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Abstract

Bayesian stochastic blockmodelling has proven a valuable tool for discovering
community structure in complex networks. The Gibbs sampler is one of the
most commonly used strategies for solving the inference problem of identifying
the structure. Though it is a widely used strategy, the performance of the
sampler has not been examined sufficiently for large scale modelling on real world
complex networks. The Infinite Relational Model is a prominent non-parametric
extension to the Bayesian stochastic blockmodel, which has previously been
scaled to model large bipartite networks.

In this thesis we examine the performance of the Gibbs sampler and the more
sophisticated Split-Merge sampler in the Infinite Relational Model. We push
the limit for network modelling, as we implement a high performance sampler
capable of performing large scale modelling on complex unipartite networks
with millions of nodes and billions of links. We find that it is computationally
possible to scale the sampling procedures to handle these huge networks.

By evaluating the performance of the samplers on different sized networks, we
find that the mixing ability of both samplers decreases rapidly with the network
size. Though we find that Split-Merge can increase the performance of the
Gibbs sampler, these procedures are unable to properly mix over the posterior
distribution already for networks with about 1000 nodes. These findings clearly
indicates the need for better sampling strategies in order to expedite the studies
of real world complex networks.
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Resumé

Bayesiansk stokastisk blokmodellering har vist sig at være et værdifuldt værktøj
til at undersøge gruppestruktur i komplekse netværk. Gibbs sampleren er en
af de oftest brugte strategier til at løse inferensproblemet til identificering af
gruppestrukturen. Selvom det er en ofte brugt strategi, er dens ydeevne ikke
tilfredsstillende undersøgt for storskala modellering af komplekse netværk fra
den virkelige verden. IRM-modellen er en prominent ikke parametrisk udvidelse
af den stokastiske blokmodel, der tillader et uendeligt antal grupper. IRM-
modellen har tidligere været skaleret til at modellere store todelte netværk.

I dette speciale undersøger vi hvordan Gibbs sampleren og den mere sofistik-
erede Split-Merge sampler yder i IRM-modellen. Vi bryder tidligere grænser for
netværks-modellering ved at implementere en højtydende sampler, der er i stand
til at udføre storskala modellering p̊a komplekse udelte netværk med millioner
af knuder og milliarder af kanter. Vi finder at det er beregningsmæssigt muligt
at skalere sampler-procedurerne til at h̊andtere s̊a store netværk.

Ved at evaluere samplernes ydeevne finder vi at deres evne til at mikse svinder
kraftigt som netværk størrelsen stiger. Selvom vi finder at Split-Merge kan
forbedre ydeevnen af Gibbs sampleren, er procedurerne ikke i stand til at mikse
over posteriori fordelingen allerede for netværk med omkring 1000 knuder. Disse
fund indikerer at det er nødvendigt at udvikle bedre sampling-strategier for at
understøtte forskning af store komplekse netværk fra den virkelige verden.
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Chapter 1

Introduction

All around us we encounter situations that can be described as complex net-
works. We participate in social relations and form large social networks with
our family, friends and co-workers. We live in cities that are sustained by com-
plex power and water supply lines, where we navigate in the complex traffic
system and consume goods transported through logistically demanding supply
lines. Furthermore, various computer and communication systems form com-
plex and sophisticated networks that allow rapid and high capacity transmission
of information. All these examples are networks that have emerged as a result
of human behaviour. In the nature we also observe various environmental and
biological networks. Even various aspects of our own bodies can be described as
complex networks. This includes the network of protein-protein interactions in
individual cells and the communication between billions of neurons in the brain.

Due to the huge importance these systems have on vast areas of our everyday
lives, network science has become an important and emerging science, combin-
ing knowledge from many different research fields [3] that allows us to develop
general network models by which we can investigate the underlying structures
of these important systems. One way to investigate complex networks is to per-
form cluster analysis, where the network is divided into communities, based on
the internal structure of the network. To detect community structures, cluster
analysis is often based on Bayesian statistical modelling, such as the stochas-
tic block-model. The stochastic block-model partitions networks into smaller
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blocks, such that these blocks capture the underlying clustering structure of
the network [12]. In this thesis we consider a non-parametric extension of
the stochastic blockmodel called the Infinite Relational Model (IRM) [9][27],
which allows for an unlimited number of blocks. Bayesian blockmodelling often
uses Gibbs sampling to solve the combinatorial inference problem of identify-
ing blocks. This has often been the case for IRM [20] [6], though more so-
phisticated sampling strategies as the Split-Merge procedure [8] has also been
considered [20].

Statistical analysis of large scale networks is an active research area, where IRM
has become a prominent network model. In order to model in large scale, ef-
ficient implementations are essential. In [28] stochastic relational modelling
on large scale was performed on bipartite networks with half a million nodes
and 100 million links. In [6] a highly optimized IRM implementation utilizing
GPU resources performed bipartite co-clustering on graphs with about 8 million
nodes and 500 million links. Due to the coupled nature of nodes, inference com-
putations can easily be parallelized for bipartite graphs. Many interesting real
world networks can not be modelled as bipartite graphs, and it is hence impor-
tant to be able to model these complex unipartite networks. The understanding
and robustness of the Gibbs sampler is well established for modelling of smaller
unipartite networks, but it has not been thoroughly examined whether Gibbs
sampling is good enough to infer clustering of large complex networks made
from real world data.

Contribution

The motivation for this thesis is to provide insight to the scalability and limi-
tations of Gibbs and Split-Merge sampling in the Infinite Relational Model. In
this thesis we go beyond the network size and complexity limitations of previ-
ous studies, as we test the samplers performance and ability to mix over the
posterior distribution on complex unipartite networks with millions of nodes.

Our contributions with this thesis are:

• A high performance Gibbs and Split-Merge sampler for complex unipartite
network, capable of analysing:

– Network with millions of nodes and billions of links.

– Multiple graphs simultaneously by utilizing GPU resources.

• Evaluate mixing ability for large scale Gibbs and Split-Merge sampling:

– When performed for millions of sampling iterations.

– As the network size increases to millions of nodes.
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• Determine the network size limit the Gibbs and Split-Merge samplers can
converge for.

• Analyse how IRM performs on large scale real world data.

• Illustrate the clustering ability of the samplers on real world data.

In order to illustrate the clustering ability of the sampler we perform IRM
analysis on data for resting state f-MRI scannings of neuronal activity for 172
subjects, with a spatial resolution of 1000 regions. The clustering found by the
analysis is then mapped back into the brain and visualized to see how IRM has
structured the brain into regions.

This thesis

This thesis starts with an introduction of the fundamental theory and technical
terms used in the report. We then take a look at the design and requirements of
the application, followed by the implementation and optimization of the Gibbs
and Split-Merge sampler algorithms. The data we use to evaluate the samplers
are then introduced and used in the following results section, in which we also
discuss the implication of our findings. Finally we conclude on the findings and
what the implications of these are.
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Chapter 2

Theory

In this chapter we describe the theory behind the Infinite Relational Model,
derive the two sampler algorithms and explain the theory behind computational
optimizations of the algorithms in relation to implementing a high performance
computer program.

2.1 Complex networks as graphs

Complex networks can be seen as graphs, G(V,E) where the set of vertices/n-
odes V represents the objects in the system while the set of edges/links E
represents the interactions between these objects.

Figure 2.1 illustrates three of the most common types of graphs; directed, undi-
rected and bipartite graphs. In a directed graph the edges are oriented, such
that they do not simply link two nodes, but link one node to another in only
one direction. In an undirected graph the edges have no orientation. If there
exists an edge between two nodes i and j then there is both a connection from i
to j and from j to i. In figure 2.1 both (A) and (B) are examples of unipartite
graphs, while (C) is a bipartite graph. This is a special type of graph, in which
all the nodes can be divided into two disjoint sets N and M , such that no nodes
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in N nor M are interconnected; all nodes in N are only connected to nodes in
M and vice versa. to a node in M .

Figure 2.1: Exapmles of common types of graphs: (A) undirected unipartite,
(B) directed unipartite, (C) bipartite.

A graph can be either weighted or unweighed. In a weighted graph, a value is
associated with every link, known as the weight. Depending on the network the
weight can represent various properties of the link. If the network for instance
describes a system of cities connected by railroads, the values might represent
the distance between the cities, the ticket cost of travelling between the cities or
how many trains traverses the tracks every day. Though many other realworld
situations might beneficially be described as weighted graphs, we will only con-
sider unweighed graphs in this thesis as we are more interested in analysing the
performance of the sampler than using it on specific networks. In the case of
an unweighted graph the links can be represented by a binary adjacency matrix
A, such that Aij = 1 specifies a link between node i and j. The networks we
examine do not contain self-loops and hence the diagonal of A only consist of
zero-elements. The adjacency matrices for the graphs in figure 2.1 are:

A(A) =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 0 0 1
0 0 1 1 0

 , A(B) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 0 1 0 0

 , A(C) =


0 1 0 0 0
1 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0


When performing IRM, this properties of a bipartite graph makes it naturally
parallelizable, which has previously been utilized to perform IRM on large scale
bipartite networks in [6].

Many real world situations such as neural networks, trade routes and social
networks cannot be represented as bipartite graphs, and it is therefore important
to be able to model and understand the structure of unipartite networks.

In this thesis we consider the more challenging undirected unipartite graphs.
For undirected graphs the adjacency matrix is symmetric, such that for all i
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and j, Aij = Aji. Hence we only need to consider the upper triangular part of
the adjacency matrix.

Figure 2.2: Two graphs linking the same nodes differently.

Many real world situations can be described as multiple graphs where the set
of vertices V are the same in all graphs but the vertices are linked differently
in each graph. This is illustrated in figure 2.2 where two graphs contain the
exact same nodes, but linked differently. An example can be graphs of different
airline companies sharing the same airports but not operating the same routes
between the airports.

In this thesis we encounter multiple graphs as we perform IRM on graphs made
from functional brain scans of multiple subjects. Here we assume that all scans
contains the same regions, but due to the measured differences in neuronal
activity these regions are linked differently for each subject.

2.2 Statistical cluster analysis

The main drive for this thesis is to investigate how Bayesian modelling can be ap-
plied in order to model systems that can be described as undirected unweighted
unipartite networks.

The purpose of cluster analysis is to determine the underlying structure of the
clustered data, when no other information than the data itself is available. Using
cluster analysis we model the underlying structure of the networks, by grouping
objects that act similar.

Many clustering methods are based on statistical models, where the data is
assumed to have been generated by some statistical processes, these are called
generative models. For these models the clustering problem becomes to first
find a statistical model that is suitable to fit the data and then describe the
distribution and associated parameters for this model.
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2.2.1 Mixture model

Mixture models are a common statistical approach, which is a simple yet power-
ful procedure for modeling structure in complex networks [20]. It is the founda-
tion for the Bayesian stochastic blockmodel, which the infinite relational model
is based on. In a mixture model the data is assumed to have originated from a
mixture of several distributions. If we consider a structure with n data points
and K distributions, then the process that generated the data can be consid-
ered as n times choosing one of the K distributions and generating a data point
from it. The probability of choosing each distribution is weighted, such that
the i’th distribution is chosen with the weight wi, upholding that each weight
w ∈ [0; 1] and

∑K
i=1 wi = 1 [16]. In a parametric setting, the probability that a

data point x originated from the i’th distribution is p(x|hi) where hi is the set
of parameters for the i’th distribution. The probability of a given data point x
is then given by:

p(x|H) =

K∑
i=0

wipi(x|hi), (2.1)

where H is the set of all parameters H = {h1, ..., hK}. Considering that the
data points are generated indep

p(X|H) =

n∏
j=0

p(xj |H). (2.2)

Figure 2.3: Example of a mixture model, without links (A) and with links (B).

An example of such a mixture model is shown in figure 2.3 (A).

When we look at cluster analysis for network data, each distribution describes a
single cluster [16]. Each node in the network belongs to a single cluster, while
each edge depends on the two clusters of the nodes linked by the edge. This is
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illustrated in figure 2.3 (B). The probability of an edge between two nodes are
given by a link probability between the two clusters linked by the edge. If zi
describes which cluster the i’th node is part of, the likelihood of the network is
given by:

p(A|Z, η) =
∏
i j

p(Aij |zi, zj , η), (2.3)

where η denotes a matrix, representing the link probabilities between the indi-
vidual blocks and Z specifies which block each of the nodes are assigned to.

2.2.2 Bayesian Stochastic blockmodel

A stochastic blockmodel is a generative model, used to model the structure in
a graph by splitting it into blocks. Following the simple mixture model, the
blockmodel only allows the graph to be split into a predefined number of blocks
K.

Bayes theorem states the following relation between conditional probabilities:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(2.4)

where p(X|Y ) is the posterior (the degree of belief having accounted for Y ),
p(X) is the prior (initial degree of belief in X) while p(Y |X) is the likelihood.

The fraction P (Y |X)
P (Y ) represents the support Y provides for X. We can apply

Bayesian principles to the mixture model, leading to the so called Bayesian
stochastic blockmodel [12].

Using Bayes theorem the posterior of the blockmodel is given as:

p(Z, η|A) =
p(A|Z, η)p(Z)p(η)

p(A)
(2.5)

where p(A) is a constant, as the links in the network are known. Each term in
the likelihood in formula 2.3 defines the probability of a link between two nodes.
This can be based on the Bernoulli distribution:

p(Aij |zi, zj , η) = Bernoulli(ηzizj ) (2.6)

where ηzizj is the link probability, giving the probability of a link between a
node in block zi and a node in block zj . The prior for the link probabilities can
be based on independent Beta distributions:

p(ηlm) = Beta(β+, β−) (2.7)



10 Theory

The probability of assigning individual nodes to one of the K blocks is given
by Z. The prior for Z is chosen to be generated from a Dirichlet distribution,
which allows for different sizes of the blocks [mmpaper]:

p(µ) ∼ Dirichlet(α) (2.8)

p(Z) ∼ categorical(µ) (2.9)

In this thesis we focus on the Infinite Relational Model (IRM) as proposed
by Kemp et al. [9] and Xu et al. [27]. This is an extension to the Bayesian
stochastic blockmodel by theoretically allowing an unlimited number of clusters.
This is achieved by basing the prior of the clustering on a Chinese Restaurant
Process (CRP). As a generative model, IRM is based on the following three
processes:

Z ∼ CRP(α), groups (2.10)

ηlm ∼ Beta(β+, β−), interactions (2.11)

Aij ∼ Bernoulli(ηzi,zj ), links. (2.12)

The model relies on the three hyperparameters h = {α, β+, β−}, that specify
how the model behaves. α is used by CRP in order to specify the probability
that there are many or few clusters. A high α-value makes it more likely to have
many clusters, while it is most likely to have few clusters for a low value. The
β+ and β− are used in the beta probability to specify whether it is most likely
to have links, non-links or some combination thereof.

These distributions are described further in section 2.3, where we also derive
an algorithm for sampling the posterior distribution using the Gibbs and Split-
Merge procedure. Inferring the posterior distribution for IRM is a computation-
ally hard problem, and hence not feasible to do. Instead we relax the problem,
such that the cluster assignments are estimated using Markov Chain Monte
Carlo (MCMC) inference. Gibbs sampling has previously been proposed as
Bayesian estimator for Stochastic Blockmodels in [12] and described for IRM
in [20, 9], while the Split-Merge procedure has been presented in [8], and which
has previously been utilized for IRM [18, 1, 15]. The idea behind MCMC is to
iteratively change the model, ensuring that the entire posterior distribution will
be traversed in the limit of infinitely many changes.

In Gibbs sampling each parameter is changed one at a time by drawing new
values from the parameter’s posterior marginal distribution. In IRM this corre-
sponds to calculating the posterior marginal distribution of assigning each node
to each of the existing clusters as well as to a new empty cluster. The Split-
Merge procedure is capable of reassigning several nodes at once. It does this by
either splitting a cluster into two or merging two clusters into one. The merging
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of two clusters is deterministic as all nodes simply end up in the same cluster,
but in the case that a cluster is split, Split-Merge utilizes restricted Gibbs sam-
pling on these two clusters, in order to determine where each node should be
placed.

