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Summary
This thesis describes the derivation and implementation of BCoCA, a Bayesian ap-
proach to Correlated component analysis, which was introduced in Dmochowski et
al. [2012]. BCoCA enables the comparisons between more than two subjects at the
same time, and relaxes the constraint of equal weights with an adaptable parameter
controlling the similarity between the weights for each dataset, with the purpose of
locating neural activations that are synchronised within and between brains.
The thesis outlines the principles of variational inference, the method of approxima-
tion used to derive the updates for BCoCA as well as a cost effective way to calculate
its corresponding lower bound, which can be used as a measure of performance and
to estimate the time of convergence. To show its capabilities BCoCA will be tested
on simulated data under varying conditions, on real EEG datasets from two other
experiments and will finally be used to analyse the results of an experiment conducted
for this thesis.
The presented study will investigate whether neural correlations are detectable using
consumer-grade hardware, with the specific goal to examine the difference between
neural correlation originating from emotionally arousing and neutral films as done
in Dmochowski et al. [2012]. To expand on their experimental setup and investigate
the effect of experiencing an emotionally laden stimulus in a group as compared to
experiencing it alone, simultaneous EEG of nine subjects were recorded. In total were
42 subjects used for the experiments.
It was shown that neural correlation is detectable using consumer-grade hardware
and that it was possible to reproduce some of the results in Dmochowski et al. [2012],
showing that there is a significant difference between neural correlation originating
from emotionally arousing and neutral films, respectively. The results were further
established by comparing scenes with periods of significant correlation and scalp pro-
jections of the neural activity. The latter showed higher activation in areas related to
emotion for the emotionally intense Sophie’s Choice compared to the suspenseful but
otherwise emotionally indifferent Bang! You’re Dead. It was unfortunately not pos-
sible to determine, whether the effect of experiencing an emotionally laden stimulus
in a group is significantly different to experiencing it alone. We maintain the belief
that there is a difference, but further processing is needed to reveal it.
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Resumé
Denne afhandling beskriver udledningen og implementeringen af BCoCA, en Bayesisk
tilgang til correlated component analysis, som blev introduceret i Dmochowski et al.
[2012]. BCoCA muliggør sammenhold mellem mere end to dataset på samme tid,
og lemper betingelsen af en ens vægte med en adaptiv parameter der kontrollerer
ligheden mellem vægtene for det enkelte dataset, med det mål at lokalisere neurale
aktiveringer der er synkroniseret inden i og mellem hjerner.
Denne afhandling klarlægger principperne bag variationel inferens, approksimations-
metoden der bruges til at udlede opdateringerne for BCoCA samt en beregningsef-
fektiv måde at udregne lower bound, som kan bruges som mål for præstation og
til at afgøre tidspunktet, hvor konvergering er opnået. For at vise BCoCA’s evner
vil den blive testet på simuleret data under varierende omstændigheder, på rigtige
EEG datasæt fra to andre experimenter og vil slutteligt blive brugt til at analysere
resultaterne fra et eksperiment udført til denne afhandling.
Dette eksperiment vil undersøge hvorvidt neurale korrelationer er målbare ved at
bruge hardware af forbruger kvalitet, med det specifikke mål at undersøge forskellen
mellem neural korrelation med oprindelse fra følelsesladede og neutrale film som gjort
i Dmochowski et al. [2012]. For at udvide på deres forsøgsopstilling og undersøge
effekten af at opleve et emotionelt ladet stimulus i en gruppe i forhold til at opleve
det alene, blev der foretaget simultan optagelse af EEG på ni forsøgspersoner. I alt
blev 42 forsøgspersoner brugt til eksperimenterne.
Det blev vist at neural korrelation er målbart ved brug af hardware af forbruger
kvalitet, og at det var muligt at reproducere nogle af resultaterne fra Dmochowski et
al. [2012], og herved vise at der er signifikant forskel mellem neurale korrelationer med
oprindelse fra følelsesladede og neutrale film. Resultaterne blev yderligere fastslået
ved at sammenligne scener med perioder med signifikante korrelationskoefficienter og
skalp projektioner over den neurale aktivitet. Sidstnævnte viste større aktivering i
områder relateret til følelser for den følelsesmæssigt intense Sophie’s Choice sammen-
lignet med den spændingsfyldte men ellers følelsesmæssigt indifferente Bang! You’re
Dead. Det var desværre ikke muligt at afgøre, om effekten af at opleve et følelses-
mæssigt ladet stimulus i en gruppe er signifikant forskellig fra at opleve det alene. Vi
fastholder den tro, at der er en forskel, men at yderligere undersøgelser er nødvendige
for at afsløre den.
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CHAPTER 1
Introduction

The last two decades has shown great advancements in digital signal processing,
machine learning and measurement of biopotentials, which has given us a greater
insight in the workings of the human body, as well as the ability to measure and
compare its functions and states. Measurement of the brain is no exception to these
advances, but due to its high level of complexity we still know very little about the
internal processes of the brain and their effects on the mind. Emotions, behaviour and
affective states in the context of social cognition has with technological advancements
lately become a very active research area. An area in which we, with this thesis, will
try to make a contribution.
When estimating neural activity the main approach has so far been through discrete
event related designs, e.g. Brain Computer Interface (BCI; Blankertz et al. 2007). In
BCI the trial consists of a training phase, where the subject is repeatedly exposed
to the same stimulus be it visual, auditory or somatosensoric, and common event
markers are estimated.
The concept of investigating neural responses in ”natural” conditions was first pro-
posed in a fMRI study by Hasson, Nir, et al. [2004] that found remarkable inter-
subject synchronisation between subjects having viewed the same film. This exper-
imental concept has later been adopted by Dmochowski et al. [2012] but by using
EEG instead, because voxel-wise correlations in blood oxygenation level dependent
(BOLD) signals are unable to capture weak activity over distant regions, and the
poor temporal resolution of fMRI inhibits precise estimation of the times of synchro-
nisation. Apart from high temporal resolution, EEG also has the advantage of being
unobtrusive, making social experiments possible which could not be done in a MRI
scanner. Unlike the BOLD signal, which contains a delay between the instant of cor-
tical activity and the measured signal, EEG recordings capture the activity instantly
meaning that the mixing of underlying sources are nearly linear [Nunez 1974], though
the cortical interactions might not be.
As the brain is a complex and continuously working organ with transient states,
Dmochowski et al. [2012] has proposed a signal decomposition method, which works
continuously. Since the results are continuous and transient, the cognitive changes
cannot be tracked using event markers. Instead the correlation with other subjects
which have been exposed to the same stimulus is used. Dmochowski et al. [2012]
employs this method in the search of a neural measure of cognitive engagement. A
measure, which have yet to receive a general definition but can have many applications
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in areas such as neuromarketing, quantitative measurements of entertainment and
attention deficit disorders.
The method to extract this measure of attention consists of the signal decomposition
of two EEG datasets from subjects experiencing the same continuous stimulus, named
Correlated Component Analysis (here abbreviated as CoCA). In their experiments
Dmochowski et al. used the viewing of videoclips from three films, with varying lev-
els of suspense, as stimulation. The underlying idea of CoCA is similar to that of
Canonical Correlation Analysis (CCA), in that the goal is to find weights, W, that
maximises the correlation between two datasets after filtering [Hotelling 1936]. How-
ever, CoCA differentiates itself by finding one set of weights that works for filtering
both datasets.
In this project we will present a Bayesian version of CoCA (BCoCA) and expand it
to accommodate multiple datasets. Instead of requiring that all datasets have the
same W, BCoCA will introduce a parameter, λ, which regularises how similar the
weights belonging to each dataset are. This parameter can be fixed as a predefined
constant or be estimated based on data through automatic relevance determination
(ARD; L. K. Hansen et al. 1994; MacKay 1996).
Apart from testing the proficiency of BCoCA on synthetic data, we will test it on
data from experiments conducted in collaboration with Arkadiusz Stopczynski, Michal
Radwaǹski, Ivana Konvalinka and Lars Kai Hansen. The experimental paradigm is
inspired by Dmochowski et al. though with increased focus on the social aspect of
experiencing a film. Exploiting that BCoCA can compare multiple datasets, experi-
ments were conducted with people either watching the film alone or in a group.
This thesis will cover both the assumptions, mathematical derivation and testing of
BCoCA, and the social experiments. The chapters are organized as follows,

• Chapter 1 contains this introduction followed by a general review of relevant
neural physiology, psychological theories on perception and social cognition, and
a short introduction to latent variable models.

• Chapter 2 presents the thoughts behind BCoCA. First the necessary theoretical
background of variational inference will be discussed. After a mathematical
derivation, the final algorithm will be shown and tested on synthetic data,
as well as EEG from two other experiments, and compared against relevant
algorithms. To improve comparisons we will use the same data for testing as in
[Klami 2013] as well as construct our own.

• Chapter 3 describes the experiments, the hardware and software used, and how
the experiments were conducted.

• Chapter 4 contains an analysis of the data from the experiments using CoCA
and BCoCA.

• Chapter 5 is a discussion of the main results of the thesis and areas of improve-
ment for future work.
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1.1 Electroencephalography
Sitting in the park with a cup of coffee while listening to music and wondering what
the girl across from you is thinking about seems like a trivial, even relaxing, way to
spend a Sunday afternoon. But the heat from the sun, the taste of the coffee, the
sound from the music, the view of the girl, the subconscious processing of her posture
and facial expression and the active reasoning of her mental state is actually using a
number of different brain networks. Complex and intersecting networks that can be
divided into subregions each consisting of billions of neurons.
Neurons are highly specialised cells with the fundamental task of receiving, conducting
and transmitting signals. To receive signals each neuron has up to 100,000 tentacle-
like extrusions called dendrites, that all end in the cell body, which continues into the
axon (figure 1.1) [Alberts et al. 2010]. The axon transmits signals from the cell body
to the terminal, which is part of the synaptic contacts with the dendrites of other
neurons. Due to an imbalance of positively and negatively charged ions across the
membrane, the neurons have negative resting membrane potential. An activation of
the synapses elicits a post-synaptic potential which is a rapid increase of membrane

Figure 1.1: Pyramidal neuron in cerebral cortex [Purves 2004]
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potential at the apex of the dendrites. Due to the structure of the membrane the
potential propagates along the dendrite to the cell body and if the cumulated signal
in the cell body is sufficiently strong, an explosion of electrical activity in the plasma
membrane will stimulate an action potential to travel along the axon to the nerve
terminal [Purves 2004].
The potential is propagated along dendrites and axons by increased influx of sodium
ions to increase the potential and a later efflux of potassium to repolarise the mem-
brane to its resting state. These currents of charged ions is a kind of secondary current
in the extracellular fluid and creates a dipole between the post-synaptic terminal of
the apical dendrite and the cell body, the soma, of the pyramidal cells in the cortex.
The ions circles in order to reach an equilibrium of ionic concentration. One neuron
produces a very small electric field but vertically aligned and synchronously activated
neurons creates a dipole strong enough to measure at the scalp through cerebrospinal
fluid, bone and skin [Nunez 1974; Saab 2008].

1.2 Perception and social cognition
Psychological studies has up to about a decade ago been mostly focused on one-
brain experiments. Experiments in which subjects merely observes the environment
or other persons. Though these studies are too simplistic to model many aspects
of social cognition, they have yielded many interesting results in low-level cognition.
One of the theories that emerged from these experiments is the mirror neuron system
(MNS) which is a network of brain regions that imitates the movement of e.g. an
arm grasping a cup of coffee exactly as if the subject itself performed the action.
The mirror system plays a key role in the ability to not only interpret the goal of a
movement but also the intention, the why [Rizzolatti et al. 2008]. This natural urge
to imitate a response actively needs to be suppressed in most situations and might
actually be a disadvantage in a situation when a non-identical complementary action
is needed [Sartori et al. 2012; Kourtis et al. 2013].
The recording of EEG on multiple subjects simultaneously (hyperscanning; Babiloni,
Cincotti, et al. 2006) is emerging and studies on a more complex level are becoming
a possibility. The two-body problem has been neglected, but has recently received
greater interest across multiple modalities in fields spanning from game theory to
transmitting emotions through facial expressions [Babiloni and Astolfi 2012]. Though
hyperscanning and social interaction experiments are still relatively new, critics are
already pointing out issues with moving from individual to social cognitive theories
[Dumas 2011]. A typical experiment in the one-brain theory is often formulated as a
turn-taking paradigm in which participants take turns to act while the other perceive,
creating a perception-action loop. A natural way to emulate a real world scenario
but without the dynamics of true social interaction. The isolated paradigms of stan-
dard cognitive science only incorporates information-flow from the environment to
the observer, but this approach is inadequate in the paradigm of embodied cognition.
Interaction and emotional engagement between people are dynamic processes that
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couples them in a unit that is not readily separable [Schilbach et al. 2013; Hasson,
Ghazanfar, et al. 2012]. These inter-personal interactions can be crucial to under-
standing the mechanisms of social cognition and so far hyperscanning is the only
method to tap into inter-brain processes [Konvalinka et al. 2012]. To this purpose
EEG is becoming an increasingly popular modality due to its high temporal resolution
and recent advances in mobile equipment [Stopczynski et al. 2013].
Dumas et al. [2010] tried to follow this dynamic interaction theory with an experi-
ment that incorporates the spontaneous interaction in a semi-natural actor-imitator
relationship using a two-way video setup and dual-EEG monitoring. The alpha-mu
activity in the right centro-parietal region was found to synchronise between two
brains of which one was engaged in acting and the other imitating. This area has
previously been shown to be included in the mirror neuron system when observing
others while retaining ones perspective of self [Tognoli et al. 2007] and mu rhythms
in translating the observed into action [Pineda 2005].
Joint attention is popularly perceived as a shared gaze on an object or focus on a task.
Using a dual-EEG configuration, the online interaction between face-to-face subjects
engaged in either spontaneous or directed attention showed to equally decrease the
oscillatory activity between 11 and 13 Hz in the left centro-parieto-occipital region
when gazing on the same object as compared to different objects [Lachat et al. 2012].
The decreasing signal power was thus not due to dynamic interaction between the
subjects (undirected attention) but perhaps an interpersonal coordination component
of social interaction or just the mere knowledge that someone else gaze on the same
object. The latter is supported by a recent study showing that the attention relations
of others to the environment affects the attention of oneself [Böckler et al. 2012].
The mirror mechanism is not only involved in bodily emulation, it is also thought
to help mediate the understanding of emotions through empathy, the capacity to
understand affective experiences in other persons [Rizzolatti et al. 2008; Enticott
et al. 2008]. The definition of empathy is arguably divided into three components;
perspective-taking, emotion regulation and affective response, and emotional conta-
gion [Decety et al. 2006]. The perception of emotion is on a neural level closely related
to the MNS while the regulation of emotion is related to the ability to distinguish self
from others using higher cognitive processes [Preston et al. 2002]. The research of
empathy has mostly been through the observation of pain and the common finding is
that the vicarious experience of pain activates the same affective brain areas as if the
experience was first hand [Bufalari et al. 2007; Singer 2012]. Likewise does viewing a
film depicting a face expressing disgust activate the same neural areas in the anterior
insula and anterior cingulate cortex in the observer as the model [Wicker et al. 2003].
Even though these studies present clear indication of neural areas correlating with
emotions it has not been possible to map individual emotions to specific areas. The
idea of an emotion being localised to a single area is unreasonable but not the idea
of a neural signature across multiple areas. Using fMRI recordings of method actors
imitating emotions Kassam et al. [2013] trained a classifier that was able to identify
emotions across subjects with significant accuracy.
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Intuitively, many factors modulate the neural response of empathy, including the in-
tensity of the emotion, attention to the stimulus and characteristics of the empathizer
[Hein et al. 2008]. By showing a clip from the film Sophie’s Choice, depicting an in-
tense personal loss, Raz, Jacob, et al. [2013] showed high correlation between fMRI
recordings and sadness rating of the film. They believe that because of a strong
personal grievance in a real-time setting the ’first-person’ perspective of the actor is
adopted through embodied simulations (ES), e.g. facial expressions, and to a lesser
degree through theory of mind (ToM), a cognitive representation of another’s state.
Interestingly, emphatic reaction correlated significantly with the sadness rating ex-
cept during the most distressing part of the film. They theorise that the distinction
between self and other is undermined in this moment and to protect itself, the mind
distances itself from the emotional object.
Shteynberg et al. [2013] showed that the mood of the participants in a study has a
significant effect on the how strongly the person reacts to a stimuli and that shared
attention increased collaborative processing which in turn increased the influence of
mood on evaluation. The latter finding is particular interesting because it directly
supports the hypothesis that there is a difference in the neural activation when watch-
ing a film in a group as opposed to alone. This is supported by a study by Num-
menmaa et al. [2012] where it was found that emotions of negative valence induce
inter-subject synchronization of brain activity leading to similar perceptions and thus
enabling understanding and prediction of the actions of others. Positive emotions
showed a lower level of synchronization which could be explained by the different
neural stimulations between negative and positive valence. Where negative emotions
activates possible survival-neurons in the default-mode network, positive emotion en-
courage ’exploration of the environment’ leading to more individual brain activation
patterns.
The concept social sharing of emotions [Rimé et al. 1998] argues that sharing negative
emotional events facilitate the cognitive processing of the emotions. Though negative
emotions elicits sharing, the sharing itself may not decrease the psychological stress
induced. Instead it was found to strengthen the ties to ones social network and
to alter the emotional climate of the network. Studies have in line with this theory
shown that viewing films of negative valence significantly increases subjects inclination
to sharing the content of the film and emotions experienced during watching. The
intensity of the emotional impact affects the level of sharing but the relationship
was not found to be linear [Luminet et al. 2000]. In a recent review Rimé [2009]
states that emotions are a reaction to a discrepancy between assumptions of what
is expected and what is reality. When expectations are disconfirmed the cognitive
work of a search for meaning is initiated and assumptions about the world is altered.
One way to seek meaning is by comparing views with the social network. By sharing
emotions the group can reach agreement of assumptions and views of the world and
in turn create a social reality within the network. Contrary to his earlier work Rimé
also argues that negative emotions motivates people to seek emotional support to
reduce induced distress. Though this belief is mostly based on findings concerned with
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verbal sharing it is not unlikely to have the same impact when jointly experiencing the
emotion. Especially not since he himself compares sharing an emotion with observing
an emotion, using a quote of the Perception-Action model which states that

…attended perception of the object’s state automatically activates the
subject’s representations of the state, situation, and object, and that ac-
tivation of these representations automatically primes or generates the
associated autonomic and somatic responses, unless inhibited [Preston et
al. 2002]

Studying the list of most emailed New York Times articles, Berger et al. [2010] found
that articles of positive valence was most often shared due to positive self-reflectance.
However, articles with a particular type of negative content with a high level of
arousal, such as anger, was also very likely to be shared. In line with Rimé, the authors
explain the negative-content sharing with the theory that sharing affectively rich
content deepens social bonds. This result has later been supported by an investigation
of the sentiment in retweets on Twitter. Tweets of positive content was most often
retweeted except if the tweet was news-related where negative news are more often
shared [L. Hansen et al. 2011].
To summarise the above; visual perception of other humans elicit mirroring neural
responses which extends to emotions partly by mirroring facial expressions. The pres-
ence of others yet disrupts the presumption of an isolated individual which means that
a couple needs to be treated as an interacting unit which challenges the paradigms
and execution of many experiments. Hyperscanning is so far the only realistic ap-
proach and experiments has shown significant effect of social interaction on neural
activation. The results and theory on the response to emotionally laden stimuli in
the context of social cognition is, however, still ambiguous.

1.3 Canonical correlation analysis and latent variable
models

Neuroinformatic experiments can be divided into two groups with respect to the
nature of the stimulus the subjects are exposed to. They can be discrete as the
displaying of a photograph or the prompting of an imagined movement of a body
part. Here the stimulus can be repeated many times and the specific time of stimulus
marked in the recordings, enabling a correlation between the recorded data and times
of stimulus.
Continuous stimulus can be used to emphasise the brain as a transient and continu-
ously working organ, where the stimulus can take the form of a film where the viewer
is engaged in the plot and the build-up to climax. This manner of stimulus enables
tracking of ongoing changes in the cognitive state of the viewer [Dmochowski et al.
2012]. But this manner of stimulus comes at the cost of specific event markers. One
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solution is correlating the recordings between subjects experiencing the same stimulus
such as in CCA.

1.3.1 Canonical correlation analysis
CCA was introduced in Hotelling [1936]. Given two datasets, X(1) ∈ RD1×N and
X(2) ∈ RD2×N , with {D1, D2} defining the number of features andN the number time
samples, it seeks to estimate weights, {W(1),W(2)}, which maximise the correlation
between two time series vectors y1 = X(1)Tw(1)

k and y2 = X(2)Tw(2)
k . At the same

time CCA constrains the estimated weights with the condition that X(1)Tw(1)
k and

X(1)Tw(1)
k′ are uncorrelated for k ̸= k. CCA then finds the weights through eigenvalue

decompositions, which has the benefit of attaining an analytic solution, but without
any statistic measure for the certainty of the result [Hardoon et al. 2004; Klami 2013].

1.3.2 Latent variables
Probabilistic models often include latent or hidden variables, z, representing sources
or time series ”hidden” in the recorded data. In terms of neuroinformatics, z can be
seen as representing the elicited response to a given stimulus. The introduction of
latent variables enables the definition of a prior distribution for these hidden sources,
which are often kept simple such as

p(z) = N (0, I). (1.1)

As opposed to a probabilistic model without latent variables, where only the marginal
distribution, p(x), is available, a latent variable model also enables the working with
the joint distribution, p(x, z), and through this the conditional distribution p(z|x)
using Bayes’ theorem.

1.3.3 Latent variable approach to canonical correlation analysis
Expanding on the probabilistic PCA introduced by Tipping et al. [1999], a proba-
bilistic approach to CCA was presented in Bach et al. [2005] using latent variables.
Instead of weights, which maximise the correlation between the linear projections of
data, Bach and Jordan used Gaussian distributed common sources, z, mixed in both
datasets

p(x(m)) = N
(
A(m)z,Σ(m)

)
, (1.2)

with m = {1, 2} signifying the number of datasets, and with Σ(m) representing the
covariance matrix for the observation noise of dataset m. The noise is often simplified
to i.i.d. Gaussian noise with view-specific1 variance; Σ(m) = σ2

mI. A signifies the
1In this thesis the terms view and dataset are used interchangeably, signifying an entire recording, X(m),
with D channels or features and N samples.
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mixing matrix (also known as the forward model)2, where each column represents
the mixing of one source into D observed channels, which means that if one posses
prior knowledge of the number of hidden sources the dimension of the estimated
mixing matrix can be reduced to A ∈ RD×K . This is an advantage when K < D,
but presents the problem of choosing the right value for K. To avoid discrete model
selection C. Bishop [1999] introduced a hierarchical prior over A using the automatic
relevance determination (ARD) framework

p(A(m)) =
K∏
k

N
(
A(m)

k |0, α−1
k

)
(1.3)

p(α) =
K∏
k

Ga(αk|a0, b0), (1.4)

where Ak signifies the k’th row in A and αk is a gamma distributed hyper parameter
controlling the precision of Ak.
This approach to CCA has lead to Bayesian CCA [Wang 2007; Klami and Kaski
2007], a hierarchical Bayesian spatio-temporal model [Wu et al. 2011] and latest
Group Factor Analysis (GFA) [Virtanen et al. 2011], the first practical multi-view
generalization of Bayesian CCA, and its two-view version Bayesian Inter-Battery
Factor Analysis (BIBFA) [Klami 2013]. The latest two additions divided the sources
into shared and view-specific sources enabling the simplification of Σ(m) to a diagonal
matrix improving computing time for high dimensional data.
The above mentioned articles where not the first to introduce these concepts to prob-
abilistic CCA, but instead had their focus on how to approximate the posterior dis-
tribution for the hidden sources. Instead of the commonly used maximum likelihood
or maximum a posteriori solutions through expectation maximisation, the methods
focus on a fully Bayesian treatment employing either Gibbs sampling or variational
inference. Both approaches have their own advantages and drawbacks but since this
thesis employs variational inference, Gibbs sampling will not be discussed further.

