
Master Thesis
Advanced Techniques for Investigating Structures in

Computational Fluid Dynamics

Author:
Rasmus Ellebæk Christiansen, s072162

Supervisors:
Professor Morten Brøns

Associate Professor Allan P. Engsig-Karup

DTU Compute - Department of Applied
Mathematics and Computer Science.
29th July 2013

Abstract

The problems of incompressible fluid flow past a cylinder in free flow and past a cylinder near
a moving wall in two dimensions are studied numerically. Here the velocity and pressure
fields are obtained using a spectral element method based solver. The study is performed for
Reynolds numbers in the low end of the periodic shedding regime and is mainly concerned
with analysing vortex structures existing behind the cylinder, with main focus on the vortices
surviving downstream. A vortex is defined uniquely as an extremum in vorticity and this
definition is used to implement an algorithm for identifying and tracing vortices. A way
of assuring that periodicity in the numerical solution has been reached using the tracing
method is presented.
The Reynolds number, time and ratio of cylinder diameter to distance from the wall are
identified as the only independent parameters of the problems. Dynamical systems theory is
used to analyse changes in the vortex structures as the independent parameters are varied.
Here, two types of bifurcations are identified and characterised using existing theory. Also,
all different structures for vorticity extrema and saddle-points observed in the considered
parameter range are identified and described.
The stabilizing effect of the wall is mapped. The effects of the wall and Reynolds number on
the shedding frequency, creation point and pathway followed by the vortices are investigated.
The decrease in magnitude of a vortex as it travels through the fluid is investigated and a
nearly constant decrease rate is found far downstream.
A small scale investigation of collocation based uncertainty quantification is performed where
the Reynolds number is taken to be the input parameter containing uncertainty. First, the
cylinder in free flow is treated and the Strouhal number and pressure induced drag are
considered as functions of the uncertain Reynolds number. Secondly, the cylinder near the
moving wall is treated and the path followed by a vortex downstream and its magnitude as
a function of the Reynolds number investigated.
Used theoretical concepts from dynamical systems theory, polynomial approximation theory,
the spectral element method and uncertainty quantification are included. So are explanations
of the software used and developed for the simulations and post processing readying the data
for the final analysis.
Most of the methods used in this work have not been adapted by the industry (yet).

Abstrakt

To todimensionelle modelproblemer omhandlende en inkompressibel væske der flyder omkring
en cylinder hhv i åbent flow og omkring en cylinder nær en væg i bevægelse studeres numer-
isk. Hastigheds- og trykfelterne bestemmes ved brug af en spektral element metode baseret
løser. Studiet udføres for Reynoldstal i den lave ende af regimet for periodisk hvirveldan-
nelse og beskæftiger sig hovedsageligt med analyse af de hvirvelstrukturer, der eksisterer
bagved cylinderen med fokus på hvirvlerne der overlever nedstrøms af cylinderen. En hvirvel
defineres unikt som et ekstremum i vorticitet, og denne definition bruges til at implementere
en algoritme til at identificere og følge hvirvler. En måde til sikring af fuldstændig period-
icitet i flowet ved brug af denne metode præsenteres.
Reynoldstallet, tiden og cylinder diameter over cylinder afstand til væggen identificeres som
problemernes eneste uafhængige parametre. Dynamisk system teori bruges til at analysere
ændringer i hvirvelstrukturerne når de uafhængige parametre varieres. Her identificeres og
karakteriseres to typer bifurkationer ved brug af eksisterende teori. Yderligere identificeres
og beskrives alle strukturer for vorticitets ekstrema og saddelpunkter, der er observeret under
undersøgelserne.
Den stabiliserende effekt af væggen kortlægges. Effekten af væggen og Reynoldstallet på
hvirveldannelsesfrekvensen, positionen af hvirvlernes dannelsespunkter, samt vejen disse føl-
ger gennem væsken, undersøges. Ydermere undersøges ændringerne i hvirvlernes intensitet
når de rejser gennem væsken, og en næsten konstant formindskelsesrate findes når hvivlerne
er rejst langt nedenstrøms.
En mindre undersøgelse af kolokationsbaseret usikkerhedskvantificering udføres. Her ant-
ages det, at Reynoldstallet er en usikker input parameter. Først behandles cylinderen i
åbent flow, hvor Strouhal tallet og det trykinducerede drag betragtes som funktioner af det
usikre Reynoldstal. Herefter betragtes cylinderen nær væggen i bevægelse. Vejen, som en
hvirvel følger nedenstrøms, samt hvirvlens intensitet, betragtes som funktioner af det usikre
Reynoldstal.
Anvendte teoretiske koncepter fra dynamisk system teori, polynomial approksimations teori,
spektral element metoden og usikkerhedskvantificering er inkluderet. Det samme er tilfæl-
det for en beskrivelse af softwaret anvendt til simulering og efterbehandling af data ved
forberedelse til den endelige analyse.
De fleste metoder der anvendes i dette arbejde anvendes (endnu ikke) i industrien.

CONTENTS CONTENTS

Contents

Introduction iv

Notation v

1 The Problem and Underlying Physics 1
1.1 The Purpose . 1
1.2 The Model Problems . 2
1.3 Physics and Model Equations . 6

1.3.1 General Navier-Stokes Equation . 6
1.3.2 Incompressible Navier-Stokes Equation 7
1.3.3 Mass Conservation . 8
1.3.4 Model Equations . 9

1.4 Physical Quantities . 11
A Vortex: . 12

2 Theory 14
2.1 Dynamical Systems Theory . 14

2.1.1 Bifurcations . 17
2.1.2 Tools for Analysing Flow Topology . 20

2.2 Orthogonal Polynomials and Approximation Theory 21
2.3 The Spectral Element Method . 24

2.3.1 Overview of the Method . 26
2.4 Uncertainty Quantification . 31

2.4.1 Statistical Quantities . 32
2.4.2 The Monte Carlo Approach . 32
2.4.3 generalized Polynomial Chaos . 33
2.4.4 Stochastic Collocation Approach . 35

3 Discretizing the Problem 38
3.1 The Time Stepping Scheme . 38
3.2 The Discrete Domain . 40

i

CONTENTS CONTENTS

4 Software 44
4.1 Pre Processing . 44
4.2 Simulation . 45
4.3 Post Processing . 46

4.3.1 The Finished Simulation Package . 49
4.3.2 UQ Software . 50

4.4 Hardware . 51

5 Parallel Execution with MPI 52

6 Simulations 58
6.1 Visualization . 59
6.2 Critical Point Identification . 60
6.3 Validation Simulations . 63
6.4 Cylinder near the Moving Wall . 63
6.5 Uncertainty Quantification . 64

7 Validation 66
7.1 Convergence . 66
7.2 Comparing Results . 68

7.2.1 Free Flow . 69
7.2.2 Cylinder Near Wall . 72

7.3 Death of the Transient Solution . 73

8 Analysis 76
8.1 Initial Investigation for the Cylinder and Wall 76

8.1.1 Stabilizing Effect of the Wall . 76
8.1.2 Different Critical Point Structures . 80
8.1.3 Downstream Surviving Vortices, Creation Points and Movement Pat-

terns . 82
8.1.4 Vortex Strength Reduction . 84

8.2 Formation and Disappearance of Extrema-Saddle Pair 93
8.2.1 Constant Re Bifurcation Diagrams . 94

8.3 Vortex Creation Point Jumping Downstream 101
8.4 Uncertainty Quantification . 107

8.4.1 Cylinder in free flow . 107
8.4.2 Cylinder Near Moving Wall . 114

8.5 Method Limitation . 120

ii

CONTENTS CONTENTS

9 Conclusion and Future Work 123

10 References 126

A Appendix 128
A.1 Sample mesh used for simulations . 128
A.2 Nektar++ XML Extract . 131
A.3 The Nektar++ framework . 132

A.3.1 Installing Nektar++ . 133
A.3.2 Navigating Nektar++ . 133
A.3.3 Setting Up a Problem . 136

A.4 Validation of Nektar++ . 136
A.4.1 Simple Domain Convergence Test . 137
A.4.2 Incompressible Navier-Stokes Solver 140

A.5 Authors Software . 144
A.5.1 Shell Scripts . 144
A.5.2 Python Scripts . 150
A.5.3 C++ Program . 157
A.5.4 FEniCS Poisson Solver . 161
A.5.5 MATLAB Implementation of the SCM 162

iii

CONTENTS CONTENTS

Introduction

This thesis presents and investigates advanced methods from different mathematical fields
and provides the results of using these to analyse a Fluid Dynamics (FD) problem with focus
on vortices appearing in the flow. The first field is Dynamical Systems Theory (DST) [1], [2],
which is used to identify structures and bifurcations in vortex creation, annihilation and
movement patterns. The second is the relatively new field of Uncertainty Quantification
(UQ), with focus on the stochastic collocation approach, see e.g. [3] or [4]. All investigations
are based on numerical solutions to the Navier-Stokes equation obtained using the Spectral
Element Method (SEM) approach. The methods used and their mathematical foundation
will be explained in some detail in chapter 2 while an interested reader is encouraged to
consult the references for deeper insight. These methods have not (yet) been implemented
for use by the industry.
Another aim of this written work is to provide enough information, examples and code to
allow the reader to understand and take the steps necessary to reproduce the work presen-
ted1. This approach simultaneously allows the direct adaptation of the methods to analyse
a range of other FD problems with relative ease.
As stated above all investigations are based on simulation results obtained using a SEM
approach. The SEM solver used is the incompressible Navier-Stokes solver provided in the
Nektar++ framework [5]. All post processing is done using software written for this project
as well as the open source data analysis tool Paraview [6].
The structure in this report is presented next. First, a short section on the notation and
abbreviations used throughout the report is included for easy reference and to avoid any
unnecessary confusion. Chapter 1 presents the model problems investigated, the underlying
physics and a number of quantities of interest in the problem. Chapter 2 provides an
overview of the theoretical foundation for the methods used from the areas of DST, SEM
and UQ respectively along with an algorithm for tracing vorticity extrema and saddle points.
Chapter 3 describes how the problem is discretized to allow for accurate numerical solutions.
Chapter 4 is dedicated to explaining the software developed for the project, the third party
software used and the tool-chain setup for performing simulations. Chapter 5 contains a
small investigation of the applicability of parallel computing for the solution process using
the chosen solver framework.
Chapter 6 provides an overview of the simulations performed throughout the project, how
data is visualized and an explanation of the application of the vorticity extrema tracing
method.
Chapter 7 presents results of a validation process undergone to verify that results obtained
using theNektar++ framework can be trusted. Chapter 8 presents the results and analysis
for the DST and UQ based investigations. Lastly, Chapter 9 presents a short conclusion and
outlook on what future work may be performed to extend the work presented here.
The appendices include the scripts and source code written for the project as well as com-
pilation and usage instructions. It also contains a .geo and .msh file containing an example
of the mesh used in the simulations and an example of XML-files to use as input files for
the Nektar++ solver.

1The reader should be aware that the reproduction of the work presented may be very time consuming
due to the significant number of large scale simulations needed.

iv

CONTENTS CONTENTS

Notation

This section is included to avoid unnecessary confusion caused by the notation used in this
work. Scalar quantities are denoted by italic letters, vector quantities are denoted by bold
letters.
The following quantities have specific letters associated with them.

• Time: Time is denoted t.

• Position: Standard Cartesian coordinates are used unless otherwise stated and they
are denoted as, r = (x, y).

• Directional Unit Vectors: Unit vectors denoting the x- and y-directions are de-
noted, î and ĵ respectively.

• Velocity: Fluid velocity in Cartesian coordinates is denoted by u = (u, v).

• Vorticity: Vorticity is denoted ω and is defined as ω = ∇× u. In 2D this is a scalar
quantity and in 3D it is itself a 3D vector field.

• Pressure: A pressure is denoted p.

• Mass: A mass is denoted m.

• Volume: A volume is denoted V .

• Density: Density is denoted by ρ.

• Viscosity: Viscosity is denoted by µ.

• Gab Size: The distance between a cylinder and a wall is denoted, G.

• Cylinder Radius: The radius of the cylinder is denoted, R.

• Cylinder Diameter: The diameter of the cylinder is denoted, D.

• Far Field Velocity: The velocity of the fluid far from the cylinder is denoted, U∞.

• Reference Pressure: The reference pressure far from the cylinder is denoted, p∞.

• Reynolds Number: The Reynolds number is denoted Re and is defined as Re =
ρU∞D
µ .

• Critical Reynolds Number 1: Recrit denotes the Reynolds number value which
marks the transition from stationary to instationary flow.

• Critical Reynolds Number 2: Recrit2 denotes the Reynolds number value where
the two-dimensionality of the flow breaks down and three-dimensional effects appear.

• Set of Parameters: A set of parameters is denoted P .

• Stress Tensor: The stress tensor components are denoted τi,j .

• Normal to a Surface: A surface normal vector is denoted n̂.

• Tangent to a Surface: A surface tangent vector is denoted t̂.

v

CONTENTS CONTENTS

• Drag force: Drag on an object is denoted Fd.

• Pressure Drag Coefficient: This coefficient is denoted CDp = p−p∞
1
2ρU

2
∞
.

• Mean: The statistical mean of a quantity, X is denoted, µX .

• Variance: The variance of a quantity, X is denoted, σ2
X .

• Uniform Distribution: A uniform distribution on the interval [a, b] is denoted,
U(a, b).

• Gaussian Distribution: A normal distribution with mean a and standard deviation
b is denoted, N (a, b).

The following is the standard notation for operators:

• Differentiation: Differentiation of a quantity, a, with respect to another quantity, b
is denoted:

– Temporal Particle Derivative: The Temporal Particle Derivative of a quantity
Q is denoted: DQ

Dt .
– Partial Derivative: Partial differentiation is denoted in one of the following

ways: ∂
∂ba,

∂a
∂b or ab.

– Absolute Derivative: The absolute derivative is denoted d
dba or da

db .
– Spatial Derivative: The derivative vector of all spatial directions is denoted
∇ = (∂

∂x ,
∂
∂y ,

∂
∂z)

• Integration: A curve integral is denoted
∫
· dκ and a surface integral

∫
· dS where ·

is a place holder for the integrand.

• L2-norm: The standard L2-norm is denoted ‖ · ‖L2 where · is a place holder for the
element to be measured.

• Hk
w-norm: The weighted Sobolev-norm is denoted ‖ · ‖Hk

w
where · is a place holder

for the element to be measured.

• Definition of function at specific values of independent variables: If a function
f of a set of parameters P is considered on the subset Ω of the full parameter domain
this is denoted as f(P)|P∈Ω.

Abbreviations

Abbreviations will be used for names which are encountered often throughout the text.
In general the full name will be used the first time a new concept is referenced with the
abbreviation written after the name in parentheses. For easy reference the abbreviations are
also listed below,

• Navier-Stokes: NS

• Spectral Element Method: SEM

vi

CONTENTS CONTENTS

• Dynamical System: DS

• Dynamical Systems Theory: DST

• Uncertainty Quantification: UQ

• Fluid Dynamics: FD

• Computational Fluid Dynamics: CFD

• Partial Differential Equation: PDE

• Boundary Condition: BC

• Degrees Of Freedom: DOF

• Probability Distribution Function: PDF

• generalized Polynomial Chaos: gPC

• Stochastic Collocation Method: SCM

Terminology

Here is a short list of terms used freely throughout the text.

• Smoothness: The term p-smoothness or p-smooth denotes a function which has p
continuous derivatives. If a function is denoted as infinitely smooth all of its derivatives
are continuous.

• Pre Processing: All preliminary work performed for a simulation to enable the
solution using a numerical method.

• Post Processing: All work performed on the solution data obtained by solving the
problem using a numerical method preparing it for analysis.

• Vortex Shedding: The term vortex shedding refers to the phenomenon that for a
sufficiently high Reynolds number any object immersed in fluid will start generating
vorticity at its edges and release (shed) the vortices down stream. The frequency with
which this shedding occurs is called the shedding frequency.

vii

1 THE PROBLEM AND UNDERLYING PHYSICS

1 The Problem and Underlying Physics

This chapter presents the problems investigated in this work, it outlines the purpose of the
investigations, and it presents the underlying physics and the quantities of interest. Section
1.1 outlines the purpose of the project. Section 1.2 presents the model problems, their
geometry and a set of parameters which defines them. Section 1.3 presents and explains
the physics of the problems along with a set of model equations and appropriate boundary
conditions. Lastly, section 1.4 describes a number of physical quantities of interest for the
model problem.

1.1 The Purpose

This project has two main focuses. Firstly, it seeks to present and illustrate the application
of a method for the investigation of vortex creation, annihilation and movement patterns for
FD problems, by, among others, the utilization of results from Dynamical Systems Theory
(DST). This is done based on the strict definition of a vortex as extrema in vorticity, see
equation (1.20). The method allows accurate tracing of vortex creation, annihilation and
movement patterns and relating both continuous and instantaneous changes in the patterns
to the variation of the defining parameters of the FD problem under consideration.
Secondly, a preliminary investigation of the application and performance of Uncertainty
Quantification (UQ) based methods to the model problem. Here, the idea is to determine
functional dependences and statistics for quantities like pressure-drag and Strouhal number2
as well as for a vorticis movement path through the domain as a function of an uncertain
input parameter. The goal here is to investigate whether the method allows the dependency
of the quantities of interest on an uncertain input parameter to be determined with good
accuracy with only few model problem realizations. This is in contrast to the classic Monte
Carlo method which requires a high number of realizations to obtain accurate statistics,
which is infeasible for problems that require long simulation times due to its worst case
O(M−

1
2) convergence rate.

The model problem of fluid flow past a cylinder presented in the following section is well
investigated in fluid dynamics, both analytically, experimentally and numerically and thus
is believed to be well understood. This means that numerical and experimental data for
several quantities exists which can be used to verify the simulations performed for this pro-
ject, see e.g. [7]. The complication of introducing a moving wall near the cylinder has been
investigated by Huang and Sung in [8]. Over the course of these investigations different
characteristics of the flow has been investigated for different Reynolds numbers3, by Hende-
rson in [7] and by Huang and Sung in [8] for different distances to the moving wall. At
different parameter values of e.g. the period of shedding base pressure and pressure drag on
the cylinder have been measured, calculated and the relationship with the parameters have
been recorded4.
There are many reasons for why investigating the vortex formation and movement patterns in
flows is interesting from an engineering standpoint. A large number of real world problems
may potentially be better understood if a better understanding of vortex formation and
movement is obtained. Here follows a few examples. The movement of flags as a consequence

2The Strouhal number is a non-dimensionalised frequency and will be defined later.
3The Reynolds number will be defined in section 1.2.
4Definitions of all these quantities follow in section 1.4.

1

1.2 The Model Problems 1 THE PROBLEM AND UNDERLYING PHYSICS

of vortex formation. The vortex formation around cables and pylons in bridge construction
and the drag and vibrations caused by these vortices. The vortices formed around ship hulls
as they travel through the oceans. The vortices formed behind race cars etc. If a better
understanding of the influence of the vortices can be obtained it may be possible to using
this knowledge to design structures which are more resilient and ships and cars which are
capable of moving faster and more efficient due to reduced drag etc.
The use of numerical methods for obtaining this insight is very valuable as the numerical
approach is a highly cost efficient way of performing experiments to obtain better under-
standing of physical processes. If the same knowledge was to be obtained through physical
experiments, multiple and in some cases huge set-up’s would have to be constructed which
quickly becomes both very time consuming and very expensive.

1.2 The Model Problems

The main problem under consideration is that of an incompressible fluid flowing around an
infinitely long cylinder oriented along the z-axis positioned near a moving wall modelled in
two dimensions. The problem is investigated in the low Reynolds number regime (Re ∈
[20, 300]) after the initial transient flow has disappeared. In this context the Reynolds
number is defined as Re = ρU∞D

µ where ρ is the density of the fluid, U∞ is the far field
velocity of the fluid, D is the cylinder diameter and µ is the dynamic viscosity of the fluid.
The fluid in the far field and the wall moves with the same velocity, U∞ = (u∞, 0) while
the cylinder remains stationary. This leads to no slip boundary conditions on the cylinder
of the form: (u, v) = (0, 0) and likewise no slip on the wall of the form: (u, v) = (u∞, 0). It
also leads to a velocity condition at the outflow boundary of ∇(u, v) · n = 0 and a pressure
condition of p = 0. The boundary conditions are elaborated on in section 1.3. The second
model problem is also a 2D model of a cylinder but this time in free flow. This problem is
considered in the Reynolds number regime, Re ∈ [100, 600].

U∞
D

y

x

(a)

U∞

U∞

D

G

y

x

(b)

Figure 1.1: Schematics for 2D-domain containing a cross section of an infinitely
long cylinder perpendicular to the flow. (a) Cylinder in free flow, (b) Cylinder
near a wall.

First, the cylinder in free flow is considered in order to validate numerical solutions and
establish a reference for the flow structure. This model problem is also used for part of the
UQ investigations. Then the main model problem is considered by introducing the wall and

2

1.2 The Model Problems 1 THE PROBLEM AND UNDERLYING PHYSICS

an investigation for a decreasing distance between cylinder and wall and varying Reynolds
number Re is performed. Increasing the Reynolds number above a critical value changes
the flow from stationary to instationary with a periodic behaviour and thus introduces a
time parameter t. Below the critical value of the Reynolds number the flow is stationary
and thus, based on the definition of a vortex provided in (1.20), no vortices exist. Schematic
drawings of the two model problems are provided in figures 1.1a and 1.1b.
In figure 1.1 U∞ = (u∞, 0) is the inflow and far field velocity as well as the velocity of the
wall. D is the cylinder diameter and G the size of the gap between the cylinder and wall. D
and G are not of any interest as two separate parameters since the dynamics of the flow does
not depend on them individually but only on their ratio. This fact is easily realised as D
and G are the only geometric parameters in the system. Thus scaling D by a factor a simply
corresponds to shrinking G by the same factor a. This means that the parameter of interest
in the following is their ratio, chosen as D

G . The choice of D
G opposed to G

D is made based
on the same considerations as those given by Huang and Sung in [8]. The considerations
are that it is easier to illustrate small gap heights more clearly on a plot and that with this
choice the case of a cylinder in free flow corresponds to D

G = 0 instead of G
D →∞.

From the present discussion three independent parameters for the problem have been iden-
tified. Two of the three are input parameters, i.e. Re and D

G . As the problem becomes
instationary for increasing Reynolds number time emerges as the third parameter. In the
following section where the physics and model equations are presented it is seen that these
three parameters along with the boundary conditions are enough to describe the problem
completely.

3

1.2 The Model Problems 1 THE PROBLEM AND UNDERLYING PHYSICS

Different flow regimes: As mentioned the problem of the cylinder in free flow has been
investigated thoroughly in several studies. For Reynolds numbers below the maximal value
of interest in this work four different regimes for the flow as a function of Reynolds number
have been characterised. In [9] Brøns et. al. identify, describe and analyse the first three of
these regimes. The regimes may briefly be summarised as,

• Attached Flow: Re . 5. In this regime the flow is steady and attached to the
cylinder. That is, the fluid passes over the cylinder and continues downstream without
any circulation. Here, the fluid has a point of attachment on the upstream side of the
cylinder and a point of detachment on the downstream side of the cylinder. This flow
is sketched in figure 1.2a.

• Steady-Seperation: 5 . Re ≤ Recrit. In this regime the flow is still steady, however
a bauble of recirculation has appeared behind the cylinder. That is, a steady recircu-
lation of fluid is confined to the backside of the cylinder. Here, the fluid has a point of
attachment on the upstream side of the cylinder and two points of detachment and a
point of attachment on the downstream side of the cylinder. This flow is sketched in
figure 1.2b.

• Periodic Shedding: Re > Recrit. In this regime the flow is no longer steady but
instead it exhibits a periodic behaviour. This periodic behaviour consists of a periodic
shedding of vortices from the backside of the cylinder. The vortices travel downstream
creating a so-called vortex train behind the cylinder. The position of the points of
detachment on the downstream side of the cylinder fluctuate in time and the point of
attachment no longer exists. This flow is sketched in figure 1.2c.

• Breakdown of the Two Dimensionality in the Flow: For the cylinder in free
flow, Henderson [10] identifies Recrit2 ≈ 190 to be the Reynolds number at which the
two-dimensionality of the flow breaks down. Beyond Recrit2 the flow exhibits three-
dimensional behaviour and the 2D simulations are no longer enough to capture the
physics completely.

4

1.2 The Model Problems 1 THE PROBLEM AND UNDERLYING PHYSICS

(a) Sketch of streamlines for flow in the
attached flow regime. Re . 5.

(b) Sketch of streamlines for flow in the
steady separation flow regime. Fluid is
circulating in two closed baubles behind
the cylinder. 5 . Re ≤ Recrit.

(c) Sketch of periodic shedding where vortices are shed from the downstream side of the cylinder.
Re > Recrit

Figure 1.2: Sketches of different regimes of fluid flow in the Reynolds number
range, Re ∈]0, 600[for a cylinder in free flow.

There is no reason to expect that the different regimes should not exist when introducing
a moving wall near the cylinder, although the Re values at which the flow transitions from
one regime to another may be expected to vary. This variation has been investigated for
the critical value for periodic shedding, when introducing and moving the wall closer to the
cylinder.
An important note is that from the definition of a vortex used in this work, see equation
(1.20), no vortices exist in the recirculating flow in the steady-separation regime. Vortices
first appear at the transition from the stationary to periodic regimes. As the vortices are the
objects of interest in this work the main regime of interest is the periodic shedding regime
where a vortex train has appeared behind the cylinder.
Another note is that the range of Reynolds numbers investigated in this work goes beyond
the breakdown of the two-dimensionality of the flow. This means that the presented data will
not mirror a true three-dimensional flow exactly. However, it is estimated that the maximal
investigated Reynolds number is close enough to the two-dimensional breakdown for results
to still be a reasonable approximation to the behavior of the actual three-dimensional flow.

5

1.3 Physics and Model Equations 1 THE PROBLEM AND UNDERLYING PHYSICS

1.3 Physics and Model Equations

The physics believed to govern all fluid flow on the length scale of interest in this project
is classical Newtonian mechanics. That is, all length scales are assumed to be large enough
to be able to consider the fluid as a continuum. This is in contrast to length scales where
the individual molecules making up the fluid must be considered. A difference from classical
mechanics is that for fluids one usually considers a velocity-field formulation instead of
considering individual particles as is the usual approach in mechanics. This leads to a new
form for the particle temporal derivative of a quantity, Q, for the fluid given (in 2D) as,

DQ

Dt
= ∂Q

∂t
+ u

∂Q

∂x
+ v

∂Q

∂y
= ∂Q

∂t
+ (u · ∇)Q. (1.1)

A full description and derivation of the difference between the particle and field approach
may be found in [11, section 1-3].

1.3.1 General Navier-Stokes Equation

By applying Newtons second law of motion,
∑
i Fi = ma = mDu

Dt , to a "box of fluid" at an
arbitrary position in an inertial frame of reference and dividing by the volume of the box one
obtains a general form of the Navier-Stokes (NS) equations (1.2), which govern the motion
of the fluid [11, section 2-4]:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇ · τ + f. (1.2)

Here, u is the flow velocity, ρ the fluid density, p the pressure, τ a stress tensor and f
represents external body forces acting on the fluid.
Each term in the NS-equation may be interpreted physically as follows.

The term: ∂u
∂t . This term quite simply describes the change in the velocity of the fluid

caused directly by a change in time. This term is clearly non-zero for all instationary
problems and zero for stationary problems.

The term: u · ∇u. This term is called the convective acceleration term or the non-linear
advection term. This term represents the fact that the fluid may be accelerated due to
its position in the domain independently of time. That is, even for stationary problems
(∂u
∂t = 0) a fluid may change velocity throughout the domain. As an example of this one

may consider a steady flow of incompressible liquid from one reservoir to another through a
diverging channel. See figure 1.3 for an illustration of the channel.

6

1.3 Physics and Model Equations 1 THE PROBLEM AND UNDERLYING PHYSICS

u u u u

Figure 1.3: Illustration of a diverging open ended channel in which a steady flow
of fluid will be fastest in the narrow end and slowest in the wide end.

This phenomenon is relatively easily understood if one considers mass conservation and
continuity. Only the fluid which has passed through the narrow part of the channel is
available to fill the channel down stream where the channel is wider. As the fluid must
remain continuous the only choice available is to slow down as it moves down the channel.

The terms: −∇p+∇ · τ . Both terms represent effects of stresses in the fluid. ∇p is the
gradient of the pressure and stems from the normal stresses in the fluid. ∇ · τ stems from
the anisotropic part of the stresses and describes viscous forces. This can be understood as
the friction forces between layers of fluid pulling on each other as they pass one another.
In order to simplify the NS-equations for the solution of engineering problems a series of
assumptions can be made for τ but going into depth with this is outside the scope of this
project. A simple assumption is that the fluid is incompressible which reduces τ as described
in the following.
Further explanations of the terms and assumptions which may be made can be found in [11,
chapter 2].

The term: f. This term represents all exterior forcing on the fluid. Normally, this always
includes gravity and may also include forcings on the system under consideration from e.g.
electrical fields.

1.3.2 Incompressible Navier-Stokes Equation

For the problems of interest in this project the fluid under consideration is assumed in-
compressible, temperature independent and it is assumed that the viscosity is constant
throughout the fluid. These assumptions simplify the NS-equation to the form presented in
equation 1.3,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u + f, (1.3)

It is easily seen that the change from the general NS-equation is the reduction of ∇ · τ
to µ∇2u which is denoted the viscous diffusion term. This term may be interpreted as
modelling the diffusion of momentum which occurs for an incompressible viscous fluid.

7

1.3 Physics and Model Equations 1 THE PROBLEM AND UNDERLYING PHYSICS

The form of the NS-equation presented in (1.3) may be used directly as a component in
solving an incompressible fluid problem. It is however beneficial to non-dimensionalize the
NS-equation as this will reduce the parameters in the equation to a single parameter denoted
the Reynolds number.
The first step is to introduce a mean flow velocity U and characteristic length L. From these
a set of dimensionless functions and operators are then introduced as,

• Non-dimensional Velocity: ǔ = u
U .

• Non-dimensional Pressure: p̌ = p
ρU2 .

• Non-dimensional Body Force: f̌ = L
ρU2 f.

• New Time Derivative: ∂
∂ť

= L
U
∂
∂t .

• New Spatial Derivative: ∇̌ = L∇.

By multiplying (1.3) which is an equation in terms of body forces, with the quantity L
ρU2 ,

which has the unit of
[
m3

N

]
, one obtains the dimensionless equation,

L

U2

(
∂u
∂t

+ u · ∇u
)

= − L

ρU2∇p+ µL

ρU2∇
2u + L

ρU2 f,⇔ (1.4)

L

U

∂

∂t

u
U

+ u
U
· ∇u

U
= −L∇ p

ρU2 + µ

ρUL
L2∇2 u

U
+ L

ρU2 f. (1.5)

By substituting in the dimensionless functions and operators one obtains,

∂

∂ť
ǔ + ǔ · ∇ǔ = −∇̌p̌+ µ

ρUL
∇̌2ǔ + f̌. (1.6)

Introducing the Reynolds number as, Re = ρUL
µ and dropping the check marks to simplify

the notation one arrives at the final non-dimensional NS-equation,

∂

∂t
u + u · ∇u = −∇p+ 1

Re
∇2u + f. (1.7)

Note that L = D for the model problems considered here.

1.3.3 Mass Conservation

Another requirement for a fluid problem is that of mass conservation. This principle simply
states that mass cannot appear out of nothing and likewise can not disappear into nothing.
Thus, we must require,

m = ρV = constant, (1.8)

8

1.3 Physics and Model Equations 1 THE PROBLEM AND UNDERLYING PHYSICS

where m is the mass and V is the volume. For an incompressible fluid any "box of fluid"
must have a constant density in space and time. From this consideration and by taking the
particle derivative of equation 1.8 one gets the condition,

Dm

Dt
= Dρ

Dt
V + ρ

DV

Dt
= 0⇒ ∇ · u = 0. (1.9)

See [11, section 2-3] for a full derivation of this equation, i.e. for the missing steps hidden
in the ⇒.
(1.9) is easily non-dimensionalised by introducing,

• Non-dimensional Velocity: ǔ = u
U .

• New Spatial Derivative: ∇̌ = L∇.

Multiplying (1.9) by L
U and rewriting to obtain,

L∇ · u
U

= ∇̌ · ǔ = 0. (1.10)

Dropping the check mark we get the non-dimensional equivalent of (1.9), which happens to
have the exact same form.

1.3.4 Model Equations

We have now considered all the components needed to formulate a model for the problem.
The two main model equations are thus the non-dimensional NS- and continuity-equations:

∂

∂t
u + u · ∇u = −∇p+ 1

Re
∇2u + f, (1.11)

∇ · u = 0. (1.12)

Additionally, we need to formulate boundary and initial conditions for the problem. Con-
sidering the problem geometry described in section 1.2 a set of boundary conditions may be
formulated.

Cylinder Boundary Condition: The boundary constituted by the cylinder surface uses
the usual FD no-slip condition. For the stationary cylinder this may be formulated as:

u|(x,y)∈CS = (0, 0), (1.13)

where CS is the set of points which lie on the surface of the cylinder.

9

1.3 Physics and Model Equations 1 THE PROBLEM AND UNDERLYING PHYSICS

Wall Boundary: The boundary constituted by the moving wall also uses the usual FD
no-slip condition, This may be formulated as:

u|(x,y)∈WS = (u∞, 0), (1.14)

where WS is the set of points which lie on the wall.

Far Field Boundaries: As the method of choice for solving the problem is simulation,
and as it is impossible to simulate an infinite domain, one needs to approximate the infinite
half plane above the wall by a finite box. The concerns in the reader’s mind for which this
approximation gives rise will be addressed in section 3. The "box" approximation gives rise
to two different far field BC’s. The first is an inflow condition given by:

u|(x,y)∈IF = (u∞, 0), ∇p|(x,y)∈IF = 0. (1.15)

where IF is the set of points which lie on the inflow boundaries. These BCs represent a
completely undisturbed flow as one would expect far away from the cylinder5.
The second is an outflow condition given by;

∇u|(x,y)∈OF · n = (0, 0), p|(x,y)∈OF = p∞ = 0. (1.16)

where OF is the set of points which lie on the outflow boundary, n is the outward pointing
normal vector and p∞ is a reference pressure which is set equal to zero. This BC simulates
that the fluid simply flows freely out of the domain at the outflow boundary.
An illustration of the problem domain with the different BC’s highlighted is provided in
figure 1.4.

Cylinder
Outflow
Wall
Inflow

Figure 1.4: Illustration of the location of the different boundary conditions for
the problem. (CS): Cylinder surface (full line), (WS): Wall surface (densely
dotted), (IF): Inflow (densely dashed), (OF): Outflow (loosely dashed).

5Due to numerical performance the pressure condition stated here is not used in the solver from the Nek-
tar++ framework. Instead a higher order pressure condition derived to provide better numerical accuracy
is used. Details of this condition and its derivation may be found in [18] and/or [16, section 8.3]

10

1.4 Physical Quantities 1 THE PROBLEM AND UNDERLYING PHYSICS

Initial Condition: The initial condition is chosen to be that of a free flow without the
cylinder, i.e.

u|t=0 = (u∞, 0), p|t=0 = p∞ = 0. (1.17)

Since the investigation is not concerned with the initial transient solution, any reasonable
choice of velocity and pressure fields as initial condition could be used as long as it is chosen
to be compatible with the numerical method used.

1.4 Physical Quantities

For general FD problems many different quantities and characteristics of the flow may be
of interest depending on the intended application. Additionally, a number of auxiliary
quantities are important for analytical purposes in order to obtain the desired quantities
and characteristics. This section outlines the quantities and characteristics of interest to
this work.
The quantities of interest here are the pressure induced drag on the cylinder, the non-
dimensionalized frequency of vortex shedding called the Strouhal number, the non-dimensionalized
pressure at the cylinder surface called the pressure coefficient and the vortex movement pat-
tern behind the cylinder. A few examples of areas where these quantities are important
follow here.
In aerospace, car, boat and wind turbine engineering the drag on an object subjected to
a fluid flow is of high interest as the minimization or maximization of the quantities are
important for the performance of the object. The pressure coefficient at an object’s surface
and Strouhal number may likewise be of interest in these areas of engineering. In fluid mixing,
understanding the flow patterns has interest as this may determine the most efficient way to
mix some reactant with a fluid to create a product. Understanding the flow patterns behind
an object can also be of importance if other objects are to be placed in the wake of the first
object.
An crucial quantity for the analysis of vortex patterns and structures which is of interest in
this work is the vorticity as it may be used to uniquely define a vortex.

Vorticity: This quantity is defined in R3 as the curl of the velocity vector,

ω = ∇× u, (1.18)

which in 2D translates to a scalar quantity,

ω = ∂

∂x
v − ∂

∂y
u, (1.19)

since the x- and y-components of (1.18) are zero in 2D.
The vorticity at a given point in the fluid may be understood as a measure for how much of
a rotating motion the fluid experiences near this point. A positive vorticity corresponds to

11

1.4 Physical Quantities 1 THE PROBLEM AND UNDERLYING PHYSICS

counter-clockwise rotation of the fluid while a negative vorticity corresponds to a clockwise
rotation.
The introduction of the vorticity allows for a strict definition of a vortex which is used in
this work to identify individual vortices uniquely.

A Vortex: In order to perform a rigorous investigation of the creation, annihilation and
movement of vortices in a flow one must first define a vortex. In this work the center of a
vortex is understood as an extremum in vorticity. This allows vortices to be defined uniquely
by their centres from the extrema in the vorticity which are given by the points (xi, yi) in
the flow where,

∇ω = 0 ⇔ ωx = 0 ∧ ωy = 0, (1.20)

and where the Hessian of the vorticity is either positive or negative definite corresponding
to minima and maxima, respectively.
From this definition it is possible to locate and count the number of vortices in a flow at
a given time. With the capability to uniquely identify vortices it also becomes possible to
trace the movement, creation and annihilation of vortices over time.

Strouhal Number: The Stouhal number St may be thought of as a dimensionless fre-
quency for the shedding of vortices from an object immersed in fluid. It is given by,

St = L

U∞
f, (1.21)

where f is the shedding frequency, L is a characteristic length scale in the problem under
consideration and U∞ is the far field velocity of the fluid. In this work L = D.

Pressure Coefficient: The pressure coefficient, Cp may be thought of as a dimensionless
measure for the pressure relative to the far field pressure and is defined by,

Cp = p− p∞
1
2ρU

2
∞
, (1.22)

where p∞ is the far field pressure, U∞ is the far field velocity and ρ is the density of the
fluid.
For the cylinder problem the base pressure coefficient Cbp is defined as Cp at the cylinder
surface 180 degrees from the front of the cylinder.

12

1.4 Physical Quantities 1 THE PROBLEM AND UNDERLYING PHYSICS

Pressure Drag Coefficient: The drag force, Fd, on an object is defined as the sum of
the forces acting on the object parallel to the direction of movement for the objects through
a fluid. That is, it is the force which works to slow down the object as it moves through the
fluid. In an incompressible viscous fluid the drag is composed of a force due to the pressure,
Fp, of the fluid on the object and a shear force, Fs, from the layers of fluid sliding over the
surface of the object. Choosing the direction of positive drag in the direction opposite the
movement of the object we get,

Fd = Fpd + Fsd = −
(∫

p n̂ · î dS +
∫
τ t̂ · î dS

)
, (1.23)

where τ denotes the stress tensor component along the surface where î is the unit vector in
the direction of movement of the object. t̂ and n̂ are the normal and tangential vectors for
the cylinder surface. In this work only the pressure-drag force is considered. From Fpd a
non-dimensional drag coefficient CDp is defined as,

CDp = Fpd
1
2ρU

2
∞
. (1.24)

13

2 THEORY

2 Theory

This chapter provides an overview of the most important theoretical concepts from the dif-
ferent areas of mathematics used throughout the thesis. Section 2.1 outlines results and
concepts used from Dynamical Systems Theory (DST) and presents an algorithm used to
identify critical points for the vorticity. Section 2.2 states definitions and results for ortho-
gonal polynomials and approximation theory which provides the basis for UQ and SEM.
Section 2.3 provides a brief overview of the strengths and weaknesses of the Spectral Ele-
ment Method (SEM) used in the numerical simulations compared to the classical Finite
Volume/Element Metohds (FVM/FEM). Here, an illustration of the main steps in the ap-
plication of the SEM to a model problem is also provided to give the reader a basic under-
standing of how the model problems are solved numerically. An illustration of convergence
results obtained using the method is also provided. Lastly, section 2.4 presents used concepts
and results from Uncertainty Quantification (UQ).

