all units in the hidden layer and vice versa [11]. There
are no connections between units in the same layer. A weight matrix contain
weights Wij , where i ∈ {1, ..., D} and j ∈ {1, ...,M} for each of the visible units
v̂ and hidden units ĥ (cf. Fig. 2.16). There also exists a bias vector containing a
bias for each unit in the visible layer b̂ = [b1, ..., bD] and each unit in the hidden
layer â = [a1, ..., aM].

The RBM is based on the theory of the Markov Random Field, which is an
undirected bipartite graph, where the nodes are random variables and the edges
are probabilistic connections between the nodes (cf. App. A.3). The RBM were
first introduced by Smolensky [25] under the topic called Harmony Theory and
further developed by Hinton [8] with a training algorithm. The hidden units of

28 Theory

Figure 2.16: Layout of the RBM. v1, v2, ..., vD represents the visible layer.
h1, h2, ..., hM represents the hidden layer.

an RBM are stochastic binary units ĥ ∈ {0, 1}M (cf. Algo. 1) and the training
is performed using a sampling algorithm. The stochastic property means that
the error prediction E(w) during training may increase compared to a strict
optimization framework. The overall error prediction should decrease during
the course of training though. In this section we will only consider RBMs with
binary state visible units v̂ ∈ {0, 1}D.

The RBM is a probabilistic generative model. It is denoted an energy-based
model, since inference is conducted by finding a representation of the hidden
layer ĥ = [h1, ..., hM] that minimize the energy e(v̂, ĥ; w) in respect to the visible
layer v̂ = [v1, ..., vD] [18]. The energy is minimized by finding a representation
of ĥ that reconstruct v̂ best. The energy is defined as [16]

e(v̂, ĥ; w) = −
D∑
i=1

bivi −
M∑
j=1

ajhj −
D,M∑

i=1,j=1

vihjWij , (2.36)

where vi is the state of visible unit i ∈ {1, ..., D}, hj is the state of the hidden
unit j ∈ {1, ...,M}, bi is the bias i ∈ {1, ..., D} of the visible layer, aj is the bias
j ∈ {1, ...,M} of the hidden layer, Wij is the weight between vi and hj and w
denotes a matrix containing the weights and biases. The visible layer v̂ and
hidden layer ĥ can be described as a joint distribution forming a Boltzmann
distribution (cf. App. A.2)

p(v̂, ĥ; w) =
1

Z(w)
e−e(v̂,ĥ;w), (2.37)

where Z(w) is the partition function. The partition function is used as a
normalizing constant for the Boltzmann distribution and is defined as

Z(w) =
∑
v̂,ĥ

e−e(v̂,ĥ;w). (2.38)

2.3 Deep Belief Nets 29

The probability the model reconstructs the visible vector v̂ is defined by [11]

p(v̂; w) =
1

Z(w)

∑
ĥ

e−e(v̂,ĥ;w). (2.39)

The conditional distribution over the hidden units are

p(hj = 1|v̂) = σ(aj +

D∑
i=1

viWij), (2.40)

where σ denotes the logistic sigmoid (cf. Eq. (2.7)). The conditional distribution
over the visible units are

p(vi = 1|ĥ) = σ(bi +

M∑
j

hjWij). (2.41)

For training we calculate the derivative of the log-likelihood with respect to the
model parameters w [11]

∂ log p(v̂; w)

∂W
= Epdata [v̂ĥT]− Eprecon [v̂ĥT], (2.42)

∂ log p(v̂; w)

∂b̂(1)
= Epdata [ĥ]− Eprecon [ĥ], (2.43)

∂ log p(v̂; w)

∂b̂(2)
= Epdata [v̂]− Eprecon [v̂], (2.44)

Epdata [·] is the expectation with respect to the joint distribution of the real
data pdata(ĥ, v̂; w) = pdata(ĥ|v̂; w)pdata(v̂), Eprecon denotes the expectation with
respect to the reconstructions. Performing exact maximum likelihood learning
is intractable, thus exact computation of Eprecon [·] will take a pervasive amount
of iterations [11]. Therefore Hinton has proposed a learning algorithm using
Contrastive Divergence [8]. Contrastive Divergence is an approximation to the
gradient of the objective function. The method has received criticism because of
its crude approximation of the gradient on the log probability of the training data
[11]. Sutskever & Tieleman claims that the convergence properties of the method
are not always valid [27]. Even though the Contrastive Divergence method has
received some criticism, it has shown to be empirically valid [11]. Because of it
being relatively easy to evaluate and the empirical evidence, it is the preferred
method to update the parameters of a RBM. Updating the weights and biases
of the RBM is done by

∆W = ε(Epdata [v̂ĥT]− Eprecon [v̂ĥT]), (2.45)

∆b̂ = ε(Epdata [ĥ]− Eprecon [ĥ]), (2.46)
∆â = ε(Epdata [v̂]− Eprecon [v̂]), (2.47)

30 Theory

where ε is the learning rate and the distribution denoted precon defines the result
of a Gibbs chain running for a number of iterations (cf. Eq. A.3). In this thesis
we will only run the Gibbs chain for a single iteration, since this has proven to
work well [8]. A single Gibbs iteration is defined by (cf. Fig. 2.17):

1 Computing the p(hj = 1|v̂data) from the real data vector v̂data for all
hidden units j ∈ {1, ...,M} and transforming the probabilities to a binary
vector ĥ using Algo. 1.

2 Computing the reconstruction of the visible units p(vrecon
i = 1|ĥ) for all

visible units i ∈ {1, ..., D}.

3 Computing the reconstruction of the hidden units p(hrecon
j = 1|v̂recon) for

all hidden units j ∈ {1, ...,M} from the reconstructed visible units v̂recon.

Figure 2.17: Adapted from [17]. The pretraining algorithm for the RBM. The
hidden units are computed from the data vector. The binary
hidden units are then used to produce a reconstruction of the
same vector. The algorithm can continue for an infinite amount
of iterations or until a convergence criteria is met.

As mentioned earlier, the pretraining of the RBM is part of the training process
of the DBN. From the example in Fig. 2.15 (left) the bottom RBM has 2000
visible units and 500 hidden units and so forth. The pretraining is started by
training the bottom RBM using the learning algorithm proposed above for a
variable number of epochs1. After the RBM has been trained, the training vectors
are passed through the RBM to generate the output values of its hidden units,
which is the output ĥ of Algo. 1 given p(hj = 1|v̂data) for all j ∈ {1, ...,M}.
The feature vector ĥn for each data point n, where n ∈ {1, ..., N} and N is the
number of data points, act as the input to the next RBM.

1An epoch is referring to the number of iterations the dataset should be computed through
the model.

2.3 Deep Belief Nets 31

2.3.2 Deep Autoencoders for Finetuning

The pretraining has performed training through a sampling procedure, so that
the parameters should be in proximity to a local minima on the error surface.
The finetuning stage of the training process is where the final adjustments to
the weights and biases are conducted. The finetuning will adjust the parameters
through an optimization framework to ensure convergence, hence the predicted
error E(w) will always decrease (cf. Sec. 2.2.3).

Before finetuning, the DBN is unrolled to a DA (cf. Fig. 2.15 (right)), where all
layers except the output layer has been copied, mirrored and attached to the
output layer. All of the stochastic binary units from pretraining are replaced
by deterministic, real-valued units [15]. This way all units are differentiable
throughout the DA, thus the backpropagation algorithm can be applied (cf. Sec.
2.2.3). The DA is split into an encoder and a decoder. The encoder is where
the data is reduced to a low-dimensional latent representation. In Fig. 2.15
(right) it is the 10-dimensional output of the encoder. The decoder is where the
compressed data is decompressed to an output in the same dimensionality as the
input data x̂. By applying an input data vector x̂data to a forward-pass through
the DA, an output vector x̂recon is computed, which is the reconstruction of the
input vector. This leads the way for the backpropagation algorithm as we can
calculate E(w) and δ. The finetuning process perform backpropagation for each
input vector in the training set. Note that, in case of document data, the input
vectors are normalized by the length of the document. The weights and biases
will be gradually adjusted to ensure optimal reconstructions on the training set.
The optimization algorithm used for the backpropagation algorithm of the DA
is Conjugate Gradient.

Conjugate Gradient is an algorithm similar to Gradient Descent (cf. App. A.7)
and it is known to be much faster at converging and much more robust [1]
[19]. The Gradient Descent method will minimize θ so that the direction h is
equivalent to the direction of steepest descent hsd. This process can be very
slow, especially in error surfaces of an ellipsoidal shape (cf. Fig. 2.18 (left)) [19].
Conjugate Gradient will produce a linear combination of the previous search
direction and the current steepest descent direction and compute the direction
hcg towards the minima [19]. In Fig. 2.18 (right) is an example of the Conjugate
Gradient method. Here we assume that the first iteration was in direction h1.
After reaching w the direction h1 is tangent to the contour at w and orthogonal
to the direction of steepest descent hsd. The next direction hcg is now calculated
as a linear combination between h1 and the hsd. Conjugate Gradient will perform
a number of line searches which is specified as a parameter to the finetuning
process.

32 Theory

Figure 2.18: Adapted from [19]. Left: Gradient descent on an error surface of
ellipsoidal shape. It will take a long time to reach the minima.
Right: Conjugate gradient on an error surface of ellipsoidal
shape. Compared to the gradient descent it will find the minima
much faster.

Hinton & Salakhutdinov showed that besides training a model with a low
dimensional output of the encoder to reconstruct the input data with real
numbers [14], they could add Gaussian noise to the input of the output layer in
order to retrieve binary numbers as output values of the final DBN [22]. In Fig.
2.19 the difference between the DA with real numbered output (left) and the DA
with binary numbered output (right) is shown. During the finetuning of the DA,
the output of the encoder is not binary. By adding Gaussian noise it is ensured
that the input to the logistic sigmoid function (cf. Eq. (2.7)) is either very big or
very small. Thereby the output of the encoder will be manipulated to be either
very close to 0 or 1. When performing a forward-pass on the final DBN, which is
equivalent to the encoder of the DA, the output will be compared to a predefined
threshold, defining whether the output should be 0 or 1. The performance of
the finetuning process is slow, since it needs to calculate the derivatives through
all layers for each data point. Afterwards it must update the weights using the
Conjugate Gradient algorithm for an amount of line searches before updating
the weights and biases. This process must be repeated a number of epochs. A
solution to high runtime consumptions is to collect an amount of data points
into a batch. So instead of updating the weights after the optimization in regards
to one data points, it should be done for a batch of data points (cf. App. A.4).

2.3.3 Replicated Softmax

So far the theory of the RBM has only concerned input data from a Bernoulli
distribution. If we feed document word count vectors into the DBN with sigmoid

2.3 Deep Belief Nets 33

Figure 2.19: Adapted from [14]. Two DA’s to reconstruct input data. Left:
The DA with real numbered probabilities in the output units.
Right: The modified DA adding Gaussian noise, forcing the
input of the output units to be very close to 0 or 1.

input units (cf. Eq. (2.7)), the word count can not be modeled by the RBM using
the Bernoulli distribution. Instead it only calculate whether the word exists
in the document or not. When creating the DBN for document data, we are
interested in the number of times a word is represented in a specific document,
thus we define another type of RBM called the Replicated Softmax Model (RSM)
[23]. As the name implies the RSM is defined upon the softmax unit (cf. Eq.
(2.14)).

In the RBM each input of the visible units v1, ..., vD is scalar values, where D
denotes the number of input units. To explain the RSM, we define the inputs of
the visible units as binary vectors forming a matrix

U =


u1,1 u1,2 · · · u1,D

u2,1 u2,2 · · · u2,D

...
...

. . .
...

uN,1 uN,2 · · · uN,D

 , (2.48)

where D denotes the size of the dictionary2 and N denotes the length of the
document. We denote the input vectors

ûi = U:,i = [u1,i, ..., uN,i].
3 (2.49)

To give an example (cf. Fig. 2.20), we define the input layer of the RSM with a
dictionary of D = 4 words: neurons, building, blocks, brain. And a visible layer

2The dictionary is the predefined word list accepted by the model.
3The : in the subscript denotes all elements in a row or column, e.g. U:,i denotes all rows

for column i.

34 Theory

of D = 4 units û1, û2, û3, û4 corresponding to each of the words in the dictionary.
Furthermore we define an input document of length N = 5 containing the text:
neurons neurons building blocks brain. The input document can be represented
as binary vectors. Each binary vector represents an input to one of the visible
units in the RSM.

Figure 2.20: An example of a document of N = 5 words being inputted to the
visible layer of the RSM containing D = 4 units û1, û2, û3, û4 and
a dictionary of D = 4 words.

The energy of the RSM is defined as

e(U, ĥ; w) = −
N∑
n=1

M∑
j=1

D∑
i=1

WijnhjUn,i −
N∑
n=1

D∑
i=1

Un,ibn,i −
M∑
j=1

hjaj . (2.50)

Wijn is now defined as the weights between visible unit i at location n in the
document Un,i, and hidden unit j [11]. bn,i is the bias of Un,i. aj is the bias of
hidden unit j.

The conditional distribution over the hidden units hj where j ∈ {1, ...,M} is

p(hj = 1|U) = σ(aj +

N∑
n=1

D∑
i=1

Un,iWijn), (2.51)

where σ denotes the logistic sigmoid function (cf. Eq. (2.7)). The conditional
distribution over the visible units is

p(Un,i = 1|ĥ) =
ebn,i+

∑M
j=1 hjWijn∑D

q=1 e
bn,q+

∑M
j=1 hjWqjn

, (2.52)

which denotes the softmax function (cf. Eq. (2.14)). Note that the softmax
function applies to a multinomial distribution, which is exactly what is defined
by U .