2Different authors use different letters for the mixing matrix. Most Bayesian models use W, probably
stemming from C. Bishop [1999], but as this letter is also used to define the demixing matrix, we have
chosen to use A as Parra et al. [2005].
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CHAPTER 2
Machine Learning and

Digital Signal Processing
This chapter contains the theoretical background for the methods used to analyse the
data in this thesis. As part of this thesis revolves around the development of BCoCA,
the majority of this chapter will focus on the concepts of variational inference, how
it can be used to derive BCoCA, and the different tests regarding the performance of
the resulting algorithm.

2.1 Variational inference
When discussing latent models as the one in (1.2) it can ease understanding to divide
the variables into visible variables, V, that can be observed such as x, and hidden or
latent variables, H, such as z and A. The joint distribution can then be expressed
as p(H,V). In many cases this distribution gets so complex that the true posterior
distribution, p(H|V), becomes analytically intractable, in which case a suitable ap-
proximation, q(H), can be a better option. Approximation of posterior distributions
can be divided into two groups; stochastic or deterministic. An example of a stochas-
tic approach is Markov chain Monte Carlo which through sampling can obtain exact
results given infinite computation resources. This approach quickly gets computa-
tionally expensive, and is better suited for small-scale problems [C. M. Bishop 2006].
The deterministic approach instead uses analytical approximations of the posterior
distribution through simplifying assumptions regarding this distribution.
Before enabling the maximisation of the similarity between the true distribution and
its approximation, the measure of similarity has to be decided upon. The next section
describes one such measure of similarity between two distributions.

2.1.1 The Kullback-Leibler divergence
The Kullback-Leibler (KL) divergence is also known in physics as relative entropy
and describes the the dissimilarity between a true distribution, p(H|V), and its ap-
proximation, q(H). The KL divergence is defined as

KL(q∥p) =
∫
q(H) ln q(H)

p(H|V)
dH. (2.1)
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Note that by definition KL(q∥p) ̸= KL(p∥q) since

KL(p∥q) =
∫
p(H|V) ln p(H|V)

q(H)
dH. (2.2)

Using Jensen’s inequality and the fact that the function − lnx is strictly convex, the
KL divergence can be proven to be always positive through

KL(q∥p) = −
∫
q(V) ln p(H|V)

q(H)
dH ≥ − ln

∫
q(H)

p(H|V)

q(H)
dH

≥ − ln
∫
p(H|V)dH = 0. (2.3)

This means that the KL divergence is zero only when q(H) = p(H|V) [Murphy 2012].
The evaluation of the KL divergence, as defined in (2.1), depends on the posterior dis-
tribution, but since this is assumed intractable (and the reason for the approximation)
the equation as such has no usability. Using the product rule, (2.1) can be rearranged
into an expression with distributions that are assumed analytically tractable;

KL(q∥p) =
∫
q(H) ln q(H)p(V)

p(H,V)
dH (2.4)

=

∫
q(H) ln q(H)

p(H,V)
dH+

∫
q(H) ln p(V)dH (2.5)

=

∫
q(H) ln q(H)

p(H,V)
dH+ ln p(V). (2.6)

Defining the negative of the first term on the right hand side as

L(q) = −
∫
q(H) ln q(H)

p(H,V)
dH, (2.7)

a relationship between the true log likelihood and the approximation of the posterior
distribution can be defined as

ln p(V) = KL(q∥p) + L(q). (2.8)

It has been proven that the KL divergence is non-negative, which means that L(q)
cannot exceed the true log likelihood, and is therefore a lower bound for it. So when
optimising q(H) through minimisation of the KL divergence, one can instead do it
through maximisation of L(q) [J. M. Winn 2004]. This relationship is illustrated on
figure 2.1.
An important aspect of maximising the lower bound is that overfitting of the approx-
imated distribution cannot occur and the cost of using the approximated distribution
should be continuously falling when iterating towards an optimal solution. A rising
cost points towards bugs in the algorithm. [C. M. Bishop 2006].



2.1 Variational inference 13

Figure 2.1: The relationship between the true log likelihood, the KL divergence and L(q).
It can be seen that L(q) cannot exceed the true log likelihood and therefore can be used
as a lower bound for it. Modified from C. Bishop [1999].

2.1.2 Maximising the similarity between the true distribution and
its approximation

Before maximising L(q) it is necessary to decide the simplifying assumptions regarding
q(H), that makes it easier to work with than the true distribution. A common
simplification is to assume that q(H) can be factorised through

q(H) =
∏
i

qi(Hi), (2.9)

meaning that there are no conditional distributions in q(H). This simplification is
originally known in physics as mean field theory [C. M. Bishop 2006]. Using this
factorising assumption the lower bound can then be defined as

L(q) =
∫ ∏

i

qi(Hi)

(
ln p(H,V)−

∑
k

ln qk(Hk)

)
dH. (2.10)

L(q) is then optimised with respect to the approximated distribution for each variable,
qj(Hj), and all terms not dependent on qj(Hj) are combined in a constant term, C.

L(qj) =
∫
qj(Hj)

∫ ∏
i ̸=j

qi(Hi) ln p(H,V) dH/j

 dHj

−
∫
qj(Hj)

∫ ∏
i ̸=j

qi(Hi)
∑
k

ln qk(Hk) dH/j

 dHj (2.11)
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=

∫
qj(Hj) ⟨ln p(H,V)⟩H/j dHj −

∫
qj(Hj)

ln qj(Hj)

∫ ∏
i ̸=j

qi(Hi) dH/j

+

∫ ∏
i̸=j

qi(Hi)
∑
k ̸=j

ln qk(Hk) dH/j

 dHj (2.12)

=

∫
qj(Hj) ⟨ln p(H,V)⟩H/j dHj −

∫
qj(Hj) ln qj(Hj) dHj + C, (2.13)

where
∫
dH/j and ⟨ ⟩H/j signifies the integration and expectation with respect to all

variables in H, except Hj .
By defining ln p̂(Hj ,V) = ⟨ln p(H,V)⟩H/j , the lower bound can be expressed as a
negative KL divergence,

L(qj) = −KL(qj∥p̂) + C, (2.14)

which means that the lower bound can be maximised through minimisation of this
divergence. A minimisation which occurs when qj(Hj) = p̂(Hj ,V). The optimal
solution for each distribution, q∗j (Hj), can then be found by

ln q∗j (Hj) = ⟨ln p(H,V)⟩H/j + C, (2.15)

which is easy to work with when working with exponential distributions [Murphy
2012; C. M. Bishop 2006].
The resulting optimisation is similar to the EM algorithm. After a suitable initial-
isation, L(q) is optimised with respect to the approximated distributions for each
variable in turn. This process is repeated until convergence has occured, which is
guaranteed through the fact that the lower bound is convex with respect to each
qj(Hj) [C. M. Bishop 2006].

2.1.3 Consequences of estimating the posterior distribution
through simplifying assumptions

Everything comes at a cost and so does the simplification of a posterior distribution.
Having strong dependencies in the true posterior often results in that L(q) is not
a convex function of the variational distribution when regarding all variables, and
that different local maxima may be reached, depending on initialisation. This makes
the initialisation important and leads to the usage of other algorithms, like common
spatial patterns and maximum likelihood estimation, to find suitable starting values
for variational inference [Wu et al. 2011; Wang 2007].
The problem with a multimodal true posterior can be explained in how the KL diver-
gence is minimised. As illustrated on figure 2.2 the minimisation of KL(q∥p) will lead
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to a distribution of q(H), which have its mass in areas where the true distribution
has a high probability, but may ignore other areas with a high probability. The re-
verse is true for the minimisation of KL(p∥q), which results in q(H) covering all areas
where the true distribution has a high probability even if it means covering areas of
low probability [Minka 2005]. The minimisation of KL(p∥q) is not possible through
factorised variational inference though, as this would require the expectation with
respect to the intractable p(H|V), when calculating the lower bound [J. M. Winn
2004].

(a) Minimising KL(q∥p) (b) Minimising KL(p∥q)

Figure 2.2: Approximation (red) of the true bimodal distribution (blue) through min-
imisation of a) KL(q∥p) and b) KL(p∥q) Murphy [2012].

2.2 Variational message passing
The factorisation in variational Bayes can be viewed as the decomposition of a large
network into a subset of factors that individually can be approximated variation-
ally, creating a message–passing algorithm. Variational message passing (VMP) by
J. Winn et al. [2005] is an efficient implementation of this principle in which each
factor is only conditioned on variables in the same Markov blanket. Because VMP
constrains the factors to be in the exponential family and conjugate with respect
to the distributions they are conditioned on (their parents), the variational updates
simplifies greatly [Attias 2000]. It is thus possible to write a conditional distribution
of the exponential family on a generic form that allows the algorithm to extract suf-
ficient statistics and pass on as a message. The receiving node can then update its
posterior belief from all the incoming messages.
VMP is a special case of a larger collection of message–passing algorithms that all
rely on minimising the α–divergence. What makes VMP unique is that it, like mean
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field theory, seeks the minimisation of the exclusive KL–divergence (α = 0), which
ensures that minimising the local divergence exactly minimises the global divergence.
Expectation Propagation (α = 0) is another optimisation scheme, which works for
KL(p∥q). [Minka 2005].
To implement VMP we have used the probabilistic programming framework In-
fer.NET developed by Minka et al. [2013].

2.2.1 Connection to variational inference
The joint probability distribution p(S) of a directed acyclic graph can be obtained as
the product of the distributions of each node Si [Jordan 1999]

p(S) =
∏
i

p(Si|pai) (2.16)

where pai is the parents of node i and Si is the variables in node i. Recall from
section 2.1.2 that, using H as the latent variables, the variational approximation of
this can be expressed as

q(H) =
∏
i

qi(Hi)

Minimising the Kullback-Leibler divergence we derive the same expression as in (2.15)

ln q∗j (Hj) = ⟨ln p(H,V)⟩H/j + C (2.17)

=

⟨∑
i

ln p(Si|pai)
⟩
H/j

+ C (2.18)

Terms that do not depend on HJ is constant which leaves the conditional of HJ and
the conditionals of all the children of HJ

ln q∗j (HJ) = ⟨ln p(HJ |paj)⟩H/j +
∑
k∈chj

⟨p(Sk|pak)⟩H/j + C (2.19)

The local distribution can be updated with the messages from the connected nodes,
but because these nodes have their own dependencies, the updating involves all of the
variables in the Markov blanket. These includes parents, children and co-parents as
shown in figure 2.3.

2.2.2 Exponential form
A distribution of the exponential family can be written on the form

p(H|V ) = exp[ϕ(V )Tu(H) + f(H) + g(V )] (2.20)

with ϕ(V ) as the natural parameter vector, u(H) as the natural statistic vector and
g(V ) as a normalisation function. The conjugacy constraint ensures that distribu-
tions has the same functional form as the priors so optimising a distribution only
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Figure 2.3: Local variational distribution of U

changes its parameters, ensuring a multi-linear relationship between the logarithm of
a conditional distribution, H, its natural statistic functions, u, and its parents, V.

2.2.3 Example: univariate Gaussian distribution
Using the model in figure 2.3 as an example we will show how the distribution over
U is updated. The columns of U and A are independent and can thus be modelled
by univariate Gaussians. In the following ud is an element from the model and u is
the natural parameter vector introduced in (2.20). Assuming a is a column vector,
rewriting the log conditional of the model with respect to ad we get

ln p(ad|ud, λ) = ln
(
λ

2π

) 1
2
− λ

2
(ad − ud)

2 (2.21)

=
1

2
(lnλ− ln(2π))− λ

2
(a2d + u2d − 2wnud) (2.22)

=

[
λud
−λ/2

]T
︸ ︷︷ ︸

ϕad
(ud,λ)

[
ad
a2d

]
︸ ︷︷ ︸
uad

(ad)

+
1

2
(lnλ− λu2d)︸ ︷︷ ︸
gad

(ud,λ)

−1

2
ln(2π)︸ ︷︷ ︸

fad
(ad)

(2.23)

Separating out the dependencies is done by rewriting (2.21) with respect to these

ln p(ad|ud, λ) =
[

− 1
2 (ad − ud)

2

1
2

]T [
λ

lnλ

]
− ln 2π (2.24)

=

[
λad
−λ/2

]T
︸ ︷︷ ︸

ϕadud

[
ud
u2d

]
︸ ︷︷ ︸
uad

(vd)

+
1

2
(lnλ− ln(2π)− λa2) (2.25)

Since the priors are confined to be exponential conjugate, the prior on ud must be a
normal distribution and the prior on λ must be a gamma distribution or alternatively
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a normal-gamma can be used over both. From the natural statistics vector in (2.24)
and (2.25) it is furthermore possible to see the shape that natural statics vectors must
take in the parents in order to uphold the linear relationship. Isolating ud and λ in
the natural statistics vector of the respective distributions we get the expressions

ln p(λ|aλ, bλ) =
[

bλ
aλ − 1

]T [
λ

lnλ

]
+ aλ ln bλ − Γ(aλ) (2.26)

ln p(ud|0, α) =
[

0
−α/2

]T [
ud
u2d

]
+

1

2
(lnα− ln(2π))

=

[
− 1

2u
2
d

−1
2

]T [
α

lnα

]
− ln(2π) (2.27)

with the expression for α being exactly the same as (2.26) but with α instead of λ.
The initialisation of the distributions is important and very model dependent but if
unspecified a broad non-informative prior is assumed.
Using (2.19) the distribution qud

(ud) can be updated with

ln q∗ud
(ud) = ⟨ln p(ud|α)⟩∼q(ud) + ⟨ln p(ad|ud, λ)⟩∼q(ud) + C

=
[
⟨ϕud

(α)⟩∼q(ud) + ⟨ϕadud
(ad, λ)⟩∼q(ud)

]T uud
(ud) + fud

(ud) + C (2.28)

Because q∗ud
is a conjugate exponential and thus on the same form as p(ud|α) it follows

that the natural parameter vector

ϕ∗ud
= ⟨ϕud

(α)⟩+ ⟨ϕadud
(ad, λ)⟩ (2.29)

is all that is needed to update the posterior and that the natural parameter vec-
tors are multi-linear functions of the natural static vectors. It is then possible to
reparameterise the expectations in (2.29) into

ϕ̃ud
(⟨uα⟩) = ⟨ϕud

(α)⟩ (2.30)
ϕ̃adud

(⟨uad
⟩, ⟨uλ⟩) = ⟨ϕadud

(ad, λ)⟩ (2.31)

It is thus evident that the message from parent to child must be on the form

mα→ud
= ⟨uα⟩ (2.32)

and from child to parent

mad→ud
= ϕ̃adud

(⟨uad
⟩,mλ→ad

) (2.33)

So, to update ud we need a message from ad in the form of (2.33) but this requires
updates from the co-parents of ud, i.e. λ, in the form of (2.32)

mλ→ad
=

[
⟨λ⟩
⟨lnλ⟩

]
(2.34)
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From (2.33) and (2.25) we get the message to ud from ad

mad→ud
=

[
⟨λ⟩⟨ad⟩
−⟨λ⟩/2

]
(2.35)

and the message from α to ud

mα→ud
=

[
⟨α⟩
⟨lnα⟩

]
(2.36)

When messages from all parents and children are received we see from (2.29) that the
posterior q∗ud

can be updated by updating the natural parameter vector

ϕ∗ud
=

[
0

−⟨α⟩/2

]
+

[
⟨λ⟩⟨ad⟩
−⟨λ⟩/2

]
(2.37)

The new expectation of ⟨uud
⟩q∗ud

can then be computed using

⟨uud
⟩q∗ud

= −dg̃(ϕ)
dϕ

(2.38)

where g̃(ϕ) is a reparameterisation of gud
(α) with respect to ϕ. By applying (2.38) it

is possible to derive the expectation of the natural statics vector u(ud)

⟨u(ud)⟩ =
[

⟨ud⟩
⟨u2d⟩

]
=

[
0

⟨α⟩−1

]
(2.39)

which is passed on as a message to any child node of ud. Similar computations are
required to update the rest of the variables in the model, but since these can be pre-
determined with respect to parent-child combinations of nodes, it is straightforward
to implement in software such as Infer.NET.

2.3 Review of methods for finding hidden correlations in
datasets

This section contains a short review of three other models, which are used to find
correlated time series in two or more datasets. These models will later be used for
comparison when testing the capabilities of BCoCA. First follows a brief explanation
of the classical CCA and then how CoCA relates to it. Lastly Bayesian group factor
analysis (GFA) [Virtanen et al. 2011], a latent model approach to CCA, will be
reviewed.

2.3.1 Canonical correlation analysis
CCA seeks to maximise the correlation between two time series vectors y1 = X(1)Tw(1)

k

and y2 = X(2)Tw(2)
k . At the same time CCA constrains the estimated weights with

the condition that X(1)Tw(1)
k and X(1)Tw(1)

k′ are uncorrelated for k ̸= k [Klami 2013].
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The maximum correlation is found by maximising the correlation coefficient;

ρ = argmax
w

yT1 y2
∥y1∥∥y2∥

. (2.40)

Introducing the sample covariance matrix,Rij =
1
NX

(i)X(j)T , (2.40) can be rewritten
to

ρ = argmax
w

w(1)TR12w(2)√
w(1)TR11w(1)

√
w(2)TR22w(2)

. (2.41)

CCA then finds the weights analytically through two eigenvalue decompositions [Hardoon
et al. 2004];

R−1
11 R12R−1

22 R21w(1) = ρ2w(1) (2.42)
R−1

22 R21R−1
11 R12w(2) = ρ2w(2).

2.3.2 Correlated component analysis
CoCA is based on the same method as CCA, but differentiates itself by finding one
set of weights that works for filtering both datasets. This means fewer degrees of
freedom and the ability to drop the constraint of orthogonality between weights,
which is not meaningful when dealing with EEG where they can be seen as spatial
filters [Dmochowski et al. 2012]. (2.41) is then simplified to

ρ = argmax
w

wTR12w√
wTR11w

√
wTR22w

. (2.43)

To maximise this expression the derivative with respect to w is set to zero. Introduc-
ing the scalar power expression, σij = wTRijw, the equation for w can be expressed
as

R12w
σ11σ22
σ12

= (R11σ22 +R22σ11)w. (2.44)

Assuming the two datasets have similar levels of power (σ11 ≈ σ22) the equation can
be changed into a generalised eigenvalue equation;

(R11 +R22)
−1R12w =

σ12
σ11

w (2.45)

To be able to guarantee real eigenvalues, R12 has to be symmetric. This is not
likely, but since R12 = RT

21 the matrix (R12 + R21) is symmetric. Before making
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this symmetrisation it is first necessary to prove that σ12 = σ21 using the fact that
Tr(AB) = Tr(BA) and aT · b = Tr(b · aT ) [Petersen et al. 2006]:

σ12 = wTX1XT
2w = Tr((X1XT

2wwT )T ) (2.46)
= wTX2XT

1w = σ21 (2.47)

Then the cross-covariance matrix can be symmetrised:

(R11 +R22)
−1 R21w+ (R11 +R22)

−1R12w

=
σ21
σ11

w+
σ12
σ11

w ⇔ (2.48)

(R11 +R22)
−1 (R12 +R21)w = 2 · σ12

σ11
w . (2.49)

Proof of Real Eigenvalues
Another property that needs to be in place to prove real eigenvalues is that since
Rii = 1

TXiXT
i is symmetric and positive definite, (R11 +R22) is also symmetric

and positive definite. This also ensures that the inverse of that matrix as well as
(R11 +R22)

−1/2 exists and that they are symmetric.
Defining equation (2.49) as (B−1Aw = λw), the matrix B−1A cannot be proved to
be symmetric, but writing up the characteristic polynomial and rearranging;

| B−1A− λI | = 0 ⇔ (2.50)

|B1/2| | B−1A− λI | |B−1/2| = 0 ⇔ (2.51)

| B−1/2AB−1/2 − λI | = 0, (2.52)

proves that since B−1/2AB−1/2 is symmetric and thereby have real eigenvalues, the
same must be the case forB−1A. This proves that the eigenvalues gained from CoCA,
when calculating the weights, are real.

Capability of CoCA when the true weights are dissimilar
Our initial assumption was that CoCA would attain poor results, when the true
weigths of each dataset where different from each other. However tests with simulated
data, proved only a small drop in performance. This lead to the following analytic
investigation of CoCA in the worst case scenario for the two-view situation, where
the weights are orthogonal.
The observations are assumed to consist of a single true signal mixed into D dimen-
sions by a vector and Gaussian noise;

X1 = a1z+ ϵ , X2 = a2z+ ϵ. (2.53)
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Given enough samples, the sample covariance matrices can be defined as

R11 = P · a1aT1 + σ2I , R12 = P · a1aT2 , (2.54)

where P signifies the power of z and σ2 signifies the noise variance. For simplicity
the weight vectors are assumed to have unit length.
The two matrices in (2.49) can now be written as

(R11 +R22)
−1 =

1

P

(
a1aT1 + a2aT2 +

2σ2

P
I
)−1

⇔ (2.55)

=
1

P

(
[a1 a2]

[
aT1
aT2

]
+

2σ2

P
I
)−1

(2.56)

R12 +R21 = P · [a1 a2]
[
aT1
aT2

]
(2.57)

using block matrix notation. With aT1 a2 = 0, ∥a1∥2 = ∥a2∥2 = 1 and the Woodbury
identity, (2.56) can be expressed as;

(R11 +R22)
−1 =

1

2σ2

(
I− P

2σ2
[a1 a2]

(
I− P

2σ2

[
aT1
aT2

]
[a1 a2]

)−1 [aT1
aT2

])
(2.58)

=
1

2σ2

(
I− P

2σ2
[a1 a2]

(
I− P

2σ2

[
1 0
0 1

])−1 [aT1
aT2

])
(2.59)

=
1

2σ2

(
I− P

2σ2 + P
[a1 a2]

[
aT1
aT2

])
. (2.60)

The matrix product of (2.56) and (2.57) then gives

(R11 +R22)
−1

(R12 +R21) =
P

2σ2

(
I− P

2σ2 + P
[a1 a2]

[
aT1
aT2

])
[a1 a2]

[
aT1
aT2

]
(2.61)

=
P

2σ2

(
1− P

2σ2 + P

)
[a1 a2]

[
aT1
aT2

]
(2.62)

=
P

2σ2 + P
(a1aT1 + a2aT2 ) (2.63)

Using the simplifying assumptions made earlier an eigenvector for (2.63) can be seen
to have the form αa1 + βa2 since

P

2σ2 + P
(a1aT1 + a2aT2 )(αa1 + βa2) =

P

2σ2 + P
(αa2 + βa1). (2.64)
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It can be seen that w = αa1 + βa2 is an eigenvector when either α = β or α = −β
with ± P

2σ2+P as eigenvalues. This means that when the true mixing weights of two
datasets are orthogonal CoCA finds a common weight, consisting of the mean of the
true weights.

2.3.3 Bayesian group factor analysis
GFA is a Bayesian latent model introduced in Virtanen et al. [2011], which is able
to compare multiple datasets at the same time to find common latent sources, as
well as view specific sources.1 It works by concatenating all datasets feature-wise,
X̄T

= [X(1)T , . . . ,X(M)T ], and treating it as one combined variable;

X̄ = AZ+E. (2.65)

Z consists of shared sources, view-specific sources, and view-specific structured-noise
sources. E is a diagonal matrix where all the variances, σm, are equal for each view.
A consists of the weights for all datasets, where each element is calculated separately
and the number of components are controlled through group-wise ARD;

p(A) =
M∏
m

K∏
k

Dm∏
d

N
(
am,k(d)|0, α−1

m,k

)
(2.66)

p(α) =
M∏
m

K∏
k

Ga(αm,k|a0, b0) (2.67)

Figure 2.4 visualises how A controls which components in Z that are shared, view-
specific or structured noise. GFA like CCA (and unlike CoCA) has the benefit of
being able to find correlates in datasets with different number of dimensions.

Figure 2.4: Illustration of the concatenation of data and how A controls which compo-
nents in Z that are shared, view-specific or structured noise. Modified from Virtanen et al.
[2011].