2.3 The Infinite Relational Model

In this section we explain how the Bernoulli and Beta distributions work and
deduce the Chinese Restaurant Process from the Dirichlet distribution. We
relate these to the Infinite Relational Model and finally use them in order to
derive a formula for sampling the posterior distribution using Gibbs and Split-
Merge sampling.

2.3.1 Bernoulli distribution

Bernoulli is one of the simplest probability distributions. It can be considered
a discrete probability distribution with two possible values; 0 and 1. The dis-
tribution of 0’s and 1’s are based on a weight parameter π ∈ [0, 1]. For instance
a weight of 0.6 means that 60% of the distribution consists of ones and 40%
consists of zeros. Using this knowledge it is possible to calculate the probability
of having a random value x ∈ {0, 1} given a weight π:

P (x|π) = πx(1− π)1−x =

{
π, if x = 1

1− π, if x = 0
(2.13)

Likewise it is possible to calculate the probability that a specific sequence of
independent variables D are drawn from this distribution:

P (D|π) = πN1(1− π)N0 , (2.14)

where N1 and N0 specifies the number of ones and zeros in the sequence D.

In the Infinite Relational Model there are not just one weight, but a weight
between any two clusters l and m, written as ηlm. As we assume all links and
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weights are independent, the probability yields:

P (A|Z, η) =
∏
l≤m

η
N+

lm

lm (1− ηlm)N
−
lm , (2.15)

where N+
lm and N−lm specifies the number of links and non-links between cluster

l and m. As η is symmetric, we only consider the product of the upper triangle.

2.3.2 The Beta-distribution

The second distribution the Infinite Relational Model relies upon is the Beta-
distribution. The beta function takes two positive parameters, β+ and β−,
which specifies the distribution of values. The probability that a value follows
the Beta distribution is given by the probability density function:

Beta(θ|β+, β−) =
Γ(β+ + β−)

Γ(β+)Γ(β−)
θβ

+−1(1− θ)β
−−1 (2.16)

Where Γ(x) is the gamma function:

Γ(x) = (x− 1)! (2.17)

There are two major reasons for using the beta distribution. First, depending
upon the parameters, it can represent various distributions, such as uniform,
normal and arcsine distributions, as shown in figure 2.4. Second, the Bernoulli
and Beta distributions are conjugate distributions, which means they originate
from the same family of distributions and are hence easy to combine. When we
derive the algorithm for estimating the clustering, we are going to use the fact
that these distributions are conjugate and hence can be combined in order to
form an even simpler expression.

In the Infinite Relational Model we have a beta distribution for every two clusters
l and m, given as ηlm, which describes the probability that there are connections
between these (or internally in a cluster when l = m). As for Bernoulli, we
assume that all links are independent, while β+ and β− are constants. In this
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Figure 2.4: Probability density function (PDF) for the beta distribution

case we can create a single expression for the probability of all η:

P (η|β+, β−) =
∏
l≤m

Γ(β+ + β−)

Γ(β+)Γ(β−)
ηβ

+−1
lm (1− ηlm)β

−−1 (2.18)

In formula 2.16 we can integrate over θ in order to get an expression that is
denoted as the Beta-function, which we will be using later (the beta distribution
integrates to 1):

B(β+, β−) =
Γ(β+)Γ(β−)

Γ(β+ + β−)
=

∫ 1

0

θβ
+−1(1− θ)β

−−1dθ (2.19)

2.3.3 Chinese Restaurant Process

The final part of the IRM model is the Chinese Restaurant Process (CRP). This
is a stochastic process that partitions D objects into a set of clusters, such that
each cluster contains 0, ..., D objects, illustrated in figure 2.5.

To illustrate CRP we consider the situation where blocks represent tables in a
restaurant. The objects then represent customers entering the restaurant one
at a time. The customers are placed at the tables, such that:
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Figure 2.5: Example of letters a-f clustered by CRP.

1. The first customer is placed at a table.

2. The n’th customer is randomly placed at an empty or non-empty table
dependent on how other customers are placed.

In order to express these placement probabilities, we first consider the finite
Dirichlet distribution. The distribution specifies the probability of each value
µ1, ..., µD given a vector α of D input parameters:

(µ1, µ2, ..., µD) ∼ Dirchlet(α1, α2, ..., αD)

For the restaurant example, the µ-vector specifies the probability of placing a
customer at each of the D tables, while the α parameter changes the likelihood
of placing customers at each table, the higher the α value, the more likely it is.

In cluster analysis nodes are partitioned into clusters rather than customers to
tables. Here the µ-values represents one clusters each. For a given node i we
are interested in finding the probability of placing it according to its cluster
assignment zi. Given a finite set of clusters D, we can calculate this probability
as:

P (µ|α) =
Γ(
∑
d αd)∏

d Γ(αd)

D∏
d=1

µαd−1
d (2.20)

P (zi|µ) =

D∏
d=1

µzdid (2.21)

Where formula 2.20 is the dirichlet distribution and formula 2.21 simply returns
the categorical probability that the node is placed in the cluster given by zi.
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Instead of only calculating the probability of a single node assignment, it is
possible to generalize this to find the likelihood of assigning all nodes according
to their respective clusters. As we assume that all assignments are independent,
this becomes:

P (Z|µ) =

D∏
d=1

∏
i

µzdid =

D∏
d=1

µ
∑

i zdi
d (2.22)

This formula does however require that the optimal number of clusters D is
known. In cluster analysis, this is rarely the case and to get rid of this as-
sumption we let D go towards infinity, allowing there to be as many clusters as
necessary. To do this we first redefine the Dirichlet prior vector α to a single
value. This value has to go towards zero as D goes towards infinity, otherwise
it is very unlikely that two nodes will be placed in the same cluster, as there are
infinitely many empty clusters with the same constant probability. This means
that the probability of placing a node in an empty cluster goes towards 1 as D
goes towards infinity. We redefine α to α/D, such that the value goes towards
zero as D goes towards infinity. Hence the probability of placing a node in a
new cluster does not go towards 1 and as a result, nodes are more likely to be
clustered together.

Furthermore we integrate out µ, in order to get rid of this unnecessary interme-
diate parameter:

P (Z|α/D) =

∫
P (Z|µ)P (µ|α/D)dµ (2.23)

=

∫ D∏
d=1

(
µ
∑

i zdi
d

) Γ(
∑
d α/D)∏

d Γ(α/D)

D∏
d=1

µ
α/D−1
d dµ (2.24)

=
Γ(
∑
d α/D)∏

k Γ(α/D)

∫ D∏
d=1

(
µ
∑

i zdi
d

) D∏
d=1

µ
α/D−1
d dµ (2.25)

=
Γ(
∑
d α/D)∏

d Γ(α/D)

∫ D∏
d=1

µ
∑

i zdi+α/D−1
d dµ (2.26)

This distribution looks somewhat similar to the dirichlet distribution in formula
2.20, except for the integral. It turns out if we integrate the dirichlet distribu-
tion, we get a formula that can be used to reduce this equation even further:
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∫
P (µ|α)dµ =

∫
Γ(
∑
d αd)∏

d Γ(αd)

D∏
d=1

µαd−1
d dµ⇔ (2.27)

1 =
Γ(
∑
d αd)∏

d Γ(αd)

∫ D∏
d=1

µαd−1
d dµ⇔ (2.28)

∏
d Γ(αd)

Γ(
∑
d αd)

=

∫ D∏
d=1

µαd−1
d dµ (2.29)

The integral in this formula is equal to the integral in formula 2.26 if we simply
substitute αd with

∑
i zdi + α/D. By using this formula, we can now continue

reducing formula 2.26:

P (Z|α/D) =
Γ(
∑
d α/D)

∏
d Γ(

∑
i zdi + α/D)∏

d Γ(α/D)Γ(
∑
d (
∑
i zdi + α/D))

(2.30)

=
Γ(α)

∏
d Γ(

∑
i zdi + α/D)∏

d Γ(α/D)Γ(J + α)
, (2.31)

where
∑
d,i zdi has been substituted with J (the number of nodes), as each node

belong to exactly one cluster and hence the sum of all node assignments is equal
to the number of nodes.

Using Bayes theorem we can now find the probability that a certain node j
belongs to cluster d, conditioned on all other nodes remaining in their clusters:

P (zdj = 1|Z\j , α/D) =
P (Z\j , zdj = 1|α/D)∑
l P (zlj = 1, Z\j |α/D)

(2.32)

From this we can immediately see that the constants Γ(α) and
∏
d Γ(α/D)Γ(J+

α) in formula 2.31 can be reduced and we get:

P (zdj = 1|Z\j , α/D) =
Γ(
∑
i 6=j(zdi) + 1 + α/D)

∏
m 6=d Γ(

∑
i6=j(zmi) + α/D)∑

l

Γ

∑
i 6=j

(zli) + 1 + α/D

∏
m6=l

Γ

∑
i 6=j

(zmi) + α/D
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This formula can be further reduced by dividing with
∏
m Γ(

∑
i6=j(zmi +α/D).

In both the numerator and denominator the last part can be reduced without
any problems. For the first part we will however need to use the definition of the
gamma function, shown in formula 2.17. By expanding each of these gammas
to several multiplications, we see that one multiplication remains in both the
numerator and denominator, due to the +1:

P (zdj = 1|Z\j , α/D) =

∑
i 6=j(zdi) + 1 + α/D − 1∑

l

(∑
i 6=j(zli) + 1 + α/D − 1

) (2.33)

=

∑
i 6=j(zdi) + α/D∑
l

(∑
i 6=j zli

)
+ α

(2.34)

By introducing a new variable nd, denoting the number of nodes in cluster d,
excluding node j we can get an even cleaner expression for this probability.
Additionally the sum over the entire cluster assignment Z, excluding node j is
equal to J − 1. By applying this we can now reduce the formula to:

P (zdj = 1|Z\j , α/D) =
nd + α/D

J − 1 + α
(2.35)

When the number of clusters goes towards infinity, so will the number of empty
clusters in Z. As the cluster order does not matter, we can however concatenate
the probabilities of placing the node in any of the empty clusters. In order to
do this we first introduce a new variable K, denoting the total number of non-
empty clusters (ignoring node j). Hence the probability of placing a node in a
cluster now becomes:

P (zdj = 1|Z\j , α/D) =

{
nd+α/D
J−1+α if nd > 0
α(D−K)/D
J−1+α otherwise

(2.36)

We now let D go towards infinity, in which case we find:

P (zdj = 1|Z\j , α/D) =

{ nd

J−1+α if nd > 0
α

J−1+α otherwise
(2.37)

With this formula we can calculate the probability of placing a single node in
a cluster. We are however interested in the probability of placing all nodes
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according to their cluster assignment Z. In the cluster assignment there are K
non-empty clusters and hence K nodes will have been placed with the latter
probability, which means we get αK (ignoring the denominator for now). Each
cluster will have been assigned nk nodes, which means that each non-empty
cluster has been assigned a node nk−1 times, the nominator in the first case gives∏
k(nk − 1)!. Finally J nodes were placed in total, resulting in a denominator

of
∏J
j=1(j + α − 1) which is equal to (J+α−1)!

(α−1)! . Adding all this up, we end up

with the following formula:

P (Z|α) =
αK(α− 1)!

∏
k(nk − 1)!

(J + α− 1)!
(2.38)

Using the gamma function, this can be reduced to:

P (Z|α) =
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)
(2.39)

With this equation we can calculate the probability of a cluster assignment Z
with respect to the Chinese Restaurant Process.

2.3.4 Derivation Of The Infinite Relational Model

The idea behind the Infinite Relational Model (IRM) is to cluster a number of
nodes based on their connection to one another, such that nodes that behaves
similarly are clustered together. This is done by making some assumptions
about how these nodes behaves in order to find an optimal model that clusters
these nodes together. These assumptions have been mentioned earlier but to
summerize, we assume that the nodes are assigned to clusters Z according to a
Chinese Resourant Process and the probability of links between these clusters
η can be described by the Beta distribution, while the probability that a link
exist between two nodes A is given by a weighted Bernoulli distribution, based
on the probability of links between the clusters these two nodes belong to.

Z ∼ CRP (α)

ηlm ∼ Beta(β+, β−)

Aij ∼ Bernoulli(ηzi,zj )
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The goal of IRM is to estimate the clustering Z given the connection between
nodes A and the three hyper-parameters h = {α, β+, β−}, in other words we
want to sample the posterior distribution P (Z|A, h). This distribution is not
given directly but we do know the probability of Z, η and A, as the groups,
interactions and links are assumed independent:

P (A,Z, η|α, β+, β−) = CRP (Z|α)Bernoulli(A|η)Beta(η|β+, β−)

= CRP (Z|α)
∏
l≤m

η
N+

lm

lm (1− ηlm)N
−
lm

∏
l≤m

Γ(β+ + β−)

Γ(β+)Γ(β−)
ηβ

+−1
lm (1− ηlm)β

−−1

= CRP (Z|α)
∏
l≤m

(
Γ(β+ + β−)

Γ(β+)Γ(β−)
η
N+

lm+β+−1
lm (1− ηlm)N

−
lm+β−−1

)

Where N+
lm and N−lm are the number of links and missing links between cluster

l and m respectively.

We can obtain P (A,Z|h) by integrating out η:

P (A,Z|h) =

∫ 1

0

P (A,Z, η|h) dη

=

∫ 1

0

CRP (Z|α)
∏
l≤m

(
Γ(β+ + β−)

Γ(β+)Γ(β−)
η
N+

lm+β+−1
lm (1− ηlm)N

−
lm+β−−1

)
dη

= CRP (Z|α)
∏
l≤m

(
Γ(β+ + β−)

Γ(β+)Γ(β−)

∫ 1

0

η
N+

lm+β+−1
lm (1− ηlm)N

−
lm+β−−1 dη

)

In formula 2.19 we determined beta function as:

B(a, b) =

∫ 1

0

ηa−1(1− η)b−1dη =
Γ(a)Γ(b)

Γ(a+ b)
(2.40)

Using this definition of the beta function and inserting the formula for the
Chinese Restourant Process from equation 2.39 yields:

P (A,Z|h) =
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

∏
l≤m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
(2.41)

This is the likelihood of the Infinite Relational Model, which we use to evaluate
the performance of the samplers.
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Using Bayes theorem we can now find the posterior clustering probability P (Z|A, h)
using this formula:

P (Z|A, h) =
P (A|Z, h)P (Z|h)∑

Z P (A,Z|h)
(2.42)

=
P (A,Z|h)∑
Z P (A,Z|h)

(2.43)

It is possible to use this formula to calculate the clustering Z. Doing this
is however infeasible, as the number of combinations for clustering the nodes
increases exponentially with the number of nodes, which means that we need
another way to estimate the clustering. Instead we relax the problem with
Markov Chain Monte Carlo, to estimating the clustering using Gibbs sampling,
which we later extend with Split-Merge sampling.

2.4 Markov Chain Monte Carlo

Bayesian modelling is often a hard computational problem, as obtaining the
posterior distribution can demand integration of difficult and high-dimensional
functions [25]. Instead of calculation an exact distribution, a common tech-
nique is to use a simulation to generate independent draws from the posterior
distribution and use these draws to estimate the distribution.

Markov Chain Monte Carlo (MCMC) denotes a class of algorithms capable of
generating chains of such simulated draws. A Markov Chain relies on a set of
states S and some associated transition probabilities. For every pair of states
s and s′ the transition probability T (s′|s) gives the probability of transitioning
from state s to state s′. From some initial state s0 a Markov chain of length n
can be created by n times going to a new state, determined by the transition
probabilities:

{s0, s1, s2, ..., sn}

Such a chain upholds the Markov property, that every state si in the chain only
depends on the previous state si−1. A state in the Markov Chain contains an
assignment for all the variables in the model. In the case of cluster analysis this
refers to the cluster assignments of all nodes.