2.3 Deep Belief Nets 35

If we construct a separate RBM with separate weights and biases for each
document in the dataset, and a number of visible softmax units corresponding
to the number of words in the dictionary i ∈ {1, ..., D}, we can denote the count
of the ith word in the dictionary as

vi =

N∑
n=1

Un,i. (2.53)

In the example from Fig. 2.20, the word neuron at index 1 in the dictionary
would have v1 = 2. We can now redefine the energy

e(U, ĥ; w) = −
M∑
j=1

D∑
i=1

Wijhjvi −
D∑
i=1

vibi −N
M∑
j=1

hjaj . (2.54)

Note that the term for the hidden units is scaled by the document length N [23].

Having a number of softmax units with identical weights is equivalent to having
one multinomial unit sampled the same number of times (cf. Fig. 2.21) [23].

Figure 2.21: Adapted from [23]. Layout of the RSM, where the top layer
represents the hidden units and the bottom layer the visible units.
Left: The RSM representing a document containing two of the
same words, since they share the same weights. Right: The RSM
with shared weights that must be sampled two times.

In the example from Fig. 2.20, where the visible units û1 and û2 share the
same weights since they apply to the same word neuron, the two units can be
represented by a single unit, where the input value for the example document
is the word count (cf. Fig. 2.22). The visible units in the RSM can now be
denoted v̂ = [v1, ..., vD].

The training of the RSM is equivalent to the RBM (cf. Sec. 2.3.1). By using the
Contrastive Divergence approximation to a gradient, a Gibbs step is performed
to update the weights and biases.

36 Theory

Figure 2.22: An example of a document with five words being applied to the
visible layer of the RSM containing four visible units v1, v2, v3, v4

and a corresponding dictionary of D = 4 words.

In the context of pretraining, the RSM will replace the bottom RBM from Fig.
2.15 (middle). The structure of the pretraining DBN is given in Fig. 2.23 (left).
When finetuning the network, the DA will contain softmax units in the output
layer, in order to compute probabilities of the count data (cf. Fig. 2.23 (right)).

Figure 2.23: Left: Pretraining on document data is processed with an RSM at
the bottom. Right: Finetuning on document data is processed
with a softmax layer at the top of the DA.

2.3.4 Discussion

Unless all the RBMs are trained so that v̂recon is an exact reconstruction of
the actual data points v̂data for the whole dataset, the discrepancy in the input
data of each RBM increases for each stacked RBM during pretraining. Exact
inference is unlikely for the stacked RBMs, due to the Contrastive Divergence

2.3 Deep Belief Nets 37

being an approximated gradient and the fact that the model parameters are
updated after a single Gibbs step. Therefore the top layer RBM will be the least
probable of convergence in respect to the real input data x̂. The pretraining
procedure must ensure low discrepancy in the input data, since this would result
in the higher-leveled RBMs not being trained in correspondence to the training
data. If this is the case, the DA contain weight layers that may be no better
than being randomly initialized. The objective of the pretraining is to converge
so that the parameters of the DA is close to a local minima. If so, it will be
less complex for the backpropagation algorithm to converge, which is where the
DBN has its advantage as opposed to the FFNN.

When performing dimensionality reduction on input data x̂data, the objective is
to find a good internal representation ŷ. A good internal representation ŷ defines
a latent representation, from which a reconstruction x̂recon, similar to the values
of the input data x̂data, can be computed in the DA. If the input data x̂data

contains noisy data, the dimensionality reduction of a properly trained DBN with
the right architecture will ensure that ŷ will be an internal representation where
the noise is removed. If the input data x̂data contain no noisy data, the internal
representation ŷ is a compressed representation of the real data x̂data. The size
K of the dimensionality reduction must be decided empirically, by analyzing
the reconstruction errors E(w) when applying the dataset to different DBN
architectures. Document data may contain a structured information structure in
an internal representation. If this is the case, a dimensionality reduction may
ensure that ŷ is a better representation than the input data x̂data.

The DBN with binary output have advantages in terms of faster distance measure-
ments in the K-dimensional output space. E.g. to perform distance calculations
on the output, the output vectors can be loaded into machine memory accord-
ing to their binary representation. A hamming distance measurement can be
computed, which is faster than calculating the Euclidean distance. The poten-
tial drawbacks of the manipulation to binary numbers is, that information is
potentially lost as compared to producing real numbered output. If the added
Gaussian noise can manipulate the encoder output values of the DA so that the
values are binary, while obtaining an optimal reconstruction x̂recon, we assume
that the binary representation may be as strong as the real numbered. Hinton
& Salakhutdinov have shown that this is not the case though [15]. The output
values of the DA encoder has a tendency to lie extremely close to 0 and 1, but
they are not binary values. Therefore the output values will not be binary when
computing the output of the DBN, thus they must be compared to a threshold.
This means that information is lost when throwing the output values to a binary
value.

The mapping of data points onto a K-dimensional output space is conducted
much different in the DBN compared to the LDA model. If the DBN is configured

38 Theory

to output real numbered output values, the mapping to output space is done
linearly. Thus the output units does not apply a logistic sigmoid function,
meaning that the output is not bound to lie in the interval [0, 1]. This applies
much less constrains to the mapping in output space, which may imply that the
granularity in the mapping increases, due to a possibility of a greater mapping
interval.

2.4 Deep Belief Net Toolbox 39

2.4 Deep Belief Net Toolbox

This thesis is based upon an implementation of a Deep Belief Net Toolbox
(DBNT). Its main focus is to successfully train a DBN on document data. It
is also possible to compute binary data, i.e. image data. The DBNT can be
executed through a web interface or a console application (cf. Fig. 2.24). During
training of the DBN, the DBNT will give online feedback to the user on the
progress and the performance.

Figure 2.24: Left: The DBNT as a web interface. Right: The DBNT as a
console application.

The DBNT is implemented in Python. The implementation is parallelized, so
that all tasks that are not bound by the training are executed simultaneously.
The general memory usage is never higher than the size of the weight matrix,
bias vectors and one badge of input data. The reason for this relatively small
memory consumption is due to serialization4. This slows down the training, as
compared to running all data from memory, but it allows the model to run on all
systems. Furthermore it allows the model to be flexible in terms of resuming from
a specific point in training. We refer to App. C for more technical specifications
of the DBNT.

The toolbox consists of 3 building blocks: Data Processing, DBN Training and
Testing Framework. In the following subsections we will elaborate on each
building block.

2.4.1 Data Processing

In order for the DBNT to produce a useful model, we need to provide it with a
proper representation of the data. The data processing of the DBNT accepts
an amount of documents in a .txt format. It is optional whether the documents
are split into a training and a test set manually before training. If they have

4Serialization is the translation of a data structure or object into a binary output. The
binary output can be reconstructed as the original data structure or object for later use.

40 Theory

not been split, it is possible to apply a split ratio, i.e. training set 70% and test
set 30%. The selection of documents for the two sets are done randomly, but
with an insurance that the test set and training set holds an equal proportion of
different labels. The model will never train on the test set, thus this data will
not have influence on the model parameters. The test set is only used for model
evaluation during and after training.

The DBNT applies to batch learning (see appendix A.4), where a number of
documents are collected in a BOW matrix. The BOW matrices have a specified
size (i.e. 100 documents), where the last batch will be of a size greater than or
equal to the batch size. It is defined as

BOW =


x1,1 x1,2 · · · x1,D

x2,1 x2,2 · · · x2,D

...
...

. . .
...

xN,1 xN,2 · · · xN,D

 , (2.55)

where x is a word, N the number of documents in the batch and D the number of
attributes. The attributes are the words to be processed by the model. They are
selected by extracting the most frequent words from all documents in the training
set, not counting stop words5. Afterwards all words are stemmed6. The length
of the list of attributes depends on the number of input units v̂ = [v1, ..., vD] in
the DBN and are defined as

attributes =
[
a1 a2 ... aD−1 aD

]
. (2.56)

Even though the DBN is trained unsupervised, we still need to know the labels
of the test set, so it is possible to evaluate how the model performs using the
Testing Framework (cf. Sec. 2.4.3). Therefore we define a list containing class
indices corresponding to the class of each document in the data set

class_indices =
[
c1 c2 · · · cN−1 cN

]
. (2.57)

Fig. 2.25 provide an overview of the main processes in the data processing. The
documents are loaded and stop words removed. The list of attributes are decided
by choosing the most frequent words in the training set, not counting stop words.
The count of words in each document, corresponding to a word in the attributes
list, is fed to the BOW matrix.

The DBNT also accepts image data. All images must be transformed to a
1-dimensional normalized vector with values between 0 and 1. The toolbox

5Stop words refers to a dictionary of words that are not considered in natural language
processing. The dictionary contains words that do not contribute a meaning to a sentence and
can be disconcerned for topic model purposes.

6The process of converting reducing words to their stem. In this thesis we use the Porter
Stemming Algorithm.

2.4 Deep Belief Net Toolbox 41

accepts image data as

image_data =


p1,1 p1,2 · · · p1,D

p2,1 p2,2 · · · p2,D

...
...

. . .
...

pN,1 pN,2 · · · pN,D

 , (2.58)

where N is the number of images and D is the pixel values. The remaining data
structures for image data are similar to the document data.

Figure 2.25: The data processing of documents. Documents are loaded and
stop words removed. The most frequent words are computed
in order to construct the attributes list. The BOW matrix is
generated by adding a word count for each document (row) at
the corresponding word from the attributes list (column).

2.4.2 DBN Training

The main components of the DBN are the RBM and DA modules (cf. Fig. 2.26).
The relationship between the modules means the DBN training is very flexible,
and can accept any structure of network.

The RBM module implements the regular RBM with logistic sigmoid transfer-
functions for the hidden ĥ and visible units v̂. It also implements the RSM using
logistic sigmoid transfer-functions for the hidden units ĥ and softmax functions
for the visible units v̂. If the DBN train on document data, the bottom RBM
in the pretraining will be an RSM. The output of each RBM is serialized for
the next RBM to use it as input data. The serialization gives the DBNT the
property of continuing the training with a different shape. So if we train on
a 2000-500-250-125-10-DBN and we decide that it is preferred to increase the
number of output units, we only have to restart the pretraining of the last RBM.
The RBM module use batch learning (cf. Sec. A.4) and any size of batch can be
applied. To update the weights in the RBM and RSM during training, we use

42 Theory

Figure 2.26: The 3 main training modules. Note that the RBM module can
be replicated a number of times in order to construct a network
of any size.

following equation

∆W = m ·∆W (1− t) + ε((Epdata [v̂ĥT]− Eprecon [v̂ĥT])− λ ·W), (2.59)

where m denotes the momentum, ∆W (1− t) denotes the weight difference from
the previous iteration and λ denotes the weight decay. m ·∆W (1 − t) adds a
fraction of the previous weight update to the current one, in order to increase
the size of the steps towards a local minima when the gradient keeps pointing in
the same direction during the iterations of training. λ ·W is a way of decreasing
the magnitude of the weight updates to prevent overfitting.

The DA module is where the DBN is finetuned. We have generated larger batches
of 1000 data points each for this step [15]. The generation of larger batches
may influence the error of the finetuning, but the hypothesis is that it will
not have a very big influence, thus we iterate the finetuning over many epochs.
Conjugate Gradient is used as an optimization framework for the finetuning.
For the implementation of the Conjugate Gradient algorithm we use the Matlab
implementation of Carl Edward Rasmussen from the University of Cambridge7
which has been interpreted into Python code by Roland Memisevic from the
University of Montreal8. Weights and biases of the finetuning are serialized after
each epoch to ensure the ability to resume at a specific point in training. The
serialized file containing the weight layers is the final network used to map new
documents into subspace. The DA will accept the data differently depending
on whether it is trained on word or image distributions. In case of a word
distribution, the count data is normalized by the document length. The error
estimation E(w) is computed by using the cross entropy error function (cf. Eq.
(2.28)). Furthermore the output units of the DA are softmax units. In case of

7The Matlab implementation for the Conjugate Gradient method is found on http://
learning.eng.cam.ac.uk/carl/code/minimize/minimize.m.

8The Python implementation for the Conjugate Gradient method is found on http://www.
iro.umontreal.ca/~memisevr/code/minimize.py.

http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
http://www.iro.umontreal.ca/~memisevr/code/minimize.py
http://www.iro.umontreal.ca/~memisevr/code/minimize.py

2.4 Deep Belief Net Toolbox 43

image distributions, the pixel values are normalized (cf. Sec. 2.4.1) and the error
function E(w) is the cross entropy function for the Bernoulli distribution (cf.
Eq. (2.27)). The DBNT contains a parameter specifying whether the output
vector should be binary. If so, the finetuning process will add Gaussian noise
to the bottom up input of the output units in order to make the value very
big or very small. Thereby the output units computes values that are either
very close to 0 or 1. Hinton & Salakhutdinov specifies the output values have a
tendency to be closer to 0 than 1 (cf. Fig. 2.27) [15]. We work around this by
adding a threshold value of 0.1 when computing the final output. In a future
implementation of the DBNT, the threshold value should be a model parameter.

Figure 2.27: Figure from [15]. A distribution of the output values when ma-
nipulating the input of the output units with Gaussian noise.
The figure shows how the added Gaussian noise manipulates the
output values to lay close to 0 or 1.

2.4.3 Testing Framework

The evaluation of the DBN is performed through an accuracy measure [22],
plotting, confusion matrices and a similarity measure.