1Note that Virtanen et al. [2011] uses a transposed notation for their data e.g. their observation samples
lie in rows of X, where they lie in columns in this thesis. The equations in this section as well as figure
2.4 have been altered to match the notation employed in the rest of this thesis.
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2.4 Derivation of Bayesian correlated component analysis
This chapter will present two different prior distributions for a latent model approach
to multi-set correlated component analysis and the derivation of their posterior dis-
tributions through variational Bayesian inference. In section 2.9 both models will be
tested to decide which to use for the remainder of this thesis.
The difference between the two models is only in how they model the relationship
between the weights, A(m). They have the same prior distributions for the rest of the
variables, which are inspired by Bayesian CCA (BCCA) [Klami 2013; Wang 2007;
Wu et al. 2011];

p(X|Z,A,Ψ) =

M∏
m

N∏
n

N
(
x(m)
n |A(m)zn,Ψ(m)−1

)
(2.68)

p(Z) =
N∏
n

N (zn|0, I) (2.69)

p(Ψ) =
M∏
m

W(Ψ(m)|S0, v0) (2.70)

p(α) =

K∏
k

Ga(αk|a0, b0) (2.71)

p(λ) = Ga(a0, b0), (2.72)

where α is an ARD parameter regularising the number of components as used in
BCCA. Where BCoCA differentiates itself from the other BCCA models is by the λ
variable. It regularises the similarity between the weights for each dataset and is itself
regularised through ARD. Since both α and λ are defined as precisions for Gaussian
distributions, they are modelled as belonging to a gamma distribution, Ga. For the
same reason it was chosen to model the precision matrix, Ψ, instead of the covariance
matrix, as its conjugate prior is the Wishart distribution, W.
Below follows a description of the underlying idea of each model, as well as derivations
and the final updates. For the purpose of readability, the number of equations in the
derivations have been reduced. Instead an extensive example of the derivations for a
Bayesian approach to principal component analysis have been supplied in appendix
A. The example is simpler and easier to understand compared to BCoCA, but most of
the concepts can be directly transferred to the derivations presented in the following.

2.4.1 Bayesian CoCA based on mean weights
The significant aspect of this model is that the relationship among the As is based
on a shared mean weight. This can be seen in the prior distribution for A, which
have been expanded to include the latent variable, U, representing the mean weight
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Figure 2.5: BCoCA factor graph showing the relationship between variables and their
hyperparameters.

matrix across all datasets. The ARD variable λ now regularises how close the As lie
to U;

p(U|α) =
K∏
k

N
(
uk|0, α−1

k

)
(2.73)

p(A|U, λ) =
M∏
m

K∏
k

N
(
a(m)
k |uk, λ

−1
)

(2.74)

The relationship between the variables is also illustrated in figure 2.5. By the having
this structure for the model and using only conjugate distributions, the model also
fits within the VMP framework and enables a comparison between it and the Matlab
implementation developed for this thesis.
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The joint probability is then given by

p(V,H) = p(X,Z,A,U,Ψ,α, λ)
= p(X|Z,A,Ψ)p(Z)p(Ψ)p(A|U,α)p(U|λ)p(α)p(λ). (2.75)

In the rest of this section follows derivations for variational updates using (2.15).

Posterior for Z

The logarithm of the distribution for Z is approximated by

ln q(Z) = ⟨ln p(X|Z,A,Ψ)⟩/z + ln p(Z) + C ⇔ (2.76)

=
M∑
m

N∑
n

⟨
−1

2

(
zTnA(m)TΨ(m)A(m)zn − 2zTnA(m)TΨ(m)x(m)

n

)⟩
/z

−
N∑
n

1

2
||zn||2 + C ⇔ (2.77)

=
N∑
n

−1

2
zTn

(
M∑
m

{⟨
A(m)TΨ(m)A(m)

⟩}
+ I
)
zn

+ zTn
M∑
m

{⟨
A(m)T

⟩⟨
Ψ(m)

⟩
x(m)
n

}
+ C. (2.78)

A normal distribution for q(Z) can then be expressed as

q(Z) =
N∏
n

N
(
zn|µz,n,Σz

)
(2.79)

Σ−1
z =

M∑
m

{⟨
A(m)TΨ(m)A(m)

⟩}
+ I (2.80)

Σ−1
z µz,n =

M∑
m

⟨
A(m)T

⟩⟨
Ψ(m)

⟩
x(m)
n ⇔ (2.81)

µz,n = Σz

M∑
m

⟨
A(m)T

⟩⟨
Ψ(m)

⟩
x(m)
n . (2.82)

where ⟨.⟩ signifies the expectation. The calculation of
⟨
ATΨA

⟩
is not as straightfor-

ward as the rest of the expectations in this update. Doing the matrix multiplications
first results in a K ×K matrix, where each element is defined by

⟨
aTkΨak′

⟩
. Using

[Petersen et al. 2006, (378)] this can be calculated as Tr(ΨΣwk
) +

⟨
aTk
⟩
⟨Ψ⟩ ⟨ak′⟩.
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The covariance matrix, Σwk
, is assumed diagonal so using the fact that Tr(Σak) =∑D

d Σad(k, k), the elements are then calculated as

⟨
aTkΨak′

⟩
=

D∑
d

ψd,dΣad(k, k) +
⟨
aTk
⟩
⟨Ψ⟩ ⟨ak′⟩ , for k = k′ (2.83)

=
⟨
aTk
⟩
⟨Ψ⟩ ⟨ak′⟩ , for k ̸= k′. (2.84)

Note that there is no covariance when k ̸= k′, since the columns of A are assumed
independent. This means that the expectation of the entire matrix is given by

⟨
ATΨA

⟩
=

D∑
d

ψd,dΣad +
⟨
AT
⟩
⟨Ψ⟩ ⟨A⟩ , (2.85)

where ad is a the d’th row of A, for a more compact notation.

Posterior for Ψ

The logarithm of the distribution for Ψ is approximated by

ln q(Ψ) = ⟨ln p(X|Z,A,Ψ)⟩/Ψ + ln p(Ψ) + C (2.86)

Using [Petersen et al. 2006, (15-17)] the approximation can be written as

ln q(Ψ) =
M∑
m

N

2
ln
∣∣∣Ψ(m)

∣∣∣− 1

2

N∑
n

⟨
Tr
(
Ψ(m)A(m)zn(A(m)zn)T

)
+Tr

(
Ψ(m)x(m)

n x(m)T
n

)
− 2 · Tr

(
Ψ(m)x(m)

n (A(m)zn)T
)⟩

/Ψ

+
v0 −D − 1

2
ln
∣∣∣Ψ(m)

∣∣∣− 1

2
Tr(S−1

0 Ψ(m)) + C ⇔ (2.87)

=
M∑
m

1

2
ln
∣∣∣Ψ(m)

∣∣∣ (N + v0 −D − 1)− 1

2
Tr
{(⟨

A(m)
N∑
n

znzTnA(m)T

⟩

+
N∑
n

x(m)
n x(m)T

n − 2 ·
N∑
n

x(m)
n

⟨
zTn
⟩ ⟨
A(m)T

⟩
+ S−1

0

)
Ψ(m))

}
+ C. (2.88)
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A Wishart distribution for q(Ψ) can then be expressed as

q(Ψ) =

M∏
m

W
(
S(m)
Ψ , vΨ

)
(2.89)

S(m)
Ψ

−1
=

⟨
A(m)

N∑
n

znzTnA(m)T

⟩
+

N∑
n

x(m)
n x(m)T

n

− 2 ·
N∑
n

x(m)
n

⟨
zTn
⟩ ⟨
A(m)T

⟩
+ S−1

0 (2.90)

vΨ = N + v0 (2.91)

As with the update for Z the calculation of
⟨
A∑N

n znzTnAT
⟩

poses some diffi-
culty. Note that the result is now a D × D matrix with each element calculated
as
⟨
ad
∑N

n znzTnaTd′

⟩
. Using [Petersen et al. 2006, (378)] again the elements are cal-

culated as⟨
ad

N∑
n

znzTnaTd′

⟩
= Tr(ΨΣwd

) + ⟨ad⟩
⟨

N∑
n

znzTn

⟩⟨
aTd′

⟩
, for d = d′ (2.92)

= ⟨ad⟩
⟨

N∑
n

znzTn

⟩⟨
aTd′

⟩
, for d ̸= d′. (2.93)

This calculation is inspired by the R-code supplied for Wang [2007] and assumes that
the rows of A are independent.
Using variational inference results in the following approximated distributions.

Posterior for A
The logarithm of the distribution for A is approximated by

ln q(A) = ⟨ln p(X|Z,A,Ψ) + ln p(A|U, λ)⟩/A + C ⇔ (2.94)

= −1

2

M∑
m

N∑
n

⟨
(x(m)

n −A(m)zn)TΨ(m)(x(m)
n −A(m)zn)

⟩
/A

−
M∑
m

K∑
k

⟨
λ

2
||a(m)

k − uk||2
⟩

/A
+ C ⇔ (2.95)

=

D∑
d

⟨
−

N∑
n

1

2

ψ(m)
dd a

(m)
d znzTna

(m)T
d +

D∑
d′ ̸=d

{
ψ
(m)
dd′ a(m)

d znzTna
(m)T
d′

}
−2a(m)

d znψ(m)
(d,:)x(m)

n

)
− λ

2
a(m)T
d a(m)

d + λa(m)T
d ud

⟩
/A

+ C. (2.96)
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Note again that ad is a the d’th row of A, for a more compact notation. A normal
distribution for q(A) can then be expressed as

q(A) =
M∏
m

D∏
d

N
(
â(m)
d | µ(m)

ad ,Σ(m)
ad

)
(2.97)

Σ(m)
ad

−1
=
⟨
ψ
(m)
dd

⟩ N∑
n

⟨
znzTn

⟩
+ ⟨λ⟩ I (2.98)

µ(m)
ad = Σ(m)

ad

(
N∑
n

⟨zn⟩
⟨
ψ
(m)
(d,:)

⟩
x(m)
n + ⟨λ⟩ ⟨ud⟩

−
D∑

d′ ̸=d

⟨
ψ
(m)
dd′

⟩ N∑
n

⟨
znzTn

⟩ ⟨
a(m)T
d′

⟩ , (2.99)

where â(1)d is a column vector corresponding to the d’th row of A.

Posterior for U
The logarithm of the distribution for U is approximated by

ln q(U) = ⟨ln p(A|U, λ) + ln p(U|α)⟩/U + C ⇔ (2.100)

=
K∑
k

M∑
m

{
⟨λ⟩uT

k

⟨
a(m)
k

⟩
− ⟨λ⟩

2
uT
k uk

}
− ⟨αk⟩

2
uT
k uk + C. (2.101)

A normal distribution for q(U) can then be expressed as

q(U) =

K∏
k=1

N
(
uk| µuk

, σ2
uk
I
)

(2.102)

σ−2
uk

=M ⟨λ⟩+ ⟨αk⟩ (2.103)

µuk
= σ2

uk
⟨λ⟩

M∑
m

⟨
a(m)
k

⟩
. (2.104)

Posterior for α

The logarithm of the distribution for α is approximated by
ln q(α) = ⟨ln p(U|α)⟩/α + ln p(α) + C ⇔ (2.105)

=

K∑
k

D

2
lnαk − αk

2

⟨
||uk||2

⟩
+ (a0 − 1) lnαk − b0αk + C. (2.106)
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A gamma distribution for q(α) can then be expressed as

q(α) =
K∏
k

Ga(αk|aα, bαk
) (2.107)

aα = a0 +
D

2
(2.108)

bαk
= b0 +

⟨
uT
k uk

⟩
2

. (2.109)

Posterior for λ
The logarithm of the distribution for λ is approximated by

ln q(λ) = ⟨ln p(A|U,α)⟩/λ + ln p(λ) + C ⇔ (2.110)

= −λ
2

K∑
k

M∑
m

{⟨
uT
k uk

⟩
+
⟨
a(m)T
k a(m)

⟩
− 2

⟨
a(m)T
k

⟩
⟨uk⟩

}
+ (a0 − 1) lnλ− b0λ+ C. (2.111)

A gamma distribution for q(λ) can then be expressed as

q(λ) = Ga(λ|aλ, bλ) (2.112)

aλ = a0 +
MKD

2
(2.113)

bλ = b0 +

K∑
k

M

⟨
uT
k uk

⟩
2

+

M∑
m


⟨
a(m)T
k a(m)

k

⟩
2

−
⟨
a(m)T
k

⟩
⟨uk⟩

 . (2.114)

Note that vΨ, aα and aλ are constants and can be defined before iterating over the
other updates.

2.4.2 Bayesian CoCA based on pair-wise similarity
The priors presented in this section is based on a two-view conditional relationship
between the A(m)’s described by:

A(m) ∼
K∏
k

N
(
a(m)
k |0, α−1

k

)
(2.115)

p
(
A(1)|A(2), λ

)
=

K∏
k

√
λ

2π

D

exp
{
−λ
2
||a(1)k − a(2)k ||2

}
. (2.116)
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It can be seen that high values of λ forces the two mixing matrices to be similar,
resulting in a Bayesian version of CoCA [Dmochowski et al. 2012]. On the other
hand a value of λ close to zero will remove the influence of the conditional probability
and the mixing matrices are free to be dissimilar. This will result in a bayesian CCA
as proposed by [Klami 2013; Wang 2007], though with the constraint that the mixing
matrices can only find the same shared sources.

Conditional distribution between A’s
The regulation of the similarity between the weights, A, through their variance in
(2.116) can be seen as

ln(p(A)) ∝ −1

2

K∑
k

(
(α+ λ)||a(1)k ||2 + (α+ λ)||a(2)k ||2 − 2λa(1)Tk a(2)k

)
(2.117)

= −1

2

K∑
k

[
a(1)Tk a(2)Tk

] [
(α+ λ) −λ

−λ (α+ λ)

] [
a(1)k

a(2)k

]
. (2.118)

With this matrix notation in mind, an expansion for multiple datasets could then be
expressed as

ln(p(A)) ∝ −1

2

K∑
k


a(1)k
...

a(m)
k


T  α+(M−1)λ · · · −λ

... . . . ...
−λ · · · α+(M−1)λ



a(1)k
...

a(m)
k

 (2.119)

= −1

2

M∑
m

K∑
k

(
(α+ (M − 1)λ)||a(m)

k ||2 − 2

M∑
m′=m+1

λa(m)T
k a(m

′)
k

)
(2.120)

=
M∑
m

{
ln p

(
A(m)|α

)
+

M∑
m′=m+1

ln p
(
A(m)|A(m′), λ

)}
. (2.121)

The (M−1) scaling for λ in eq. (2.119) is necessary to still use the gaussian expression
for the conditional distribution between the weights in eq. (2.121). The symmetric
nature of p

(
A(m)|A(m′), λ

)
makes it possible to calculate all relationships between

the A’s in this manner.
The joint probability is then given by

p(V,H) = p(X|Z,A,Ψ)p(Z)p(Ψ)p(α)p(λ)

·
M∏
m

{
ln p

(
A(m)|α

) M∏
m′=m+1

ln p
(
A(m)|A(m′), λ

)}
. (2.122)
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Variational approximation of posterior distributions

As mentioned earlier the two models for BCoCA are equal in most areas, which also
expresses itself in the similarity in the variational updates for the models. In fact, the
updates for q(Z) and q(Ψ) are identical for both models, which in message passing
terminology can be explained with the children and parents for both variables being
the same. This is not the case for the rest of the variables, but since the principles
for the derivations of their updates are similar between the models they are omitted
in this section. Below are the updates for A, λ, and α.

q(A(m)) =

D∏
d=1

N
(
â(m)
d |µ(m)

ad ,Σ(m)
ad

)
(2.123)

Σ(m)
ad

−1
=
⟨
ψ
(m)
dd

⟩ N∑
n

⟨
znzTn

⟩
+ (M − 1) ⟨λ⟩ I+ diag(⟨α⟩) (2.124)

µ(m)
ad = Σ(m)

ad

 N∑
n

⟨zn⟩
⟨
ψ
(m)
(d,:)

⟩
x(m)
n +

M∑
m′ ̸=m

⟨λ⟩
⟨
a(m

′)T
d

⟩

−1

2

D∑
d′ ̸=d

{⟨
ψ
(m)
dd′

⟩ N∑
n

⟨
znzTn

⟩ ⟨
a(m)T
d′
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q(λ) = Ga(λ|aλ, bλ) (2.129)
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, (2.131)

where â(1)d is a column vector corresponding to the d’th row of A.
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2.5 Lower bound for BCoCA

In section 2.1.1 the lower bound, L(q) was introduced as an expression to maximise
instead of minimising the KL divergence, as the sum of these two equals the loga-
rithm to the true likelihood function. It was also explained that the L(q) is a good
measure for estimating time of convergence, which is why this section will concern
the calculation of this measure.

L(q) is often calculated to estimate the time of convergence, by setting a threshold
for the relative change wrt. previous iteration. It is usually derived as the sum of
the expectations of each variable in q(H) and p(H,V) wrt. q(H) calculated inde-
pendently. Inspired by Murphy [2012] we have chosen to combine the expectations
into one equation and let terms containing the same variables cancel each other out,
where applicable. Since it is the change of the lower bound that is of interest, we also
combined all constant terms into the common constant, C. As can be seen later in
this section, the result is a much simpler expression for L(q), compared to the one
presented in Wu et al. [2011] and in the R-code supplied for Wang [2007].

Expanding the expression for the lower bound as defined in (2.7) gives

L(q) = ⟨ln p(X|Z,A,Ψ)⟩q(H) + ⟨ln p(Z)⟩q(H) + ⟨ln p(Ψ)⟩q(H) + ⟨ln p(A|U, λ)⟩q(H)

+ ⟨ln p(U|α)⟩q(H) + ⟨ln p(α)⟩q(H) + ⟨ln p(λ)⟩q(H) +H[q(Z)] +H[q(Ψ)]

+H[q(A)] +H[q(U)] +H[q(λ)] +H[q(α)], (2.132)

where H[q(H)] signifies the entropy of q(H), and we have used the fact that
⟨− ln q(H)⟩q(H) = H[q(H)] [Murphy 2012]. To calculate each term the following rela-
tions for Gaussian, gamma, and Wishart distributions are used;

N (x|µ,Σ) :
⟨x⟩ = µ (2.133)⟨

xTx
⟩
= Tr(Σ) + µTµ (2.134)

H[x] = 1

2
ln |Σ|+ D

2
(1 + ln 2π) (2.135)

Ga(λ|a, b) :

⟨λ⟩ = a

b
(2.136)

⟨lnλ⟩ = ψ(a)− ln b (2.137)
H[λ] = lnΓ(a)− (a− 1)ψ(a)− ln b+ a (2.138)
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W(Ψ|S, v) :
⟨Ψ⟩ = vS (2.139)
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2

)
+D ln 2 + ln |S| (2.140)
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2
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2
(2.141)
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2
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, (2.142)

where ψ(a) and Γ(a) are the digamma and gamma function, respectively [C. M.
Bishop 2006].

Each term in (2.132) are derived using the updates shown in 2.4.1 and constant terms
are absorbed into the constant C. The derivations in 2.4.1 are also used to exchange
some expressions with some of the variables already calculated in the updates.
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= −aλ
bλ

(bλ − b0) +
DMK

2
(ψ(aλ)− ln bλ) + C ⇔ (2.150)

= b0
aλ
bλ

− DMK

2
ln bλ + C (2.151)
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H[q(λ)] = − ln bλ + C (2.165)

H[q(α)] = −
K∑
k

ln bαk
+ C (2.166)

Note that vΨ, aα and aλ are constant over the iterations and therefore absorbed into
the constant C. Setting all these equations into (2.132) and letting terms with the
same variables cancel each other out results in a much simpler expression for the lower
bound, as compared to calculating each equation and summing over these afterwards;
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This expression only calculates how the variables, that change between iterations,
influence the lower bound. Therefore it cannot be used to directly compare with
other models based on other priors. It can however be used for estimating a time of
convergence and as measure to decide on the best result among multiple runs on the
same data, which is also what it will be used for in this thesis.

2.6 Independent component analysis
Eye movement and eye blinks cause major artefacts in EEG recordings and it is often
necessary to remove these in order to further process the data. Since the idea of
independent component analysis (ICA; Molgedey et al. [1994] and Bell et al. [1995])
it has been used to separate artefactual components from EEG data [Makeig et al.
1996; Jung et al. 2000] and the research into this field continues rigorously in order to
remove as much noise as possible, preferably automatically, while retaining the signal
[Mammone et al. 2012].
ICA assumes that a set of recorded signals x = [x1 . . . xN ]T are a linear mixture of
the sources z = [z1 . . . zN ]T by the square mixing x = Az. ICA tries to estimate the
spatial filter that inverts the mixing process and thus recovers the sources ẑ = Wx
with the constraint that the sources are statistically independent.

2.7 Correlation permutation test
CoCA was developed by Dmochowski et al. [2012] to find shared signals in two EEGs
from subjects experiencing the same stimulus. In their article they used the averaged
correlation coefficient [Pearson 1896] calculated pair-wise between a group of subjects
as a measure to find time intervals of high correlation in the group and a permutation
test to establish a level of significance. As we will employ the same method on the
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EEG recordings presented in this thesis, the concept of a permutation test will be
explained here.

A permutation, or randomisation, test between two groups of data has the advantage
that it does not attempt to make assumptions for the true distributions of the datasets,
and therefore refrains from estimating parameters for them. Instead it uses repeated
shuffling of the members of each group to estimate whether or not there is a difference
between the original two groups and these random groupings of data.

After estimating a statistical measure between two groups of data, the permutation
test shuffles the data, randomly assigns each observation to one of the two groups,
and estimates the statistical measure again. This process is repeated until the statis-
tical measure is calculated on all or a fixed amount of the permutation possibilities.
One can define a null hypothesis that the original measure is no different from the
statistical measures stemming from the permuted data. This null hypothesis can then
be disproved if the original measure lies outside the distribution of permuted data by
some critical value. If the null hypothesis can be disproved, the original statistical
measure between the two groups of data is deemed significant [Manly 2007].

As the null hypothesis cannot be proved, but only disproved, the validity of the
permutation test is increased when it is able to disprove the null hypothesis more
readily. This ability is improved when the amount of permutations are increased, at
the cost of additional calculations [Fisher et al. 1949].

In this thesis the permutation test will be employed on the correlation between two
time series stemming from EEG filtered by the weights from either CoCA or BCoCA.
The correlation between the time series is calculated on windows of the data with
a fixed length and overlap, which defines the temporal resolution of the test. As in
Dmochowski et al. [2012] the order of one of the time series will be unchanged, and the
permutations will only be conducted on the other time series. However, Dmochowski
et al. [2012] does not state how they calculate p-values for the correlation coefficient
averaged over all pairs of subjects in a given group.

In this thesis it was therefore chosen to employ a permutation test for the averaged
correlation coefficient from the pair-wise correlations between a group of subjects. For
each permutation of a specific window of the time series, the ordering of samples in
each of the permuted correlations were saved and used for the corresponding window
in the other time series. This way a permutations test could be conducted for the
average of the correlations using the average of each correlation for a specific permu-
tation of the time series. However, taking the average over the permuted correlations
lowered their correlation coefficients and produced low p-values for all windows. It
was therefore chosen to calculate the p-values for each pair-wise correlation and use
these in two ways to test for differences. The first way was to use the average critical
correlation value for a p-value of 0.01, to decide when a window of the average correla-
tion coefficient was significant. The other method of testing was to test for the total
number of significant windows in all pair-wise correlations, using their p-values to
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correct for multiple comparisons by controlling the false discovery rate, as explained
in the following section.
The correlation permutation test can be explained in the following steps:

1. Calculate the correlation coefficient for the first window between the two time
series.

2. Randomly reorder the second time series NP times for this window, gaining NP

new time series.

3. Calculate the correlation coefficient for each permuted time series.

4. Sort the correlation coefficients for the window after size and calculate the
p-value as the number of correlation coefficients higher or equal the original
(including the original), divided by the total number of correlation coefficients
(including the original).

5. Move the window and repeat step 1 to 4 for the entire length of the pair of time
series.

The implementation in Matlab was utilised using a modified version of the script
supplied by Groppe et al. [2011]. The number of permutations, NP , was set equal to
5000 to ensure a test with a alpha level of significance equal to 0.01 [Manly 2007].