A Markov Chain is called regular if it upholds the following two properties:
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• For all pair of probable states there exists a path where all transitions in
the path have non-zero probabilities.

• For all probable states s, T (s′|s) is non-zero.

A Markov Chain is detailed balanced if there exists a unique distribution p, such
that for all pair of states s and s′:

p(s)T (s′|s) = p(s′)T (s|s′)

A very important property of regular Markov Chains with detailed balance is
that convergence to a unique stationary distribution will be reached eventu-
ally [14]. The advantage of using MCMC is therefore that the chain eventually
will converge such that the draws closely approximate draws from the real pos-
terior distribution. However it is unfortunately not possible to determine the
time it takes until converges is certain. The procedure needs some burn-in time
to allow it to approximate the posterior distribution. The most used MCMC
algorithms include Metropolis sampling [11], Metropolis-Hastings [7] and Gibbs
sampling [4, 23] The Gibbs sampler only changes one variable at a time. It
might take a very long time before it reaches convergence and it might be very
difficult to reach states that can only be reached by going through states with
low probabilities. On the other hand, the Split-Merge sampler can reassign
multiple nodes at a time, which can shorten burn-in time.

We will use both Gibbs and Split-Merge sampling in order to estimate the
clustering Z. These are random walk algorithms, that moves around the state
space. In the Gibbs sampler, each parameter is changed one at a time while the
Split-Merge sampler proposes an entire split or merge, which is then accepted
or rejected according to the Metropolis-Hastings acceptance probability.

If there are many local minima in the state space, that are much more likely
than their surrounding states, then MCMC is likely to get stuck. As an example,
figure 2.6 shows the model likelihood of two state spaces (a) and (b) for two
nodes. In (a) we see that by only changing one parameter at a time (along
one axis), it is easy to jump from a high probability distribution to another,
making the Gibbs sampler optimal for these types of problems. However in
(b) we see that two parameters has to be changed simultaneously in order to
jump from a high probability model to another. This means that for the Gibbs
sampler to jump between high probability models, it first have to move to a very
unlikely model, which may take towards infinity many attempts, depending on
how unlikely these distributions are.

In order to estimate the clustering model Z and when it is found, the MCMC
algorithm is run multiple times with different initializations, each creating a
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(a) Easy Gibbs sampling state space. (b) Difficult Gibbs sampling state space.

Figure 2.6: State spaces for clustering of two nodes.

chain of accepted models. We then say that an acceptable model is found when
several of these chains converge to the same model, although we cannot be
absolutely certain that it is the real posterior distribution.

2.5 Gibbs sampling

Gibbs sampling works by starting in a random state. It then iteratively reassigns
all nodes one at a time, according to the probability that the node belongs to
each of the clusters, denoted as a Gibbs sweep. The probability of assigning a
single node is given in relation to IRM, using Bayes theorem:

P (zni = 1|A,Z\i, h) =
P (A,Z\i, zni = 1|h)∑

o ∪ new
P (A,Z\i, zoi = 1|h)

(2.44)

where Z\i denotes the clustering of all nodes except node i and zni = 1 denotes
that node i is assigned to cluster n. o∪new means that o represents all existing
clusters as well as a new empty cluster. Using this formula, we only need to
calculate the probability of placing the nodes in each of the existing cluster and
in a new cluster, to find the probability that node i belongs to cluster n.

As the probability of P (A,Z|h) is given in formula 2.41, we are now able to
perform Gibbs sampling. After inserting the formula into 2.44, the Gibbs prob-
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ability can however be simplified much more.

We immediately see that the constants Γ(α), Γ(J + α) and B(β+, β−) in for-
mula 2.41 can be reduced. When we expand the denominator, this equation
becomes very large, so in order to simplify the equation we have defined a vari-
able G as:

G =
∏
l≤m

(
B(N+

lm + β+, N−lm + β−)
)

(2.45)

Furthermore we define Gi,o as the value of G, where node i is inserted into
cluster o. If o = new, then the node is inserted into an empty cluster. In other
words, N+

lm and N−lm assumes values according to the cluster assignment of node
i.

Inserting equation 2.41 into equation 2.44 yields two different cases as i is either
assigned to an non-empty or empty cluster. In the first case we get:

P (zni = 1|A,Z\i, h)

=
Gi,nα

K · Γ(nn + 1)
∏
k\n Γ(nk)∑

o(Gi,oα
KΓ(no + 1)

∏
k\o Γ(nk)) +Gi,newαK+1Γ(1)

∏
k Γ(nk)

=
Gi,nα

K · nn
∏
k Γ(nk)∑

o(Gi,oα
Kno

∏
k Γ(nk)) +Gi,newαK+1

∏
k Γ(nk)

In the numerator of this equation cluster n contains one additional node, as
node i is placed into it. The denominator has been split into two parts; first we
sum over all the non-empty clusters o and then add the probability of belonging
to an empty cluster. In the case of the empty cluster, K increases by one.

From this we see, that αK and
∏
k Γ(nk) can be reduced:

P (zni = 1|A,Z\i, h) =
Gi,nnn∑

o(Gi,ono) +Gi,newα
(2.46)

Similarly we can find the probability for the second case where node i is placed
in a new cluster. We again reduce the formula in the exact same way as above,
but in this case we end up with an additional α in the numerator, as the number
of cluster has increased and nnew = 1:

P (znew,i = 1|A,Z\i, h) =
Gi,newα∑

o(Gi,ono) +Gi,newα
(2.47)
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The denominator for both cases are exactly the same and the set of numerators
for all cluster assignments has a 1 to 1 correspondence with each term in the
denominator, as it should be since we calculate and normalize over all possible
combinations.

Until now, we have only mentioned how Gi,o works, but not described the math
behind it. Gi,o is equal to G except for the case where l = o, by defining rim
as the number of links node i has to cluster m, we can calculate Gi,o for these
changed values as:

Gi,l=o =
∏
m

(
B(N+\i

om + rim + β+, N−\iom + nm − rim + β−)
)

(2.48)

Furthermore Gi,o can be defined by G and the change that occurs when node i
is inserted into cluster o:

Gi,o = G ·Gchangei,o (2.49)

If we insert this expression for Gi,o into formula 2.46 and 2.47, G can be reduced:

P (zn,i = 1|A,Z\i, h) =
Gchangei,nnn∑

o(Gchangei,ono) +Gchangei,newα
(2.50)

P (znew,i = 1|A,Z\i, h) =
Gchangei,newα∑

o(Gchangei,ono) +Gchangei,new
α

(2.51)

Using the definition of G and Gi,o we can calculate Gchangei,o using the relation-
ship given in formula 2.49. Since G equals Gi,o for all l 6= o in definition 2.45,
we reduce these terms:

Gchangei,o =
Gi,o
G

(2.52)

Gchangei,o =

∏
m

B(N+\i
om + rim + β+, N−\iom + nm − rim + β−)∏
l=o

∏
m

B(N+
lm + β+, N−lm + β−)

(2.53)

=
∏
m

(
B(N

+\i
om + rim + β+, N

−\i
om + nm − rim + β−)

B(N+
om + β+, N−om + β−)

)
(2.54)
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This formula for Gchangei,o is used for the cases where node i is placed into an
existing cluster, it does however also apply to the case where the node i is placed
into a new cluster. As a new cluster contains no nodes, it has neither any links
nor any missing links. Thus all N+ and N− are equal to zero. Furthermore
rnew,o is equal to the number of links N+ after inserting the node and nm−rnew,o
is equal to the number of missing links N− after inserting the node. Gi,new can
hence also be replaced Gchangei,new

.

2.5.1 Ensuring numeric stability

In the previous section we looked at the mathematical simplification of the Gibbs
sampling algorithm, in this section we will look at algorithmic optimizations in
relation to a computer program.

First off in formula 2.50 and 2.51, the denominator are the same for placing
a node i in any of the clusters. Secondly, the numerators has a one to one
correspondance with the denominator elements. Hence we define a vector Qi as
all the probability numerators for placing node i in each of the clusters:

Qi =


Gchangei,1n1
Gchangei,2n2

...
Gchangei,KnK
Gchangei,new

α

 (2.55)

The first K elements represents the numerator probability of placing node i in
cluster 1 through K respectively, while the last element represents placing the
node in a new cluster.

Using this vector we can find the probability of placing the node in any of the
existing or a new cluster by calculating each of these values and normalizing
with their sum:

Pi =


P (z1,i = 1|A,Z\i, h)
P (z2,i = 1|A,Z\i, h)

...
P (zK,i = 1|A,Z\i, h)
P (znew,i = 1|A,Z\i, h)

 =
Qi

sum(Qi)
(2.56)

The calculation of Gchangei,o contains evaluations of the Beta function, which
returns large values for even small input values, this means the division of these
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quickly becomes numerically unstable. In order to ensure numeric stability for
machine precision, these posterior probabilities are calculated in the log domain
and each value is divided with the largest value.

First, we can divide with the largest value of Qi without changing the probabil-
ities, since Pi is calculated by normalizing each of these with the sum of Qi. In
order to do this we first introduce a new variable Q′i such that:

Q′i =
Qi

max
i

(Qi)

Pi =
Q′i∑

i

(Q′i)
(2.57)

We can now take the logarithm and exponent of Q′i, to help stabilize the beta
calculations:

Q′i = eln(Q
′
i)

= e
ln(Qi/max

i
(Qi))

= e
ln(Qi)−max

i
(ln(Qi))

(2.58)

ln(Qi) =


ln(Gchangei,1) + ln(n1)
ln(Gchangei,2) + ln(n2)

...
ln(Gchangei,K ) + ln(nK)
ln(Gchangei,new

) + ln(α)

 (2.59)

The logarithm of Gchangei,o can be pushed into the calculations, in order to
change beta to betaln, adding numerical stability to the algorithm:

ln(Gchangei,o) =ln

(∏
m

(
B(N

+\i
om + rim + β+, N

−\i
om + nm − rim + β−)

B(N+
om + β+, N−om + β−)

))

=
∑
m

ln

(
B(N

+\i
om + rim + β+, N

−\i
om + nm − rim + β−)

B(N+
om + β+, N−om + β−)

)
=
∑
m

(
Betaln(N+\i

om + rim + β+, N−\iom + nm − rim + β−)

−Betaln(N+
om + β+, N−om + β−)

)
(2.60)
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1 for each sweep

2 for each node i
3 calculate N+ and N−, n ignoring i
4 calculate r for the node

5 calculate the probability change of the model

when assigning i to each cluster

6 choose a cluster assignment based on these

probabilities

Figure 2.7: Naive Gibbs Pseudo-code.

Using these optimizations, we are now able to easily calculate the likelihood of
assigning node i to each of the clusters with numerical stability. As described
in section 2.4 MCMC can then use these probabilities to iteratively place each
node in a cluster. Thus, the key operation necessary to evaluate the posterior
is the calculation of the logarithm of the beta function.

2.5.2 Naive Gibbs algorithm

We now have all the necessary formulas to implement a MCMC procedure using
Gibbs sampling with numeric stability. Figure 2.7 shows the pseudo-code for a
naive implementation of a Gibbs sampler.

The calculations of N+, N−, n and r are straight forward, as they only rely on
the current cluster assignments. The calculations of the change probabilities in
Pi are a bit more complex. They can be calculated by the following procedure:

1. Calculate the logarithm of the beta-function for all cluster assignments for
the current node i into all existing clusters o and a new cluster o = new;
formula 2.60.

2. For all the resulting values we add the logarithm of the number of nodes
for non-empty clusters and ln(α) for the empty cluster; formula 2.59.

3. Subtract each value with the maximum value and exponentiate them;
formula 2.58.

4. Divide all values with their sum; formula 2.57.

Based on these probabilities a new cluster assignment can then be randomly
selected for node i.
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In the case where multiple graphs are used in the analysis, the nodes are placed
in the same clusters for all graphs, but N+ and N− differs between the graphs.
The probability of a node belonging to a cluster is independent between graphs.
Hence the probability of assigning the node to a cluster can be calculated as the
product of the probabilities of assigning the node to the cluster, for each graph.

2.6 Split-Merge sampling

The Split-Merge procedure with restricted Gibbs sampling is presented by Jain
and Neal in [8]. The idea behind Split-Merge is that we split or merge entire
clusters rather than moving one node at a time, as illustrated in figure 2.8. This
is done by selecting two distinct nodes at random. If they are in the same cluster
we propose to split the cluster, if they are in two different clusters we propose to
merge the two clusters. These proposals are evaluated using Metropolis-Hastings
acceptance probability to determine whether they are accepted or rejected [8].

Figure 2.8: Splitting and merging clusters.

In the case that the two selected nodes i and j are assigned to the same cluster,
we perform the following split procedure, which is illustrated in figure 2.9:

Figure 2.9: Split procedure.
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1. Let S denote the nodes clustered with i and j, excluding i and j.

2. Place i and j in two empty clusters and assign each node in S randomly
between these.

3. Perform T restricted Gibbs sweeps on the nodes in S and let Zlaunch denote
the resulting clustering.

4. Perform one final restricted Gibbs sweep over the nodes in S.

(a) Let Zsplit denote the resulting clustering.

(b) As each node in S is assigned to Zsplit, calculate the product of these
transitions, in order to find the proposal probability q(Zsplit|Z).

(c) If the proposal is accepted, then Zsplit becomes the next state, oth-
erwise the current state Z remains.

In the case that the two selected nodes i and j are assigned to different clusters,
we perform the merge procedure. This procedure is very simple as the nodes are
simply placed in the same cluster denoted Zmerge. However in order to calculate
the transition probability q(Z|Zmerge), we follow a procedure similar to that of
splitting a cluster, in order to ensure detailed balance. The merge procedure
follows the first 3 steps of the split procedure exactly, obtaining the cluster
configuration Zlaunch. Using this cluster configuration, the merge procedure
continues as follows and illustrated in figure 2.10.

Figure 2.10: Merge procedure.

4. Assign each node in S to their original clustering Z.

(a) As each node in S is assigned according to Z, calculate the prod-
uct of these transitions, in order to find the proposal probability
q(Z|Zmerge).
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(b) If the proposal is accepted, then Zmerge becomes the next state,
otherwise the current state Z remains.

To evaluate whether a proposal Zsplit or Zmerge is accepted or rejected, the
Metropolis-Hastings acceptance probability is used:

α(Z∗,Z) = min

[
1,
q(Z|Z∗)
q(Z∗|Z)

P (Z∗)

P (Z)

L(Z∗|β+, β−)

L(Z|β+, β−)

]
(2.61)

where Z∗ is either Zsplit or Zmerge. The calculation of q(Zsplit|Z) and q(Z|Zmerge)
are given in the procedures above, while their opposite q(Z|Zsplit) and q(Zmerge|Z)
is always 1; there is only one way to place all nodes in one cluster. The prior P (Z)
is given by the Chinese Restourant Process, while the likelihood L(Z|β+, β−) is
given by the beta distribution. We now define i′ and j′ to specify the clusters
z∗i and z∗j while i and j specifies zi and zj .

This means that we can simplify the expression even more, for the prior of
splitting a cluster we get:

P (Zsplit)

P (Z)
=

αK+1Γ(nspliti′ )Γ(nsplitj′ )
∏
k\(i,j) Γ(nk)

αK
∏
k Γ(nk)

(2.62)

=
αΓ(nspliti′ )Γ(nsplitj′ )

Γ(ni)
(2.63)

where nspliti′ and nsplitj′ are the number of nodes in the two clusters created by
the split procedure. Similarly for the merge case the prior can be simplified to:

P (Zmerge)

P (Z)
=

αK−1Γ(nmergei′ )
∏
k\(i,j) Γ(nk)

αK
∏
k Γ(nk)

(2.64)

=
Γ(nmergei′ )

αΓ(ni)Γ(nj)
(2.65)

The likelihood for a clustering can be calculated using the reduced expression
we found for the probability of links and interactions between clusters, in the
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latter part of equation 2.41, which states:

P (Z|β+, β−) =
∏
l≤m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
(2.66)

For the likelihood fraction of split, this formula only changes for l = zi and
hence we can reduce all other multiplications.