2.1 Dynamical Systems Theory

The overarching aim of DST is to understand the structure of a dynamical system and how
it changes depending on the parameters of the system. A two-dimensional dynamical system
may be written generally as a system of first order ODE’s as,

(
ẋ
ẏ

)
=
(
P (x, y, c)
Q(x, y, c)

)
, (2.1)

where ẋ and ẏ may be interpreted as a velocity given by the vector field (P (x, y, c), Q(x, y, c))
and c ∈ Rk is a k-dimensional vector of parameters. For systems of this form fixpoints, also
known as critical points, are of special interest since they mark points where the behaviour
of the system may change with small variations in the parameters c.
Critical points are defined as points in space where the right hand side of (2.1) is zero. Hence
points where the velocity in the system is zero.
In [2] Brøns presents theorems which state that regular points, i.e. points which are not
critical points are structurally stable, meaning that small changes in the parameters c cannot
change the structure of the dynamical system. In order to determine the type of a critical
point the eigenvalues of the Jacobian of the governing dynamical system is considered6.
Consider now a 2D flow problem where u(x, t) is a known velocity field. Consider the time
t as a parameter and look at the system at t = t0. This gives the dynamical system,

ẋ = u(x, t0). (2.2)

The solutions to this system are called streamlines and describe the integral curves of the
velocity field at the instant in time t0. That is, curves which a massless tracer particle would
follow through the flow at a given instance in time. The critical points of this dynamical

6A well developed theory for identifying the critical points, their type, and the ways they may be created
and/or annihilated when the parameters c are varied, exists, see e.g. [1].

14

2.1 Dynamical Systems Theory 2 THEORY

system are in fluid dynamic terms denoted stagnation points, i.e. points where the fluid is
at rest. For incompressible flow problems we may define a stream function Ψ, which fulfil
u = ∂Ψ

∂y , v = −∂Ψ
∂x , [2]. The system (2.2) now takes the form,

ẋ =
(
∂x

∂t
,
∂y

∂t

)
=
(
∂Ψ
∂y

,
−∂Ψ
∂x

)
. (2.3)

The definition of Ψ means that it is constant along streamlines for (2.2) as may easily be
proven,

dΨ
dt

= ∂Ψ
∂x

dx

dt
+ ∂Ψ
∂x

dy

dt
= ∂Ψ
∂x

∂Ψ
∂y
− ∂Ψ
∂y

∂Ψ
∂x

= 0, (2.4)

that is, the streamlines for (2.2) are level curves for Ψ. This fact means that critical points
for (2.2) are stationary points for Ψ since these are simply special cases of level curves.
In [2] it is also stated that for any regular critical point of (2.3), i.e. points where the
Jacobian of the system is regular, are structurally stable. This means that in order to locate
structural changes in the flow the degenerate critical points where the Jacobian is singular
must be considered.

Analysis using DST: In [2], Brøns derives a number of theoretical results for the dy-
namical system (2.3) describing the streamlines of the two-dimensional velocity field (u,v) of
incompressible fluid flow using the stream function Ψ. As will be shown below an equivalent
system may be formulated for the vorticity ω. This means that all the results developed by
Brøns may be used to analyse the system governed by ω instead of Ψ. That is, the theory
may be used to analyse the creation, annihilation and movement patterns of vortices in a
2D flow problem.
As stated earlier a central goal of the present work is to implement and demonstrate a
method for rigorously investigating the creation, annihilation and dynamics of vortices7.
The first step on this path is to obtain the velocity field for the fluid and from this calculate
the vorticity. This is done by solving the governing equations numerically, which will be
discussed in detail later. In the following the velocity field and thus the vorticity is assumed
known.
It turns out that the dynamics of the stationary points for vorticity and thus of vortices
may be understood using DST. This is done by considering time as a parameter instead of
a continuous variable and investigating the critical points of a family of dynamical systems
of the form,

(
∂x
∂s
∂y
∂s

)
=
(
ẋ
ẏ

)
=
(
ωy(x, y, ti, c)
−ωx(x, y, ti, c)

)
, i ∈ {1, ..., N}, c ∈ Rk, k ∈ N. (2.5)

Here (x, y) are spatial coordinates, ω the vorticity and c ∈ Rk are a vector of parameters. s
is an artificial time introduced to consider how the flow would move when the real time is

7Remember that a vortex has been defined from a vorticity extremum, i.e. points in space and time where
ωx(x, y, t) = ωy(x, y, t) = 0 and where the Hessian is positive or negative definite, see section 1.4.

15

2.1 Dynamical Systems Theory 2 THEORY

frozen. Notice that we have frozen time and that the N separate time steps are considered
as individual dynamical systems. Consider now the vorticity field at one of these snapshots
in time, ω(x, y, ti, c). If this quantity is differentiated with respect to s, utilizing the chain
rule one gets,

d

ds
ω(x, y, ti) = ∂ω

∂x

∂x

∂s
+ ∂ω

∂y

∂y

∂s
= ωxωy − ωyωx = 0, (2.6)

where we have used from (2.5) that (∂x∂s ,
∂y
∂s) = (ωy,−ωx). This is in complete analogy to

(2.4).
Following the analogy, it is seen from (2.6) that the streamlines given by the solutions to
(2.5) are level curves for ω(x, y, ti, c) with respect to s and thus the extrema of ω(x, y, ti, c)
are special cases of level curves which have ωx = ωy = 0. From this it follows that a critical
point of the dynamical system (2.5) corresponds to stationary points for ω. These may
either be extrema, saddle points or degenerate points. As stated above a degenerate point is
a point where the Jacobian matrix for the system (2.5) is singular and it is only at degenerate
critical points that structural changes in (2.5) may occur, see [2, Theorem 3].
This means that if one can identify all stationary points of the vorticity one finds all the
critical points of the system (2.5) and thus also all vortices present in the flow. The critical
points and any possible structural changes they may undergo, corresponding to the creation
or annihilation of vortices, can then be analysed using the machinery of DST. This will be
elaborated on below as the saddle-center bifurcation is treated.

Comment on critical points for (2.5) and extrema/saddles for vorticity: By com-
paring the Hessian matrix for the vorticity and the Jacobian matrix for the system (2.5) it
is immediately observed that extrema for the vorticity corresponds to centres for (2.5) and
saddles for the vorticity corresponds to saddle points for (2.5). Hence identifying a center
for (2.5) corresponds to identifying a vortex in the flow.

Nullclines: Consider (2.1). A nullcline is defined as a curve along which either ẋ or ẏ is
zero. Thus a nullcline corresponds to the zero contours of either ẋ or ẏ. In 2D one may use
nullclines to identify critical points by looking for intercepts between the contours ẋ = 0 and
ẏ = 0.
The technique of using the intercepts between nullclines is used for identifications of critical
points for ω. This means that by identifying ωx = 0 one then only has to solve a one
dimensional problem along the curves ωx = 0 to identify ωy|(ωx=0) = 0 and thereby the
critical points.

Parameter dependence: Any spatial physical instationary problem has by definition
some dependence on space and time. Besides this dependence the problem most likely also
depends on a range of parameters. These dependencies may be on boundary and initial
conditions, the domain shape and for a fluid problem the Reynolds number. The task now
becomes to identify at what parameter values the structure of the system (2.1) changes and
what changes occur. These changes in structure as a function of parameter variations are
denoted bifurcations.

16

2.1 Dynamical Systems Theory 2 THEORY

2.1.1 Bifurcations

Meiss [1] offers a definition of a bifurcation as,
Bifurcation: a qualitative change in dynamics occurring upon a small change in a parameter.
Many different types of changes in dynamics can occur in (2.1) as a consequence of varying
system parameters, see [1, Chapter 8] for a treatment of some of these. Some bifurcations
occur as a single parameter is varied while others occur only as a consequence of varying
multiple parameters at once. The minimum number of parameters which must be varied for
a given bifurcation to occur is denoted the Codimension of the bifurcation.
For the systems investigated in the present work the codimension 1 saddle-center bifurcation
was the only bifurcation observed away from domain boundaries in all but a single case8. In
the single exceptional case a co-dimension 2 bifurcation was identified. Due to its frequent
occurrence the saddle-center bifurcation is covered in detail here, while the co-dimension 2
bifurcation is treated specifically in chapter 8 when it is encountered.

Saddle-Center Bifurcation: This bifurcation corresponds to the creation or annihilation
of two critical points as a single parameter is varied. One of the critical points is a saddle
point and the other is a center.
In order to illustrate such a bifurcation consider a Taylor expansion of the vorticity given
by,

ω =
∞∑

n,m=0
anmx

nym, (2.7)

In [2] Brøns shows that if one applies transformations to the dynamical system in con-
sideration such that the degenerate critical point undergoing a bifurcation is centred at the
origin and the coordinate axis are twisted and stretched appropriately the following theorem
holds9,
Theorem 1: Let a10, a01, a11, a20 of (2.7) and ãn0 for n < N − 1 be small parameters, and
assume that non-degeneracy conditions a02 6= 0 and ãN0 6= 0. Then there is a coordinate
transformation that brings ω into the normal form,

ω = σ

2 y
2 + f(x) +O(N + 1), (2.8)

f(x) =
N∑
n=1

cnx
n, cN−1 = 0, cN = 1

N
, (2.9)

σ =
{

−1 for N even and a02/ãN0 < 0,
1 for N even and a02/ãN0 > 0 or N odd,

}
(2.10)

and c1, ..., cN−2 are small parameters.
Above the ˜an0’s are given by,

8In [2, part III] Brøns shows that for a flow away from a boundary this is the only possible codimension
1 bifurcation.

9This is Theorem 5 in [2] formulated for ω instead of Ψ.

17

2.1 Dynamical Systems Theory 2 THEORY

ãN0 = aN0 + a non-linear combination of anm of lower order then N. (2.11)

Using this transformed expression for ω it is easy to see that all critical points near the
degenerate point for the system (2.5) are situated along the transformed x-axis and that
there are at most N − 1 of them,

ẋ = ∂ω

∂y
= σy = 0⇔ y = 0, ẏ = −∂ω

∂x
= −fx(x) = 0. (2.12)

The Jacobian of (2.5) at a critical point, determines its type and is given by,

J(ẋ,ẏ) =
[

0 σ
−fxx(x) 0

]
. (2.13)

From (2.13) one can determine the type of a critical point by considering the eigenvalues
given by, λ = ±

√
−σfxx(x). This leaves three options. Either the critical point is degenerate

allowing for a bifurcation to happen. The second option is −σfxx(x) > 0 which given two
real eigenvalues of opposite sign, corresponding to a saddle as the critical point has one
attracting eigendirection and one repelling eigendirection. The last option is −σfxx(x) < 0
which gives two purely imaginary eigenvalues of opposite sign which corresponds to a center,
i.e. either a maximum or minimum in the vorticity.
For a co-dimension 1 bifurcation one has N = 3, i.e. the terms of order lower then four
determine the behaviour of the system. From Theorem 1 this gives σ = 1 and reduces the
expression for ω to,

ω = 1
2y

2 + f(x) +O(4), (2.14)

f(x) = c1x+ 1
3x

3.

Using (2.12) and (2.13) it can be seen that the occurrence of a bifurcation as c1 is varied
may be illustrated in one dimension around x = 0 by considering the derivative of f(x),

fx(x, c1) = c1 + x2, (2.15)

From (2.15) it is seen that the origin is a degenerate critical point for the system (2.5) when
c1 = 0. It is easy to see that in general critical points exist for (2.5) at,

x = ±
√
−c1 ⇔ fx(x, c1) = 0. (2.16)

For c1 = 0 we see that fx(0, 0) = 0 and ∂
∂xfx(0, 0) = fxx(0, 0) = 0 while ∂2

∂x2 fx(0, 0) =
fxxx(0, 0) = 2 and ∂

∂c1
fx(0, 0) = 1. The first two conditions are known as singularity

18

2.1 Dynamical Systems Theory 2 THEORY

conditions, the next as a non-degeneracy condition and the last as a transversality condition.
If these conditions are fulfilled then the bifurcation which occurs at x = 0 when c1 is varied
is a saddle-center bifurcation [1, Corollary 8.4]. For the 1D case the singularity conditions
simply state that at x = 0, fx(x, 0) is zero valued, has a horizontal tangent and the non-
degeneracy condition that fx(x, 0) has non-zero curvature. The transversality condition
states that increasing/decreasing c1 around zero increases/decreases the value of fx at x = 0
which is necessary for a change in system behaviour to occur.
From (2.16) it may then be seen that for c1 < 0 two critical points exist whereas for c1 = 0
only a single (degenerate) critical point exists and for c1 > 0 no critical points exist. I.e. the
saddle-center bifurcation occurs just as c1 passes zero.
The change in the number of critical points as c1 is varied is illustrated on figure 2.1.

−1 −0.5 0.5 1 1.5 2

−1

1

2

3

fx(x, c1 = 0)

fx(x, c1 > 0)

fx(x, c1 < 0)

x

fx

Figure 2.1: Illustration of the creation of two critical points as c1 is varied across
zero. The figure can also be used to illustrate how the search for extrema and
saddles in vorticity can be performed using the nullclines. Consider the x-axis
as an ωx nullcline and searching along this to identify ωy = 0 corresponding to
fx = 0.

A bifurcation diagram for the situation showing the annihilation of a center (vortex in the
flow) and a saddle as c1 is varied across zero is presented on figure 2.2.

Figure 2.2: Illustration of the creation/annihilation of a vortex (center) and
saddle point as the parameter c1 is varied. The figure is borrowed from [2, Figure
3.2] courtesy of Brøns.

The first illustration in figure 2.2 corresponds to the situation of fx(x, c1 < 0) shown in figure
2.1. Here a saddle and a center exist. The second illustration in figure 2.2 corresponds to

19

2.1 Dynamical Systems Theory 2 THEORY

the situation of fx(x, c1 = 0) shown in figure 2.1, which corresponds to the bifurcation
point where the critical point becomes degenerate. Lastly, the third illustration in figure
2.2 corresponds to the situation of fx(x, c1 > 0) shown in figure 2.1 where no critical points
exists.
Note: A final and important remark on the parameter c1 is that it is a mathematical para-
meter which depends on one or more of the physical parameters of the system. Thus for our
model problem of the cylinder near the moving wall we have that c1 may depend on time,
Reynolds number and D/G-ratio. This means that c1(Re,D/G, t0) may change as either of
the three parameters are varied causing the co-dimension 1 bifurcation.

2.1.2 Tools for Analysing Flow Topology

The challenge now becomes to identify the extrema/saddles for ω as they correspond to the
critical points for the dynamical system (2.5). This means that given a fluid velocity field,
u, a numerical tool for calculating the position and type of extrema/saddles for ω must be
developed. The idea of using a nullcline method for this identification as outlined below
was suggested by Brøns and Bisgaard in [12]. Here they applied it to the stream function Ψ
instead of the vorticity ω, however, as it was shown above these problems are equivalent.

Identifying the Stationary Point: First it is necessary to determine which extrema
and saddles exist for ω at a given time t = ti. As noted earlier these may be found by
first determining the ωx nullclines and then along these determining the points which fulfil
ωy|(x,y)|ωx=0 = 0. This idea of searching along the ωx = 0 contour corresponds to identifying
the points of intersection between the x-axis and fx illustrated on figure 2.1. Here the x-axis
corresponds to a curve in the 2D domain along which ωx = 0 and fx corresponds to ωy.
With a way to identify the stationary points for the vorticity at each time step having been
formulated one needs to determine their type.

Identifying the Type: Whether the critical points are local maxima, local minima or
saddle points in the vorticity must now be determined. As was mentioned above the maxima
and minima in ω correspond to centres for our dynamical system (2.5) and in turn to vortices
in the flow.
To determine the type of the points we consider the eigenvalues of the Hessian matrix for
the vorticity. Assuming that the determinant of the Hessian matrix at the point is different
from zero (i.e. the critical point is non-degenerate) the type can be determined directly from
the eigenvalues. If all eigenvalues of the Hessian matrix evaluated at the point are positive
the point must be a minimum in vorticity. Likewise if all the eigenvalues are negative the
point is a maximum and if the eigenvalues vary in sign the point is a saddle.
As we work in 2D the following method may be used to determine the type. Name the two
eigenvalues λ1 and λ2 respectively and denote the Hessian matrix by,

H(ω) =
[
ωx,x ωx,y
ωy,x ωy,y

]
, (2.17)

In order to determine the eigenvalues we need to solve the system,

20

2.2 Orthogonal Polynomials and Approximation Theory 2 THEORY

H(ω)− Iλ = 0, (2.18)

for which simple algebra gives that the product of the eigenvalues must fulfil,

λ1λ2 = ωx,xωy,y − ωx,yωy,x. (2.19)

This means that if the determinant of H(ω) is positive at a critical point for (2.5) it is either
a maximum or a minimum (a center) and if the determinant is negative it is a saddle. If
the determinant is positive and one then computes the value of one of the eigenvalues, say
λ1 it is possible to fully determine the types of the points. The formula for calculating the
eigenvalues are given by,

λ =
(ωx,x + ωy,y)±

√
(ωx,x + ωy,y)2 − 4(ωx,xωy,y − ωy,xωx,y))

2 . (2.20)

We may now construct the lookup table seen in table 2.1 for the type of non-degenerate
critical points in 2D.

Condition \ Type Saddle Maximum Minimum
λ1λ2 < 0 ×

λ1λ2 > 0 ∧ λ1 < 0 ×
λ1λ2 > 0 ∧ λ1 > 0 ×

Table 2.1: Reference table for determining the type of a non-degenerate critical
point for a 2-dimensional quantity.

Based on the prior discussion a simple algorithm for calculating the critical points and their
type for the vorticity may be formulated as shown in Algorithm 1.

Algorithm 1 Calculating extrema in the vorticity.
1: Obtain the velocity field, u, at a sequence of times, t ∈ {t0, t1, ..., tN}.
2: Calculate the contours ωx = 0 at each time step.
3: Calculate the points (x, y)|ωy=0 along the ωx nullclines at each time step.
4: Store the resulting points (x, y)|(ωy=0,ωx=0) along with the field value u at these points.
5: Calculate the eigenvalues of the Hessian for the vorticity at each of the resulting points

to determine their type and store this information.

2.2 Orthogonal Polynomials and Approximation Theory

This section states some definitions and results from [4, chapter 3] with regards to using
orthogonal polynomials for high accuracy approximations to functions which lie in appropri-
ate function spaces. The results are included as they are relevant both to the convergence
properties of the SEM presented in section 2.3 and UQ presented in section 2.4. For further
explanation, proofs and references to proofs see [4, chapter 3].

21

2.2 Orthogonal Polynomials and Approximation Theory 2 THEORY

Orthogonality Relation: A set of polynomials {Qn(x) | x ∈ I ⊂ R} of varying degree
n ∈ N ⊂ N0 is said to be an orthogonal set with respect to the weight function w(x) if,

∫
I
QnQmwdx = γnδm,n, ∀m,n ∈ N . (2.21)

Here δm,n = 1 for m = n and δm,n = 0 for m 6= n is the Kronecker delta, γn =
∫
I Q

2
nwdx

and I ⊂ R is the support of the polynomials.

Function Spaces, Inner Products and Norms: The following spaces are used in error
measurements and results in the following,

• The weighted L2
w space with support on I:

L2
w(I) =

{
v : I → R |

∫
I
v2wdx <∞

}
. (2.22)

• The weighted Sobolev space Hk
w with support on I:

Hk
w(I) =

{
v : I → R | d

mv

dxm
∈ L2

w(I), ∀ 0 ≤ m ≤ k
}
. (2.23)

Each space is equipped with an inner product,

• L2
w: (u, v)L2

w(I) =
∫
I
uvwdx, ∀u, v ∈ L2

w(I). (2.24)

• Hk
w: (u, v)Hk

w(I) =
k∑

m=0

(
dmu

dxm
,
dmv

dxm

)
L2
w(I)

, ∀u, v ∈ Hk
w(I). (2.25)

and from these one may define a norm in the spaces as,

• L2
w: ‖ u ‖L2

w(I)= (u, u)
1
2
L2
w(I). (2.26)

• Hk
w: ‖ u ‖Hk

w(I)= (u, u)
1
2
Hk
w(I). (2.27)

Polynomial Approximations: First we define the finite dimensional orthogonal projec-
tion of a function f ∈ L2

w(I) onto a set of orthogonal polynomials {φk(x)}Nk=0 ⊂ PN with
respect to a positive weight w(x), where PN is the space of polynomials of degree N or less:

PNf =
N∑
k=0

f̂kφk(x), f̂k = 1
‖ φk ‖L2

w

(f, φk)L2
w
, 0 ≤ k ≤ N. (2.28)

It has been shown that the orthogonal projection, PNf of f is the best approximation to f
possible in the space of N ’th degree polynomials, PN , measured in the L2

w-norm, i.e.

22

2.2 Orthogonal Polynomials and Approximation Theory 2 THEORY

‖ f − PNf ‖L2
w

= inf
∀ψ∈PN

‖ f − ψ ‖L2
w

(2.29)

Below is stated the powerful result of convergence for the orthogonal projection,
For any f ∈ L2

w(I):

lim
N→∞

‖ f − PNf ‖L2
w(I)= 0, (2.30)

where the rate of the convergence depends on the smoothness of f and the choice of poly-
nomials used for the projection.

Legendre Polynomials: The Legendre polynomials may be defined from a three term
recursion relation as,

Ln+1(x) = 2n+ 1
n+ 1 xLn(x)− n

n+ 1Ln−1(x), n > 0, L0(x) = 1, L1(x) = x. (2.31)

The polynomials are orthogonal on I = [−1, 1] with respect to w(x) = 1 and have the
orthogonality relation,

γn = 2
2n+ 1 . (2.32)

Spectral Convergence: Now follows the important result that all these definitions have
been leading up to. Take I = [−1, 1] with w(x) = 1 and the set of Legendre polynomials
defined above {Ln(x)}∞n=1.
Then for any function f(x) ∈ Hp

w[−1, 1], p ≥ 0 there exists a constant C ∈ R independent of
N , such that

‖ f − LNf ‖L2
w[−1,1]≤ CN−p ‖ f ‖Hp

w[−1,1] . (2.33)

See [4, Page 33] for a proof. This result means that the convergence rate of LNf towards f in
terms of the number of polynomials used in the expansion LNf is bounded by the smoothness
of f(x) i.e. by p. Thus, if orthogonal projection is used to approximate a sufficiently smooth
function, very fast convergence, termed spectral convergence, may be expected. Similar
results exist for other choices of polynomial sets and corresponding support I and weight
functions w(x).
This result of spectral convergence is one of the fundamental properties of both UQ and the
SEM which gives them the potential of being strong tools.

23

2.3 The Spectral Element Method 2 THEORY

Numerical Quadrature: For the application of both the SEM and UQ it is crucial to
be able to perform numerical evaluation of integrals very accurately. That is, we seek to
approximate the integral,

Int[f] =
∫
I
f(x)w(x)dx, (2.34)

accurately. By using orthogonal polynomials for a numerical quadrature a highly accurate
approximation of Int[f] may be obtained. Consider a sequence of orthogonal polynomials,
{φk}Nk=1 and let {z(N+1)

k }N+1
k=1 be the zeros of φN+1. Then by interpolating f(x) using

the N + 1, N ’th degree Lagrange polynomials, {lNk }
N+1
k=1 , through the nodes {z(N+1)

k }N+1
k=1 ,

f(x) ≈
∑N+1
k=1 f(zk)lNk , it is possible to approximate (2.34) by,

∫
I
f(x)w(x)dx ≈

∫
I

N+1∑
k=1

f(zk)lNk w(x)dx =
N+1∑
k=1

f(zk)
∫
I
lNk w(x)dx =

N+1∑
k=1

f(zk)wk, (2.35)

where wk =
∫
I l
N
k w(x)dx, k ∈ {1, 2, ..., N + 1} may be evaluated explicitly if w(x) is known.

It turns out that this approximation of Int[f] is exact if f(x) ∈ P2N−1 on I, see [4, The-
orem 3.11]. This means that for functions f(x) which are approximated very accurately by
polynomials of order 2N − 1 the numerical quadrature given in (2.35) is a very accurate
approximation of (2.34).

2.3 The Spectral Element Method

Historically, the approach to solving PDE problems numerically for complex geometries has
been based on the Finite Volume Method (FVM) [13] and the standard Finite Element
Method (FEM) [14].
These methods have the strength that they are relatively easy to program, have a well-
developed theory behind them as well as being usable and robust for a large class of problems.
Also (probably because of these facts) the methods are used extensively by the industry.
They have the disadvantage, however, that the numerical solution obtained only converges
towards the true solution at a rate of O(h2) where h is a measure of the element size
used to discretize the domain. This means that if one is interested in high accuracy for the
solution and/or its derivatives a possibly impractical large number of elements must be used.
This makes solving large/complex 2D problems or moderately large 3D problems extremely
costly in computations and therefore in time. This fact among others leads to an interest in
methods which offer the choice of convergence at a faster rate, i.e. which converge to a given
accuracy with fewer Degrees of Freedom (DOF). The Spectral Element Method (SEM) is
such a method.
The SEM is a combination of the FEM and the Spectral Method10. It benefits from the
FEM/FVM’s ability to resolve complex geometry while allowing for the possibility of much
faster rates of convergence for smooth solutions due to the usage of higher order basis
functions like the Spectral Methods. The rate of convergence obtained with the SEM for an
infinitely smooth solution is spectral, i.e. O(hp+1), where p is the order of polynomials used

10See [15] for a good introduction to the Spectral Method.

24

2.3 The Spectral Element Method 2 THEORY

as basis functions. The convergence rate O(hp+1) also highlights the important fact that
convergence may be obtained in three ways. Either a fixed polynomial order may be used and
the number of elements increased (corresponding to a decrease in h). Alternatively a fixed
mesh may be created and convergence obtained by increasing p, and lastly a combination of
both.
The SEM is not yet a standard in the industry, however in recent years some companies,
e.g. COMSOL, have begun to open their eyes to the method and have included support for
it to some degree.
Below is listed some of the general pros and cons of the SEM.

• Pros:

– For infinitely smooth solutions the SEM converges spectrally, see (2.33), when the
polynomial order p used for the basis is increased. Thus the possible convergence
rate is only limited by the smoothness of solution.

– The elemental approach allows simulations on complex geometries with ease.
– The method is flexible as both h and p convergence may be used to obtain accurate

solutions.
– The SEM allows direct and efficient differentiation of solutions to obtain approx-

imations of higher order derivatives of the solution.
– The SEM also allows for the use of adaptive methods for mesh refinement (both
h and p wise) which in turn allows for an optimal use of resources in the solution
process.

• Cons:

– The upper bound on the stable time step used with explicit time stepping methods
scale as O(p−2) for the problem at hand, leading to short time steps for high basis
order.

– For solutions which are not infinitely smooth the convergence rate is limited by
smoothness. E.g. for solutions which have discontinuous first derivatives the
convergence rate is limited to the convergence rate of the FEM/FVM.

The problems being investigated in here have characteristics which make the classical second
order accurate FVM/FEM methods seem like suboptimal choices and the SEM like a prime
candidate. The characteristics in question are,

• The problems are time dependent and periodic with a transient initial period which
must be allowed to disappear over a substantial period of time.

• The problems are open flow problems, which are treated by using a large domains to
avoid artefacts introduced by boundary conditions.

• Multiple derivatives of the solution are desired with good accuracy.

• From the physics behind the problem there is no reason to believe that the solution
should not be sufficiently smooth.

25

2.3 The Spectral Element Method 2 THEORY

The first point on the list leads to a high number of iterations in the solution process. This
means that if each iteration is very expensive, due to a large number of degrees of freedom
(DOF) in the system, the total computational cost will become very high for a large number
of iterations. However, as will be touched upon again in section 3.1, a downside to the SEM
is that the scaling of the maximum eigenvalue for the weak advection operator11 used in
solving the NS-equation is bounded by O(p2), where p is the order of the basis used. This
fact leads to a restriction on the time step which scales as O(p−2), leading to very short
stable time steps for high values of p. Thus a trade off between the longest possible time
step allowed, i.e. the number of iterations needed, and the computational effort needed to
solve the equations in each time step exists. This problem has not been investigated here.
The second point requires that the problem must be solved on a large domain to capture the
physics correctly. This is due to the lack of knowledge about the correct boundary conditions
in the directions where the open domain must be truncated. This problem is treated in more
detail in section 3.2. It means that a large number of elements is needed to discretize the
domain which in turn introduces a high number of DOF’s.
The third point means that a very accurate solution is needed to allow for good accuracy in
the derivatives of the solution. This in turn leads to a very high number of DOF’s needed
in areas where the solution changes rapidly unless the spatial convergence rate is fast.
The last point means that it may be profitable to use a SEM approach as it will require
much fewer DOF’s for the same accuracy. This fact is illustrated in figure 2.5 in the following
section.
Based on these considerations one could ask the question of how to choose the discretization
parameters to exploit high order while avoiding the severe time-stepping constraint. As
mentioned this problem has not been treated extensively in this project, and thus a strict
time step limit has simply been endured.

2.3.1 Overview of the Method

The technicalities of applying the SEM to the NS- and continuity-equations for general
2D/3D domains are quite extensive and would require far to lengthy an explanation to
be included in detail here. Instead the interested reader is encouraged to consult [16] for
a full presentation. In order to provide the reader with an overview of the main steps in
applying a nodal continuous Galerkin version of the SEM to a PDE without a lot of technical
details this section contains an outline of its application to a model problem. The outline
is kept very condensed and is merely meant to provide the reader with the basic idea of the
steps involved. For a full introduction to the FEM and SEM the reader is referred to [14]
and/or [17].

The Goal: The goal of any numerical method for solving PDE’s is to determine an ap-
proximate solution ũ(r) to the true solution u(r) for a given problem as well as possible. In
the SEM this is done by considering the weak formulation of the PDE and based on this
determine ũ(r) as a linear combination of orthogonal polynomials, since this allows for the
possibility of a high rate of convergence.

11See [16, chapter 6.]

26

2.3 The Spectral Element Method 2 THEORY

Model Problem: As a model problem we use the stationary problem,

∇2u(r) = g(r), r ∈ (Ω ⊂ R2), (2.36)
u(r) = f(r), r ∈ Ω,

where Ω is the domain, Ω is the domain boundary, u the sought solution, f is a known
Dirichlet boundary condition and g is some known forcing function.

Weak Formulation: The application of the SEM requires that the PDE is recast into its
weak formulation as follows. Multiply (2.36) by a test function v, to be defined later, which
fulfils that it is zero on all Dirichlet boundaries, here v(r)|r∈Ω = 0. Now integrate over the
domain which yields,

∫
(∇2u)v dΩ =

∫
gv dΩ. (2.37)

Utilizing integration by parts on the right hand side of the equation and the restriction of
v = 0 on the boundary gives,

∫
∇u∇v dΩ = −

∫
gv dΩ. (2.38)

Equation (2.38) is called the weak formulation of the problem. It can be shown that a
solution to the weak formulation will also be a solution to the strong formulation. Hence a
function u solving (2.38) will solve the original problem (2.36).

Approximate Solution, Lifting Formulation and Dirichlet Conditions: The next
step is to approximate the true solution u by an approximate solution given by a finite
polynomial expansion ũ, presented in more detail in a following paragraph. One approach
is then to decompose the approximate solution into a function ũH which is zero on the
Dirichlet boundary, and another known function ũD that satisfies the Dirichlet condition,

ũ = ũH + ũD, ũH(Ω) = 0, ũD(Ω) = f(Ω). (2.39)

By substituting the approximate solution (2.39) into (2.38) one obtains,

∫
∇(ũH + ũD)∇v dΩ = −

∫
gv dΩ, ⇔∫

∇ũH∇v dΩ = −
∫
gv dΩ−

∫
∇ũD∇v dΩ. (2.40)

Given a known function, v, the right hand side of (2.40), can be calculated, leaving only the
unknown ũH to be determined.

27

2.3 The Spectral Element Method 2 THEORY

Discretizing the Domain: Just as for the FEM/FVM the domain Ω is divided into a
set of M non-overlapping elements covering all of Ω,

Ω =
M⊕
n=1

Ωn, Ωi ∩ Ωj = ∅ ∀ i 6= j (2.41)

The decomposition is illustrated in figure 2.3a where the domain Ω is divided into four
elements.

Ω: Domain.
Ω: Boundary

Ωn: Element n

Ω
Ω1 Ω2

Ω3 Ω4
Ω

y

x

(a)

Ω1

(b)

Figure 2.3: Illustration of domain decomposition for the application of the SEM.

For each element a set of local nodes, {ri}Nni=1 is defined as illustrated on figure 2.3b. The
position of these nodes depends on the choice of basis and test functions and are determined
such that they maximize the accuracy of the method. For the nodal Galerkin approach using
Lagrange polyonimals as basis and test functions the nodes in 2D for quadrilateral elements
correspond to the tensor-product of the 1D Gauss-Lobatto quadrature points, [16, section
2.3.4.2].
The decomposition of the domain leads to N global nodes with Ni of them being interior
nodes, i.e. the nodes, {(xi, yi)|(xi, yi) ∈ Ω\Ω} and Nb being boundary nodes on Ω. All the
global nodes can also be viewed in terms of Nn local nodes on each of the n elements.

The Sought Solution: As mentioned the approximate solution to (2.38), ũ ≈ u is a finite
polynomial expansion of orthogonal polynomials,

ũ = ũH + ũD =
Ni∑
k=1

ûHk φk(r) +
N∑

k=Ni+1
ûDk φk(r) =

N∑
k=1

ûkφk(r), (2.42)

where {ûHk }
Ni
k=1 is a set of undetermined coefficients, {ûDk }

Nb
k=1 a set of known coefficients

determined by the Dirichlet boundary condition and {φk(r)}Nk=1 a set of global continuous
piecewise polynomial spatial basis functions belonging to an appropriate function space.
For the model problem the appropriate function space is that of all continuous piecewise
polynomials of order at most p.
The use of polynomials of order p is the crucial difference between the FEM and the SEM.
In the classical Finite Element Method only first order polynomials, i.e. p = 1, are used for
all local basis functions which leads to the second order convergence, O(h2).

28

2.3 The Spectral Element Method 2 THEORY

The set {φk(r)}Nk=1 is chosen such that it only has a non-zero value on a single element plus
at most the neighbours of this element. This choice means that the global basis functions
may be represented by the direct sum of a set of local basis functions on each element,
{φ(n)

i (r)}Nni=1 as,

φk(r) =
M⊕
n=1

Nn∑
i=1

φ
(n)
i (rk)φ(n)

i (r). (2.43)

Each of these local basis functions are polynomials of order up to p. The fact that the
global basis functions may be decomposed into local basis functions on each element allows
for great flexibility in the shape of the domain as each element may be treated individually.
This means that integration etc. may be done on each element independently of the other
elements and the final resulting system can be constructed as a direct sum of the smaller
elemental systems.

Building a System: The next step is to create a discrete system from which the unknown
coefficients {ûk}Nik=1 may be determined. Replace ũH in (2.40) by its series expression. For
each interior node, j ∈ {1, 2, ..., Ni}, replace v by the test function vj = φj to obtain Ni

equations of the form,

∫
∇

 Ni∑
k=1

ûkφk(r)

∇φj(r)dΩ = −
∫
g(r)φj(r)dΩ−

∫
∇ũD∇φj(r) dΩ, j ∈ {1, 2, ..., Ni},

(2.44)

where the right hand side only consists of known functions which may be evaluated analyt-
ically or numerically. Rewriting by utilizing that ûk are constants we obtain,

Ni∑
k=1

ûk

∫
∇φk(r)∇φj(r)dΩ = −

∫
g(r)φj(r)dΩ−

∫
∇ũD∇φj(r) dΩ, j ∈ {1, 2, ..., Ni}.

(2.45)

The system of equations given in 2.45 now consists of Ni equations with Ni unknowns and
may be written as a linear system SûH = ĝ + ûD.

Solving the System: Now the problem becomes solving a linear matrix-vector system of
the form,

Aû = b̂, (2.46)

to determine the unknown coefficients û. This may be done using ones favourite linear solver
which should be configured to exploit any properties of the system matrix, e.g. sparsity
or symmetry. The solution process may be performed by directly solving the system of
equations or using an iterative method to obtain an approximate solution12.

12For parallel solution of the system an iterative method is the only efficient approach.

29

2.3 The Spectral Element Method 2 THEORY

Accuracy of Solution: The error analysis is very involved but the key point is that the
error, ε = u− ũ, in the solution is bounded by expression of the form,

‖ ε ‖≤ Chµ−1 ‖ u ‖, (2.47)

where, µ = min(k, p+1), k the smoothness of the solution and p the order of the polynomials
used for the expansion. Thus if the solution is sufficiently smooth the convergence rate is
spectral in p, see (2.33). This expression again shows that the convergence may be controlled
by the element size h, the polynomial order of the basis functions p or both.

Illustrating Convergence: In order to illustrate the rate of convergence of the SEM
stated in (2.47), consider the model problem (2.36) on the domain Ω = (x, y) ∈ [0, 1]× [0, 1],
with,

g(x, y) = −50π2 sin(5πx) sin(5πy), f(x, y) = utrue(x, y), (x, y) ∈ Ω, (2.48)
utrue(x, y) = sin(5πx) sin(5πy).

where utrue is the true solution which can easily be verified by insertion. The problem
(2.36) has been solved with the SEM framework FEniCS, see [17], using the nodal Galerkin
approach outlined above. A minimal python script for the FEniCS solver is provided in
appendix A.5.4.
First, the problem was solved for an increasing number of elements, i.e. decreasing value
of mesh size h, with different fixed polynomial orders. Secondly, it was solved for a fixed
number of elements while increasing the polynomial order. The error between the true
solution and the solution obtained using the SEM measured in L2-norm was then calculated
and the results presented in figure 2.4.

10−2 10−1
10−9

10−7

10−5

10−3

10−1

Element size measure: h

Er
ro
r:
‖
ε
‖ L

2

p = 1
p = 2
p = 3
p = 4
O(h2)
O(h3)
O(h4)
O(h5)

(a) Convergence rate for different
polynomial order along with tend-
ency lines.

0 2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

Basis Order: p

Er
ro
r:
‖
ε
‖ L

2

Error
O(exp(1.3p))

(b) Convergence plot for increasing
polynomial order and fixed mesh

Figure 2.4: Illustration of convergence rates for the SEM solution to the problem
(2.36) with the functions g and f given in (2.48).

30

2.4 Uncertainty Quantification 2 THEORY

Figure 2.4a shows the error versus element side length. From here it can be seen that the
rate of convergence is bounded as O(Chp+1) for each fixed p as it is stated in (2.47). From
figure 2.4b the spectral convergence is observed as h is kept fixed and p allowed to increase.
A crucial point is now whether it is more cost efficient to solve the problem using many
elements, i.e. low h or high basis order, i.e. high p.
The degrees of freedom in the system (2.46) needed to obtain a desired accuracy in the
solution is one important measure for this. Based on this measure an illustration of the
clear advantage of increasing p for the problem at hand is provided in figure 2.5.

102 103 104 105
10−8

10−6

10−4

10−2

100

Degrees of Freedom

‖
ε
‖ L

2

p = 1
p = 2
p = 3
p = 4

(a)

Figure 2.5: Illustration of degrees of freedom versus the error measured in L2-
norm, ‖ ε ‖L2=‖ utrue− ũ ‖L2 . Each graph shows how the error obtained using a
given polynomial order on each element while increasing the number of elements.
A black line has been introduced to mark the error ‖ ε ‖L2= 10−3.

Figure 2.5 shows a plot of the error versus the degrees of freedom along with a black line
denoting an error of ‖ ε ‖L2= 10−3. From here it is seen that increasing p decreases the
degrees of freedom needed to obtain a certain accuracy significantly, supporting utilizing the
SEM over the classical FEM for the problem at hand.

2.4 Uncertainty Quantification

In most areas of science throughout history the modelling approach has to a large extend
been deterministic in nature. The world however is full of uncertainties and thus the reality
being modelled is far more stochastic then deterministic. When developing new technology
there are uncertainties in experiments. When manufacturing products there are uncertain-
ties in every production step. When using the products for their real world purposes the
environment is far from as perfect as the idealization used in models. These observations all
point to the introduction of uncertainties in the modelling process.
One way of handling uncertainties in the modelling process is to identify the parameters
of the model which contain uncertainties. Then perform a large number of realizations

31

2.4 Uncertainty Quantification 2 THEORY

using e.g. the Monte Carlo approach as outlined in section 2.4.2. Although very simple to
understand and execute this approach may be very expensive to use. As a very relevant
example we may choose the problem of the cylinder near a moving wall. This problem is
expensive to solve as roughly ten hours of calculation and post processing time is needed
per simulation. Thus if good accuracy on the statistics is desired the Monte Carlo approach
becomes impractical with the resources available for this work. Therefore it is interesting to
investigate the possibility of a much more efficient method for smooth problems called the
stochastic collocation method explained in section 2.4.4. This method is based on generalized
Polynomial Chaos (gPC) as explained in section 2.4.3.

2.4.1 Statistical Quantities

Given some quantity that can be described by the function g, which among other depends
on a random variable X. It is often of interest to obtain some information about different
statistical quantities of g which depend on X. The statistical quantities often considered
in application, and hence also considered in the present work, are the mean and variance.
These are also known as mean,

µg(X) =
∫
IX

g(X)fX(x)dx, (2.49)

and variance,

σ2
g(X) =

∫
IX

(g(X)− µX)2fX(x)dx. (2.50)

HereX is the random variable, which for the purpose of this work is taken to be the Reynolds
number, Re. Examples of quantities g(X) considered here are the Strouhal number, St and
Base pressure coefficient Cbp. fX(x) is the probability density function and IX is the domain
over which X has support.
For the reader unfamiliar with probability theory the basic concepts are outlined in chapter
1 of [4].