The accuracy measure provides indication of the performance of the model. It is
measured by performing a forward-pass of all test set documents to compute
output vectors. The size of the output vectors correspond to the number of
output units K in the DBN. The output units are perceived as points in a
K-dimensional space. We seek an accuracy measurement of the clustering of

44 Theory

points sharing the same labels. To compute the accuracy measurement for a test
document, the neighbors within the nearest proximity of the query document
are calculated through a distance measure. In this framework we use Euclidean
distance for the DBNs with real valued output units. We have tested other
measures, like cosine similarity, but results are similar. For the DBNs with binary
output units we use hamming distance. The number of neighbors belonging
to the same class as the query document and the number of neighbors queried
forms a fraction

Accuracy =
no. of true labeled docs
no. of docs queried

. (2.60)

An average of the fractions of all documents are computed. This process is done
for a different number of neighbors. In this thesis we perform evaluations on
the {1, 3, 7, 15, 31, 63} neighbors [15]. We refer to clusters, as a group of output
vectors ŷ in close proximity to each other in output space. In Fig. 2.28 is an
example of an accuracy measurement of one query document (star) belonging to
the science class.

2.4 Deep Belief Net Toolbox 45

Figure 2.28: Example of the accuracy measure on a dataset containing 3
categories: Travel, Movies and Science. The rectangle, triangle
and pentagon corresponds to the labeled testing data. The star is
the query document. In this example the 4 neighbors within the
nearest proximity are found. If the label of the star document is
science the accuracy rate would be 3

4 = 75%.

46 Theory

The accuracy measurement evaluates the probability for the similar documents
to be of same category as the query document. This gives an indication of
how well spread the clusters of categories are. The error measure encourages as
large a spread as possible, where categories (clusters of documents) with similar
semantics are placed next to each other.

Plotting is very useful to perform an exploratory research of the performance.
The output of the DBN is mostly more than 2 or 3 dimensions, thus we use PCA
(cf. App. A.1) on the output vectors as a linear dimensionality reduction. The
testing framework plots different principal components on a single 2 dimensional
plot, 3 dimensional plot or a large plot containing subplots with the comparison
of different components.

Another analyzing method of the DBNT is the confusion matrix. In the confusion
matrix each row corresponds to a true label and each column to a predicted
label. We use k-nearest neighbors [28] to assign a category label to a document
in output space [28]. So if the predicted label of a document is equivalent to
the true label, the matrix will increment in one of its principal diagonal entries.
The confusion matrix is especially interesting when analyzing incorrectly labeled
documents. This can be used in order to understand the discrepancy between
categories, i.e. which categories are difficult for the model to separate.

Comparing the LDA model to the DBN model can be done through the accuracy
measurement, from which one can conclude which model is best at clustering in
correspondence to the categories in the test dataset. We have also implemented
a different method, called the similarity measurement, that will analyze the
similarity between the 2 models on a document level. It will analyze the neighbors
within the nearest proximity and compute a score on the basis of how many
documents the models have in common. This measurement gives an indication on,
whether the 2 models tread the mapping similarly. So the accuracy measurement
can be extremely similar, indicating that the clusters in categories are alike,
where the similarity measurement may not be similar.

Last but not least we will work with Issuu publications (cf. Sec. 1) with no
manually labeled test dataset. Therefore we have implemented a method for
exploratory analysis of the similar documents of a query document. The method
return a number of similar documents, so that their degree of similarity can be
analyzed from a human perception.

Chapter 3

Simulations

When training the DBN there are numerous input parameters that can be
adjusted and there is no proof on an optimal structure of the DBN, so this must
be decided empirically. Furthermore the training and test sets are of fundamental
importance; hence if the training set is not a true distribution, the model will
not be able to perform well on a test set. We have chosen only to consider a
subset of the parameters for investigation:
• RBM learning rates.
• Dimensionality K of the output layers.
• Dimensionality D of the input layers.
• Dimensionality M of the hidden layers.

Hinton & Salakhutdinov have provided results on the performance of their DBN
implementation on the datasets: MNIST 1, 20 Newsgroups2 and Reuters Corpus
Volume II 3 [15] [14] [22]. To verify the implementation of the DBNT we analyze
its performance to Hinton & Salakhutdinov’s DBN when training on the three
reference datasets. Furthermore we use the 20 Newsgroups dataset in order to
analyze the model parameters.

1The MNIST dataset can be found on http://yann.lecun.com/exdb/mnist/.
2The 20 Newsgroups dataset can be found on http://qwone.com/~jason/20Newsgroups/.
3The Reuters Corpus Volume II dataset can be ordered through http://trec.nist.gov/

data/reuters/reuters.html.

http://yann.lecun.com/exdb/mnist/
http://qwone.com/~jason/20Newsgroups/
http://trec.nist.gov/data/reuters/reuters.html
http://trec.nist.gov/data/reuters/reuters.html

48 Simulations

The main objective is to show that we can train the DBN on the Issuu Corpus
(cf. Sec. 1). To verify performance we have performed exploratory evaluations
on the Issuu Corpus, since we have no reference labels for this dataset. We have
also compared the DBN to the LDA model. Here we use the Wikipedia Corpus
as the dataset to compare the two models. This dataset consist of labeled data,
meaning that we have a reference for performance measurements.

Unless specified, the learning parameters of the pretraining are set to a learning
rate ε = 0.01, momentum m = 0.9 and a weight decay λ = 0.0002. The weights
are initialized from a 0-mean normal distribution with variance 0.01. The biases
are initialized to 0 and the number of epochs are set to 50. For finetuning the
size of the large batches are set to 1000. We perform three line searches for the
Conjugate Gradient algorithm and the number of epochs is set to 50. Finally,
the Gaussian noise for the binary output DBN, is defined as deterministic noise
with mean 0 and variance 16 [15]. These values have proven to be quite stable
throughout the simulations on the datasets.

3.1 MNIST 49

3.1 MNIST

The MNIST4 dataset is a collection of 28× 28 images representing handwritten
digits 0 − 9. The images are split into a training set of 60, 000 samples and
a test set of 10, 000 samples. Each image is represented by a vector of length
D = 28× 28 = 784. For the DBNT to interpret the data we normalize the data
by 255 in order to get a discrete pixel intensity lying between 0 and 1. The
training set images are split into batches of size 100, resulting in 600 batches.

Hinton & Salakhutdinov have provided results of their DBN model running the
MNIST dataset [14]. The results from the article show the resulting data points
from the PCA (cf. App. A.1) on the 784-dimensional data vectors (cf. Fig. 1.3
(left)). The data points are clustering across all labels indicating that they do
not spread well in the subspace. The results of the 2-dimensional output data of
the DBN show how the DBN has mapped the data according to the respective
labels (cf. Fig. 1.3 (right)). When using the DBNT to model a 784-1000-500-
250-2-DBN, the PCA plot on the 784-dimensional input vectors and the plot of
the 2-dimensional output vectors show that the results are comparable to Hinton
& Salakhutdinov (cf. Fig. 3.1) [14].

Figure 3.1: Left: The 10, 000 test documents represented through PC1 and
PC2. Right: The output from a 784-1000-500-250-2 DBN of the
10, 000 test documents.

We have computed accuracy measurements (cf. Sec. 2.4.3) on 6 different DBNs
with different output units, in order to see the gain in performance of the
dimensionality reduction when adjusting the number of output units (cf. Fig.
3.2). The accuracy of the 784-1000-500-250-2-DBN indicates that we could obtain
better performance by increasing the number of output units, so that the model
can perceive all patterns in the input data. When increasing the number of
output units to 3 and 6, the accuracy has a tendency to increase proportional to
the amount of output units. When running the DBNT on outputs 10, 30 and 125

4Mixed National Institute of Standards and Technology.

50 Simulations

it is evident that we have reached a point of saturation, since the performance of
the 784-1000-500-250-10-DBN is comparable to the 784-1000-500-250-125-DBN.

Figure 3.2: The accuracy measurements on different output vectors of the
784-1000-500-250-x-DBN, where x ∈ {2, 3, 6, 10, 30, 125}.

The MNIST dataset consists of images providing the possibility of showing the
reconstructed images from the DA in order to see whether they are comparable
to the input. We have reconstructed 40 randomly picked images from the MNIST
test dataset (cf. Fig. 3.3). In the 784-1000-500-250-2-DBN it is evident that the
reconstructions are not flawless, e.g. it has problems differentiating between the
number 8 and 3 (cf. Fig. 3.3 (left)). For the 784-1000-500-250-3-DBN the model
differentiates between number 8 and 3, but still has problems with 4 and 9 (cf.
Fig. 3.3 (right)).

The reconstructions from the 784-1000-500-250-10-DBN and 784-1000-500-250-
30-DBN is almost identical from a human perception (cf. Fig. 3.4), which is
supported by the accuracy measurements (cf. Fig. 3.2).

3.1 MNIST 51

Figure 3.3: 40 different images from the MNIST dataset run through two
different networks (left and right). In each row, the original data
is shown on top and the reconstructed data is shown below. Left:
MNIST results from network with 2 output units. Right: MNIST
results from network with 3 output units.

Figure 3.4: 40 different images from the MNIST dataset run through two
different networks (left and right). In each row, the original data
is shown on top and the reconstructed data is shown below. Left:
MNIST results from network with 10 output units. Right: MNIST
results from network with 30 output units.

52 Simulations

3.2 20 Newsgroups & Reuters Corpus

The 20 Newsgroups dataset consist of 18, 845 documents split into 20 different
categories taken from the Usenet forum5. We have used a filtered version of
the 20 Newsgroups dataset where headers and meta data are removed6. The
categories varies in similarity, which makes it interesting to see, whether the
categories with a high similarity are in proximity to one another in output space.
The categories are:
• comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac, comp.windows

• misc.forsale
• rec.autos, rec.motorcycles
• rec.sport.baseball, rec.sport.hockey
• sci.cryptography, sci.electronics, sci.med, sci.space
• soc.religion.christian, talk.religion.misc, alt.atheism
• talk.politics.guns, talk.politics.mideast, talk.politics.misc

From the categories it is evident that some are more related than others, e.g.
comp.graphics are more related to comp.sys.mac than alt.atheism. This relation
between categories is expected to be reflected in the output space.

The dataset is distributed evenly by date into 11, 314 training set documents
and 7, 531 test set documents. Hence the training set and test set represents an
even proportion of documents from each category in the dataset. Each batch in
the dataset contains 100 documents and has approximately same distribution of
categories, to ensure all batches represent a true distribution.

The DBNT managed to model the MNIST dataset with binary input units in the
RBM (cf. Sec. 3.1). The bottom RBM is now substituted by an RSM in order
to model the word count data of the BOW. In Fig. 3.5 is a comparison between
the 500 most frequent words of the real data vector and the reconstructed data
vector of the RSM. Note that we chose the 500 most frequent words in order to
visualize the contours of the plot properly. The plotted data is averaged over a
randomly picked batch of documents. From the figure it is shown how the slope
of the reconstructed data has a tendency to approximate towards the slope of
the input data during training.

In order to analyze whether the model converges, we have evaluated the error
E(w) after each epoch during pretraining (cf. Fig. 3.6) and finetuning (cf. Fig.

5Internet discussion forum.
6http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/

3.2 20 Newsgroups & Reuters Corpus 53

Figure 3.5: Comparison between the 500 most frequent words as the real data
vectors (blue) and reconstructed data vectors (green) produced by
the RSM after two different epochs in training. Left: Comparison
after epoch 1. Right: Comparison after epoch 50.

3.7) of a 2000-500-250-125-10-DBN trained on 20 Newsgroups. From Fig. 3.6
(top) we see how the errors of the RSM decrease steadily, as opposed to the
RBM that has a tendency of slight increase after some epochs. The training
procedure of the RSM and RBM are equivalent, meaning that the RSM will also
have a theoretical tendency of slight increase after some epochs, which is not the
case in the example in Fig. 3.6 (top). The slope of the error evaluation for the
RSM is almost flat after 50 epochs, indicating that it has reached a good level of
convergence. The slope of the error evaluation for the RBM in Fig. 3.6 (bottom)
show many increases and decreases after epochs, which may be an indication of
equilibrium.

Evaluating the error E(w) of the finetuning show how the error decrease steadily
for the training set throughout the 50 epochs (cf. Fig. 3.7 (top)). This is
expected, since finetuning use the Conjugate Gradient algorithm. The evaluation
of the test set on the other hand shows slight increase in the error evaluation
after certain epochs (cf. Fig. 3.7 (bottom)). The general slope of the test set
error is decreasing, which is the main objective for finetuning. In the case that
the test set error would show a general increase while the training set error
decrease, the training is overfitting.

Because of its relatively small size and its diversity across topics, the 20 News-
groups dataset is good for testing the DBNT on various input parameters. The
first simulations is in reference to the ones performed in [15]. We have modeled
the dataset on a 2000-500-500-128-DBN for 50 epochs, where the output units are
binary. The accuracy measurements from Hinton & Salakhutdinov are estimated
from the graph in [15]. The accuracy measurements from the DBNT and the

54 Simulations

Figure 3.6: The error evaluation E(w) of the pretraining process of a 2000-500-
250-125-10-DBN. Top: The error evaluation for the 2000-500-RSM
and the 500-250-RBM. Bottom: A zoom-in on the error evaluation
E(w) of the 500-250-RBM.

Figure 3.7: The error evaluation E(w) of the finetuning process of a 2000-500-
250-125-10-DBN. Top: The error evaluation for the training and
test set. Bottom: A zoom-in on the error evaluation E(w) of the
test set.