2.8 Controlling the false discovery rate
When conducting multiple tests there will by definition be a number of false positives
based on the significance level, α, for the test. The correlation permutation test is
conducted for each window of the time series, so a test with 300 windows and a
significance level of 0.01 should produce 3 false positives on average. To control for
this effect a number of correction schemes exists for multiple comparisons, some more
conservative than others. In this thesis the control for false discovery rate (FDR) will
be employed.
Having N tests with N null hypotheses, Hn, and N p-values, pn, FDR orders the
p-values after size so that p1 ≤ ... ≤ pi ≤ ... for i = {1, ..., N}. It then finds the
highest number of i for which

pi ≤
i

N
α (2.168)

is true. The null hypotheses with p-values below pi can then be rejected (Hi included).
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2.9 Testing BCoCA on simulated data
In this section the performance of BCoCA will be evaluated on simulated data. First
the two versions of BCoCA will be tested and compared, where the one with the
highest test scores will be used for the remainder of this thesis. This is followed
by a test of implementation, where the same BCoCA model will be implemented
with VMP using Microsoft’s Infer.NET and with the updates derived in section 2.4
implemented in Matlab. Finally follows a comparison with GFA, CoCA and CCA,
tested under varying conditions.

2.9.1 Simulation design
To measure the performance between the different algorithms, data is generated from
the BCoCA model with a varying λ parameter. This approach generates data, with
equal true weights for all datasets, when λ ≫ 1 and i.i.d. true weights when λ ≪ 1.
In the two-view situation λ ≫ 1 should be ideal for CoCA, and CCA better suited
for λ≪ 1. The data is simulated with the following model

X(m) = A(m)
trueZ+ ϵ (2.169)

where Z is a K ×N source matrix containing K time series. The added noise, ϵ, is
i.i.d. gaussian with zero mean and a variance, σ2

ϵ , that is varied to obtain the desired
signal-to-noise ratio (SNR). The SNR is calculated as

SNR = 10 log10
(
E[s2]
E[n2]

)
(2.170)

Since the noise has zero mean its power expression can be exchanged by its variance,
which can then be isolated;

σ2
n = E[s2] · 10−SNR/10. (2.171)

A is formulated as

A(m)
true = U+ δ(m) (2.172)

with U ∼ N (0,α−1) and δ(m) ∼ N (0, λ−1). The variance across views are hence
only modelled by λ.

Choosing hidden sources
We have used up to four hidden sources, generated in the same manner as in Klami
[2013], for comparability with their results. The tests will be conducted with the
simple case of one hidden source corresponding to K = 1 in (2.169), meaning that
the data is generated from one sinusoid and additive noise, and a more complex case
with all four components.
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Figure 2.6: The four signals used as true sources in simulated data used for testing
BCoCA, GFA, CoCA and CCA.

Measure of performance

The correlation coefficient between the inferred sources and the true source was chosen
as the measure of performance. Since the latent models infer a common Z for all
datasets, the mean of the view specific y1 and y2 was used as the inferred sources
for CCA and CoCA. This improved their performance by approximately 10 - 20%
compared to only using y1. For each condition 20 datasets were randomly generated
from the distributions described in section 2.9.1 and each algorithm was tested on
the same data. The mean and standard error of the mean for the 20 datasets were
calculated and used to compare the performance between the algorithms. In the tests
with four hidden sources all correlation combinations between the inferred sources
and the true ones were calculated, where each inferred source was only allowed to
correlate with one true source and vice versa. The combination with the highest
mean correlation was then chosen.

CoCA and CCA on multiple datasets

CoCA and CCA can only compare two datasets at a time. In case of multiple dataset
comparison this thesis will follow the same method as in Dmochowski et al. [2012],
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where the datasets are concatenated sample-wise into

X̄(1)
= [X(1),X(1),X(1),X(2),X(2),X(3)],

X̄(2)
= [X(2),X(3),X(4),X(3),X(4),X(4)] (2.173)

so that all combinations of datasets will be compared. As both CoCA and CCA
use eigenvalue decomposition on the sample covariance matrices, using X̄1 and X̄2

corresponds to using the average pair-wise sample covariance matrices. This way the
eigenvalue decomposition has to be calculated only once. However using this method
the number of samples in X̄1 scales by M(M − 1)/2, with (2.173) showing the case
of concatenating with four datasets.

Testing conditions
The algorithms were tested at varying levels of SNR, number of datasets, M , and
similarity between the true weights of each dataset. In each test the dataset had six
dimensions and the number of observations was set to 500, except when varying the
number of datasets. This test was conducted on a total of 5.000 samples spread out
equally among the datasets, so that each contained 2.500 samples for M = 2 and 500
samples forM = 10. All the conditions were tested with one and four hidden sources.

2.9.2 Results
Testing the implementation of BCoCA
Figure 2.7 shows the performance of the two approaches to BCoCA presented in
2.4 under varying number of datasets. The datasets were set to be dissimilar with
λ = 0.001 and two levels of SNR = {−6, 0} were used. It can be seen that the
approach with pair-wise similarity between the weights has difficulties with higher
number of dissimilar datasets, in the same manner as will be seen for CCA and
CoCA later in this section. This might be a result of the view-specific As being
calculated in a pair-wise manner, as seen in (2.121), similar to the method used for
CCA and CoCA explained in (2.173). All of the tests with varying conditions for
comparison with CCA, CoCA, and GFA, were tested on both approaches to BCoCA.
The approach with a shared mean for the weights achieved the most consistent high
performance and it was therefore decided to use this as the model for BCoCA for the
remainder of this thesis.
Figure 2.8 shows the performance of BCoCA implemented in Matlab using the deriva-
tions presented in 2.4, and a version implemented with VMP at varying levels of SNR,
and with the same initialisation. The two mean values are seen to be nearly equal
across all values of SNR. The two implementations were therefore deemed to have
equal performance, with deviations that could be explained by different order of
updates as well as the computational differences by different software. The imple-
mentation in Matlab based on a common mean for the weights is therefore used for
the remainder of this thesis.
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Figure 2.7: Comparison between the two approaches to BCoCA presented in section 2.4,
in the case of one hidden source with a varying number of datasets and SNRs equal to 0
and -6. λ was set equal to 10−3 making the true weights of the datasets i.i.d. The shown
correlation coefficient is calculated as the mean of 20 simulations at each condition, with
the standard error of the mean illustrated as the opaque area.

Figure 2.8: Comparison between BCoCA implemented in Matlab using the derivations
with a shared mean for the weights, and a version implemented with VMP using Infer.NET
at varying levels of SNR and one hidden source. λ was set equal to 103 making the true
weights of both datasets nearly equal. The shown correlation coefficient is calculated as the
mean of 20 simulations at each condition, with the standard error of the mean illustrated
as the opaque area.
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(a) M = 2, λ = 1000 (b) M = 5, λ = 0.001

Figure 2.9: Performance of BCoCA, GFA, CoCA and CCA on simulated data measured
by mean correlation coefficient and standard error of the mean with respect to the true
source calculated over 20 repetitions. The performance is tested under different levels of
SNR and (a) 2 datasets and similar true weights (λ = 1000) as well as (b) and dissimilar
true weights (λ = 0.001) and 5 datasets.

Performance on varying conditions
Selected results from the tests on the simulated data can be seen in figures 2.9 to
2.11. Additional figures with other combinations of the conditions can be seen in
appendix B. Figures 2.9(a) and 2.9(b) show the performance on increasing values of
SNR for one hidden sources and λ = 103 and λ = 10−3, signifying similar and non-
similar weights, respectively. In the two view situation it can be seen that for high
levels of SNR the algorithms perform equally well, but as the noise levels increase
the latent models quickly drop towards zero correlation, though BCoCA do so less
steeply and can perform at lower levels of SNR compared to GFA. This quick drop is
due to the models choosing the zero-source solution as the cost of a poor estimation
gets too high. BCoCA comes closer to zero as this algorithm seemingly choose a
source of constant zeros, as opposed to what appears to be low amplitude noise.
Better initialisation and basing the prior hyper parameters on the observed data might
improve the performance on data with high levels of noise for the latent models. It can
also be seen that increasing the number of datasets to five increases the performance
of the latent models at the low levels of SNR, and that the opposite is true for CCA
and CoCA, in the case of dissimilar true weights.
The impact of increasing the number of datasets are further explored in figures 2.10(a)
and 2.10(b). Here two things are evident for the latent models; That BCoCA again
outperforms GFA at low levels of SNR and that increasing the number of datasets
increases the correlation even though the number of observations do not increase.
Some of this effect could stem from averaging out the random noise, when calculating
the inferred source as the mean of the sources of estimated on each datasets. The
figures also show that CCA and CoCA only benefits for the increased number of
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(a) λ = 0.001 (b) λ = 1000

Figure 2.10: Performance of BCoCA, GFA, CoCA and CCA on simulated data measured
by mean correlation coefficient and standard error of the mean with respect to the true
source calculated over 20 repetitions. The performance is tested with a varying number of
datasets and two levels of SNR (solid: SNR = 0, dashed: SNR = -6) and (a) dissimilar
true weights (λ = 0.001) as well as (b) similar true weights (λ = 1000).

datasets, when their true weights are equal (or just similar as seen on figure B.9).
With completely dissimilar true weights, it actually seems to have a negative effect,
when the observations are spread out over more datasets. When considering that CCA
and CoCA deal with increasing datasets by concatenating them into two datasets,
the importance of having equal weights makes sense as this corresponds to actually
just having two datasets. The increased performance must then stem from having
more instances of the signal and then be able to average the noise out.

All tests were run at different levels of similarity between the true weights of each
dataset by varying λ. Figure 2.11(a) shows that in case of two datasets and one hidden
source. As expected the effect can only be seen on CoCA and BCoCA, but CoCA
handles the datasets with different true weight better than initially anticipated. An
explanation to this is discussed in 2.3.2. Figure 2.11(b) illustrates that for multiple
datasets it is CCA and CoCA and that benefits from similar true weights, where the
two latent models are indifferent to the change. This, however, is only true when
hidden sources only consists of a sinusoid. Figures B.1 and B.2 show that with four
hidden sources only CoCA have a slight advantage from increasing λ.

2.10 Model validation on real EEG data

To validate the model beyond testing on artificial data, the performance of BCoCA
will be evaluated on EEG from two separate experiments. Both datasets are recorded
using event-related paradigms, but for processing with BCoCA, the data is treated
as being continuous.
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(b) M = 5

Figure 2.11: Performance of BCoCA, GFA, CoCA and CCA on simulated data measured
by mean correlation coefficient with respect to the true source calculated over 20 repetitions.
The similarity between the true weights are varied by the λ parameter and shows the
correlation with two levels of SNR (solid: SNR = 0, dashed: SNR = -6).

2.10.1 Face-evoked response
A widely accepted theory of face recognition is the multi-component model of face-
processing [Bruce et al. 1986] in which the brain derives details about a person from
physical aspects. These are used to create a structural model that is passed on to
other processes that are responsible for recognition, identification, expression analysis,
etc. Henson et al. [2003] conducted an experiment in which subjects where exposed
to a series of images of faces or scrambled faces. The hypothesis from earlier [Bentin
et al. 1996] was that a negative peak around 170 ms (N170) post stimulus in the
posterior region is greater when the subject is shown a face compared to a scrambled
face.

Paradigm and pre-processing
Based on Phase 1 in the study by Henson et al. [2003] a subject was over two trials
presented with 86 images of faces and 86 images of scrambled faces. The data was
bandpass filtered (2-100 Hz), down-sampled to 200 Hz and epoched using the software
package statistical parametric mapping (SPM12). The dataset is available online from
the SPM website2 [Henson n.d.].

ERP Analysis
The epoched data was for each trial concatenated and tested using BCoCA, CoCA
and CCA. For the latter two the filters corresponding to the maximally correlated
components where used. Epochs from both conditions were processed at the same
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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time, yielding a single component that was then divided into epochs corresponding
to the raw data. In figure 2.12a the averaged epochs for the two conditions are
illustrated for the raw EEG and from this it is not possible to distinguish the events
of interest from noise. In 2.12b the averaged epoch of the first components for each
condition shows that all the algorithms have extracted a coherent signal and that the
results are very similar. In figure 2.12c the difference signal of the averaged epochs
shows as expected that the negative peak at N170 is greater for the face condition. All
algorithms locate the time of this occurrence as around 190 ms which corresponds well
with the literature [Henson et al. 2003]. To localize the neurons that are responsible
for the face processing, the average of the epochs for the face condition at 170 ms
was subtracted from the average scrambled condition. Projecting the channels onto
a 2D scalp map as in figure 2.13(d) illustrates clearly how the posterior regions in the
occipital lobe contribute more negatively in the face condition. Projecting the weights
from BCoCA the illustration in figure 2.13(a) depicts the correlated neural activity.
The result shows that the signals in the posterior region are highly correlated. The
BCoCA algorithm has thus effectively extracted the component from the datasets
that exactly depicts the neural activity of interest. Using the forward model [Parra
et al. 2005] to plot the projection of CoCA in figure 2.13(b), it shows a very similar
result to BCoCA as expected. The CCA weights in figure 2.13(c) is, however, much
more localised to specific channels. This may be more accurate in determining precise
neural activation of dominant areas, but by comparison to the projection of the actual
activity, BCoCA and CoCA clearly derives more anatomically correct results.

2.10.2 Synonym/non-synonym EEG

Using a cohort of 5 subjects, the data was recorded by speaking two words to a person
who then responded whether they were synonyms. The dataset was then separated
into synonyms and non-synonyms by independent component analysis.

Pre-processing

The data was bandpass filtered to 0.5 Hz – 100 Hz, re-sampled to 200 Hz and divided
into epochs with the latency of the second word as zero. To reduce noise from eye
movement the independent component with most activity in the eye region was used as
a template to find similar components, using the function CORRMAP in EEGLAB
[Delorme et al. 2004], which were extracted from all datasets. It has previously
been shown that alpha band de-synchronisation is linked with tasks that require
the subjects attention [Klimesch et al. 1998] so the band power of the alpha band
(7–15Hz) was used as test data. The variation in response time is quite significant
and is probably due to difference in level of familiarity with the words. To remove
outliers the epochs where ordered with respect to latency of response time and only
epochs 21–160 where used.
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Figure 2.12: a) Averaged epochs across all channels of the raw EEG for faces and scram-
bled. b) Averaged epochs in component space found by BCoCA, CoCA and CCA for
face and scrambled condition c) Difference between average epoch for face and scrambled
condition in component space
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Figure 2.13: (a) Scalp projections of weights from the BCoCA algorithm. (b) Scalp
projections of weights from the CoCA algorithm using the forward model [Parra et al.
2005] (c) Scalp projections of the average of the two spatial filters from CCA (d) Scalp
projections of the average difference between epochs of faces and scrambled images at 170
ms. The blue colour in the posterior regions depicts a negative value.
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Intra-subject correlation
Intra-subject correlation (IaSC) is tested by using BCoCA on the five datasets in each
condition respectively. The resulting filters are then used to find the components with
maximum mutual correlation from each of the datasets and the coincidence in neural
activity is measured by computing the correlation coefficient on an intra subject basis.
The correlation is computed in a window equal to the sample-length of one epoch and
the step size is 25% of this. The population IaSC is the average of all the individual
IaSC. A two-sided permutation test shows that 91% of the windows are significantly
correlated.

Inter-subject correlation
The inter-subject correlation (ISC) is found by pooling all the datasets and using
BCoCA. The components from each dataset is correlated with all of the others and
then averaged to get the population correlation. In figure 2.14 the average over all
the epochs of the combined component clearly show the decrease of alpha activity
after mention of the first word and almost immediate increase after the response. A
two-sided permutation test shows that 90% of the windows are significantly correlated.
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Figure 2.14: Averaged epoch of the first component from the inter-subject paradigm



CHAPTER 3
Recording EEG on One

or Multiple Subjects
3.1 Hardware

Research grade EEG equipment is often very expensive, time-consuming to equip,
and immobile. Using smaller consumer grade hardware has thus many advantages if
it is able to measure the required signals adequately. Part of this experiment is to
validate if the hardware used is sufficient for this paradigm, in what areas it may be
advantageous, and in what areas it is lacking.

3.1.1 Emocap
To conduct the experiments the mobile 14 channel consumer EEG headset Emotiv
EPOC has been rebuild to a wireless cap based on EasyCap, the Emocap. The
sampling frequency of the ADC is 2048Hz but since the EPOC only have one ADC
the data is sampled sequentially which means that the effective sample frequency
of each channel is 128Hz (including Common Mode Reference and Driven-Right-Leg
electrodes) [Emotiv 2012]. Each sample is assigned a number from 0 - 128 in the
EPOC in order to ensure detection of packet loss on a sub-second time-scale. The
EPOC has previously been validated against the Biosemi Active-II device with 64
channels using an imagined finger tapping paradigm [Stopczynski et al. 2013].

The electrode placement of the Emocap follows the 10-20 system in naming and
placement but with only 16 channels the configuration is specific to this setup. The
placement of the 14 measurement electrodes is illustrated in figure 3.1.

Noise reduction

Biopotential amplifiers usually amplify very low amplitude signals and is therefore
very affected by most sources of noise. To reject external noise a method called
Driven-Right-Leg (DRL) is applied [Nagel 2000]. The DRL circuit is a negative
feedback loop of the common mode reference which effectively reduces the voltage
in the common mode reference and resulting interference from e.g. 50Hz power line
noise [Webster 1984].
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Figure 3.1: Channel locations of the Emocap

To further suppress noise from electrical power lines the EPOC uses digital notch
filters at 50/60Hz and the harmonics. The bandwidth is, however, only reported to
be 0.2 - 45Hz which must originate from applying the reported digital 5th order Sinc
filter.

Conductance
To measure the conductance, inverse impedance, the Emotiv EPOC superimposes a
128Hz square wave on the DRL feedback signal. In each electrode the amplitude of
the wave is measured on a 2Hz basis and from that the electrode Contact Quality is
derived and presented as an arbitrary value relative to the true conductance [Delic
et al. 2008].
To estimate the relationship between the conductance and the Contact Quality a range
of resistors with varying resistance was connected to the DRL and an electrode. Figure
3.2 shows that the measured Contact Quality is about 530 when the connection is
shorted and then a near exponential decrease (fitted curve) with increased resistance.
It should be noted that the measurement points are sparse and the test thus only
gives a rough estimate. A more thorough test would likewise need to include all the
electrodes and would still only be valid for the device which the test was conducted
on. In fact, having measured only one electrode may default this test completely.

Signal strength
The maximal distance between transmitter and receiver proved to vary a great deal
among the transmitters. The best distance achieved is about five meters and the
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Figure 3.2: Contact Quality versus known resistance

worse less than one meter. It is unclear whether this problem is inherited from the
EPOC or from the rebuild to Emocap.

Crosstalk
During experiments with more than one transmitter-receiver pair activated a high
amplitude noise was observed in both receivers for particular transmitter-receiver
configurations. The noise is clearly caused by crosstalk but it is unclear whether the
problem lies in the transmitter, receiver or both. When a connection is established
the receiver presumable lock on to the transmitter using a fixed frequency channel
that is specific to the pair. If the hardware has difficulties determining the already
used frequencies they could end up using the same. It should be noted that the
environment the tests are conducted in are very polluted in the 2.4GHz range which
is also used by the EPOC. By testing it was possible to find a configuration of nine
pairs that did not crosstalk. See appendix D.1 for further details.

3.1.2 Tablet
To acquire and record data from the Emocap it is possible to use a computer or a
mobile device supporting direct access to the USB port. In this experiment tablets
of the model Asus Nexus 7 were used. The processing power of the device is much
greater than needed for this application and since the tablet has previously been
shown to work well with the EPOC [Stopczynski et al. 2013], the device has not been
tested further in this regard. When the tablet went into sleep mode while recording
EEG the connection between transmitter and receiver was lost after a short period of
time but the application continued recording. To counter this problem a Wake Lock
application was installed on the tablets so they did not go into sleep mode.

3.1.3 Synchronisation
Experiments involving a stimulus are highly dependent on temporal alignment if the
objective is to compare the results across modalities or recordings. To synchronise
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(a) Single Viewing (b) Joint Viewing

Figure 3.3: Illustration of synchronisation

EEG recordings with the film, two ideas were pursued.

Single viewing
The first idea was based on the theory that the electro magnetic wave generated by
creating a powerful spark would induce a small current in the wires from the elec-
trodes. This was confirmed using a piezoelectric spark generator normally used to
ignite a Bunsen burner. Based on the length of the spark it was estimated that the
spark was around 2 kV and very low amperage. When used approximately 2 centime-
tres from the electrodes a spike with much higher amplitude than the surrounding
artefact free EEG was observed. Generation of the spark also emitted a noise that
was distinguishable in the audiotrack of the recorded video. This method was hence
used to synchronise the EEG with the recorded video in single subject experiments.
To synchronise the recorded video with the film showed on the tablet, the audio
output from the tablet was connected to the input of the camera in parallel with a
microphone. At a fixed time before the first film clip a 43Hz sinus tone was played
to make this part of the synchronisation easier, as illustrated in figure 3.3(a).

Joint viewing
The small spark generator was too weak to induce a sufficient current more than 30 cm
away which was required in the joint viewing experiment. To increase the distance
it is necessary to increase the field strength and thus the power used in the spark
generation. A circuit similar to the one in figure 3.4 was created using the circuit
from an electric fly swatter with increased capacitance and a flyback transformer from
an old CRT television. The gap provides a high resistance which allows energy to
build up in the capacitor until the potential across the gap is high enough to ionise
the air and the spark is generated. The field from the circuit was not visible in the
EEG so either the signal strength was not adequate or the DRL circuit in the Emocap
managed to suppress the signal.
As an alternative method of synchronisation the audio used to synchronise film and
recorded video in the single viewings was expanded to include the EEG recordings
directly, as illustrated in figure 3.3(b). The audio output from the tablet was too weak
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Figure 3.4: Spark Gap Generator [Carr 1997]

to register in the EEG recordings so a pair of computer speakers were disassembled
and the amplifier extracted. To distribute the audio signal nine thin speaker wires
were soldered together in one end, positive and negative separately, and in the other
end each wire connected to a crocodile clip. In the caps one wire was connected to
the reference electrode and the other to an electrode in the posterior region. Using
this approach the signal was clear even with the amplifier in its lowest setting. The
amplifier power supply is an AC-AC 15 volts ∼ 800 mA transformer and ensures
galvanic separation between power lines and amplifier. The AC voltage at the used
setting is measured to 61.4 mV and at maximum gain to 2.6 V. Assuming a low but
realistic electrode-scalp impedance of 10 kOhms the current would be

61.4 · 10−3V

10 · 103Ω
= 6.14µA

Transcranial direct current stimulation (tDCS) uses currents of 1 mA, which is within
the safety range, why the theoretical maximum current of this study is considered safe
as well [Poreisz et al. 2007]. With ourselves as test subjects the amplifier was tested
with maximum gain in which case it was possible to feel a small tingling between the
electrodes.

3.2 Software: SBS2 DataRecorder
The application to record EEG from the Emocap is based on the multi-platform
Smartphone Brain Scanner (SBS2) framework by Stopczynski et al. [2013]. The
software is developed in the cross-platform environment Qt which is based on standard
C++. The core of the system is created like a pipeline in which the data from device
to application flows and the modular framework ensures easy accessibility into the
pipeline at any point. The pipe consists of minimum three layers where the core
of the framework is build from the first two. The first is data acquisition in which
the application applies low-level functionalities that are specific to the hardware and
operating system. Data is read directly from the USB mounting point which requires
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Figure 3.5: Joint viewing setup

a custom kernel and root privileges. The raw data is encrypted from the Emotiv
hardware and needs to be decrypted before it is packed into a well-defined EEG
packet object that can be handled further down the line.
The second layer handles data processing and in the core a number of functional-
ities including, filtering, FFT and classifying is already implemented, however, the
DataRecorder application only employs the recording functionality.
The third layer consists of the user interface and application specific functions to
handle user inputs and data. The DataRecorder is a simple two-page interface with
a setup screen (figure 3.6(a)) for text-based user input for the Name and Description
of the forthcoming recording and a recording view (figure 3.6(b)) showing the sample
frequency. In both views the lower third of the screen shows the electrode positions of
either the Emotiv Epoc or Emocap (depending on hardware). Above the electrodes
it is possible to see the conductance value received from the hardware or the name of
the electrode.