L(Zsplit|β+, β−)

L(Z|β+, β−)
=

∏
l∈(i′,j′)

∏
m∈Zsplit

B(N+,split
lm + β+, N−,splitlm + β−)

B(β+, β−)

K∏
m=1

B(N+
im + β+, N−im + β−)

B(β+, β−)

=

∏
l∈(i,j)

∏
m∈Zsplit

B(N+,split
lm + β+, N−,splitlm + β−)

B(β+, β−)K+2

K∏
m=1

B(N+
im + β+, N−im + β−)

where N+,split
lm and N−,splitlm denotes the number of links and non-links between

cluster l and m after the split. If we instead look at the likelihood fraction of
merge, we get that two clusters changes in the orininal clustering, l = i and
l = j and hence by reducing the other multiplications we get:

L(Zmerge|β+, β−)

L(Z|β+, β−)
=

∏
m∈Zmerge

B(N+,merge
i′m + β+, N−,mergei′m + β−)

B(β+, β−)∏
l∈(i,j)

K∏
m=1

B(N+
lm + β+, N−lm + β−)

B(β+, β−)

=

B(β+, β−)K+2
∏

m∈Zmerge

B(N+,merge
i′m + β+, N−,mergei′m + β−)

∏
l∈(i,j)

K∏
m=1

B(N+
lm + β+, N−lm + β−)

Using these formulas we can now calculate the probability of accepting a split
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or merge. However to ensure numeric stability we calculate in the log-domain,
exactly as explained in chapter 2.5.1 Ensuring numeric stability.

For multiple graphs the prior P (Z) does not change, as it only depends on
cluster sizes. The likelihood changes as we now need to iterate over all graphs,
calculating the product of the independent likelihoods for each graph.

2.7 Model evaluation

In order to estimate how well the IRM model and samplers work, we need some
means to compare the similarity between clusterings and some means to evaluate
the mixing properties of the two samplers.

There are several ways to evaluate the performance of samplers. If the ground
truth clustering is known in advance, then a similarity measure can be used
between this and the best clustering found by the sampler. If on the other
hand the ground truth is not known in advance, then the similarity between
samples/states in several distinct runs can be used instead. When a sampler
mixes, then these chains will become more similar as they progress, additionally
the average similarity within a chain should be similar to the average similarity
between two chains. This indicates that the sampler is able to freely move
around the state space and hence not get stuck at some local mode.

There exists several similarity measures; conditional entropy, joint entropy, con-
ditional mutual information and mutual information, among many others. All
of these have both strengths and weaknesses, depending on what is being mea-
sured and how it should be similar. We have chosen to use normalized mutual
information, as it is commonly used measure of dependence in information the-
ory. Using several graphs for the same network it would also be possible to
apply different strategies, such as cross-validation.

2.7.1 Ground truth

The Infinite Relational Model is a generative model, which means that we can
use it to generate a synthetic network. By creating these network, we know the
ground truth, since the clustering is determined as part of the generative process.
We can then perform the IRM analysis on the synthetic data, and by evaluating
the results against the ground truth, we can evaluate the performance of the
model. In a real world network, we cannot be sure that the desired ground truth
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is actually determinable by analysing the data. For a synthetic network we are
certain that the structure is in the data, as it was generated to contain this
structure. This also means that samplers may work well on generated models
but not on real world samples. For this reason we have chosen to analyse real
world samples rather than synthetic data.

2.7.2 Informational entropy

In order to understand how normalized mutual information works, we first in-
troduce entropy, as the entropy of each of the two clusterings is used in order
to normalize the mutual information.

The term entropy originated as a classical thermodynamic quantity related to
the heating of a system by physical processes. In statistical thermodynamic,
the concept of entropy can be considered a measure of the ”disorder” or ”uncer-
tainty” of a given thermodynamic system. The concept of information entropy
was first introduced by Claude Shannon in the paper ”A Mathematical The-
ory of Communication” [21] as an aid to statistically quantify information loss
in communication lines [Estimation of Mutual Information: A Survey]. For a
discrete random variable X, the entropy can be expressed as:

H(X) = −
n∑
i=1

p(xi)logp(xi)

The general concept of entropy is well suited to describe the uncertainty or
unpredictability of a single random variable, but is not usable for more than a
single variable [26].

2.7.3 Normalized Mutual Information

To compare two clusterings we use the concept of normalized mutual informa-
tion. This is based on the concept of mutual information, which was also first
introduced by Shannon.

The mutual information I(X,Y ) of two discrete random variables X and Y
measures how much the uncertainty is reduced in X when gaining the knowledge
of Y . The mutual information is given by:

I(X,Y ) =
∑

x∈X,y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
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where p(x) and p(y) are marginal probability distribution functions of X and Y
while p(x, y) is the joint probability distribution.

Figure 2.11: Two different clusterings of the same nodes.

An example of mutual information between clusterings can be seen from fig-
ure 2.11. The marginal distributions of the two clusterings X and Y gives the
probability that a node belongs to a given cluster:

for X: p(x) =

 3/6, x = c1
2/6, x = c2
1/6, x = c3

for Y: p(y) =

{
3/6, y = c′1
3/6, y = c′2

The joint distribution gives the probability that a node belongs to a given cluster
in X and a given cluster in Y:

p(x, y) =

c′1 c′2
1/6 2/6 c1
2/6 0 c2
0 1/6 c3

From this the mutual information can be calculated to I(X,Y ) = 0.3749. The
upper bound for the mutual information is dependent on the complexity of the
variables X and Y . As we want a value in the range [0; 1], we instead use the
following normalized mutual information (NMI):

NMI(X,Y ) =
2 · I(X,Y )

H(X) +H(Y )

where H(X) and H(Y ) is the entropy of cluster configuration X and Y .
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An NMI of zero indicates that the cluster configurations do not share any in-
formation, while an NMI of one indicates that cluster configurations shares as
much information as they can, in which case clusterings are identical, although
they may be permuted.

2.7.4 Mixing ability of the Sampler

We can calculate how the likelihood of how the model changes with the number
of iterations using formula 2.41. By plotting this likelihood for multiple runs
we can estimate how well the sampler mixes. If the sampler mixes, then no
matter where we start a chain, the likelihood for each chain should converge
with the likelihood of the other chains. If this is not the case, it indicates that
the sampler may be stuck in a local minimum.

2.8 Large scale computation

In this section we describe the hardware and software aspects of performing
large scale computations. We first introduce how the CPU and GPU works and
then compare them.

2.8.1 CPU

The central processing unit (CPU) is the central part of a computer, capable
of rapidly performing a wide range of arithmetic operations in sequence. It
executes programs by processing the instructions provided by the program code.
The program data and instructions are read from the memory, while stored data
is written back to the memory. The CPU can process the data much faster than
the transfer rate of data from the random access memory (RAM) to the CPU.
This means the CPU has to wait for the data to catch up, resulting in reduced
CPU performance. To overcome these issues, modern CPU’s rely on different
levels of memory caches and prefetching. Figure 2.12 shows a simplified version
of the memory structure associated with the CPU.

Though the capacity of the memory caches are much smaller than for the RAM,
their response time is much smaller and are hence used as buffers to allow fast
read and write operations by the CPU.
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Figure 2.12: CPU memory architecture.

The L2 cache is larger than the L1 cache but is placed a bit off the processor
chip and has a bit larger latency compared to the L1 cache. Accessing data
from the L2 cache is however still a lot faster than accessing the RAM over the
system bus. When the CPU needs an instruction or variable it will look for it
in the caches in a fall through model, where it first checks the L1, L2 and then
the RAM. Multi-core processors tends to have the L2 cache replaced by an L3
cache, which is shared by all the cores on the processor, while others have both
an L2 and L3 cache.

The CPU uses these caches to prefetch data such that it is available before
it is needed. This is implemented such that when a cache miss occurs (some
accessed data is not in the cache), then an entire cache line of typically 1 kilo
bytes are fetched from the RAM and stored in the cache, even though the current
instruction only needed the first 32 bits. This means that if the next 32 bits are
accessed in the next instruction, this will happen extremely fast.

In order to implement efficient CPU programs it is essential to be aware of this
cache structure in order to avoid idle time for the processor.

2.8.2 GPU

A graphical processing unit (GPU) is a piece of dedicated hardware invented to
manipulate, store and render image-data on a very large scale. The architecture
of a GPU is therefore designed to facilitate graphic operations as efficiently as
possible. This includes operations to perform geometric transformations, illu-
mination and rasterization, which all require heavy computations. The GPU is
designed such that the same operations can be performed on massive amounts
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of data in parallel. This is known as Single Instruction Multiple Data (SIMD)
and in order to provide this, the GPU utilizes hundreds of physical processing
units (stream processors), that perform the same instructions in parallel. Many
modern GPUs are now designed to not only perform graphic operations, but
with a much more flexible architecture in mind that allows the huge computa-
tional capacity of the shader pipeline and memory structure to be utilized in a
more generic way. This means that it is possible to work on data that is not
just image data. Such hardware is often referred to as general purpose graphics
processing units (GPGPU).

Recent development in improved compilers, new development tools, toolkits and
language frameworks such as OpenCL and CUDA, provides a much higher level
of abstraction from the hardware, making it possible for normal programmers
to take advantage of the massive parallel computing power the GPGPU offers.
Thereby allowing computer-intensive parts of an application to be run on a GPU,
offloading the CPU and improving the performance of the entire application.

Code that is run on the GPU is called a kernel. To utilize the parallel resources
a kernel needs parallelism, such that it can be computed by multiple threads
simultaneously. On a GPU these threads are called work-items and are grouped
into blocks called work-groups that all execute the same kernel in parallel. Indi-
vidual groups of the physical stream processors on the GPU are called compute
units (CU’s), which have some associated shared memory. All items in a work-
group are executed simultaneously on the same CU’s, and can communicate
with each other through the shared memory. Due to the GPU design, it is only
possible to synchronize execution inside a kernel, making the GPGPU inefficient
for code with interloop dependencies.

On a GPGPU a work-group can typically consist of 256 or 1024 threads, even
though there are much fewer compute units. The GPGPU handles this by
splitting the work-group into wavefronts, in which there are as many work-
items as compute units. When one wavefront waits to receive data from the
memory, all compute units switch to the next wavefront and executes it without
any delay.

Figure 2.13 shows the memory structure of GPU compute units (ALUs). The
largest memory block is the global GPU memory, which can be accessed by the
host-program to store data from the RAM. The size of this memory is in the
order of a few gigabytes, and can be seen by all work-items. Accessing this
memory is however rather slow, as it is placed off the chip. The latency can
however be hidden by using multiple wavefronts and hence avoid performance
decrease in memory intensive applications[17].

[?]
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Figure 2.13: Gpu memory architecture.

Each work-group has a shared memory which allows the work-items to col-
laborate on retrieving data that they all need or share data that needs to be
synchronized between work-items. Each work-item has a number of registers
along with local memory. In this hierarchy the registers are fastest, then local
memory, shared memory and finally the global memory, which is very slow.

Though GPU design is focused on providing high bandwidth, rather than high
speed and low latency memory access, the stream paradigm can utilize the fact
that multiple work items can collaboratively fetch data that is used by all of
them into the shared memory, which can hide the latency of memory fetching.

2.8.3 Comparison of CPU and GPU

While a CPU is designed around a sequential paradigm, where single instructions
are executed extremely fast, a GPU resembles the stream processing paradigm,
which executes single instructions on multiple data. The difference in the archi-
tecture influences what types of problem each paradigm is most suitable for as
well as how to utilize the resources efficiently.

The focus of the CPU design is speed, in order to provide very fast calculations.
It can provide very high performance for applications with sequential data access
patterns. The memory structure are larger than those on the GPU and allows
fast random access for very small data structures, that can be stored in the
cache. This makes the CPU very good for calculations where the same data is
reused as the latency of fetching from the RAM is minimal.

The focus of the GPU design is to provide high bandwidth, where the same cal-
culations are performed on a lot of data in parallel. Using multiple work-items
the latency of random memory access can be hidden and hence allow high per-
formance to highly parallel code. The GPU can handle some code dependencies



2.8 Large scale computation 39

within a work-group, even without too much overhead. It is however impossi-
ble to synchronize execution across work-groups. This can only be achieved by
waiting for the entire kernel to finish executing before starting the next kernel,
that depended on the previous. This means that if kernels has to synchronize
often, it is infeasible to use the GPU.

Ideal programs to be computed on a GPU, must hence contain large data set
with a high degree of dataparallelism and few dependencies between data ele-
ments, otherwise the CPU is superior.

2.8.4 Program optimization

For large scale computations it is essential to utilize the available resources
efficiently. Even though a program is written such that it theoretically is as fast
as possible, it can typically still be optimized. This is because the theoretical
speed does not take the specific hardware characteristics and limitations into
account. Hence it is often possible to increase the performance of the program
by applying various optimization techniques, such as changing data structures,
calculations and code structure without having to change the algorithm of the
program. Furthermore the program can often be parallelized on a CPU, GPU
or across multiple computers.

An optimization may require that more data is accessed, more operations are
performed or performed in a different order, but resulting in a faster runtime due
to the hardware capabilities such as cache misses, parallelization and advanced
machine instructions.

In many cases program optimization is a trade-off between memory consump-
tion, computing speed and code readability. Our implementation is not intended
for the typical end-user who runs multiple other programs simultaneously, in-
stead we assume that all computer resources are dedicated to running this pro-
gram. Hence we are less concerned with memory consumption than speed, in
fact we always favour fast code at the cost of memory, when possible.

In the following sections we present performance issues that are important to
address to work efficiently with large scale computations. We focus mainly on
three important optimization techniques:

• Caching results to avoid unnecessary re-calculations.

• Avoid cache misses to avoid overhead of memory fetching.
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• Use parallelization to utilize the resources of multiple processing units.

2.8.5 Caching results

In many applications the same calculation might be computed multiple times
with the exact same parameters. This is a waste of resources. Instead of re-
calculating the exact same value, the value can be stored, such that instead of
computing the function it becomes a single lookup to get the value, the next
time the function is called for the same parameters. This is known as caching
results.

Caching results does not always lead to a higher performance of the program.
Fetching the data from memory takes time. If the calculation can be performed
on the CPU within that time then caching the results will actually decrease the
performance of the program. Caching results may also require large amounts
of memory. It therefore becomes a tradeoff between the memory usage and the
runtime saved by caching.

2.8.6 Cache misses

Most programs that are not optimized specifically for cache misses, tends to
spend a lot of their time waiting for data to be retrieved from the RAM, rather
than actually utilizing the power of the CPU. These waiting periods are caused
by the program trying to access some variable which are not currently available
in the CPU’s cache, but has to be fetched from the global RAM, resulting in
cache misses. In some cases the data might not even be stored in the RAM,
as it may have been moved to the harddisk, which results in extremely slow
fetches. While the data is being fetched the CPU cannot continue executing
the program, as it must perform each instruction in sequence, even if the next
instruction does not have anything to do with the data the current instruction
uses. This is one of the limitations of the CPU architecture.

To avoid cache misses, data elements can be stored and accessed sequentially in
an array, such that all elements are stored next to each other in the memory.
When the first cache miss occurs, both the current and next couple of elements
are fetched from the RAM and stored in the cache. This means that when
the next element is requested, it is already available in the cache. However
since the pre-fetched array uses memory in the cache, it is important to use
very little memory until the next element is used, i.e. computations using few
variables/arrays. Otherwise the pre-fetched array may be overwritten in the
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cache, in order to make room for other variables. This means that in order
to avoid cache misses, we both have to place elements in a static list of some
kind and balance the number of variables used in each calculation. A very good
depiction of this problem was made by Bjarne Stroustrup, presenting a list as
both a vector and a linked list to illustrate the huge performance benefits of
static arrays in comparison to true object oriented lists [24].