3.2 20 Newsgroups & Reuters Corpus 55

DBN from Hinton & Salakhutdinov are comparable throughout the evaluation
points (cf. Fig. 3.8), indicating that the DBNT performs in equivalence to the
reference model. There exists several possible reasons to why there is a minor
variation between the two results. The weights and biases may be initialized
differently. The variation can also be caused by the input data being distributed
differently due to batch learning (cf. App. A.4).

Figure 3.8: The accuracy measurements on the 20 Newsgroups dataset from
a 2000-500-500-128-DBN generated by the DBNT (blue) and the
DBN by Hinton & Salakhutdinov in [15] (green).

We have generated a PCA plot of the 2000-500-500-128-DBN for a subset of
categories in order for the plot not to be deteriorated by too much data (cf.
Fig. 3.9). It is evident how the DBNT manages to map the documents onto a
lower-dimensional space, where the categories are spread. The categories are
mapped in proximity to each other based on their conceptual meaning, e.g.
comp.graphics is within close proximity to sci.cryptography.

Reuters Corpus Volume II is the second reference dataset [15]. It consist of
804, 414 documents spread over 103 business related topics and is of a much
greater size than 20 Newsgroups. We will only perform the same simulation
as Hinton & Salakhutdinov [15]. The Reuters Corpus Volume II is split into a
training set and a test set of equal sizes. Each batch in the dataset has approx-
imately same distribution of categories. Using a 2000-500-500-128-DBN with
binary output units to model Reuters Corpus Volume II does not reach the same
performance as Hinton and Salakhutdinov (cf. Fig. 3.10) [15]. Throughout the
evaluation points the average difference between the two models is approximately
7%. This may be caused by differences in weight and bias initializations or a
difference in the input dataset.

56 Simulations

Figure 3.9: Left: PCA plotting PC1 and PC2 (cf. App. A.1) on the real data.
Right: PCA plotting PC1 and PC2 on the output data of the
DBNT.

Figure 3.10: The accuracy measurements on the Reuters Corpus Volume II
dataset from a 2000-500-500-128-DBN generated by the DBNT
(blue) and the DBN by Hinton & Salakhutdinov (green) [15].

3.2 20 Newsgroups & Reuters Corpus 57

We have shown that the results of the DBN is evaluating similar to Hinton &
Salakhutdinov on the 20 Newsgroups dataset and the Reuters Corpus Volume II.
Now we will test different configurations of the DBN. In the previous simulations
we have worked with binary output units, which indicates that we have lost
information in comparison to be evaluating on real numbers. An evaluation
on the accuracy measurement between two 2000-500-500-128-DBNs, one with
binary numbers and the other with real numbers, show how much information is
lost (cf. Fig. 3.11). When evaluating the {1, 3, 7} neighbors, the DBN with real
numbered output outperform the DBN with binary output. When analyzing the
larger clusters, the DBN with binary outputs is performing better. Table 3.1
shows the comparison between the two models. This indicates that the DBN
with binary output vectors is better at spreading categories into large clusters of
15 or more documents.

Figure 3.11: The accuracy measurements on the 20 Newsgroups dataset from
two 2000-500-500-128-DBNs with binary output units (blue) and
real numbered output units (green).

Besides using the 2000-500-500-128-DBN, Hinton & Salakhutdinov also use a
2000-500-250-125-10-DBN with real numbered output units to model document
data [14]. We have modeled the 20 Newsgroups dataset on a 2000-500-250-125-
10-DBN (cf. Fig. 3.12).

The amount of epochs does not have a direct influence on the performance
(cf. Fig. 3.12), as the 100 epoch version of the 2000-500-250-125-10-DBN is
not performing significantly better than the 50 epoch version. This indicates
that the network shape with the given input parameters has reached a point
of saturation. This is also the case for the 2000-500-500-128-DBN with binary
values, where a small difference between the models running 50 and 100 epochs
indicates saturation (cf. Fig. 3.13).

58 Simulations

Eval. Bin (%) Real (%) Diff (%)
1 67.55 74.81 7.26
3 60.75 66.29 5.54
7 55.07 57.97 2.89
15 50.61 50.19 -0.43
31 46.39 43.08 -3.31
63 42.00 36.82 -5.18

Table 3.1: The accuracy measurements on the 20 Newsgroups dataset from two
2000-500-500-128-DBNs with binary output units and real numbered
output units. The last column show the difference between the scores
and gives an indication of the difference when manipulating the
output units to binary values.

We analyzed the difference in accuracy measurements between binary and real
numbered values when using the 2000-500-500-128-DBN (cf. Fig. 3.11). When
performing the same comparison on the 2000-500-250-125-10-DBN the results
are different (cf. Fig. 3.12). The performance decrease drastically when using
10-dimensional binary output. This may be caused by the fact that the 10-bit
representation will not hold enough information to differentiate the granularity
in the 20 Newsgroups dataset.

The learning rate ε of the pretraining is a parameter that is highly influential on
the final DBN. If the learning rate is too high, there is a risk that the parameter
will only be adjusted crudely, leaving the finetuning an intractable task of
convergence. On the other hand, if the learning rate is too small, the convergence
is too slow to reach a good parameter approximation within the given number of
epochs. We have tested 4 different learning rates on the 2000-500-500-128-DBN
(cf. Fig. 3.14). A learning rate of 0.1 is too high for the model to reach a good
estimation of the model parameters. The learning rate of 0.001 is too small for
the model to converge within the 50 epochs. If we set the learning rate to 0.015
the performance is better than the learning rate of 0.01, thus this should be the
learning rate for training the model on the 20 Newsgroups dataset.

When comparing the 2000-500-250-125-10-DBN with the 2000-500-500-128-DBN
we have seen how the structure of the DBN influence the accuracy measurement.
We have conducted an experiment, in which we add a layer and remove a layer
from the 2000-500-500-128-DBN (cf. Fig. 3.15). When evaluating the 1 and 3
neighbor(s), the 2000-500-500-128-DBN has the highest accuracy measurement.
The 2000-500-500-128-128-DBN outperform the remainder of the architectures
when evaluating the {7, 15, 31, 63} neighbors. This indicates that the clusters,
when adding a layer, are more stable in terms of spreading the categories in
the output space. When removing a layer it is evident that the performance

3.2 20 Newsgroups & Reuters Corpus 59

decreases, though not by much. This suggests a discussion of a trade-off between
accuracy and runtime performance, hence removing a layer decrease the runtime
consumption of the training process and the forward-passes. Fig. 3.15 also shows
the performance of the 2000-500-500-128-DBN before finetuning, where we can
see that the accuracy measurements is only a little less than the architectures
trained through finetuning. This indication is very much in-line with the findings
of Hinton & Salakhutdinov: ... it just has to slightly modify the features found
by the pretraining in order to improve the reconstructions [15]. The difference
before and after finetuning suggests a discussion of a trade-off, whether the
finetuning is necessary for the purpose of the model.

To illustrate the trade-off when removing a layer from the DBN, we have
evaluated on {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 7531} neighbors (cf.
Fig. 3.16). Here it is evident how little difference in performance there is between
the 3-layered architecture compared to the 2-layered.

To analyze the categories in which wrong labels are assigned, we have provided
confusion matrices on the 1, 3 and 15 nearest neighbors (cf. Fig. 3.17). The
confusion matrices show that the wrong labels are especially assigned within
categories 2-6 and 16-20. By analyzing the categories it is evident that these are
closely related, hence the confusion.

60 Simulations

Figure 3.12: The accuracy measurements on the 20 Newsgroups dataset from
the 2000-500-500-128-DBN with binary output values and various
structures of the 2000-500-250-125-x-DBN.

Figure 3.13: The accuracy measurements on the 20 Newsgroups dataset from
the 2000-500-500-128-DBN training for 50 epochs and 100 epochs.

3.2 20 Newsgroups & Reuters Corpus 61

Figure 3.14: The accuracy measurements on the 20 Newsgroups dataset simu-
lating different values of learning rates. All simulations are run
for 50 epochs.

Figure 3.15: The accuracy measurements on the 20 Newsgroups dataset sim-
ulating different shapes of the DBN and evaluating the scores
before finetuning.

62 Simulations

Figure 3.16: The accuracy measurements on the 20 Newsgroups dataset simu-
lating the 2000-500-500-128-DBN against a 2000-500-128-DBN.

Figure 3.17: Confusion matrices for the 20 Newsgroups dataset. Top: Confu-
sion matrix for the 1-nearest neighbor. Bottom Left: Confusion
matrix for the 7-nearest neighbors. Bottom Right: Confusion
matrix for the 15-nearest neighbors.

3.3 Wikipedia Corpus 63

3.3 Wikipedia Corpus

The Wikipedia Corpus is an ideal dataset to test the DBN. It is a highly diverse
dataset spanning over a vast amount of topics, where each article has been
labeled manually by an editor. Issuu’s LDA model is originally trained on the
Wikipedia Corpus, which means a 150-dimensional LDA topic distribution for
each article is already computed. We have generated a subset from the Wikipedia
Corpus, since the training process on all articles is time consuming. The subset
is denoted Wikipedia Business and contain articles from 12 subcategories of the
Business category. It will provide an indication on how well the DBN and LDA
model captures the granularity of the data within sub-categories of the Wikipedia
Corpus. In order to extract a dataset for training, we will use categories with
a large pool of articles and a strong connectivity to the remaining categories
of the dataset. We have generated a graph showing how the categories are
interconnected (cf. Fig. 3.18).

Figure 3.18: Part of the graph generated for the Wikipedia Business dataset.
Note that the Business node is connected to all subcategories
chosen for the corpus.

Upon research of the graph we will use the category distribution shown in table
3.2.

The Wikipedia Business dataset contain 32, 843 documents split into 22, 987 (70%)
training documents and 9, 856 (30%) test documents. The training dataset is split
into batches with 100 documents each. The distribution of documents within
categories are highly versatile, with certain categories being over-represented
that may inflict with training (cf. Fig. 3.19).

64 Simulations

Wikipedia Business
1 administration
2 commerce
3 companies
4 finance
5 globalization
6 industry
7 labor
8 management
9 marketing
10 occupations
11 sales
12 sports business

Table 3.2: The categories from the Wikipedia Business subset.

Figure 3.19: The distribution of the Wikipedia Business corpus.

We have computed accuracy measurements on a 2000-500-250-125-10-DBN with
real numbered output units and accuracy measurements on Issuu’s LDA model.
There is a problem of comparing Issuu’s LDA model to the DBN, since we train
the DBN on the documents from the Wikipedia Business training set, where
Issuu’s LDA model is trained on the complete Wikipedia dataset. Issuu’s LDA
model has already trained on the documents that are evaluated in the test
set, hence it has already adjusted its parameters to anticipate these documents.
Therefore we have modeled two new LDA models, one with a 12-dimensional topic
distribution and another with a 150-dimensional topic distribution. To build
the models we have used the Gensim package for Python7. The 12-dimensional
topic distribution is chosen from a direct perception of the number of categories
in the Wikipedia Business dataset (cf. Fig. 3.19). The 150-dimensional topic
distribution is chosen from the K parameter of Issuu’s LDA model. The accuracy

7The Gensim packages is found on http://radimrehurek.com/gensim/models/ldamodel.
html.

http://radimrehurek.com/gensim/models/ldamodel.html
http://radimrehurek.com/gensim/models/ldamodel.html

3.3 Wikipedia Corpus 65

measurement of the 2000-500-250-125-10-DBN is outperforming the three LDA
models (cf. Fig. 3.20). The LDA model with the highest accuracy measurement
throughout the evaluation points is Issuu’s LDA model that has already trained
on the test dataset, which is not good as a comparison. The new LDA model
with a 12-dimensional topic distribution perform much worse than the DBN. The
new LDA model with a 150-dimensional topic distribution perform well when
evaluating 1 neighbor, but deteriorates quickly throughout the evaluation points.
This indicates the DBN is the superior model for dimensionality reduction on
the Wikipedia Business dataset. Its accuracy measurements are better and the
output is 10-dimensional compared to the 150-dimensional topic distribution of
the two LDA models with the lowest error.

Figure 3.20: Comparison between the accuracy measurements of the Issuu
LDA model, two new LDA models and a 2000-500-250-125-10
DBN.

To investigate the similarity of the clusters between DBN and LDA, we have
computed similarity measurements for the 2000-500-250-125-10-DBN and the
new LDA model with K = 150 (cf. Fig. 3.21). Considering 1 neighbor, we see
that the DBN has app. 27% of the documents in common with the LDA model.
The similarity increases when considering the 255 neighbors where the similarity
is almost 36%. This indicates that the majority of documents in clusters are
mapped differently in the two models.

We have computed accuracy measurements for the DBNs: 2000-500-250-125-2-
DBN, 2000-500-250-125-10-DBN, 2000-500-250-125-50-DBN and 2000-500-250-
125-100-DBN (cf. Fig. 3.22). It is evident that the DBN with an output vector
containing two real numbers scores a much lower accuracy measurement, due to
its inability to hold the features needed to differentiate between the documents.
We saw the same tendency when mapping to 2 output units in the MNIST
dataset (cf. Sec. 3.1). When increasing the number of output units by modeling

66 Simulations

Figure 3.21: Similarity measurements for the 2000-500-250-125-10-DBN and
the K = 150 LDA model on the Wikipedia Business dataset.
Depending on the size of the clusters considered (x-axis), the
similarities between the two models varies from app. 19% to 35%.

the 2000-500-250-125-50-DBN and the 2000-500-250-125-100-DBN, we see that
they outperform the original 2000-500-250-125-10-DBN. Even though one DBN
has an output vector twice the size of the other, the two evaluations are almost
identical, which indicates saturation. Hence the 2000-500-250-125-50-DBN is the
superior choice in order to model the Wikipedia Business dataset.