3.3 Experimental setup
This section contains information regarding how both the solo viewing and joint
viewing EEG recordings were conducted. To avoid gender playing a part in the
results all 42 subjects were female with an average age of 22.4 years, distributed with
minimum, median, and maximum ages of 18, 22, and 32 respectively. All subjects
signed a consent for the use of data, video and image. Further information regarding
the subjects can be seen in table D.2.
The subjects were divided into two groups, with one group of 24 subjects watching the
films alone (single viewing) and another group of 18 subjects subdivided into groups
of nine who watched the films together (joint viewing). There were taken precautions
to ensure that the subjects participating in the same joint viewing, did not know each
other beforehand. The group with single viewings were additionally evenly divided



3.3 Experimental setup 55

(a) Setup (b) Recording

Figure 3.6: Graphical interface of DataRecorder application

into a group watching the films with the order of the scenes scrambled and a group
watching the film clips normally.

3.3.1 Stimulus
One of the goals of the experiment was to recreate the results presented in Dmo-
chowski et al. [2012], where the subjects were shown clips from three different films;
Bang! You’re Dead (1961) directed by Alfred Hitchcock, The Good, the Bad, and
the Ugly (1966), a western directed by Sergio Leone, and a control film of a natural
outdoor scene on a college campus. The Hitchcock film produced great results and
the same clip was therefore included in the experiment for this thesis. The western,
however, did not produce as many significant times of correlation, and it was decided
to replace this clip with one from Sophie’s Choice (1982) directed by Alan J. Pakula.
The clip from Sophie’s Choice depicts a young Polish mother on her way to concentra-
tion camp during World War II, with her two children. She is accosted by a German
officer, who forces her to choose which of her children lives or dies. The dialogue in
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(a) Bang! You’re Dead (b) Sophie’s Choice

(c) Control

Figure 3.7: Stills from the three film clips shown to the subjects.

the film clip is in German. The same film clip was used by Raz, Winetraub, et al.
[2012], where the subjects were investigated for emotion-related changes using fMRI
and viewer feedback rating. The study found a monotonic increasing response with
the highest scoring emotions being ”horror”, ”hate”, ”fear”, and ”anger”.

To act as a control, a video was recorded of the escalators Kgs. Nytorv metro station
in Copenhagen. This setting was chosen to eliminate the argument that the joint
engagement is found for vision of a body versus non-body stimulus. The metro
station was chosen as it was rationalised that the passengers getting on the metro in
this station, were in less of a hurry compared to other stations, thereby reducing any
excitement of people running to catch their train. Figure 3.7 shows stills from the
three film clips.

Each clip had a length of approximately 6 minutes and were shown twice to each
subject. For each viewing the order was randomised, but the same order was used
the second time the clips were shown. A combined video was created for each of
the six possible permutations of the order of the clips, starting with a 10 second
43 Hz tone for use in post processing synchronisation, and 20 seconds black screen
between each film clip. At the end of the video the subject was presented with a
text announcing that the video was over, to avoid the subject wondering if they just
saw the last clip, between each clip. The total length of the video amounted to 39
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Figure 3.8: Experimental setup for solo viewings.

minutes.
In Dmochowski et al. [2012] the order of the scenes in Bang! You’re Dead were
scrambled to investigate the response when the meaning of the film was lost. The
same approach was used in this thesis for both Bang! You’re Dead and Sophie’s
Choice. Since the control video was intended not to carry any meaning, this was
left out of the video with scrambled scenes resulting in only two permutations and a
length of 23 minutes.

3.3.2 Solo viewings
24 subjects were used for the solo viewings, which were conducted in a small office
as seen on figure 3.8. The film was shown on a Google Nexus 7 (2012) tablet, with a
7” (17.78 cm) screen with the subject hearing the films through in-ear headphones to
avoid wires crossing the head. The headphones had a noise dampening effect which
was important due to some of the recordings being made in office hours. The subject
was instructed to sit straight, and avoid movements which can cause artefacts in
the EEG, such as chewing, heavy breathing, and limb movement. The subject was
instructed to keep the eyes inside the screen to reduce eye artefacts, but was also told
to relax and follow the film.
Before the viewing started each subject drew without replacement for whether the
films should be scrambled or not, and afterwards used a dice to decide the order of
the film clips. Due to some initial technical difficulties, only the non-scrambled clips
where available the first day of recording.
The subject was filmed with a camera receiving sound input from the tablet (which
had its sound output split in two) as well as from an external microphone. An electric
spark was used for post processing synchronisation between the spark showing in the
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EEG and its clicking sound on the camera recording. As the camera also recorded
the sound output from the tablets, the time interval between the spark and the time
of the 43 Hz tune could be calculated, and from this the time of start for each film
clip.
The lighting in the room was controlled by blacking out the office window and only
having an architect lamp on, so the subject was visible on the camera in the dim
light.

3.3.3 Joint viewing
The joint viewing experiment is an expansion of the solo viewing experiment presented
by Dmochowski et al. [2012]. Since recording on nine subjects simultaneously is
relatively new territory and presents new obstacles, the experimental setup deviates
from the one in the solo viewing in some areas.
A lot of thought was put into the placement of the subjects in the room in relation
to the screen and to each other. It was decided to go for a ”cinema experience”, with
all nine subjects sitting on a line of chairs. By instructing the subjects to keep their
eyes within the screen, as in the solo viewings, they were not able to directly see the
facial expressions of one another. As the films were watched on a projector it was
possible to both regulate the distance from the subject to the screen and the length
of the diagonal of the picture projected on the screen. It was decided to keep the
viewing angle from one corner of the screen to the opposite corner similar to the one
in the joint viewing. By assuming the line of sight was orthogonal to the screen the
relation

angle = tan−1 screen diagonal
distance to screen (3.1)

was used to find the maximal angle the eye could move while still viewing the screen.
In the solo viewings the distance from head to screen varied from 70-90 cm, giving
angles of maximal eye movement of 11.2◦ to 14.3◦. The distance from the subject
in the centre chair to the screen was measured to be 450 cm and 490 cm for the
outermost placed subjects. With a screen diagonal of 102 cm this resulted in angles
of maximal eye movement between 11.8◦ and 12.8◦.
The recordings were done in a larger room, to accommodate all the subjects, and the
sound from the films was played through loudspeakers, to avoid the emotional distance
which noise dampening headphones might produce. On the basis of creating similar
lighting as in the solo viewings the windows were blacked out and four lamps placed
strategically to avoid shining a light in the eyes of the subjects, but still illuminating
them for the purpose of filming them. Unfortunately the camera used in the solo
viewings had to be used for another project, and was replaced by a GoPro Hero 2.
The image and sound quality of the GoPro was not as good as the original camera,
but it had the benefit of being unobtrusive, and could be placed directly in front of the
subjects. The recording tablets were placed on tables directly behind the subjects to
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Figure 3.9: Experimental setup for joint viewings. Left: Picture of the subjects seen
from the front before viewing the films. All subjects were placed on a line to induce
a ”cinema experiences”. Right: Subjects seen from the back before viewing the films.
The recording tablets were placed on tables directly behind the subjects to avoid loss of
connection from transmitters with poor transmitting distance. Cables were connected to
the reference electrode and Cz on each subject to induce the 43 Hz tune directly into the
measured EEG. The cables were removed before the film started.

avoid loss of connection from transmitters with poor transmitting distance. Cables
were connected to the reference electrode and one of the other electrodes on each
subject to induce the 43 Hz tune directly into the measured EEG, for later post
processing synchronisation. The cables were removed before the film started.

3.3.4 Questionnaires and general information about the subjects
Before the EEG recordings all subjects were asked to fill out a questionnaire. Apart
from asking relevant physiological questions, it was also chosen to ask the subjects
to evaluate their level of proficiency in German, because of the German dialogue in
Sophie’s Choice. This was done to enable future subdivision of the subjects based on
their self proclaimed understanding of German.

After viewing the films the subjects were asked to answer another questionnaire re-
garding whether they knew the scenes beforehand and which scenes had the biggest
impact on them. Subjects viewing the films with scrambled scenes were also asked
to describe the plot in the two films. This was both done to evaluate and possibly
subdivide the subjects based on their understanding as well as for a comparison with
the results gained from the EEG.

Appendix D contains English versions of the questionnaires the subjects where pre-
sented with before and after the EEG recording. As most subjects were Danes, they
were presented with a Danish version. A summery of their answers can be seen in
table D.2.
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3.4 Pre-processing
Because of temporary loss of connection during recording, data from subject 3, 10
(single) and 26 (joint) has been discarded. For subject 30 in the joint viewing the
synchronisation stimulus is not registrable in the EEG and has therefore also been
discarded.
Using the assigned number to each packet between 0 and 128, loss of packets were
detected and corrected for by inserting zeros in their place. However, since the se-
quence restarts at 128 the procedure is only precise in the sub-second time-scale. Any
gap longer than 1 second is undetectable.
In some of the recordings very low frequency components were observed and since the
amplitude was too high for the component to originate from the desired EEG signals,
this was considered baseline drift. To remove the DC component and high frequency
artefacts, the data was bandpass filtered using a linear phase windowed sinc FIR filter
between 0.5 and 45 Hz and shifted to adjust for group delay [Widmann et al. 2012].
Using the Extended Infomax ICA algorithm implemented in EEGLAB in Matlab, the
data was decomposed into statistically independent components. Ideally this would
isolate the artefacts pertaining to eye blinks and these would then be easily removed
by excluding the component when reconstructing the data. If the data contains many
recordings with many channels it can become a challenge to manually pick the correct
components to exclude. To alleviate this the CORRMAP plugin for EEGLAB can
correlate a chosen scalp map with the components in all of the datasets and thus
semi-automatically identify artefactual components [Viola et al. 2009]. From figure
3.10 it can be seen that the chosen template is very positive in the anterior region and
negligible elsewhere, which is typical for eye artefact components. From a total of
38 datasets the algorithm found 36 components from 36 individual sets with a mean
correlation of 0.9953.
To remove outliers, samples whose power was 4 standard deviations above the mean
power of the respective channels were replaced by zeros. Removing artefacts in EEG
is usually done by removing a segment around the artefact but since temporal syn-
chronisation across multiple subjects is necessary for the experimental paradigm, that
is not possible.
Normalisation of power levels across datasets is performed by dividing each sample
with the root mean square of the collected dataset.

3.4.1 Additional synchronisation using CoCA components
Correction of intra subject synchronisation
The initial results from intra subject analysis did not prove to be as good as expected.
It was suspected that package loss in the recordings or incorrect times of synchroni-
sation for the films could cause a misalignment between the recordings from the first
and the second viewing of the films. Since CoCA and BCoCA as well as the permuted
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Figure 3.10: Scalp map of independent component used as template in CORRMAP (IC
1 from subject 40)

correlation test work by instantaneous correlation, a time shift could cause problems.
To investigate this and find possible time shifts the weights for the first component,
found by using CoCA on the joint inter subject tests, were used to filter the data
for the intra subject analysis. The correlations between the first and second viewing
were then calculated where the second viewing was shifted from -2 seconds to 2 sec-
onds, ones sample at a time. With a sampling frequency of 128 Hz, this meant 257
correlations for each subject. The correlations were calculated in 5 second windows
as in the ”real” analysis, but the permutations were left out to speed up computation
times. Instead a value of 0.092 were used as the critical correlation, as earlier tests
had attained values close to this as the critical correlations for a p-value of 0.01. The
percentage of windows above this level were then used to decide which time shift to
use for each subject and each film.
As can be seen on figure 3.11 this approach had mixed success depending on the
subjects. The intra subject analysis were used both on data shifted in time according
to the lags found, and on data which was not shifted in time. The outcome using
CoCA was a large improvement of the solo viewings and the second joint viewing
group and more moderate results from the first joint viewing group. Using BCoCA
only an improvement of the second joint viewing group could be seen. In all cases
however, the scalp maps were more similar to the ones found in Dmochowski et al.
2012, when using the time shifted data.

Correction of inter subject synchronisation

Synchronisation of viewings across subjects is precarious if all conditions in this regard
are not tightly controlled. To adjust for some of the misalignment a method similar
to the intra-subject correction can be applied but a search for the lag with highest
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Figure 3.11: The percentage of significant windows when the second viewing have been
delayed a varying amount of samples resulting in a time shift from -2 seconds to 2 seconds.
(a) shows subject 38 which is an example were the right time shift is easy to decide. (b)
shows subject 29 where the right delay is not as clear. (c) shows subject 24 which shows
a suspicious indifference to a shift in time.

proportion of significant windows is highly resource demanding and thus infeasible
when adjusting up 16 signals at the same time. Regular cross-correlation can take
advantage of Fast Fourier Transform and is thus many orders of magnitude faster
than the intra-subject approach, but with the disadvantage that correlations below
the significant threshold are included.
It is difficult to determine the most accurately synchronised time series in a group
so the first one was chosen as the initial template. To acquire the time series in
component space the previously mentioned filter was used. With a two-second margin
in both ends the template is correlated with the time series from the second subject.
The maximum correlation coefficient is found and the second time series is adjusted
with the lag of this coefficient. The template is then updated as the mean of the
template and the adjusted second time series. This procedure iterates over every
subject in the group and is repeated for the whole group until all the lags converges
to zero or are equal. The scheme is very fast and allows adjustment for randomly
permuted surrogate groups.



CHAPTER 4
Analysis of Recorded

EEG
This chapter contains the results from the analysis of the EEG experiments described
in chapter 3. The data obtained have been analysed using CoCA introduced in Dmo-
chowski et al. [2012] and the Bayesian expansion, BCoCA, presented in this thesis.
The analysis consists of two parts; intra and inter subject analysis. Intra subject
analysis is also known as within subject analysis and compares the EEG between the
first and second viewing of the films for each subject separately. With CoCA this is
done by concatenating the datasets sample-wise as explained in Dmochowski et al.
[2012]

X̄(1)
= [X(1)

1 ,X(2)
1 ,X(3)

1 ,X(4)
1 ],

X̄(2)
= [X(1)

2 ,X(2)
2 ,X(3)

2 ,X(4)
2 ] (4.1)

for X(m)
i , where i signifies the first or second viewing and m signifies subject number.

BCoCA is not directly designed for pairwise comparisons between datasets. For the
intra subject analysis presented in this thesis BCoCA will use the same concatenated
data as CoCA. This might cause some difficulties for BCoCA when estimating the
the noise covariance matrices for each of the concatenated datasets, as the covariance
of their noise will be likely to vary between subjects.
Inter subject analysis is also known as between subject analysis and compares the
EEG between all subjects for the same viewing of the films. Here BCoCA is better
suited as it can do the comparisons between all datasets at the same time. CoCA
however can only compare two datasets at the same time. For this analysis the data is
concatenated for CoCA as explained in (2.173). As mentioned will the length of these
concatenated datasets scale with the number of datasets squared. As an example will
a comparison between 16 subjects result in a concatenated dataset with a length 120
times that of one dataset.
In this chapter the time series obtained from using the filters on the observed data
will be mentioned as components. While the order in which these are generated from
CoCA depends on their magnitude in a given dataset, the order of the three compo-
nents presented in Dmochowski et al. [2012] will be used as a ”golden standard” for
comparison. As a means of finding times of high intra- or inter-subject synchroni-
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sation these components will be correlated with each other, to obtain the intra- and
inter-subject correlations (IaSC, ISC).
The inter- and intra-subject analysis will be conducted where the subjects have been
subdivided into groups depending on under which conditions they saw the films.
These groups count: single for the subjects who saw the films alone, scrambled for
the subjects who were also alone and saw the films with the order of scenes scrambled,
as well as joint 1 and joint 2 for the first and second group of subjects that saw the
films together.
As thesis have expanded on both CoCA and the experimental design, the ways in
which to analyse and compare the data have expanded as well. To maintain an
overview of the results only selected figures will be presented in this chapter, with
appendix C containing additional relevant figures. Furthermore has the chapter been
divided into the following sections:

1. A section to briefly illustrate the effects of using the time shifts explained in
3.4.1.

2. Then a presentation of the results, from using CoCA on the recorded EEG data,
in the same manner as in Dmochowski et al. [2012] and which of their results
it was possible to reproduce.

3. A section to present the intra and inter subject analysis using CoCA components
with focus lying on differences between the results from the different groups of
subjects.

4. Selected results using BCoCA will be presented here, and compared to the
results from using CoCA on the same data.

4.1 Effect from additional synchronisation using CoCA
components

As described in 3.4.1 did the initial results not prove as good as expected, but they
were improved with relative shifts in time found through cross correlations.
The intra subject analysis were used both on data shifted in time according to the
lags found and data which was not shifted in time. The results from the intra subject
analysis can be seen on figure 4.1. The outcome using CoCA was a large improvement
of the solo viewings and the second joint viewing group and more moderate results
from the first joint viewing group. Using BCoCA only an improvement of the second
joint viewing group could be seen. In all cases however, the scalp maps were more
similar to the ones found in Dmochowski et al. [2012], when using the time shifted
data. Figure 4.2 shows the scalp maps for the first joint viewing group using CoCA
which, based on significant windows, did not show as large an improvement. It
can be seen that without the time delay the resulting first component more or less
corresponds to taking the average of all channels.
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Figure 4.1: Intra subject analysis performed on EEG from the film Bang! You’re Dead
using CoCA. The black line shows the results with data shifted in time, and the red dashed
line shows the results when data where not shifted in time.
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Figure 4.2: Scalp maps for intra subject analysis on the first joint viewing group using
CoCA on (a) time shifted data and (b) and data without timeshifting. It can be seen that
the first component in the latter corresponds to just taking the average of all channels.
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4.2 Reproduction of results
Reproduction of the results by Dmochowski et al. [2012] is important to establish
whether the experiment has been successful in measuring brain activity related to the
stimulus. The results are summarised in three ways; through a visual representation
of the spatial filters in the form of scalp projections, the correlation coefficients viewed
as a time series, and the percentage of significant correlations. In this section only
the single viewings and the CoCA algorithm are considered.

4.2.1 Intra-subject correlations (IaSC) and arousing moments in
the film

Figure 4.3(a) depicts the spatially distributed neural activity of the first three com-
ponents from the single viewing cohort of non-scrambled films (n=10). Due to per-
mutation ambiguity of the filters, it is not important whether a filter value is positive
or negative, only the pattern of the filter is of interest. The neural activation pattern
is very similar for the first components from the two films and the control to a lesser
degree. Figure 4.3(b) summarises the proportion of significant correlations for each
film in each of the first three components. The level drops with each component for
Bang! You’re Dead but fails to do so for Sophie’s Choice though the scalp projec-
tions are very dissimilar. The level of correlated activity for the control film is as
anticipated very low. Using a two-proportion z-test it was found that the proportions
of significant windows in the two films are significantly different from the control
with the p-values < 0.001 except for Bang! You’re Dead in the third component
with p = 0.0038. Figure 4.4(a) illustrates the correlation coefficient from Sophie’s
Choice and in the grey area the level of significance required for a correlation to be
significant. Some of the peaks are represented in more than one component, but the
large peaks are mostly unique to one. The peaks generally coincide with scenes of
close-up shots of faces and high tension. Labels going from (b) to (g) mark the spots
of peaks with large mass in different scenes. The first scene (b) is of a panoramic view
over a queue of people waiting to get through the control. At this time the viewer
might realise the place could be a World War II concentration camp. Scenes (c) and
(d) is of encounters between Sophie and the German officer with increasing level of
tension and anticipation. The culminating moment in (f) when the German officer
commands one of her children taken away and (g) when the daughter is forcefully
removed, though by her choice of what child to remove.

4.2.2 Comparison to films scrambled in time
Visual perception of other humans activates low-level cognitive networks, as seen in
section 2.10.1, so in order to control for this a scrambled version of the films were
shown to a separate group of n = 12 subjects. In figure 4.5(a) it is shown that
the proportion of statistically significant windows are reduced when the contextual
meaning is removed from the film. Using the hypothesis test of proportions, both films
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Figure 4.3: Single viewing IaSC (a) Scalp projections of the first three components
for each film and (b) the percentage of statistically significant correlations

were found to significantly different from the scrambled version in all components.
However, even though the scenes were scrambled in random order, 10 of the subjects
reported to have understood both films (appendix D). The order of the scenes were
random so this particular order may elicit a larger response than others.
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Figure 4.4: Inter-subject correlation and matching stills from Sophie’s Choice at particu-
lar arousing moments. Peaks are chosen based on their mass and is shown in chronological
order
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Figure 4.5: Comparison of significant correlations in the Single viewing IaSC between
the original film and the scrambled version of Bang! You’re Dead and Sophie’s Choice

4.2.3 Inter-subject correlations (ISC) show decreasing correlation
in the second viewing

We hypothesise that the neural activation pattern represents inherently low-level
cognitive mechanisms why it is logical to assume similar patterns across individuals.
To test for this a similar analysis to IaSC is carried out but across subjects and only
for the first viewing. In figure 4.6(a) we see that the projections are similar for the
films in the first and second component and similar to the ones in the intra-subject
analysis in the sense they show high occipital activation. In this analysis the control
is not similar at all, however. The proportion of significant windows shown in figure
4.6(b) are very low for Sophie’s Choice though high for Bang! You’re Dead. This
might point to a difficulty in synchronising the segments for the former.
To test for the effect of watching a film a second time we compute the inter-subject
correlation for the first and second viewing respectively. In figure 4.8(a) the correla-
tion time series for both viewings of Bang! You’re Dead show how the correlation of
the second viewing is significant in some of the same peaks as viewing 1, but generally
lower. This is also illustrated in figure 4.7(b) were the proportion of significant win-
dows are seen to be much lower. The scalp projections (figure 4.7(a)) are, however,
very similar so the main difference could be the order of magnitude of the spatial
filters. The Wilcoxon signed rank test was performed to test the null hypothesis that
the difference between viewings could originate from a distribution with zero median
with the result that p < 0.001 for all components.
The peaks of Bang! You’re Dead coincide with scenes of either the revolver or the
bullets and the handling of these (b - e and i), scenes in which the boy pretend to
trigger (f and h) and the scene in which the uncle discovers that the boy must have
a real gun.
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Figure 4.6: Single viewing ISC (a) Scalp projections of the first three components for
each film and (b) the percentage of statistically significant correlations
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Figure 4.7: Inter subject scalp projections (a) and significant correlations (b) of viewing
1 and 2 for Bang! You’re Dead
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Figure 4.8: Inter-subject correlation and matching stills from Bang! You’re Dead at par-
ticular arousing moments. Peaks are chosen based on their mass and shown in chronological
order
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4.3 Analysis regarding effect of viewing films in groups
This section presents the intra subject analysis using CoCA components with a focus
on the differences in the conditions under which the groups of subjects watched the
films. In this section the focus lies in the differences between watching the films alone
or in a group, and if there are differences between the two joint viewings.

4.3.1 Intra subject analysis
Figures 4.9, 4.10, and 4.11 show the population IaSCs for the first component attained
with CoCA for Bang! You’re Dead, Sophie’s Choice and the video recorded in a metro
acting as a baseline. Comparing the single viewing with both groups for Bang! You’re
Dead it can be seen that peaks of correlation occuring in the single viewing also occurs
in either joint viewing or both. Comparing the two joint groups it can be seen that
the times of high correlation rarely occurs in the same places of the film.
A peak occurring in either group can generally be traced back to a similar peak in the
single viewing group and often with a higher amplitude. This suggests that a group
focusing on the same arousing stimulus can obtain a higher synchrony compared
to watching the film separately. But a peak in the single viewings cannot always be
traced back to a specific joint viewing, which might indicate that interesting moments
can be suppressed when viewing the film in a group.
It can be seen on figure 4.12 that the scalp map for the first CoCA component stem-
ming from the first joint viewing of Sophie’s Choice differs a lot from the corresponding
scalp maps for the second joint viewing and the single viewings. On figure C.7 the
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Figure 4.9: Population IaSC for the first CoCA component for the viewing of Bang!
You’re Dead in the first and second joint group as well as the single viewings.
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Figure 4.10: Population IaSC for the first CoCA component for the viewing of Sophie’s
Choice in the first and second joint group as well as the single viewings. Note that for joint
1 the component has been switched with what was estimated as being component 3, since
its scalp map similar to the first scalp map in Dmochowski et al. [2012].

third component for joint 1 is seen to be similar to the first scalp map in Dmochowski
et al. [2012]. For this reason figure 4.10 contains the third component from joint 1
and the first component from joint 2 and single. The first component for joint 1 can
instead be seen on figure C.7, and shows many points of high correlation, which is
probably the reason it was estimated as the first component.
After having done this rearrangement the same trend as seen on the IaSCs for Bang!
You’re Dead can be seen for the population IaSCs for Sophie’s Choice, where the
peaks of correlation for joint 1 and joint 2 rarely happens at the same time, but their
peaks usually align with similar areas in the IaSC for single. For this film though, the
viewing groups does not attain as many or as high peaks in correlation they did in
Bang! You’re Dead. Curiously the trend with aligned peaks of significant correlation
can also be hinted in the IaSCs for the control video, though no interesting things are
supposed to happen in this video.
Apart from joint 1 for Sophie’s Choice the scalp maps for the films are similar to the
ones attained in Dmochowski et al. [2012], but the scalp maps stemming from the
control video are not as similar.
Figure 4.13 shows a comparison of significant correlations for the average IaSCs for
the different groups of subjects. A critical value of correlation corresponding to
p = 0.01 have been obtained from a permutation test using 5000 permutations for
each window. If the averaged IaSC had a correlation coefficient higher than this
critical level, the window was classified as significant. Another method of comparison
can be seen on figure C.11 in the appendix. Here all windows for each pair-wise



74 4 Analysis of Recorded EEG

0

0.1

0.2
Joint1

 

 
p > 0.01, uncorrected

0

0.1

0.2

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Joint2

1 2 3 4 5
0

0.1

0.2

Time (min.)