2.8.7 Parallelization

In a non-parallel programming scheme it is only possible to reach a certain
level of performance, as the maximal processing speed of CPUs is limited by
fundamental physical quantities. For a CPU with a clock frequency of 3 Ghz,
light is able to travel about 10 cm in the time it takes for the CPU to perform
one instruction, which requires that the signal flow has reached from one end of
the CPU to the other. This means that in order to further speed up a program,
aside from performing the tricks previously described, we need to parallelize
the program; use multiple threads that cooperates in order to perform tasks
faster. However, only independent code can be parallelized, which means that
if the strictly serial code takes 10 seconds to compute, then no matter how
many CPUs cooperate on the task, it will never be faster than 10 seconds. The
performance boost of using multiple CPUs can be calculated using Amdahl’s
law, which states:

T (N) = T (1)(B + (1−B)/N) (2.67)

S(N) =
T (1)

T (N)
=

1

B +
1−B
N

(2.68)

where T (N) is the time it takes for a program to finish using N threads, while
S(N) is the maximal speedup using N threads and B is the percentage of code
that is strictly serial. An example of this can be seen in figure 2.14, which shows
the speedup compared to the number of threads. From this we can see that even
if only 5% of the code is strictly serial, it is not possible to get more than a 20
times speedup, no matter how many threads are used.
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Figure 2.14: Amdahl’s law.



Chapter 3

Application considerations

In this chapter we present both the internal as well as the external requirements
of the application. For the external requirements we look at the input and
output of the program and which libraries it uses. For the internal requirements
we explore the different possibilities of programming language and parallelism.
We explain what we need and how they affected the choises we made. Finally
we also shortly describe the testing and development of the program.

An overview of the external requirements can be seen in figure 3.1. This figure
shows that as input we take an optional state file, one or more networks and
some parameters. The state file specifies the initial placement of the nodes, the
networks specifies the connections between the nodes, while the parameters are
used to tell the program how to sample and specify output settings. In order
to perform the sampling, an external random number generator library is used.
Finally during the sampling process, an output file is created along with several
state files. The rate that these files are updated/created can be given as input
parameters and otherwise depends on the network size.

The state file is a file containing a single number on each line, specifying which
cluster the first-, second-, third-, ..., J’th-node belongs to, in the range [0-C].
The network is given as a set of connections, specified by two comma seperated
node-numbers, specifying that those nodes has a connection. These connections
are always seen as undirected, so if the connection is given in either direction,
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Figure 3.1: Application input/output

it is added to both nodes. The parameters specify the number of nodes in the
network, sweeps that needs to be performed and the network file(s). These
parameters can also be used to initially split the nodes into a given number of
clusters, either linearly, randomly or as given in a state file. The last impor-
tant option these parameters can specify is whether to use split-merge and how
many restricted Gibbs sweep that should be performed in each split-merge. The
random number generator is explained later in this chapter, but basically this
random number generator is used to ensure that good random numbers are used,
such that we can explore the entire state space, rather than only states with a
certain probability threshold. The output file is continously updated with the
iteration number, delta time since beginning, the number of clusters found and
the log-likelihood of how well the current model explains the network(s).

3.1 Programming language

In order to work efficiently with large amounts of data it is important to choose
the right programming language. We need a programming language which can
perform computations and store/access data with a very low overhead. Addi-
tionally the language should be low level enough to be able to take advantage
of hardware optimizations and parallelize efficiently. Matlab is among the most
commonly used languages for statistical modelling, however the language is an
interpreted language, which means that the code has to be compiled on the
fly, making them run slower by wasting more CPU time on this. This is es-
pecially the case if complex functions/expressions are used. These interpreted
languages usually also lack the option to specify optimizations flags for the com-
piler, to help it understand how the code can further be optimized, which can
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have a huge impact on performance. Furthermore these interpreted languages
usually has exception handling and has checks to verify that every command is
valid, even though the programmer may know that they will always be valid in
the given context, resulting in a much slower execution than is possible. Con-
tinously checking whether an error occured adds yet another large overhead.
Furthermore high-level languages such as Matlab allows many different kinds of
operations to be performed on any type of data structure, which means that in
order to allow these, additional overhead is added in order to for instance get
the name of the data structure, get the type, get functions of the class etc.

Due to these and other reasons, we have decided not to use Matlab, nor the
common programming languages such as R, Java and C#. Instead we have
chosen to go with C++, as it has low level access, very low overhead, extremely
fast computations and allows complete control over the memory management,
granting us the ability to store the data such that it can be accessed very fast.
Good memory management is one of the keystones for creating applications,
which works on gigabytes of data at the same time. The overhead for each data
entry can be the difference between being able to allocate room for the data
or not. Furthermore many speed optimizations depends on the exact memory
mapping of the data structures, which we therefore need to be able to manipulate
to a great extent. C++ has almost no checks to verify that the given command is
valid, in fact it is possible to access memory in another application if the pointer
is incorrect. This means that these commands can be executed extremely fast
but also gives rise to potential bugs which may never be caught, as the program
does not necessarily crash/cast an exception.

3.2 Random number generator

In order to perform proper MCMC, we need good random numbers, which
is not a given for the default random number generators. For instance the
windows implementation of the C++ rand function only returns values between
1 and 32767, which means that we cannot choose clusters with less than 0.003%
probability, that is a problem! So in order to ensure that we always have good
high precision random numbers instead of relying on the current implementation
of the rand function for the specific operating system, we have chosen to use an
external high performance random number generator.

We have chosen a random number generator based on Mersenne Twister, created
by Agner Fog (http://www.agner.org/random/). The Mersenne twister were
created by Makoto Matsumoto and Takuji Nishimura as a uniform pseudo-
random number generator[10], which is specifically optimized for Monte Carlo
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simulations[22] and hence an optimal choise for us. We settled on this library
because it is sufficiently random for the purpose of performing MCMC, with a
relative error less than 2−32 and it is extremely fast, in a simple test it generated
a billion random numbers in just under 10 seconds. The numbers it generates
are not random enough to be used for cryptography, but for MCMC they are
fine. Looking at other papers we see that some of the state-of-art random
number generators uses between 25 and 165 seconds to just generate a million
random numbers, these are on the other hand way more precise random number
generators[5], that can be used for encryption of data.

3.3 Parallelization

There are three common approaches for parallizing an application, across sev-
eral computers using MPI, using the graphics card with OpenCL/CUDA, and
using multi a CPU solution with shared memory, such as POSIX threads and
OpenMP. MPI is an interface which makes it simple to write code that exe-
cutes on processors with any type of memory architecture (shared and NUMA
architecture), by using this interface to exchange memory and synchronize exe-
cutions. OpenCL/CUDA are frameworks for writing code that can be executed
in parallel on massive amounts of data, by using the GPU. If the parallel sections
of the code does not have any dependencies, then these two frameworks are able
to greatly increase performance. POSIX threads and OpenMP are both APIs
for creating multiple threads which can work in synergy with each other in order
to perform tasks faster, by dividing it between them. Using POSIX threads sim-
ply means that multiple threads are started, which may run the same code with
possible different parameters. These threads can then communicate with each
other to synchronize data and execution of the program, in order to delegate the
workload. Doing all this does however require a lot of function calls in order to
start threads, synchronize, create barriers, joining threads, closing threads etc.
In order to ease the amount of code that needs to be written, OpenMP was cre-
ated. It is a high-level threading API, capable of parallelize loops and sections
of code using code comments, which will automatically create, join and destroy
the threads. Simple code comments in OpenMP also allows these threads to
synchronize data and execution.

The algorithm for Gibbs and Split-Merge sampling has an inter-loop depen-
dency, as the threads needs to know the probability of placing the node in each
cluster, in order to know which cluster the node should be placed in. Hence the
probability for the next node cannot be calculated until the first node has been
placed, as it will change these probabilities. Furthermore these probabilities are
very inexpensive for single graphs and hence the overhead of OpenCL/CUDA
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results in less performance. The same goes for MPI, as the program running on
different processors has to synchronize data very often, over a slow network con-
nection. However POSIX threads and OpenMP is optimal for this task. Since
they work on the same shared memory, they are able to synchronize their data
extremely fast (it simply has to be flushed from the processors caches to the
RAM). We use OpenMP as it is very easy to implement while still granting high
performance.

In the case of multiple graphs however, the amount of time used to calculate the
probability increases to the point where it is faster to run a kernel on the GPU
than calculating everything on a CPU with a very limited number of cores,
which means that OpenCL/CUDA can be used to speed up the calculations.
MPI is however still rather slow, as it is very slow to send a message over the
network. POSIX threads and OpenMP can still be used for multiple graphs,
but according to some tests we performed, the GPU is able to make these
calculations faster, even with inter-loop dependencies, when only 10 graphs are
given. For this reason we decided to go with a GPU solution for the multi-
sample implementation of the algorithm. In the choice of OpenCL vs CUDA,
we decided to go with OpenCL. Although CUDA is more polished than OpenCL,
it is only possible to run CUDA code on Nvidia GPUs, while OpenCL can run
on a wide variety of GPUs, including those capable of running CUDA, which
means that more people will be able to use our program.

3.4 Test and development

During the development of this program we have continously verified that ev-
erything works using both unit and functional tests. We implemented a testing
scheme able to perform unit tests on-the-fly, which means that while running
the optimized code, we simultaneously recalculate everything using an old, sta-
ble version of the program, constantly verifying that all data structures are
completely equal. This means that not only do we verify that the end result is
correct, but with this we also catch minor bugs that may creep in but does not
change the end result for the given unit tests.

Our intention with this thesis is to create a state-of-the-art product, that can be
used to perform IRM analysis on a broad range of large scale networks. As such
we have focused on ease-of-use, such that the program can be used without in-
depth knowledge of the implementation. Hence we strive to make sure that we
verify the structure of any input and data provided by the user and presents clear
informative error messages, should anything fail while the program is running.
This includes everything from invalid range of input parameters to lack of disk
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space. As part of the ease-of-use, we also even allow the user to specify the links
of the undirected network in any way they like, in one direction, both directions
or some combination thereof.



Chapter 4

Implementation

In the previous chapters, we have laid a theoretical foundation for the Infinite
Relational Model and presented how to perform Gibbs and Split-Merge sam-
pling. In this chapter we describe how we have implemented and optimized
these procedures to create high performance samplers, capable of performing
fast modelling on networks with millions of nodes. We first present the naive
pseudo-code for IRM, using Gibbs sampling to cluster a single network. From
the pseudo-code we can identify parallel parts of the code and describe the
relevant data structures. We then extend the implementation to include the
Split-Merge procedure and analyze which factors influence the running time of
the samplers. Finally we extend the implementation to allow multiple graphs.

4.1 Naive Gibbs sampling

The naive pseudo-code for IRM with Gibbs sampling is shown in figure 4.1. The
code contains two nested loops, as we for every Gibbs sweep must iterate over
all nodes i. For every node i we first calculate the number of nodes in each
cluster n and number of links N+ and non-links N− between all clusters. In
these calculations we assume that node i is not assigned to any cluster. We then
calculate the vector r, containing the number of links node i has to nodes in
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1 for each sweep

2 for each node i
3 calculate N+ and N−, n ignoring i
4 calculate r for the node

5 calculate the probabilities of assigning i to

each cluster

6 choose a cluster based on these probabilities

Figure 4.1: Naive Gibbs sampling pseudo-code.

each cluster. With these data structures we can compute the probability of node
i belonging to each of the C clusters, and hence assign the node accordingly.

4.2 Gibbs optimizations

In this section we describe how we have optimized the naive implementation,
using the optimization strategies mentioned in the theory. One of the most
important aspects of optimization is to create the entire program from scratch
with parallization in mind. The required operations in each iteration is to
calculate the probability of placing the current node in each cluster and assign
the node. To do this we need N+, N−, n and r. These can easily be parrallelized
as the probabilities of assigning a node to each of the clusters are independent,
we can also calculate these probabilities in parallel.

In every iteration of the Gibbs sweep at most two values are actually changed
in n, when the node is reassigned from one cluster to another, while only 2 · C
values are changed in N+ and N−. Instead of recalculating these structures
every iteration, we can cache them globally and only update them within the
iteration. The pseudo-code for caching these structures globally is shown in
figure 4.2

All r-vectors for all the nodes could be stored in a global structure R, but as
we will show later, the collective size of R becomes too large to be stored in
memory for huge networks.

Using n and r we can update the elements in both N+ and N− in parallel.
Furthermore nodes tends to remain in their cluster, when a good clustering
is found and hence in order to avoid unnecessary updates we can calculate
the probabilities without removing the current node as explained later in this
chapter. Hence we only update the data structures if the node is assigned to
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1 initialize N+, N−, n
2 for each sweep

3 for each node i
4 calculate r for i
5 exclude node i from N+, N− and n
6 calculate the probabilities of assigning i to

each cluster

7 choose a cluster based on these probabilities

8 include node i to N+, N− and n

Figure 4.2: Pseudo-code for Gibbs sampling with static data structures.

1 initialize N+, N−, n
2 for each sweep

3 for each node i
4 calculate r for i
5 calculate the probabilities of assigning i to

each cluster , ignoring i in N+, N− and n
6 choose a cluster based on these probabilities

7 if i changes cluster then update N+, N− and n

Figure 4.3: Optimized Gibbs sampling pseudo-code.

another cluster as shown in figure 4.3.

The choice of data structure depends on the problem, what type of data it
contains, how often it is used and in what way it is accessed/modified. To
perform IRM fast on large networks we need data structures where the overhead
of fetching and storing data is small while the structures are compact enough
to store large amount of data.

The network itself is represented by nodes and links. We only need to iterate
over links when computing r for a given node i, and hence we need to know
which nodes i is linked to. It is infeasible to store the entire adjacency matrix.
As an r-vector is only computed for a singe node in each iteration of a Gibbs
sweep, we can store links for the nodes in individual arrays. For every node
we hence store what cluster it is currently assigned to and an array of integers
indicating which nodes it is linked to, as illustrated in figure 4.4.

For n, N+ and N− the amount of data that need to be cached depends on the
number of clusters, which can vary throughout the IRM analysis. Many data
structures such as linked lists and vectors allow for a dynamic resizing. Linked
lists are however very slow to iterate through while reallocating data in vectors
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Figure 4.4: Links are stored as a one-dimensional
array for each node.

might result in copying of data to new memory blocks, when the capacity of
the vector is exceeded and this reallocation also requires synchronization of all
threads, leading to even more overhead and complexity. In order to reduce the
overhead of fetching data and the time it takes to allocate/deallocate memory
as well as avoiding these thread synchronization issues, we have decided to store
all data in static arrays with a constant size. By analysing the Gibbs and Split-
Merge sampler we found that the samplers rarely find more than 200 clusters
independent of the network size. Hence by allocating memory for a thousand
clusters we can safely assume that there is room for all the clusters we need.
Using static arrays we can utilize some optimizations when storing N+ and N−.
If more clusters are necessary, this number can be changed through a parameter
given to the program.

The data structures for N+ and N− can both be stored as one and two di-
mensional arrays, as shown in figure 4.5. Using two-dimensional arrays means
that when a cluster is removed, we can move the content of another cluster to
this position by only swapping two pointers. However a two dimensional array
means that the first dimension is described by an array of pointers to other
arrays, which means that following pointers from the first dimension will always
result in cache misses. To avoid this, the two dimensional array can be turned
into a one-dimensional array as we know the length of the second dimension.
For a maximum cluster size of 1000, the size of the array would be roughly 8
megabytes, if values are stored as 64-bit integers, which is very little compared
to the available memory on current computers. This shows that it is possible to
allow for more clusters if necessary. Using a one dimensional array does how-
ever also mean that moving a cluster becomes more expensive, as all the data
from that cluster has to be moved to the position of the cluster that is being
removed, rather than changing two pointer references. This data is however
placed in sequence and hence it is extremely fast to copy the data. Further-
more we later want to perform IRM analysis in OpenCL on a GPU, which uses
one-dimensional arrays.