Figure 3.22: Comparison between different shaped DBNs.

Analyzing different structures of DBNs gives interesting results for the Wikipedia
Business dataset (cf. Fig. 3.23). By adding an additional hidden layer of 1000
units after the input layer there is a slight decrease in the accuracy of the model
compared to the 2000-500-250-125-10-DBN. If we also increase the number of
attributes (input units), we see a slight increase in the accuracy measurement.

3.3 Wikipedia Corpus 67

Finally when replacing the input layer with a layer of 16000 units we see a large
decrease in performance. This indicates that it is not a given fact that the model
performs better when an extra layer is added. In this case, if we add an extra
layer in the network we must also adjust the amount of units in the remaining
layers to decrease the model error. The low accuracy measurement on the DBN
with 16000 input units indicate that the dimensionality reduction between layers
are too big, for the RBMs to approximate the posterior distribution.

Figure 3.23: Comparison between different structures of the DBN.

In the Wikipedia Business datasets the separation between categories are ex-
pected to be small, since the dataset comprise of sub-categories. Therefore the
confusion matrix contains mislabeling across all categories (cf. Fig. 3.24). The
management-category is strongly represented in the Wikipedia Business dataset,
which have a tendency to introduce a bias towards this category (cf. Fig. 3.19).

We have also evaluated another Wikipedia subset, Wikipedia Large, which is
listed in App. B.3.1.

68 Simulations

Figure 3.24: Confusion matrices for the Wikipedia Business corpus. Left:
Confusion matrix for the 1-nearest neighbor. Right: Confusion
matrix for the 7-nearest neighbors.

3.4 Issuu Corpus 69

3.4 Issuu Corpus

To test the DBN on the Issuu dataset we have extracted a dataset across 5
categories defined from Issuu’s LDA model. The documents in the dataset belong
to the categories Business, Cars, Food & Cooking, Individual & Team Sports and
Travel. The training set contains 13, 650 documents and the test set contains
5, 850 documents. The training dataset is split into batches with 100 documents
each. There is an equal proportion of documents from each category in the
training and test sets. The labels are defined from the topic distribution of
Issuu’s LDA model. We will compute accuracy measurements on the DBN, using
the labels as references. Furthermore we will perform an exploratory analysis
on a random subset from the test set and see whether the documents in their
proximity are related.

The accuracy measurements of a 2000-500-250-125-10-DBN exceeds 90% through-
out the evaluation points (cf. Fig. 3.25). This indicates that the mapping of
documents in the 10-dimensional space is very similar to the labels defined from
the topic distribution of Issuu’s LDA model. We can not conclude whether the
difference in the accuracy measurements is caused by Issuu’s LDA model or the
DBN. Or if it is simply caused by a difference in the interpretation of the data,
where both interpretation may be correct.

Figure 3.25: Accuracy measurements of a 2000-500-250-125-10-DBN using the
topics defined by the topic distributions of the LDA model.

When plotting the test dataset output vectors of the 2000-500-250-125-10-DBN
with PC1 and PC2 using PCA (cf. App. A.1), we see how the input data is
cluttered and how the DBN manages to map the documents into output space
according to their labels (cf. Fig. 3.26). By analyzing Fig. 3.26 we can see that
categories such as Business and Cars are in close proximity to each other and
far from a category like Food & Cooking.

70 Simulations

Figure 3.26: PCA on the 1st and 2nd principal components on the test dataset
input vectors and output vectors from a 2000-500-250-125-10-
DBN. Left: PCA on the 2000-dimensional input. Right: PCA
on the 10-dimensional output.

The mislabeling in the Issuu dataset occurs between the categories Business and
Cars and Travel and Food & Cooking (cf. Fig. 3.27). It is very common to have
car articles in business magazines and to have food & cooking articles in travel
magazines. Thus this interpretation may not be erroneous.

Exploratory data analysis shows how the 2000-500-250-125-10-DBN maps docu-
ments correctly into output space. We have chosen 4 random query documents
from different categories and retrieved their nearest neighbors. Fig. 3.28 show
the query for a car publication about a Land Rover. The 10 magazines retrieved
from output space are about cars. They are all magazines promoting a new car,
published by the car manufacturer. 7 out of the 10 related magazines concern
the same type of car, an SUV.

In Fig. 3.29 we see when querying for a College Football magazine, the similar
documents are about College Football. So the result contains a high degree of
topic detail, thus it is not only about sports or American Football, but College
Football. As reference, requesting the 10 documents within the closest proximity
in the 2000-dimensional input space has lower topic detail. Fig. 3.30 show
how the similar documents consists of soccer, volleyball, basketball and football
magazines. This indicates that the representation in the 10-dimensional output
space represents the documents better than the one in the 2000-dimensional

3.4 Issuu Corpus 71

input space.

Fig. 3.31 and 3.32 both show how documents from the same publisher and topic
will map to output space in close proximity to one another.

Figure 3.27: Left: Confusion matrix of the Issuu dataset considering the 3
nearest neighbors. Right: Confusion matrix of the Issuu dataset
considering the 7 nearest neighbors.

72 Simulations

Figure 3.28: The result when querying for the 10 neighbors within the nearest
proximity to a query document concerning cars from the test
set output data ŷ of the 2000-500-250-125-10-DBN. Left: The
query document. Right: The resulting documents. NB: The
documents are blurred due to copyright issues and the terms of
services/privacy policy on Issuu, this applies for all figures which
shows magazine covers.

Figure 3.29: The result when querying for the 10 neighbors within the nearest
proximity to a query document concerning American football from
the test set output data ŷ of the 2000-500-250-125-10-DBN. Left:
The query document. Right: The resulting documents. NB:
The documents are blurred due to copyright issues and the terms
of services/privacy policy on Issuu, this applies for all figures
which shows magazine covers.

3.4 Issuu Corpus 73

Figure 3.30: The result when querying for the 10 neighbors within the nearest
proximity to a query document concerning American football from
the test set input data x̂. Left: The query document. Right:
The resulting documents. NB: The documents are blurred due
to copyright issues and the terms of services/privacy policy on
Issuu, this applies for all figures which shows magazine covers.

Figure 3.31: The result when querying for the 10 neighbors within the nearest
proximity to a query document concerning traveling from the test
set output data ŷ of the 2000-500-250-125-10-DBN. Left: The
query document. Right: The resulting documents. NB: The
documents are blurred due to copyright issues and the terms of
services/privacy policy on Issuu, this applies for all figures which
shows magazine covers.

74 Simulations

Figure 3.32: The result when querying for the 10 neighbors within the nearest
proximity to a query document concerning news from the test
set output data ŷ of the 2000-500-250-125-10-DBN. Left: The
query document. Right: The resulting documents. NB: The
documents are blurred due to copyright issues and the terms of
services/privacy policy on Issuu, this applies for all figures which
shows magazine covers.

Chapter 4

Conclusion

We have implemented a DBN with the ability to perform nonlinear dimensionality
reductions on image and document data. DBNs are models with a vast amount
of input parameters:
• number of hidden layers and units
• dimensionality of input and output
• learning rate, weight cost and momentum
• size of batches
• number of epochs
• choice of optimization algorithm
• number of line searches

This introduce the need of engineering in order to build an optimal model. Train-
ing time increases when introducing more layers and units to the architecture,
giving rise to a cost-benefit analysis. There are many considerations to take into
account when building DBNs for a production environment like Issuu. In this
thesis we have highlighted directions for Issuu, but not conducted an exhaustive
analysis for an optimal model. We have analyzed interesting parameters in order
to see their interference with the model. In this section we will conclude on the
results from the simulations conducted in Sec. 3.

Our analysis show that the pretraining process is where we see the biggest
increase in performance. For the 2000-500-500-128-DBN trained on the 20

76 Conclusion

Newsgroups dataset, the finetuning only accounts for an approximate 11%
increase in performance. The fact that the finetuning is the most time consuming
part of training, leads the way for a discussion on a trade-off when applying the
DBN to a production environment.

The dimensionality K of the output unit vector ŷ is influential on the DBN
having the ability to capture a good internal representation of the dataset. A
low-dimensional representation cause the DBN to collapse data points into the
same region of output space, e.g. the results of the 2-dimensional output when
modeling the MNIST dataset. On the other hand the dimensionality of the
output units can also reach a point of saturation, where the performance is not
improving when increasing the number of output units.

The performance is only slightly different when comparing the binary output
DBN to the real numbered DBN. This indicates that the binary output DBN
may be a viable trade-off for a production environment, due to its improvement
in runtime performance. But it is evident that the dimensionality of the binary
output layer can easily get too small to capture the complexity of the data.

Increasing the number of epochs of the training will improve the performance
of the DBN. Though we have seen indications of saturation, where increasing
the epochs has no influence on the performance of the model. When increasing
the number of epochs, there has also been slight indications of overfitting, so
that the model increase performance on the training data and increase the error
E(w) of the test data.

A theoretically plausible assumption is that by introducing more hidden layers to
the architecture of the DBN, the models ability for nonlinear pattern recognition
should increase. This is not evident from the findings in the simulations, where
there are indications of saturation on the datasets where we tested this claim.
We see that there is slight improvement in performance when adding an extra
hidden layer while increasing the number of input units. This indicate that
there is no rule saying that performance is increased when adding a hidden layer.
Though, we can conclude that a re-evaluation of the complete DBN structure
may improve the performance.

By increasing the number of input units of the DBN, the model may be able
to capture more patterns in the dataset. It is also evident that increasing the
amount of input units too much may result in a decrease in performance, since
the input data x̂ would represent data that is not contributing to the conceptual
meaning.

Using DBNs for dimensionality reduction on real-life datasets like the Wikipedia
and Issuu corporas have proven to work in terms of successfully mapping the

77

documents into a region of output space according to their conceptual meaning.
On the Wikipedia Corpus we have seen how the DBN can model datasets
containing subcategories with very little difference. On the Issuu Corpus we
have seen, from the exploratory research, that the results from retrieving similar
documents ŷ in the low-dimensional output space is successful. Even more
successful than computing similarities on the high-dimensional input vectors x̂.
This indicates that the DBN is very good at generating the latent representations
of documents.

From the comparisons between the LDA model and the DBN, there is strong
indications that the DBN is superior. Furthermore the DBN is superior when
retrieving similar documents in output space, because of its ability to map
to a small K and compute binary representations of the output data ŷ. The
drawback of the DBN compared to the LDA is its pervasive runtime consumption
for training. The LDA model has proven to train the model much faster during
the simulations. Furthermore the output of the DBN can not be evaluated as a
topic distribution, where the topic distributions β{1, ...,K} of the LDA model
enables the ability to assign a topic to a document. Even though Issuu compare
documents in an output space using a distance measurement, it is sometimes
quite useful to retrieve the concrete topic distribution of a document.

We have implemented a fully functioning toolbox for topic modeling using DBNs.
The DBNT works well as a prototyping tool, in the sense that it is possible to
pause and resume training, due to the highly serialized implementation. Besides
the implementation of the DBN modeling, the toolbox contain a streamlined
data preparation process for document data. Furthermore it contain a testing
framework that can evaluate the trained model on various parameters.

78 Conclusion

4.1 Future Work

In this thesis we have not worked with a full dataset, like the entire Wikipedia
Corpus or Issuu Corpus. These corporas have much more granularity and implicit
categories, than the subsets used in this thesis. To model large datasets, the
structure of the DBN should most likely be increased in order to capture the
large amount of different attributes that must be represented. For future work
it is recommended to model the large datasets and perform evaluation on the
performance of different architectures and model parameters.

The DBNT implementation must be perceived as a prototype tool. It would be
interesting to introduce calculations on GPU and more parallelization during
training. Increasing runtime performance is not in the scope of this project, but
for production purposes it would be a logical next-step.

There is still more research to be done on the architectures and model parameters.
On the basis of the results in this thesis, we have not been able to conclude a
guideline in terms of the architecture. Within the field of DBNs it would be very
useful to have such a guideline, so that companies like Issuu could implement
this in their production environment.

Appendix A

Appendix A

This appendix gives an introduction to some of the concepts that does not
have direct influence on the main topic of the thesis, but acts as fundamental
knowledge to the theory.

80 Appendix A

A.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method used for linear dimensionality
reduction. In this report we use PCA as a tool for visualizing a high dimensional
data set d > 3 into a 2 or 3 dimensional space. To do so, we must define
sets of orthogonal axes, denoted Principal Components (PC). The PCs are the
underlying structure of the data, corresponding to a set of directions where the
most variance occurs. To decide upon the PCs we use eigenvectors and eigenvalues.
The eigenvectors denotes the direction of the vector that splits the data in order
to get the largest variance in a hyperplane [24]. The corresponding eigenvalue
explain the variance given for the particular eigenvector. The eigenvector with
the highest eigenvalue denotes a PC. PCA can be computed on a 2-dimensional
dataset, resulting in a more useful representation of axes (cf. Fig. A.1).

Figure A.1: PCA on a 2-dimensional space. Left: The 2 perpendicular eigen-
vectors with the highest variance are computed. They denote PC
1 and 2. Right: The PCA space has been computed, showing
the data with new axes. Now the axes denotes where the highest
variance in the data exists.

Using PCA for dimensionality reduction follows the same procedure as the
2-dimensional example above. When computing the principal components, we
compute the eigenvectors in the hyperplane with the highest variance corre-
spondingly. So a 2-dimensional PCA dimensionality reduction will select two
eigenvectors in the multi-dimensional space with the highest variance. Note that
the computed dimensionality reduction is linear, thus the representation has its
drawbacks of not providing some useful information on the dataset. In order to
analyse the PCA output on high-dimensional data, a plot matching different PC
can be computed (cf. Fig. B.3).