Single

Figure 4.11: Population IaSC for the first CoCA component for the viewing of the control
video in the first and second joint group as well as the single viewings.

Figure 4.12: Intra subject scalp projections for the first component recorded for all three
films and the joint 1, joint 2 and single viewing groups.



4.3 Analysis regarding effect of viewing films in groups 75

1 2 3
0

10

20

30

40

50

60

Component

%
 s

ig
ni

fic
an

t w
in

do
w

s

 

 

Joint1
Joint2
Single

(a) Bang! You’re Dead
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Figure 4.13: Comparison of significant correlations for the average IaSCs for different
groups of subjects. The critical value of correlation corresponding to p = 0.01 have been
obtained from a permutation test.

correlation for a group is tested for significance using the calculated p-values and
controlled for multiple comparisons using FDR with a alpha level of 0.01. Though
there are significant differences to be seen on figure 4.13 they are not consistent across
the film or components.

4.3.2 Inter subject analysis
As in the previous section this section will investigate the differences in the conditions
under which the groups of subjects watched the films. The focus will also lie on the
differences between watching the films alone or in a group, and whether there is a
difference between the two joint viewings, but it will be carried out through inter
subject analysis. As an addition this analysis will introduce twelve surrogate joint
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Figure 4.14: Population ISCs for the first CoCA component for the viewing of Bang!
You’re Dead in the first and second joint group as well as the single viewings.

groups each consisting of eight subjects chosen at random from each joint viewing
group, with a distribution of either 3-5 or 4-4 in joint 2’s favor (on account of this
group containing nine good datasets as opposed to joint 1’s seven).
Figure 4.14 shows the ISCs for the first CoCA component from the inter subject
analysis of the joint 1, joint 2 and single groups of subjects watching Bang! You’re
Dead. As could also be seen on figure 4.9 there are scenes in the film which generates
high peaks of correlation for single and one of the joint groups, but not the other.
As a comparison figure 4.15 shows the ISCs for three surrogate joint groups chosen
for having the maximum, median, and minimum amount of significantly correlated
windows (corrected with FDR) for Bang! You’re Dead. All three have similar per-
formance for Sophie’s Choice, which can be seen in appendix C. It can be seen that
these surrogate groups have peaks in all the areas that both joint 1 and joint 2 attain
high correlations. It can also be seen that even the surrogate group with the lowest
amount of significant windows still attain times with high correlation.
The scalp maps on figure 4.16 show both the ”real” groups and the surrogates attain
weights as expected for the first component, with the exception of joint 1 which have
a different scalp map for Sophie’s Choice. This was also the case for the intra subject
analysis though the estimated scalp maps are not the same. It can be seen that the
surrogate group with the maximum number of significant windows have ”inherited”
this problem as well.
Figure 4.17 shows a comparison of significant correlations for the average ISCs for the
different groups of subjects. This is calculated in the same manner as in the case of
the intra subject analysis and figure C.14 shows a FDR corrected comparison for each
pair-wise correlation. Like in the intra subject analysis no consistent conclusion can
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Figure 4.15: Population ISCs for the first CoCA component for the viewing of Bang!
You’re Dead. Each ISC is stemming from a surrogate group of eight subjects picked at
random from joint 1 and joint 2. The three ISCs seen in this figure attained the maximum,
median and minimum number of significant windows.

(a) (b) Surrogate groups

Figure 4.16: Inter subject scalp projections, for all three films calculated from (a) the
joint 1, joint 2 and single viewing groups and (b) the three surrogate groups attaining the
maximum, median and minimum number of significant windows.
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Figure 4.17: Comparison of significant correlations for the average ISCs for different
groups of subjects. The critical value of correlation corresponding to p = 0.01 have been
obtained from a permutation test. For the surrogate groups the mean number of significant
windows across all surrogate groups is shown.

be drawn regarding the relationship between the relationship between components
and films across groups. This is also due to a large standard deviation in the mean
number of significant windows for the surrogate groups ranging from 2.8 for the third
component in Bang! You’re Dead to 11.2 for the first component in Sophie’s Choice.

Correlating joint viewing subjects from different groups

As an alternative to the surrogate groups, a surrogate joint ISC was created. Weights
for the first component was calculated using CoCA on a combined group, containing
all subjects viewing Bang! You’re Dead in a group. Figure 4.18 shows the scalp map
for this component. The surrogate population ISC was then calculated as the average
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Figure 4.18: Scalp map for the first CoCA component estimated on a combined group
containing all subjects from both groups viewing Bang! You’re Dead jointly.

of all correlations between pairs of joint viewing subjects, which did not watch the
film together. It was in other words calculated using pairs consisting of one subject
from joint 1 and one subject from joint 2. Figure 4.19 shows the population ISCs
for the combined joint group, joint 1, joint 2, and the surrogate ISC using the CoCA
component attained from the combined group.
It is interesting to see how the population ISCs for joint 1 and joint 2 are almost
identical to the ones seen in figure 4.14 even though the weights for the former are
calculated on the combined joint group. Looking closely, subtle differences can be
seen but the peaks in correlation occur in the same places. But the most interesting
aspect of figure 4.19 is how similar the combined joint ISC is to the surrogate joint
ISC.
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Figure 4.19: Population ISCs using the same CoCA component stemming from combining
both groups viewing Bang! You’re Dead jointly. The top figure shows the population ISC
for this combined joint group. The two middle figures show joint 1 and joint 2 ISCs
using the CoCA component attained from the combined group. The bottom plot shows
an alternative surrogate ISC consisting only of the correlations between all pairs of joint
subjects which were not in the same group.

4.4 Comparison of CoCA with Bayesian CoCA

This section will compare the performance of BCoCA to CoCA. It would be too
extensive to present all the results so instead focus will be on selected scenarios.
BCoCA does not necessarily return the maximally correlated components ordered by
correlation so it is for every analysis important to investigate them all. For these
results 3 components are calculated.

Recall from figure 4.4 that the population IaSC for the single viewing of Sophie’s
Choice had a large number of significant windows. Figure 4.21(a) is a duplicate
of that illustration but now includes the correlations from the components computed
using BCoCA. Many of the peaks are found by both algorithms, but the response from
BCoCA is generally higher and more importantly, correlates with arousing moments
in the film. The arrows on top of component two and three points to a large peak
followed by a large decrease of correlation. In figure 4.20 it is seen that the same
very distinctive curve is found to occur in the Theory of Mind but not the embodied
simulation network, in the study by Raz, Jacob, et al. [2013].
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Figure 4.20: Illustration depicting the fMRI measured network-cohesion index in the
Theory of Mind (ToM) and embodied simulation (ES) networks while watching the clip
from Sophie’s Choice [Raz, Jacob, et al. 2013]

In figure 4.22 we see that BCoCA share many significant peaks with CoCA for Bang!
You’re Dead but the three components do not differ much from each other even
though the scalp projections clearly do. Since CoCA finds peaks at different tem-
poral locations in different components, the BCoCA algorithm could miss peaks in
components with less correlation.
In the inter-subject condition BCoCA returns similar correlation results as CoCA,
but numerically lower (figure 4.23 and 4.24). The algorithm also return similar cor-
relations in all the components for this condition.
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Figure 4.21: Population intra subject analysis of Sophie’s Choice in the single viewing
group. The large peak and following dip in BCoCA component 2 and 3 are noteworthy
because they correlate with arousing events in the film. The scalp projections (b) also show
a more homogeneous pattern in BCoCA that extends further into the temporo-parietal
region
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Figure 4.22: Population intra subject analysis of Bang! You’re Dead in the joint 1 group.
BCoCA seems to find the same filters but lower correlations
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Figure 4.23: Population inter subject analysis of Sophie’s Choice in the single group.
Both algorithms have difficulties finding correlated components and BCoCA seem to find
the same component.
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Figure 4.24: Population inter subject analysis of Bang! You’re Dead in the joint 2 group.
Some similar peaks between the algorithms, but very similar filters.
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CHAPTER 5
Discussion

This thesis had as its starting point the article Correlated components of ongoing EEG
point to emotionally laden attention - a possible marker of engagement? published
by Dmochowski et al. in 2012, and had the goal to expand on it in two ways. The
first goal was to create an algorithm representing a Bayesian approach to their signal
decomposition method, CoCA. The second was to reproduce their experiment with
having subjects view six minute film clips while recording EEG, as well as expand
it by including a joint viewing experiment. This chapter discusses the results of our
efforts to reach these two goals as well as ideas for how to improve and elaborate on
them.

5.1 Bayesian correlated component analysis
Chapter 2 presented the theoretical background and the derivation of BCoCA, a
Bayesian expansion to CoCA using variational inference. The derivations included a
cost effective calculation of the lower bound for the purpose of estimating the time of
convergence, by focusing on the variables that changes between iterations and letting
the terms cancel each other out were applicable. The chapter also included two types
of tests, one on data simulated for this purpose and one consisting of analysis on two
real EEG datasets using BCoCA.
The first things tested for using the simulated data tests were which of two BCoCA
models to use, and to see if there were differences between implementing the derived
updates in Matlab or a VMP implementation using Infer.NET. The result was a
BCoCA model based on a shared mean for the weights, U, and an indication that the
Matlab and Infer.NET implementations performed equally. The tests on simulated
data were conducted on data where the true sources, their mixing matrices, and
the added noise were all created from the same distributions, which BCoCA was
modelled on. The true sources were identical to the ones used in Klami [2013] for
increased comparability with their results, though other parameters where chosen
differently, with the addition of noise probably being the most important. Under
these circumstances BCoCA thrived and attained better or nearly just as good results
compared to another latent variable model, GFA, as well as CCA and CoCA, which
solves the de-mixing problem analytically through eigenvalue decomposition. BCoCA
showed its strengths when working with more than two datasets where it had higher or
equal performance compared to the other algorithms. In the two-view situation CCA
and CoCA proved to attain better results at low values of SNR with BCoCA tending
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to chose the ”zero-solution” when the noise level got too high, though this threshold
happened at higher noise levels compared to GFA. By implementing a greater control
of the covariance matrix it might prevent BCoCA from choosing the zero solution,
which is rarely an optimal solution. The ability to discern multiple mixed sources
with high levels of added noise is good qualities for an algorithm intended to find
hidden responses in EEG, since this monitors all brain activity simultaneously, have
low signal amplitude due to physiological dampening of the signal, and a resulting
susceptibility to unwanted noise.

The tests on real EEG datasets proved that BCoCA, as well as CoCA and CCA, were
able to find a reported N170 response in EEG from a face recognition experiment. The
corresponding scalp maps showed that CoCA and BCoCA achieved more anatomically
correct results when compared to the projection of the actual activity. CCA managed
to find the same signals, but with a scalp map focusing on specific channels. This
difference in resulting scalp maps between CCA and CoCA, was also reported in
Dmochowski et al. [2012]. When it comes to extracranial EEG research show that
the underlying cortical area influencing the EEG can be up to 45 cm2 [Duun-Henriksen
et al. 2012], which advocates for scalp maps as the ones found by BCoCA and CoCA
as opposed to the channel specific ones by CCA. Another EEG dataset stemming
from an experiment with a semantic stimulus was tested with an approach similar
to the one presented in Dmochowski et al. [2012], and the one employed on the data
from the experiments presented in this thesis. The result was a 91 % of significantly
correlated windows for IaSC and 90 % for ISC as well as a clearly shown decrease
of alpha activity after stimulus, when averaging over all the epochs of the combined
component.

In the analysis of the EEG recorded for this thesis the majority of the presented
results stemmed from using CoCA only. This approach was chosen for comparability
with the results in Dmochowski et al. [2012], and to avoid cluttering the results
with duplicate figures. However these analyses were also conducted using BCoCA
and a few chosen figures with comparisons to CoCA were presented. These showed
that even though BCoCA could achieve higher correlations in some situations, the
components it found were not as separated as the ones found with CoCA. This even
though the illustrated scalp maps showed higher individuality than the one manifested
in the average IaSCs and ISCs. A reason for this could lie in the fact that BCoCA
estimates a full covariance matrix for the noise in each dataset, which are used in the
calculation of the hidden sources. A dominating covariance matrix could explain the
increased similarity in the components and warrants further investigation in this area.
It should be mentioned that BCoCA performed equally well in separating the sources
in the simulated data with four hidden sources, as compared to the other algorithms.
Experimenting with having BCoCA output more or fewer components might change
the output.
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5.2 Recording and comparing EEG on multiple subjects
To establish the significance of coincidences between neural correlation and stimulus,
the experiment included manipulation of the stimulus with viewings of films with
scenes scrambled in time, repeated viewings and a control film. The control generally
elicited a low correlation within and between subjects which can be accredited to
its monotonous, to the extent of inducing sleep in a few subjects, content. The
statistically significant difference in the proportion of correlation between the films
and the control show that the neural correlation is not merely by chance or a product
of synchronisation of the default mode network. Contrary to Dmochowski et al.
[2012] the scalp projection of the control does not correspond well to those of the
films which could mean that the algorithm found noisy components that were more
correlated than the neural response to the films.
Viewing the films scrambled in time removes most of the contextual meaning and
deflates the tension and suspension created using cinematographic and sound effects.
Though statistically different from the original film the scrambled ones elicited a
higher response than anticipated with almost 20% significant windows in the first
component of Bang! You’re Dead. As mentioned, this may be the result of an
unfortunate random shuffling of the scenes in which contextually meaningful scenes
were placed early and thus provided sufficient context to decode from other scenes that
the gun is real and Sophie is about to loose a child. Furthermore, a cinematographic
method to surprise an audience is the use of rapid and unexpected scene changes.
By cutting up the scenes and shuffling them this effect may induce a mild shock in
the viewer if they at one point are looking at a child’s face and in the next down the
barrel of a gun.
Provided that the measured effect in neural activation is caused by tension, suspension
and ”emotionally laden attention”, the effect of already knowing the content of a film
will be a lowered neural response. Comparing inter-subject correlations for the first
and second viewing in the single group, this is exactly the result we got. However,
the proportion of significant correlations for the second viewing is very low, 45% vs
9%, which may indicate issues with synchronising the second viewing across subjects.
By investigating the coincidence of scenes with peaks of large mass it was discovered
that these often occur at times of arousing moments, close-ups of faces and objects,
and immediately following a scene change. In Bang! You’re Dead the discovery of
the gun and bullets elicits the largest responses. This was surprising since the scenes
in which the boy triggers the gun are, in the authors perspective, more intense and
induces a high level of anticipation and suspense. From earlier mentioned studies it
was shown that the perception of a face elicits a neural response approximately 170
ms post stimulus but this phenomenon is not restricted to faces only. The occipito-
temporal cortex is activated when objects and faces are perceived and even higher
activation occurs when the object is recognised [Grill-Spector 2003]. The neural
correlation may thus stem from bottom-up processes of object and face perception and
abrupt changes in the viewers perspective. This is supported by the scalp projections
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of the most correlated components that show high neural activation in these areas and
similar results reported by Hasson, Nir, et al. [2004]. The neural activation pattern
for Sophie’s Choice was consistently similar to that of Bang! You’re Dead and from
the scenes with high correlation it is evident that close-ups of faces may cause much
of the neural response. However, scalp projections of the former (see figure 4.3(a)
and 4.21(b)) extends farther into the parietal lobe which may indicate activation of
the posterior cingulate cortex, known to be involved in emotion processing [Maddock
et al. 2003]. Sophie’s Choice contains elements of intense sadness which has been
shown to be a powerful emotional stimulant activating many areas in the posterior
region of the brain, including the posterior cingulate [Goldin et al. 2005]. Recall
that empathy is modulated by higher order processes and potentially dialled down
if the inferred state of another becomes so powerful that it threatens to confuse the
perception of self and other. During the last scene of Sophie’s Choice, when the girl
is removed, a large extended period of neural correlation followed by a large drop is
observed (see figure 4.21(a)). Exactly the same result was produced in a fMRI study
using the same film as shown in figure 4.20 [Raz, Jacob, et al. 2013]. As previously
mentioned, ES is a low-level representation of another’s state linked to the MNS
while ToM is a higher level cognitive representation. We know that more intensive
emotional stimulus should induce a higher neural response, as figure 4.20(b), which
should lead to higher correlation between the subjects, which happens just before the
drop. It is thus very plausible that BCoCA in this situation has found components
of neural activity that mainly originates from emotional representations and that the
drop is caused by regulation of emotions. Emotional activation may become clearer
by contrasting emotionally sad scenes with emotionally neutral scenes depicting faces
of the same actors.

5.2.1 Comparing EEG from subject viewing films together
Experiments regarding the influences of viewing films jointly was conducted with
two groups of nine subjects. Unfortunately due to synchronisation and connection
issues, the data from two subjects in the first joint viewing were not usable. Unlike
the results from the single viewing subjects, the results were not as clear. Even
though significant differences could be seen in the number of significant windows, the
manner in which the groups differed from each other was not consistent across the
three components or the films seen. Though being a more qualitative comparison, the
times of high correlation of the average population correlation indicated a consistent
difference. The two joint viewing groups did not obtain high correlation in their
average IaSC and ISC in all of the scenes for which the single viewing group obtained
high correlation. Furthermore the scenes, that the two viewing groups did attain
high correlations for, were not always the same scenes. In turn the joint viewing
groups obtained higher values of correlation for their significant scenes compared to
the single group. A conclusion from this could be that viewing the films in a large
group makes it harder to obtain a common synchronised experience, but when it
happens the synchronisation is increased. However the joint viewing experiments
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consisted of only two groups, and even though these amounted to 16 usable datasets,
more joint viewing groups are needed to obtain statistical significant results.

5.3 Future work
As a conclusion to the discussion of the results we will explain some of the ideas and
areas for further exploration that occurred to us during the project and the review of
the results, but unfortunately had to be down prioritised due to time limitations.

5.3.1 Improving BCoCA
Starting with BCoCA, there are tests for the implementation that could have been
interesting and have potential for increasing both the performance and computation
efficiency, the first of these being the initialisation of the algorithm.

Initialisation
In the present state of BCoCA only the weights, A, are initialised based on the data
from a zero mean Gaussian distribution with a standard deviation equal to the average
standard deviation across all channels in the dataset. With more knowledge regarding
the datasets the variables could be initialised closer to a likely solution. This could
be done through simple analysis of the data as in the case of A, by using the results
of another algorithm such as done by Wang [2007] and Wu et al. [2011], or by using
prior knowledge of the data. The prior knowledge could be specific to the subject
from which the EEG is recorded or to the experiment. There was a high degree of
similarity between the scalp maps attained from the experiments conducted in this
thesis, and an even higher similarity in Dmochowski et al. [2012], which suggests that
initialising A as having these values might help BCoCA find solutions with weights
close to these, as well as decrease the amount of iterations required to reach them.
A related area is the question of how to model the hyperparameters, α and λ, and
the noise covariance, Ψ(−1). In BCoCA they have been modelled using constant
parameters, a0, b0, S0, and v0, which were set close to zero, as seem to be the general
consensus [C. Bishop 1999; Klami 2013; Wang 2007; Wu et al. 2011], but they could
be modelled using inference for another layer of hyperparameters. This would make
the algorithm more flexible, but also asks the question of when to stop.

Variable updating scheme for the variables
The question of computational speed could be addressed by using a relaxed expec-
tation maximisation scheme, where the change in the variables are increased by a
parameter that varies in size to avoid negative changes in the lower bound. Another
possibility is to monitor the contribution of each variable to the change in lower
bound, and have the ones with low change skip some of the iterations. Initial in-
vestigations hint that the noise covariance matrix have high rates of change in few
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iterations reaching a plateau afterwards, though the other variables still contribute
to large changes. As the update of the noise covariance involves the inversion of a
D×D matrix, with D being the number of channels, only updating it when necessary
could result in a significant lower computation cost.

Management of components
A noteworthy area of improvement lies in the management of components. In its
present state BCoCA regularises the number of components, and their variance,
through ARD, but the performance of this feature have not been thoroughly tested.
Similar implementations have been tested with great success [C. Bishop 1999; Wang
2007; Wu et al. 2011; Klami 2013], but the addition of the shared U and the new
ARD variable, λ, poses a change significant enough that further testing is warranted.
Where CoCA is able to sort its components through the size of the calculated eigen-
values, BCoCA does not have this ability. A possible solution could be to sort the
components by the product between the average power of the component and the
average power of the corresponding weights.

5.3.2 Further analysis and expansion of EEG recording
experiment

Pre-processing of EEG data can have a major effect on the results because of the
typically low signal-to-noise ratio. In this thesis noise and eye-artefact reduction has
been applied but a thorough investigation into other sources of noise that are less
obvious may improve the results. It has come to our attention too late that the
artefacts in a few subjects alter the result of the entire group why these should be
removed from the dataset altogether and the processing repeated.
Synchronisation of EEG and films has proven difficult and from the large difference
in significant windows between intra- and inter-subject correlations for some of the
groups, it is evident that synchronisation remains a problem. Though the current
method improved the results considerably it only allows correction for up to two
seconds. Increasing this interval and applying a more intelligent way of determining
the optimal correction is expected to alter some of the results significantly.

Further processing
As previously mentioned initialising BCoCA with the solution of another, faster,
algorithm may produce better results or at least faster convergence. To initialise
BCoCA it would be obvious to use the filters from CoCA or stationary filters of the
”expected” solution.
When computing the inter-subject correlations the current paradigm correlates every
subject with the rest. As part of its solution BCoCA returns the inferred source
Z which is the maximally correlated component for all of the datasets. Instead of
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correlating on an inter-subject basis it would be interesting to correlate each subject
with just the shared source.
Oscillation of brain waves hold a wealth of information in most aspects of EEG anal-
ysis and would thus be natural to investigate further. Desynchronisation of the alpha
band has long been associated with increased attentional demand [Klimesch et al.
1998] and reduction of beta activity with tasks related to e.g. processing of external
emotional stimuli [Dmochowski et al. 2012]. As proposed by the latter the instan-
taneous power of different frequency bands in windows of high correlation could be
compared to windows of low correlation to test for significant differences in frequency
suppression/synchronisation.
Negative valence and high arousal in films has shown to synchronise areas in the
emotion-processing and default-mode networks [Nummenmaa et al. 2012], in line
with our results, but the synchronisation can be investigated further by considering
the phase of different frequency bands. To this purpose the phase-locking method
has been successfully applied to discover inter- and intra-brain connectivity in a dual
EEG study [Yun et al. 2012], which implies that the method could be used as an
alternative way of processing our data.
Another way of expanding on the results of the joint viewing experiments would be
to conduct additional experiments, with two alterations of the original setup being
of particular interest. The first change would be to conduct a series of joint viewing
experiments in smaller groups of twos and fives. This would enable an investigation
of the significance of group size and, especially with the two subject setup, it would
be possible to better control the testing environment and conduct enough tests to
obtain statistical significance. A second change could be to conduct single viewing
experiments in the same large room with the same setup as for the joint viewings.
This test would prove if and how the viewing environment influences the results.
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CHAPTER 6
Conclusion

This thesis has described and derived a Bayesian approach to CoCA, a novel signal
decomposition method introduced in Dmochowski et al. [2012]. With BCoCA the
method is generalised to enable comparisons between more than two subjects at the
same time, and relaxes the constraint of equal weights with an adaptable parameter
controlling the similarity between the weights for each dataset. This gives it applica-
tions in multiple subject experiments, with the purpose of locating neural activations
that are synchronised within and between brains. The algorithm has proven its us-
ability compared to similar methods using simulated and real EEG data. In the
simulated data tests BCoCA was proven to have equal or better performance when
handling multiple datasets, while the tests on real EEG showed that the algorithm
shared CoCA’s ability to obtain anatomically correct scalp maps.
The second part of this thesis consists of an EEG experiment with a cohort of 42
subjects who either viewed a film alone or in a group. Experiments of this kind has
many variables that need to align for the experiment to be successful and throughout
the entire duration of the planning and execution, new variables were discovered. The
first challenge was, in order to record data, to write a new application based on an
unknown framework in an unfamiliar programming language. The second challenge,
and by far the most time-consuming, was to establish a method to synchronise not
only one but a whole group of wireless EEG recordings with a film showing on a
tablet and a camera recording the session. Though the synchronisation worked for
the most part, a software based method is highly encouraged whenever possible.
The last of the many challenges was of course the logistics and execution of the
experiments. The Emocap was thankfully easy to equip and most of the recordings
went, to our knowledge, trouble-free, but a number of technological issues will need
further attention if the experiment is repeated.
A study was conducted on the neural response to a known stimuli and the correlation
of this among subjects. It was discovered that neural correlation is detectable using
consumer-grade hardware and that there is a significant difference between neural
correlation originating from emotionally arousing and neutral films, respectively. It
was shown that although object perception processes are responsible for some of the
neural activity, contextual meaning and emotion are a highly significant components
as well. This was further established by comparing scenes with periods of significant
correlation and scalp projections of the neural activity. The latter showed higher
activation in areas related to emotion for the emotionally intense Sophie’s Choice
compared to the suspenseful but otherwise emotionally indifferent Bang! You’re Dead.
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It was unfortunately not possible to determine whether the effect of experiencing an
emotionally laden stimulus in a group is significantly different to experiencing it alone.
We maintain the belief that there is a difference, but further processing is needed to
reveal it.
This thesis has contributed to the field of neuroscience with a new algorithm, by
validating important results of another study, validating the use of an affordable
EEG monitor in research, conducting the, to our knowledge, largest simultaneous
EEG experiment, and possibly producing new results regarding emotion regulation
in social circumstances.