We must be able to handle both insertions and deletion of clusters in these static
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Figure 4.5: Data structures for links and non-links
between clusters stored in a two and one-dimensional
array.

arrays, which happens whenever a node is assigned to a new empty cluster or
when the last node is removed from a cluster. When a cluster is removed it
is no longer used in the analysis, but there is still allocated room for it in the
data structures. As shown in figure 4.6 there are two simple ways to handle
this situation; it can either be ignored in the structure or the last cluster can be
moved up to fill the position, as cluster id does not matter in the IRM model.

Figure 4.6: When a cluster is removed, we can ei-
ther ignore its place or move the last cluster to its
position.

If the cluster is ignored, an ignore list has to be created and updated to avoid
that these ghost-clusters are included in the analysis. This means that the data
structures now can contain ’holes’, making it more likely to generate more cache
misses as unused data now also uses up the cache.

Instead of having holes in the data structure we choose to reposition the last
cluster. This does however also mean that nodes and values belonging to this
cluster are affected and must be updated accordingly.

Figure 4.7 shows an example of the procedure to remove a cluster from the one-
dimensional data structures N+ and N−. The example contains four clusters
c1, c2, c3 and c4. When c2 becomes empty, all values associated with c2 are
overwritten with the values belonging to the last cluster c4. In step (3) the
individual values representing c2 for all clusters is replaced by values for c4. In
step (4) the sequential part representing c4 is copied to the position where c2
was located. One of the strengths of C++ is that the language is very efficient
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at reading and writing sequential data, and hence this last operation can be
performed extremely fast.

Figure 4.7: Procedure to remove a cluster from N+ and N−

data structures. In the figure cluster c2 is removed and c4 is
repositioned.

Every node have an associated value, stating the id of the cluster they are
assigned to. If this value only states what position the cluster has in the data
structures, then all these values must be updated when a cluster is repositioned.
This can be avoided by using some assisting structures as illustrated in figure 4.8.

Figure 4.8: Eksample for assisting data struc-
tures to ease relocation of cluster data.

Instead of storing the cluster position for each node, each node points to a
position in an array. The position of each field in this array represents a cluster
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id, while the value represents the cluster position in the other data structures.
When a cluster is moved to another position, only a single field in this array
has to be changed and the position will automatically be updated for all nodes
assigned to the cluster. When a cluster is removed, its cluster id is no longer in
use. We therefore need an additional structure to keep track of unused cluster
ids. When a new cluster is created it is associated with the first unused id.

The procedure of removing a cluster from the situation in figure 4.8 is shown
in figure 4.9, while reinserting the cluster is shown in figure 4.10. First the
cluster with id 2 removed from the cluster id structure and added to the unused
id’s, to indicate that this cluster id is available. Additionally the last cluster is
now relocated to the second position in the data structures, exactly as shown
in figure 4.8. When the cluster is reinserted, it gets the id 2, but is now located
at position 4 in the data structures, as this is the first empty space.

Figure 4.9: The cluster with id 2 is removed.

Figure 4.10: A cluster is created.
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4.2.1 Avoid unnecessary updates

Since the nature of IRM is to cluster similar nodes together, it is more likely that
a node will remain in a cluster with other similar nodes than being repositioned
into another cluster. Hence nodes are often reassigned to the same cluster. In
these cases it is a waste of resources to first remove and then add these nodes
to N+, N− and n at the beginning and end of each iteration. To avoid these
unnecessary updates, we do not remove the node from the data structures, but
change the calculations of the probabilities to ignore the node.

In formula 2.60 the logarithm of the change in likelihood when assigning a node
i to a cluster o was given as:

ln(Gchangei,o) =
∑
m

(
Betaln(N+\i

om + rim + β+, N−\iom + nm − rim + β−)

−Betaln(N+
om + β+, N−om + β−)

)

When we do not remove the node from its current cluster, this probability
changes for all terms involving this cluster c:

betaln(N+
oc + β+, N−oc + β−)− betaln(N+

oc − ric + β+, N−oc − (nc − ric) + β−)

At the same time nc is subtracted one whenever it is used. This calculation
uses the exact same variables but in a different order, hence this introduces no
computational overhead.

4.2.2 Computing the beta function

The key operation for calculating the probabilities of assigning a node to each
cluster is the logarithm of the beta function betaln(a, b). This function is com-
monly expressed using the logarithm to the gamma function ln(Γ(x)) as:

betaln(a, b) = ln(Γ(a)) + ln(Γ(b))− ln(Γ(a+ b))

Calculating ln(Γ(x)) can be a somewhat expensive operation. As we only allows
β+ and β− to take on integer values and links and non-links are whole numbers,
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we know (a, b) ∈ N whenever we compute betaln(a, b). We use a look-up table
in which we pre-calculate and cache the first 245 million values of the ln(Γ(x))-
function, and use this to speed up the computations of betaln-function. These
values becomes so large that 64-bit double values are needed to represent them,
resulting in an array size of ∼ 1.8Gb. For x > 245 million we estimate ln(Γ(x))
by using Sterlings approximation, which states that x · ln(x) − x goes towards
ln(x!) as x increases. We cannot only rely on Sterling’s approximation as it is
not a very precise approximation for lower x. At the same time we find that
it takes almost twice the time to use Sterling’s approximation than using the
look-up table, but for input values larger than 245 million, the error is negligible
and hence we use this for values exceeding the lookup table.

4.3 Split-Merge

The pseudo-code for our implementation of Split-Merge is shown in figure 4.12,
following the procedure as described in section 2.6. ci and cj denotes all the
data structures associated with two new clusters.

First the data structures for cluster zi is copied into ci. If node i and j belongs
to different clusters, then the cluster node j belongs to is similarly copied into
cluster cj else j is assigned to a new cluster and removed from ci. This use
of original data is shown in figure 4.11, which shows how the data is copied
from N+ into data structures n+i and n+j associated with ci and cj . Next we
randomly split all nodes clustered with i and j, excluding i and j, into the
two new clusters. We then perform T restricted Gibbs sweeps on these nodes.
Depending on whether we split or merge, one final restricted Gibbs sweep is
performed where the nodes are either assigned normally or forced into specific
clusters. Finally the acceptance probability is calculated and if the model is
accepted, the original cluster data is updated accordingly. This means we do
not update N+ and N− for all the other clusters until the model is accepted
and thus avoid cache misses performing these updates.

Copying the data may seem a bit expensive, but as it is all sequentially stored
in the memory, it can be done extremely fast. Otherwise we would either have
to store the changed values somewhere else and still access the old values from
the original arrays or simply use the original arrays. Storing the changed values
somewhere else can result in many cache misses, reducing the performance of
the program, while using the original arrays will result in a lot of overhead, if
the proposed model is not accepted.

We have decided to let the split-merge procedure be computed within a single
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Figure 4.11: Copying data from original N+ into new temporary arrays

thread, as it only iterates over two clusters and the nodes assigned to these.
This means that the overhead of synchronizing multiple threads is very large
compared to the computation time.

4.4 Runtime analysis

By analyzing the code it is possible to evaluate the performance of both the naive
and less naive implementation without actually running the code. This will give
a good indication of how the implementation scales with the number of nodes,
clusters and connectivity level. We analyse the running time in O-notation,
which specifies the order of which the algorithm scales. We first briefly evaluate
the performance of the naive Gibbs algorithm, followed by a thourough analysis
of the optimized Gibbs algorithm, in order to determine how these optimizations
have affected the speed. We then estimate the runtime of the optimized Split-
Merge algorithm.

4.4.1 Runtime of Gibbs sampling

The naive Gibbs algorithm shown in figure 4.1 is very expensive, as the links and
non-links are re-calculated every iteration. Computing these requires iterating
through all links, which is O(links). The computation of the node assignment
probabilities takes O(C ∗ C), where C is the number of clusters. Normalizing
these probabilities, selecting a cluster and assigning the node to the cluster
takes O(C). Hence by adding the two loops, the computation time of this naive
algorithm is:

O(S · J ·max(links, C2)),

where S is the number of Gibbs sweeps and J is the number of nodes.
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1 Pick two nodes i and j at random

2 create set S containing all nodes clustered with

node i and j
3 if nodes are in different clusters

4 copy their respective clusters data structures

into temporary structures denoted ci and cj
5 else

6 copy cluster data structures into temporary

structures , denoted ci.
7 allocate data structures for new array cj
8 remove node j from ci and insert it into cj
9 for each node in S

10 pick a random cluster to place it in

11 if it changes cluster then update ci and cj
accordingly

12 perform T restricted Gibbs sweep on ci and cj over

the nodes in S
13 if i and j are in the same cluster

14 perform a restricted Gibbs sweep on ci and cj over

the nodes in S, adding up the log

probabilities of each node assignment

15 calculate the change in the priors

16 calculate the acceptance probabilities

17 if the model is accepted

18 overwrite the original data structures for zi
with ci

19 add cj to the original structures

20 else

21 perform a restricted Gibbs sweep on ci and cj over

the nodes in S, where the nodes are forced

into their original clusters , adding up the

log probabilities of these forced assignments

22 calculate the change in the priors

23 calculate the acceptance probabilities

24 if the model is accepted

25 move all nodes in cj into ci, including node j
26 override the original data structures for zi

with ci
27 remove cluster zj in the original data

structures

Figure 4.12: Split-Merge pseudo-code.
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In the optimized Gibbs algorithm from figure 4.3 the data structures for links
and non-links are first initialized, which means we have to loop over all links
O(links). This has not been parallelized, as it is only performed once and does
not take very long.

Inside each Gibbs sweep we first calculate the links from the current node to
all other nodes, which takes O(l/N), where N is the number of threads and l is
the number of links for the current node, such that J · l = 2 · links. In order to
calculate the probability of placing the current node in each of the clusters we
then parallelize over all clusters and for each of these, we calculate the change
that would occur in the total probability if the node is placed here. This means
that for each of these clusters we have to loop over all other clusters, which
gives a runtime of O(C ·C/N). We then normalize and select the cluster which
this node will be assigned to. Since this is strictly serial code, this takes O(C).
Finally in the worst case where the node is assigned to a new cluster, it first has
to be removed from the old cluster and then added to the new cluster. Adding
and removing the node both costs O(C) data changes to the links and non-
links structures, while changes to the data structure n only requires constant
time updates. In the case where a cluster becomes empty, the last cluster is
repositioned, which also takes O(C) and hence performing all these updates only
takes O(C). Adding these O-notations we get a speed of O(max(l/N,C ·C/N))
for the inner loop and accounting for the iterations and Gibbs sweeps we get:

O(S · J ·max(l/N,C · C/N)) = O(S ·max(links/N, J · C2/N)) (4.1)

This means that in O-notation this implementation still decreases exponentially
with the number of clusters, however if there are few clusters the algorithm is
only slowed by the number of links resulting in a speedup factor of J . Fur-
thermore compared to the naive implementation multiple threads can be used
to speed up the calculations, also all the optimizations we performed has given
this implementation a much better theoretical performance, making it capable
of handling much larger networks, within the same time.

4.4.2 Runtime of Split-Merge sampling

We have performed the same optimizations to Split-Merge as for Gibbs sampling,
except we do not utilize multiple threads. The only time consuming part of
the Split-Merge procedure are the restricted Gibbs sweeps and performing one
additional sweep where the nodes are either placed randomly according to the
probabilities or according to their initial clustering. Hence the speed is the same
as for performing a Gibbs sweep, except that only a limited number of nodes
are moved and we only have to calculate the probability of placing each node in
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two clusters. We denote the number of nodes involved in the restricted Gibbs
sweep M and the total number connections these nodes has linksM . Hence in
O-notation the speed becomes:

O(T ·max(linksM ,M · C)),

where T is the number of restricted Gibbs sweeps. This means that Split-Merge
only scales linearly with the number of clusters and not exponentially as Gibbs
does. Additionally it only scales on the number of nodes in two clusters, not
the total number of nodes J . Though it also scales linearly with the number of
restricted Gibbs sweeps.

4.5 Gibbs for Multiple graphs

We also want our application to be able to sample over multiple graphs. In
order to do this, we could simply have increased the size of the data structures
and added loops around the procedures for updating data structures and calcu-
late assignment probabilities, Pi. This will however result in a linear decrease
in performance for each graph, as nearly all operations has to be performed
individually for each graph. Instead we utilize the GPU to parallelize the code
over both graphs and clusters in order to build an efficient implementation for
large numbers of graphs.

On the GPU there are no pre-fetching while if-statements and similar takes a
long time, as all work-items in a work-group has to enter both the if and else
block if they are both entered by some work-item. This means that if we use the
same optimizations as for a single network, it will result in a major slowdown.
Instead we have only applied optimizations that does not involve pre-fetching.
This means pre-calculating the gamma lookup table, N+, N− and n. These
data structures can be updated in parallel, along with the calculation of Pi.
Only the normalization and cluster selection remains strictly serial.

Furthermore, on the GPU there are restrictions on the amount of memory that
can be allocated for each array. On the graphics card we used, each array can
contain 512 mb data. This means that we can accommodate networks with
512 · 1024 · 1024 ≈ 130M links and assuming a link percentage of 2.5%, we find
that it is possible to accommodate

√
130M/0.025 ≈ 72000 nodes for a single

graph. However on the graphics card we are interested in analysing multiple
graphs and assuming there are a thousand graphs we find that we can in fact
only accommodate

√
130M/0.025/1000 ≈ 2200 nodes in each graph. This is

not a lot, but as we will later see, the Gibbs with Split-Merge sampler is unable
to mix in these large networks. This in turn also means that we are also able to
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Figure 4.13: Data structures for storing node links on the GPU.

also pre-calculate the R-matrix and keep it updated rather than recalculating
it every iteration, as we did for the single graph implementation.

The GPU uses one dimensional arrays rather than two-dimensional, which
means that we have to flatten all our data structures. This is very simple
for n, N+ and N− as these are already stored in one dimension. The R-matrix
can also very easily be converted to a one dimensional array since we know the
maximum number of clusters. The node link structure is on the other hand
rather difficult to convert into a single dimension. We both need to store the
links for all nodes in a single structure and also be able to know where the links
for each node starts and how many links it has. In order to solve this problem
we use two data structures, one containing all links for all nodes, structured
such that it first contains the links for all nodes in the first graph, then all links
for all nodes in the next graph etc., with no spaces between these as shown in
figure 4.13. The second structure is then an array which specifies at what posi-
tion the links of each node starts. This second array has the size J · samples,
which means that we can in real-time look up where each nodes links starts.
Furthermore by looking at the element right after, we know where the links ends
and hence how many links there are. Using these data structures we can hence
also flatten the node connections.

Blocks of code that is executed on the GPU is called kernels. A number of work-
items can execute the same kernel in parallel, but are given different id-values,
shown in figure 4.14. In order to execute the Gibbs sampler with synchro-
nization, these synchronization points define natural kernel boundaries, where a
kernel stops and another starts, as work-items executing the same kernel cannot
synchronize between work-groups. The overall structure of the code is shown in
figure 4.15, where ”kern:” denotes that the given operation is a kernel call.

Before calling any kernel, the CPU by pre-calculates n, N+, N−, gamma lookup
table and the R-matrix, which are then transferred to the GPU memory. As
these kernels execute in parallel, race-conditions may occur when n and the
value for the number of clusters numClusters is read and written to simulta-
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Figure 4.14: Execution of a kernel on multiple work-items.