2.4.2 The Monte Carlo Approach

A widely used way of handling uncertainty in a model is by sampling using the Monte Carlo
method as outlined below, see also [4, page 53],

1. A set ofM independent identically distributed random numbers, x(i), i ∈ {1, 2, ...,M},
are generated according to a chosen probability distribution.

2. For each of the M numbers the model equations are solved to obtain the quantity of
interest.

3. The required solution statistics are estimated.

32

2.4 Uncertainty Quantification 2 THEORY

A clear strength of the Monte Carlo method is that it is non-intrusive, meaning that it
may be used with existing deterministic codes without any modification. Unfortunately the
Monte Carlo method suffers from the problem of slow convergence mentioned earlier. As
may be shown by using the Central Limit Theorem [4, Theorem 2.26] the error convergence
rate of the method is O(M−

1
2). This means that in order to reduce the error by one order

of magnitude roughly one hundred times as many simulations must be performed. For a
model with long execution time, as is the case for the problems considered in the present
work, this fact quickly becomes a severe bottleneck. This makes the Monte Carlo approach
nigh impossible to apply for certain problems.
It should be mentioned, however, that the convergence rate of the Monte Carlo method
is independent of the number of uncertain parameters. Hence whether one or one hundred
parameters in a system contain uncertainty the convergence rate is the same. To the authors
knowledge this is a property not shared by any other method. This means that for systems
with a large number of uncertain parameters the Monte Carlo approach is very good despite
its slow convergence.

2.4.3 generalized Polynomial Chaos

This section is an extract from chapter 5 of [4] modified to the needs for the present work.
For the work done here only a single parameter is allowed to contain uncertainty. This means
that only a univariate problem is considered and thus all multivariate theory has been left
out. Let X be a continuous random variable with a known probability density function
fX(x) and finite moments,

E(|X|2m) =
∫
|x|2mfX(x)dx <∞, m ∈ {N}, (2.51)

with N = {0, 1, ..., N}. One can then define the gPC basis functions as the orthogonal
polynomials which satisfy,

E(φn(X)φm(X)) =
∫
φm(x)φn(x)fX(x)dx = γnδmn, m, n ∈ {N}, (2.52)

where δnm is the Kronecker delta, with,

γn = E[φ2
n(X)], n ∈ {N}. (2.53)

This construction results in φm(x) being orthogonal polynomials for x ∈ R with respect
to the weight function fX(x). This means that the choice of polynomials depends on the
distribution of the random variable X.
The distributions considered in the project are the Gaussian and uniform distributions13.
For these distributions the polynomial bases becomes the Hermite and Legendre polynomials
respectively. The distributions as well as the Rodriguez formulas and recursion relations for
the corresponding polynomials along with the polynomial orthogonalization constants are
given by,

13The reasoning behind choosing these distributions is given in section 8.4.

33

2.4 Uncertainty Quantification 2 THEORY

• Gaussian PDF N (0, 1), Hermite polynomials:

fX,G(x) = 1√
2π

e−
x2
2 , (2.54)

Hn(x) = (−1)ne
x2
2
dn

dxn
e−

x2
2 , (2.55)

Hn+1(x) = xHn(x)− nHn−1(x), (2.56)∫ ∞
−∞

Hn(x)Hm(x)fX,G(x)dx = γnδn,m = n!δn,m. (2.57)

• Uniform PDF U(−1, 1), Legendre polynomials:

fX,u(x) = 1
2 , (2.58)

Ln(x) = 1
2nn!

dn

dxn

[
(x2 − 1)n

]
, (2.59)

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), (2.60)∫ ∞
−∞

Ln(x)Lm(x)fX,u(x)dx = γnδn,m = 2
2n+ 1δn,m. (2.61)

The orthogonality properties of the gPC with respect to the PDF of X ensure that the
polynomials may be used as a basis for functions g in terms of X. The following definition [4,
Definition 5.4] is what is understood as a Strong gPC approximation of a function g of the
random variable X with a known PDF.

Strong gPC approximation: Let g(X) be a function of a random variable X whose PDF
is fX(x) and support is IX . A general polynomial chaos approximation in a strong sense is
gN (X) ∈ PN (X), where PN (X) is the space of polynomials of X of degree up to N ≥ 0,
such that ‖ g(X)− gN (X) ‖→ 0 as N →∞, in a proper norm defined on IX .

The N ’th order orthogonal projection of g(X) ∈ L2
fX(x)(IX) onto {φk}Nk=1 ∈ L2

fX(x)(IX)
given in (2.28) is a strong gPC approximation, and may be written as,

PN [g] =
N∑
k=0

ĝkφk(X), ĝk = 1
γk

E(g(X)φk(X)), φk ∈ L2
fX(x)∀k. (2.62)

This means that the projection has the properties (2.29) and (2.30) which leads to PN [g]
converging spectrally to g(X). One can further conclude that the error introduced by the
finite continuous orthogonal projection of g is due to the truncation of the modes with
n > N .
Using (2.62) directly to approximate g(X) does not make sense since evaluating the ĝk’s
requires full information about g(X) which is what we seek to approximate. Therefore in
order for this construction to be usable for determining an accurate approximation of the
functional relationships and statistics for g with only a limited knowledge of g(X) the ĝk’s
must be evaluated based only on this limited knowledge. Here the stochastic collocation
method (SCM), which makes use of numerical quadrature or interpolation, may be applied.
This is described in the next section.
The statistics of interest, i.e. mean and variance, may be approximated from very cheaply
from PN [g] utilizing the orthogonality of the basis functions as follows,

34

2.4 Uncertainty Quantification 2 THEORY

Mean:

µg = E(g(X)) ≈ E(PN [g](X)) =
∫
IX

(
N∑
k=0

ĝkφk(X)
)
fX(x)dx = ĝ0, (2.63)

Variance:

σ2
g ≈ E((PN [g](X)− µg)2) =

∫
IX

(
N∑
k=1

ĝ2
kφk(X)2

)
fX(x)dx =

N∑
k=1

ĝ2
kγk. (2.64)

It is noted that for these results to hold in the form written above the polynomial basis
should not be normalized.

2.4.4 Stochastic Collocation Approach

Based on the gPC theory outlined above there are now two general ways of utilizing the
methods of UQ. The first is to build the uncertainty of the parameters directly into the model
equations. This is referenced as the stochastic Galerkin method presented in [4, Chapter
6]. The second is to utilize a deterministic model and sample the parameters which contain
uncertainties cleverly. This method is referred to as the stocastic collocation method (SCM),
see [4, Chapter 7].
The stochastic Galerkin method requires the construction of a new model problem and
thus also a new solution procedure. This can be a very cumbersome and daunting task for
complex problems and luckily it is not the only way to utilize UQ. Instead one may use the
stochastic collocation method, as this is a completely non-intrusive method. This moves the
UQ from the solution phase to the pre and post processing phases and the solution of the
model equations may therefore be performed with existing deterministic methods and codes.
Consider a model problem consisting of a PDE system with appropriate IC’s and BC’s
depending on a parameter X suffering from uncertainty.

d

dt
u(r, t,X) = L(u), (r, t,X) ∈ Ω× [0, T]× IX , (2.65)

B(u) = 0, (r, t,X) ∈ Ω× [0, T]× IX , (2.66)
u = u0, (r, t,X) ∈ Ω× [t = 0]× IX , (2.67)

where L and B are spatial operators, Ω the spatial domain, T a final time and IX the domain
of support for X. The problem (2.65)-(2.67) now depends on the stochastic variable X which
is problematic as this changes the nature of the problem. But instead of having to account
for the dependency on the variable X over all of IX the SCM utilizes knowledge about the
distribution of X to choose a set of collocation nodes ΘM = {Xj}Mj=1 at which the model
problem must be solved. The nodes should be chosen in accordance with the basis {φn}
determined from the distribution of X to provide the basis of an accurate evaluation of the
expansion coefficients ĝk.
This reduces the problem (2.65)-(2.67) to a set of M problems of the form,

35

2.4 Uncertainty Quantification 2 THEORY

d

dt
u(r, t,Xj) = L(u), (r, t) ∈ Ω× [0, T], j ∈ {1, 2, ...,M} (2.68)

B(u) = 0, (r, t) ∈ Ω× [0, T], (2.69)
u = u0, (r, t) ∈ Ω× [t = 0]. (2.70)

Thus the stochastic problem (2.65)-(2.67) has been reduced to M deterministic problems of
the form (2.68)-(2.70). These problems may then be solved using already existing determ-
inistic solvers and the UQ process has thus been moved to,

• Pre Processing:

– Determine the distribution of X.
– Chose the correct basis φn based on the distribution of X.
– Determine the set of nodes ΘM = {Xj}Mj=1 from the choice of basis {φn}.

(One should use the zeros of {φM+1} for high accuracy quadratures).

• Post Processing:

– Calculate the value of the quantity of interest at each node, g(Xj).
– Use g(Xj) to determine the coefficients ĝk, k ∈ {1, 2, ...,M} using an appropriate

method.
– Determine PN [g] based on the ĝk’s to obtain a functional relationship of X and

calculate any desired statistics.

From the process described above a few problems remain to be addressed. The first is how to
determine the distribution of X. This requires either experimental knowledge of the problem
being modelled or a well founded guess and thus there is no universal answer. The next is
the choice of ΘM which allows accurate determination of the ĝk’s. There are two ways to
do this, one is interpolation and the other discrete projection, see [4, page 79]. In this work
interpolation is chosen which leads to the following problem,

Interpolation: The idea is to approximate the continuous projection of g by calculating
g̃k ≈ ĝk based solely on the knowledge of g(X) at the nodes Xj , j ∈ {0, 1, .., N} which yields
a "discrete" projection. Hereby one obtains,

PN,D[g] =
N∑
k=0

g̃kφk(X) ≈ PN [g]. (2.71)

Using interpolation to obtain the g̃k’s means requiring that PN,D[g](Xj) = g(Xj) ∀ j. This
leads to a system of M equations which may be written as,

AT g̃ = g, (2.72)

36

2.4 Uncertainty Quantification 2 THEORY

with Ak,j = φk(Xj), 0 ≤ k ≤ N, 1 ≤ j ≤ M, being a Vandermonde-like matrix, g̃ =
(g̃0, g̃1, ..., g̃N)T the vector of expansion coefficients and g = (g(X0), g(X1), ..., g(XM))T . In
order to be able to solve the problem uniquely it must be well posed i.e. one must require
that M = N . For high accuracy in our univariate case the nodes ΘM should be chosen as
the zeros of φN+1, which at the same time fulfils the demand that M = N .
Solving this system yields the expansion coefficients and thus PN,D[g] may be constructed
and statistics calculated.
The difference between the continuous orthogonal projection and the interpolation based
"discrete" projection is termed the aliasing error and is caused by the finite discrete sampling
of the continuous function g.

37

3 DISCRETIZING THE PROBLEM

3 Discretizing the Problem

This chapter provides an overview of the temporal and domain discretizations used for the
model problems to enable the generation of numerical solutions. Section 3.1 presents the
time stepping scheme used for solving the model equations (1.11)-(1.12) with Nektar++.
Section 3.2 covers the discretization of the domain.

3.1 The Time Stepping Scheme

The model problems are solved using the incompressible Naiver-Stokes solver IncNavierS-
tokesSolver from the Nektar++ framework. Here the Spectral Element Method is used
for the spatial discretization, see [16] for a thorough derivation and explanation of the SEM
applied to the NS-equation including numerous optimization procedures for increased per-
formance. The temporal discritization is done using the velocity correction scheme presented
below.

The Velocity Correction Scheme: The incompressible Navier-Stokes solver implemen-
ted in Nektar++ uses the velocity correction scheme14. It is outside the scope of this
thesis to go into details with the derivation of the scheme as it is not the focus of the work
presented here. For these details the reader is referred to the work of Karniadakis et. al.
in [18] and to [16, section 8.3].
The scheme is a splitting scheme which means that the pressure and velocity is handled
separately. The scheme leads to second order accuracy in time for both pressure and velocity,
see [16, section 8.3.4].
As seen below the non-linear advection term u · ∇u is handled explicitly in time while the
diffusion term, ∇2u is handled implicitly. This means that the stability of the scheme with
regards to the size of the time step is limited by the way the advection step is treated.
The solution at time step n is denoted un and pn for the velocity field and pressure field
respectively.
The scheme is as follows:

1. Explicit treatment of first intermediate velocity and advection term:

ũ−
J−1∑
q=0

αq
γ0
un−q = ∆t

J−1∑
q=0

βq
γ0

[−u · ∇u]n−q,

2. Poisson Equation is solved to time step the Pressure:

∇2pn+1 = (γ0
∆t)∇ · ũ,

with a higher order pressure boundary condition,

∂pn+1

∂n
= −

∂un+1

∂t
+ ν

J−1∑
q=0

βq(∇×∇× u)n−q +
J−1∑
q=u

βq[u · ∇u]n−q
 · n

14This version of the scheme is taken from http://www.nektar.info/wiki/3.3/Tutorial/
IncNavierStokesSolver/VCS

38

http://www.nektar.info/wiki/3.3/Tutorial/IncNavierStokesSolver/VCS
http://www.nektar.info/wiki/3.3/Tutorial/IncNavierStokesSolver/VCS

3.1 The Time Stepping Scheme 3 DISCRETIZING THE PROBLEM

3. Explicit evaluation of second intermediate velocity field:

˜̃u = ũ− ∆t
γ0
∇pn+1.

4. Determining the velocity at new time step implicitly from the diffusion
step: (

∇2 − γ0
∆tν

)
un+1 = −

(
γ0

∆tν

)
˜̃u.

Above J is the integration order used, û and ˆ̂u are two intermediate states for the velocity,
ν = µ

ρ is the kinematic viscosity, ∆t is the time step and γ0, αq and βq are sets of constant
which depend on J .
For all simulations second order integration where used. The coefficients γ0, αq and βq for
the second order scheme used are given in table 7.1.

Name γ0 α0 α1 β0 β1
Value 3/2 2 - 1/2 2 -1

Table 3.1: Table displaying the γ0, αq and βq values for the second order stiffly
stable time integration scheme.

Choosing the time step: As seen above the diffusion step is handled implicitly which
makes the advection step the limiting factor for the time step size. Here a CFL-like condition,
see [19, section 10.7], must be met in order to assure the stability of the method. It is outside
the scope of this work to go into details about the stability analysis of time stepping schemes
but the following results from [16, section 6.3.1] have been used to estimate a largest stable
time step.
The stability condition for time stepping the advection operator may found by considering
the maximum eigenvalue of the weak advection operator, as explained in [16, section 6.3.1].
The requirement for a stable time step is that the time step multiplied by this eigenvalue
remains in the stability region Ωstable of the method, i.e. ∆t · λmax ∈ Ωstable. This leads to
the following limit,

∆t ≤ αim
C(V, g)P 2 , (3.1)

where P is the polynomial order of the basis used for the SEM spatial discretization, C
is a function depending on V which is the advection velocity, and g which is a geometric
factor depending on the mesh. Finally αim is the intersection of the stability region for
the method used with the imaginary axis15. The P 2 dependence of the eigenvalue is shown
experimentally in [16].
C(V, h) is highly problem dependent [16, page 317] and it is suggested in [16] to estimate
C(V, g) by an expression which may be formulated as C(V, g) ≈ 0.2 max |V|

g
16. This provides

the estimate for the maximum time step as,
15The reader may consult [19, chapter 7] for a discussion of stability regions for numerical time stepping

methods.
16This is the suggested value for a 1D problem but since no value is suggested for 2D it is the value used

in the present calculations.

39

3.2 The Discrete Domain 3 DISCRETIZING THE PROBLEM

∆t ≤ αim
0.2 max |V|P 2

g

. (3.2)

Equation (3.2) has been used as a guideline for identifying a stable time step. Using the
second order method in the velocity correction scheme presented above one finds, αim ≈ 0.15.
The order of basis functions used are P = 10 and the smallest element side length is around
g = 0.1. Doing some initial simulations at stable time step it was found that the highest
speed of the fluid was below max |V | = 2. Plugging these values into 3.2 yields a time step
value of,

∆t ≈ 0.00035. (3.3)

Based on this estimate a set of experiments were then performed to investigate the stable
time step for the highest resolution mesh, closest to the wall and at Reynolds number,
Re = 300. Through this investigation it was found that the time step of ∆t = 0.0005 was
the largest stable time step.
As a side note this discussion of choosing a stable time step highlights a crucial weakness
of the SEM once again. For the classical FEM, P = 1, which means that the allowed time
step for a given mesh is much larger. However the number of elements needed when using
the classical FEM to obtain the same accuracy as for the SEM can be impossibly big which
makes solving the equation at each time step extremely expensive.

3.2 The Discrete Domain

Another necessary step before simulations can be performed is to determine a suitable size
of the domain of interest and how to discretize it. As the model is of an open flow problem
a large domain is needed to assure that blockage is not introduced by the far-field boundary
conditions17.

Domain Size: In order to avoid blockage the domain for the cylinder in free flow has
been chosen to extend over the range: x× y = [−10D, 30D]× [−15D, 15D] where D is the
cylinder diameter. This choice was made based on an investigation performed by Huang
and Sung [8] which showed that no significant change in the solution could be observed if
the domain was increased further.
For similar domain parameters Huang and Sung found that both the Strouhal number, St,
and base pressure coefficient, Cbp, agree well with previous simulation results presented in [10]
and [7]. A series of simulations validating the choice of domain size have been performed,
and the results are presented in chapter 7.2.
Based on the choice of domain for the cylinder in free flow, the domain for the cylinder near
a moving wall is chosen to extend over x × y = [−10D, 30D] × [0, 20D] to assure that the
half open flow is simulated accurately.

17Blockage is a term for the fact that the far-field boundary conditions introduce artificial changes in the
flow which a real world open flow would not. Another approach is to construct BC’s which allow a smaller
domain, however this has need been investigated here.

40

3.2 The Discrete Domain 3 DISCRETIZING THE PROBLEM

Mesh Construction: The last step is to create a mesh which captures the features of the
chosen domain on which to solve the discretized model problems.
As stated above the open flow property dictates either sophisticated boundary conditions
or a large domain which may lead to a huge number of DOF’s. This makes the problem
very expensive to solve. However initial investigations showed that in most of the domain
upstream of the cylinder both the pressure and velocity are almost constant in time. For the
free stream problem this is also true both above and below the cylinder. When introducing
the wall it remains true above the cylinder away from the wall. The areas of almost constant
pressure and velocity are illustrated on figure 3.1,

Figure 3.1: Domain for open flow problem with areas of almost constant velocity
and pressure highlighted.

The fact that the pressure and velocity are almost constant in these areas means that far
fewer DOF’s are needed to capture the solution with good accuracy. This fact lead the
author to construct hybrid meshes consisting of both quadrilateral and triangular elements
in order to save as many DOF’s as possible in areas where the solutions only vary slightly.
The choice of using hybrid meshes makes it easy to vary the DOF’s throughout the domain
to get a good distribution which captures the solution without wasting calculation time.
Illustrations of hybrid meshes used in the simulations are presented in figure 3.2.

(a) (b)

Figure 3.2: Examples of the hybrid meshes used. (a) full domain. (b) zoom
close to cylinder and the interesting part of the domain.

41

3.2 The Discrete Domain 3 DISCRETIZING THE PROBLEM

From figure 3.2 it is seen that the area around and behind the cylinder is densely meshed
while the area away from the cylinder contains only few elements. This design choice saves
DOF’s while assuring high resolution in areas where the solution changes rapidly.

Curvilinear Elements: The Nektar++ framework supports curvilinear elements (i.e.
elements with curved edges) to allow for better representations of curved geometries with
fewer elements. This is important for maintaining the spectral accuracy of the methods
along curved geometry. If only linear polynomials were used to resolve the cylinder a massive
amount of elements would be needed to approximate the shape of the cylinder accurately.
However introducing a lot of elements defeats the purpose of using the SEM. Thus in order
to represent the geometry of the cylinder with high accuracy without a large number of
elements, curvilinear elements are used. All meshes generated have therefore been modified
to use curvilinear elements of appropriate order along the cylinder.
Figure 3.3 illustrates the improvement in resolving the cylinder shape obtained from using
third order polynomials compared to using first order polynomials, with the same number
of elements.

(a) First order polynomials. (b) Third order polynomials.

Figure 3.3: Illustration of advantage of using higher order polynomials to mesh
a circular object.

From the figure it is easy to see the improvement in the circular shape as the polynomial
order is increased.
Based on the considerations stated above all simulations have been performed using tenth
order curvilinear elements around the cylinder to assure a highly accurate resolution of the
cylinder.

Example of Underresolved Geometry: A small illustration of the problem with un-
derresolving the geometry is presented here. Figure 3.4 illustrates how underresolving the
cylinder by using low order polynomials to mesh it causes problems. The figure shows a close
up of the cylinder surface downstream of the flow. In figure 3.4a third order polynomials
have been used to approximate the cylinder. Here small vortices are seen to have formed
along the cylinder. These vortices are formed at the intersection between elements along the

42

3.2 The Discrete Domain 3 DISCRETIZING THE PROBLEM

cylinder. This is due to the errors in resolving the problem domain to sufficient accuracy
introduced by the low order polynomial approximation of the cylinder.

(a) Cylinder resolved using third
order polynomials. Small vortices
are clearly seen to have formed
on the upper half of the cylinders
backside.

(b) Cylinder resolved using tenth
order polynomials. No small vor-
tices are observed.

Figure 3.4: Illustration of vorticity contours at an instant in time for flow on
a zoom on the domain behind the cylinder. The parameters used for both
simulations are Re = 280, D/G = 5/3.

Figure 3.4b shows the same extract from the domain at approximately the same point in
time. For this simulation tenth order polynomials have been used to mesh the cylinder. Here
it is seen that no small vortices are observed as the error of using polynomials to approximate
the cylinder surface has become insignificant.

43

4 SOFTWARE

4 Software

This chapter provides an overview of the software used for the pre processing, simulations
and post processing of simulation data preparing it for final data analysis. This includes
both software written by the author and open source software. The chapter is included to
provide the reader with enough information to understand and use the developed software
and can be skipped without loss with respect to understanding the results presented in the
following sections.
Section 4.1 provides an overview of the software used in the pre processing phase. Section 4.2
gives a brief description of the frameworkNektar++ used to perform the CFD calculations,
as well as to calculate the needed derived quantities and norms. Lastly section 4.3 describes
the different pieces of software written for post processing the data and performing the UQ
analysis.

4.1 Pre Processing

As described in section 3.2 a mesh which provides the basis for correct and sufficiently ac-
curate results is needed in order to perform CFD simulations using SEM based software.
For any none-trivial domains the requirement of a mesh automatically creates the need for
meshing software. All mesh generation for the project have been performed using the recog-
nised open source mesh generator Gmsh for which thorough documentation is available in
the Gmsh reference manual [20]. Gmsh uses the file type .geo for the geometry describing
the problem domain and the type .msh for the final mesh of the domain. The user creates a
geometry in a .geo file either directly in a text editor or using the Gmsh GUI18. One then
uses Gmsh to convert the geometry to a .msh file intended for use in simulation software.
A .geo file containing a the geometry for a mesh of the domain with a cylinder near a wall
with instructions on how to generate the mesh file is provide in appendix A.1.
In order to reconstruct the meshes the reader simply have to:

1. Download and install Gmsh.

2. Load the .geo files into the program.

3. Set the order of the elements to allow for curved elements along non-straight domain
boundaries.

4. Create the mesh and save it as a .msh file as explained in the appendix.

For more information about Gmsh and how to accomplish the above mentioned steps the
reader is referred to the Gmsh reference manual [20].

Converting Gmsh to Nektar++: In order to use the mesh generated with Gmsh it
must be converted to the format used by Nektar++. This is done using the build in
mesh converter in Nektar++ called MeshConvert. In a Linux terminal the converter is
executed with the following command,
"/path/to/nektar++"/builds/utilities/PreProcessing/MeshConvert/MeshConvert InputName.msh OutputName.xml

18GUI is an abbreviation for Graphical User Interface.

44

4.2 Simulation 4 SOFTWARE

This produces an .xml file with the name OutputName.xml. The file contains the mesh
in a format Nektar++ understands. The last step before executing the solver is to add
problem related information as well as solver related information to the .xml file.
This information includes, what fields are to be calculated (i.e. velocity in 1D, 2D or 3D
and pressure), the order of the expansion used for each field, general solver information,
simulation and solver parameters, boundary conditions and initial conditions. An example
of an input .xml used for the simulations in this project with the geometry removed may
be found in appendix A.2.

4.2 Simulation

As mentioned multiple times already all simulations have been performed using the SEM
based framework Nektar++ [5] written in C++. Appendix A.3 contains an overview of
version 3.3 of the Nektar++ software framework. From theNektar++ framework the solver
used is the unsteady incompressible Navier-Stokes solver called IncNavierStokesSolver for
which tutorials, examples and full lists of solver choices may be found on
http://www.nektar.info/wiki/3.3/UserGuide/Tutorial/IncNavierStokesSolver.

Solver Specifics: Below is a list of the solver specific choices used for all simulations for
easy reference.

• Basis functions: Choice = MODIFIED.
This choice corresponds to a modal basis instead of a nodal basis.

• Projection Type: Choice = Continuous.
The Continuous Galerkin approach is used for the spatial discretization.

• Expansion Order: Choice = 10.
Tenth order polynomials were used for the local polynomial expansion.

• Equation Type: Choice = UnsteadyNavierStokes.
This choice corresponds to solving the full unsteady incompressible Navier-Stokes equa-
tion.

• Solver Type: Choice = VelocityCorrectionScheme.
Choosing the velocity correction scheme as the method for solving the equation.

• Evolution Operator: Choice = Nonlinear.
The way the non-linear convection/advection term is handled.

• Time Integration: Choice = IMEXOrder2.
The second order implicit-explicit scheme for time stepping.

Using IncNavierStokesSolver: All Nektar++ solvers are constructed to take a single
.xml file as the only input argument. This is the file described in the pre processing step
containing all information about the simulation. To execute the solver on a single processor
in a Linux terminal use the following command,
"/path/to/nektar++"/builds/solvers/IncNavierStokesSolver/IncNavierStokesSolver Input.xml

To execute the solver in parallel on X processors using MPI use the following command,
mpirun -n X "/path/to/nektar++"/builds/solvers/IncNavierStokesSolver/IncNavierStokesSolver Input.xml

45

4.3 Post Processing 4 SOFTWARE

4.3 Post Processing

Software to create the mesh and perform the CFD-simulations are now in place and the
velocity field, in the x- and y-direction and pressure, (u, v, p), on a domain of interest may
be obtained. The next step is, given the fields (u, v, p), to perform the necessary calculations
to obtain desired quantities of interest. This requires a number of post processing steps which
must be performed for all simulations. In order to perform these steps efficiently a series
of programs and scripts have been written in Shell Script, C++ and Python utilizing
the open source program Paraview’s19 python module. In addition several post processing
programs provided with Nektar++ have been put to good use. The final analysis of the
postprocessed data are performed in Paraview’s GUI environment.
Here follows an explanation of the programs and scripts written for post processing. The
full scripts, including details on their usage, are included in appendix A.5.

Shell Scripts

A series of Linux based shell scripts20 were written to speed up and automatize data pro-
cessing. Below, each script is listed and a short description is provided. The full scripts are
provided in appendix A.5.1.

• FullDataTreatment.sh: This shell script executes all other shell scripts in the right
order to perform all post processing calculations and organise the output.

• NektarPP.sh: Processes a series of .chk data files from a simulation to compute the
following:

– Vorticity: The shell scrip calls the Nektar++ program CalcVorticity to cal-
culate the vorticity of the velocity field u = (u, v).

– Vorticity Gradient: The shell scrip calls the Nektar++ program CalcGrad
to calculate the gradient of the vorticity, i.e. ωx and ωy.

– Vorticity Hessian: The shell scrip calls the Nektar++ program CalcGrad
twice to calculate the Hessian of the vorticity, i.e. ωx,x, ωx,y, ωy,x, and ωy,y.

Finally the Nektar++ function FldToVtk is called to convert the resulting .fld files
to .vtu (XML) files for post processing with Paraview.

• DomainCropping.sh: The script calls the C++ program DomainCropper for
each .vtu data file. As the name suggests DomainCropper crops the domain to
only include the area which contains data of interest to the analysis.

• ZeroContour_CriticalPoints.sh: Processes a series of .vtu data files. For each file
the python script ContourAndCriticalPoints.py is called to calculate the nullclines
of ωx and the critical points for the vorticity, ωx = ωy = 0.

• VorticityExtremaType.sh: Processes a series of .vtu data files. For each file the
python script CriticalPointIdentification.py is called to calculate the type of each
of the critical points.

19A reasonable manual for Paraview may be found at [6].
20Shell Scripts are programs which may be executed directly in a Linux terminal.

46

4.3 Post Processing 4 SOFTWARE

• CriticalPointTrace.sh: Processes a series of .vtu data files. For a batch of .vtu
files the python script VTUFormatPointDataCombiner.py is called to combine
all critical points in one file to create a trace of the critical points position in time.

Python Scripts

The python scripts utilizes the Paraview python library with access to much of the pro-
grams GUI functionality. This means that much of the data manipulation can be performed
efficiently by utilizing Paraviews code base. All scripts along with descriptions are provided
in appendix A.5.2.
All python scripts assume that the user has installed the argparse package and Paraview
and has enabled access to the associated python libraries21.

• ContourAndCriticalPoints.py: This script processes a .vtu file and extracts the
coordinates and field information along the ωx = 0 contour and the critical points for
vorticity i.e. {(x, y) | ωx = 0, ωy = 0}. This is done using the following steps,

– Identify the ωx = 0 contour using Paraview’s Contour function.
– Mark the part of the contours with a vorticity above the tolerance: Q(r|ωx=0) >
tol using Paraview’s ExtractSelection function.

– Save the contour and marking information to a .vtp file.
– Identify critical points for the vorticity along the ωx = 0 contour with Q(r|ωx=0) >
tol. This is done using the Contour function this time locating ωy = 0.

– Save the critical point information to a .vtp file.

• CriticalPointIdentification.py: The script processes a .vtp file containing the crit-
ical points for vorticity to determine their type. This is done by utilizing the eigenvalue
approach described in section 2.1.2, in the following steps,

– Calculate one eigenvalue λ1 with Paraview’s Calculator function.
– Calculate the eigenvalue product λ1λ2 with Paraview’s Calculator function.
– Identify extrema by identifying λ1λ2 > 0 using Paraview’s ExtractSelection

function.
– Extract minima from the extrema by identifying λ1 > 0 using Paraview’s Ex-
tractSelection function.

– Save the field data and coordinates of the minima to a .vtu file.
– Extract maxima from the extrema by identifying λ1 < 0 using Paraview’s Ex-
tractSelection function.

– Save the field data and coordinates of the maxima to a .vtu file.
– Identify saddles by identifying λ1λ2 < 0 using Paraview’s ExtractSelection

function.
– Save the field data at and coordinates of the saddle points to a .vtu file.

21 Explanation of the setup process may be found at: http://paraview.org/Wiki/ParaView/Python_
Scripting.

47

http://paraview.org/Wiki/ParaView/Python_Scripting
http://paraview.org/Wiki/ParaView/Python_Scripting

4.3 Post Processing 4 SOFTWARE

• VTUFormatPointDataCombiner.py: This script processes a batch of .vtu files
by combining all field information to a single .vtu file. This is used to create a trace of
the critical points identified with CriticalPointIdentification.py. The script makes
use of the argparse, xml, copy and array python packages.

C++ Program

A C++ program has been written to crop the full domain of the simulation to reduce
its size. As explained in section 3.2 the open flow simulations demand a huge domain to
assure that far field BC’s do not introduce significant errors in the calculations. For the post
processing however the huge domain introduces a lot of unnecessary calculations. Therefore
this program has been written to remove the uninteresting part of the domain thus saving
significant computational resources, storage space and time.
The C++ program is called DomainCropper and the source code and compilation in-
structions may be found in A.5.3.
The program takes seven input parameters. These are,

• Six floating point numbers specifying lower and upper bounds on the (x, y, z) coordin-
ates of the domain.

• the name of the file to be cropped. The file must be in .vtu format.

The program loops over all elements of the mesh given in the .vtu file. If none of the points
in the element lie within the bounds specified by the first six input parameters the element
is eliminated. If just a single point lies within the bounds the element is kept. This ensures
that no data within the area of interest are lost.
By utilizing the software described in the previous sections the post processing may be
performed in a single step by organising the simulation data and post processing files as
described in the following section.

48

4.3 Post Processing 4 SOFTWARE

4.3.1 The Finished Simulation Package

In order to utilize as much automation in the post processing steps as possible each simulation
is organised in folders as illustrated on figure 4.1 and explained below.

ReXXXDGXX

Datafiles

SXX_EXXXX_OXX_ReXXX_DGXXX.xml

*.chk

PostProcessing

C++Programs

DomainCropper

PythonPrograms

ContourAndCriticalPoints.py

CriticalPointTypeIdentification.py

VTUFormatPointDataCombiner.py

ShellScripts

NektarPP.sh

DomainCropping.sh

ZeroContour_CriticalPoints.sh

VorticityExtremaType.sh

CriticalPointTrace.sh

FullDataTreatment.sh

Notation: Folder File

Figure 4.1: Illustration of the folder and file structure for the post processing
after a sequence of output files: *.chk has been obtained.

Top Folder: Named by the Reynolds number and D/G ratio in the simulation: e.g.
Re300DG10.

• Datafiles: Containing a Nektar++ .xml simulation file and a sequence of corres-
ponding *.chk files with the output from IncNavierStokesSolver at a sequence of
time steps.

• PostProcessing: All post processing material presented in this section positioned to
allow the execution of FullDataThreatment.sh from a Linux terminal to perform the
full process. In order perform the post processing enter this folder in a Linux shell and
execute: ./FullDataTreatment.sh

49

4.3 Post Processing 4 SOFTWARE

4.3.2 UQ Software

The stochastic collocation method for uncertainty quantification described in section 2.4.4
has been implemented using a number of MATLAB functions. The implementation have
been done for applications using either a single uniformly or normally distributed underlying
random variable. A short description of the function written for the implementation is
provided below while all code with comments is included in appendix A.5.5. In addition
a single example script where the method is applied is described briefly below and also
included in the appendix.

Auxiliary Functions: All functions written to apply the SCM.

• PnG: This function evaluates and returns a gPC expansion based on a desired type
of polynomials at a set of points x using pre calculated expansion coefficients, tilde_g.

• PnG_Coefs: The function evaluates and returns the expansion coefficients, tilde_g
for a gPC expansion using the interpolation method based on a set of collocation nodes
and solution data at the nodes.

• LegendreP_UnNormalized: Function which evaluates and returns the Nth Le-
gendre polynomial at the points x along with the associated normalization factor gN .

• HermiteP_UnNormalized: This function evaluates and returns the Nth Hermite
polynomial at the points x along with the associated normalization factor gN .

• JacobiGQ: Function which calculates the Gauss quadrature points x and associ-
ated weights w of the Nth Jacobi polynomial J (α,β)

N for use in performing numerical
quadrature. This function is taken directly from [14]. The function is used for calcu-
lating quadrature points when the underlying random variable is assumed uniformly
distributed.

• GeneralGaussianQuadrature: Function implementing the Golub-Welsch algorithm,
[21, Section 4.6.2], for calculating Gaussian quadrature points x and associated weights
w for the class of orthogonal polynomials satisfying the three term recursion relation
pn+1(x) + (Bn − x)pn(x) + Anpn−1 = 0, n = {1, 2, ...}. The function is used for cal-
culating quadrature points when the underlying random variable is assumed normally
distributed.

Script: A simple sample script where the method is applied.

• SCMexecutionNormal: The SCM based UQ method is applied assuming a uni-
formly distributed random variable, X, using a fourth order expansion. The colloca-
tion points have been calculated using JacobiGQ and a coordinate transform. The
desired quantity gX have been calculated from a simulation performed at the trans-
formed collocation points. The expansion coefficients are calculated. Based on the
coefficients the mean and variance are calculated. Finally the resulting gPC expan-
sion, PN,D[g](X) is plotted along with mean plus and minus one standard deviation.

50

4.4 Hardware 4 SOFTWARE

4.4 Hardware

Two systems were used to perform the simulations. The first system is the authors own
laptop which has the specifications listed here,

• Memory: 2 x 8GB DDR3-1600 RAM DualChannel

• Processor: 8 x Intel Core i7-3610QM CPU @ 2.30GHz

• Operating System: Ubuntu 12.04.1 LTS 64-bit

On this system it is possible to perform a full simulation (initial transient and one full peri-
odic simulation) in between 8 hours and 24 hours (depending on duration for the transient
to disappear). The post processing for a full period is performed in less then 1 hour.
The second system used is the HPC cluster at the Technical University of Denmark (DTU)
[22]. The specifications of this system are listed below,

• Number of nodes: 64 x HP ProLiant SL2x170z G6 nodes

• Memory: 24 GB memory per node

• Processor: 2 x Intel Xeon Processor X5550 (quad-core, 2.66 GHz, 8MB L3 Cache)

• Memory Bandwidth: QDR Inifiniband interconnect

The time scale for a full simulation on this system is roughly equivalent to that of the laptop,
however this system allows for many simulations to run in parallel.

51

5 PARALLEL EXECUTION WITH MPI

5 Parallel Execution with MPI

Nektar++ supports parallel execution for its solvers using the MPI22 standard [23]. This
section presents a series of tests of Nektar++’s MPI capabilities with regards to its incom-
pressible Navier-Stokes solver IncNavierStokesSolver. The tests were performed in order
to determine whether or not parallel processing would be favourable.
Before any testing is performed there are some general points to consider. One important
factor to consider is that the system on which the simulations are performed, see section 4.4,
have a limited number of nodes and a significant number of users. A number of important
points which should be considered before executing in parallel using MPI are listed below.

• Pro:

– Possible to speed up calculations by a factor up to the number of processors used.

• Con’s:

– Problematic to get time on the machines when requesting multiple processors due
to queueing system.

– Fewer independent simulations with different parameters can run at the same
time due to limited processing resources.

– Output from MPI execution may require additional post processing due to a
segmented output process.

Based on the above considerations an MPI-based approach seems of limited interest already
from the start. Thus using MPI for parallel processing would only be considered if the
temporal scaling of the solution process with the number of processors was found to be very
good.

Testing: Two different test series were run to investigate the scaling when using MPI for
parallel solutions of the problem. The first was solving the incompressible NS equation on
a simple square domain using an unstructured mesh with an inflow condition on one side,
no-slip wall conditions on two sides and an outflow boundary condition on the last side.
This test was designed to be as friendly to the solver as possible since partitioning a square
domain across multiple processors should intuitively be straightforward.
The second test was solving the incompressible NS equation on a domain for the problem
of the cylinder near a moving wall, see section 1.2, on the hybrid mesh presented in section
3.2. Here the introduction of the cylinder in the geometry and usage of different types of
elements could have the potential of creating a problem for any mesh partitioning algorithm
used by Nektar++.
Both tests are strong scaling tests which mean that the problem size is kept fixed while
the number of processors used to solve the problem is increased. This choice is made since
the problem of interest has a fixed size and thus the goal of parallelization is to obtain the
solution to the problem faster and not to be able to solve bigger problems.

22MPI is an abbreviation for Message Passing Interface, and is a standard for parallel processing across
multiple nodes/machines.

52

5 PARALLEL EXECUTION WITH MPI

General Findings: To the authors surprise it was found that only limited decreases in
solution time could be obtained when executing using MPI compared to standard serial
execution. In fact, as will be illustrated later in this chapter, it was necessary to use more
then eight processors to obtain better timings than when using a single processor.
It turned out that this behaviour has a good explanation however. During a talk with the lead
developer of Nektar++, Professor Spencer Sherwin, the author learned that Nektar++
by default uses a direct solver for time stepping the NS-equation. However when solving the
system in parallel it becomes necessary to use an iterative method. According to Professor S.
Sherwin the implementation of the iterative solution method in Nektar++23 suffers from
inefficient pre conditioners. This may atleast in part be the reason for the poorer performance
of the iterative solver compared to the direct solver. Additionally the convergence criterion in
Nektar++ for the iterative solver is by default set very strict at ‖ un−un−1 ‖≤ 10−10. This
strict demand on convergence also leads to longer running times for the iterative method.
In summary it was found that the use of parallel execution actually slowed the solution
process down considerably due to the difference in efficiency between the direct solver and
iterative method implemented in Nektar++. However as is also shown below it was found
that the parallel execution scales very well if one does not compare to the direct solver but
instead use the iterative solver for a single processor.
As a side note it is mentioned that all solutions obtained using parallel execution were
compared to the solution obtained using the direct solver on a single processor. The solutions
were found to be identical and thus no problem with the correctness of the solution were
introduced when solving in parallel. Information and test results for of the two cases are
presented in the following.