A.2 Boltzmann Distribution 81

The variability of multi-dimensional data can be presented in a covariance matrix
S. Dataset is denotes as a m× n matrix D. The rows and columns corresponds
to data points and attributes respectively. Each entry in the covariance matrix
is defined as [28]

sij = covariance(di, dj). (A.1)

covariance denotes how strongly 2 attributes vary together. We want to compute
the eigenvalues λ1, .., λn of S. We denote the matrix of eigenvectors as

U = [û1, ..., ûn]. (A.2)

The eigenvectors are ordered in the matrix, so that the ith eigenvector corresponds
to the ith eigenvalue λi.

A.2 Boltzmann Distribution

The Boltzmann distribution describes the distribution of an amount of energy
between two systems. In physics the distribution predicts the probability that a
molecule will be found in a particular state with a given energy [7]

p ∝ e E
kT , (A.3)

where p denotes the distribution, E the energy of the system, k the Boltzmann
constant and T the thermodynamic temperature. If there are several systems,
where the energy is not easily distinguished from one another we denote the
distribution [7]

p ∝ ge E
kT , (A.4)

where g denotes the statistical weight of the state of the system. To eliminate
the proportional sign ∝ by equality we normalize the above probability

pi =
gie

Ei
kT∑

i gie
− Ei

kT

, (A.5)

where i denotes the state of the system. The normalization factor is denoted

Z(T) =
∑
i

gie
− Ei

kT , (A.6)

so that

pi =
gie

Ei
kT

Z(T)
. (A.7)

82 Appendix A

Z(T) is called a partition function. In EBMs the Boltzmann distribution is
defined as

p(v̂, ĥ; w) =
1

Z(w)
e−e(v̂,ĥ;w), (A.8)

where v̂ is the observed distribution, ĥ is the remaining variables to be approxi-
mated, e−e(v̂,ĥ;w) denotes the energy between v̂ and ĥ that should be minimized
for training purposes. Z(T) is denoted Z(w) in the EBM, since the thermal
temperature T is substituted with the model parameters w. In the EBM the kT
normalization is omitted so that

e−e(v̂,ĥ;w) ≡ E

kT
. (A.9)

The partition function for an EBM is

Z(w) =
∑
v̂,ĥ

e−e(v̂,ĥ;w). (A.10)

A.3 Gibbs Sampling

In many statistical models, i.e. the RBM, exact inference is intractable. In these
cases sampling methods are useful tools, to approximate the model parameters.
Gibbs sampling is a method known as a Monte Carlo technique, in which the
goal is to find the expectation E of a function f(ẑ) with respect to a probability
distribution p(ẑ) [1]. The concept of the sampling method is to independently
draw a set of samples zr where r ∈ {1, ..., R} from the distribution p(ẑ), so that
we can denote the estimator of the function f(ẑ) [1]

f(ẑ)estimator =
1

R

R∑
r=1

f(zr). (A.11)

Then we can make the assumption on the expectations

E[f(ẑ)estimator] = E[f(ẑ)], (A.12)

so that the estimator f(ẑ)estimator has the same mean and the variance can be
calculated [1].

Since the Gibbs Sampling algorithm is a Markov Chain Monte Carlo algorithm
(MCMC), we will first explain this phenomenon [1]. MCMC are sampling
methods with the ability to sample from a large class of distribution, thus they
are extremely applicable to high-dimensional models, such as the RBM. The

A.4 Batch Learning 83

MCMC sample from a distribution p(ẑ) and keeps a record of the previous state
it visited. So the sample from the proposed distribution depends on the current
state. The samples form a Markov Chain. Gibbs sampling use this procedure to
decide its next step (cf. Fig. A.2).

Figure A.2: Example of the workings of the Gibbs Sampling algorithm.

The example of the Gibbs Sampling algorithm show how xi is the current sample
and xi+1 is the next step. The algorithm then computes the yi+1 step on the
basis of the xi+1 location and so forth. This way the algorithm samples inside a
distribution on the basis of the previous distribution.

A.4 Batch Learning

Batch learning is applied to models as an approach to minimize the runtime
consumption of the training process in statistical models. Models that use batch
learning will only update the weights and biases after computing the output of
a batch of data points Xbatch. This is in contrast to online learning where the
weights are updated after computing the output of a single data point x̂. The
equations for the RBM, RSM and DA applies very well to a batch matrix Xbatch.

A.5 Artificial Neural Networks and Biology

The ANN consists of interconnected units inspired by the human brain neuron.
In order to explain why the unit is defined as is, it is useful to understand the
human brain neuron (cf. Fig. A.3). The human brain neuron consists of an
axon, dentritic tree and a body. The axon branches to other neurons and this
is where the output signal is emitted. The dentritic tree collects input from
other neurons to the cell body. The cell body computes the signals and decides

84 Appendix A

what signal to pass on to its axon. The axon contacts the dendritic tree of
other neurons at synapses. A spike of activity in the axon emit a charge into
the subsequent neuron through the synapses. The spike of activity is generated
when enough charge has flowed into the neuron to depolarize the cell membrane.
The human neuron learn different types of computations by adapting synaptic
weights. The weights will adapt so that the neural network perform useful
computations corresponding to the problem at hand [13]. The human brain
can be explained in much more detail, but the above is sufficient in order to
understand the logics of why the ANN is defined as is. However it is disputable
how big biological plausibility the computer scientific formulation of a neuron
has, though it makes it possible to create an ANN, consisting of multiple units
that can be trained to perform tasks similar to the human brain [1].

Figure A.3: A simplified visualization of 2 interconnected human brain neurons.

The input connections of a unit in an ANN refer to the dendritic tree, the unit
as the cell body and the output connections as the axon branching to subsequent
units/neurons.

A.6 Binary Threshold Neuron

The binary threshold unit was the first definition of a unit and were based on
the assumption that the human brain neuron is a logical gate [20]. It receives
input from the output of other neurons, which is summed and evaluated against
a threshold. The comparison between the evaluation and the threshold decides
whether the neuron is active or silent [20]. The unit is known as a binary threshold
neuron. The binary threshold neuron has more in common with the functions of
the human brain neuron than the linear neuron because it tries to imitate the

A.7 Optimization Algorithms 85

spike of activity emitted through the axon upon depolarization of the membrane.
Pitts and McCulloch assumed that a spike corresponds to a truth value of a
proposition. Thus the input of a neuron is a combination of truth values from
other propositions [12]. The main drawback of the unit is that it is only able to
perform hyperplane separation, compared to the non-linear interpretations of
the human brain neuron. The mathematical formulation of a binary threshold
neuron is

y =

{
1 if b+

∑
i wixi ≥ 0

0 otherwise.
(A.13)

A.7 Optimization Algorithms

An optimization algorithm is a mathematical method used as an iterative tool
to converge to a minimum on an error surface. The optimization algorithms will
always converge to a decreasing value of E(w), thus as

wk → wmin for k →∞, (A.14)

the descending property claims

E(wk+1) < E(wk), (A.15)

where wmin denotes a minimum on the error surface. So this ensure that the
evaluation for the next iteration is decreasing compared to its previous step.

A descent direction h and step length α defines which direction and how far
we want the optimization algorithm to move for each iteration. The descent
direction h is the direction pointing the algorithm towards a downhill slope. The
step length decides how far the algorithm moves during each iteration. A very
small step length results in the descending property (cf. Eq. A.15) being likely
[19]. Though a very small step length may result in an unnecessary amount of
iterations in order to find the minima. On the other hand, a large step length,
may result in the algorithm stepping over the minima, which may result in a
suboptimal parameter optimization (cf. Fig. A.4) [19].

In order to decide the direction h, a hyperplane H is added to the Rn error
surface. The hyperplane will be orthogonal to the negative gradient −∇E(w)
and therefore act as a divider between the uphill and the downhill slope. The
gradient is also known as the direction of steepest descent hsd. In Fig. A.5 is
a visualization in an R2 error surface. It is shown how the H, which is a line
in R2, is orthogonal to −∇E(w). The direction h must be on the downhill side
of the hyperplane in order to fulfill the descending property. A smaller angle

86 Appendix A

Figure A.4: An example of an optimization algorithm iterating over step k1, k2

and k3. From the example it is evident that, if α is too large, the
minimum in error surface is never found.

θ results in the direction h being closer to the gradient −∇E(w). h and α are
decided differently, depending on the choice of optimization algorithm.

Figure A.5: The error surface divided by H into an uphill and downhill slope.
hsd is the direction of steepest descent from the current point w.
h is the direction that we decide to move in each iteration. θ is
the angle between the gradient and the direction.

A very common optimization algorithm is Gradient Descent. Gradient Descent
decides the direction h by considering the direction with the greatest gain in
function value relative to the step length [19].

A.8 Training Example 87

A.8 Training Example

To show how the weights of a unit are trained we will provide a small example
from Hinton et al. [10]. For simplicity we will use a linear neuron with 3 input
connections x1, x2, x3, 3 weights w1, w2, w3, 1 output y and no biases (cf. Fig.
A.6 (left)).

Figure A.6: Left: The linear neuron with x1, x2, x3 as input variables, y as
output variable, w1, w2, w3 as weights. Middle: The linear neuron
with initialized weights. Right: The linear neuron with the target
t as output and the corresponding weights.

The problem of this example is as follows:

Each day you get lunch at the cafeteria. Your diet consists of fish, chips and
ketchup. You get several portions of each. The cashier only tells you the total
price of the meal. The problem is that after each day, you should be able to figure
out the price of each portion.

There is a linear constraint between the price of the meal and the price of the
portions

price = xfish · wfish + xchips · wchips + xketchup · wketchup. (A.16)

The prices of the portions are equivalent to the weights of the linear neuron,
w = (wfish, wchips, wketchup). In supervised learning we must have a target price
t. In this example t = 850 (cf. Fig. A.6 (right)). The weights in the figure are
not known beforehand, and they are only shown in the figure for clarity. The
amount of each portion x1, x2, x3 is known. The learning process is to iteratively
train the weights, so that the output y approximates as close to t as possible.
We initialize the weights to a random value. For simplicity we set them to
w1 = 50, w2 = 50, w3 = 50. We must define a rule for decreasing or increasing

88 Appendix A

the weights. Here we use the delta-rule [10]

∆wi = ε · xi · (t− y). (A.17)

t− y defines the residual error between the target t and the output y. ε is the
learning rate and is set empirically. For this example we will define the learning
rate to be ε = 1

35 . This means that the weights will change as

∆w1 = ε · 2 · (850− 500) = 20

∆w2 = ε · 5 · (850− 500) = 50

∆w3 = ε · 3 · (850− 500) = 30

(A.18)

so that
w1 = 70, w2 = 100, w3 = 80. (A.19)

Recall that the target weights are w1 = 150, w2 = 50, w3 = 100, thus w2 has
actually gotten worse. This is a common problem with this kind of iterative
training. Hence after 1 iteration the residual error is 850− 880 = −30, which is
much better than the initial error, 850− 500 = 350. This means that the weights
are corrected to give a better overall output, which can effect individual weights
to get further from its optimal values. We can keep on iterating to make the
network perform better, but the learning rate has a big influence here. If the
learning rate is too big, the learning will get into a good region of parameter
space quickly, but it will have difficulties adjusting the parameters to perfection.
On the other hand, if we choose a small learning rate, the training will take
a long time. The learning rate can be adjusted during training to lower time
consumption and optimize performance.

Appendix B

Appendix B

This appendix gives some results from the simulations that we did not find
suitable to be part of the actual thesis.

90 Appendix B

B.1 MNIST

We have tested the output of the DA encoder on a 784-1000-500-250-6-DBN
and a 784-1000-500-250-125-DBN (cf. Fig. B.1 and Fig. B.2). It is evident how
the 784-1000-500-250-125-DBN is better at reconstructing the input vectors x̂,
because of the output of the encoder being of a higher dimensionality.

Figure B.1: 40 different images from the MNIST dataset run through a 784-
1000-500-250-6-DBN. In each row, the original data is shown on
top and the reconstructed data is shown below.

Figure B.2: 40 different images from the MNIST dataset run through a 784-
1000-500-250-125-DBN. In each row, the original data is shown on
top and the reconstructed data is shown below.

B.2 20 Newsgroups 91

B.2 20 Newsgroups

We have computed PCA plots for the 2000-500-250-125-10-DBN modeling the
20 Newsgroups dataset. By comparing PC1 to PC4 it is evident that the input
data is cluttered (cf. Fig. B.3). The PCA on the 10-dimensional output shows
how the model has managed to map the documents into output space according
to their categories (cf. Fig. B.4).

Figure B.3: PCA on the real data.

Figure B.4: PCA on the output data of a 2000-500-250-125-10 DBN.

92 Appendix B

B.3 Wikipedia

For the Wikipedia Business and the Wikipedia Large datasets, we conducted
an exploratory analysis of the labels that should be included in the datasets.
Therefore we created a network comprising the categories in the Wikipedia
dataset (cf. Fig. B.5). From the structure of the network it is evident to see
which categories are strongly represented in the corpus.

Figure B.5: A graph showing all the categories for the Wikipedia Business
dataset. The notes with the emphasized labels are the nodes with
direct connections with the business node. These labels were the
ones that were analyzed for the dataset.

B.3 Wikipedia 93

We found that two strongly categories of the Wikipedia Business dataset was
business and administration. Running PCA on the input vectors x̂ show how
the data clutters in output space through all principal components (cf. Fig. B.6
(top)). When running PCA on the 10-dimensional output vector of a 2000-500-
250-125-10-DBN we see how the DBN manages map the difference between the
strongly correlated categories (cf. Fig. B.6 (bottom)).