1 calculate N+ and N−, n and r
2 transfer all datastructures to GPU

3 for each sweep

4 for each node i
5 set current node parameter for kernels

6 kern:removeNode

7 kern:lnQkernel

8 kern:lnQSumKernel

9 kern:maxKernel

10 kern:calcQnodeKernel

11 kern:findClusterKernel

12 kern:assignNode

Figure 4.15: Overall structure for multi-networks with kernel calls
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neously. In order to avoid this problem, we have first doubled the size of the
n array and turned numClusters into an array of two elements, denoted n1,
n2, numClusters1 and numClusters2. In the kernels we then change the code
such that reads are performed from one part of the array and written to the
other. This means that even if one thread changes the number of clusters, other
threads are still able to retrieve how many clusters that existed when the kernel
was initially called. We describe the precise race-conditions as we present the
kernels they occur in.

The first kernel call is removeNode. It removes the assignment of a given node
(by parameter) from all structures. First off we need to make sure that the
node is only subtracted from n once and furthermore we need to know how
many nodes were in that cluster before it was removed. Since everything is
performed in parallel, that means that if we only use one array for n, then we
do not know whether the node has been removed from n yet or not. This is the
reason why we use two arrays. With two arrays we can then read the old value
of n from the first array n2, subtract one and place it in the other array n1.
No matter how this execution is performed, all threads will know what the old
value of n is and are hence able to perform the operation. This does however
also mean that all the other values of n needs to be copied over to the second
array, or it will be a mess figuring out which array has the updated value of
which cluster. Since the kernel has already been parallelized over the number of
clusters, this simply translates to a single command. The exact same problem
exists for numClusters, which is handled the same way.

The removeNode kernel is shown in figure 4.16. It is run with a workgroup size of
samples×J . Here we see that multiple threads helps each other with updating
N+ and N− along with copying from n2 to n1, by only working on their cluster,
c. The simple book-keeping tasks are however performed by all threads, however
these do not scale in any way, in fact there are only two for-loops in this kernel,
which is to update R.

This pseudo-code also illustrates why we need two arrays for n and numClusters.
In the case that work-item 1 has finished and work-item 5 begins, where the
node is being moved to cluster 5. In this case work-item 1 may have updated
n[5] in line 19, while work-item 5 now reads that value on line 4 and then in-
creases the value one more at line 19. The same race-condition problem exists
for numClusters on line 4 and 8 if it were stored in a single value. There also
appears to be a problem with r as it is updated on line 13 and used on line 10
to update the N+ and N− data structures. However it is only the connected
nodes that are updated and hence there are no race-conditions.

The kernel lnQkernel calculates the probability of placing the current node in
each of the clusters. The kernel is parallelized by the number of samples and
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1 __kernel void removeNode(...)

2 s = id(0)

3 c = id(1)

4 nodeClust = cluster of the current node

5 clusters = numClusters2

6 if c < clusters

7 update position (c,nodeClust) and (nodeClust ,c)

in N+ and N− for sample s using R and n2
8 if c == 0

9 update R for nodes connected to the current

node in realation to nodeCluster for

sample s

10 if c != nodeClust

11 n1[c] = n2[c]

12 curN = n2[nodeClust] -1

13

14 if curN != 0

15 n1[nodeClust] = curN

16 numClusters1 = clusters

17 else

18 clusters --

19 numClusters1 = clusters

20 n1[nodeCluster] = n2[clusters]

21 n1[clusters] = alpha

22 change all nodeAssignments for nodes in the last

cluster to nodeCluster

23 update position (c,clusters) and (clusters ,c) in

N+ and N− for sample s using R and n2
24 if c == 0

25 update R for nodes connected to the current

node in realation to nodeCluster for

sample s

Figure 4.16: Kernel function to remove node from cluster
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1 __kernel void lnQkernel(...)

2 s = id(0)

3 c = id(1)

4 clusters = numClusters1

5 if c >=clusters then return

6 calculate the probability of placing the current

node in cluster c in relation to sample s

7 store this probability in global memory

Figure 4.17: Kernel function to calculate log-likelihood of placing the current
node in each cluster

maximum number of clusters, such that each thread can sum up the probability
change for all other clusters and place the result in a temporary array, shown
in the pseudo-code in figure 4.17. Afterwards another kernel lnQSumKernel is
then called to sum up the probability for all samples in order to arrive at a
vector of log-probabilities of assigning the node to each cluster. Assuming there
are enough available threads on the graphics card, this reduces the computation
time from scaling exponentially to linearly with the number of clusters.

The kernels maxKernel and calcQnodeKernel is used to normalize the proba-
bilities, utilizing a single thread. Finding the maximum value can be done in
parallel, but we decided not to do so, as this kernel uses less than 0.1% of the to-
tal time. The cluster assignment is then picked by findClusterKernel, which
does this in real-time by parallelizing over the number of clusters and setting
the selected cluster to cluster whose probability is greater than or equal to the
random value and where the probability of placing the node in the previous
cluster is less than this value. The random value is supplied as a parameter to
the function and is also generated from the Mersenne random number generator,
to ensure good random values.

The assignNode kernel works pretty much the same way as the removeNode

kernel, except that connections are added instead of removed and a new cluster
may be created instead of removing a cluster. The pseudo-code for this kernel is
shown in figure 4.18. It is run with a workgroup size of samples×maxClusters,
where maxClusters are set to 128. In the pseudo-code globalMoveToCluster
is used, which is a reference to the global memory where findClusterKernel

earlier in the Gibbs sweep stored the id of the cluster the current node is assigned
to. The kernel is mainly split into two parts, depending on whether the node
is placed into a new cluster or not. This means that all kernels enter the same
region and hence only one block of the if-sentence is computed.

Some of the kernels could have been further enhanced by using shared memory,
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1 __kernel void assignNode(...)

2 s = id(0)

3 c = id(1)

4 clusters = numClusters1

5 moveToCluster = *globalMoveToCluster

6 if c >=clusters then return

7 n2[c] = n1[c]

8 if moveToCluster == clusters

9 clusters++

10 n2[moveToCluster] = 1

11 update position (c,moveToCluster) and (

moveToCluster ,c) in N+ and N− for sample s

using R and n1
12 initialize position (moveToCluster ,moveToCluster)

in N+ and N− to β+ and β−

13 if c == 0

14 update R for nodes connected to the current

node in realation to moveToCluster for

sample s

15 else

16 update position (c,moveToCluster) and (

moveToCluster ,c) in N+ and N− for sample s

using R and n1
17 if c == 0

18 update R for nodes connected to the current

node in realation to moveToCluster for

sample s

19

20 n2[moveToCluster] = n1[moveToCluster] + 1

21 numClusters2 = clusters

22 update node cluster of current node to moveToCluster

Figure 4.18: Kernel function to assign node to cluster
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but our main focus with this thesis has been the CPU version and furthermore we
found that simply using empty kernels would only result in a speedup of around
10 times due to the interloop dependency, which requires that new kernels are
continously started and stopped. Hence we have not implemented this.

4.6 Split-Merge for multiple graphs

In order to perform Split-Merge on multiple networks, we fetch the data struc-
tures for n, N+, N−, number of clusters and node assignments from the GPU
memory. We then perform Split-Merge on the CPU and only if the model is
changed, are these data transferred back to the GPU along with the updated
R-matrix. The Split-Merge we use for multi networks is completely identical to
that of a single network, except that we now also iterate over the number of
samples. The reason why we perform Gibbs sampling on the CPU and not on
the GPU is that we only look at two clusters. The CPU code can then be en-
hanced so much that it outperforms the GPU due to the interloop dependency
in the Gibbs sampling procedure, even when accounting for time it takes to
transfer the data for large number of graphs. Transferring data to and from the
Graphics card has some overhead due to the response time, but the bandwidth
to the graphics card is very large, which means that even for large networks
with many samples, this transfer time does not increase significantly.



Chapter 5

Data

In order to make an in-depth analysis of the Gibbs and Split-Merge samplers,
we use networks of various sizes and multiple samples. We need an average
size network in order to investigate how the samplers perform after millions
of sweeps. We also want to see how the performance of the sampler scales
as we progress from small to large networks. Furthermore we also study the
performance of the sampler in the case of multiple graphs. Finally we look at
what structure these samplers are able to capture in multiple graphs, by looking
at resting state fMRI scans for multiple subjects.

5.1 Single network datasets

There exists a digital library containing many large datasets called the Stanford
Network Analysis Platform (SNAP), which is collected and used for research
at Stanford University. The largest of these datasets contains just over 65.6
million nodes with 1.8 billion links, representing the users and their relation
to each other on the online social network Friendster1. We have chosen this
network in order to evaluate how IRM performs on huge networks as it is one
of the largest publicly accessible network.

1The network is avalable from http://snap.stanford.edu/data/comFriendster.html
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It is very difficult to analyze how the sampler performs as network size increases,
as it usually takes a long time for real-world networks to naturally increase/de-
crease in size, while maintaining the same underlying clustering in the network.
In order to test the sampler on a range of varying size networks, we can hence
either subsample a large network to form smaller networks or use different net-
works can be used. In the first case some of the underlying structure is kept,
but the amount is unknown. In the second case the networks can have very dif-
ferent underlying structure, but represent true real world samples. Even though
the latter solution represents true real world samples, we have chosen to go
with the prior solution, as we do not want the performance measure to be in-
fluenced by some samples being easier to cluster than others. By maintaining
some of the same underlying structure, we encourage that all networks will be
similarly easy/hard for IRM to cluster. We have chosen to subsample from the
large network of social relations on Friendster, such that we get networks with
respectively 10, 100, 1.000, 10.000, 100.000, 1.000.000 and 10.000.000 nodes,
where each network contains the exact same nodes and links as the larger ones.

In order to analyze how the sampler performs after millions of sweep, we are in-
terested in looking at real networks and not these grown networks, as we cannot
be sure they still reflect real world samples. We hence consider the five networks
of structural brain connectivity across 998 brain regions, which are presented
by Hagmann et al. in ??. These networks were derived by tractography on
diffusion spectrum imaging. The first scan contain non-zero elements which we
consider averaged and symmetrized over all five subjects. We end up with a
single ’averaged’ network of all five subjects with 998 nodes.

5.2 fCON1000 data set

An important research area within neuroscience is to analyze and describe the
interactions of different regions in the brain. The 1000 Functional Connectomes
Project (fCON1000) maintains a large dataset of resting-state fMRI scans for
many hundred subjects2, collected from various sites around the world. The
project is presented in [2] and the data is made freely available in order to facil-
itate research of brain functionality. A resting state network can be considered
a separation of the brain into regions while the subject is at rest. In order
to detect activity in the brain, the technique of blood-oxygen-level dependant
contrast imaging can be used in association with functional magnetic resonance
imaging (fMRI). The technique relies on the fact that energy and oxygen re-
serves in the brain tissue are very limited. The neurons must hence rely on the

2These networks are avalable from http://fcon 1000.projects.nitrc.org
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blood flow to deliver these important nutrients. This is done through the hemo-
dynamic response process, by which more nutrients are released from the blood
flow to active firing neurons than to inactive neurons. This creates a difference
in oxygenated blood levels within active and inactive regions of the brain. As
oxygenated and deoxygenated blood have slightly different magnetic properties,
these differences can be detected using MRI [13], which then provide an indirect
measure of the activity in different regions in the brain.

We have chosen to use a dataset created by Scheibe and Wind [19] for the
Beijing Zang data set from fCON1000. This set contains fMRI scans for 198
subjects with missing data. As our implementation cannot handle missing data,
we discard those subjects where some of the brain is missing in the scans, leaving
us with 172 subjects.

Figure 5.1: SPM transformation from time-series to statis-
tical parametric map.

The dataset has been transformed into statistical parametric maps using the
Matlab software package ”Statistical Parametric Mapping 8” (SPM8), which is
then converted into networks. SPM8 is specifically designed to aid in analysis
of data containing sequences of brain images. In our case it is time-series of
fMRI scannings for each of the single subjects. The linear process is illustrated
in figure 5.1. Since all the brain scans are not evenly positioned, realignment
is necessary in order to ensure that each voxel covers the same area of the
brain. The brain scans must therefore be correctly rotated and translated in
all three dimentions. Besides this, as the size and shape of the brain varies
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between individual subjects, the scans must be normalized to ensure that we
can correctly compare scans for different subjects in order to use them to perform
multi-subject analysis.

Networks are generated by assigning each voxel to a region as specified by an
automated anatomical labelling (AAL). The AAL used was created with the K-
Means algorithm in order to merge voxels into 1000 clusters. We hence end up
with 172 networks with the same number of nodes, representing the same regions
of the brain. These networks can be used to investigate how IRM with Gibbs and
Split-Merge sampling performs on multiple networks made from real world data.
By considering the correlation-matrix the 2.5% strongest connections between
regions is interpreted as links between nodes in each of the generated networks.



Chapter 6

Results and discussion

In this chapter we evaluate the performance and mixing ability of Gibbs and
Split-Merge sampling in the Infinite Relational Model. We use our implemen-
tation to perform large scale modelling on unipartite complex networks, both
in terms of network size and sampling iterations. To present these results the
chapter is split into three sections:

• Runtime evaluation

• Sampler evaluation

• fCON1000 data analysis

We first examine the runtime of our application, to explore the performance
of our implementation on large networks. This shows us to what extend it is
computationally possible to handle large networks and how well our application
actually does this. Using our application we then examine how the Infinite
Relational Model behaves on large scale when using the Gibbs and Split-Merge
sampling procedures. We investigate how the model scales with the size of
the network and how it performs when run for millions of sweeps. In order to
further evaluate the sampling procedures, we examine how the performance is
influenced by the number of restricted Gibbs sweeps in Split-Merge and whether
it helps to initially split the nodes into a given number of clusters.
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We then present the results of performing IRM on the selected fCON1000-
dataset. From this we examine how the model handles multiple graphs and we
evaluate whether the model is actually able to capture structure in this real
world data.

For all the network analysis performed, the hyper-parameters are set to β+ = 1,
β− = 1 and α = bln(J)c, where J is the number of nodes in the network.

6.1 Runtime evaluation

The runtime of the Gibbs sampling algorithm as the network size increases is
shown in figure 6.1. The figure also shows the number of Gibbs sweeps these
runs were able to complete within 5 hours to at most 1 million Gibbs sweeps,
when executed on the same computer.

Figure 6.1: Average time to perform Gibbs sweeps on the
different sized networks. For each run, the number of Gibbs
sweeps performed is stated in the figure.

For smaller networks we see that the runtime is linearly bounded by the number
of nodes. As the size of the network increases beyond 10.000 nodes the runtime
appears to scale exponentially.
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In the runtime analysis we estimated an order for the Gibbs sampler in expres-
sion 4.1:

O(sweeps ·max(links/N, J · C2/N))

This expression states that the runtime scales linearly with the number of nodes.
However it also scales linearly with the number of links, which usually scales
exponentially with the number of nodes. This is most likely the reason why
the runtime appears to scale exponentially for larger networks. This effect is
negligible for smaller networks and hence not visible.

Figure 6.2: Average time to perform Gibbs sweeps when
using different number of physical processors. Tests per-
formed on the network of brain connectivity with 998 nodes.

The impact of parallelizing the code using OpenMP is shown in figure 6.2. From
this we see that the non-parallelizable parts of the application becomes more
and more influencial for the runtime, as more processors are used. We can
use Amdahl’s law to calculate the amount of non-parallelized code B. Using
equation 2.67, we can calculate B as:

B = (
T (N) ·N
T (1)

− 1)/(N − 1)

We know from the figure that the runtime for 1 and 8 threads are T (1) =
0.048 and T (8) = 0.014, and hence we find that B ≈ 0.19. This means that
approximately 19% of the code is not parallelized. In this case the maximum
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possible speedup, calculated using formula 2.68, is:

S(∞) =
1

0.19 + 1−0.19
∞

=
1

0.19
= 5.26

No matter how many processors we use, the size of the serial part of the code
results in a maximal speed up of 5.26 times for our implementation on this
particular network. For other networks the maximal speed up will most likely
be different. The more nodes there are in a network, the more time is spend
calculating the likelihood of placing a node in each cluster. As these calculations
are part of the highly parallelized code it results in a better speedup.