Unstructured Square Mesh: An unstructured mesh with roughly 3500 triangular ele-
ments was created using gmsh. The incompressible NS-equation was solved using Nek-
tar++’s solver with tenth order basis functions on each element.
The domain specifications are presented in figure 5.1

(0, 0)

(1, 1)

Figure 5.1: Illustration of the square mesh flow problem with BC’s and domain
size specified. (WS) Wall surface (densely dotted) no slip BC: (u,v) = (0,0).
(IF) Inflow (densely dashed): (u,v) = (1,0). (OF) Outflow (loosely dashed)
d
dx(u, v) = 0.

23The version of nektar++ used here is version 3.3.0.

53

5 PARALLEL EXECUTION WITH MPI

The system was solved for a given number of time steps and the wall clock time recorded.
Figure 5.2 shows how the solution time scales compared to the solution on a single processor
as a function of the number of processors used. The scaling factor, Fscale, is calculated as,

Fscale(N) = T1
TN

, (5.1)

where T1 is the wall clock execution time on a single processor while TN is the wall clock
execution time on N processors. For the present case the direct solver was used for the
single processor solution.

1 2 4 8 16
0

2

4

6

Number of Processors

Sc
al

in
g

Fa
ct

or

Measured Performance

Figure 5.2: The bar graph shows the scaling factor normalized by the solution
time on a single processor. The solution time for one processor is tsol = 189
minutes. The equations were solved using a time step of tstep = 0.005 with
25000 time steps.

From figure 5.2 it is seen that between eight and sixteen processors are needed in order for
the parallel iterative solution to break even with the serial direct solution. This makes the
parallel solution very inefficient in terms of the computational resources used to obtain the
solution.
Figure 5.3 also shows how the solution time scales compared to a single processor as a
function of the number of processors used. Here the iterative solver was used for the single
processor as well as for the multiple processors. The blue bar shows the measured results
while the red bar illustrates perfect scaling compared to a single processor.

54

5 PARALLEL EXECUTION WITH MPI

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Number of Processors

Sc
al

in
g

Fa
ct

or

Measured Performance
Perfect scaling

Figure 5.3: The bar graph shows the scaling factor normalized by the solution
time on a single processor. The solution time for one processor is tsol = 516
minutes. The equations were solved using a time step of tstep = 0.005 with 5000
time steps.

From figure 5.3 it is seen that the parallel solution scales very well from one to sixteen
processors. If only the iterative solver was as efficient as the direct solver this would be
a strong argument for utilizing parallelization in the solution process. The perfect scaling
stated on figure 5.3 corresponds to the time used on n processors is 1/n times the time used
on a single processor.

Hybrid Mesh for Cylinder/Wall Problem: For the second set of tests the hybrid mesh
used for the model problem of the cylinder near the moving wall, as illustrated in section
3.2 with roughly 2500 elements has been used. The incompressible NS-equation was solved
using twelfth order basis functions on each element over for a given number of time steps.
The domain and boundary condition information are presented in section 1.3.4.
The first test for the hybrid mesh was performed with the direct solver for the single processor
and iterative solver for multiple processors. The results are presented in figure 5.4.

55

5 PARALLEL EXECUTION WITH MPI

1 2 4 8 16

1

2

3

4

5

6

Number of Processors

Sc
al

in
g

Fa
ct

or

Measured Performance

Figure 5.4: The bar graph shows the scaling factor normalized by the solution
time on a single processor. The solution time for one CPU is tsol = 218 minutes.
The equation was solved over 20000 time steps of length tstep = 0.0005.

This test shows the same results as for the square mesh. I.e. for this case no performance
decrease was found to be introduced by the hybrid mesh and more complicated geometry.
At the same time the test still shows that the direct solver is faster then the iterative solver
up until somewhere between eight and sixteen processors.
The second test for the hybrid mesh was as for the unstructured square mesh performed with
the iterative solver for both the single and multiple processors. The results are presented in
figure 5.5.

1 2 4 8 16

0

0.2

0.4

0.6

0.8

1

Number of Processors

Sc
al

in
g

Fa
ct

or

Measured Performance
Perfect scaling

Figure 5.5: The bar graph shows the scaling factor normalized by the solution
time on a single processor. The solution time for one CPU is tsol = 770 minutes.
The equation was solved over 5000 time steps of length tstep = 0.0005.

56

5 PARALLEL EXECUTION WITH MPI

Again the test results presented in figure 5.5 show that using the iterative solver the parallel
solutions scale very well. In fact it is observed that the scaling is better than perfect. Why
this is the author is not entirely sure, however it may have to do with overhead associated
with utilizing MPI for parallelization.
As a final test the tolerance used for the iterative solver to assure convergence was modified
from 10−10 to 10−6. This was done in the hope of achieving better scaling results for the
iterative method compared to the direct solver. It was investigated and found that this
change in tolerance did not impact the solution quality for this particular problem.
The results of this test are presented in figure 5.6.

1 2 4 8 16

0

1

2

3

Number of Processors

Sc
al

in
g

Fa
ct

or

Measured Performance
Perfect scaling

Figure 5.6: The solution time for one CPU is tsol = 77 minutes. The equation
was solved over 7500 time steps of length tstep = 0.0005.

The results presented in figure 5.6 show that changing the tolerance leads to better perform-
ance for the iterative solver. Now only between four and eight processors are needed for
the parallel solver to outperform the serial solver. However the performance of the iterative
solver is still poor compared to the direct solver.

Conclusion: Based on the MPI-testing presented above it was decided to run a large
number of serial simulations for different parameter values simultaneously instead of using
MPI for parallelizing the individual simulations. This manual parallelization assured that
the largest number of simulations could be performed in a given period of time.

57

6 SIMULATIONS

6 Simulations
This chapter provides a brief overview of the simulations performed throughout the project,
an illustration of how the post processing to identify critical points for the vorticity is
performed and how the data visualization is done. The analysis and results for all simulations
listed here are presented in the following chapters.

Transient and Periodic Stages: For all parameter values of interest in this project it
was found that the solutions to the model problems are either stationary or periodic in
nature after any initial transient solution has been allowed to die out.
As a consequence of this, all simulations of the cylinder near the wall are performed in
two stages. The first stage is a long simulation which begins from a set of artificial initial
conditions. It ends when the initial transient solution has died out and either periodic
shedding or a stationary flow has been reached. The artificial initial conditions are given by,

(u, v, p) = (1, 0, 0) ∀r ∈ Ω, (6.1)

and were chosen to fit the boundary conditions on the domain as well as possible. See section
1.3.4 for a presentation of initial and boundary conditions.
After the first stage of the simulation is done the field data for u, v and p at the final time step
is stored and used as initial conditions for the second stage. The second stage is performed
to obtain a large number24 of datasets covering more then one period of vortex shedding.
These datasets are then used for post processing and analysis.
All simulations have been performed using the stable time step ∆t = 5 · 10−4, identified in
section 3.1. The time needed to kill the initial transient solution and reach perfect periodic
shedding was found to be between 40 time units and 160 time units for almost all simulations.
A few exceptions were found which will be discussed later.

Dimensions: For all simulations for the cylinder near the moving wall the domain dimen-
sions simulated are given by (x, y) ∈ [−10, 30] × [0, 20]. For the cylinder in free flow the
domain dimensions used are (x, y) ∈ [−10, 30]× [−15, 15]. The diameter of the cylinder for
all simulations have been chosen as D = 1.

24The number of datasets are between 200 and 300 per simulation to ensure good temporal resolution.

58

6.1 Visualization 6 SIMULATIONS

6.1 Visualization
In order to ease the understanding of the data visualization presented in later chapters
a short guide is given here. In order to visualize the creation and movement patterns of
vortices in a consistent and understandable manner the following general choices have been
made.

(a)

(b)

Figure 6.1: Example of visualization of vortex flow structure using Re = 240 and
D/G = 5/2. (a) Vorticity contours with dark blue and black contours showing
clockwise rotating vortices and light blue and white contours showing counter
clockwise rotating vortices. (b) The path followed by the stationary points in
vorticity over time. Here magenta marks (Saddles), black marks (Minima) or
clockwise rotating vortices, and orange marks (Maxima) or counter clockwise
rotating vortices.

As explained in section 3.2 the simulations were performed over a large domain to minimize
blockage introduced by the far field BC’s. The visualizations however are only done for a
limited part of the domain as this is where interesting flow patters are observed. For all plots
of the cylinder/wall system white corresponds to the domain and dark gray corresponds to
the wall and cylinder.
In general two types of plots of the domain are presented.
The first type illustrates the vortices by a contour plot at a fixed point in time along with
a color bar showing the magnitude and rotational direction of the vortices. For this type of

59

6.2 Critical Point Identification 6 SIMULATIONS

illustration a black-blue-white scheme has been chosen to color the contours which illustrate
strength and direction of rotation for the vortices. An example of the first type of plot is
provided in figure 6.1a.
The second type illustrates a trace over time of the critical points for vorticity which for
minima and maxima corresponds to vortices rotating clockwise and counter clockwise re-
spectively. For the second type of plots the position of the vorticity extrema as a function
of time is illustrated by traces of small dots. To distinguish the different type of extrema
the vorticity maxima (counter clockwise rotating vortices) are coloured orange, the minima
(clockwise rotation vortices) black and the saddles magenta. An example of the second type
of plot is provided in figure 6.1b.
For some purposes the two types of visualizations are plotted together and for most illus-
trations extrema and saddle point paths irrelevant to the current analysis have been edited
away for clarity.

6.2 Critical Point Identification

For the investigation of the vortex creation, annihilation and movement patterns the critical
points of the dynamical system given in (2.5) must be identified and categorized. This is
done during post processing and the process is explained below.
The figures 6.2 and 6.3 visualises the steps in the automated identification and classification
of the extrema and saddles of the vorticity. This is based on the procedure given in Algorithm
1. The procedure is explained in six steps below.

• Step 0: Data at every time step for a simulation for which all needed fields have been
calculated is chosen. As an example contours for the vorticity at a given time step is
shown in figure 6.2a.

• Step 1: For each time step the ωx nullclines are calculated, as visualised on figure
6.2b by the red contours.

• Step 2: In areas of very low vorticity, ω � 1, small numerical errors in the simulations
and calculation of ωx introduce erroneous data in the ωx = 0 contours. In order to
avoid this problem a filter has been introduced which removes parts of the ωx nullclines
that fulfil the relationship: ω < 10−5 · max |ω|. This may be done safely as vortices
which are five decades smaller then the strongest vortices in the system are of no
interest to the further analysis. The step is illustrated in figure 6.2c.

• Step 3: After the filtering, the points along the remaining ωx nullclines which fulfil
ωy = 0 are calculated. This identification of {(xi, yi)|ωy = ωx = 0} is illustrated in
figure 6.3a by showing the full ωy nullclines in green25.

• Step 4: Each of the points {(xi, yi)|ωx = ωy = 0} are now investigated to identify
whether they are (maxima), (minima) or (saddles). See figure 6.3b.

• Step 5: The procedure is repeated for each time step and the data is stored for
analysis.

25This way of illustration makes it easier to see the intersections where ωx = ωy = 0.

60

6.2 Critical Point Identification 6 SIMULATIONS

(a)

(b)

(c)

Figure 6.2: Illustration of (a) the vorticity using black-blue-white contours, (b)
the ωx = 0 contour, coloured (red), (c) filtering of the ωx = 0 contour by the
requirement: Remove any part of a contour for which ω < 10−5 · max |ω|, i.e.
the part of the contours coloured black in the figure are removed.

61

6.2 Critical Point Identification 6 SIMULATIONS

(a)

(b)

(c)

Figure 6.3: Illustrating (a) the identification of the points ωy|ωx=0 = 0, (b) The
type of critical points, (maxima), (minima) or (saddles), (c) Only the critical
points without the contours.

62

6.3 Validation Simulations 6 SIMULATIONS

6.3 Validation Simulations

The first series of simulations performed were made in order to validate that results obtained
using the Nektar++ framework are trustworthy. These simulations may be divided into
four parts.

• Validating the Nektar++ framework. See appendix A.4 for results.

• Identifying a sufficient domain resolution in terms of element number and polynomial
expansion order to assure that the solution has converged. See section 7.1.

• Validating simulation data against published results. See section 7.2.

• Assuring that the stationary/periodic regime is reached for a given simulation. See
section 7.3.

6.4 Cylinder near the Moving Wall

After the validation process was completed a large number of simulations were performed
for the cylinder near the moving wall. As detailed in section 1.2 this problem has three
parameters of interest. These are time, t, the Reynolds number, Re, and the relation between
the cylinder diameter, D, and the distance between the cylinder and wall, G, i.e. D/G.
Obviously time is not a parameters which is varied like the Reynolds number or D/G.
Instead after periodic shedding has been achieved, time is allowed to run over more then one
full period of shedding and the period noted for each simulation. Then for each simulation,
data about the flow pressure, velocity, vorticity and the first and second derivatives of the
vorticity are stored at a sequence of time steps in order to allow investigation of the flow in
time.

63

6.5 Uncertainty Quantification 6 SIMULATIONS

Re

20

60

140

220

300

D/G
5
4

5
3

5
2

510
G/D

0.80.60.40.20.1

Figure 6.4: Illustration of the 2 parameter space (Re,D/G) with parameter
values at which simulations were performed marked by grey and red dots. Note
that the scaling of the D/G axis is linear if we consider the quantity G/D i.e.
the gab distance for a cylinder with D = 1.

Parameter Domain: The investigation of the structure of the vortices etc, is done over
the range (Re×D/G) ∈ ({20, 300}×{10, 5

4}). This forms a 2 dimensional parameters space
which is illustrated in figure 6.4.
The illustration in figure 6.4 shows the full parameter space along with all points at which a
simulation has been performed. The gray large circular points mark the initial simulations
performed to gain an overview of the flow structures in the domain of interest. The smaller
red points are all the simulations performed to investigate phenomena identified during the
initial simulations.

6.5 Uncertainty Quantification

Three separate UQ investigations have been performed. In each case the Reynolds number
was taken to be the uncertain parameter, X = Re.

Cylinder in Free flow: The first two investigations were performed for a cylinder in free
flow with focus on comparing results obtained using UQ to known published results and to
results obtained during simulations for this work. The quantities of interest here are St and
CDp . One investigation was performed assuming that the Re was uniformly distributed in
the interval Re ∈ U [50, 600]. The other was performed assuming a normal distribution for
Re, N (300, 50).
Note: Technically it is wrong to use normal distribution for the Re as, Re ≥ 0 is dictated by
the physics. However using N (300, 50) for Re yields a probability of obtaining an unphysical

64

6.5 Uncertainty Quantification 6 SIMULATIONS

value, i.e. Re < 0, given by
∫ 0
−∞ fRe,G(x)dx ≈ 10−9, which is deemed acceptable for the

present test.
For both investigations three different basis orders have been used for the gPC expansions.
In both cases these are a first, a second and a fourth order expansion.

Cylinder Near Moving Wall: The third investigation was performed for the cylinder
near the moving wall at the diameter to gap ratio D/G = 10. Here the application of
UQ was used to perform an investigation of the variation in the path travelled by a vortex
downstream of the cylinder depending on Re. Here the Reynolds number was again assumed
to be uniformly distributed, this time on the interval Re ∈ U [150, 240]. For this investigation
three different basis orders were also used. In this case these are a third, a fifth and a seventh
order basis.

65

7 VALIDATION

7 Validation

For any investigation of a physical system using computer simulations it is very important
to assure the results of the simulations may be trusted. The best way of doing this is of
course to validate the simulations against real world experiments. It is however outside the
scope of this thesis to make experiments which may validate the flow structures and physical
quantities investigated. Therefore other methods of validations have been used. These are,

• Validation of the Nektar++ framework and incompressible Navier-Stokes solver by
application to problems with known solutions.

• Validation of solution accuracy through convergence testing measured in L2-norm.

• Validation against published work.

Section 7.1 provides the results of a convergence test for the quantities used in the analysis
process. Section 7.2 presents comparisons of results obtained in this project and published
results. Finally appendix A.4 contains a set of tests of the Nektar++ framework and its
incompressible Navier-Stokes solver IncNavierStokesSolver validating it against known
solutions. These tests were performed by the author prior to this project are may therefore
be found in the appendix.

7.1 Convergence

Given that the problem to be solved is well posed the SEM promises that the numerical
solution converge to a unique solution for the 2D-Incompressible Navier-Stokes problem as
the number of elements and/or the polynomial expansion order are increased.
That the solution converge to a unique solution makes is possible to investigate when the do-
main is well enough resolved by observing changes in L2 norm for each of the field quantities
of interest. When the L2 norm has converged to a fixed value this indicates that the solution
has converged. In order to assure sufficient resolution a convergence tests with increasing
polynomial order on the SEM basis functions and an increasing number of elements has been
performed26.
The tests were performed by simulating the flow using the boundary and initial conditions
presented in section 1.3 from the initial time t = 0 to the final time t = 40 using a time step
length of ∆t = 5 · 10−4.
Table 7.1 contains the parameters used for polynomial order and number of elements in the
mesh and the corresponding approximate number of DOF’s for the system.

26The test has been performed for all fields of interest using the build in L2-norm calculator in Nektar++.

66

7.1 Convergence 7 VALIDATION

Simulation number Number of elements Polynomial order ≈ DOF
1 1500 6 54000
2 1500 8 96000
3 1500 10 150000
4 1800 6 64800
5 1800 8 115200
6 1800 10 180000
7 2400 6 86400
8 2400 8 153600
9 2400 10 240000
10 3000 6 108000
11 3000 8 192000
12 3000 10 300000

Table 7.1: Table displaying the number of elements and polynomial order used
for each simulation in the convergence test. The Reynolds number used: Re =
300 and the gap to diameter ratio D/G = 5.

Tables 7.2 and 7.3 show the results of the tests.

1 2 3 4 5 6
u: 28.541 28.540 28.540 28.541 28.540 28.540
v: 3.6269 3.6285 3.6282 3.6282 3.6282 3.6282
p: 2.8721 2.8726 2.8738 2.8756 2.8730 2.8733
ω: 13.926 13.925 13.925 13.924 13.925 13.925
ωx: 119.09 118.88 118.75 118.80 118.70 118.71
ωy: 191.47 191.50 191.51 191.62 191.51 191.51
ωx,x: 1990.1 1997.1 1997.1 1984.4 1985.1 1979.4
ωx,y: 1661.6 1657.0 1653.5 1658.2 1654.0 1652.4
ωy,x: 1661.6 1657.0 1653.5 1658.2 1654.0 1652.4
ωy,y: 4442.4 4335.3 4329.6 4370.4 4333.4 4329.7

Table 7.2: The L2-norm calculations for each of the 10 fields of interest obtained
from the first 6 simulations, for which parameters are specified in table 7.1. Bold
entries highlight that the field has converged to four significant digits.

67

7.2 Comparing Results 7 VALIDATION

7 8 9 10 11 12
u: 28.541 28.540 28.540 28.541 28.540 28.540
v: 3.6284 3.6282 3.6282 3.6282 3.6282 3.6282
p: 2.8726 2.8737 2.8732 2.8744 2.8732 2.8732
ω: 13.925 13.925 13.925 13.925 13.925 13.925
ωx: 118.83 118.70 118.72 118.73 118.71 118.71
ωy: 191.52 191.51 191.51 191.52 191.51 191.51
ωx,x: 1988.2 1985.6 1981.2 1983.7 1981.2 1981.2
ωx,y: 1657.5 1653.1 1652.4 1656.5 1652.8 1652.4
ωy,x: 1657.5 1653.1 1652.4 1656.5 1652.8 1652.4
ωy,y: 4363.4 4329.8 4329.9 4351.8 4329.9 4329.9

Table 7.3: The L2-norm calculations for each of the 10 fields of interest obtained
from the last 6 simulations, for which parameters are specified in table 7.1. Bold
entries highlight that the field has converged to four significant digits.

The bold face values in the tables denote the lowest number of DOF’s for which a given
quantity has converged to within four significant digits when compared to simulations using
more DOF’s.
From table 7.2 it may be seen that already at simulation 2 (1800 elements, eights order
basis) the velocity field and vorticity has converged to four significant digits. Thus for all
simulations where these quantities are the only ones desired, no higher resolution seems to
be needed.
It may be seen that the last of the fields of interest does not converge to four significant
digits until a domain of 3000 elements with eight order basis functions are used, as seen in
table 7.3.
To clarify, it was found that all fields of interest have converged to a stable value measured
to the fourth significant digit for a mesh with 3000 elements using eight order basis functions
with Re = 300 and D/G = 5. This result have been used as a basis for the choice of the
minimum number of elements and polynomial order to be used in the following simulations.
Note, an important finding made in the process of using the isocline method27 for calculating
vortex traces was that a better resolved domain was needed to obtain accurate traces of the
vortices and saddle points.
The finding during the application of the isocline method made it necessary to use a mesh
with 2400 elements and 10th order basis functions to obtain accurate traces of the vortex
paths.

7.2 Comparing Results

The next step is to validate that solutions obtained using the number of elements and order
of basis functions found to be sufficient in the previous section actually produce accurate
results. This has been validated through a series of tests comparing results obtained using
3000 elements and 8th order basis functions with previously published results.
In [8] Huang and Sung presents a series of results validating their simulations for a cylinder in
free flow. The results are based on the comparison of Strouhal number, St, and base pressure

27See section 2.1.2 for the method and section 6.2 for a visualization.

68

7.2 Comparing Results 7 VALIDATION

coefficient, Cbp, with the result published by Henderson in [7] and [10]. In [8] a range of
results with the moving wall near the cylinder are also presented. From these results the
St number and Cbp coefficient have been extracted for comparison. In addition the pressure
drag coefficient has been calculated and the result compared to results presented in [10].
It is important to mention that Henderson, [10], [7] compares his data to experimental data.
Here he found that at Re ≈ 190 the two dimensionality of the flow breaks down and the
two dimensional simulations no longer agree with the experimental data for the cylinder in
free flow. This fact does not prevent the investigation of agreement between simulation data
presented in the articles and the data obtained in the present simulations. If agreement is
seen this supports that the solutions to the model problem obtained with Nektar++ can
indeed be trusted.

7.2.1 Free Flow

For the cylinder in free flow simulations where performed using a set of Reynolds numbers
listed in table 7.4.

Simulation number Reynolds Number
1 100
2 200
3 300
4 400
5 500
6 600

Table 7.4: Table displaying the Reynolds number for each simulation.

For each simulation the Strouhal number, time averaged drag coefficient for pressure and
time averaged base pressure coefficient were calculated.

Strouhal Number: The Strouhal number for each simulation along with results published
in [10] are presented in table 7.5. The accuracy of the temporal resolution in the present
simulations and accuracy of reading off results from a figure in [10] allows comparison to at
most the third decimal point.

Re St Present St Article
100 0.168 0.168
200 0.198 0.197
300 0.213 0.212
400 0.221 0.220
500 0.225 0.226
600 0.229 0.229

Table 7.5: The St number obtain for a cylinder in free flow at varying Reynolds
number in this work and in [10]. The simulation data is determined by measuring
the shedding period with a time step of tstep = 0.04 between each frame. The
article data is read of [10, figure 3]. The uncertainty in reading of the data
from [10, figure 3] is estimated to be ±0.5 · 10−3.

69

7.2 Comparing Results 7 VALIDATION

By considering the data presented in the table it is seen that down to measurement uncer-
tainty determined by the temporal coarseness of the simulations performed and the ability to
read data from the figure presented in [8], there is excellent agreement between the previous
published work and the present work.

Average Drag Pressure Coefficient: The time average of the pressure component of
the drag coefficient over a period were calculated and compared to the result obtained by
Henderson [7, figure 1]. Henderson provided a four parameter fit for his simulation data
given by,

f(x) = a0 − a1x
a2 exp(a3x), (a0, a1, a2, a3) = (1.4114, 0.2668, 0.1648,−3.375 · 10−3). (7.1)

Figure 7.1 shows the fit along with the data obtained in the present work.

102 103
0.8

1

1.2

1.4

1.6

Re

C
D
p

Fit, [7]
Present Work

Figure 7.1: Illustration of fit for pressure drag coefficient CDp = FDp
1
2ρU

2
∞

averaged
over a shedding period as a function of Reynolds number, [7]. The marks are
the values obtained in the present work.

Table 7.6 shows the values obtained in the simulations along with the values obtained from
the fit [7, figure 1].

Re CDp Present CDp Article
100 0.998 1.008
200 1.080 1.089
300 1.169 1.166
400 1.230 1.229
500 1.278 1.277
600 1.318 1.313

Table 7.6: The drag pressure coefficient calculated from the present simulations
and obtained using (7.1). The uncertainty in the calculated value from the
present simulations are estimated to lie on the last digit.

70

7.2 Comparing Results 7 VALIDATION

Just as for the Strouhal number the agreement between the two sets of results is seen to be
excellent.

Average Base Pressure Coefficient: The average base pressure coefficient for each
simulation were calculated and the results along with a fit calculated by Henderson [7] are
presented in figure 7.2.

102 103

0.5

1

1.5

2

Re

−
C
bp

Fit, [10]
Present Work

Figure 7.2: Illustration of fit for the base pressure coefficient Cbp = pb−p∞
1
2ρU

2
∞

averaged over a single period as a function of Reynolds number, [7]. The marks
are the values obtained in the present work.

The fit is based on simulation data obtained by Henderson and is given by,

f(x) = a0 − a1x
a2 exp(a3x), (a0, a1, a2, a3) = (1.7826, 1.6575,−0.0427,−2.660 · 10−3).

(7.2)

Table 7.7 shows the values obtained in the simulations along with the values obtained from
the fit [7, figure 1].

Re Cbp Present Cbp Article
100 −0.71± 0.02 -0.739
200 −1.00± 0.02 -1.006
300 −1.21± 0.02 -1.198
400 −1.33± 0.02 -1.339
500 −1.45± 0.02 -1.446
600 −1.54± 0.02 -1.527

Table 7.7: The calculated time averaged base pressure coefficient calculated from
the fit (7.2) along with the one obtained in the present work.

The results obtained from the present simulations are in reasonable agreement with the
previous results from [7] however they are seen to vary slightly more then those for St and

71

7.2 Comparing Results 7 VALIDATION

CDp . No satisfying reason for this variation has been identified but the variations are deemed
small enough that they are not pursued further.

7.2.2 Cylinder Near Wall

A new set of tests were performed as the moving wall was introduced. Here the St and
Cbp were calculated at four different values of D/G and compared to the same quantities
derived from data presented in [8]. The way St was derived from [8] was by measuring the
non-dimensional shedding frequency from the plot of drag and lift in [8, Figures 5-8]. Cbp
was obtained from [8, Figure 14].
The D/G-values are D/G ∈ {0, 5/3, 5, 10} corresponding to cylinder positions shown in
figure 7.3.

D/G = 0

D

(a)

D/G = 5/3

D

G

(b)

D/G = 5

(c)

D/G = 10

(d)

Figure 7.3: Schematic of the cylinder position compared to the wall for the four
D/G-values.

Strouhal Number: The resulting Strouhal numbers from [8] and the set of tests are
presented in table 7.8.

72

7.3 Death of the Transient Solution 7 VALIDATION

D/G-ratio Article: St Present: St
D/G = 0 0.213 0.213
D/G = 5/3 0.229 0.229
D/G = 5 0.174 0.173
D/G = 10 0.129 0.128

Table 7.8: Comparison of Strouhal numbers for four different positions of the
cylinder at Re = 300 between results presented in [8] and results obtained in
this work. The uncertainty in the data is estimated to be of the order ±1 · 10−3.

From table 7.8 it is seen that the Strouhal number found in the present simulations agrees
extremely well with those calculated from [8].

Base Pressure Coefficient: The Cbp numbers from [8] along with the values from the
test set are presented in table 7.9.

D/G-ratio Article: Cbp Present: Cbp
D/G = 0 −1.2± 0.02 -1.20
D/G = 5/3 −1.55± 0.02 -1.54
D/G = 5 −1.25± 0.02 -1.28
D/G = 10 −1.35± 0.02 -1.34

Table 7.9: Comparison of base pressure coefficient for four different positions of
the cylinder at Re = 300 between results presented in [8] and results obtained
in this work.

From table 7.9 it is seen that the base pressure coefficient found in the present simulations
agrees with the values presented in figure 14 in [8] to within errors in reading the values
from the article.

7.3 Death of the Transient Solution

The validity of the solutions obtained using the Nektar++ framework has now been in-
vestigated and no evidence of them being wrong has been found. The next step is to start
performing simulations using sets of parameters for which no data has been published. For
the investigations of the vortex creation and their movement patterns as well as measuring
quantities of interest we are only interested in the periodic shedding regime. This presents
the challenge of determining when the initial transient solution has disappeared. The method
used for determining that the transient solution has died out is presented below.

Stationary Flows: For parameter values resulting in stationary flows a measurement of
the pressure induced drag was performed over a period of time comparable to a period of
shedding for instationary flows. If this was found to be constant to within numerical errors
for all time steps the initial transient was deemed to have disappeared. In addition the flows
were inspected visually to assure that no changes could be seen between any of the snapshots
in time.

73

7.3 Death of the Transient Solution 7 VALIDATION

Periodic Shedding: The death of the transient initial solution has been ensured by ob-
serving a timespan longer then one shedding period and during this span follow the critical
points for the vorticity. The data for the position of the critical points is already available as
this is what is used to study the creation and movement of vortices. This means that no new
calculations are needed. If the critical points follow the exact same path after a shedding
period has completed as they did during this period the transient solution has disappeared.
This is true as any remaining transient would perturb the path of the critical points between
two shedding cycles.
An example of the process of validating the disappearance of the transient is provided
in figure 7.4. The figure shows part of the domain for a simulation with Re = 240 and
D/G = 5/1.

(a)

(b)

Figure 7.4: Illustration of the perfect overlap of the path of a critical point over
longer then a period of vortex shedding used for validation that the transient
solution has indeed disappeared. (a) a large set of the domain. The green circle
highlights a part of one extrema path where the second shedding period overlaps
with the first. (b) a zoom around the green circle on (a). The point data on the
figures show the paths of the critical points as a function of time. Orange and
black points are extrema in the vorticity while magenta points are saddle points
for the vorticity.

74

7.3 Death of the Transient Solution 7 VALIDATION

From the area circled on figure 7.4 (a) it is seen that the density of data points for the
vorticity extrema is twice as high over a part of the black curve marking the path of an
extrema in vorticity over time. This is due to the fact that the simulation has run for more
then a period and the additional points are thus marking the next vortex extrema tracing
the exact same path as the previous.

Increased Transient Time: As one might expect from intuition it was discovered that
the time it takes to make the transient solution disappear from the flow depends on the
Reynolds number. It was discovered that this time likewise depends on the gab size to
cylinder radius ratio D/G. For Re = 300 it is enough to simulate 40 normalised units
of time before the transient disappears for all investigated D/G values, while already at
Re = 220 it was found that for D/G = 10 the transient was not gone at 40 normalised
units of times. And for Re = 140 both D/G = 10 and D/G = 5 still have some transient
solution left at 40 normalised units of time. For Reynolds numbers around fifty28 a full
160 normalized units of time was needed to achieve periodic shedding at D/G = 5/4. At
Re = 160 and D/G = 10 160 normalized time units was not enough to kill the transient
solution completely.
Almost all simulations were allowed to run until the initial transient was completely gone.
However for two simulations at Re ∈ {150, 160} and D/G = 10 due to problems the simu-
lations were not allowed to run long enough to remove the transient completely. The data
from these simulations where only used in a single analysis presented in the following section
and no new conclusions were drawn on basis of these simulations.

28The lowest Reynolds number at which periodic shedding was observed.

75

8 ANALYSIS

8 Analysis

This chapter presents all results obtained by using the methods presented in the earlier
chapters for the simulations performed of the model problems. Section 8.1 presents the
application of the vortex trace method for identifying vortex creation and annihilation points,
their movement patterns and their change in magnitude downstream. The sections 8.2 and
8.3 presents two examples of how the method may be used to perform detailed studies of a
specific structural change in the flow as a function of (Re,D/G, t). Section 8.4 treats the
application of uncertainty quantification to the test problems of a cylinder in free flow and
a cylinder near the moving wall with Re being the input parameter containing uncertainty.
Finally section 8.5 presents a limitation of the method in its current form.

8.1 Initial Investigation for the Cylinder and Wall

Saddle-Center Bifurcations Dominate the Model Problem: For all but a single case
all vortex creation and annihilation, observed away from domain boundaries happened in
codimension 1 saddle-center bifurcations. This is true over the entire (Re,D/G)-parameter
range.

8.1.1 Stabilizing Effect of the Wall

During the investigation of the vortices creation and movement patterns it was discovered
that the wall had a significant stabilizing effect on the flow. This stabilizing effect was
investigated in order to identify at what parameter values (Re,D/G) the flow changed
character from being stationary to time dependent. Figure 8.1 presents a chart of different
types of flows observed in the 2D-parameter space (Re,D/G).

Re

D/G
05

4
5
3

5
2

510

20

60

100

140

180

220

Figure 8.1: Map of stationary versus instationary flow past the cylinder near
the moving wall in the 2 parameter space (Re,D/G). Large (red) dots represent
points in the parameter space where periodic shedding from both top and bottom
of the cylinder has been observed. Medium (blue) dots represent selected points
where only shedding from the top side of the cylinder was observed or where
the flow has become instationary but no vortices has been observed within the
domain. small (black) dots represent selected points where stationary flow was
observed.

76

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

This map illustrates three parts of the (Re,D/G) space where distinctly different behaviours
were observed in the flow. All large red dots on figure 8.1 corresponds to parameter values
where periodic shedding from both top and bottom of the cylinder was observed, see figure
8.2a for an example. All medium blue dots corresponds to parameter values where unsteady
flow is observed but periodic shedding from both top and bottom of the cylinder is not
observed, see figure 8.2b. This behaviour may either be due to no vortex creation or because
the creation point have moved so far downstream that it is not captured by the simulation.
Finally all black dots are points for which steady flow is observed, see figure 8.2c. All data
presented in figure 8.1 are based observing the domain (x, y) ∈ [−2, 20]× [0, 6].

77

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

(a) Re = 300, D/G = 5
4 . At these parameter values two vortices are observed

travelling downstream nearly symmetrically. The (orange) trace is the path followed
by the clockwise rotating vortices shed from the lower side of the cylinder. The
(black) trace is the path followed by the counter clockwise rotating vortices shed
from the upper side of the cylinder.

(b) Re = 120, D/G = 10. Only shedding from the top of the cylinder is observed
within the domain. The (black) trace is the path followed by the counter clockwise
rotating vortices shed from the upper side of the cylinder.

(c) Re = 100, D/G = 10. Purely stationary flow is observed.

Figure 8.2: The center of the cylinders is positioned at (xc, yc) = (0, D2 + G).
The domain shown is given by: (a) (x, y) ∈ [−2, 10] × [0, 4]. (b),(c) (x, y) ∈
[−2, 20]× [0, 6].

As may be seen from figure 8.1 the wall has a significant stabilizing effect of the flow.
At D/G = 10 the flow is stationary at least up to the Reynolds number Recrit = 100 in
contrast to a cylinder in free flow where the critical Reynolds number has been found to be
Recrit ≈ 46± 1, [7]. Also it is seen that as the cylinder is moved closer to the wall a regime
appears in which periodic shedding from both sides of the cylinder is no longer observed.
In this regime either only shedding from the top side of the cylinder is observed, or only
an unsteady flow without any vortex formation observed within the part of the domain
downstream of the cylinder under consideration.

78

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

An illustration of the transition from stationary flow, across the parameter values without
periodic shedding from both sides of the cylinder, to parameter values with periodic shedding
is given in figure 8.3 for D/G = 10 and Re ∈ [100, 180].

(a) Re = 100, D/G = 10. Purely stationary flow is observed.

(b) Re = 120, D/G = 10. Only shedding from the top of the cylinder is observed
within the domain. The (black) trace is the path followed by the counter clockwise
rotating vortices shed from the upper side of the cylinder.

(c) Re = 180, D/G = 10. At these parameter values two vortices are observed
travelling downstream nearly symmetrically. The (orange) trace is the path followed
by the clockwise rotating vortices shed from the lower side of the cylinder. The
(black) trace is the path followed by the counter clockwise rotating vortices shed
from the upper side of the cylinder.

Figure 8.3: The cylinders center is positioned at (xc, yc) = (0, D2 + G). The
domain shown is given by: (x, y) ∈ [−2, 20]× [0, 6].

By comparing figures 8.2a and 8.3c an interesting effect of moving the cylinder close to the
moving wall may be observed. In figure 8.2a it is seen that the clockwise and counter clock-
wise rotating vortices are shed and travels downstream with almost equal spacing between
vortices. In contrast it is seen in figure 8.3c that the clockwise rotating vortex appears to pull
the counter clockwise rotating vortex off the wall and afterwards they continue downstream
as a pair.

79

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

8.1.2 Different Critical Point Structures

During a period of shedding seven qualitatively different center and saddle point patterns
have been identified in the flow for the cylinder near the moving wall. Five of them exists
for (Re,D/G, t) = (240, 5/3)× [t0, t0 +T], where T is a period. These five are illustrated on
figure 8.4. The final two structures are treated in detail in section 8.2 and 8.3.

Figure 8.4: Plot of the traces of extrema and saddle points over a period of
shedding, parameter values Re = 240, D/G = 5/3. This plot illustrates five
different structures observed in the vorticity field over a period in the periodic
shedding regime. Nr. 1: Creation of vortices and saddles from the backside
of the cylinder surface and following annihilation in saddle-center bifurcations.
Nr. 2 Closed saddle-point cycle between cylinder and wall. Nr. 3 Saddle-
Center bifurcations creating vortices surviving downstream. Nr. 4 Saddle-
Center bifurcation leading to short lived extrema in vorticity. Nr. 5 Saddle
point creation at moving wall. Domain shown have the dimensions (x, y) ∈
[−1.5, 2.5]× [0, 2].

The five structure types shown on figure 8.2 are discussed in short below,

• Nr. 1. Structure on cylinder downstream side: Increasing the Reynolds num-
ber beyond the critical value where the flow goes from being stationary to periodic a
structure consisting of the creation of two vortices and two saddles are observed on
the downstream side of the cylinder over the duration of a period. Each vortex leave
the cylinder and clash with one of the saddle-points in a saddle-center bifurcation. Al-
though their movement patterns change slightly with varying (Re,D/G) the structure
persists for all Re > Recrit. The vortices are illustrated in figure 8.5 which show a
vorticity plot at two different instances in time.

• Nr. 2. Saddle cycle: For all (Re,D/G) values a saddle cycle exists in the area
between the cylinder and wall. It consists of a saddle point in vorticity which travels
in a cycle over a period of shedding. This saddle-point mark the point in the flow

80

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

between the wall and cylinder where the fluid rotates in opposite directions. Near the
wall fluid is ripped off the wall creating a clockwise rotation in the flow. Near the
cylinder fluid is ripped off the cylinder resulting in fluid rotating counter clockwise.
This effect happening on either side of the saddle point is also illustrated in figure 8.5.

• Nr. 3. Saddle-Center bifurcation, surviving vortices: For all Re-values above
the critical value for periodic shedding one or two vortices which survive downstream
are created downstream of the cylinder. This always happen in saddle-center bifurca-
tions, and will be treated in more detail later.

• Nr. 4. Weak Center appearance/disappearance: For some (Re,D/G)-values
in the periodic shedding regime at various places downstream of the cylinder small
vorticity extrema appears and disappears in saddle-center bifurcations over the course
of a period. These extrema were all found to appear near the center of a vortex
travelling downstream. The extrema only exist over a short time span during a period
and therefore they are not investigated further.

• Nr. 5. Saddle creation at wall: Along the moving wall alternating patches of
clockwise and counter clockwise rotating fluid exists. Between these patches travel
saddle points which appear from the wall. No vortices were found to appear directly
from the wall. A saddle point created at the wall is also illustrated in figure 8.5.

(a) Illustration of a counter clock-
wise rotating vortex near the back-
side of the cylinder, marked by a
white square. Also an illustration
of the creation of a saddle-point at
the wall.

(b) Illustration of a clockwise ro-
tating vortex near the backside of
the cylinder, marked by a white
square.

Figure 8.5: Parameter values: Re = 240, D/G = 5/3. Two temporal snapshots
during a period of shedding. Among others the figures illustrate the cyclic
travelling saddle point between the cylinder and wall. Saddles are marked by
purple squares.

81

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

8.1.3 Downstream Surviving Vortices, Creation Points and Movement Patterns

An investigation of the effect of varying the Reynolds number and D/G-ratio on the creation
point and movement path of the vortex pair which survive downstream has been performed.
Detailed results forD/G = 10 are presented in this section along with conclusions on findings
for other D/G-values.
Figure 8.6 provides a map of the creation point and pathway for the clockwise and counter
clockwise rotating vortices surviving downstream at D/G = 10 and Re ∈ [150, 200]. Results
presented here are based on simulations which were allowed to run for at most t = 160 time
units. As may be seen from figure 8.6 this simulation time was not enough to obtain perfect
periodic shedding for Re ∈ {150, 160}.

(a) Illustration of the creation point and pathway of the counter clockwise rotating vortex
created near the wall at different Reynolds numbers.