Figure B.6: Analyzing two strongly correlated categories from the Wikipedia
Business test set. Top: PCA on the 2000-dimensional input
vectors x̂. Bottom: PCA on the 10-dimensional output vectors.

94 Appendix B

B.3.1 Wikipedia Large Corpus

The Wikipedia Large corpus comprise of 246, 844 documents. The number of
documents are distributed unevenly across the 16 categories (cf. Fig. B.7).

Figure B.7: The distribution of the Wikipedia Large corpus.

The categories chosen for the Wikipedia Large dataset are listed in Tab. B.1
and span from very diverse to almost similar (cf. Fig. B.8). E.g. categories like
science, education, physics, mathematics and algebra are very related as opposed
to mathematics and food.

Wikipedia Business
1 algebra
2 business
3 design
4 education
5 fashion
6 finance
7 food
8 government
9 law
10 mathematics
11 motorsport
12 occupations
13 physics
14 science
15 society
16 sports

Table B.1: The categories of the Wikipedia Large dataset.

The Wikipedia Large dataset is split into 172, 783 (70%) training documents
and 74, 061 (30%) test documents. For the simulations we have used a 2000-500-
500-128-DBN with binary output units and a 2000-500-250-125-10-DBN with

B.3 Wikipedia 95

Figure B.8: A reflection on the human perception of how the categories of the
Wikipedia Large dataset may be distributed in relation to one
another.

real numbered output units. We have performed an exploratory analysis on
the number of attributes that should be included in the BOW. To do so, we
computed statistics of the frequency of words in all documents. We analyzed
the word count and concluded that words not within the 2000 most frequent
words in the categories did not have a big meaning to the representation of the
documents. Unlike the results of the simulations on the 20 Newsgroups dataset
(cf. Sec. 3.2), the 2000-500-250-125-10-DBN with real numbered output units
scores a better accuracy measurement than the 2000-500-500-128-DBN with
binary output units (cf. Fig. B.9).

Confusion matrices show that the DBN has a tendency to mislabel documents
between categories with high similarity, since law, business, government and
sports are the categories with the highest levels of mislabeling (cf. Fig. B.10).
From the confusion matrix it is evident that the mislabeled prediction has a high
frequency of being law, which is not strange when we see the proportion of law
documents in the the training set (cf. Fig. B.8). The law -category is represented
with the largest amount of documents (cf. Fig. B.7) and the confusion matrix
indicates that the model is slightly biased towards this category.

96 Appendix B

Figure B.9: Comparison between the accuracy measurements of a 2000-500-
250-125-10 DBN with binary output values and a 2000-500-250-
125-10-DBN with real valued output values.

Figure B.10: Confusion matrices for the Wikipedia Large corpus. Left: Confu-
sion matrix for the 1-nearest neighbor. Right: Confusion matrix
for the 7-nearest neighbors.

Appendix C

Appendix C

This appendix gives a short introduction to essential technical specifications and
code snippets that are of particular interest to the thesis.

C.1 Technical Specifications

The DBNT is implemented using Python. The Numpy and Scipy packages are
essential for the implementation, thus these are the packages that implements
all linear algebra computations. By using Numpy we ensure that all operations
on matrices are highly parallelized, because it implements the Basic Linear
Algebra Subprograms (BLAS). For serialization we use the Marshal package,
which has proven to be much faster than the Pickle and cPickle packages. All
model evaluation during and after training has been parallelized using the
Multiprocessing package.

For the source code, please refer to the Github repository, http://www.github.
com.

http://www.github.com
http://www.github.com

98 Appendix C

C.2 Replicated Softmax Model

1 def rsm_learn(self ,epochs):
"""

3 The learning of the first layer RBM (Replicated Softmax Model). The
higher value of epochs will result in

more training.
5

@param epochs: The number of epochs.
7 """

for epoch in range(epochs):
9 perplexity = 0

batch_index = 0
11

for _ in self.batches:
13

Positive phase - generate data from visible to hidden units.
15 pos_vis = self.__get_input_data__(batch_index ,first_layer=True)

batch_size = len(pos_vis)
17 D = sum(pos_vis ,axis = 1)

if epoch == 0:
19 self.words += sum(pos_vis) # Calculate the number of words in

order to calculate the perplexity.

21 pos_hid_prob = dbn.sigmoid(dot(pos_vis ,self.weights)+outer(D,
self.hidden_biases))

self.__save_output__(batch_index , pos_hid_prob) # Serialize the
output of the RBM

23
If probabilities are higher than randomly generated , the states

are 1
25 randoms = rand.rand(batch_size ,self.num_hid)

pos_hid = array(randoms < pos_hid_prob ,dtype = int)
27

Negative phase - generate data from hidden to visible units and
then again to hidden units.

29 neg_vis = pos_vis
neg_hid_prob = pos_hid

31 for i in range (1): # There is only 1 step of contrastive
divergence
neg_vis ,neg_hid_prob ,D,p = self.

__contrastive_divergence_rsm__(neg_vis , pos_hid_prob , D)
33 if i == 0:

perplexity +=p
35

pos_products = dot(pos_vis.T,pos_hid_prob)
37 pos_visible_bias_activation = sum(pos_vis ,axis = 0)

pos_hidden_bias_activation = sum(pos_hid_prob ,axis = 0)
39 neg_products = dot(neg_vis.T,neg_hid_prob)

neg_visibe_bias_activation = sum(neg_vis ,axis = 0)
41 neg_hidden_bias_activation = sum(neg_hid_prob ,axis = 0)

43 # Update the weights and biases
self.delta_weights = self.momentum * self.delta_weights + self.

learning_rate * ((pos_products -neg_products)/batch_size -
self.weight_cost * self.weights)

45 self.delta_visible_biases = (self.momentum * self.
delta_visible_biases + (pos_visible_bias_activation -
neg_visibe_bias_activation))*(self.learning_rate/batch_size)

self.delta_hidden_biases = (self.momentum * self.
delta_hidden_biases + (pos_hidden_bias_activation -
neg_hidden_bias_activation))*(self.learning_rate/batch_size)

47 self.weights += self.delta_weights
self.visible_biases += self.delta_visible_biases

C.2 Replicated Softmax Model 99

49 self.hidden_biases += self.delta_hidden_biases
batch_index += 1

51
if not epoch == 0: # Output error score.

53 perplexity = exp(-perplexity/self.words)
err_str = "Epoch [%2d]: Perplexity = %.02f"%(epoch ,perplexity)

55 self.fout(err_str)
self.error += [perplexity]

57 self.fprogress ()

59
def __contrastive_divergence_rsm__(self ,vis ,hid ,D):

61 neg_vis = dot(hid ,self.weights.T)+self.visible_biases
softmax_value = dbn.softmax(neg_vis)

63 neg_vis *= 0
for i in xrange(len(vis)):

65 neg_vis[i] = random.multinomial(D[i],softmax_value[i],size = 1)
D = sum(neg_vis ,axis = 1)

67
perplexity = nansum(vis * log(softmax_value))

69
neg_hid_prob = dbn.sigmoid(dot(neg_vis ,self.weights)+outer(D,self.

hidden_biases))
71

return neg_vis ,neg_hid_prob ,D,perplexity

100 Appendix C

C.3 Restricted Boltzmann Machine

def rbm_learn(self ,epochs ,first_layer = False ,linear = False):
2 """

The learning of the RBMs. The higher value of epochs will result in more
training.

4
@param epochs: The number of epochs.

6 """
if linear:

8 self.learning_rate = self.learning_rate *0.01

10 for epoch in range(epochs):
errsum = 0

12 batch_index = 0
for _ in self.batches:

14 # Positive phase - generate data from visible to hidden units.
pos_vis = self.__get_input_data__(batch_index ,first_layer=

first_layer)
16 batch_size = len(pos_vis)

18 if linear:
pos_hid_prob = dot(pos_vis ,self.weights) + tile(self.

hidden_biases ,(batch_size ,1))
20

else:
22 pos_hid_prob = dbn.sigmoid(dot(pos_vis ,self.weights) + tile(

self.hidden_biases ,(batch_size ,1)))

24 self.__save_output__(batch_index , pos_hid_prob) # Serialize the
output of the RBM

26 # If probabilities are higher than randomly generated , the states
are 1

randoms = rand.rand(batch_size ,self.num_hid)
28 pos_hid = array(randoms < pos_hid_prob ,dtype = int)

30 # Negative phase - generate data from hidden to visible units and
then again to hidden units.

neg_vis = pos_vis
32 neg_hid_prob = pos_hid

for i in range (1): # There is only 1 step of contrastive
divergence

34 neg_vis , neg_hid_prob = self.__contrastive_divergence_rbm__(
neg_vis , pos_hid_prob ,linear)

36 # Set the error
errsum += sum(((pos_vis)-neg_vis)**2)/len(pos_vis)

38
Update weights and biases

40 self.delta_weights = self.momentum * self.delta_weights + self.
learning_rate *((dot(pos_vis.T,pos_hid_prob)-dot(neg_vis.T,
neg_hid_prob))/batch_size - self.weight_cost*self.weights)#
TODO: RE-EVALUATE THE LAST LEARNING RATE

self.delta_visible_biases = self.momentum * self.
delta_visible_biases + (self.learning_rate/batch_size) * (
sum(pos_vis ,axis = 0)-sum(neg_vis ,axis =0))

42 self.delta_hidden_biases = self.momentum * self.
delta_hidden_biases + (self.learning_rate/batch_size) * (sum
(pos_hid_prob ,axis = 0)-sum(neg_hid_prob ,axis =0))

self.weights += self.delta_weights
44 self.visible_biases += self.delta_visible_biases

self.hidden_biases += self.delta_hidden_biases
46 batch_index += 1

C.3 Restricted Boltzmann Machine 101

48 # Output error scores
e = errsum/len(self.batches)

50 err_str = "Epoch [%2d]: Error = %.07f"%(epoch+1,e)
self.fout(err_str)

52 self.error += [e]
self.fprogress ()

54

56
def __contrastive_divergence_rbm__(self ,vis ,hid ,linear):

58 neg_vis = dbn.sigmoid(dot(hid ,self.weights.T) + tile(self.visible_biases
,(len(vis) ,1)))

if linear:
60 neg_hid_prob = dot(neg_vis ,self.weights) + tile(self.hidden_biases ,(

len(vis) ,1))
else:

62 neg_hid_prob = dbn.sigmoid(dot(neg_vis ,self.weights) + tile(self.
hidden_biases ,(len(vis) ,1)))

return neg_vis ,neg_hid_prob

102 Appendix C

C.4 The Pretraining Process

1 def __run_pretraining_as_process(self):
rbm_index = 0

3 self.print_output(’Pre Training ’)
timer = time()

5 # First layer
self.print_output(’Visible units: ’+str(self.num_vis)+’ Hidden units: ’+

str(self.hidden_layers [0]))
7 r = PreTraining(self.num_vis ,self.hidden_layers [0],self.batches ,rbm_index

,self.print_output ,self.increment_progress)
if self.image_data:

9 r.rbm_learn(self.max_epochs ,first_layer=True)
else:

11 r.rsm_learn(self.max_epochs)
self.plot_dic[self.num_vis] = r.error

13 self.weight_matrices.append(r.weights)
self.hidden_biases.append(r.hidden_biases)

15 self.visible_biases.append(r.visible_biases)
rbm_index += 1

17 # Middle layers
for i in range(len(self.hidden_layers) -1):

19 self.print_output(’Top units: ’+str(self.hidden_layers[i])+’ Bottom
units: ’+str(self.hidden_layers[i+1]))

r = PreTraining(self.hidden_layers[i],self.hidden_layers[i+1],self.
batches ,rbm_index ,self.print_output ,self.increment_progress)

21 r.rbm_learn(self.max_epochs)
self.plot_dic[self.hidden_layers[i]] = r.error

23 self.weight_matrices.append(r.weights)
self.hidden_biases.append(r.hidden_biases)

25 self.visible_biases.append(r.visible_biases)
rbm_index += 1

27
Last layer

29 self.print_output(’Top units: ’+str(self.hidden_layers[len(self.
hidden_layers) -1])+’ Output units: ’+str(self.output_units))

r = PreTraining(self.hidden_layers[len(self.hidden_layers) -1],self.
output_units ,self.batches ,rbm_index ,self.print_output ,self.
increment_progress)

31 r.rbm_learn(self.max_epochs ,linear = True)
self.plot_dic[self.hidden_layers [-1]] = r.error

33 self.weight_matrices.append(r.weights)
self.hidden_biases.append(r.hidden_biases)

35 self.visible_biases.append(r.visible_biases)
print ’Time ’,time()-timer

37 # Save the biases and the weights.
save_rbm_weights(self.weight_matrices ,self.hidden_biases ,self.

visible_biases)
39 self.save_output(finetuning=False)

Plot
41 if self.plot:

self.generate_gif_rbm ()

C.5 Compute Gradient and Error for Finetuning Document Data 103

C.5 Compute Gradient and Error for Finetuning
Document Data

def get_grad_and_error(self ,weights ,weight_sizes ,x):
2 """

Calculate the error function and the
4 gradient for the conjugate gradient method.

6 @param weights: The weight matrices added biases in one single list.
@param weight_sizes: The size of each of the weight matrices.