The runtime of our application for different sized networks and number of pro-
cessors utilized is shown in figure 6.3. We see that for small networks more
threads actually slow down the computation. This is likely due to the constant
thread overhead and synchronization. For larger networks a smaller percentage
of time is spend on overhead and synchronization, while more time is spend in
the parallelized part of the code, resulting in a more noticeable utilization of
threads.

Figure 6.3: Runtime for the different sized networks.
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From these evaluations we see that our implementation is capable of handling
large networks, where the runtime depends on the size of the network as ex-
pected in the runtime analysis, section 4.4. The evaluation further shows that
parallelization through OpenMP increases the performance of the application
for network sizes of 1000 or more nodes, but only to a certain extend.

6.2 Sampler evaluation

In this section we investigate the performance of the Gibbs and Gibbs with Split-
Merge sampling procedures. We compare the performance of the two sampling
procedures in terms of their mixing ability. We then examine how the number
of restricted Gibbs sweeps and initial clustering of the network influence the
sampling.

6.2.1 Scaling sampling iteration

First we test how IRM performs when run for a long time. This test was
performed on the average network of structural brain connectivity scans with
998 nodes.

The network has been clustered using both Gibbs and Gibbs with Split-Merge
sampling. In the pure Gibbs sampling scenario 10 different runs were performed
for 10 million Gibbs sweeps. Gibbs with Split-Merge were performed with 5 runs
for 5 million iterations, where one iteration consists of a Gibbs sweep followed
by a Split-Merge operation with 5 restricted Gibbs sweeps.

By comparing the log-likelihood for the different runs, we investigate the mixing
ability of the samplers. This is shown for pure Gibbs sampling in figure 6.4 and
for Gibbs with Split-Merge sampling in figure 6.5. The figures indicate that
even after millions of sweeps the individual runs do not mix for either sampler.
However the figures clearly indicate that the Gibbs with Split-Merge sampler
performs better, as all runs reach a higher log-likelihood value faster and level
out closer together than for the pure Gibbs sampler. We know that eventually
the samplers will converge such that they sample from the real posterior dis-
tribution, but from these figures we cannot tell how long this convergence time
is for either of the samplers. It does however seem like the convergence time
is a lot shorter when using Split-Merge, as the chains reach a better likelihood
significantly faster.
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Figure 6.4: Pure Gibbs sampling for individual runs,
indicated by different colors.

Figure 6.5: Gibbs sampling with Split-Merge. Each
Gibbs sweep is followed by a single Split-Merge oper-
ation with 5 restricted Gibbs sweeps. Different colors
indicate different runs.

To further investigate the performance of the samplers, we examine the normal-
ized mutual information (NMI), both between and within runs, for the last half
of the iterations. The NMI between runs shows how similar the runs are to each
other while NMI within runs indicates whether the sampler mixes. These values
are shown as box plots for evenly distributed states in all the runs. At each of
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these states the NMI is calculated between every single pair of runs, making up
the box plot for NMI between. For each of these states we also plot the NMI
within. These states and their 9 next successive states are then used to compute
the NMI within for each individual run. This NMI within is computed by com-
paring each state with the state half the number of iterations ago, illustrated in
figure 6.6. These NMI values are then used to compute the box plot, such that
each box contains ten data points for each run.

Figure 6.6: Principle of NMI-within datapoints for a
single run. The point in iteration i is compared with
the state at iteration i/2.

Intuitively, an NMI within close to 1 means that the chains do not move very
much, indicating that the chains are not mixing and will hence not converge.
In the case where the chains has reached convergence we would expect the NMI
within and NMI between to be rather constant and about the same level, such
that the chains continiously are just as similar with themself as with each other.

The NMI between and within runs are shown in figure 6.7 for the Gibbs sampler
and in figure 6.8 for the Gibbs sampler with Split-Merge. The NMI between runs
in the Gibbs sampler seems to remain in a rather stationary position, indicating
that the runs do not approach each other. For Gibbs with Split-Merge we
see that the NMI between runs does not remain stationary but curves, which
does not show that the sampler improves over time. When we compare the
NMI between runs for both samplers we see that it is consistently higher for
the Gibbs with Split-Merge sampler than for pure Gibbs, indicating that the
Split-Merge procedure does aid the Gibbs sampler.

The similarity within runs is very high and stationary for the pure Gibbs sam-
pler, indicating that it does not sample very well. This indicates that it is
unable to draw different samples that are accepted. In the case of Gibbs with
Split-Merge, the NMI within runs has a large range, almost intersecting with
the NMI between runs, indicating that it sometimes is able to mix. However as
more iterations are performed, the NMI within becomes worse, indicating that
even with the Split-Merge extension, the sampler still lacks mixing ability and
will probably not converge within reasonable time.
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Figure 6.7: Normalized mutual information between
and within runs, using Gibbs sampling.

Figure 6.8: Normalized mutual information between
and within runs, using Gibbs sampling with Split-
Merge.
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6.2.2 Scaling the network size

We have already seen that both the Gibbs and Gibbs with Split-Merge samplers
perform poor mixing on a network of ∼ 1.000 nodes, even when allowed to
perform millions of sweeps. In this section we investigate how the performance
of the samplers scales with the size of the network.

To evaluate this we conduct tests on the different sized networks, sub-sampled
from the large network of social interactions in the Friendster-network. We
evaluate both Gibbs and Gibbs with Split-Merge (using 5 restricted Gibbs
sweeps) on these networks. In order to estimate the tendency of the sampler,
we only look at the results from which this can be evaluated.

We first examine how the mixing ability of both samplers are influenced by
the number of nodes in the network. To do this we look at the log-likelihood
against the number of sweeps. This is shown in figure 6.9 for Gibbs sampling
and figure 6.10 for Gibs with Split-Merge sampling.

Figure 6.9: Log-likelihood for multiple runs on net-
works of different size using pure Gibbs sampling.

From figure 6.9 we see that the Gibbs sampler performs very well for the net-
works with less than 1.000 nodes. For both 10 and 100 nodes we see that the
runs mix after around 10,000 Gibbs sweeps. For 1.000 nodes the chains do not
mix and it does not appear they will converge anytime soon. For the larger net-
works the mixing ability of the sampler swindles rapidly. These figures clearly
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indicates that pure Gibbs sampling is rather ineffective for networks of only
1.000 nodes.

By looking at the performance of the Gibbs with Split-Merge sampler shown in
figure 6.10, we see that the Split-Merge procedure helps a lot. For the network
with 1000 nodes, the figure clearly indicates that the runs now mix, although
the larger networks are still no way near convergence.

Figure 6.10: Log-likelihood for multiple runs on net-
works of different size using Gibbs with Split-Merge
sampling.

To further investigate whether the samplers in fact mixes for these networks,
we look at the NMI within and between the runs for the various sized networks.
This is shown in figure 6.11 for pure Gibbs sampling and in figure 6.12 for
Gibbs sampling with Split-Merge. These figures indicates the same as the log-
likelihood figures. For pure Gibbs sampling the NMI between and NMI within
are approximately in the same range for 10 and 100 nodes, which indicates that
the runs mix. The larger networks are more similar to themselves than to each
other, indicating a bad mixing ability. When using Split-Merge sampling it is
also clearly indicated that the runs mix for 10, 100 and 1.000 nodes, while it
does not mix for 10.000 nodes.
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Figure 6.11: Normalized Mutual Information for dif-
ferent sized networks, when performing Gibbs sam-
pling. (blue) between runs, (red) within runs.

Figure 6.12: Normalized Mutual Information for dif-
ferent sized networks, when performing Gibbs sam-
pling and Split-Merge. (blue) between runs, (red)
within runs.
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6.2.3 Parameter analysis

We have established that the Gibbs sampler with Split-Merge outperforms the
pure Gibbs sampler. We now want to investigate how the performance of the
Gibbs with Split-Merge sampler is influenced by the number of restricted Gibbs
sweep and whether it helps to initially split the graph into multiple clusters
before IRM is performed.

To investigate the influence of the restricted number of Gibbs sweeps in Split-
Merge we have computed 5 runs for each of the cases with respectively 10, 50,
100, 200 and 500 restricted Gibbs. The log-likelihood of these tests are shown
in figure 6.13 and 6.14. We notice that the figures indicate that no matter the
amount of restricted Gibbs sweeps, the runs will still not mix.

Figure 6.13: Gibbs with Split-Merge sampling for five runs
for 5, 10 and 50 restricted Gibbs sweeps.

As these figures do not very well indicate what number of restricted Gibbs
sweeps that performs best, but only indicates that the runs do not mix, we have
also examined the NMI between and within runs. This is shown in figure 6.15
for the last half of the iterations. In the plots we see that the NMI within
decreases for runs with 100 or more restricted Gibbs sweeps. This means that
the chains in these cases look less like themself, indicating that the runs moves
around more freely and are probably not as stuck in local modes. Though the
sampler appears to perform better as it allows the runs to move more freely, this
does not seem to allow chains to mix for any number of restricted sweeps. At
the same time we notice that using 200 or 500 restricted sweeps do not seem to
perform any better than using 100 restricted sweeps. In these tests it therefore
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Figure 6.14: Gibbs with Split-Merge sampling for five runs
for 100, 200 and 500 restricted Gibbs sweeps.

appears that the performance of the Split-Merge sampler is influenced by the
number of restricted sweeps. Here it performs best when it is allowed to perform
100 restricted Gibbs sweeps, while more restricted sweeps does not seem to have
no positive influence on the performance.

Figure 6.15: NMI within (red) and between (blue)
for various numbers of restricted Gibbs sweeps (T).
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We suspect that when the samplers are run on networks with many nodes it
can sometimes be hard for them to create new clusters. So to help the sampler,
the nodes can initially be split into a given number of clusters, to make it easier
for the sampler to move the nodes around. To examine whether this helps,
we compute 5 runs for each of the cases where the nodes have initially been
split linearly into respectively 10, 50, 100, 200, 500 and 998 clusters. These
ranges allows us to examine and compare initial configurations of a few clusters
with many nodes up to the configuration with one cluster for each node. The
likelihood for these tests are shown in figure 6.16 and 6.17. These figures looks
very similar to those for using different numbers of restricted Gibbs sweeps.
They do not indicate that the runs mix for any initial clustering.

Figure 6.16: Gibbs with Split-Merge sampling for
five runs where nodes are initially partitioned into
10, 50 and 100 clusters.

Looking at the mutual information, shown in figure 6.18, we again see that the
runs do not seem to mix for any of the initial cluster configurations. The NMI
within seems to fluctuate a little when all nodes are placed in seperate clusters,
but nothing serious and the NMI between has an average value of around 0.92
in all the graphs. This means that initially clustering the nodes does not appear
to have any significant influence at all.

From these findings we can conclude that the number of restricted Gibbs sweeps
appears to clearly influence the performance of the sampler, while it does not
matter whether the nodes are initially partitioned into multiple clusters or not.
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Figure 6.17: Gibbs with Split-Merge sampling for five runs where nodes are
initially partitioned into 200, 500 and 998 clusters.

Figure 6.18: logP vs initial number of clusters, for
Gibbs sampling with Split-Merge.
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6.3 fCON1000 data evaluation

In this section we try to cluster the multi-graph brain activity data from the
fCON1000 project, explained in chapter 5. Each graph contains 1.000 nodes
representing individual regions of the brain for 172 subjects, where the top 2.5%
most active signals in the brain are interpreted as links. We analyze these data
using our GPU accelerated inplementation. In the previous section we found
that Gibbs sampling with Split-Merge performed significantly better than pure
Gibbs sampling. Hence we use the Gibbs with Split-Merge sampler on the
fCON1000 data. Furthermore we set the number of restricted Gibbs sweeps to
100 as we found this to perform best on the analyzed real-world network. We
initially consider all nodes in a single cluster, as initial partition into multiple
clusters did not appear to have any performance benefits.

If we look at the log-likelihood and NMI between and within runs shown in
figure 6.19 and 6.20 we clearly see that the chains do not mix and will not
converge anytime soon. In fact the NMI within indicates that the chains are
almost completely stuck in local minima.

Figure 6.19: Likelihood for 5 runs on 172 subjects.

Even though the sampler is unable to mix for these networks, it is still able
to model some clustering in the data, that convincingly seems to represent real
underlying structure in the brain, shown in figure 6.211. This figure shows the
clusters that the sampler found in the data. The lines represents the known
links between these clusters. The darker these lines are, the more connected

1The figure was created from the best clustering found by the five chains.
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Figure 6.20: NMI between (blue) and within (red)
for 5 runs on 172 subjects.

the clusters are. Similarly the links within clusters is indicated with darker
backgrounds for each cluster. We can see that most of the clusters with a few
exceptions are coherent and symmetric as we expect the brain to be; the clusters
do not consist of single or random dots nor contains abnormal large amount of
the brain. We have however not verified that the boundaries of these clusters
matches any known anatomic regions in the brain.

We have also performed IRM on a single brain scan with the Gibbs with Split-
Merge sampler for 100.000 iterations, shown in figure 6.22. The sampler per-
forms much better on this single network than with multiple graphs, however
from the figure we see that even though the sampler may perform better, the
resulting clusters are not as expressive as it was the case for 172 subjects. In
this case there are only found a few clusters that appears to be good, while
most of the other clusters consists of small ”random” parts of the brain, which
visually does not appear to have anything to do with each other.

From this we can see that even though the samplers does not converge for
multiple graphs, it may be very beneficial to use multiple graphs rather than
a single graph. In multiple graphs the distinct local minima of the individual
graphs are less significant, and hence the sampler is less likely to get stuck
in minima that are not shared between multiple graphs, but more likely to get
stuck in those that are. The sampler is still not able to converge to the posterior
distribution, but it gets stuck in minima that better explain the network as they
reflect structure that is present in multiple of the networks as indicated in this
analysis.
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Figure 6.21: Clustering found by IRM on 172 subjects using
Gibbs with Split-Merge sampling.
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Figure 6.22: Clustering found by IRM on a single subject
using Gibbs with Split-Merge sampling.
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Chapter 7

Conclusion

In this thesis we have succesfully implemented a highly optimized Gibbs and
Split-Merge sampler for the Infinite Relational Model (IRM) on complex uni-
partite networks. We showed that IRM with Gibbs and Split-Merge sampling
can computationally be scaled to handle these large networks, as it is possible
to compute Gibbs sweeps on millions of nodes within minutes and on smaller
networks within milliseconds. This allowed us to investigate how these samplers
perform as the network size is scaled up.

We both implemented a single network sampler, parallelized over multiple cores
on the CPU and a multi network sampler utilizing the massive parallel comput-
ing power of the GPU.

By looking at different sized networks we found that Gibbs sampling converged
for network sizes of up to 100 nodes, while it was not able to properly mix
already for networks with 1000 nodes. For larger networks the performance
kept decreasing rapidly. This clearly shows the limitations of the Gibbs sampler
and highlights the need for better samplers.

By extending the Gibbs sampler with the more sophisticated Split-Merge pro-
cedure, the sampler were able to mix well for networks of 1000 nodes. Hence
Split-Merge is a valuable aid to the Gibbs sampler, however even better sam-
plers are essential to properly sample over the posterior distribution for larger
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networks. This claim was supported by the fact, that even when performing
million of sampling-iterations on a real world network with 1000 nodes, the
Gibbs sampler with Split-Merge were unable to converge, even after millions of
sampling-iterations. We however found that some interesting structure could
still be extracted from real world data, as we analysed brain activity scans for
172 subjects.
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