(b) Illustration of the creation point and pathway of the clockwise rotating vortex created
away from the wall at different Reynolds numbers.

Figure 8.6: Parameter values: Re ∈ [150, 200], D/G = 10. Shown domain,
(x, y) ∈ [−1, 20]× [0, 6]. Cylinder center (xc, yc) = (0, D2 +G).

Figure 8.6 illustrate multiple findings, listed below.

• Creation points for both the clockwise and counter clockwise rotating vortices moves
downstream as the Reynolds number is reduced.

• Both vortices are pushed further and further away from the wall with increasing Reyn-
olds number when the cylinder is close to the wall.

• When the Reynolds number nears the critical value for periodic shedding the transient
solution is not gone after a simulation over four times the length of a simulation where

82

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

Re is further from the critical value. Thus in order to obtain a solution which has
reached periodic shedding, for which no effect of the transient solution is left, very
long simulation times are needed at Re close to Recrit.

• At a given Reynolds number the counter clockwise rotating vortex created near the
wall moves away from the wall at a steeper angle than the clockwise rotating vortex.

The x-coordinate of the creation point for the vortex and its distance to the wall at x = 20
for both the clockwise and counter clockwise rotating vortices has been recorded at a number
of Re values at D/G = 10. The results are presented in figure 8.7.

120 140 160 180 200 220 240 260 280 300
0

2

4

6

8

10

12

14

16

18

20

Re

x−
co

or
di

na
te

Counter Clockwise Rotating Vortex
Clockwise Rotating Vortex
Cylinder Centrum, x−coord

(a) The x-coordinate of the cre-
ation point for both surviving vor-
tices as a function of Reynolds
number.

140 150 160 170 180 190 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Re

y−
co

or
di

na
te

Counter Clockwise Rotating Vortex
Clockwise Rotating Vortex
Cylinder Centrum, y−coordinate

(b) The distance from the wall of
the vortices travelling downstream
at x = 20 corresponding to twenty
cylinder diameters.

Figure 8.7: Parameter values: D/G = 10, Re ∈ [120, 300]. The wall is positioned
at y = 0 and the cylinder center at (x, y) = (0, D2 +G).

In figure 8.7a it is seen that the distance downstream of the cylinder where the two vortices
are created increases monotonously as the Reynolds number is reduced. It is also seen
that the creation point of the counter clockwise rotating vortex near the wall moves further
downstream than that of the clockwise rotating vortex as Re is lowered. Figure 8.7b shows
that increasing the Reynolds number forces the vortices further away from the wall. It also
shows that the counter clockwise rotating vortex is forced from the wall at a steeper angle
than the clockwise rotating vortex when the Reynolds number is increased.
Similar tests have been performed for D/G ∈ {5, 5/2, 5/3, 5/4}. The same tendency of the
creation points moving downstream with decreasing Reynolds number was seen. Due to
limited sample sizes at these D/G-values the data is not presented in detail here.
With respect to the influence of the wall on the pathway followed by the vortices it was
found that as the cylinder is moved away from the wall towards D/G = 5/4 the influence
decreases significantly. The pathways followed by the vortices at different distances to the
wall are illustrated below in figures 8.1.3 and 8.8a for Re = 300.

83

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

(a)

(b)

Figure 8.8: Re = 300. Trace of (a) counter clockwise rotating and (b) clockwise
rotating vortices for different D/G-ratios. The wall is marked by a blue line for
D/G = 10 and a red line for D/G = 5 and dark gray for D/G = 5/4. The
trace of the vortices at D/G = 10 are coloured blue, at D/G = 5 they are
coloured red and at D/G = 5/4 they are coloured green. Domain dimensions:
(x, y) ∈ [−2, 10]× [0, 3.5].

From the figures its clear to see that the vortices are forced much further from the wall at
D/G = 10 than at D/G = 5/4. At D/G = 5/4 only a small deflection in the traces is seen
compared to other D/G values.
From figure it is clear to see that after they are created the vortices move around behind
the cylinder before starting to travel downstream. This behaviour was observed for most
(Re,D/G)-values. It is caused by the fact that the extrema in vorticity is created at some
point during accumulation of rotating fluid behind the cylinder during the shedding period.
First at a later point in time does the rotating fluid start moving downstream with the
vorticity extrema at its center. This leaves the vorticity extrema travelling around behind
the cylinder for part of its existence before starting its journey downstream.

8.1.4 Vortex Strength Reduction

In the investigation of the creation point and pathway followed by the vortices surviving
downstream of the cylinder an interesting question becomes. How quickly the magnitude of
the vortices decrease?.

84

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

If the magnitude of the vortices decreases to an insignificant level only a few cylinder diamet-
ers downstream the exercise of tracing them far from their creation point becomes pointless.
On the other hand, if the vortices remain intense far downstream tracing their path is
interesting.
The measure for vortexes magnitude used here is the magnitude of vorticity ω at its center.
The distance downstream is measured as the distance from the cylinder center, x = 0,
directly downstream measured in cylinder diameters.
Note: The temporal dependence of the vortices movement downstream is not considered here.
Hence the time it takes the vortex to travel the first two cylinder diameters downstream may
be the same it takes it to travel the next eight cylinder diameters. Thus measured in time
the vortex decrease rate might be the same everywhere in the flow.
The investigation of the intensity has been performed for the valuesD/G ∈ {10, 5, 5/2, 5/3, 5/4, 0}
and Re: Re ∈ {140, 220, 300}. The magnitude of both the clockwise rotating vortex and the
counter clockwise rotating vortices were tracked.
Multiple findings were made regarding the magnitude of the vortices dependence on Re and
D/G and how it decreases as the vortices move downstream. The findings are listed below
and are also considered in the following paragraphs which include figures presenting the
vorticity data.

• The intensity of both the clockwise and counter clockwise rotating vortex depends on
Re for all D/G-values. Increasing Re increases the vortex intensity at the point of
creation and the intensity stays higher downstream. The data is shown in figures 8.9
and 8.10.

• Introducing the moving wall increases the vorticity for both vortices compared to a
cylinder in free flow at D/G ratios smaller than 5.

• The magnitude of both vortices are nearly independent of D/G until D/G < 5/2 at all
tested Re. Passing this value, i.e. moving the cylinder closer to the wall, the intensity
of the vortices decrease in magnitude. This is true both for the magnitude at creation
and the magnitude downstream. This behaviour is shown in figure 8.11.

• The rate of the decrease in vorticity as a function of distance downstream is for most
parameter values separated in two phases. In the first phase where the vorticity ex-
trema stays behind the cylinder for an extended period of time the rate of decrease is
very high. In the second phase where the vortex travels downstream it is much lower.
In most cases the rate of decrease was found to be approximately constant during the
second phase.

– For the clockwise rotating vortex the rate of decrease in vorticity during the
second phase was found to only dependent slightly on D/G for D/G > 5/2. For
the counter clockwise rotating vortex (the vortex closest to the wall) the rate
changed considerably with D/G.

– The rate of decrease in vorticity during the second phase for the clockwise rotating
vortex increased with decreasing Re for all D/G-values. The same was found for
the counter clockwise rotating vortex until D/G = 5/2.

• Past eight cylinder diameters downstream the change in vorticity has become approx-
imately linear.

85

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

Vorticity Magnitude: The magnitude were calculated for both the clockwise and counter
clockwise rotating vortices and it was found that the intensity increases with increasingRe for
all D/G-values. The figures 8.9 and 8.10 show the magnitude of the vorticity as a function of
the distance the vortices have travelled downstream measured in cylinder diameters. These
figures are sorted by D/G-ratio with varying Re.

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(a)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5/2, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(b)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5/3, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(c)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5/4, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(d)

Figure 8.9: Graphs showing the magnitude of the vorticity at the center of the
clockwise rotating vortex as a function of its distance travelled downstream of
the cylinder from its creation point. x = 0 corresponds to the x-coordinate of
the center of the cylinder. Each plot is for a fixed D/G-ratio with different Re
values.

86

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(a)

1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
D/G = 5/2, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(b)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5/3, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(c)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
D/G = 5/4, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

Re=140
Re=220
Re=300

(d)

Figure 8.10: Graphs showing the magnitude of the vorticity at the center of the
counter clockwise rotating vortex as a function of its distance travelled down-
stream of the cylinder from its creation point. x = 0 corresponds to the x-
coordinate of the center of the cylinder. Each plot is for a fixed D/G-ratio with
different Re values.

From the figures the increase in vorticity with increasing Re for all D/G-values is easily
seen. It is also clear from the figures that the rate of decrease in vorticity may be considered
to happen in two distinct phases. This behaviour will be discussed in the next paragraph.
Another interesting finding is that introducing the wall actually made the vortices stronger
for 5/4 ≤ D/G < 5/2. Also the magnitude and change in vorticity almost does not vary
with D/G for D/G ≤ 5/2. When moving the wall from D/G = 5/2 to D/G = 5 however,
a clear drop in vorticity is seen. This shows that the cylinder must be close to the wall for
it to decrease the strength of the vortices. However at the close range the wall has a clear
effect on the intensity of the vortices shed from it. The behaviour described here is shown
in the figure 8.11, which presents the same data as the figures 8.9 and 8.10 but sorted by
fixed Re instead.

87

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

0 1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5
Re=140, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(a)

1 2 3 4 5 6 7 8 9
2

2.5

3

3.5

4

4.5

5

5.5
Re=220, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(b)

1 2 3 4 5 6 7 8 9 10 11
3

3.5

4

4.5

5

5.5

6

6.5

7
Re=300, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4

(c)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5
Re=140, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(d)

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Re=220, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(e)

1 2 3 4 5 6 7 8 9 10 11
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Re=300, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

V
or

tic
ity

 m
ag

ni
tu

de
 [N

on
−

D
im

en
si

on
al

]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4

(f)

Figure 8.11: Graphs showing the magnitude of the vorticity at the center of the
(a),(b),(c) counter clockwise rotating vortex and (d),(e),(f) clockwise rotating
vortex as a function of its distance travelled downstream of the cylinder. x = 0
corresponds to the x-coordinate of the center of the cylinder. Each plot is for a
fixed Re-value with different D/G-ratios.

Vorticity Decrease Rate: From the figures presented in the previous paragraph it is
clear to see that for most Re and D/G values the vorticity decreases rapidly over the first
one to two cylinder diameters downstream. At around x = 3 the decrease rate slows down

88

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

significantly and past seven cylinder diameters it has become approximately constant for
most of the Re and D/G values. That is, it is observed that the vorticity decreases at two
distinctly different rates close to the cylinder and further downstream.
Note: As stated earlier part of the reason for the initial high decrease rate in vorticity
magnitude may be attributed to the finding that the vortices tend to stay some time behind
the cylinder after their creation before travelling downstream.
In order to investigate the approximately constant decrease rate the magnitude of the vor-
ticity past x = 8 has been scaled with its value at x = 8 as,

ωScaled(x) =
∣∣∣∣ ω(x)
ω(x = 8)

∣∣∣∣ , x ≥ 8. (8.1)

Graphs showing the approximately linear decrease in vorticity between x = 8 and x = 10
for ωScaled(x) for both the clockwise and counter clockwise rotating vortex are presented
in figure 8.13. From the data presented in the figure an approximately constant fractional
decrease rate α may be calculated and is found to lie between 0.02 and 0.09 depending on
Re and D/G-ratio. This have been done and the results are presented in the figure 8.12

0 1 2 3 4 5 6 7 8 9 10
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

D/G − ratio

D
e
c
re
a
se

ra
te
:
α

Re = 140
Re = 220
Re = 300

(a) Clockwise Rotating Vortex.

0 1 2 3 4 5 6 7 8 9 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

D/G − ratio

D
e
c
re
a
se

ra
te
:
α

Re = 140
Re = 220
Re = 300

(b) Counter Clockwise Rotating
Vortex.

Figure 8.12: Constant decrease rate approximations, α calculated based on data
presented in figure 8.13.

From figure 8.12 it may be seen that introducing the wall actually initially increases the
decrease rate in all cases. As the cylinder is moved closer to the wall however it is seen that
the decrease rate drops significantly. For the clockwise rotating vortex the drop in decrease
rate is observed for D/G = 5/4 for all Re-values. For the counter clockwise rotating vortex
the drop in decrease rate seems to depend on Re where increasing Re makes the drop happen
closer to the wall. A jump is observed for Re = 140 between D/G = 5/4 and D/G = 5/3
for the counter clockwise rotating vortex to which no explanation was found.

89

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

0.9

0.92

0.94

0.96

0.98

1

Re=140, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(a)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Re=220, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(b)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Re=300, Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(c)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Re=140, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(d)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

0.88

0.9

0.92

0.94

0.96

0.98

1

Re=220, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(e)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
0.88

0.9

0.92

0.94

0.96

0.98

Re=300, Counter Clockwise Rotating Vortex

Distance downstream, [Normalised Cylinder Diameter]

S
ca

le
d

V
or

tic
ity

 [N
on

−
D

im
en

si
on

al
]

D/G=10
D/G=5
D/G=5/2
D/G=5/3
D/G=5/4
Free

(f)

Figure 8.13: Each plot is for a fixed Re-value with different D/G-ratios. The
plots are of scaled vorticity, ωScaled, as a function of distance downstream of the
cylinder, x: ωScaled =

∣∣∣ ω(x)
ω(x=8)

∣∣∣. Figures (a),(b),(c) show data for the clockwise
rotating vortex. Figures (d),(e),(f) show data for the counter clockwise rotating
vortex.

Investigating the data in figure 8.13 in detail shows that the decrease is slightly slower then
linear for almost all cases. That is, ∂ω

∂x is not constant but decreases slightly as a function
of x. However the approximately constant decrease rate from x = 8 can be used to provide

90

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

a lower bound on vortex magnitude further downstream.
In order to estimate the lower bound one may use the expression,

|ω(x)| = |ω(8)|(1− α(x− 8)) , x ≥ 8, α ∈ [0.02, 0.09]. (8.2)

Magnitude Decrease Downstream: Considering the vortices from their creation points,
their magnitude may be estimated to have decreased by between 40 percent and 60 percent
at 10 cylinder diameters downstream. Thus when considering the vortices from the point
where they are strongest they have only halved in strength ten diameters downstream.
Excluding the first rapid decrease in magnitude, i.e. considering the vortices from 3 cylinder
diameters downstream, the intensity of the vortices have decreased by between 20 percent
and 40 percent at 10 cylinder diameters downstream.
Using α = 0.09 it can be estimated that the vortices have all but died out at 20 cylinder
diameters downstream. Instead using α = 0.02 the vortices have only lost roughly 25 percent
of their magnitude from 8 to 20 cylinder diameters downstream.
Remembering that this is a lower bound on the vorticity since the actual decrease rate slows
down slightly as a function of x, the vortices in fact remain slightly stronger downstream
than the approximation presented above suggests.

Choice of zero point for time: For multiple purposes it is practical to define a zero
point, t0, in time as a reference point during a shedding period. As the shedding is periodic
the choice of t0 may be made freely yet it is important to choose carefully for the visualisation
and understanding of some results. As both shedding frequency and flow structure depends
on D/G and Re it is not obvious what choice should be made as it should be general enough
to be applicable for all simulations. For all Reynolds numbers above the critical Reynolds
number for vortex shedding Recrit a single event is observed to always occur regardless of
the choice of Re and D/G. This event is the appearance of the clockwise rotating vortex
in center-saddle bifurcation above and behind the cylinder. The center-saddle bifurcation
point in question is highlighted by a circle in figure 8.14.

Figure 8.14: Critical point trace for Re = 140, D/G = 5
2 with highlight of the

spatial point where the extrema-saddle creation event which define t0 occurs.
The domain dimensions: (x, y) ∈ [−1, 4]× [0, 2.4]

By defining the center-saddle bifurcation event as the beginning of a shedding cycle we now
have a well-defined t0 from which the temporal value of all other events may be defined. An

91

8.1 Initial Investigation for the Cylinder and Wall 8 ANALYSIS

added benefit of this choice of t0 is that it may been used to estimate the shedding period
with high accuracy.

Period of shedding / Strouhal number: The shedding period in non-dimensionalized
time, T = tU∞D and the corresponding Strouhal numbers have been recorded for all simula-
tions and selected results are displayed in figure 8.15.

0 2 4 6 8 10 12 14 16

4

6

8

10

D/G

T

Re = 300
Re = 220
Re = 140

0 2 4 6 8 10 12

0.1

0.15

0.2

0.25

D/G
S
t

Re = 300
Re = 220
Re = 140

Figure 8.15: Scatter plot of (a) the non-dimensionalized period and (b) the non-
dimensionalized frequency. Note that D/G = 0 corresponds to the cylinder in
free flow.

From figure 8.15 it can be seen that varying the D/G-value has a greater effect on the
Strouhal number than varying the Reynolds number in the range investigated. Moving the
cylinder very close to the wall almost doubles the shedding period compared to the cylinder
in free flow. In contrast doubling Re only decrease the period by roughly 15%. It is also
seen that the Strouhal number appears to exhibit a maximum around D/G ≈ 2 for all three
values of Re. This is in complete agreement with findings presented in [8, figure 17] by
Huang and Sung.
Figure 8.15 also shows that the wall still influences the shedding period at D/G = 5/4.

92

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

8.2 Formation and Disappearance of Extrema-Saddle Pair

In the previous sections of this chapter, the vortex trace method has been used to trace
vortices through the flow, track their magnitude and to identify and illustrate several bifurc-
ations in time at fixed (Re,D/G)-values. All bifurcations away from the wall and cylinder
observed so far have all been saddle-center bifurcations in time. In this section the occur-
rence of a bifurcation which alters the structure of the flow as Re and D/G are varied is
treated.
A structure has been identified which only exists over a limited part of the shedding period,
T , and only for certain (Re,D/G)-values. This structure consists of the formation and
disappearance of a counter clockwise rotating vortex behind the cylinder. This extrema
does not survive downstream but instead is created and annihilated behind the cylinder.
The idea is to identify the (Re,D/G)-pair at which this structure appears in the flow and
provide an explanation of how this happens.
An illustration of the structure in question is provided in figure 8.16. The figure shows the
extrema and saddle traces for three simulations with Re = 280 and D/G ∈ {3.16, 2.14, 1.67}
respectively. These choices of D/G corresponds to the situation before the closed center-
saddle pair appears, during its existence and after it may no longer be found.

(a) D/G = 3.16,
The creation point
of the counter clock-
wise rotating vor-
tex surviving down-
stream is seen inside
the green box.

(b) D/G = 2.14,
A vortex-saddle
pair appears and
vanishes behind the
cylinder before the
creation point of
counter clockwise
rotating vortex.

(c) D/G = 1.67 the
annihilation point
for the vortex-saddle
pair appearing
behind the cylinder
and the creation
point of the counter
clockwise rotating
vortex have merged.

Figure 8.16: Reynolds number: Re = 280. Illustration of the appearance and
disappearance of a closed saddle-center structure in the flow when D/G is varied.

From the areas marked with green squares in these figures it may be observed that varying
the parameter D/G from 3.16 to 2.14 causes the structure to change. At D/G = 2.14 an
extrema and a saddle is created at some tc in a center-saddle bifurcation. This pair disappears
again in another center-saddle bifurcation at some other time td before the vortex surviving
downstream is created at a third time tds. Varying D/G further from 2.14 to 1.67 apparently

93

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

results in the four critical points highlighted with small square in figure 8.16c merging in a
new bifurcation.
The result of the appearance and disappearance of this structure is that the creation of the
vortex closest to the wall jumps from right behind the cylinder to a more symmetric position
behind and below the cylinder.
Note: The following investigation of this structural change illustrate the sensitivity of the
method of tracing the extrema of the vorticity. Even though the flow looks very similar as
the values of D/G and Re are varied across the threshold where the closed center-saddle
structure exists the method clearly identifies this structure.

Scaling the Time: As seen in figure 8.15 the shedding period changes as a function of
both Re and D/G. This change in period leads to the choice of a simple linear rescaling of
the time during a single shedding period. Thus the time over a period t ∈ [0, T] for a given
(Re,D/G)-pair is rescaled to t̃ = [0, 1]. This allows for a better illustration of the bifurcation
diagrams presented in the following section. The reader may consult figure 8.15 for the exact
St number for each (Re,D/G)-pair at Re ∈ {140, 220, 300}. For different Reynolds numbers
the St number may be estimated fairly accurately from the figure as no irregular variation
in St was observed at any (Re,D/G)-value.

8.2.1 Constant Re Bifurcation Diagrams

The game now becomes to identify at what (Re,D/G)-values the bifurcation that leads
to the structural change illustrated in figure 8.16 occurs. To do this a large number of
simulations at varying Re and D/G values have been performed.
Based on the data from these simulations this section presents a series of 2D bifurcation
diagrams in D/G and t̃, each for fixed Reynolds number. These 2D diagrams corresponds
to slices through the 3D parameter space given by (Re,D/G, t̃). As defined in a previous
paragraph t̃ = 0 corresponds to the point in time where the clockwise rotating vortex is
shed from the topside of the cylinder. The diagrams then shows at what fraction of a full
shedding period the counter clockwise rotating vortex is shed from the bottom side of the
cylinder. This event is denoted by a (gray) dot. More importantly the diagrams show at
what fraction of the period the saddle-center pair forming the closed structure appears,
denoted by a (red) dot, and disappears, denoted by a (blue) dot, for all values of (Re,D/G)
where this structure exists. By scanning through different Reynolds numbers this method
allows for a precise identification of the Re-value at which the closed center-saddle cycle no
longer appears for any D/G-values.

Re = 300:

The largest Reynolds number considered in this investigation is Re = 300. Figure 8.17 shows
that at this Re the closed center-saddle structure exists for a wide variety of D/G-values.

94

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

t̃

D/G
5
4

5
3

5
2

510

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8.17: Re = 300. Bifurcation diagram in the 2-parameter space (D/G, t̃).
(Gray) dots mark the creation time for the counter clockwise rotating vortex
surviving downstream. (Red) marks the creation point for the closed center-
saddle structure. (Blue) marks the annihilation point of the closed center-saddle
structure.

From the figure it is seen that as D/G→ 5/4 the shedding of the counter clockwise rotating
vortex nears t̃ = 0.5. This corresponds to perfectly alternating shedding from the topside
and bottom side of the cylinder as is the case for the cylinder in free flow. When the
cylinder is moved closer to the wall, i.e. D/G→ 10 it is seen that the two vortices travelling
downstream are shed closer to each other in time.
The (light blue) dot at the parameter values (D/G0, t̃) = (2.22, 0.98) marks the point at
Re = 300 in the (D/G0, t̃) parameter space where the closed saddle-center structure merges
with the creation point for the vortex surviving downstream. That is, it marks the point in
parameter space where the structure of the flow goes from the one illustrated in figure 8.16b
to the structure illustrated in 8.16c. This transition happens in saddle-center bifurcation as
illustrated in figure 8.18.
The (black) dot at roughly (D/G, t̃) = (3.52, 0.31) marks the point where the closed saddle-
center structure appears.
The jump in the data marked by the large (purple) dot at (D/G, t̃) ≈ (4, 0.75) illustrates
a point in the parameter space where the clockwise rotating vortex used to define t̃ = 0
undergoes a bifurcation of its own. This bifurcation results in the creation point for this
vortex changing position instantaneously. Thereby the time between the creation of the
clockwise and counter clockwise vortices changes abruptly.
This bifurcation is illustrated in figure 8.19.

95

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

D/G > D/G0

D/G = D/G0

D/G < D/G0

Center Spatial Position Saddle Spatial Position Saddle-Center Bifucation Point

Figure 8.18: Sketch of the center and saddle spatial position at different instances
in time, ti, for three different D/G-values. Before D/G < D/G0, at D/G =
D/G0, and after D/G > D/G0 the closed saddle-center structure merges with
the creation point for the vortex surviving downstream.

(a) D/G = 4.0,
the creation point of
the clockwise rotat-
ing vortex is above
the cylinder.

(b) D/G = 3.87,
A center-saddle
pair appears and
vanishes above the
cylinder and the
creation point of
clockwise rotating
vortex has jumped
down behind the
cylinder.

(c) D/G = 3.75,
the creation point of
the clockwise rotat-
ing vortex is behind
the cylinder

Figure 8.19: Reynolds number: Re = 300. Illustration of the jump in creation
point of the clockwise rotating vortex.

In order to identify at what (Re,D/G)-value the closed saddle-center structure marked by
blue and red dots in figure 8.17 seizes to exist, the Reynolds number is now lowered in
increments of 20, and a series of simulations for different D/G-values performed at each Re.

96

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

Lowering Re:

The figures 8.20 through 8.23 show slices of the (Re,D/G, t̃) parameter domain at Re ∈
{280, 260, 240, 220}. From these figures it is immediately observed that lowering Re narrows
the span of D/G-values for which the closed saddle-center structure exists. It is seen that
the point at which the closed structure merges with the vortex surviving downstream stays
roughly at D/G ≈ 2.22. The point at which the closed saddle-center structure emerges
reduces in D/G-value as Re is reduced. No evidence that another type of bifurcation then
the codimension 1 saddle-center bifurcation happens as Re is lowered has been found. The
closed saddle-center structure simply seizes to exist as Re is lowered passed a critical value
denoted R0.
Instead of a different type of bifurcation in the flow it is believed that the disappearance of
the structure may be explained by a bifurcation in a mathematical parameter c1 controlling
the saddle-center bifurcation, see equation (2.14).

t̃

D/G
5
4

5
3

5
2

510

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8.20: Reynolds number Re = 280. See caption of figure 8.17 for figure
explanation.

97

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

t̃

D/G
5
4

5
3

5
2

510

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8.21: Reynolds number Re = 260. See caption of figure 8.17 for figure
explanation.

t̃

D/G
5
4

5
3

5
2

510

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8.22: Reynolds number Re = 240. See caption of figure 8.17 for figure
explanation.

98

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

t̃

D/G
5
4

5
3

5
2

510

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8.23: Reynolds number Re = 220. See caption of figure 8.17 for figure
explanation.

A model for the change in c1 is presented here. Remember that all the data points on the
figures 8.20 through 8.23 corresponds to parameter values (Re,D/G, t̃) at which a saddle-
center bifurcation occurs in the flow. Each of these bifurcations happen at a given position
(xcrit, ycrit) in the physical domain away from the wall and cylinder.
From section 2.1, it is known that for a codimension 1 bifurcation, close to (xcrit, ycrit) the
vorticity ω, may be written through a normal-form transform as,

ω = 1
2y

2 + c1x+ 1
3x

3 +O(4), (xcrit, ycrit) = (0, 0). (8.3)

where c1 is the mathematical parameter depending on the physical parameters Re,D/G and
t̃.
As was shown in section 2.1 the saddle-center bifurcation happens as c1 crosses zero. Thus
bifurcation happens at all points in parameter space where the c1(Re,D/G, t̃)-field attains
the value zero, {(Rei, D/Gi, t̃i) | c1(Rei, D/Gi, t̃i) = 0}.
From figures 8.22 and 8.23 it is seen that the saddle-center structure seizes to exist as Re
is lowered from Re = 240 to Re = 220. The way the path formed by the dots in the
diagrams changes from a Z-shape at Re = 300 to a flat shape at Re = 220 suggests that
the disappearance of the closed structure happens through a vertical tangent at the critical
Reynolds number value, Re = Re0 and D/G-ratio, D/G = D/G0. Assuming this is the case
the (D/G, t̃) bifurcation diagram at Re0 may be sketched as illustrated in figure 8.24.

99

8.2 Formation and Disappearance of Extrema-Saddle Pair 8 ANALYSIS

5/45/35/2510
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D/G

t

c
1
 = 0

D/G
0

t
0

Figure 8.24: Sketch of the (D/G, t̃) bifurcation diagram at Re = Re0. The value
of D/G0 and t̃0 is marked by dashed lines.

The change in shape suggests that the c1-parameter undergoes a bifurcation at the set of
parameter values, (Re,D/G, t) = (Re0, D/G0, t0). Fixing D/G = D/G0 and consecutively
fixing Re at three different values Re∗ ∈ {Re−1, Re0, Re1} with Re−1 < Re0 < Re1 yields
the three different curves for c1(Re∗, D/G0, t) sketched in figure 8.25.

0 t_0 1

0

t

c 1

c
1

c
1
 = 0

(a) Re∗ = Re−1.

0 t_0 1

0

t

c 1

c
1

c
1
 = 0

(b) Re∗ = Re0.

0 t_0 1

0

t

c 1

c
1

c
1
 = 0

(c) Re∗ = Re1.

Figure 8.25: Three sketches of slices of the c1-surface at (Re∗, D/G0, t̃) for t̃ ∈
[0, 1].

Figure 8.26b show c1(Re0, D/G0, t̃), i.e. c1 at the exact Reynolds number where the closed
saddle-center structure disappears corresponding to a slice along D/G0 on figure 8.25. This
curve fulfils the following requirements:

c1(Re0, D/G0, t̃0) = 0, ∂c1
∂t̃
|(Re0,D/G0,t̃0) = 0, (8.4)

∂2c1
∂2t̃
|(Re0,D/G0,t̃0) = 0, ∂

3c1
∂3t̃
|(Re0,D/G0,t̃0) 6= 0.

Consider now c1(Re∗, D/G0, t̃) at Re∗ = Re−1 and Re∗ = Re1 corresponding to lowering and
increasing Re around Re0. For Re = 240 we known that the closed saddle-center structure
exists for a narrow range of D/G-values and that for Re = 220 the structure no longer exists.
This means that at Re−1 only a single point exists where c1(Re−1, D/G0, t̃) = 0 and for Re1
three such point exists. This idea is sketched in the figures 8.26a and 8.25c.

100

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

The observed change in behaviour of c1(Re∗, D/G0, t̃) around Re0 means that c1 must also
fulfil a fifth condition given by:

∂

∂Re

(
∂c1
∂t

)
|Re0,D/G0,t̃0 6= 0. (8.5)

With the five conditions presented in (8.4) and (8.5) fulfilled by c1 at (Re0, D/G0, t̃0) the
model accurately describes the change in c1 causing the closed saddle-center structure to
disappear.
The idea presented above is the simplest explanation of the variation of c1 as the structure
in the bifurcation diagrams 8.20 through 8.23 changes. This model of the dependence of c1
on (Re,D/G, t̃) around the bifurcation point may be tested by identifying (Re0, D/G0, t̃0)
precisely and evaluating the five requirements at these values.

Re < Re0: At Re = 220 and below the closed saddle-center structure no longer appears
behind the cylinder.

8.3 Vortex Creation Point Jumping Downstream

Another, more structurally significant, bifurcation is a jump in the creation point for the
counter clockwise rotating vortex surviving downstream. This bifurcation was discovered
for the cylinder very close to the wall D/G = 10 and marks a much larger change in the
flow structure then the previously studied bifurcation.
The search for the bifurcation was motivated by the findings presented in figure 8.7a. Here
a significant jump in x-coordinate of the creation point for the counter clockwise rotating
vortex is between Re = 200 and Re = 220.
At Re > 220 the counter clockwise rotating vortex created behind the cylinder is found to
survive the full length downstream. The data in figure 8.7a suggests that for Re ≤ 200 this
may no longer be the case. The counter clockwise rotating vortex surviving downstream in
now created near the wall at more then four cylinder diameters downstream.
To clearly illustrate the different positions of the generation of the vortex figure 8.26 presents
vorticity contours at the point in time when the vortex is created at Re = 300 and Re = 160.
Here it may be seen that forRe = 300 the lower vortex is created close to the cylinder whereas
for Re = 160 the creation point of the lower vortex has moved considerably downstream.

101

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

(a) Re = 300. The vortex created right behind the cylinder survives
downstream.

(b) Re = 160. The vortex created behind the cylinder quickly dies out
and a new vortex is formed near the wall further down stream.

Figure 8.26: D/G = 10. Vorticity contours at the point in time where the
counter clockwise rotating vortex is created near the wall. The green circles
marks the approximate position of the creation of the vortices. Domain dimen-
sions: (a) (x, y) ∈ [−1.5, 10]× [0, 3.5], (b) (x, y) ∈ [−1, 17]× [0, 5.5].

In order to investigate this change in structure the first step was to localise the bifurcation to
Re ∈ [210, 220]. The model problem was then solved for, Re ∈ {210, 212.5, 215, 217.5, 220}
and the traces of the centres and saddle-points in time were calculated. These are shown in
figures 8.27 and 8.28.
Consider first figure 8.27a. In the green square marked by 1 it is seen that a counter clockwise
rotating vortex is created behind the cylinder in a saddle-center bifurcation. A short distance
downstream it disappears again in another saddle-center bifurcation. Further downstream,
in the area marked by the green square with the number 2, another two extrema are created
in saddle-center bifurcations. These travel downstream until one of the extrema is swallowed
in a saddle-center bifurcation and the last surviving vortex continues downstream.
In contrast, in figure 8.28b it is seen that the counter clockwise rotating vortex created
behind the cylinder survives all the way downstream.
The bifurcation causing the change in structure is captured at Re = 217.5 in figure 8.28a
highlighted by a green square. From 8.28a to 8.28b it is seen that the change happens in
a saddle-center bifurcation where the creation point of the vortex surviving downstream
merges with the annihilation point for the vortex created behind the cylinder.
It should be noted that no such jump in the creation point was observed for the clockwise
rotating vortex which survives downstream. That is, that vortexes creation point moves
smoothly downstream with lowering Re.

102

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

Codimension 2 Bifurcation: Another change of structure may be observed by compar-
ing the area marked by the green square with number 3 in figure 8.27a and the area marked
by a green square in figure 8.27b. This change in structure is of little importance on the over-
all flow but interesting because its the only none saddle-center bifurcation observed which
is localised away from the wall or cylinder. This bifurcation is most likely of codimension 2
as will be shown here.

(a) Re = 210.

(b) Re = 212.5.

(c) Re = 215.

Figure 8.27: D/G = 10. The center of the cylinder is positioned at (xc, yc) =
(0, D2 +G). Domain dimensions: (x, y) ∈ [−1, 6]× [0, 2.25].

103

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

(a) Re = 217.5.

(b) Re = 220.

Figure 8.28: D/G = 10. The center of the cylinder is is positioned at (xc, yc) =
(0, D2 +G). Domain dimensions: (x, y) ∈ [−1, 6]× [0, 2.25].

Remember that a bifurcation of codimension 2 means that the structural change in the flow
depends on two mathematical parameters, e.g. c1 and c2. In [2, Section III] Brøns derives
all possible codimension 2 bifurcations for the stream function which fulfil the requirements
given in Theorem 129. Here Brøns presents two bifurcation diagrams containing all possible
bifurcations. These diagrams are provided in figure 8.29.

29Remember that stream function and vorticity are equivalent.

104

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

Figure 8.29: All possible codimension 2 bifurcations for (ẋ, ẏ) = (−ωy, ωx) where
ω =

∑
i,j ai,jx

iyj . A black dot floating alone correspond to a center. A black
dot with four lines emanating from it corresponds to a saddle. The figure is
borrowed from [2, Figure 3.3], courtesy of Brøns.

By inspecting figure 8.29a and equating c1 with Re and c2 with t it is possible to identify
the bifurcation which is most likely happening as Re is varied from Re = 210 to Re = 212.5
across some Re0 ⇔ c1 = 0.
From looking at the area contained in the green box marked by 3 in 8.27a one observes
two centres and a saddle move downstream until the topmost center and the saddle merges
in a saddle-center bifurcation leaving the bottom center travelling downstream. This event
corresponds to Re < Re0 ⇔ c1 < 0 and c2 = t growing in figure 8.29a. By placing a line
parallel to the c2 axis for c1 < 0 on this figure the bifurcation where two centres and a saddle
turns to a single center as the vortex travels downstream from the cylinder may be seen.
For the bifurcation happening in the green square on 8.27.b a similar analysis may be
performed, only this time Re > Re0 ⇔ c1 > 0. Hence the two centres and the saddle passes
across the bifurcation curve in figure 8.29.a making the lower center merge with the saddle
and leaving the upper center travelling downstream.
By inspecting figure 8.29 in detail it may be seen that no other type of codimension 2
bifurcation fits this behaviour. Hence it can be concluded that this is the type of bifurcation
happing as Re is varied across Re0. At Re = Re0 the bifurcation corresponds to the known
pitchfork bifurcation where two centres and a saddle merge to form a single center. The
three situations, Re < Re0, Re = Re0 and Re > Re0, are sketched in figure 8.30 for clarity.

105

8.3 Vortex Creation Point Jumping Downstream 8 ANALYSIS

Re < Re0

Re = Re0

Re > Re0

Center Spatial Position Saddle Spatial Position Saddle-Center Bifucation Pitchfork Bifurcation

Figure 8.30: Sketch of the three different vortex and saddle-point traces at
Re < Re0, Re = Re0, Re > Re0 for the codimension 2 bifurcation.

106

8.4 Uncertainty Quantification 8 ANALYSIS

8.4 Uncertainty Quantification

This section presents selected results obtained in the investigation of applying the principles
of the Stochastic Collocation Method presented in section 2.4. The SCM is used to obtain a
functional relationships between an uncertain input parameter and quantities of the flow as
well as predicting the mean and variance of the quantities. In all cases the Reynolds number
is considered as the random variable.
Initially the problem of the cylinder in free flow is considered. This is done to compare results
obtained using the SCM to published results and results obtained from other simulations
performed for this project. First Re is assumed to be uniformly distributed and the quantities
of pressure drag on the cylinder and the Strouhal number are considered. Afterwards Re is
assumed to be normally distributed, and the same quantities are considered.
Secondly the problem of the cylinder near the moving wall is considered. Here the Re is
considered uniformly distributed and the pathways of the clockwise rotating vortex surviving
downstream and its magnitude are the quantities of interest.
The reason for choosing the uniform and normal distributions is that they in the authors
mind reflect two general cases in real world application. The uniform distribution corres-
ponds to a design choice, i.e. in the process of designing a system it is possible to choose
some design parameter in the interval [a, b]. In this context it is very valuable to obtain
information about how a systems behaviour depends on the choice without trying all config-
urations. The normal distribution on the other hand reflects uncertainties in measurements
and/or knowledge of the system parameter.

8.4.1 Cylinder in free flow

The first investigation of the application of UQ is performed on a cylinder in an open flow,
see figure 1.1a. For this problem Henderson [10], has presented results which were also used
to verify the simulations in chapter 7. These results are used here to compare with results
obtained using UQ.
In order to apply the SCM to the problem the approach outlined in section 2.4.4 is followed.

Uniformly distributed Reynolds number: First the Reynolds number is taken to be
a random variable following a uniform distribution on the interval Re ∈ U [50, 600]. This
gives rise to the PDF, fX,u = 1

550 . As presented in section 2.4.3 the uniform distribution
has the Legendre polynomials as its gPC basis. With the distribution and gPC basis known
the next step is to choose a set of collocation nodes, ΘM = {Xj}Mj=1, which in this case are
determined by identifying the zeros of the (M + 1)’th Legendre polynomial.
Three cases for different polynomial order,M ∈ [1, 2, 4], were considered in order to observed
the change in the gPC approximation for the quantities of interest. The collocation nodes in
the standard interval R̃e ∈ [−1, 1] and the corresponding interval of interest Re ∈ [50, 600]
are presented in table 8.1,

107

8.4 Uncertainty Quantification 8 ANALYSIS

Basis Order: Nodes:
Re ∈ [50, 600] R̃e ∈ [−1, 1]

First: 166.2287 -0.5774
483.7713 0.5774

Second: 111.9859 -0.7746
325 0

538.0141 0.7746
Fourth: 75.8005 -0.9062

176.9209 -0.5385
325 0

473.0791 0.5385
574.1995 0.9062

Table 8.1: The collocation points for the uniformly distributed random variable
Re ∈ [50, 600] for different approximation orders. The linear transformation
needed to go from the standard interval R̃e ∈ [−1, 1] to an arbitrary interval
Re ∈ [a, b] is Re = b−a

2 R̃e+ b+a
2 .

Using the collocation values for Re the problem of the cylinder in an open flow has been
simulated until periodic shedding has been achieved. The Strouhal number, St and mean
pressure drag coefficient CDp have then been calculated. The values are provided in table
8.2.

Basis Order: St CDp

First: 0.191 1.062
0.225 1.265

Second: 0.174 1.021
0.216 1.180
0.227 1.293

Fourth: 0.155 0.991
0.194 1.068
0.216 1.180
0.224 1.262
0.229 1.298

Table 8.2: The St and CDp at the collocation points for the uniformly distribu-
tion random variable Re ∈ [50, 600] presented in table 8.1.

Based on the values presented in table 8.2 a polynomial expansion in the Reynolds number
for each quantity has been calculated as described in the paragraph on interpolation in
section 2.4.4.
Figures 8.31 and 8.32 show a plot of the polynomial expansions PN,D[CDp] and PN,D[St]
for the CDp and St respectively using a first, second and fourth order basis. In figure 8.31
the fit created by Henderson [7] based on 15 data points is plotted along with PN,D[St] to
illustrate the excellent agreement.

108

8.4 Uncertainty Quantification 8 ANALYSIS

0 100 200 300 400 500 600
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Re

C
D

p

fit
order=1

(a) First order UQ
based polynomial
expansion.