8 @param x: The BOW.
"""

10 weights = self.__convert__(weights , weight_sizes)
x = append(x,ones((len(x) ,1),dtype = float64),axis = 1)

12 if self.binary_output:
xout , z_values = generate_output_data(x, weights ,binary_output=self.

binary_output ,sampled_noise=self.current_sampled_noise)
14 else:

xout , z_values = generate_output_data(x, weights ,self.binary_output)
16 x[:,:-1] = get_norm_x(x[:,:-1])

f = -sum(x[:,:-1]*log(xout)) # Cross -entropy error function
18

Gradient
20 number_of_weights = len(weights)

gradients = []
22 delta_k = None

for i in range(number_of_weights -1,-1,-1):
24 if i == number_of_weights -1:

delta = (xout -x[:,:-1])
26 grad = dot(z_values[i-1].T,delta)

elif i == (number_of_weights /2) -1:
28 delta = dot(delta_k ,weights[i+1].T)

#delta = dot(delta_k ,weights[i+1].T)*z_values[i]*(1- z_values[i])
30 delta = delta [:,:-1]

grad = dot(z_values[i-1].T,delta)
32 elif i == 0:

delta = dot(delta_k ,weights[i+1].T)*z_values[i]*(1- z_values[i])
34 delta = delta [:,:-1]

grad = dot(x.T,delta)
36 else:

delta = dot(delta_k ,weights[i+1].T)*z_values[i]*(1- z_values[i])
38 delta = delta [:,:-1]

grad = dot(z_values[i-1].T,delta)
40 delta_k = delta

gradients.append(grad)
42

gradients.reverse ()
44 gradients_formatted = []

for g in gradients:
46 gradients_formatted = append(gradients_formatted ,reshape(g,(1,len(g)*

len(g[0])))[0])

48 return f,array(gradients_formatted)

50
def __convert__(self , weights , dim):

52 """
Accept the weight matrices as one dimensional array and reshape to 2-

dimensional matrices corresponding
54 to the dimensions.

56 @param weights: 1-dimensional array of weights.
@param dim: list containing the dimensions of each weight matrix.

104 Appendix C

58 """
reshaped_weights = []

60
position = 0

62 for i in range(len(dim) -1):
reshaped_weights.append(reshape(weights[position:position +((dim[i]+1)

*dim[i+1])],((dim[i]+1),dim[i+1])))
64 position += (dim[i]+1)*dim[i+1]

return reshaped_weights
66

def get_norm_x(x_matrix):
68 """

Normalize the BOW matrix and make sure not to do division by 0. Division
by zero only occurs when there is no

70 words in the document represented by the attributes vector , hence the BOW
columns.

@param x_matrix: The BOW matrix.
72 @return: The normalized BOW.

"""
74 sum_x = sum(x_matrix ,axis = 1)

indices = where(sum_x == 0)
76 for i in indices:

sum_x[i] = 1.
78 norm_x = x_matrix/sum_x[newaxis].T

return norm_x

C.6 Forward-pass in Deep Autoencoder for Document Data 105

C.6 Forward-pass in Deep Autoencoder for Doc-
ument Data

1 def generate_output_data(x, weight_matrices_added_biases ,binary_output =
False ,sampled_noise = None):

"""
3 Compute forwards -pass in the deep autoencoder and compute the output.

5 @param x: The BOW.
@param weight_matrices_added_biases: The weight matrices added biases.

7 @param binary_output: If the output of the DBN must be binary. If so,
Gaussian noise will be added to bottleneck.

@param sampled_noise: The gaussian noise matrix in case of binary output
units.

9 """
z_values = []

11 NN = sum(x,axis = 1)
for i in range(len(weight_matrices_added_biases) -1):

13 if i == 0:
z = dbn.sigmoid(dot(x[:,:-1], weight_matrices_added_biases[i

][: -1 ,:])+outer(NN, weight_matrices_added_biases[i][-1,:]))
15 elif i == (len(weight_matrices_added_biases)/2) -1:

act = dot(z_values[i-1], weight_matrices_added_biases[i])
17 if binary_output:

z = act + sampled_noise
19 else:

z = act
21 else:

z = dbn.sigmoid(dot(z_values[i-1], weight_matrices_added_biases[i]))
23

z = append(z,ones((len(x) ,1),dtype = float64),axis = 1)
25 z_values.append(z)

27 neg_vis = dot(z_values [-1], weight_matrices_added_biases [-1])
softmax_value = dbn.softmax(neg_vis)

29 xout = softmax_value
if len(xout[xout ==0]) > 0:

31 w = where(xout == 0)
for i in range(len(w[0])):

33 row = w[0][i]
col = w[1][i]

35 xout[row ,col] = finfo(float).eps
return xout , z_values

106 Appendix C

C.7 Accuracy Measurement

def generate_accuracy_measurement(self ,evaluation_points):
2 """

Generate an accuracy measurement for the current DBN. This method will
run through each output of the

4 dataset and check whether its X neighbors are of the same category. The
amount of neighbors will evalu -

ate in a percentage score. So for instance an output who has 3 neighbors
where 2 are of the same cate -

6 gory will get the accuracy score of 2/3. All accuracy scores are averaged
at the end. This algorithm will

run for an X amound of evaluation_points.
8 @param evaluation_points: A list containing the number of neighbors that

are to be evaluated. i.e. [1,3]
means that the method should calculate the accuracy measurement for 1 and

3 neighbors.
10 """

accuracies = []
12 for e in evaluation_points:

self.__output(’Evaluation: ’+str(e))
14 acc = 0.0

now = time.time()
16 for it in range(len(self.output_data)):

o1 = self.output_data[it]
18 if self.binary_output:

distances = np.array(hamming_distance(o1 ,self.output_data),
dtype = float)

20 distances[it] = np.Inf
else:

22 distances = np.array(distance(o1 ,self.output_data),dtype =
float)

distances[it] = np.inf
24

Retrieve the indices of the n maximum values
26 minimum_values = nsmallest(e, distances)

indices = []
28 for m in minimum_values:

i = list(np.where(np.array(distances)==m)[0])
30 indices += i

acc_temp = 0.0
32 for i in indices:

if self.class_indices[i] == self.class_indices[it]:
34 acc_temp += 1.0

acc_temp /= len(indices)
36 acc += acc_temp

if it+1 % 1000 == 0:
38 print ’Time: ’,time.time()-now

now = time.time()
40 self.__output(’Correct: ’+str((acc/(it+1))*100) [:4]+"%"+’ of

’+str(it+1))
accuracies.append(acc/len(self.output_data))

42 for i in range(len(accuracies)):
self.__output("Eval["+str(evaluation_points[i])+"]: "+str(accuracies[

i]*100)+"%")
44 self.__write_output_to_file ()

46 def distance(v,m):
return cdist(np.array([v]),m,’euclidean ’)[0]

48
def hamming_distance(v,m):

50 return np.sum((v != m),axis = 1)

Bibliography

[1] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84,
April 2012.

[3] D.M. Blei. Topic models. http://videolectures.net/mlss09uk_blei_
tm/, November 2, 2009. Online video lecture. [Visited: 2014-01-29].

[4] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022, March 2003.

[5] T. Boggs. Visualizing dirichlet distributions with mat-
plotlib. http://blog.bogatron.net/blog/2014/02/02/
visualizing-dirichlet-distributions/, February 2, 2014. On-
line blog explaining visualizations of the Dirichlet distribution. [Visited:
2014-01-14].

[6] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Jornal of the American Society for
Information Science, 41(6):391–407, 1990.

[7] J.L. Hardwick. The boltzmann distribution. http://urey.uoregon.edu/
~pchemlab/CH418/Lect2013//Partition%20-%20Boltzmann%202013.
pdf, 2013. Department of Chemistry, Unitversity of Oregon, Online lecture
presentation. [Visited: 2014-01-14].

[8] G.E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800, August 2002.

http://videolectures.net/mlss09uk_blei_tm/
http://videolectures.net/mlss09uk_blei_tm/
http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/
http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/
http://urey.uoregon.edu/~pchemlab/CH418/Lect2013//Partition%20-%20Boltzmann%202013.pdf
http://urey.uoregon.edu/~pchemlab/CH418/Lect2013//Partition%20-%20Boltzmann%202013.pdf
http://urey.uoregon.edu/~pchemlab/CH418/Lect2013//Partition%20-%20Boltzmann%202013.pdf

108 BIBLIOGRAPHY

[9] G.E. Hinton. Deep belief networks. http://videolectures.net/
mlss09uk_hinton_dbn/, November 12, 2009. Video lecture on Deep Belief
Networks. [Visited: 2013-08-29].

[10] G.E. Hinton. Learning the weights of a linear neuron. https://class.
coursera.org/neuralnets-2012-001/lecture/33, 2012. Coursera video
lecture for course Neural Networks for Machine Learning. [Visited: 2013-11-
02].

[11] G.E. Hinton. A practical guide to training restricted boltzmann machines.
In Neural Networks: Tricks of the Trade (2nd ed.), volume 7700 of Lecture
Notes in Computer Science, pages 599–619. Springer, 2012.

[12] G.E. Hinton. Some simple models of neurons. https://class.coursera.
org/neuralnets-2012-001/lecture/8, 2012. Coursera video lecture for
course Neural Networks for Machine Learning. [Visited: 2013-11-18].

[13] G.E. Hinton. What are neural networks. https://class.coursera.org/
neuralnets-2012-001/lecture/7, 2012. Coursera video lecture for course
Neural Networks for Machine Learning. [Visited: 2013-12-01].

[14] G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, Jul 2006.

[15] G.E. Hinton and R. Salakhutdinov. Discovering binary codes for documents
by learning deep generative models. Topics in Cognitive Science, 3:74–91,
2010.

[16] J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of
the United States of America, 79(8):2554–2558, apr 1982.

[17] iMonad. Restricted boltzmann machine - short tutorial. http://imonad.
com/rbm/restricted-boltzmann-machine/. Online introduction to the
Restricted Boltzmann Machine. [Visited: 2013-08-08].

[18] Y. LeCun, S. Chopra, R. Hadsell, M.A. Ranzato, and F. Huang. A tutorial
on energy-based learning. In Predicting Structured Data. MIT Press, 2006.

[19] K. Madsen and H.B. Nielsen. Optimization and Data Fitting. DTU Infor-
matics - IMM, 2010.

[20] P. Peretto. An Introduction to the Modelling of Neural Networks. Cambridge
University Press, 1992.

[21] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of
brain mechanisms. Spartan Books, 1962.

http://videolectures.net/mlss09uk_hinton_dbn/
http://videolectures.net/mlss09uk_hinton_dbn/
https://class.coursera.org/neuralnets-2012-001/lecture/33
https://class.coursera.org/neuralnets-2012-001/lecture/33
https://class.coursera.org/neuralnets-2012-001/lecture/8
https://class.coursera.org/neuralnets-2012-001/lecture/8
https://class.coursera.org/neuralnets-2012-001/lecture/7
https://class.coursera.org/neuralnets-2012-001/lecture/7
http://imonad.com/rbm/restricted-boltzmann-machine/
http://imonad.com/rbm/restricted-boltzmann-machine/

BIBLIOGRAPHY 109

[22] R. Salakhutdinov and G.E. Hinton. Semantic hashing. International Journal
of Approximate Reasoning, 50(7):969–978, July 2009.

[23] R. Salakhutdinov and G.E. Hinton. Replicated softmax: an undirected topic
model. In NIPS, volume 22, pages 1607–1614, 2010.

[24] J. Shlens. A tutorial on principal component analysis. Science, December
2005.

[25] P. Smolensky. Information Processing in Dynamical Systems: Foundations
of Harmony Theory. MIT Press, 1986.

[26] P. Smolensky. Parallel distributed processing: Explorations in the mi-
crostructure of cognition, vol. 1. chapter Information Processing in Dynam-
ical Systems: Foundations of Harmony Theory, pages 194–281. MIT Press,
1986.

[27] I. Sutskever and T. Tieleman. On the convergence properties of contrastive
divergence. In AISTATS, volume 9 of JMLR Proceedings, pages 789–795.
JMLR.org, 2010.

[28] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., 2005.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Related Work

	2 Theory
	2.1 Latent Dirichlet Allocation
	2.1.1 Discussion

	2.2 Artificial Neural Networks
	2.2.1 Feed-Forward Neural Network
	2.2.2 Error Function
	2.2.3 Training

	2.3 Deep Belief Nets
	2.3.1 Restricted Boltzmann Machines for Pretraining
	2.3.2 Deep Autoencoders for Finetuning
	2.3.3 Replicated Softmax
	2.3.4 Discussion

	2.4 Deep Belief Net Toolbox
	2.4.1 Data Processing
	2.4.2 DBN Training
	2.4.3 Testing Framework

	3 Simulations
	3.1 MNIST
	3.2 20 Newsgroups & Reuters Corpus
	3.3 Wikipedia Corpus
	3.4 Issuu Corpus

	4 Conclusion
	4.1 Future Work

	A Appendix A
	A.1 Principal Component Analysis
	A.2 Boltzmann Distribution
	A.3 Gibbs Sampling
	A.4 Batch Learning
	A.5 Artificial Neural Networks and Biology
	A.6 Binary Threshold Neuron
	A.7 Optimization Algorithms
	A.8 Training Example

	B Appendix B
	B.1 MNIST
	B.2 20 Newsgroups
	B.3 Wikipedia
	B.3.1 Wikipedia Large Corpus

	C Appendix C
	C.1 Technical Specifications
	C.2 Replicated Softmax Model
	C.3 Restricted Boltzmann Machine
	C.4 The Pretraining Process
	C.5 Compute Gradient and Error for Finetuning Document Data
	C.6 Forward-pass in Deep Autoencoder for Document Data
	C.7 Accuracy Measurement

	Bibliography