APPENDIX A
Worked Through

Example: Variational
Principal Components

This appendix contains a worked through example of Variational approximation of
the Bayesian PCA proposed by C. Bishop [1999]. The notation is mostly the same as
the one used in the article. For a simpler example see C. M. Bishop [2006] or Murphy
[2012] for a work through of a unimodal Gaussian.

The prior (and t’s conditional) distributions are given by

x ∼ N (0, Iq) (A.1)
t ∼ N (Wx+ µ, τ−1Id) (A.2)

W ∼ p(W|α) =
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µ ∼ N (0, β−1Id) (A.4)
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The joint probability is then given by
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Posterior for q(X)

The logarithm of the distribution for X is approximated by

ln q(X) = E/X [ln p(tn|W,xn,µ, τ) + ln p(X)] + C ⇔ (A.10)
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where the parts of the equation which are independent of xn are absorbed into the
constant, C. The expectation is taken with respect to all variables with a defined
prior distribution, except for xn. Elements in the equation which are constant with
regard to these are left out of the expectation. Since xn has a gaussian as its prior
distribution, the goal is to arrange the elements of the equation to resemble a log
gaussian. Then by ”completing the square” [C. M. Bishop 2006, p.86] expressions for
a new mean and variance can be found.
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where ⟨.⟩ signifies the expectation.
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Posterior for q(α)

The logarithm of the distribution for α is approximated in the same manner as for X

ln q(α) = E/α [ln p(W|α) + ln p(α)] + const. ⇔ (A.19)
= E/α [ln p(W|α)] + ln p(α) + const. ⇔ (A.20)

=

q∑
i=1

E/α

[
d

2
(ln αi − ln 2π)− αi

2
||wi||2

]
+ a0 ln b0 + (a0 − 1) lnαi

− b0αi − lnΓ(a0) + const. ⇔ (A.21)

=

q∑
i=1

d

2
ln αi −

αi

2

⟨
wT

i wi

⟩
+ (a0 − 1) lnαi − b0αi + const. ⇒ (A.22)

q(α) =

q∏
i=1

Ga(αi|aα, bα,i) (A.23)

aα − 1 =
d

2
+ a0 − 1 ⇔ (A.24)

aα = a0 +
d

2
(A.25)

bα =
1

2

⟨
wT

i wi

⟩
+ b0 (A.26)

Posterior for q(W)

The logarithm of the distribution for W is approximated in the same manner as for
X

ln q(W) = E/w [ln p(tn|W,xn,µ, τ) + ln p(W)] + const. ⇔ (A.27)
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Note that wk is a row vector. (wkxn)T and (wkxn) are therefore scalars, and their
order can be changed freely.
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+ diag(⟨α⟩) (A.32)

Σ−1
w mw,k = ⟨τ⟩

N∑
n=1

⟨xn⟩ (tn,k − ⟨µk⟩) ⇔ (A.33)

mw,k = Σw ⟨τ⟩
N∑

n=1

⟨xn⟩ (tn,k − ⟨µk⟩) (A.34)

Posterior for q(µ)
The logarithm of the distribution for µ is approximated in the same manner as for X

ln q(µ) = E/µ [ln p(tn|W,xn,µ, τ) + ln p(µ)] + const. ⇔ (A.35)
= E/µ [ln p(tn|W,xn,µ, τ)] + ln p(µ) + const. ⇔ (A.36)

= E/µ

[
N∑

n=1

−τ
2
||tn − (Wxn + µ)||2

]
− β

2
||µ||2 + C ⇔ (A.37)

= E/µ

[
N∑

n=1

−τ
2
(||µ||2 − µT (tn −Wxn)

]
− β

2
||µ||2 + C ⇔ (A.38)

= −1

2
||µ||2(N ⟨τ⟩+ β)I− µT ⟨τ⟩

N∑
n=1

(tn − ⟨W⟩ ⟨xn⟩) + C ⇒ (A.39)

q(µ) = N (µ|mµ,Σµ) (A.40)

Σ−1
µ = (N ⟨τ⟩+ β)I (A.41)

mµ = Σµ ⟨τ⟩
N∑

n=1

(tn − ⟨W⟩ ⟨xn⟩) (A.42)

Posterior for q(τ )
The logarithm of the distribution for τ is approximated in the same manner as for X
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ln q(τ) = E/τ [ln p(tn|W,xn,µ, τ) + ln p(τ)] + const. ⇔ (A.43)

= E/τ [ln p(tn|W,xn,µ, τ)] + ln p(τ) + const. ⇔ (A.44)

=
N∑

n=1

E/τ

[
d

2
ln τ − τ

2
||tn − (Wxn + µ)||2

]
+ (a0 − 1) ln τ − b0τ + C ⇔

(A.45)

= ln τ
(
Nd

2
+ a0 − 1

)
− τ

1

2

N∑
n=1

E/τ

[
||tn − (Wxn + µ)||2

]
− τb0 + C ⇔

(A.46)

= ln τ
(
Nd

2
+ a0 − 1

)
− τ

1

2

N∑
n=1

E/τ

[
(Wxn)T (Wxn) + ||tn − µ||2

−2(Wxn)(tn − µ)]− τb0 + C. (A.47)

Using [Petersen et al. 2006, (16-17)] it can be shown that

(Wxn)T (Wxn) = Tr(WTWxnxTn ) (A.48)

ln q(τ) = ln τ
(
Nd

2
+ a0 − 1

)
− τ

(
b0 +

1

2

N∑
n=1

Tr(
⟨
WTW

⟩ ⟨
xnxTn

⟩
) + ||tn||2

+
⟨
||µ||2

⟩
+ 2

(⟨
µT
⟩
⟨W⟩ ⟨xn⟩ − tTn ⟨W⟩ ⟨xn⟩ − tTn ⟨µ⟩

))
+ C (A.49)

The distribution can then be approximated by

q(τ) = Ga(τ |aτ , bτ ) (A.50)

aτ =
Nd

2
+ a0 (A.51)

bα = b0 +
1

2

N∑
n=1

Tr(
⟨
WTW

⟩ ⟨
xnxTn

⟩
) + ||tn||2 +

⟨
||µ||2

⟩
+ 2

(⟨
µT
⟩
⟨W⟩ ⟨xn⟩ − tTn ⟨W⟩ ⟨xn⟩ − tTn ⟨µ⟩

)
(A.52)
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APPENDIX B
Performance on
Simulated Data

B.1 Varying similarity between true weights
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Figure B.1: M = 2, SNR = {−6, 0}, K = 4
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Figure B.2: M = 5, SNR = {−6, 0} K = 4
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B.2 Varying SNR

Figure B.3: M = 2, λ = 0.001

Figure B.4: M = 2, λ = 0.001, K = 4
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Figure B.5: M = 2, λ = 1000, K = 4

Figure B.6: M = 5, λ = 1000, K = 1

Figure B.7: M = 5, λ = 0.001, K = 4
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Figure B.8: M = 5, λ = 1000, K = 4



B.3 Varying number of datasets 105

B.3 Varying number of datasets

Figure B.9: λ = 1, K = 1

Figure B.10: λ = 0.001, K = 4
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Figure B.11: λ = 1, K = 4

Figure B.12: λ = 1000, K = 4



APPENDIX C
Additional Results

This appendix shows results omitted from chapter 4.

C.1 Single viewing significance
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(b) Inter Subject
Figure C.1: Single viewing significance controlled for multiple comparisons using FDR

1 2 3
0

10

20

30

40

50

60

Component

%
 s

ig
ni

fic
an

t w
in

do
w

s

 

 

Single
Scramble

(a) Bang! You’re Dead
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(b) Sophie’s Choice
Figure C.2: Comparison of significant correlations in the Single viewing IaSC between
the original film and the scrambled version of Bang! You’re Dead and Sophie’s Choice.
Controlled for multiple comparisons using FDR
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C.2 Intra subject analysis
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Figure C.3: Population IaSCs for the second CoCA component for the viewing of Bang!
You’re Dead.
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Figure C.4: Population IaSCs for the second CoCA component for the viewing of Sophie’s
Choice.



C.2 Intra subject analysis 109

0

0.1

0.2
Joint1

 

 
p > 0.01, uncorrected

0

0.1

0.2

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Joint2

1 2 3 4 5
0

0.1

0.2

Time (min.)

Single

Figure C.5: Population IaSCs for the second CoCA component for the viewing of the
control video.
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Figure C.6: Population IaSCs for the third CoCA component for the viewing of Bang!
You’re Dead.
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Figure C.7: Population IaSCs for the third CoCA component for the viewing of Sophie’s
Choice. Note that for joint 1 the component has been switched with what was estimated
as being component 1, since this fitted the scalp maps in Dmochowski et al. [2012] better.
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Figure C.8: Population IaSCs for the third CoCA component for the viewing of the
control video.



C.2 Intra subject analysis 111

Figure C.9: Intra subject scalp projections for the second component recorded for all
three films and the joint 1, joint 2 and single viewing groups.

Figure C.10: Intra subject scalp projections for the third component recorded for all
three films and the joint 1, joint 2 and single viewing groups.
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(a) Bang! You’re Dead
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(b) Sophie’s Choice
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(c) Control

Figure C.11: Comparison of significant correlations for the IaSCs for different groups
of subjects. The level of significance have been controlled for multiple comparisons using
FDR.
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C.3 Inter subject analysis
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Figure C.12: Population ISCs for the first CoCA component for the viewing of Sophie’s
Choice in the first and second joint group as well as the single viewings.
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Figure C.13: Population ISCs for the first CoCA component for the viewing of Sophie’s
Choice. Each ISC is stemming from a surrogate group of eight subjects picked at random
from joint 1 and joint 2. The three ISCs seen in this figure attained the maximum, median
and minimum number of significant windows.
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(a) Bang! You’re Dead
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(b) Sophie’s Choice

1 2 3
0

10

20

30

40

50

60

Component

%
 s

ig
ni

fic
an

t w
in

do
w

s

 

 

Joint1
Joint2
Surrogate group
Single

(c) Control

Figure C.14: Comparison of significant correlations for the ISCs for different groups of
subjects. The level of significance have been controlled for multiple comparisons using
FDR. For the surrogate group then mean number of significant windows across subject is
shown.
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C.4 Scalp projections from BCoCA

(a) Inter subject (b) Intra subject

Figure C.15: Single viewing

(a) Inter subject (b) Intra subject

Figure C.16: Joint viewing
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(a) Inter subject (b) Intra subject

Figure C.17: Joint 1

(a) Inter subject (b) Intra subject

Figure C.18: Joint 2



APPENDIX D
Information Regarding

Experimental Setup
This appendix contains relevant information regarding the recording of EEG for this
thesis. It contains the questionnaires the subjects where presented with before and
after the EEG recording. As most subjects were Danes, they were presented with a
Danish version. Table D.2 show subject information regarding under which conditions
the films were seen and how they were perceived, as well as biometric information.
The experimental log (in danish) is also included.

Table D.1: Information regarding which combinations of receiver experienced crosstalk.
Y= Crosstalk experienced, n = no crosstalk. The crosstalk experienced using receiver pairs
2 and 9, 7 and 11, were only experienced using certain transmitters and could therefore be
circumvented be using specific transmitters to certain receivers.

Receiver 1 2 3 4 5 6 7 8 9 10 11
1 —- —- —- —- —- —- —- —- —- —- —-
2 Y —- —- —- —- —- —- —- —- —- —-
3 n n —- —- —- —- —- —- —- —- —-
4 n n n —- —- —- —- —- —- —- —-
5 n n n n —- —- —- —- —- —- —-
6 n n n n n —- —- —- —- —- —-
7 n n n n n n —- —- —- —- —-
8 n n n n n n n —- —- —- —-
9 n Y n n n n n n —- —- —-
10 n n n n Y n n n n —- —-
11 n n n n n n Y n n n —-
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Table D.2: Information regarding the subjects, under which condition they saw the
movies, and how they percieved them. S = Scrambled scenes, NS = Non-scrambled
scenes, J1 = The first joint viewing, J2 = The second joint viewing.

Subject 

no. Condition

Order of 

movies Age

Hours of 

sleep

German 

proficiency

Right 

handed

Seen the 

movies before

Understood 

the movies

16 S 1 20 7 3 Yes No Yes

10 NS 2 21 9 3 No No Yes

9 S 1 19 9 2 Yes No Yes

15 S 1 22 6 2 Yes No Yes

3 NS 2 20 7,5 2 Yes No Yes

6 NS 1 20 7,5 3 Yes No Yes

11 S 1 18 10 2 Yes No Yes

2 NS 5 20 9 3 Yes No Yes

4 NS 6 21 7 2 Yes No Yes

5 NS 1 21 9 2 Yes No Yes

14 S 1 20 9 2 Yes No Yes

12 S 1 21 8,5 2 No No Yes

13 S 2 20 8,5 1 Yes No Yes

7 NS 3 21 7 2 Yes No Yes

1 NS 2 19 8 1 Yes No Not Sophie's

8 S 2 19 8 1 Yes No Not Bang!

23 NS 4 24 7 2 Yes No Yes

22 S 1 25 8 2 Yes No Not Bang!

24 NS 3 25 8 2 Yes No Yes

21 S 1 25 5 2 Yes No Yes

17 S 1 21 7 1 Yes No Yes

19 S 1 21 7 2 No No Yes

18 NS 6 22 7,5 1 No No Yes

20 NS 6 23 8 2 Yes No Yes

33 J1 6 32 7 3 Yes No Yes

28 J1 6 25 8 2 Yes No Yes

30 J1 6 24 8 2 Yes No Yes

31 J1 6 26 8 1 Yes No Yes

27 J1 6 25 5,5 2 Yes No Yes

25 J1 6 21 8 2 Yes No Yes

29 J1 6 25 10 2 Yes No Maybe

26 J1 6 21 8 1 Yes No Yes

32 J1 6 25 7 2 Yes No Yes

34 J2 6 22 10 2 Yes No Yes

36 J2 6 20 9 1 Yes Sophie's Yes

35 J2 6 25 8,5 2 Yes No Yes

41 J2 6 25 8 2 Yes No Yes

37 J2 6 25 9 2 Yes No Yes

42 J2 6 22 6 3 Yes No Yes

40 J2 6 22 6,5 3 No No Yes

39 J2 6 24 8 2 Yes Sophie's Yes

38 J2 6 23 8 1 Yes No Yes
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Figure D.3: CORRMAP correlation of ICs 1 - 35
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Questionnaire before EEG-measurement 

 

Name:                subject no.: 

Movie:  

 

1. Are you right handed?       

2. Normal sight/corrected to normal vision 

3. Normal hearing:   

4. How many hours have you slept last night? 

5. Age 

6. Do you have a psychiatric record? 

7. Do you have a neurologic record? 

8. Have you ingested drugs or medication the last 24 hours? 

a. If yes, which? 

9. Level of German proficiency 

a. Fluent 

b. Good understanding of the language 

c. Basic understanding of the language 

d. None 

10. Are you interested in participating in future experiments? 

If you answer ”Yes”, your sex, age and contact 

information will be saved for future use. 

11. Can we use pictures of the experimental setup, where you 

appear for our Master thesis, article or other things that 

regard this experiment?  

Yes        No    

Yes        No    

Yes        No    

_____________ 

_____________ 

Yes        No    

Yes        No    

Yes        No    

 _____________   

 

 

 

 

 

 

 

Yes        No    

 

 

Yes        No    

 

 

Mobiles and other electric equipment have to be removed before the experiment. 

 

 

 

I hearby confirm, that I agree to participate in a experiment with EEG recordings during viewing films. I 

am informed that I participate voluntarily and that I can, at any time and without reasons, can redraw my 

consent to participate. 

 

 

 

Date : __________________    Signature : ___________________________________________________ 

  

 



Questionnaire after EEG-measurement 

 

Name:         Subject no.: 

 

 

1. Had you seen the movies before 

a. The black/white movie 

b. The movie in colour 

2. Did you understand the movie in german? (the one in 

colour) 

 

Yes        No    

Yes        No    

 

Yes        No    

  

3.  Which scenes made the strongest impression in the black/white movie? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

 

4. Which scenes made the strongest impression in the movie in colour? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 
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APPENDIX E
Article in collaboration

with Lucas Parra
Below follows a draft of an article in collaboration with Lucas Parra, co-author of
Dmochowski et al. [2012]. The article has its focus on the derivation and testing of
BCoCA. Content which is described in chapter 2 in this thesis.



Probabilistic Correlated Component Analysis
Draft∗

Andreas Trier Poulsen1∗, Simon Kamronn1∗,
Lucas Parra2, and Lars Kai Hansen1.

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

2 Department of Biomedical Engineering,
City College of New York, City University of New York,

New York, NY, USA

December 17, 2013

We propose a probabilistic generative model for investigation of the univer-
sality of the representations used in human information processing. The model
is tested in simulated data and in two well-established benchmark EEG data
sets.

1 Introduction

We are interested in information processing in the human brain. In particular how the
human brain solves computational problems such as decoding high level information from
a movie. Assuming that the movie brain interaction is jointly optimized for this process
we should expect a certain amount of optimality, hence universality, in the representations
and processes used in the brains of subjects watching a movie.
Such an approach to neuroscience, said to be based on naturalistic stimuli, has been pur-
sued by Hasson et al. [1, 2, 3]. They introduced a correlation approach between anatom-
ically aligned brains. This is based in a rather strong assumption of universality, namely
that both the extracted information (what) and the representation (where) are shared
among subjects. To exploit the full spatio-temporal patterns of correlation and increase
sensitivity, a multivariate version of this approach, so-called correlated component analysis
was recently proposed by Dmochowski et al. [4].
Within the multivariate framework, a natural relaxation of the strong universality hypoth-
esis, would be to investigate if the decoded content (what) was identical between subjects,
but representations, hence, the ’where’ individual. Such an approach corresponds to the

∗This work is funded by Lundbeckfonden via CIMBI Center for Integrated Molecular Brain Imaging.
Authors with (∗) made equal contributions to this work

1



multivariate approach known as canonical correlation analysis (CCA) [5]. The CCA ap-
proach searches for individual stationary spatial networks with similar temporal activation
among subjects and was generalized to account for both joint and individual signal com-
ponents by Lukic et al. [6]. A probabilistic approach to CCA also including the possibility
of both joint and individual components was proposed by Klami et al. [7].
Here we will analyze a probabilistic model which focuses on extracting joint components
inspired by the work of Dmochowski et al., however, with the possibility of learning the
degree of universality from data. The latter is implemented by hierarchical Bayesian
approach that allows variable degree of non-universal representations (where) in individual
subjects. We illustrate the performance and the approximate inference procedures invoked
in both simulation studies and in electro-encephalographic (EEG) data. EEG was used to
illustrate the model proposed by [4], while functional magnetic resonance imaging (fMRI)
was used in [1, 2]. Dmochowski et al. [4] argue that voxel-wise correlations in blood
oxygenation level dependent (BOLD) signals are unable to capture weak activity over
distant regions, as well as that the poor temporal resolution of fMRI inhibits precise
estimation synchronized information processing. However, the spatial resolution of EEG
represents a drawback relative to fMRI, hence the test for similarity of spatial networks
can only be answered at a limited spatial resolution.

2 Finding correlated components through eigenvalue
decomposition

We first briefly review the two existing multivariate approaches.
Given two multivariate spatio-temporal datasets, X(1) ∈ RD1×N and X(2) ∈ RD2×N , with
{D1, D2} defining the number of measured features and N the number time samples,
CCA seeks to estimate weights, {W(1),W(2)}, which maximise the correlation between
y1 = X(1)Tw(1)

k and y2 = X(2)Tw(2)
k . At the same time CCA constrains the estimated

weights with the condition that X(1)Tw(1)
k and X(1)Tw(1)

k′ are uncorrelated for k 6= k [7].
Introducing the sample covariance matrix, Rij = 1

NX(i)X(j)T , CCA finds the weights
analytically through eigenvalue decompositions

R−1
11 R12R−1

22 R21w(1) = ρ2w(1) (1)
R−1

22 R21R−1
11 R12w(2) = ρ2w(2).

Correlated component analysis is a related approach, but differentiates itself by finding
a single set of weights that works for filtering both datasets. This stronger universality
assumptions is also motivated by its fewer degrees of freedom. Furthermore it does not
require the somewhat artificial orthogonality between weights, which is less meaningful in,
e.g., EEG where the weights are spatial networks [4]. In Correlated component analysis
the weights are thus estimated through a single eigenvalue decomposition [4],

(R11 + R22)−1 (R12 + R21) w = 2 · σ12
σ11

w. (2)

2.1 Robustness of correlated component analysis to assumption of universal
patterns

While correlated component analysis is based on the assumption of identical weights,
we here show that the approach is indeed robust to differences in the ’true weights’. In

2



particular we here show that even if the two sets of weights are orthogonal, correlated
components can still be found using the method.
The observations are assumed to consist of a single true signal mixed into D dimensions
by a vector and gaussian noise;

X1 = a1z + ε , X2 = a2z + ε. (3)

Given enough samples, the sample covariance matrices can be defined as

R11 = P · a1aT1 + σ2I , R12 = P · a1aT2 , (4)

where P signifies the power of z and σ2 signifies the noise variance. For simplicity the the
weight vectors are assumed to have unit length.
The two matrices in (2) can now be written as

(R11 + R22)−1 = 1
P

(
a1aT1 + a2aT2 + 2σ2

P
I
)−1

⇔ (5)

= 1
P

(
[a1 a2]

[
wT

1
wT

2

]
+ 2σ2

P
I
)−1

(6)

R12 + R21 = P · [a1 a2]
[
wT

1
wT

2

]
(7)

using block matrix notation. Using aT1 a2 = 0, ‖a1‖2 = ‖a2‖2 = 1 and the Woodbury
identity, (6) can be expressed as;

(R11 + R22)−1 = 1
2σ2

(
I− P

2σ2 [a1 a2]

·
(

I− P

2σ2

[
wT

1
wT

2

]
[a1 a2]

)−1 [
wT

1
wT

2

] (8)

= 1
2σ2

I− P

2σ2 [a1 a2]
(

I− P

2σ2

[
1 0
0 1

])−1 [
wT

1
wT

2

] (9)

= 1
2σ2

(
I− P

2σ2 + P
[a1 a2]

[
wT

1
wT

2

])
. (10)

The matrix product of (6) and (7) then gives

(R11 + R22)−1 (R12 + R21) =
P

2σ2

(
I− P

2σ2 + P
[a1 a2]

[
wT

1
wT

2

])
[a1 a2]

[
wT

1
wT

2

]
(11)

= P

2σ2

(
1− P

2σ2 + P

)
[a1 a2]

[
wT

1
wT

2

]
(12)

= P

2σ2 + P
(a1aT1 + a2aT2 ) (13)
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Using the simplifying assumptions made earlier an eigenvector for (13) can be seen to have
the form αa1 + βa2 since

P

2σ2 + P
(a1aT1 + a2aT2 )(αa1 + βa2)

= P

2σ2 + P
(αa2 + βa1). (14)

It can be seen that αa1 + βa2 is an eigenvector when either α = β or α = −β with
± P

2σ2+P as eigenvalues. This means that when the true mixing weights of two datasets are
orthogonal correlated component analysis finds a common weight, consisting of the mean
of the true weights.