0 100 200 300 400 500 600
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Re

C
D

p

fit
order=2

(b) Second order
UQ based polyno-
mial expansion.

0 100 200 300 400 500 600
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Re

C
D

p

fit
order=4

(c) Fourth order
UQ based polyno-
mial expansion.

Figure 8.31: Graph of the fit presented by Henderson [7] provided in (7.1) for
CDp based on 15 data points and the UQ based polynomial expansion for CDp
based on 2,3 and 5 data points respectively.

From figure 8.31 it is seen that atleast in the eyeball norm the fit and the fourth order UQ
approximation agree very well.
In figure 8.32 the data for the St calculated for Re ∈ {100, 200, 300, 400, 500, 600} presented
in section 7.2.1 in table 7.5 is plotted along side the UQ polynomial approximation.

0 100 200 300 400 500 600
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Re

S
t

order=1
Measurements

(a)

0 100 200 300 400 500 600
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Re

S
t

order=2
Measurements

(b)

0 100 200 300 400 500 600
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Re

S
t

order=4
Measurements

(c)

Figure 8.32: Graph of the UQ based polynomial expansion for St based on 2,3
and 5 datapoints along with the Strouha number calculated from simulations
for Re ∈ {100, 200, 300, 400, 500, 600}.

Here very good agreement between the UQ approximation to fourth order and St data is
observed.
As shown in equation (2.63) the statistical mean of the approximation PN,D[g] is given by
the first coefficient in the polynomial expansion. As for the variance equation (2.64) shows
that this is given by the sum of squares of the rest of the expansion coefficients multiplied
by the normalization constant for the orthogonal polynomials. Using this, the mean and
variance has been calculated for both the polynomial expansions for the St and the CDp .
The mean and variance of CDp is compared to those obtained using the fit by Henderson.
The results are presented in table 8.3.

109

8.4 Uncertainty Quantification 8 ANALYSIS

Mean: µCDp µSt

First Order: 1.1636 0.2080
Second Order: 1.1675 0.2071
Fourth Order: 1.1646 0.2069
µHenderson: 1.1646
Variance: σ2

CDp
σ2
St

First Order: 0.0103 2.9559e-04
Second Order: 0.0104 4.5606e-04
Fourth Order: 0.0104 5.1279e-04
σ2
Henderson 0.0105

Table 8.3: Mean and variance for CDp and St calculated using the UQ polyno-
mial expansions for the different expansion orders. Also the mean and variance
for CDp obtained by calculating it from the fit presented by Henderson in [7].

From table 8.3 it is clearly seen that there are excellent agreement for both the mean and
variance for the pressure drag coefficient between the results obtained by Henderson using
15 data points and the results obtained using UQ with only 5 data points.

Normally distributed Re ∈ N (300, 50): In order to test the performance of UQ when
assuming the underlying random variable is normally distributed the same tests as for the
uniform distribution presented above have been performed30.

The normal distribution gives rise to the PDF, fX,G = 1
σ
√

2πe
− (x−µ)2

2σ2 , and the Hermite
polynomials or the gPC basis, see section 2.4.3. The collocation nodes are in this case
determined by using the Golub-Welsch algorithm, which may be found in [21, Section 4.6.2].
Like the uniformly distributed case, three different basis orders, M ∈ [1, 2, 4], were con-
sidered. The collocation nodes using the standard distributions R̃e ∈ N (0, 1) and the
corresponding nodes in Re ∈ N (300, 50) are presented in table 8.4,
The model problem has been solved at the collocation nodes, and the Strouhal number, St
and mean pressure drag coefficient CDp have been calculated. The values are provided in
table 8.5.

30As noted in section 6.5 it is actually wrong to use normal distribution for the Re as, Re ≥ 0. However for
the given choice of mean and variance the probability of Re attaining a non-physical value is

∫ 0
−∞ fX,G(x)dx ≈

10−9.

110

8.4 Uncertainty Quantification 8 ANALYSIS

Basis Order: Nodes:
Re ∈ N (300, 50) R̃e ∈ N (0, 1)

First: 229.2893 -1.4142
370.7107 1.4142

Second: 188.1966 -2.2361
300 0

411.8034 -3.3166
Fourth: 134.1688 -1.7321

213.3975 -0.5385
300 0

386.6025 1.7321
465.8312 3.3166

Table 8.4: The collocation points for the normally distribution random variable
Re ∈ N (300, 50) for different approximation orders. The nodes Re ∈ N (µ, σ)
are obtained by the transformation R̃e ∈ N (0, 1) is Re = µ+ σR̃e.

Basis Order: St CDp

First: 0.203 1.116
0.218 1.211

Second: 0.195 1.081
0.212 1.164
0.221 1.234

Fourth: 0.181 1.030
0.200 1.095
0.212 1.164
0.219 1.221
0.224 1.259

Table 8.5: The St and CDp at the collocation points for the for the normally
distribution random variable Re ∈ N (300, 50) presented in table 8.4.

Polynomial expansions in the Reynolds number for each quantity have been calculated for
each basis order and are presented in the figures 8.33 and 8.34 for CDp and St respectively.
In figure 8.33 the fit created by Henderson [7] based on 15 data points is plotted along with
PN,D[St].

111

8.4 Uncertainty Quantification 8 ANALYSIS

0 100 200 300 400 500 600
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Re

C
D

p

fit
order=1

(a) First order UQ
based polynomial
expansion.

0 100 200 300 400 500 600
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Re

C
D

p

fit
order=2

(b) Second order
UQ based polyno-
mial expansion.

0 100 200 300 400 500 600
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Re

C
D

p

fit
order=4

(c) Fourth order
UQ based polyno-
mial expansion.

Figure 8.33: Graph of the fit presented by Henderson [7] provided in (7.1) for
CDp based on 15 data points and the UQ based polynomial expansion for CDp
based on 2,3 and 5 data points respectively.

Just as for the uniformly distributed Re it is seen from figure 8.33 that the fourth order gPC
expansion PN,D[CDp]) agrees well with the fit by Henderson.
In figure 8.34 the data for the St presented in section 7.2.1 in table 7.5 is plotted along side
the UQ polynomial approximation.

0 100 200 300 400 500 600
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Re

S
t

order=1
Measurements

(a)

0 100 200 300 400 500 600
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Re

S
t

order=1
Measurements

(b)

0 100 200 300 400 500 600

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Re

S
t

order=1
Measurements

(c)

Figure 8.34: Graph of the UQ based polynomial expansion for St based on 2,3
and 5 datapoints along with the Strouhal number calculated from simulations
for Re ∈ {100, 200, 300, 400, 500, 600}.

Again just as for the uniform case very good agreement between the UQ approximation to
fourth order and St data is observed.
The mean and variance have been calculated for both the polynomial expansions for the St
and the CDp .
Using the fit by Henderson, fH(x) it is possible to calculate a mean and variance assuming
Re ∈ N (300, 50) by,

µHenderson =
∫ 1000

50
fH(x) 1

50
√

2π
e−

(x−300)2
5000 dx, (8.6)

σHenderson =
∫ 1000

50
(µN − fH(x))2 1

50
√

2π
e−

(x−300)2
5000 dx. (8.7)

112

8.4 Uncertainty Quantification 8 ANALYSIS

The reason for the limited integration interval is that fH(x) is only valid in this range. This
of course leads to slightly wrong mean and variance. However as fH(x) ' 1 and the value of
the integral of the normal PDF outside this interval is

∫ 50
−∞ fX,G(x)dx +

∫∞
1000 fX,G(x)dx ≈

2.866 · 10−7, the error is very small. The results are presented in table 8.6.

Mean: µCDp µSt

First Order: 1.1636 0.2108
Second Order: 1.1627 0.2118
Fourth Order: 1.1620 0.2111
µHenderson: 1.1614
Variance: σ2

CDp
σ2
St

First Order: 0.00114 2.865e-05
Second Order: 0.00116 3.6697e-05
Fourth Order: 0.00133 3.2317e-05
σ2
Henderson 0.00122

Table 8.6: Mean and variance for CDp and St calculated using the UQ polyno-
mial expansions for the different expansion orders. Also the mean and variance
for CDp obtained by calculating it from the fit presented by Henderson in [7].

From table 8.6 it is seen that the UQ approximation of the mean seems to converge towards
the mean obtained from fH(x). However neither the mean or variance agrees completely
with those obtained from fH(x). This suggests, either that a higher order basis is needed,
that the fit by Henderson is inaccurate or that there are a problem with the UQ method.

An Issue of Measuring Quantities: During the work behind the results presented above
a potential problem with using the SCM approach was encountered. The fundamental idea
of UQ is that very few samples are needed to obtain highly accurate statistics for a given
quantity. The fact that only a few samples are used appears to raise an issue however.
If the process of measuring a given quantity contains some uncertainty in itself, this uncer-
tainty has the potential of impacting the accuracy of the SCM method. If the uncertainty
in the measuring is in itself random the fact that only very few samples are used may be
an issue compared to e.g. the Monte Carlo method where the large number of samples
should balance the random uncertainty. If the uncertainty is skewed to one side however the
problem will be the same for either methods.
A concrete example of uncertainty in measuring a quantity is the measurement of the
Strouhal number. In order to calculate St the vortex shedding period must be calculated.
The period is estimated by considering a sequence of equidistant snap shots in time. The
discretization in time inevitably introduces an uncertainty in measuring the period, which
translates to an uncertainty in measuring St. Due to the high number of data sets over a
single period in the present work, the error in measuring the St is very small, however one
can imagine that this is not always the case. In order to illustrate the problem the Strouhal
number obtained at each of the five data points for the forth order gPC expansion have been
randomly perturbed by up to plus or minus three percent five separate times,

113

8.4 Uncertainty Quantification 8 ANALYSIS

Stperturbed = St · (1 + 0.03 r), r ∈ U [−1, 1]. (8.8)

The resulting five gPC expansions P4,i[Stperturbed], i ∈ {1, 2, 3, 4, 5} along with the expansion
without perturbations are plotted in figure 8.35.

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

Re

S
t

St − actual gPC expansion
St − random perturbations

Figure 8.35: Fourth order gPC expansions for St shown in figure 8.34c along
with five random perturbations of the form Stperturbed = St · (1 + 0.03 r), where
r ∈ U [−1, 1].

From the figure it is immediately apparent how much the expansions differ in the two ends
of the interval Re ∈ [50, 600] when St is perturbed. This shows that the gPC expansion at
fourth order is very sensitive to the accuracy of the measurement of St which may lead to false
conclusions if care is not exercised. Whether this difference carries over to the statistics have
also been investigated. The means and variances obtained from the expansions are presented
in table 8.7.

Mean: µSt σ2
St

St: 0.2111 3.2317 · 10−5

St1: 0.2110 3.6013 · 10−5

St2: 0.2124 5.0570 · 10−5

St3: 0.2119 3.8944 · 10−5

St4: 0.2112 4.6501 · 10−5

St5: 0.2107 3.9928 · 10−5

Table 8.7: Mean and variance for the actual St measurements along with five
random perturbations calculated using the gPC expansion of fourth order.

From the table it may be seen that the impact of adding the random noise is small for the
mean value, however for the variance there is up to a factor of 1.5 difference in the results.

8.4.2 Cylinder Near Moving Wall

This section presents results of applying the SCM to the problem of the cylinder near the
moving wall at a fixed D/G-ratio. Here statistics are presented for the pathway followed

114

8.4 Uncertainty Quantification 8 ANALYSIS

by the clockwise rotating vortex surviving downstream and its magnitude. The uncertain
parameter is taken to be the Reynolds number. Re is assumed distributed uniformly on the
interval Re ∈ U [150, 240]. The lower bound on Re was chosen to make sure that the vortex
exists for all Re-values.
Three different investigations using increasing expansion orders for the gPC basis have been
performed. These are third, fifth and seventh order expansions and the collocation nodes
are given in table 8.8.

Basis Order: Nodes:
Re ∈ [150, 240] R̃e ∈ [−1, 1]

Third: 156.2489 -0.8611
179.7009 -0.3400
210.2991 0.3400
233.7511 0.8611

Fifth: 153.04 -0.9325
165.25 -0.6612
184.26 -0.2386
205.74 0.2386
224.75 0.6612
236.96 0.9325

Seventh: 151.7870 -0.9603
159.1500 -0.7967
171.3510 -0.5255
186.7454 -0.1834
203.2546 0.1834
218.6490 0.5255
230.8500 0.7967
238.2130 0.9603

Table 8.8: The collocation points for the uniformly distributed random variable
Re ∈ [150, 240] for different approximation orders.

For each node the field data at the trace points of the clockwise rotating vortex was stored.
All the data was then interpolated onto one hundred equidistant x-coordinate values down-
stream of the cylinder, in the interval x ∈ [5, 15].

Pathway followed: For each of the three UQ approximations the gPC approximation
to the y-coordinate of the vortex center was calculated at each x-coordinate. That is
y(Re)|x=fixed was approximated by PN,D[y]. Using the coefficients of PN,D[Y] allowed the
calculation of the mean path followed by the vortex and the variance of the path. The mean
of the path along with the mean plus and minus one and two standard deviations are shown
on figure 8.36 (b),(d) and (f).

115

8.4 Uncertainty Quantification 8 ANALYSIS

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

N1

N2

N3

N4

(a) Data for third order gPC
expansion.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

4

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

µ

µ +σ

µ − σ

µ +2σ

µ − 2σ

(b) Third order gPC expan-
sion.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

N1

N2

N3

N4

N5

N6

(c) Data for fifth order gPC
expansion.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

4

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

µ

µ +σ

µ − σ

µ +2σ

µ − 2σ

(d) Fifth order gPC expan-
sion.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

N1

N2

N3

N4

N5

N6

N7

N8

(e) Data for seventh order gPC
expansion.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

4

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

µ

µ +σ

µ − σ

µ +2σ

µ − 2σ

(f) Seventh order gPC expan-
sion.

Figure 8.36: (a),(c),(e): Vortex pathway data used for UQ approximation.
(b),(d),(f): Mean pathway followed by the vortices and mean path plus and
minus one and two standard deviations.

Figure 8.36 (a),(c) and (e) show the pathway data used to construct the gPC expansions.
From figure 8.36 (b),(d) and (f) it is hard to see any significant difference in the mean or
variance for the different expansions. Therefore the differences in mean between the third
and fifth and the fifth and seventh order expansions are plotted in figures 8.37a and 8.37b.
Also all three mean value traces are plotted on top of each other in figure 8.37c and a zoom
of x ∈ [5, 8] is provided in figure 8.37d.

116

8.4 Uncertainty Quantification 8 ANALYSIS

5 6 7 8 9 10 11 12 13 14 15
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Distance downstream [Cylinder diameters]

di
ffe

re
nc

e
in

 m
ea

n
di

st
an

ce
 to

 w
al

l [
C

yl
in

de
r

di
am

et
er

s]

µ5 − µ3

(a) Difference between the mean
calculated using the fifth and the
third order gPC expansions. i.e.
µ5 − µ3.

5 6 7 8 9 10 11 12 13 14 15
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

Distance downstream [Cylinder diameters]

di
ffe

re
nc

e
in

 m
ea

n
di

st
an

ce
 to

 w
al

l [
C

yl
in

de
r

di
am

et
er

s]

µ7 − µ5

(b) Difference between the mean
calculated using the seventh and the
fifth order gPC expansions. i.e.
µ7 − µ5.

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

µ3

µ3 + σ3
µ5

µ5 + σ5
µ7

µ7 + σ7

(c) Plot of the mean and mean
plus one standard deviation ob-
tained from the third, fifth and sev-
enth order gPCs expansions.

5.5 6 6.5 7 7.5 8
1.2

1.3

1.4

1.5

1.6

1.7

Distance downstream [Cylinder diameters]

D
is

ta
nc

e
fr

om
 w

al
l [

C
yl

in
de

r
di

am
et

er
s]

µ3

µ3 + σ3
µ5

µ5 + σ5
µ7

µ7 + σ7

(d) Zoom of part of the domain of
figure (c).

Figure 8.37

From figure 8.37c it may be seen that there is good agreement between the means and
variances calculated using either of the three different SCM approximations past x = 8. It
can be seen from figure 8.37d that the mean and variance deviates between the different
approximations in the interval x ∈ [5, 7.5]. This suggests that at least for the fifth order
approximation the mean and variance have not converged in this part of the domain and
thus a higher order basis is needed to capture the statistics accurately.
In order to investigate if the gPC expansions have converged it is also possible use the ex-
pansion coefficients, g̃k. If one observes a drop in magnitude for the coefficients of the higher
order modes it is an indication that the lower order modes contained in the expansion cap-
tures the behaviour of the quantity in question. The magnitude of the expansion coefficients
for the seventh order P7,D[Y], are shown in figure 8.38. For the following analysis one should
disregard the value of the zeroth order mode as this is simply the mean of the expansion
and does not determine its shape.

117

8.4 Uncertainty Quantification 8 ANALYSIS

5 6 7 8 9 10 11 12 13 14 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Distance downstream [Cylinder diameters]

‖
g̃
i
‖

g̃0

g̃1

g̃2

g̃3

g̃4

g̃5

g̃6

g̃7

Figure 8.38: Expansion coefficients g̃k of the seventh order gPC expansions at
each of the one hundred equidistant points downstream of the cylinder in the
interval x ∈ [5, 15].

From this figure it is seen that the coefficients in the range x ∈ [5, 7] all lie in or close to
the interval g̃k ∈ [10−1, 10−2], i.e no consistent drop in magnitude is observed. This means
that all modes are almost equally present in the expansion which in turn indicates that the
expansion has not converged yet. For x ∈ [8, 15] however it is seen that the higher order
modes, N ∈ {5, 6, 7}, are between one and two orders of magnitude lower then several of
the lower order modes. This indicate that the behaviour of y(Re)|x=fixed is captured very
well by the lower order modes in the expansion. For x ∈ [11, 15] it is seen that the g̃k’s
consistently drop for all modes drop with increasing k indicating that here the behaviour is
captured fully by the gPC expansion. However one would still need to perform a test using
an even higher order gPC expansion to check if the behaviour of the expansion coefficients
observed here indeed continue for higher order modes.
For the part of the domain where the gPC expansion seems to have converged, the data
presented in figure 8.36f may be used to accurately determine the likelihood that a part of
the domain downstream of the cylinder contains the center of the clockwise rotating vortex
if it is known that Re ∈ U [150, 240] without knowledge of the value of Re.
In conclusion figure 8.38 suggests that the gPC expansion has not yet converged and a
higher order basis is needed to be able to draw completely trustworthy conclusions about
the pathways of the vortices.

Vorticity Magnitude: The statistics for the magnitude of the vorticity along the trace
have been calculated. Here it was found that the statistics had indeed converged at the fifth
order expansion, leading to the conclusion that the UQ approximation captures the statistics
accurately. The mean along with mean plus and minus one and two standard deviations in
x ∈ [5, 15] are presented in figure 8.39.

118

8.4 Uncertainty Quantification 8 ANALYSIS

5 6 7 8 9 10 11 12 13 14 15
1

1.5

2

2.5

3

3.5

Distance downstream [Cylinder diameters]

V
or

tic
ity

 M
ag

ni
tu

de

µ

µ + σ

µ − σ

µ + 2σ

µ − 2σ

Figure 8.39: Mean vorticity magnitude downstream of the cylinder for a uni-
formly distributed random variable, Reynolds number over the interval Re ∈
[150, 240].

From the figure it may be noted that the linear decrease in vorticity observed for all Re
investigated earlier is also seen for the mean, as one would expect.

119

8.5 Method Limitation 8 ANALYSIS

8.5 Method Limitation

During the application of the vorticity extrema trace method a limitation due to the nu-
merical solution of the model problem was identified. The galerkin based SEM method
used for solving the model problem only guarantees C0-continuity31 of the solution across
the elements which make up the domain. The vorticity extrema trace method relies on the
second derivative of the solution for calculating the ωx = 0 and ωy = 0 contours. Thus these
contours are not guaranteed to be continuous across elements. The possibility for discon-
tinuities means that if an extrema in vorticity travels very close to an interface between two
elements over a significant distance there is a risk that any discontinuity in ωx and or ωy
will hide the extrema.

(a) Clockwise and counter clockwise rotating vortex paths.

(b) Zoom of vortex paths
with underlying finite ele-
ment mesh added for clarity.

(c) Zoom around a
vorticity extrema in
the area where the
method fails to cap-
ture it.

Figure 8.40: Re = 300, Cylinder in free flow. Illustration of the vorticity extrema
trace method failing to capture part of vortex paths and the reason behind the
failure. (c) Vorticity contours are black, element edge is green, ωx = 0 contours
are blue and ωy = 0 contours are red.

For the cylinder in free flow at Re = 300 using an "unlucky" choice of mesh the above
31C0 continuity is continuity in a function over its domain but not necessarily in any of its derivatives.

120

8.5 Method Limitation 8 ANALYSIS

described behaviour was observed. The problem is illustrated in figure 8.40.
Figure 8.41a shows the full pathways of the clockwise and counter clockwise rotating vortices
surviving downstream. From here it is clear to see that part of the path is missing. Figure
8.41b shows a zoom of the area marked by a green square in figure 8.40a with the underlying
finite element mesh added for clarity. From here it is easy to see that the vorticity extrema
follow element edges in the mesh for the part not picked up by the method. A further zoom
on the clockwise rotating vortex, including vorticity contours marking the extrema, at a
time step where the extrema is not captured by the algorithm is presented in figure 8.40c.
Here the blue lines mark the ωx = 0 contours and the red lines the ωy = 0 contours. Focusing
on the element edges marked by the green line it may be seen that ωx = 0 and ωy = 0 does
not cross but instead jump across each other. This is due to a discontinuity in ωy = 0 at
the element edge. The jump leads to the algorithm not catching the vorticity extrema.
Even though this is clearly a flaw in the present implementation of the method, it should be
noted that the failure to capture the trace was only encountered for this specific simulation.
The simulation at Re = 300 for the cylinder in free flow was redone using a different mesh
where the vortex extrema did not follow any element edges. The mesh had N = 3000
elements and the SEM simulation used tenth order basis functions on each element. Here
both vortex traces where captured perfectly as shown in figure 8.41.

(a) Clockwise and counter clockwise rotating vortex paths on new mesh.

(b) Overlay of the clockwise and counter clockwise rotating vortex paths of the new
and old meshes. The vortex paths from the old mesh are displayed as a broad green
trace.

Figure 8.41: Re = 300, Cylinder in free flow. N = 3000, P = 10.

From figure 8.41b it is seen that the vortices follow the exact same path which indicate that

121

8.5 Method Limitation 8 ANALYSIS

the SEM method captured there physics correctly for the lower resolution. This means that
it was the method for capturing the critical points in vorticity that caused the problem.
When the method is used to identify bifurcations in the flow the problem is not critical.
This is because a sudden disappearance of an extrema away from a domain boundary is not
possible. Any extrema away from a boundary can only disappear as a consequence of two
or more extrema merging in a bifurcation. This means that the artificial disappearance of
an extrema caused by the flaw described above may be identified and disregarded during
analysis.
If the method is used to trace vortex paths with the intent on calculating quantities along
them the problem is somewhat bigger. Here a technique for mending the problem in a given
simulation could be to rerun the simulation using a different mesh. Alternatively the number
of elements and basis order used could be increased further to minimize any discontinuity
across the elements, however this method is very costly. Yet another technique could be to
modify the contour algorithm used to attempt to capture discontinuities and correct them.

122

9 CONCLUSION AND FUTURE WORK

9 Conclusion and Future Work

This final chapter provides a short summery conclusion on the work done in this project as
well as some ideas for future work.

In Conclusion

Two fluid dynamic model problems have been investigated. The first consisted of a cylinder
in an open flow and was investigated in the Reynolds number regime Re ∈ [100, 600]. The
second consisted of introducing a moving wall near the cylinder and was investigated for
Re ∈ [20, 300]. In both cases a SEM based solver was used to obtain velocity and pressure
fields used for post processing and analysis. The pros and cons of the SEM have been
discussed and the main steps in applying the method to a simple model problem have been
highlighted. The importance of using higher order meshes to mesh curved geometries when
using the SEM have been illustrated. A series of convergence and validation tests comparing
to previously published results, [8] [7] [10], have been presented to support the validity of
the obtained results.
A definition of a vortex as an extrema in vorticity have been given which allow for unique
identification of all vortices in a flow. By the use of existing theory from the field of DST
the stationary points of the vorticity field at a given point in time have been shown to
correspond to critical points for a dynamical system. This allowed the analysis of structural
changes in the flow as a function of time, Re and/or D/G using existing theory developed
for a dynamical system governed by the stream function, [2].
A method for identifying the stationary points in vorticity and determining their type, based
on a method by Brøns et al [12], have been presented. The implementation of the method
using Paraview’s python module have been described and all code supplied in appendices.
The method have been used to trace vortex and vorticity saddle-point movement patterns
at a variety of (Re,D/G)-values. This have allowed the investigation of vortex movement
patterns and magnitude decrease downstream from the cylinder and how these depend on
Re and D/G. Regarding the magnitude it was found that the decrease far downstream of
the cylinder was close to linear for all Re and D/G values. Regarding the movement patterns
it was found that close to the wall increasing Re forced the vortices away from the wall at
a steeper and steeper angle. Decreasing Re moved the creation point of the vortices further
downstream.
Using the tracing method an analysis of structural changes in the vortex patterns with
varying time, Re and D/G was also performed. It has been found that almost all vortices
observed in the flow are created and/or annihilated in simple codimension 1 saddle-center
bifurcations away from solid boundaries. Only a single codimension 2 bifurcation was ob-
served in the flow. Although interesting because it was different this bifurcation had no
visible effect on the large scale structure of the flow. It was found that only saddle-points
are created on the moving wall. On the cylinder surface downstream of the flow both centres
(vortices) and saddle-points are created. Vortices created on the backside of the cylinder
never travel downstream however but are instead annihilated in a saddle-center bifurcation
close to the cylinder.
The Strouhal number at different D/G and Re values have been recorded and the stabilizing
effect of the wall mapped. Here it was found that moving the cylinder close to the wall

123

9 CONCLUSION AND FUTURE WORK

D/G = 10 the critical value for the transition from stationary flow to periodic shedding
more then doubled from Recrit ≈ 46± 1 for the cylinder in free flow to Recrit ≈ 100.
A small scale investigation of the application of the UQ based SCM was performed using both
the cylinder in free flow and near the moving wall. Here it was found by comparison with
previous results that the method produces accurate functional dependencies and statistics
for desired quantities depending on an underlying uncertain quantity with very few model
problem realisations. It was also shown however that in order for the method to produce
reliable results at low order it must be possible to measure desired quantities very accurately.
If random noise was introduced the SCM based approximations varied significantly and this
variation carried over to the calculation of the variance.
Finally a limitation of the method for tracing the stationary points in vorticity was discussed
and different remedies suggested.

Further Work

A number of additional points of interest which could be addressed moving forward are listed
below.

• Optimizing performance of the SEM solver: It could be beneficial to investigate,
the trade off between the computations needed to perform single time step, as the
number of elements is increased to maintain accuracy as the polynomial order of the
basis functions is decreased in order to increase the minimum stable time step size.
An equilibrium point between a time step size which allows much fewer steps to be
taken to reach the desired solution and the time it takes to solve the problem at each
individual time step is bound to exist. If this equilibrium is found simulations can
be performed with "optimal" speed thus freeing resources to perform more tests or
increasing the possible problem complexity. In short, an investigation of the choice of
the optimal choice for dt, h and p would be interesting and beneficial.

• Pushing the limit of the SEM with regards to Re: An investigation of how
high values of Re can be handled using the SEM for solving the NS-equation would
be interesting.

• Widening the parameter domain for the bifurcation investigations: In the
investigations performed in the current parameter domain it was seen that the effect
of the wall was not gone at the smallest D/G-ratio investigated. Even though it is
deemed unlikely it could be possible that new discoveries may be made moving the wall
further from the cylinder. Furthermore the cylinder could still be moved even closer
to the wall to see if any new structures in the vortex patterns emerged. At the same
time the Reynolds number could be increased beyond Re = 300, however this would
move the simulations further from the breakdown of two dimensionality. The increase
of Re could in turn prompt the introduction of fully three dimensional simulations of
the model problems which would require a more extensive theory in order to analyse
any new emerging structures.

• Considering more complex model problems: Another possibility could be to
apply the method to more complex two dimensional model problems. One example
which was considered briefly in the present work is rotating the cylinder while it is
near the wall. Due to time limitations this model problem was not investigated more

124

9 CONCLUSION AND FUTURE WORK

then by a few initial simulations but these investigations suggested that new vortex
structures might be observed as the rotation velocity is varied.

• Considering the size of a vortex: In the investigation of a vorticis magnitude
as it travelled downstream only the magnitude at its center was studied. Another
interesting point could be to investigate the size and size change of the vortex as it
moves through the flow. Here the size could be defined by the area around the vortex
center within which the magnitude is larger then a fraction β of the magnitude at the
vortex center.

• Performing more thorough investigations of the SCM used on the model
problem: Higher order gPC expansions could be used to see if this reduces the sensit-
ivity to random perturbations in the quantities of interest. Also multivariate problems
where both Re and D/G are allowed to contain uncertainty could be investigated, e.g.
in order to compare the sensitivity of the solution on either parameter.

125

10 REFERENCES

10 References

[1] James D. Meiss. Differential Dynamical Systems. SIAM, 2007.

[2] Morten Brøns. Streamline topology: Patterns in fluid flows and their bifurcations.
ADVANCES IN APPLIED MECHANICS, 41, 2007.

[3] DONGBIN XIU and JAN S. HESTHAVEN. High-order collocation methods for dif-
ferential equations with random inputs. SIAM J. SCI. COMPUT, 27(3):1118–1139,
2005.

[4] Dongbin Xiu. Numerical Methods for Stochastic Computations - A Spectral Method
Approach. Princeton University Press, 2010.

[5] http://www.nektar.info/.

[6] http://www.paraview.org/Wiki/ParaView/.

[7] R.D. Henderson. Details of the drag curve near the onset of vortex shedding. Physics
of Fluids, 7:2102–2104, 1995.

[8] Wei-Xi Huang and Hyung Jin Sung. Vortex shedding from a circular cylinder near a
moving wall. Journal of Fluids and Structures, 23:1064–1076, 2007.

[9] Morten Brøns, Bo Jakobsen, Kristine Niss, Anders V. Bisgaard, and Larsk K. Voigt.
Streamline topology in the near wake of a circular cylinder at moderate reynolds num-
bers. Journal of Fluid Mechanics, 584:23–43, 2007.

[10] R.D. Henderson. Nonlinear dynamics and pattern formation in turbulent wake trans-
ition. Journal of Fluid Mechanics, 352:65–112, 1997.

[11] Frank M. White. Viscous Fluid Flow. McGRAW-HILL BOOK COMPANY, 1974.

[12] Morten Brøns and Anders V. Bisgaard. Bifurcation of vortex breakdown patterns in a
circular cylinder with two rotating covers . Journal of Fluids Mechanics, 568:329–349,
2006.

[13] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, 2002.

[14] A. P. Engsig-Karup. The Spectral/hp-Finite Element Method for Partial Differential
Equations. Scientific Computation Section, DTU Informatics, Technical University of
Denmark, Bldg. 321, DK-2800 Kgs.-Lyngby, Denmark, 2012.

[15] David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations:
Algorithms for Scientists and Engineers (Scientific Computation). Springer, 2009.

[16] Spencer Sherwin George Em Karniadakis. Spectral/hp Element Methods for Computa-
tional Fluid Dynamics. Oxford Science Publications, 2005.

[17] Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Automated Solution of Differ-
ential Equations by the Finite Element Method. Springer, 2012.

126

10 REFERENCES

[18] George Em Karniadakis, Moshe Israeli, and Steven A. Orszag. High-order splitting
methods for the incompressible navier-stokes equations. Journal of Compuational Phys-
ics, 97:414–443, 1991.

[19] Randall J. LeVeque. Finite Difference Methods for Ordinary Partial Differential Equa-
tions - Steady-State and Time-Dependent Problems. Springer, 2012.

[20] Christophe Geuzaine and Jean-Francois Remacle. Gmsh Reference Manual.
http://www.geuz.org/gmsh, 1.12 edition, August 2003.

[21] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes 3ed Edition: The Art of Scientific Computing. Cambridge University,
2007.

[22] http://www.cc.dtu.dk/.

[23] MPI: A Message-Passing Interface Standard, Version 3.0. High Performance Comput-
ing Center Stuttgart, 2012.

[24] L. I. G. Kovasznay Communicated by Sir Geofferey Taylor. Laminar flow behind a
two-dimensional grid. 1947.

127

A APPENDIX

A Appendix

A.1 Sample mesh used for simulations

This appendix consists of the following.

• A sample Gmsh .geo file used to generate a mesh for use with Nektar++ for in-
compressible Navier-Stokes simulations.

• Instructions on how to generate the appropriate .msh file assuming Gmsh Version
2.7.0 is used.

.Geo file for Hybrid Mesh for Cylinder Near Wall: Below is a rather lengthy block
of text containing the .geo file used to generate a mesh for a cylinder near a wall with
the parameter D/G = 5/4. To use it, copy-paste the text to an empty file and store it as
AnyName.geo.

// ///
/∗ This f i l e c o n t a i n s the geometry f o r meshing a c y l i n d e r near a w a l l
(a domain boundary) i n 2D f o r use i n i n c o m p r e s s i b l e Navier - Stokes s i m u l a t i o n s
o f steady and t u r b u l e n t f l o w (Re ¬ 20 - 300) ∗/

/∗ IMPORTANT FOR USE WITH Nektar++: Nektar++ has a counter c l o c k w i s e edge
d e f i n i t i o n which must be r e s p e c t e d when c r e a t i n g s u r f a c e s . Due to t h i s a l l
denominations are s t a r t e d i n the lower r i g h t c o r n e r o f any r e g i o n and
i n c r e a s e s c o u n t e r c l o c k w i s e around that r e g i o n . This s t a r t s with v e r t i c e s ,
then edges , then s u r f a c e s and l a s t l y volumes . ∗/
// ///

/∗ ///// Domain paramters and c o o r d i n a t e s used f o r meshing ///// ∗/
// Distance from w a l l to c y l i n d e r
G = 4 . 0 / 5 . 0 ;

// C y l i n d e r parameters
r_inner = 0 . 5 ; // r a d i u s o f p h y s i c a l c y l i n d e r
r_outer = 0 . 5 + 0 . 2 ∗ G; // A r t i f i c a l o u t e r c y l i n d e r f o r meshing purposes
D = 2 . 0 ∗ r_inner ; // C y l i n d e r Diamter
x_c_c = 0 . 0 ; y_c_c = r_inner + G; // C y l i n d e r centrum : x_c (e n t e r)_c(y l i n d e r)

// R e l a t i o n s h i p between c y l i n d e r diameter and d i s t a n c e to w a l l
DoverG = D / G;

// Domain dimensions
x_u_l = 3 0 . 0 ∗ D; x_l_l = - 1 0 . 0 ∗ D; // x - a x i s l i m i t s , x_u(pper) _l (i m i t)
y_u_l = 2 0 . 0 ∗ D; y_l_l = 0 . 0 ∗ D; // y - a x i s l i m i t s , y_u(pper) _l (i m i t)

// x - c o o r d i n a t e f o r v e r t i c a l area d i v i s i o n l i n e s : x_v(e r t i c a l)_h(e l p)_X
x_v_h_1 = x_c_c - 1 . 5 ; x_v_h_2 = x_c_c ;
x_v_h_3 = x_c_c +2.0; x_v_h_4 = 2 4 . 0 ;
// y - c o o r d i n a t e f o r h o r i z o n t a l area d i v i s i o n l i n e : y_h(o r i z o n t a l)_h(e l p)_X
y_h_h_1 = y_c_c ; y_h_h_2 = y_c_c + 2 . 0 ;
y_h_h_3 = 6 . 0 ;

// Unstructured mesh d e v i d e r : x_u(n) s (t r u c t u r e d)
x_us = x_v_h_4+1; y_us = y_h_h_3+2;
/∗ ///// Constants i . e . c o o r d i n a t e s f o r meshing ///// ∗/

/∗ ///// Points f o r c r e a t i n g u n d e r l y i n g geometry ///// ∗/
// Points on the background domain //
Point (1) = {x_l_l , y_l_l , 0 } ; Point (2) = {x_v_h_1 , y_l_l , 0 } ;
Point (3) = {x_v_h_2 , y_l_l , 0 } ; Point (4) = {x_v_h_3 , y_l_l , 0 } ;
Point (5) = {x_v_h_4 , y_l_l , 0 } ; Point (6) = {x_l_l , y_h_h_1 , 0 } ;
Point (7) = {x_v_h_1 , y_h_h_1 , 0 } ; Point (8) = {x_v_h_2 , y_h_h_1 , 0 } ;
Point (9) = {x_v_h_3 , y_h_h_1 , 0 } ; Point (1 0) = {x_v_h_4 , y_h_h_1 , 0 } ;
Point (1 1) = {x_l_l , y_h_h_2 , 0 } ; Point (1 2) = {x_v_h_1 , y_h_h_2 , 0 } ;
Point (1 3) = {x_v_h_2 , y_h_h_2 , 0 } ; Point (1 4) = {x_v_h_3 , y_h_h_2 , 0 } ;
Point (1 5) = {x_v_h_4 , y_h_h_2 , 0 } ; Point (1 6) = {x_l_l , y_h_h_3 , 0 } ;
Point (1 7) = {x_v_h_1 , y_h_h_3 , 0 } ; Point (1 8) = {x_v_h_2 , y_h_h_3 , 0 } ;
Point (1 9) = {x_v_h_3 , y_h_h_3 , 0 } ; Point (2 0) = {x_v_h_4 , y_h_h_3 , 0 } ;
Point (2 1) = {x_l_l , y_u_l , 0 } ; Point (2 2) = {x_v_h_1 , y_u_l , 0 } ;
Point (2 3) = {x_v_h_2 , y_u_l , 0 } ; Point (2 4) = {x_v_h_3 , y_u_l , 0 } ;
Point (2 5) = {x_v_h_4 , y_u_l , 0 } ;
// Points on the background domain //

// Points f o r c o n s t r u c t i o n o f the c y l i n d e r s //
// I n ne r C y l i n d e r
Point (2 6) = {x_c_c+r_inner , y_c_c , 0 } ; Point (2 7) = {x_c_c , y_c_c+r_inner , 0 } ;

128

A.1 Sample mesh used for simulations A APPENDIX

Point (2 8) = {x_c_c - r_inner , y_c_c , 0 } ; Point (2 9) = {x_c_c , y_c_c - r_inner , 0 } ;
// Outer C y l i n d e r
Point (3 0) = {x_c_c+r_outer , y_c_c , 0 } ; Point (3 1) = {x_c_c , y_c_c+r_outer , 0 } ;
Point (3 2) = {x_c_c - r_outer , y_c_c , 0 } ; Point (3 3) = {x_c_c , y_c_c - r_outer , 0 } ;
// Points f o r c o n s t r u c t i o n o f the c y l i n d e r s //

// A d d i t i o n a l Background p o i n t s //
// X- upper l i m i t p o i n t s
Point (3 4) = {x_u_l , y_l_l , 0 . 0 } ; Point (3 5) = {x_u_l , y_h_h_1 , 0 . 0 } ;
Point (3 6) = {x_u_l , y_h_h_2 , 0 . 0 } ; Point (3 7) = {x_u_l , y_h_h_3 , 0 . 0 } ;
Point (3 8) = {x_u_l , y_u_l , 0 . 0 } ;

// Points f o r c r e a t i n g u n s t r u c t u r e d zone
Point (4 0) = {x_us , y_l_l , 0 . 0 } ; Point (4 1) = {x_us , y_h_h_1 , 0 . 0 } ;
Point (4 2) = {x_us , y_h_h_2 , 0 . 0 } ; Point (4 3) = {x_us , y_h_h_3 , 0 . 0 } ;
Point (4 4) = {x_us , y_us , 0 . 0 } ; Point (4 5) = {x_v_h_4 , y_us , 0 . 0 } ;
Point (4 6) = {x_v_h_3 , y_us , 0 . 0 } ; Point (4 7) = {x_v_h_2 , y_us , 0 . 0 } ;
Point (4 8) = {x_v_h_1 , y_us , 0 . 0 } ; Point (4 9) = {x_l_l , y_us , 0 . 0 } ;
Point (5 0) = {x_us , y_u_l , 0 . 0 } ; Point (5 1) = {x_u_l , y_us , 0 . 0 } ;
/∗ ///// Points f o r c r e a t i n g u n d e r l y i n g geometry ///// ∗/

/∗ ///// L i n e s f o r c r e a t i n g u n d e r l y i n g geometry ///// ∗/
Line (1) = {1 , 2 } ; Line (2) = {6 , 7 } ; Line (3) = {11 , 1 2 } ; Line (4) = {16 , 1 7 } ;
Line (5) = {2 , 3 } ; Line (6) = {7 , 3 2 } ; Line (7) = {29 , 3 3 } ; Line (8) = {12 , 1 3 } ;
Line (9) = {17 , 1 8 } ; Line (1 0) = {3 , 4 } ; Line (1 1) = {26 , 3 0 } ; Line (1 2) = {30 , 9 } ;
Line (1 3) = {13 , 1 4 } ; Line (1 4) = {18 , 1 9 } ; Line (1 5) = {4 , 5 } ; Line (1 6) = {9 , 1 0 } ;
Line (1 7) = {14 , 1 5 } ; Line (1 8) = {19 , 2 0 } ; Line (1 9) = {1 , 6 } ; Line (2 0) = {6 , 1 1 } ;
Line (2 1) = {11 , 1 6 } ; Line (2 2) = {2 , 7 } ; Line (2 3) = {7 , 1 2 } ; Line (2 4) = {12 , 1 7 } ;
Line (2 5) = {3 , 3 3 } ; Line (2 6) = {28 , 3 2 } ; Line (2 7) = {27 , 3 1 } ;
Line (2 8) = {31 , 1 3 } ; Line (2 9) = {13 , 1 8 } ; Line (3 0) = {4 , 9 } ; Line (3 1) = {9 , 1 4 } ;
Line (3 2) = {14 , 1 9 } ; Line (3 3) = {5 , 1 0 } ; Line (3 4) = {10 , 1 5 } ;
Line (3 5) = {15 , 2 0 } ;
C i r c l e (3 6) = {26 , 8 , 2 7 } ; C i r c l e (3 7) = {27 , 8 , 2 8 } ; C i r c l e (3 8) = {28 , 8 , 2 9 } ;
C i r c l e (3 9) = {29 , 8 , 2 6 } ; C i r c l e (4 0) = {30 , 8 , 3 1 } ; C i r c l e (4 1) = {31 , 8 , 3 2 } ;
C i r c l e (4 2) = {32 , 8 , 3 3 } ; C i r c l e (4 3) = {33 , 8 , 3 0 } ;
Line (8 1) = {16 , 4 9 } ; Line (8 2) = {49 , 2 1 } ; Line (8 3) = {17 , 4 8 } ;
Line (8 5) = {18 , 4 7 } ; Line (8 7) = {19 , 4 6 } ; Line (8 9) = {20 , 4 5 } ;
Line (9 1) = {40 , 4 1 } ; Line (9 2) = {41 , 4 2 } ; Line (9 3) = {42 , 4 3 } ;
Line (9 4) = {43 , 4 4 } ; Line (9 5) = {44 , 5 0 } ; Line (9 6) = {34 , 3 5 } ;
Line (9 7) = {35 , 3 6 } ; Line (9 8) = {36 , 3 7 } ; Line (9 9) = {37 , 5 1 } ;
Line (1 0 0) = {51 , 3 8 } ; Line (1 0 1) = {49 , 4 8 } ; Line (1 0 2) = {48 , 4 7 } ;
Line (1 0 3) = {47 , 4 6 } ; Line (1 0 4) = {46 , 4 5 } ; Line (1 0 5) = {21 , 2 2 } ;
Line (1 0 6) = {22 , 2 3 } ; Line (1 0 7) = {23 , 2 4 } ; Line (1 0 8) = {24 , 2 5 } ;
Line (1 0 9) = {5 , 4 0 } ; Line (1 1 0) = {40 , 3 4 } ; Line (1 1 1) = {10 , 4 1 } ;
Line (1 1 3) = {15 , 4 2 } ; Line (1 1 5) = {20 , 4 3 } ; Line (1 1 7) = {45 , 4 4 } ;
Line (1 1 8) = {44 , 5 1 } ; Line (1 1 9) = {25 , 5 0 } ; Line (1 2 0) = {50 , 3 8 } ;
/∗ ///// L i n e s f o r c r e a t i n g u n d e r l y i n g geometry ///// ∗/

/∗ ///// S u r f a c e s on which to c r e a t e the mesh ///// ∗/
// S t r u c t u r e d Mesh Close to C y l i n d e r
Line Loop (4 4) = {1 , 22 , - 2 , - 1 9 } ; Plane S u r f a c e (4 5) = {44};
Line Loop (4 6) = {2 , 23 , - 3 , - 2 0 } ; Plane S u r f a c e (4 7) = {46};
Line Loop (4 8) = {3 , 24 , - 4 , - 2 1 } ; Plane S u r f a c e (4 9) = {48};
Line Loop (5 0) = {5 , 25 , - 42 , - 6 , - 2 2 } ; Plane S u r f a c e (5 1) = {50};
Line Loop (5 2) = {6 , - 41 , 28 , - 8 , - 2 3 } ; Plane S u r f a c e (5 3) = {52};
Line Loop (5 4) = {8 , 29 , - 9 , - 2 4 } ; Plane S u r f a c e (5 5) = {54};
Line Loop (5 6) = {10 , 30 , - 12 , - 43 , - 2 5 } ; Plane S u r f a c e (5 7) = {56};
Line Loop (5 8) = {12 , 31 , - 13 , - 28 , - 4 0 } ; Plane S u r f a c e (5 9) = {58};
Line Loop (6 0) = {13 , 32 , - 14 , - 2 9 } ; Plane S u r f a c e (6 1) = {60};
Line Loop (6 2) = {15 , 33 , - 16 , - 3 0 } ; Plane S u r f a c e (6 3) = {62};
Line Loop (6 4) = {16 , 34 , - 17 , - 3 1 } ; Plane S u r f a c e (6 5) = {64};
Line Loop (6 6) = {17 , 35 , - 18 , - 3 2 } ; Plane S u r f a c e (6 7) = {66};
Line Loop (6 8) = {43 , - 11 , - 39 , 7 } ; Ruled S u r f a c e (6 9) = {68};
Line Loop (7 0) = {11 , 40 , - 27 , - 3 6 } ; Ruled S u r f a c e (7 1) = {70};
Line Loop (7 2) = { - 37 , 27 , 41 , - 2 6 } ; Ruled S u r f a c e (7 3) = {72};
Line Loop (7 4) = {26 , - 38 , - 7 , 4 2 } ; Ruled S u r f a c e (7 5) = {74};

// Unstructured zone
Line Loop (1 2 1) = {4 , 83 , - 101 , - 8 1 } ; Plane S u r f a c e (1 2 2) = {121};
Line Loop (1 2 3) = {9 , 85 , - 102 , - 8 3 } ; Plane S u r f a c e (1 2 4) = {123};
Line Loop (1 2 5) = {14 , 87 , - 103 , - 8 5 } ; Plane S u r f a c e (1 2 6) = {125};
Line Loop (1 2 7) = {18 , 89 , - 104 , - 8 7 } ; Plane S u r f a c e (1 2 8) = {127};
Line Loop (1 2 9) = {115 , 94 , - 117 , - 8 9 } ; Plane S u r f a c e (1 3 0) = {129};
Line Loop (1 3 1) = {113 , 93 , - 115 , - 3 5 } ; Plane S u r f a c e (1 3 2) = {131};
Line Loop (1 3 3) = {111 , 92 , - 113 , - 3 4 } ; Plane S u r f a c e (1 3 4) = {133};
Line Loop (1 3 5) = {109 , 91 , - 111 , - 3 3 } ; Plane S u r f a c e (1 3 6) = {135};

// S t r u c t u r e d f a r - f i e l d
Line Loop (1 3 7) = { 1 0 1 , 1 0 2 , 1 0 3 , 1 0 4 , 1 1 7 , 9 5 , - 119 , - 108 , - 107 , - 106 , - 105 , - 8 2 } ;
Plane S u r f a c e (1 3 8) = {137};
Line Loop (1 3 9) = {118 , 100 , - 120 , - 9 5 } ;
Plane S u r f a c e (1 4 0) = {139};
Line Loop (1 4 1) = {110 , 96 , 97 , 98 , 99 , - 118 , - 94 , - 93 , - 92 , - 9 1 } ;
Plane S u r f a c e (1 4 2) = {141};

// Marking s u r f a c e s f o r s t r u c t u r e d mesh g e n e r a t i o n
// S t r u c t u r e d s u r f a c e s i n zone o f i n t e r e s t
T r a n s f i n i t e S u r f a c e {51} = { 7 , 3 , 3 3 , 3 2 } ;
T r a n s f i n i t e S u r f a c e {53} = { 7 , 3 2 , 3 1 , 1 3 } ;
T r a n s f i n i t e S u r f a c e {57} = { 3 , 9 , 3 0 , 3 3 } ;
T r a n s f i n i t e S u r f a c e {59} = { 3 0 , 9 , 1 3 , 3 1 } ;
T r a n s f i n i t e S u r f a c e { 4 5 , 4 7 , 4 9 , 5 5 , 6 1 , 6 3 , 6 5 , 6 7 , 6 9 , 7 1 , 7 3 , 7 5 } ;
Recombine S u r f a c e { 4 5 , 4 7 , 4 9 , 5 1 , 5 3 , 5 5 , 5 7 , 5 9 , 6 1 , 6 3 , 6 5 , 6 7 , 6 9 , 7 1 , 7 3 , 7 5 } ;
// S t r u c t u r e d s u r f a c e s i n f a r f i e l d zone

129

A.1 Sample mesh used for simulations A APPENDIX

T r a n s f i n i t e S u r f a c e {138} = { 4 9 , 4 4 , 5 0 , 2 1 } ;
T r a n s f i n i t e S u r f a c e {140} = { 4 4 , 5 1 , 3 8 , 5 0 } ;
T r a n s f i n i t e S u r f a c e {142} = { 4 0 , 3 4 , 5 1 , 4 4 } ;
Recombine S u r f a c e { 1 3 8 , 1 4 0 , 1 4 2 } ;
/∗ ///// S u r f a c e s on which to c r e a t e the mesh ///// ∗/

/∗ ///// Meshing ///// ∗/
// / V e r t i c a l - L i n e s - Close - To - C y l i n d e r ///

// Leftmost Elements
T r a n s f i n i t e Line {1 , 2 , 3 , 4} = 8 Using P r o g r e s s i o n 0 . 7 5 ;
// Rightmosts Elements
T r a n s f i n i t e Line {15 , 16 , 17 , 18} = 45 Using P r o g r e s s i o n 1 . 0 2 ;
// Middle L e f t Away from c y l i n d e r
T r a n s f i n i t e Line {8 , 9} = 6 Using P r o g r e s s i o n 1 ;
// Middle Right Away from c y l i n d e r
T r a n s f i n i t e Line {13 , 14} = 7 Using P r o g r e s s i o n 1 ;

// / V e r t i c a l - L i n e s - Close - To - C y l i n d e r ///

// / Horzontal - L i n e s - Close - To - C y l i n d e r ///
// Top l i n e s
T r a n s f i n i t e Line {29 ,32 ,35 ,24 ,21} = 8 Using P r o g r e s s i o n 1 . 1 5 ;
// Middle l i n e s away from c y l i n d e r
T r a n s f i n i t e Line {20 ,23} = 4 Using P r o g r e s s i o n 1 ; // Before C y l i n d e r
T r a n s f i n i t e Line {31 ,34} = 7 Using P r o g r e s s i o n 1 ; // A f t e r C y l i n d e r
// Buttom l i n e s away from c y l i n d e r
T r a n s f i n i t e Line {19 ,22} = 3 Using P r o g r e s s i o n 1 ; // Before C y l i n d e r
T r a n s f i n i t e Line {30 ,33} = 5 Using P r o g r e s s i o n 1 ; // A f t e r C y l i n d e r

// / Horzontal - L i n e s - Close - To - C y l i n d e r ///

// / Around the c y l i n d e r ///
// Buttom l i n e l e f t o f c y l i n d e r
T r a n s f i n i t e Line {5} = 8 Using P r o g r e s s i o n 0 . 8 ;
// Buttom l i n e r i g h t o f c y l i n d e r
T r a n s f i n i t e Line {10} = 8 Using P r o g r e s s i o n 1 ;
// L i n e s r a d i a l from o u t e r c y l i n d e r to r e s t o f domain
T r a n s f i n i t e Line {12 ,28 , - 6} = 10 Using P r o g r e s s i o n 1 . 1 5 ;
T r a n s f i n i t e Line {25} = 10 Using P r o g r e s s i o n 1 ;
// L i n e s r a d i a l from i n n e r to o u t e r c y l i n d e r
T r a n s f i n i t e Line {11 ,27 ,7 ,26} = 3 Using P r o g r e s s i o n 1 ;
// Outer and i n n e r c y l i n d e r l i n e s
T r a n s f i n i t e Line {39 ,43} = 12 Using P r o g r e s s i o n 1 ; // Lower Right
T r a n s f i n i t e Line {38 ,42} = 10 Using P r o g r e s s i o n 1 ; // Lower L e f t
T r a n s f i n i t e Line {36 ,40} = 13 Using P r o g r e s s i o n 1 ; // Upper Right
T r a n s f i n i t e Line {37 ,41} = 9 Using P r o g r e s s i o n 1 ; // Upper L e f t

// / Around the c y l i n d e r ///

// / Domain away from zone o f i n t e r e s t
// Upper - Outer - Zone V e r t i c a l l i n e s
T r a n s f i n i t e Line {82 , 95 , 100} = 8 Using P r o g r e s s i o n 1 . 2 ;
// Right - Outer - Zone H o r i z o n t a l l i n e s
T r a n s f i n i t e Line {110 , 118 , 120} = 8 Using P r o g r e s s i o n 1 . 2 ;
// Lower - Outer - Zone V e r t i c a l l i n e s
T r a n s f i n i t e Line {91 , 96} = 2 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {92 , 97} = 3 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {93 , 98} = 5 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {94 , 99} = 2 Using P r o g r e s s i o n 1 ;
// L e f t - Outer - Zone H o r i z o n t a l l i n e s
T r a n s f i n i t e Line {117 , 119} = 2 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {104 , 108} = 12 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {103 , 107} = 2 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {102 , 106} = 2 Using P r o g r e s s i o n 1 ;
T r a n s f i n i t e Line {101 , 105} = 7 Using P r o g r e s s i o n 1 ;

// / Domain away from area o f i n t e r e s t

// / Unstructured zone
T r a n s f i n i t e Line {109 , 111 , 113 , 115} = 2 Using P r o g r e s s i o n 1 ; // L e f t - zone h o r i z o n t a l l i n e s
T r a n s f i n i t e Line {81 , 83 , 85 , 87 , 89} = 2 Using P r o g r e s s i o n 1 ; // Middle zone v e r t i c a l l i n e s

// / Unstructured zone
/∗ ///// Meshing ///// ∗/

/∗ //// P h y s i c a l Domain and boundar ies //// ∗/
P h y s i c a l Line (1 4 3) = {21 , 20 , 1 9 } ; // In - f l o w
P h y s i c a l Line (1 4 4) = {81}; P h y s i c a l Line (1 4 5) = {82}; // In - f l o w
P h y s i c a l Line (1 4 6) = {1 , 5 , 10 , 15 , 110 , 105 , 106 , 107 , 108 , 119 , 1 20} ; // Far - f i e l d
P h y s i c a l Line (1 4 7) = {109}; // Far - f i e l d
P h y s i c a l Line (1 4 8) = {100 , 99 , 98 , 97 , 9 6 } ; // Out - f l o w
P h y s i c a l Line (1 4 9) = {36 , 39 , 38 , 3 7 } ; // Wall
P h y s i c a l S u r f a c e (1 5 0) = {45 , 47 , 49 , 55 , 53 , 51 , 61 , 59 , 57 ,

67 , 65 , 63 , 73 , 71 , 69 , 7 5 } ; // Domain
P h y s i c a l S u r f a c e (1 5 1) = {122 , 124 , 126 , 128 , 130 , 132 , 134 , 1 36 }; // Domain
P h y s i c a l S u r f a c e (1 5 2) = {142 , 140 , 13 8}; // Domain
/∗ //// P h y s i c a l Domain and boundar ies //// ∗/

If copy-pasting the above text (or any code presented in these appendices) to your favourite
text editor fails the reader is welcome to write an email to the author and ask for an electronic
copy of the file. Current email: RasmusElCh@gmail.com.

130

A.2 Nektar++ XML Extract A APPENDIX

Generating the Mesh (.msh file): To generate a .msh file using tenth order basis
functions for element edges from the .geo file presented above follow the steps below32.

• Open the Gmsh GUI (Version 2.7.0 or higher).

• Click the tab: File -> Open.

• In the open window, navigate to folder containing the .geo file.

• Click the file name then OK. The geometry should now be showing in the GUI.

• Click the drop down menu: Mesh -> 2D. A mesh should now have appeared on top
of the geometry.

• Click the drop down menu: Mesh -> Optimize high order. A window should now
have opened.

• In the window, type 10 in the field denoted Polynomial order the click Apply.
Close the window.

• Click the drop down menu: Mesh -> Save.

You should now have created and saved the mesh with the same file name as your .geo file
but with the extension .msh instead.

A.2 Nektar++ XML Extract

This appendix contains an extract from a Nektar++ .xml file used for simulating the
cylinder near the moving wall along with a short explanation. The extract contains all but
the geometry of the problem.

<NEKTAR>
<GEOMETRY DIM=" 2 " SPACE=" 2 ">

<! - - Everything i n the Geometry i s s u p p l i e d from the . msh f i l e during the c o n v e r s i o n by the
MeshConvert program . - ->

<VERTEX>
<! - - Vertex i d s and t h e i r (x , y , z) c o o r d i n a t e s go here - ->

</VERTEX>
<EDGE>

<! - - Edge i d s and the i d s o f the v e r t e x e s c o n s t i t u t i n g the edge go here (Counter c l o c k w i s e
o r d e r i n g i s used) - ->

</EDGE>
<ELEMENT>

<! - - Element i d s and the i d s o f the edges c o n s t i t u t i n g the element go here (Counter c l o c k w i s e
o r d e r i n g i s used) - ->

</ELEMENT>
<CURVED>

<! - - Edge i d s and i n f o r m a t i o n about the type o f curve used to form a curved edge goes here . -
->

</CURVED>
<COMPOSITE>

<! - - Each edge c o n s t i t u t i n g a domain boundary i s put i n t o d i f f e r e n t composites f o r l a t e r
a p p l i c a t i o n o f boundary c o n d i t i o n s , Example b e l o w : - ->

<C ID=" 143 "> E[5 2 4 , 5 2 7 , 5 6 0 , 5 6 3 , 5 6 6 , 6 0 5 , 6 0 8 , 6 1 1 , 6 1 4 , 6 1 7 , 6 2 0 , 6 2 2] </C>

<! - - Each element c o n s t i t u t i n g part o f the domain i s put i n t o composites to d e f i n e the
problem domain , Examples b e l o w : - ->

<C ID=" 150 "> Q[3 1 1 - 1 6 5 9] </C>
<C ID=" 151 "> T[0 - 3 1 0] </C>
<C ID=" 152 "> Q[1 6 6 0 - 1 9 0 4] </C>

</COMPOSITE>

<DOMAIN>

32This guide is based on the Linux 64-bit release of Gmsh and the steps may differ on the Windows or
Mac OS releases.

131

A.3 The Nektar++ framework A APPENDIX

<! - - The composites which c o n s t i t u t e the domain - ->
C[1 5 0 , 1 5 1 , 1 5 2]

</DOMAIN>
</GEOMETRY>

<EXPANSIONS>
<! - - The COMPOSITEs c o n s t i t u t i n g the domain , the number o f modes , NUMMODES, used i n the

s o l u t i o n b a s i s , the TYPE o f b a s i s (modal or nodal) and the FIELDS f o r which a s o l u t i o n
i s d e s i r e d . - ->

<E COMPOSITE="C[1 5 0 - 1 5 2] " NUMMODES=" 10 " TYPE="MODIFIED" FIELDS=" u , v , p " />
</EXPANSIONS>

<CONDITIONS>
<! - - S o l v e r and Problem i n f o r m a t i o n - ->

<SOLVERINFO>
<! - - Choice o f the type o f s o l v e r - ->
<I PROPERTY=" SolverType " VALUE=" V e l o c i t yC o r r e c t i o n S c h em e " />
<! - - The e q u a t i o n to s o l v e - ->
<I PROPERTY="EQTYPE" VALUE=" UnsteadyNavierStokes " />
<! - - How to handle c o n v e c t i o n - ->
<I PROPERTY=" Evolut ionOperator " VALUE=" Nonl inear " />
<! - - The type o f s o l v e r : CG or DG - ->
<I PROPERTY=" P r o j e c t i o n " VALUE=" Continuous " />
<! - - The time s t e p p i n g scheme - ->
<I PROPERTY=" TimeIntegrationMethod " VALUE=" IMEXOrder2 " />

</SOLVERINFO>

<PARAMETERS>
<P> TimeStep = 0 . 0 0 0 5 </P> <! - - Time s t e p l e n g t h - ->
<P> NumSteps = 20000 </P> <! - - Number o f time s t e p s - ->
<P> IO_CheckSteps = 80 </P> <! - - How o f t e n to p r i n t the s o l u t i o n - ->
<P> IO_InfoSteps = 1000 </P> <! - - How o f t e n to p r i n t an i am a l i v e message - ->
<P> Re = 240 </P> <! - - The Reynolds number - ->
<P> Kinvis = 1/Re </P> <! - - Kinematic V i s c o s i t y - ->

</PARAMETERS>

<VARIABLES>
<! - - g i v i n g i d s to the f i e l d s - ->
<V ID=" 0 "> u </V>
<V ID=" 1 "> v </V>
<V ID=" 2 "> p </V>

</VARIABLES>

<BOUNDARYREGIONS>
<! - - S e t t i n g d i f f e r e n t boundary r e g i o n s - ->
<B ID=" 0 "> C[1 4 3 - 1 4 7] <! - - I n f l o w - ->
<B ID=" 1 "> C[1 4 8] <! - - Outflow - ->
<B ID=" 2 "> C[1 4 9] <! - - Wall - ->

</BOUNDARYREGIONS>

<BOUNDARYCONDITIONS>
<! - - S e t t i n g boundary c o n d i t i o n s f o r each r e g i o n - ->
<REGION REF=" 0 ">

<D VAR=" u " VALUE=" 1 " />
<D VAR=" v " VALUE=" 0 " />
<N VAR=" p " USERDEFINEDTYPE="H" VALUE=" 0 " />

</REGION>
<REGION REF=" 1 ">

<N VAR=" u " VALUE=" 0 " />
<N VAR=" v " VALUE=" 0 " />
<D VAR=" p " VALUE=" 0 " />

</REGION>
<REGION REF=" 2 ">

<D VAR=" u " VALUE=" 0 " />
<D VAR=" v " VALUE=" 0 " />
<N VAR=" p " USERDEFINEDTYPE="H" VALUE=" 0 " />

</REGION>
</BOUNDARYCONDITIONS>

<FUNCTION NAME=" I n i t i a l C o n d i t i o n s ">
<! - - S e t t i n g i n i t i a l c o n d i t i o n s - ->

<E VAR=" u " VALUE=" 1 " />
<E VAR=" v " VALUE=" 0 " />
<E VAR=" p " VALUE=" 0 " />

</FUNCTION>
</CONDITIONS>

</NEKTAR>

A.3 The Nektar++ framework

This appendix is dedicated to giving the reader an introduction to the SEM framework
Nektar++ [5] that may be used as a tool for solving CFD problems with the implemented
incompressible Navier-Stokes solver.

132

A.3 The Nektar++ framework A APPENDIX

The approach adapted in this section is one which is designed to provide the reader with an
overview of Nektar++ from a users perspective. It covers the installation and an overview
of the different utilities provided with Nektar++. This should provide the reader with
enough help to install and use Nektar++.

A.3.1 Installing Nektar++

The reader is referred to
http://www.nektar.info/wiki/3.3/Compile/ for a set of installation instructions for
either Mac, Windows or Linux. The author used the Linux instructions and found that these
worked without needing to modify anything. The installation and following simulations were
based on the following Nektar++ and third party software versions33,

• Nektar version: nektar++-3.3.0.

• ThirdParty version: ThirdParty-3.3.0.

A.3.2 Navigating Nektar++

In the following, the notation (Nektar Dir)/ is a reference to the folder which contains the
downloaded Nektar++ source code. The default name for this folder is: nektar++-3.3.0.
Once Nektar++ has been built on the users system the only two folders which the end
user should be concerned with is (Nektar Dir)/builds/ and
(Nektar Dir)/regressionTests/.

• (Nektar Dir)/builds/: This folder contains seven folders, only three of which are of
initial interest to the user. The folders of interest are:

– (Nektar Dir)/builds/regressionTests/: This folder contains a file runtests.sh
which is a shell script that runs a series of tests confirming the all the solvers func-
tion as intended. This test should be run every time an update for Nektar++
is installed.

– (Nektar Dir)/builds/solvers/: This folder contains the solvers currently im-
plemented in Nektar++. In order to use any of the solvers all that is needed
is a correctly formatted .xml file containing your problem (see section A.3.3 on
setting up a problem and .xml file) in a directory of choice and then from this
directory run the solver.

– (Nektar Dir)/builds/utilities/: In this folder there are two new folders of
interest, these are:
- PostProcessing/
- PreProcessing/

• (Nektar Dir)/builds/utilities/PreProcessing/: In Preprocessing there are three
folders each containing a preprocessing tool. Only the mesh converting tool Mesh-
Convert in the ./MeshConvert/ folder is of immediate interest. This tool may be
used to convert a mesh created in one of the supported formats to the Nektar++
.xml format. A full description of how to use the mesh converter tool is available at
http://www.nektar.info/wiki/3.3/Tutorial/MeshConvert.

33All downloadable from http://www.nektar.info/downloader.

133

http://www.nektar.info/downloader

A.3 The Nektar++ framework A APPENDIX

• (Nektar Dir)/builds/utilities/PostProcessing/: This folder contains a subfolder
./Extras/ and a series of post processing tools. The folder also contain a series of post
processing tools. All tools are in the form of an executable. The tools of immediate
interest to the end user are listed in the following and may roughly be divided into
three categories:

– Category 1: Calculations of Quantities from present fields.

∗ Gradient:
- Name: CalcGrad
- Location: (Nektar Dir)/builds/utilities/PostProcessing/Extras/
- Description: Calculate the gradient of the field numbered ifield in the
FILENAME.xml file for the solution stored in FILENAME.fld and prints a
new .fld file FILENAME_with_grad.fld
- Call: CalcGrad ifield FILENAME.xml FILENAME.fld
- Output file: FILENAME_with_grad.fld

∗ Vorticity:
- Name: CalcVorticity
- Location: (Nektar Dir)/builds/utilities/PostProcessing/Extras/
- Description: Calculates the Vorticity of the 2D (u,v) or 3D (u,v,w) velo-
city fields stored in FILENAME.fld and prints it along with allready existing
fields to a new .fld file FILENAME_with_vorticity.fld
- Call: CalcVorticity FILENAME.xml FILENAME.fld
- Output file: FILENAME_with_vorticity.fld

∗ L2-norm:
- Name: L2
- Location: (Nektar Dir)/builds/utilities/PostProcessing/Extras/
- Description: Calculate the L2-norm for the field numbered ifield in the
FILENAME.xml and stored in FILENAME.fld
- Call: L2 ifield FILENAME.xml FILENAME.fld
- Output text: printf(L2 of field "ifield" is: XX.XXXX)

∗ Linf-norm:
- Name: Linf
- Location: (Nektar Dir)/builds/utilities/PostProcessing/Extras/
- Description: Calculate the Linf-norm for the field numbered ifield in the
FILENAME.xml and stored in FILENAME.fld
- Call: Linf ifield FILENAME.xml FILENAME.fld
- Output: printf(Linf of field "ifield" is: XX.XXXX)

– Category 2: Conversions for further simulations.
∗ Convert a field from one mesh to another on the same domain:
- Name: FieldToField
-Description: Perform the conversion of the fields stored in FIELDSOLDMESH.fld
from one mesh OLDMESH.xml to the file FIELDSNEWMESH.fld on another
mesh NEWMESH.xml. In order to work after the conversions the domains

134

A.3 The Nektar++ framework A APPENDIX

in the two .xml files must be the same, i.e. same boundaries and size, but
the mesh is allowed to change. Currently only supports a modal basis.
-Call: FieldToField OLDMESH.xml FIELDSOLDMESH.fld NEWMESH.xml
FIELDSNEWMESH.fld
- Output file: FIELDSNEWMESH.fld
- Location: (Nektar Dir)/builds/utilities/PostProcessing/Extras/

– Category 3: Conversions for visualisation / Post processing with other software.
∗ Split the N fields in an .fld file to N seperate .fld files.
- Name: SplitFld
- Call: SplitFld FILENAME.fld
-Output files: FILENAME_1.fld FILENAME_2.fld ... FILENAME_N.fld

∗ Convert .fld file to a file which may be opened by Gmsh.
- Name: "FldToGmsh"
- Call: FldToGmsh FILENAME.fld
- Output file: FILENAME.pos

∗ Convert .fld file to a file which may be opened by Tecplot.
- Name: FldToTecplot
- Call: FldToTecplot FILENAME.fld
- Output file: FILENAME.tec

∗ Convert .fld file to a file which may be opened by Paraview:
- Name: FldToVtk
- Call: FldToVtk FILENAME.fld
- Output: FILENAME.vtu

∗ Convert Nektar++ session .xml file to a file which may be opened by
Tecplot:
- Name: XmlToTecplot
- Call: XmlToTecplot FILENAME.xml
- Output file: FILENAME.tec

∗ Convert Nektar++ session .xml file to a file which may be opened by Para-
view:
- Name: XmlToVtk
- Call: XmlToVtk FILENAME.xml
- Output file: FILENAME.vtu

• (Nektar Dir)/regressionTests/: The regressionTests/ folder contains another
folder Solvers/ which in turn contain six folders named after six of the solvers imple-
mented inNektar++. Each of these folders contain a new folder named InputFiles/,
in which there are a series of .xml files each containing a fully functional Nektar++
simulation which the user can use as inspiration / a template for setting up their own
problem.

135

A.4 Validation of Nektar++ A APPENDIX

File types: The file types, .fld, .rst and .chk are the same to Nektar++ programs (i.e.
it contains the exact same information it is only the name of the file extension that differ).
This is simply to allow the user to distiguish between intermediate files during a simulation
and the final file.

Steps of Solver Execution: (assuming paraview and Nektar++ are installed.)

Step 0: choosing the .xml file to use.
e.g.: Test_Advection3D_m12_DG_hex.xml. found in the folder
(Nektar Dir)/regressionTests/Solvers/ADRSolver/InputFiles/

Step 1: Place the .xml file to a folder created for the simulation.
e.g.: copy Test_Advection3D_m12_DG_hex.xml to /NektarSimulations/NewTest/.

Step 2: From this folder execute the appropriate solver.
e.g.: ~/(Nektar Dir)/builds/solvers/ADRSolver/ADRSolver Test_Advectionn3D_m12_DG_hex.xml

Step 3: from this folder convert output .fld file to desired format for visualisation.
e.g.: conversion to .vtu format for use in Paraview by executing:
~/(user nektar++ folder)/builds/utilities/PostProcessing/
FldToVtk Test_Advection1Dn3D_m12_DG_hex.xml Test_Advectionn3D_m12_DG_hex.fld

Step 4: from this folder open the .vtu file with paraview.
e.g.: paraview Test_Advection1Dn3D_m12_DG_hex.vtu

A.3.3 Setting Up a Problem

The reader is referred to
https://www.nektar.info/wiki/3.3/Tutorial?redirectedfrom=Latest/Tutorial for
a series of tutorials for setting up problems for the individual Nektar++ solvers and to
https://www.nektar.info/wiki/3.3/Reference/XmlFileFormat
for a general introduction to the .xml session files used to set up PDE problems to be solved
using Nektar++.

A.4 Validation of Nektar++

Before using any piece of simulation software it is essential to validate the correctness of
the solutions obtained by the software. If the validation step is skipped one at best risks
loosing a lot of valuable time working with useless simulation data. At worst one risks using
faulty data to draw conclusions which may be completely wrong with catastrophic results
as a result.
This section documents a series of simulations performed Nektar++’s advection-diffusion-
reaction (ADR) solver, to investigate the frameworks convergence properties, as well as
the incompressible Navier-Stokes solver, IncNavierStokesSolver used in the project. In
(A.4.1) the ADR-solver is used on a problem for which the analytical solution is known to
illustrate the claimed convergences rate of the Spectral/hp-element method for both p- and

136

A.4 Validation of Nektar++ A APPENDIX

h- refinement. In (A.4.2) the correctness of the incompressible Navier-Stokes solver, named
IncNavierStokesSolver is validated using two model problems for which the analytical
solution is known34.

A.4.1 Simple Domain Convergence Test

In order to investigate and verify that the convergence rates for both h- and p- refinement
agrees with the theoretical results a simple model problem with a known solution is formu-
lated. The chosen problem is a 2D helmholtz problem on the domain illustrated in figure
A.1a with Direchlet boundary conditions and the given forcing function f ,

∇2u− λu = f, (x, y) ∈ Ω = [−1, 1]2, (A.1)
u(x, y) = 0 (x, y) ∈ Ω,

f(x, y) = −(λ+ 2π2) sin(πx) sin(πy).

This problem has the exact solution,

uexact = sin(πx) sin(πy), (x, y) ∈ [−1, 1]2,

as may be verified easily by insertion.
The solver in Nektar++ which handles Helmholtz problems is called ADRSolver and is
in general capable of solving a large class of Advection-Diffusion-Reaction problems (hence
the name). A very simple "base mesh" consisting of four elements has been prepared using
Gmsh and is shown in figure A.1b,

Ω: Domain. Ω: Boundary

ΩΩ

y

x

(a) Illustration of domain for
simple Helmholtz problem.

X

Y

Z

(b) The "base mesh" exportet from
Gmsh.

Figure A.1
34This test is an execution of the tutorial found on http://www.nektar.info/wiki/3.3/Tutorial/IncNavierStokesSolver/VCS,

with minor modifications

137

A.4 Validation of Nektar++ A APPENDIX

Based on this base mesh both an h- and p- convergence test has been performed. In both
cases the error was measured in the L2-norm.
In the h- convergence test the number of modes was set to, Nmodes = 2, corresponding
to two first order polynomials as basis functions, i.e. p = 1. This choice in the order of
the expansion essentially reduces the SEM to the classical FEM. During the test the mesh
granularity was gradually decreased by dividing the mesh into equally sized elements as
shown in the figures A.1b through A.3b and hence decrease the width of each element.

X

Y

Z

(a) Refined mesh with N=7 ele-
ments in each direction leading to
a total of Ntotal = 49 elements.

X

Y

Z

(b) Refined mesh with N=10 ele-
ments in each direction leading to
a total of Ntotal = 100 elements.

Figure A.2

X

Y

Z

(a) Refined mesh with N=20 ele-
ments in each direction leading to
a total of Ntotal = 400 elements.

X

Y

Z

(b) Refined mesh with N=30 ele-
ments in each direction leading to
a total of Ntotal = 900 elements.

Figure A.3

138

A.4 Validation of Nektar++ A APPENDIX

The resulting error as a function of the elemental side length h, has been plotted in figure
A.4.

Figure A.4: h-convergence plot for the Nektar++ solver ADRSolver. The
expected second order convergence is observed.

From theory it is expected that the standard FEM has second order convergence, as is
exactly what we observe from the convergence plot.
Next the p- convergence test is performed. Here the number of elements in each direction is
fixed to N = 2, i.e. the "base mesh" and the number of modes in the expansion is increased,
i.e. the polynomial order p is increased. The convergence results for this test are presented
in figure A.5.

(a) (b)

Figure A.5: P-convergence rate for the Nektar++ solver ADRSolver. The
expected exponential convergence rate is observed.

From the SEM theory we expect that the convergence rate for p-refinement should be ex-
ponential as true solution is infinitely smooth. This is indeed exactly what we see in figure
A.5.

139

A.4 Validation of Nektar++ A APPENDIX

As both the convergens rates investigated above behave as expected it is concluded that the
ADRSolver seems to be implemented correctly.

A.4.2 Incompressible Navier-Stokes Solver

In order to confirm the correctness of the solver incompressible Navier-Stokes two test prob-
lems with known solutions are investigated. Both of these problems are part of the tutorial
for the IncNavierStokesSolver found on the Nektar++ wiki at
http://www.nektar.info/wiki/3.3/Tutorial/IncNavierStokesSolver/VCS.
The first problem is that of a simple 2D Channel flow where a isothermal incompressible
fluid is travelling down a channel as illustrated in figure A.6a where both the channel and
the analytical solution are illustrated. The problem is described by the Navier Stokes and
continuity equations and the Reynolds number (Re), boundary conditions and true solution
are given by,

Reynolds number: Re = 1

Wall BC’s: u = 〈0, 0〉, dnp

dξn
= 0

Inflow BC’s: u = 〈y(1− y), 0〉, dnp

dξn
= 0

Outflow BC’s: 〈 d
dx
u,

d

dy
v〉 = 〈0, 0〉, p = 0

Exact solution: u = 〈y(1− y), 0〉, p = −2(x− 1), (x, y) ∈ Ω = [0, 1]× [0, 1],

where the domain is (x, y) ∈ [0, 1]× [0, 1]
The second problem is the 2D-Kovasznay flow problem [24], in the same channel flow domain
as for the earlier problem, see figure A.6b, but where the boundary conditions and Reynolds
number are changed in order to produce the desired flow. The Reynolds number, boundary
conditions and true solution are now given by,

Reynolds number: Re = 40,

Wall BC’s: u = 〈0, 0〉, dnp

dξn
= 0,

Inflow BC’s: u = 〈1− 1.619 cos(2πy),−0.2483 sin(2πy)〉, dnp

dξn
= 0,

Outflow BC’s: 〈 d
dx
u,

d

dy
v〉 = 〈1− 0.3815 cos(2πy),−0.0585 sin(2πy)〉, p = 0.4272

Exact solution: u = 〈(1− exp(−0.964x) cos(2πy)), −0.964
2π exp(−0.964) sin(2πy)〉,

p = 0.5(1− exp(−2 · 0.964x)),

where the domain is, (x, y) ∈ [0, 1]× [−0.5, 1.5].

140

A.4 Validation of Nektar++ A APPENDIX

u(xindependent, y)

y

x

(a) A schematic for the domain used in
a simple 2D-channel flow with the inflow
at the left side and outflow at the right
side of the channel and walls on the top
and buttom. A vector field illustrating
velocity profile for the true solution (only
varying in y), u(x, y) = 〈y(1 − y), 0〉, is
included in the schematic.

y

x

(b) A schematic for the domain used in
a Kovasznay flow with the inflow at the
left side and outflow at the right side of
the channel and walls on the top and bot-
tom.

Figure A.6

It is seen that the exact solution for both problems are steady and thus the Incompress-
ible Navier-Stokes solver should produce these steady solutions after a the initial transient
period. In order to investigate whether this is indeed the case both problems have been sim-
ulated using the IncNavierStokesSolver using the continuous galerkin formulation and
the IMEXOrder1 time integration method.
The channel flow problem has been simulated for 1000 time steps using a time step size of
0.001 starting from the initial conditions,

〈u, v, p〉 = 〈0, 0, 0〉.

The computational domain is presented in figure A.7a from which it is seen that it only
consists of four elements and the computations were performed using three modes, i.e. using
second order polynomials. It is noted that as the true solution for the velocity field is a second
order polynomial in y, and the true solution for the pressure field a first order polynomial
in x it is expected that the SEM will recover the solutions exactly using the three modes.

141

A.4 Validation of Nektar++ A APPENDIX

X

Y

Z

(a) The com-
puational domain
for the 2D-channel
flow simulation.

X

Y

Z

(b) The com-
puational domain
for the 2D-
Kovasznay flow
simulation.

Figure A.7

The simulation produced the results shown in figures A.8a through A.8c for u, v and p
respectively.

(a) The x-
component of the
velocity field for
the 2D-channel
flow.

(b) The y-
component of the
velocity field for
the 2D-channel
flow.

(c) The pressure
field for the 2D-
channel flow.

Figure A.8

By inspecting the L2-norm for the difference between the computed and exact solutions,

‖ uexact − ucomputed ‖L2 ≈ 6.1062310−16,

‖ vexact − vcomputed ‖L2 ≈ 1.4219110−16,

‖ pexact − pcomputed ‖L2 ≈ 9.9920110−15,

it is seen that this is indeed only different at the level of machine precision, and thus the
solver has indeed provided the exact solution as predicted.

142

A.4 Validation of Nektar++ A APPENDIX

It was found that for the Kovasznay flow a longer time period is needed before the flow
converges and thus 20000 time steps are taken at a time step size of 0.001. The initial
conditions are set to be,

〈u, v, p〉 = 〈1, 0, 0〉.

The computational domain for the Kovasznay simulation is presented in figure A.7b from
which it is seen that it consists of fifteen elements. The Kovasznay flow is not mealy polyno-
mial however and thus the true solution will not be captured exactly using a finite number
of modes. For this reason a p-refinement test has been performed to see how the error in
L2-norm depends on the polynomial order for this flow. The result of the test is presented
in figure A.9.

Figure A.9: P-convergence plot for the Nektar++ solver IncNavierStokes-
Solver for the Kovasznay-flow. The expected exponential convergence rate is
observed for all fields.