3 Probabilistic Correlated Component Analysis

Inspired by the probabilistic principal component analysis introduced by [8], a proba-
bilistic approach to CCA was presented in [9] using latent variables. They formulated a
probabilistic generative model based on Gaussian distributed common sources, z, mixed
to form two noisy observed datasets

z ∼ N (0, I) (15)

x(m) ∼ N
(
A(m)z,Φ(m)

)
, for m = {1, 2}, (16)

with Φ(m) representing the covariance matrix for the observation noise of dataset m. A1

signifies the mixing matrix, where each column represents the mixing of one source, which
means that if one posses prior knowledge of the number of hidden sources the dimension
of the estimated mixing matrix can be reduced to A ∈ RD×K . This is an advantage
when K < D, but presents the problem of chosing the right value for K. To avoid discrete
model selection [10] introduced a hierarchical prior over A using the automatic relevance
determination (ARD) framework

A(m) ∼
K∏
k

N
(
A(m)
k |0, α

−1
k

)
(17)

α ∼
K∏
k

Ga(αk|a0, b0), (18)

where Ak signifies the k’th row in A and αk is a gamma distributed hyper parameter
controlling the precision of Ak.
This approach to CCA has lead to Bayesian CCA [12, 13], a hierarchical Bayesian spatio-
temporal model [14] and latest Group Factor Analysis (GFA) [15], the first practical multi-
view generalization of Bayesian CCA, and its two-view extension Bayesian Inter-Battery
Factor Analysis (BIBFA) [7]. The latest addition divided the sources into shared and
view-specific sources enabling the simplification of Φ(m) to a diagonal matrix improving
computing time for high dimensional data.
The above mentioned articles where not the first to introduce these concepts to probabilis-
tic CCA, but instead had their focus on how to approximate the posterior distribution for

1Authors use different letters for the mixing matrix. Most Bayesian models use the notation W, probably
stemming from [10], but as this letter is also used to define the demixing matrix, we have in this article
chosen to use A as [11].
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the hidden sources. Instead of the commonly used maximum likelihood or maximum a pos-
teriori solutions through expectation maximization, the articles focus on a full Bayesian
treatment employing either Gibbs sampling or variational inference. Both approaches
have their own advantages and drawbacks. Here we will focus on variational inference,
and Gibbs sampling will not be discussed further.

3.1 Variational inference

The joint probability distribution can be expressed as

p(X) = p(H,V)

with H and V being hidden and visible variables. Sometimes the joint distribution for a
statistical model can get so complex that the true posterior distribution, p(H|V), becomes
analytically intractable, in which case a suitable approximation, q(H), can be a better
option. In probabilistic variational inference the simplifying assumption is often that q is
completely factorised as

q(H) =
∏
i

qi(Hi), (19)

meaning that there are no conditional distributions in q(H). This simplification is origi-
nally known in physics as mean field theory [16].
Variational inference uses the Kullback-Leibler (KL) divergence as a measure of the dis-
similarity between the true distribution and its approximation, and seeks to minimise it.
The KL divergence is defined as

KL(q‖p) =
∫
q(H) ln q(H)

p(H|V)dH. (20)

The evaluation of the KL divergence, as defined in (20) depends on the posterior distri-
bution, but since this is assumed intractable the equation is not very useful in this form.
Using the product rule (20) can be rearranged into an expression with distributions that
are assumed analytically tractable;

KL(q‖p) =
∫
q(H) ln q(H)

p(H,V)dH +
∫
q(H) ln p(V)dH ⇔ (21)

=
∫
q(H) ln q(H)

p(H,V)dH + ln p(V). (22)

Defining the negative of the first term on the right hand side as L(q), a relationship
between the true log likelihood and the approximation of the posterior distribution can
be defined as

ln p(V) = KL(q‖p) + L(q). (23)

Using Jensen’s inequality it can be proven that the KL divergence is positive except
when q(H) = p(H|V), where it is zero. This means that L(q) cannot exceed the true
log likelihood, and is therefore a lower bound for it. So when optimising q(H) through
minimisation of the KL divergence, one can instead do it through maximisation of L(q)
[17].
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Using the factorising assumption it can be proven that the lower bound can be maximised
with respect to the approximated distribution for each variable, qj(Hj), when

ln qj(Hj) = 〈ln p(H,V)〉H/j + C, (24)

where 〈 〉H/j signifies the expectation with respect to all variables in H, except Hj . C
is a constant term representing all terms of the expectation not dependent on the given
variable, Hj .
The resulting algorithm consists of updating the lower bound with respect to each variable
in turn in a expectation maximisation like manner, where the order of updates can either
be fixed or be chosen at random. The form of (23) makes exponential prior distributions a
convenient choice with the benifit of having conjugate relationship between the prior and
posterior distributions [16, 18].

3.2 The generative model

The Probabilistic or Bayesian correlated component analysis (BCoCA) model presented in
this article is based on variational inference with assumptions of a exponential factorised
posterior with conjugate priors, as described earlier in this section.
The priors for z and α are defined as in (15,18) and the only change in the prior for x is
the use of the precision matrix, Ψ instead of the covariance matrix, viz., the prior assigned
to Ψ is a Wishart distribution;

x(m) ∼ N
(
A(m)z,Ψ(m)−1) (25)

Ψ(m) ∼ W(S0, v0). (26)

The major differences lie in the prior for the weights, which have been expanded to include
latent variable, U, representing the mean weigth matrix across all datasets and the ARD
variable λ which regularizes how close the A’s lie to U;

U ∼
K∏
k

N
(
uk|0, α−1

k

)
(27)

A(m) ∼
K∏
k

N
(
a(m)
k |uk, λ

−1
)

(28)

λ ∼ Ga(a0, b0) (29)

The joint probability is then given by

p(V,H) = p(X,Z,A,U,Ψ,α, λ)
= p(X|Z,A,Ψ)p(Z)p(Ψ)p(A|U,α)p(U|λ)p(α)p(λ), (30)

where p(X) =
M∏
p(X(m)) and so forth.
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Using variational inference results in the following approximated distributions;

q(Z) =
N∏
n=1
N
(
zn|µz,n,Σz

)
(31)

Σ−1
z =

M∑
m

{〈
A(m)TΨ(m)A(m)

〉}
+ I (32)

µz,n = Σz

M∑
m

〈
A(m)T

〉〈
Ψ(m)

〉
x(m)
n (33)

q(Ψ) =
M∏
m

W
(
S(m)

Ψ , vΨ
)

(34)

S(m)
Ψ
−1

=
〈

A(m)
N∑
n

znzTnA(m)T
〉

+
N∑
n

x(m)
n x(m)T

n

− 2 ·
N∑
n

x(m)
n

〈
zTn
〉〈

A(m)T
〉

+ S−1
0 (35)

vΨ = N + v0 (36)

q(A(m)) =
D∏
d=1
N
(
â(m)
d | µ

(m)
ad ,Σ(m)

ad

)
(37)

Σ(m)
ad

−1
=
〈
ψ

(m)
dd

〉 N∑
n

〈
znzTn

〉
+ 〈λ〉 I (38)

µ
(m)
ad = Σ(m)

ad

(
N∑
n

〈zn〉
〈
ψ

(m)
(d,:)

〉
x(m)
n + 〈λ〉 〈ud〉

−
D∑
d′ 6=d

〈
ψ

(m)
dd′

〉 N∑
n

〈
znzTn

〉〈
a(m)T
d′

〉 (39)

q(U) =
K∏
k=1
N
(
uk| µuk

, σ2
uk

I
)

(40)

σ−2
uk

= M 〈λ〉+ 〈αk〉 (41)

µuk
= σ2

uk
〈λ〉

M∑
m

〈
a(m)
k

〉
(42)
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q(α) =
K∏
k

Ga(αk|aα, bαk
) (43)

aα = a0 + D

2 (44)

bαk
= b0 +

〈
uTk uk

〉
2 (45)

q(λ) = Ga(λ|aλ, bλ) (46)

aλ = a0 + MKD

2 (47)

bλ = b0 +
K∑
k

M

〈
uTk uk

〉
2 +

M∑
m


〈
a(m)T
k a(m)

k

〉
2

−
〈
a(m)T
k

〉
〈uk〉

}
. (48)

where â(1)
d is a column vector corresponding to the d’th row of A. Note that vΨ, aα and

aλ are constants and can be defined before iterating over the other updates.
L(q) is often calculated to estimate the time of convergence, by setting a threshold for
the relative change wrt. the previous iteration. It is usually derived as the sum of the
expectations of each variable in q(H) and p(H,V) wrt. q(H) calculated independently.
Inspired by [18] we have chosen to combine the expectations into one equation and let
terms containing the same terms cancel each other out, where applicable. Since it is the
change of the lower bound that is of interest, we also combined all constant terms into the
common constant, C. This resulted in a simpler expression for L(q);

L(q) = 1
2

M∑
m

{
vΨ ln |S(m)

Ψ |+
D∑
d

ln |Σ(m)
ad |

}
− aλ ln bλ

+
K∑
k

{
−aα ln bαk

+ D

2 ln σ2
uk

}
+ 1

2 ln |Σz|

− 1
2

(
N · Tr(Σz) +

N∑
n

µTz,nµz,n

)
+ C. (49)

This expression only calculates how the variables that are modified influence the lower
bound. Therefore it cannot be used to directly compare with other models based on other
priors. It can however be used for estimating a time of convergence and as measure to
decide on the best result among multiple runs on the same data.

4 Performance on simulated data

4.1 Simulation Design

To measure the performance between BCoCA, correlated component analysis, and CCA,
data is generated from the BCoCA model with a varying λ. This approach generates data
from a pure correlated component analysis model, with equal true weights for all datasets,
when λ� 1 and from a CCA model when λ� 1. From the model definition we get that

X(m) = A(m)
trueZ + ε (50)
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with ε ∼ N (0, σ2
ε ), where σ2

ε is varied to obtain the desired signal-to-noise ratio (SNR). Z
is a K ×N source matrix containing K time series. A is formulated as

A(m)
true = U + δ(m) (51)

with U ∼ N (0,α−1) and δ(m) ∼ N (0, λ−1). The variance across views are hence only
modelled by λ.
We have used up to four hidden sources, generated in the same manner as in [7], for
comparability with their results. In this article we will mainly focus on the simple case
of one hidden source corresponding to K = 1 in (50), meaning that the data is generated
from one sinusoid and additive noise.

4.1.1 Measure of performance

The correlation coefficient between the inferred sources and the true source was chosen as
the measure of performance. Since the latent models infer a common Z for all datasets,
the mean of the view specific y1 and y2 was used as the inferred sources for CCA and
correlated component analysis. This improved their performance by approximately 10 -
20% compared to using only y1. For each condition 20 datasets were randomly generated
from the distributions described in 4.1 and each algorithm was tested on the same data.
The mean and standard deviation (std) for the 20 datasets were calculated and used to
compare the performance between the four algorithms. In the tests with four hidden
sources all correlation combinations between the inferred sources and the true ones were
calculated, where each inferred source were only allowed to correlate with one true source
and vice versa. The combination with the highest mean correlation were then chosen.

4.1.2 Testing conditions

The algorithms were tested at varying levels of SNR, number of datasets and similarity
between the true weights of each dataset. In each test the number of observations was
set to 500, except when varying the number of datasets. The test was conducted on a
total of 5.000 samples spread out equally among the datasets, so that each contained 2.500
samples for M = 2 and 500 samples for M = 10. All the conditions were tested with one
and four hidden sources.

4.1.3 Correlated component analysis and CCA on multiple datasets

correlated component analysis and CCA can only compare two datasets at a time. In case
of multiple dataset comparison this thesis will follow the same method as in [4], where the
datasets are concatenated sample-wise into

X̄1 = [X(1),X(1),X(1),X(2),X(2),X(3)],
X̄2 = [X(2),X(3),X(4),X(3),X(4),X(4)] (52)

so that all combinations of datasets will be compared. As both correlated component
analysis and CCA use eigenvalues decomposition on the sample covariance matrices, using
X̄1 and X̄2 corresponds to using the average pair-wise sample covariance matrices. This
way the eigenvalue decomposition has to be calculated only once. However using this
method the number of samples in X̄1 scales by M(M − 1)/2, with (52) showing the case
of concatenating with four datasets.
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(a) M = 2 (b) M = 5

(c) Varying M
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Figure 1: Performance of BCoCA, GFA, CoCA and CCA on simulated data
measured by mean correlation coefficient and standard error of the
mean with respect to the true source(s). In each subfigure the data
is varied in one or two variables: In (a) and (b) the performance is
tested under different levels of SNR and 2 or 5 datasets. (c) shows
the performance with varying number of datasets and two levels of
SNR. In (d) the similarity between the true weights are varied by
the λ parameter and shows the correlation with two levels of SNR.
In the last subfigure the std. was left out to avoid cluttering the
graph. λ = 10−3 for all but (a), where λ = 103.

4.1.4 Testing conditions

The algorithms were tested at varying levels of SNR, number of datasets,M , and similarity
between the true weights of each dataset. In each test the dataset had six dimensions and
the number of observations was set to 500, except when varying the number of datasets.
This test was conducted on a total of 5.000 samples spread out equally among the datasets,
so that each contained 2.500 samples for M = 2 and 500 samples for M = 10. All the
conditions were tested with one and four hidden sources.

4.2 Results

4.2.1 Performance in simulated data

The results from the tests on the simulated data, with one hidden source mixed into the
observed datasets, can be seen in figure 1. Figures 1a and 1b show the performance on
increasing values of SNR and 2 or 5 datasets. It can be seen that for high levels of SNR the
algorithms perform the same, but as the noise levels increase the latent models, quickly
drop towards zero correlation, though BCoCA do so less steeply and can perform at lower
levels of SNR compared to GFA. This quick drop is due to the models choosing the zero-
source solution as the cost of a poor estimation gets too high. BCoCA comes closer to zero
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as this algorithm seemingly choose a source of constant zeros, as opposed to what appears
to be low amplitude noise. Better initialisation and basing the prior hyperparameters on
the observed data might improve the performance with varying levels of noise.
Figure 1c shows how performance improves as the number of available datasets increases.
Here BCoCA and GFA are the only of algorithms tested, which directly generalises to
more than two datasets. It can be seen that CCA and correlated component analysis
actually performs worse, when the number of datasets increase. This is only true for
datasets with non-similar weights. With equal true weights the algorithms perform the
same as BCoCA. When considering that CCA and correlated component analysis deal with
increasing datasets by concatenating them into two datasets, the importance of having
equal weights makes sense as this then corresponds to actually just having two datasets.
The increased performance must then stem from having more instances of the signal
and then be able to average the noise out. For the two latent models two things are
evident. That BCoCA again outperforms GFA at low levels of SNR and that increasing
the number of datasets increases the correlation even though the number of observations
do not increase. Some of this effect could stem from averaging out the random noise, when
calculating the inferred source as the mean of the sources of estimated on each datasets.
Increasing the number of hidden sources to four decreased the mean correlation but did
not change the relative performance between the algorithms, except for GFA, which had
a performance closer to that of BCoCA.
All test was run at different levels of similarity between the true weights of each dataset
by varying λ. Figure 1d shows the case of two datasets and one hidden source. As
expected the effect can only be seen on correlated component analysis and BCoCA, but
correlated component analysis handles the datasets with different sources better than
initially anticipated. An explanation to this is discussed in 2.1.

5 Performance on EEG

In this section the performance of BCoCA will be evaluated on EEG from two separate
experiments.

5.1 Auditory Stimulated Data

Using a cohort of 5 subjects, the auditory data was created by speaking two words to a
person who then responded whether they were synonyms. The dataset was then separated
into synonyms and non-synonyms by independent component analysis.
The data was bandpass filtered to 0.5 Hz – 200 Hz, re-sampled to 200 Hz and divided into
epochs with the latency of the second word as zero. To reduce noise from eye movement
the independent component with most activity in the eye region was used as a template
to find similar components, using the function CORRMAP in EEGLAB [19], which were
extracted from all sets. It has previously been shown that alpha band de-synchronisation
is linked with tasks that require the subjects attention [20] so the band power of the alpha
band (7–15Hz) was used as test data. To remove outliers the epochs where ordered with
respect to latency of response time and only epochs 21–160 where used.
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Intra-subject correlation

Intra-subject correlation (IaSC) is tested by using BCoCA on the five datasets in each
condition respectively. The resulting filters are then used to find the components with
maximum mutual correlation from each of the datasets and the coincidence in neural
activity is measured by computing the correlation coefficient on an intra subject basis.
The correlation is computed in a window equal to the sample-length of one epoch and the
step size is 25% of this. The population IaSC is the average of all the individual IaSC. A
two-tailed t-test shows that 91% of the windows are significantly correlated.

Inter-subject correlation

The inter-subject correlation (ISC) is found by pooling all the datasets and using BCoCA.
The components from each dataset is correlated with all of the others and then averaged to
get the population correlation. In figure 2 the average over all the epochs of the combined
component clearly show the decrease of alpha activity after mention of the first word and
almost immediate increase after the response. The variation in response time is quite
significant and is probably due to difference in level of familiarity with the words. A
two-tailed t-test shows that 90% of the windows are significantly correlated.

−2000 −1500 −1000 −500 0 500 1000 1500
ms

 

 

Averaged Epochs
Stimulus
Synch
Reponse

Figure 2: Averaged epoch of the first component from the inter-subject paradigm

5.2 Face-evoked response

A widely accepted theory of face recognition is the multi-component model of face-processing
[21] in which the brain derives details about a person from physical aspects. These are
used to create structural model that is passed on to other processes that are responsible
for recognition, identification, expression analysis, etc. [22] conducted an experiment in
which subjects where exposed to a series of images of faces or scrambled faces. The hy-
pothesis from earlier [23] was that a negative peak around 170 ms(N170) post stimulus in
the posterior region is greater when the subject is shown a face.
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Paradigm and pre-processing

Based on Phase 1 in the study by [22] a subject was over two trials presented with 86
images of faces and 86 images of scrambled faces. The data was bandpass filtered(2-200
Hz), downsampled to 200 Hz and epoched using SPM12. The dataset is available online
from the SPM website [24].

ERP Analysis

The epoched data was for each trial concatenated and tested using BCoCA, correlated
component analysis and CCA. For the latter two the filters corresponding to the maximally
correlated components where used. Epochs from both conditions were processed at the
same time, yielding a single component that was then divided into epochs corresponding
to the raw data. In figure 3a the averaged epochs for the two conditions is illustrated
for the raw EEG and from this it is not possible to the events of interest. In 3b the
averaged epoch for the first components for each condition shows that all the algorithms
have extracted a coherent signal and that the results are very similar. In figure 3c the
difference signal of the averaged epochs shows as expected that the negative peak at N170
is greater for the face condition. The algorithms all locate the time of this occurrence as
around 190 ms which corresponds well with the literature [22]. To localize the neurons that
are responsible for the face processing, the average of the epochs for the face condition at
170 ms was subtracted from the average scrambled condition. Projecting the channels onto
a 2D scalp map as in figure 4d the illustration clearly shows that the posterior regions in
the occipital lobe contribute more negatively in the face condition. Projecting the weights
from BCoCA the illustration in figure 4a depicts the correlated neural activity. The result
shows that the signals in the posterior region are highly correlated. The BCoCA algorithm
has thus effectively extracted the component from the datasets that exactly depicts the
neural activity of interest.

6 Discussion and Conclusion

Research in social neuroscience has during the previous decade shifted from being inher-
ently single person studies of people observing others towards two-way interaction. The
isolated paradigms of standard cognitive science only incorporates information-flow from
the environment to the observer, but this approach is inadequate in the paradigm of em-
bodied cognition. Interaction and emotional engagement between people are dynamic pro-
cesses that couples them in a unit that is not readily separable [25]. These inter-personal
interactions can be crucial to understanding the mechanisms of social cognition and so far
hyperscanning is the only method to tap into inter-brain process [26]. To this purpose
EEG is becoming an increasingly popular modality due to its high temporal resolution
and recent advances in mobile equipment [27]. EEG data is corrupted by signals from
external and internal sources. Internal such as intrinsic activity from the default mode
network, a part of the brain that is active in the absence of externally oriented cognitive
tasks, and external from muscle and eye artefacts. In an experimental paradigm using
hyperscanning it is thus advantageous to extract data that is correlated across multiple
datasets because the uncorrelated data, in this case noise, is ideally filtered out [4].
A Bayesian version of correlated component analysis gives new approaches to the extrac-
tion of these shared signals. Tests with artificial data showed that having more than two
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datasets improved the extraction of the shared signals, even though the total amount of
observations were the same. This shows promises of better extraction of data from ex-
periments where individual subjects have been exposed to the same stimulus as by [4],
but also higher efficiency, when dealing with larger groups and don’t have to calculate the
average of all pariwise correlations.
The direct estimation of the shared response enables new methods for analysis in experi-
ments with simultaneous stimulation of groups of subjects. Instead of analysing the pair-
wise correlations of subject respones, it is now possible to look at the correlation between
each subject and the response shared by the entire group. In its present form BCoCA esti-
mates the similarity between the responses of a group of subjects through ARD-parameter,
λ, but a further expansion with a, λm, for each subject would give a indicator whether
one or two subjects stand out from the responses of a larger group. Finally, does the
latent model structure enable the direct estimation of the forward model used to visualise
the scalp maps with the latent variable, U, representing the shared forward model, which
again might prove useful with larger groups of subjects.
The analysis of the auditory evoked EEG dataset showed a decrease of alpha activity
after the task was given to the subjects which corresponds well with the expected de-
activation of the default mode network. Significant inter-subject correlation of 90% of the
first component on average across all subjects shows that the method has managed to
extract a component that is highly correlated for all the datasets.
From the face-evoked dataset we saw the ability to extract the component from two
datasets that would otherwise require manual inspection. The spatial filter from the
algorithm correctly selected the posterior region as contributing to the component and
the anterior as reducing.
The BCoCA algorithm presented in this communication still has room for further im-
provement. The tests on artificial data shoved that both latent models chose to turn of al
their components, when the SNR got low, which might not always be the best solution.
This, and the performance in general, could be improved by investigating the manner of
priors and the initialisation of variables. The common choice is setting the hyperparam-
eters to low values [10, 7], as was done in this article, but improvement could be found
in conducting a pre-evaluation of data to find suitable values. Some latent models use
other algorithms with a lower cost to find suitable values for initialisation [12, 14]. In the
present form of BCoCA the precision matrix for the gaussian noise is modelled using the
Wishart distribution, as this is the common choice as the conjugate distribution. Tests
has shown that this variable has a very high influence on changes in performance and the
evaluation of the lower bound. A focus for future work could therefore lie in investigating
using other distributions for modelling the noise.
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Figure 3: a) Averaged epochs across all channels of the raw EEG for faces and scrambled.
b) Averaged epochs in component space found by BCoCA, correlated component
analysis and CCA for face and scrambled condition c) Difference between average
epoch for face and scrambled condition
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Figure 4: (a) Scalp projections of weights from the BCoCA algorithm. (b) Scalp pro-
jections of weights from the correlated component analysis algorithm using the
forward model [11] (c) Scalp projections of the average of the two spatial fil-
ters from CCA (d) Scalp projections of the average difference between epochs of
faces and scrambled images at 170 ms. The blue colour in the posterior regions
depicts a negative value.
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