From figure A.9 it is seen that the error converges (more or less) exponentially as a function
of polynomial order as expected until it hits machine precission.
In figures A.10(a), (b) and (c) the numerical solution for the Kovasznay flow using 15 modes
is presented,

143

A.5 Authors Software A APPENDIX

(a) The x-
component of the
velocity field for
the 2D-Kovasznay
flow.

(b) The y-
component of the
velocity field for
the 2D-Kovasznay
flow.

(c) The pressure
field for the 2D-
Kovasznay flow.

Figure A.10

In the tests of the Nektar++ incompressible Navier-Stokes solver above it was shown that
the solution converges towards to true solution at the rate expected from a SEM solver.
Based on these tests the author feel confident that the IncNavierStokesSolver works as
expected and on this basis will proceed with simulations of a much different scope.

A.5 Authors Software

This appendix contains the scripts and source code written to perform the postprocessing on
simulation data obtained with IncNavierStokesSolver from the Nektar++ framework.

A.5.1 Shell Scripts

All Shell scripts written for the project. The shell scripts are all executed from a Linux Shell
by navigating to the folder containing the script and executing the command: ./ScriptName.sh.

FullDataTreatment.sh : This script executes all other scripts for the postprocessing
phase. The scripts must be placed as illustrated on figure 4.1 for the shell script to work.

A s h e l l s c r i p t f o r execut ing the f u l l post p ro c e s s i ng procedure on a
CFD- s imu la t i on us ing Nektar++ f o r the Master Thes i s :
"Advanced CFD- Techiques f o r i d e n t i f i c a t i o n o f s t r u c t u r e s in f l ows "

Requirements f o r execut ion o f the s c r i p t :
#
She l l s c r i p t s :
NektarPP . sh
DomainCropping . sh
ZeroContour_Cri t i ca lPo ints . sh
VorticityExtremaType . sh
Cr i t i c a lPo in tTrac e . sh
#
C++ Programs :
DomainCropper

144

A.5 Authors Software A APPENDIX

#
Python s c r i p t s :
ContourAndCrit ica lPoints . py
C r i t i c a l P o i n t I d e n t i f i c a t i o n . py
VTUFormatPointDataCombiner . py
#
Nektar++ programs :
Ca l cVor t i c i t y
CalcGrad
FldToVtk
#
Execution : From Linux She l l in the f o l d e r where FullDataTreatment . sh i s

p laced
Command: . / FullDataThreatment . sh
##

Nektar++ Post Proce s s ing
. / S h e l l S c r i p t s /NektarPP . sh

Domain Cropping
. / S h e l l S c r i p t s /DomainCropping . sh

Q_x = 0 Contour and Vo r t i c i t y C r i t i c a l Points
. / S h e l l S c r i p t s / ZeroContour_Cri t i ca lPo ints . sh

Cr i t i c a l Point Type I d e n t i f i c a t i o n
. / S h e l l S c r i p t s /VorticityExtremaType . sh

Tracing the d i f f e r e n t types o f c r i t i c a l po in t s
. / S h e l l S c r i p t s / Cr i t i c a lPo in tTrac e . sh

Arranging f i l e s in s ub f o l d e r s
mkdir . . / Da t a f i l e s /FullDataCropped
mkdir . . / Da t a f i l e s /ContourVort ic ityXZero
mkdir . . / Da t a f i l e s / Vo r t i c i t yC r i t i c a l P o i n t s
mkdir . . / Da t a f i l e s / Cr i t i ca lPo intType
mkdir . . / Da t a f i l e s / Cr i t i c a lPo in tTrac e

mv . . / Da t a f i l e s /∗_cropped . vtu . . / Da t a f i l e s /FullDataCropped/
mv . . / Da t a f i l e s /∗_Filtered_Contour_QxZero_Vorticity . vtp . . / Da t a f i l e s /

ContourVortic ityXZero /
mv . . / Da t a f i l e s /∗_Extrema_Vorticity . vtp . . / Da t a f i l e s / Vo r t i c i t yC r i t i c a l P o i n t s /
mv . . / Da t a f i l e s /∗_Maxima . vtu . . / Da t a f i l e s / Cr i t i ca lPo intType /
mv . . / Da t a f i l e s /∗_Minima . vtu . . / Da t a f i l e s / Cr i t i ca lPo intType /
mv . . / Da t a f i l e s /∗_Saddle . vtu . . / Da t a f i l e s / Cr i t i ca lPo intType /
mv . . / Da t a f i l e s /∗_Trace . vtu . . / Da t a f i l e s / Cr i t i c a lPo in tTrac e /

NektarPP.sh : This script executes all Nektar++ based postprocessing. It is important
to modify the script by providing the correct path to the Nektar++ programs used.

This s h e l l s c r i p t execute s Nektar++ post p ro c e s s i ng programs which
ca l c u l a t e s the v o r t i c i t y as we l l as i t s g rad i ent and he s s i an matrix .
Fina l l y the r e s u l t i n g . f l d f i l e conta in ing a l l f i e l d s i s converted to a .

vtu

145

A.5 Authors Software A APPENDIX

f i l e f o r f u r t h e r post p ro c e s s i ng in Paraview .

##
WARNING: Only one (the c o r r e c t) . xml f i l e i s a l lowed to be pre sent in the

f o l d e r
WARNING: Only the . chk f i l e s r e l a t e d to the . xml f i l e i s a l lowed to be

pre sent
WARNING: Use t h i s s c r i p t only f o r 2D- NavierStokes s o l u t i o n s from Nektar++
conta in ing the f i e l d s u , v , p in that order .
##

Removing any s t ray . f l d f i l e s in the raw data f o l d e r
rm . . / Da t a f i l e s /∗ . f l d

Nektar++ programs

The l o c a t i o n o f your nektar++ v o r t i c i t y conver t e r
WARNING: must be changed to f i t your system

CONVERTER=/home/rasmus/Nektar++/bu i l d s / u t i l i t i e s / PostProces s ing /Extras /
Ca l cVor t i c i t y

WARNING: must be changed to f i t your system

The l o c a t i o n o f your nektar++ grad i en t c a l c u l a t o r
WARNING: must be changed to f i t your system

CONVERTER2=/home/rasmus/Nektar++/bu i l d s / u t i l i t i e s / PostProces s ing /Extras /
CalcGrad

WARNING: must be changed to f i t your system

the l o c a t i o n o f the FldToVtk rout in e to convert a l l the r e s u l t i n g f l d - f i e l s
to . vtu format

WARNING: must be changed to f i t your system
CONVERTER3=/home/rasmus/Nektar++/bu i l d s / u t i l i t i e s / PostProces s ing /FldToVtk

WARNING: must be changed to f i t your system

Nektar++ programs

Calcu la t i on o f Vo r t i c i t y

The chk f i l e s
CHK=../ Da t a f i l e s /∗ . chk
The xml f i l e needed to do the conver s i on
XML=../ Da t a f i l e s /∗ . xml

The conver s i on to new . f l d f i l e s conta in ing the v o r t i c i t y
f o r f in $CHK
do

$CONVERTER $XML $f
rm $ f

done

Calcu la t i on o f Vo r t i c i t y

Calcu la t i on o f the g rad i ent o f the Vo r t i c i t y

The newly created . f l d f i l e s now conta in ing the v o r t i c i t i e s
FLD=../ Da t a f i l e s /∗ . f l d
The f i e l d which grad i en t i s to be c a l c u l a t ed
FIELDNR=3

The conver s i on to new . f l d f i l e s conta in ing the grad i ent o f the v o r t i c i t y

146

A.5 Authors Software A APPENDIX

f o r f in $FLD
do

$CONVERTER2 $FIELDNR $XML $f
rm $ f

done

Calcu la t i on o f the g rad i ent o f the Vo r t i c i t y

Calcu la t ing the grad i ent o f each component o f the v o r t i c i t y g rad i en t

The newly created . f l d f i l e s now conta in ing the v o r t i c i t y and i t s g rad i ent
in

the (x , y) - p lane .
FLD2=../ Da t a f i l e s /∗ . f l d
The f i e l d f o r which the g rad i ent i s to be c a l c u l a t ed
FIELDNR2=4

The conver s i on to new . f l d f i l e s conta in ing the grad i ent o f u
f o r f in $FLD2
do

$CONVERTER2 $FIELDNR2 $XML $f
rm $ f

done

The newly c reated . f l d f i l e s now conta in ing the v o r t i c i t y , i t s g rad i en t in
the (x , y) - p lane and the grad i en t o f the f i r s t component o f the v o r t i c i t y

g rad i ent
FLD3=../ Da t a f i l e s /∗ . f l d
FIELDNR3=5

The conver s i on to new . f l d f i l e s conta in ing the grad i ent o f v
f o r f in $FLD3
do

$CONVERTER2 $FIELDNR3 $XML $f
rm $ f

done

Calcu la t ing the grad i ent o f each component o f the v o r t i c i t y g rad i en t

Converting the r e s u l t i n g . f l d f i l e s to . vtu format
FLD6=../ Da t a f i l e s /∗ . f l d

$CONVERTER3 $XML $FLD6

Cleaning up the . f l d f i l e s
rm . . / Da t a f i l e s /∗ . f l d

Converting the r e s u l t i n g . f l d f i l e s to . vtu format

DomainCropping.sh : This script executes the C++ program DomainCropper. The
script should be modified with the dimensions desired for the cropping.

Sh e l l s c r i p t which execute s the C++ program : DomainCropper f o r each o f
a s e t o f . vtu f i l e s . DomainCropper crops the data in the . vtu f i l e by
removing e lements with no coo rd ina t e s i n s i d e the three i n t e r v a l s :

147

A.5 Authors Software A APPENDIX

[x_min , x_max] , [y_min ,y_max] , [z_min , z_max] . I t then outputs a new
. vtu f i l e in the same format without the cropped data .

WARNING: Set the input parameters to CONVERTER as de s i r ed
X_min=- 2
X_max=10
Y_min=0
Y_max=4
Z_min=- 1
Z_max=1

The . vtu f i l e s needing cropping
VTUCROP=../ Da t a f i l e s /∗ . vtu
The l o c a t i o n o f the C++ domain cropping program .

WARNING: must be changed to f i t your system
CONVERTER=./C++Programs/DomainCropper

WARNING: must be changed to f i t your system

The cropping o f each o f the . vtu f i l e s
f o r f in $VTUCROP
do

$CONVERTER $f $X_min $X_max $Y_min $Y_max $Z_min $Z_max
rm $f

done

ZeroContour_CriticalPoints.sh : The script calls the python script ContourAnd-
CriticalPoints.py for all .vtu files for a simulation.

#!/ bin / sh
A se t o f . vtu f i l e s conta in ing the f i e l d s
[' u ' , ' v ' , 'p ' , 'Qz ' , 'Qz_x' , 'Qz_y' , 'Qz_x_x' , 'Qz_x_y' , 'Qz_y_x' , 'Qz_y_y

']
in t h i s order are run through the python s c r i p t to ex t r a c t the
Qz_x = 0 contour and v o r t i c i t y extrema (Qz_x, Qz_y) = (0 , 0)
to two s e r i e s o f . vtp f i l e s

The . vtu f i l e s needing ex t r a c t i on
VTUEXTRACT=../ Da t a f i l e s /∗_cropped . vtu
The l o c a t i o n o f the Paraview based python s c r i p t .

WARNING: must be changed to f i t your system
CONVERTER2=./PythonScr ipts /ContourAndCrit ica lPoints . py

WARNING: must be changed to f i t your system

fo r f in $VTUEXTRACT
do

python $CONVERTER2 vtp $ f
done

VorticityExtremaType.sh : The script calls the python script CriticalPonitIdenti-
fication.py for all .vtu files containing extrema data for a simulation.

148

A.5 Authors Software A APPENDIX

#!/ bin / sh
Copy t h i s s h e l l s c r i p t a long with the executeab l e f i l e
" Cr i t i c a lPo i n tTyp e I d en t i f i c a t i o n . py " to the f o l d e r conta in ing your . vtp

f i l e s
with v o r t i c i t y extrema and run i t to obta in three s e t s o f f i l e s conta in ing
the C r i t i c a l po in t s which are saddles , maxima and minima r e s p e c t i v e l y .

The _Contour_Extrema_Vorticity . vtp f i l e s are run through the python s c r i p t
to

ex t r a c t the extremas o f each o f the three d i f f e r e n t types to one f i l e each .

The . vtu f i l e s needing ex t r a c t i on
VTPEXTRACT=../ Da t a f i l e s /∗_Extrema_Vorticity . vtp
The l o c a t i o n o f the Paraview based python s c r i p t to be executed

WARNING: must be changed to f i t your system
CONVERTER2=./PythonScr ipts / C r i t i c a l P o i n t I d e n t i f i c a t i o n . py

WARNING: must be changed to f i t your system

fo r f in $VTPEXTRACT
do

python $CONVERTER2 vtu $ f
done

CriticalPointTrace.sh : The script calls the python script VTUFormatPointData-
Combiner.py for all .vtu files containing data for minima, maxima and saddles.

#!/ bin / sh
WRITE DOCUMENTATION

The _Contour_Extrema_Vorticity . vtp f i l e s are run through the python s c r i p t
to

ex t r a c t the extremas o f each o f the three d i f f e r e n t types to one f i l e each .

The . vtp f i l e s used f o r t r a c i ng
VTUMAXIMA=../ Da t a f i l e s /∗_Maxima . vtu
VTUMINIMA=../ Da t a f i l e s /∗_Minima . vtu
VTUSADDLE=../ Da t a f i l e s /∗_Saddle . vtu
The l o c a t i o n o f the VTU f i l e combiner

WARNING: must be changed to f i t your system
CONVERTER2=./PythonScr ipts /VTUFormatPointDataCombiner . py

WARNING: must be changed to f i t your system

python $CONVERTER2 $VTUMAXIMA

python $CONVERTER2 $VTUMINIMA

python $CONVERTER2 $VTUSADDLE

149

A.5 Authors Software A APPENDIX

A.5.2 Python Scripts

This section provides all the Python scripts written for post processing. They have all been
written to be executed from a Linux terminal like a bash script.

ContourAndCriticalPoints.py : This script calculates the ωx = 0 contour and the
vorticity extrema.

#!/usr /bin /env python

#
##

Python Sc r i p t f o r e x t r a c t i n g the Q_x = 0 contour and v o r t i c i t y extrema
us ing us ing the paraview l i b r a r y (based on VTK) , from a . vtu f i l e .
The ext rac t ed data i s f i l t e r e d to only in c lude the s e t o f po in t s where the
magnitude o f the v o r t i c i t y i s l a r g e r then the to l e rance , t o l : abs (Q) > t o l
(s e t to be a t l e a s t 5 o rde r s o f magnitude lower then the max(abs (Q))) .
The determinat ion o f the extrema ' s i s performed us ing a contour method where
f i r s t the Q_x = 0 contour i s i n t e r p o l a t ed and then along t h i s contour the
Q_y = 0 contour i s i n t e r p o l a t e d .
#
The s c r i p t uses the argparse l i b r a r y to a l low input arguments .
#
Input Arguments :
Format : The format o f the output f i l e , must cu r r en t l y be : vtp
F i l e name : The name o f the f i l e which i s to be processed , i t s format must be
a paraview compatible . vtu
#
To change the d e f au l t t o l e r an c e (t o l = 0 .005) one must do so below .
#
Execution : . / ContourAndCrit ica lPoints . py Fi leToBeProcessed . vtu
#
The output i s :
1 : A . vtp f i l e conta in ing the Q_x = 0 contour .
2 : A . vtp f i l e conta in ing the extrema coord inate s , and the f i e l d
va lues i n t e r p o l a t e d at the extrema .
#
#

##

Written by : Rasmus E. Chr i s t i an s en
#

#
##

Package handl ing
import argparse # Allowing commandline arguments
import paraview # Paraview f u n c t i o n a l i t y
import paraview . s imple # Paraview f u n c t i o n a l i t y
from paraview . s imple import ∗ # Paraview f u n c t i o n a l i t y

! ! ! ! Input argument par s e r ! ! ! !
par s e r = argparse . ArgumentParser (d e s c r i p t i o n=' Process a . vtu f i l e f o r a

contour . ')
f i l e s to be proce s sed

150

A.5 Authors Software A APPENDIX

par s e r . add_argument (' format ' , type=str , nargs=1,
he lp=' the output format , opt ions : vtp ')

par s e r . add_argument (' f i l e s ' , metavar=' pfn ' , type=str , nargs='+' ,
he lp=' the f i l e that i s to be t r ea t ed ')

args = par s e r . parse_args ()
! ! ! ! Input argument par s e r ! ! ! !

! ! ! ! Reading the . vtu f i l e ! ! ! !
Reading the input f i l e i n to the paraview data reader
InputData = XMLUnstructuredGridReader (FileName=args . f i l e s)
Set t i ng the data names
InputData . PointArrayStatus = ['u ' , ' v ' , ' p ' , 'Qz ' , 'Qz_x ' , 'Qz_y ' ,

'Qz_x_x ' , 'Qz_x_y ' , 'Qz_y_x ' , 'Qz_y_y ']
InputData . Ce l lArrayStatus = []
! ! ! ! Reading the . vtu f i l e ! ! ! !

! ! ! ! S e t t i ng t o l e r an c e s f o r data re f inement ! ! ! !
Current t o l e r an c e f o r when the v o r t i c i t y i s to smal l to con s id e r
t o l = 0 . 0 005 ;
Current maximum fo r the v o r t i c i t y
Max_Qz = 10000 ;
! ! ! ! S e t t i ng t o l e r an c e s f o r data re f inement ! ! ! !

! ! ! ! Performing the c a l c u l a t i o n and p r i n t i n g data ! ! ! !
Creat ing the Contour ob j e c t
Contour1 = Contour (PointMergeMethod="Uniform Binning ")
Ca l cu l a t ing the de s i r ed i s o s u r f a c e
Contour1 . PointMergeMethod = "Uniform Binning "
Contour1 . ContourBy = ['POINTS ' , 'Qz_x ']
Contour1 . I s o s u r f a c e s = [0 . 0]
UpdatePipe l ine () # Updating the p i p e l i n e to announce that Contour1 i s the re .

Creat ing an ob j e c t f o r e x t r a c t i n g the data where abs (Q) > t o l
Ex t ra c tSe l e c t i on1 = Ext ra c tSe l e c t i on ()
Def in ing the cond i t i on s under which the data should be ext rac t ed
se l ec t ion_source_1 = Thresho ldSe l e c t i onSource (Conta in ingCe l l s =0, Ins ideOut=0,

Thresholds=[-Max_Qz, - to l , to l , Max_Qz] , ArrayName='Qz ' , FieldType='POINT '
)

Extract ing the s e l e c t i o n and copying i t to the output paraview s t ru c tu r e
Ext ra c tSe l e c t i on1 . S e l e c t i o n = se lec t ion_source_1
Ext ra c tSe l e c t i on1 . PreserveTopology = 1
Threshold1 = Threshold ()
Threshold1 . S ca l a r s = ['POINTS ' , ' v tk In s idedne s s ']
Threshold1 . ThresholdRange = [0 . 0 , 1 . 0]
UpdatePipe l ine () # Updating the p i p e l i n e to announce that Threshold1 i s the re .

Outputting the r e s u l t i n g data in . vtp format
i f a rgs . format [0] == ' vtp ' :

f o r i in args . f i l e s :
FILENAME = i
FILENAME = FILENAME. r ep l a c e (' . vtu ' , ' _Filtered_Contour_QxZero_Vorticity . vtp

')
OUTPUT = open (FILENAME, "w+")
Creat ing a wr i t e r and wr i t i ng the de s i r ed data in . vtp format to the

output f i l e
wr i t e r = CreateWriter (FILENAME, Ext ra c tSe l e c t i on1)
wr i t e r . DataMode = 0
wr i t e r . W r i t e a l l t im e s t e p s a s f i l e s e r i e s = 1
wr i t e r . UpdatePipe l ine ()

151

A.5 Authors Software A APPENDIX

de l wr i t e r
OUTPUT. c l o s e ()

e l s e :
p r i n t 'You did not s p e c i f y a c o r r e c t output format : vtp '

Creat ing the Contour ob j e c t
Contour2 = Contour (PointMergeMethod="Uniform Binning ")
Ca l cu l a t ing the de s i r ed i s o s u r f a c e
Contour2 . PointMergeMethod = "Uniform Binning "
Contour2 . ContourBy = ['POINTS ' , 'Qz_y ']
Contour2 . I s o s u r f a c e s = [0 . 0]
UpdatePipe l ine () # Updating the p i p e l i n e to announce that Contour2 i s the re .

Outputting the r e s u l t i n g data in . vtp format
i f a rgs . format [0] == ' vtp ' :

f o r i in args . f i l e s :
FILENAME = i
FILENAME = FILENAME. r ep l a c e (' . vtu ' , ' _Extrema_Vorticity . vtp ')
OUTPUT = open (FILENAME, "w+")
Creat ing a wr i t e r and wr i t i ng the de s i r ed data in . vtp format to the

output f i l e
wr i t e r = CreateWriter (FILENAME, Contour2)
wr i t e r . DataMode = 0
wr i t e r . W r i t e a l l t im e s t e p s a s f i l e s e r i e s = 1
wr i t e r . UpdatePipe l ine ()
de l w r i t e r
OUTPUT. c l o s e ()

e l s e :
p r i n t 'You did not s p e c i f y a c o r r e c t output format : vtp '

CriticalPointIdentification.py : This script calculates the type of the critical points of
the vorticity ω.

#!/usr /bin /env python

##
Python s c r i p t f o r i d e n t i f y i n g and ex t r a c t i n g maxima , minima and sadd l epo in t s
f o r the c r i t i c a l po in t s o f the v o r t i c i t y in 2D. This i s done by con s i d e r i ng
the e i g enva lu e s o f the Hess ian matrix and u t i l i z i n g that
in 2D these may be c a l c u l a t ed a n a l y t i c a l l y with r e l a t i v e ease from :
#
Q = Vor t i c i t y
#
Hess ian = [Q_x_x , Q_x_y ; Q_y_x , Q_y_y]
#
Eigenva lues = 1/2 ∗ (Q_x_x + Q_y_y +/-
sq r t ((Q_x_x + Q_y_y) ^2 - 4∗(Q_x_x ∗ Q_y_y - Q_x_y ∗ Q_y_x))
#
Input parameters :
∗ format : The output format , cu r r en t l y only vtu
∗ f i l e s : The f i l e conta in ing the c r i t i c a l po in t s to be inve s t i aga t ed ,
. vtp format r equ i r ed .
#
Execution : . / C r i t i c a l P o i n t I d e n t i f i c a t i o n . py Fi leToBeProcessed . vtp

152

A.5 Authors Software A APPENDIX

#
Output :
∗ f i l e s : Three f i l e s each conta in ing c r i t i c a l po in t s o f a s p e c i f i c type ,
types are : Maximum, Minimum , Saddle .
#
#
##
Written by : Rasmus E. Chr i s t i an s en
##

Package handl ing
import argparse # Allowing commandline arguments
import paraview # Paraview f u n c t i o n a l i t y
import paraview . s imple # Paraview f u n c t i o n a l i t y
from paraview . s imple import ∗ # Paraview f u n c t i o n a l i t y

! ! ! ! Input argument par s e r ! ! ! !
par s e r = argparse . ArgumentParser (d e s c r i p t i o n=' Process a . vtp f i l e conta in ing

c r i t i c a l po in t s f o r v o r t i c i t y to determine the c r i t i c a l po in t s type . ')
f i l e s to be proce s sed
par s e r . add_argument (' format ' , type=str , nargs=1,

he lp=' the output format , opt ions : vtu ')
par s e r . add_argument (' f i l e s ' , metavar=' pfn ' , type=str , nargs='+' ,

he lp=' the f i l e that i s to be t r ea t ed ')
args = par s e r . parse_args ()
! ! ! ! Input argument par s e r ! ! ! !

! ! ! ! Reading the . vtp f i l e ! ! ! !
InputData = XMLPolyDataReader (FileName=args . f i l e s)
InputData = GetActiveSource ()
InputData . PointArrayStatus = ['u ' , ' v ' , ' p ' , 'Qz ' , 'Qz_x ' , 'Qz_y ' ,

'Qz_x_x ' , 'Qz_x_y ' , 'Qz_y_x ' , 'Qz_y_y ']
InputData . Ce l lArrayStatus = []
! ! ! ! Reading the . vtp f i l e ! ! ! !

! ! ! ! Performing the c a l c u l a t i o n and p r i n t i n g data ! ! ! !

Ca l cu l a t ing the double the value o f one o f the Eigenva lues f o r the Hess ian
matrix f o r the v o r t i c i t y at each c r i t i c a l po int
Ca l cu la to r1 = Ca lcu la to r ()
Ca l cu la to r1 . AttributeMode = ' point_data '
Ca l cu la to r1 . Function = 'Qz_x_x + Qz_y_y + sq r t ((Qz_x_x + Qz_y_y) ^2 - 4∗(Qz_x_x

∗ Qz_y_y - Qz_x_y ∗ Qz_y_x)) '
Ca l cu la to r1 . ResultArrayName = ' EigenValueTimes2 '

Ca l cu l a t ing the vaule o f the product o f the two e i g enva lu e s f o r the Hess ian
matrix f o r the v o r t i c i t y at each c r i t i v a l po int
Ca l cu la to r2 = Ca lcu la to r ()
Ca l cu la to r2 . AttributeMode = ' point_data '
Ca l cu la to r2 . Function = 'Qz_x_x ∗ Qz_y_y - Qz_x_y ∗ Qz_y_x '
Ca l cu la to r2 . ResultArrayName = ' EigenValuesProduct '

Extract ing the c r i t i c a l po in t s which are maxima or minima
Ext ra c tSe l e c t i on2 = Ext ra c tSe l e c t i on ()
se l ect ion_source_4780 = Thresho ldSe l e c t i onSource (Conta in ingCe l l s =0, Ins ideOut

=0, Thresholds=[1 e - 08 , 1 e10] , ArrayName=' EigenValuesProduct ' , FieldType='
POINT ')

Ext ra c tSe l e c t i on2 . S e l e c t i o n = se lect ion_source_4780

153

A.5 Authors Software A APPENDIX

Extract ing the c r i t i c a l po in t s which are minima
Ext ra c tSe l e c t i on3 = Ext ra c tSe l e c t i on ()
se l ect ion_source_4896 = Thresho ldSe l e c t i onSource (Conta in ingCe l l s =0, Ins ideOut

=0, Thresholds=[1 e - 08 , 1 e10] , ArrayName=' EigenValueTimes2 ' , FieldType='
POINT ')

Ext ra c tSe l e c t i on3 . S e l e c t i o n = se lect ion_source_4896
UpdatePipe l ine ()

Outputting data f o r the c r i t i c a l po in t s which are minima in . vtp format
i f a rgs . format [0] == ' vtu ' :

f o r i in args . f i l e s :
FILENAME = i
FILENAME = FILENAME. r ep l a c e (' . vtp ' , '_Minima . vtu ')
OUTPUT = open (FILENAME, "w+")
MAKE MORE WRITERS TO WRITE DIFFERENT FORMATS
Creat ing a wr i t e r and wr i t i ng the de s i r ed data in . vtp format to the

output f i l e
wr i t e r = CreateWriter (FILENAME, Ext ra c tSe l e c t i on3)
wr i t e r . DataMode = 0
wr i t e r . UpdatePipe l ine ()
de l w r i t e r
OUTPUT. c l o s e ()

e l s e :
p r i n t 'You did not s p e c i f y a c o r r e c t output format : vtu '

Extract ing the c r i t i c a l po in t s which are maxima
SetAct iveSource (Ext ra c tSe l e c t i on2)
Ext ra c tSe l e c t i on4 = Ext ra c tSe l e c t i on ()
se l ect ion_source_5012 = Thresho ldSe l e c t i onSource (Conta in ingCe l l s =0, Ins ideOut

=0, Thresholds=[- 1e10 , - 1e - 08] , ArrayName=' EigenValueTimes2 ' , FieldType='
POINT ')

Ext ra c tSe l e c t i on4 . S e l e c t i o n = se lect ion_source_5012
UpdatePipe l ine ()

i f a rgs . format [0] == ' vtu ' :
f o r i in args . f i l e s :
FILENAME = i
FILENAME = FILENAME. r ep l a c e (' . vtp ' , '_Maxima . vtu ')
OUTPUT = open (FILENAME, "w+")
MAKE MORE WRITERS TO WRITE DIFFERENT FORMATS
Creat ing a wr i t e r and wr i t i ng the de s i r ed data in . vtp format to the

output f i l e
wr i t e r = CreateWriter (FILENAME, Ext ra c tSe l e c t i on4)
wr i t e r . DataMode = 0
wr i t e r . UpdatePipe l ine ()
de l w r i t e r
OUTPUT. c l o s e ()

e l s e :
p r i n t 'You did not s p e c i f y a c o r r e c t output format : vtu '

Extract ing the c r i t i c a l po in t s which are sadd l e s
SetAct iveSource (Ca l cu la to r2)
Ext ra c tSe l e c t i on6 = Ext ra c tSe l e c t i on ()
se l ect ion_source_5244 = Thresho ldSe l e c t i onSource (Conta in ingCe l l s =0, Ins ideOut

=0, Thresholds=[- 1e10 , - 1e - 08] , ArrayName=' EigenValuesProduct ' , FieldType='
POINT ')

Ext ra c tSe l e c t i on6 . S e l e c t i o n = se lect ion_source_5244

154

A.5 Authors Software A APPENDIX

UpdatePipe l ine ()

i f a rgs . format [0] == ' vtu ' :
f o r i in args . f i l e s :
FILENAME = i
FILENAME = FILENAME. r ep l a c e (' . vtp ' , ' _Saddle . vtu ')
OUTPUT = open (FILENAME, "w+")
MAKE MORE WRITERS TO WRITE DIFFERENT FORMATS
Creat ing a wr i t e r and wr i t i ng the de s i r ed data in . vtp format to the

output f i l e
wr i t e r = CreateWriter (FILENAME, Ext ra c tSe l e c t i on6)
wr i t e r . DataMode = 0
wr i t e r . UpdatePipe l ine ()
de l w r i t e r
OUTPUT. c l o s e ()

e l s e :
p r i n t 'You did not s p e c i f y a c o r r e c t output format : vtu '

! ! ! ! Performing the c a l c u l a t i o n and p r i n t i n g data ! ! ! !

VTUFormatPointDataCombiner.py : This script takes a batch of .vtu files containing
vorticity maxima, minima or saddle point information and combines the data stored there
to a single file.

#!/usr /bin /env python

##
Python s c r i p t which takes a s e t o f . vtu f i l e s (paraview format) and

combines
a l l f i e l d and coord ina te in fo rmat ion to a s i n g l e . vtu f i l e .
##
The purpose o f t h i s program i s to v i s u a l i s e the pa th l i n e s o f the c r i t i c a l
po in t s f o r the v o r t i c i t y : grad (w) = 0 .
##
In add i t i on to the combination o f the . vtu f i l e s
an extra " f i e l d " i s introduced which keeps t rack o f what po in t s and
correspond ing f i e l d - in fo rmat ion belonged to what input f i l e
##
Input :
∗ F i l e s : A bacth o f . vtu f i l e s (wr i t t en ∗ . vtu) to be combined to a s i n g l e .

vtu f i l e
##
Execution : . / VTUFormatPointDataCombiner . py ∗ . vtu
##
Output :
∗ F i l e : A s i n g l e . vtu f i l e conta in ing a l l in fo rmat ion from the input f i l e s
##
###
Written by : Rasmus E. Chr i s t i an s en
###

Package handl ing
import argparse # Allowing commandline arguments
import xml . e t r e e . ElementTree as ET # Python XML- handl ing package
import copy # Used to c r e a t e a copy o f the XML format used in the input f i l e s

155

A.5 Authors Software A APPENDIX

from array import array

! ! ! ! Input argument par s e r ! ! ! !
par s e r = argparse . ArgumentParser (d e s c r i p t i o n=' Concatanates the in fo rmat ion

s to r ed in a s e t o f . vtu f i l e s . ')
f i l e s to be proce s sed
par s e r . add_argument (' f i l e s ' , metavar=' pfn ' , type=str , nargs='+' ,

he lp=' the f i l e s that are to be t r ea t ed ')
args = par s e r . parse_args ()
! ! ! ! Input argument par s e r ! ! ! !

! ! ! ! In format ion needed to c r ea t e output . vtp (XML) ! ! ! !
NumberOfFiles = len (args . f i l e s)
NumberOfPoints = 0 ;
OUTPUT_TEXT = [] ;
OUTPUT_NAME = [] ;
! ! ! ! In format ion needed to c r ea t e output . vtp (XML) ! ! ! !

! ! ! ! Using the f i r s t input f i l e to c r e a t e XML s t ru c tu r e f o r output ! ! ! !
OUTPUT_TREE = copy . deepcopy (ET. parse (args . f i l e s [0]))
OUTPUT_ROOT = OUTPUT_TREE. ge t roo t ()

f o r ITERATE in OUTPUT_ROOT. i t e r (' DataArray ') : # Clear ing Data Arrays
ITERATE. text = ' '
OUTPUT_TEXT. append ([' '])
OUTPUT_NAME. append (ITERATE. get ('Name '))

! ! ! ! Using the f i r s t input f i l e to c r e a t e XML s t ru c tu r e f o r output ! ! ! !

! ! ! ! I t e r a t i n g over the input f i l e s ! ! ! !
f o r F i l e in args . f i l e s :
Pars ing the cur rent . vtp f i l e to the ElementTree handler
t r e e = ET. parse (F i l e)
root = t r e e . g e t r oo t ()

Find the number o f po in t s in the pre sent f i l e
f o r ITERATE_1 in root . i t e r (' Piece ') :

NumberOfPoints = NumberOfPoints + in t (ITERATE_1. get (' NumberOfPoints '))

I t e r a t i n g over a l l data
f o r idx ,ITERATE_2 in enumerate (root . i t e r (' DataArray ')) :
OUTPUT_TEXT[idx] [0] = OUTPUT_TEXT[idx] [0] + ITERATE_2. t ex t . r ep l a c e (' \n

' , ' ') . r e p l a c e (' ' , ' ')

! ! ! ! I t e r a t i n g over the input f i l e s ! ! ! !

! ! ! ! Creat ing conne c t i v i t y and o f f s e t a r rays ! ! ! !
CONNECT_OFFSET_TYPES = [' ' , ' ' , ' ']
f o r f in range (NumberOfPoints) :
CONNECT_OFFSET_TYPES[0] = CONNECT_OFFSET_TYPES[0] + ' ' + s t r (f)

f o r f in range (1 , NumberOfPoints+1) :
CONNECT_OFFSET_TYPES[1] = CONNECT_OFFSET_TYPES[1] + ' ' + s t r (f)

f o r f in range (1 , NumberOfPoints+1) :
CONNECT_OFFSET_TYPES[2] = CONNECT_OFFSET_TYPES[2] + ' ' + ' 1 '

! ! ! ! Creat ing conne c t i v i t y and o f f s e t a r rays ! ! ! !

! ! ! ! F i l l i n g the output . vtp (xml) ! ! ! !
Copying the gathered data
f o r idx ,ITERATE in enumerate (OUTPUT_ROOT. i t e r (' DataArray ')) :
INDEX_OF_DATA = OUTPUT_NAME. index (ITERATE. get ('Name '))

156

A.5 Authors Software A APPENDIX

ITERATE. text = OUTPUT_TEXT[INDEX_OF_DATA] [0]

Correc t ing the c onne c t i v i t y and o f f s e t a r rays
f o r ITERATE in OUTPUT_ROOT. i t e r (' C e l l s ') :

f o r idx ,ITERATE_2 in enumerate (ITERATE. i t e r (' DataArray ')) :
ITERATE_2. t ex t = s t r (CONNECT_OFFSET_TYPES[idx])

Set t i ng the c o r r e c t number o f po int data
f o r ITERATE in OUTPUT_ROOT. i t e r (' Piece ') :

ITERATE. s e t (' NumberOfPoints ' , s t r (NumberOfPoints))
ITERATE. s e t (' NumberOfCells ' , s t r (NumberOfPoints))

! ! ! ! F i l l i n g the output . vtp (xml) ! ! ! !

! ! ! ! Writing output . vtu (xml) f i l e ! ! ! !
FILENAME = args . f i l e s [0]
FILENAME = FILENAME. r ep l a c e (' . vtu ' , '_Trace . vtu ')
OUTPUT_FILE = open (FILENAME, 'w+')
OUTPUT_TREE. wr i t e (FILENAME)
OUTPUT_FILE. c l o s e ()
! ! ! ! Writing output . vtu (xml) f i l e ! ! ! !

A.5.3 C++ Program

This section contains the source code for the C++ program DomainCropper.
The program utilises the C++ project TinyXML35, and must be compiled with it. A
sample Makefile to compile the program is provided below as well.

DomainCropper.cpp : The C++ source code for the domain cropper.

//
//

//
// F i l e : DomainCropper . cpp
//
// Desc r ip t i on : U t i l i t y f o r cropping a s imu la t i on domain used in the s p e c t r a l
// element s o l v e r Nektar++ AFTER the data has been converted to
// the . vtu (XML) format (used by paraview) to remove reduntant
// par t s o f the domain in the post p ro c e s s i ng phase .
//
// The data i s returned in . vtu (XML) format with only the
// redundant e lements removed .
//
// The t oo l removes a l l e lements with no nodes with in the domain
// o f i n t e r e s t provided as input as three i n t e r v a l s :
// x \ in [x_start , x_stop]
// y \ in [y_start , y_stop]
// z \ in [z_start , z_stop]
//
//

35The project may currently be downloaded from http://sourceforge.net/projects/tinyxml/

157

http://sourceforge.net/projects/tinyxml/

A.5 Authors Software A APPENDIX

// Written by : Rasmus E. Chr i s t i an s en
//
//

//

#inc lude " tinyxml . h "
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <iostream>
#inc lude <s t r i ng>
#inc lude <sstream>
#inc lude <algor ithm>
#inc lude <i t e r a t o r >
#inc lude <vector>

us ing namespace std ;

// Copy s t r i n g to double array
void stofaNEW (s t r i n g STR, i n t NumPoints , double ∗ TempArray) {

vector<s t r i ng> TOK;
i s t r i n g s t r e am i s s (STR) ;

copy (i s t r eam_ite ra to r<s t r i ng >(i s s) ,
i s t r eam_ite ra to r<s t r i ng >() ,
back_inserter<vector<s t r i ng> >(TOK)) ;

f o r (i n t i = 0 ; i < 3∗NumPoints ; ++i)
{

TempArray [i] = a to f (TOK. at (i) . data ()) ;
}

}

// I d e n t i f i e s the maximum in an array o f doubles
void max_finder (double ∗ double_array , double ∗ max_values , i n t dim , i n t

NumPoints)
{

f o r (i n t i = 0 ; i < dim ; ++i)
{

max_values [i] = double_array [i] ;
f o r (i n t j = 0 ; j < NumPoints ; ++j)
{

i f (double_array [j ∗dim + i] > max_values [i])
max_values [i] = double_array [j ∗dim + i] ;

}
}

}

// I d e n t i f i e s the minimum in an array o f doubles
void min_finder (double ∗ double_array , double ∗ min_values , i n t dim , i n t

NumPoints)
{

f o r (i n t i = 0 ; i < dim ; ++i)
{

min_values [i] = double_array [i] ;
f o r (i n t j = 0 ; j < NumPoints ; ++j)
{

i f (double_array [j ∗dim + i] < min_values [i])
min_values [i] = double_array [j ∗dim + i] ;

}
}

158

A.5 Authors Software A APPENDIX

}

i n t main (i n t argc , char ∗ argv [])
{

// Checking that the c o r r e c t number o f input arguments are passed
i f (argc != 8)
{

p r i n t f ("You must pass the f o l l ow i n g arguments : \n ") ;
p r i n t f (" input . vtu x_start x_stop y_start y_stop z_start z_stop \n") ;
r e turn 0 ;

}

// Reading in the de s i r ed cropped domain s i z e
double CroppedDomainSize [2] [3] ;
f o r (i n t i = 0 ; i < 3 ; ++i)
{

CroppedDomainSize [0] [i] = a to f (argv [2 + 2∗ i]) ;
CroppedDomainSize [1] [i] = a to f (argv [3 + 2∗ i]) ;

}

// Reading the input XML- f i l e
TiXmlDocument DocIn (argv [1]) ;
DocIn . LoadFi le () ;

// Creat ing a handle f o r the XML- f i l e
TiXmlHandle hDoc(&DocIn) ;
TiXmlElement ∗pElem ;

// Storage f o r i t e r a t i o n over the e lements
i n t NumPoints ; i n t dim = 3 ;
s t r i n g ElementData ; i n t CopyPiece = 0 ;
double ∗ max_values = new double [3] ;
double ∗ min_values = new double [3] ;

// Objects needed to output the f i n a l TiXml Document //
TiXmlDocument DocOut ;
TiXmlNode∗ OutputPieces ;

// Writing the i n i t i a l par t s o f the XML (. vtu) f i l e
TiXmlDeclaration ∗ dec l = new TiXmlDeclaration (" 1 . 0 " , " " , " ") ;
DocOut . LinkEndChild (dec l) ;

TiXmlElement∗ In i t i a lE l ement1 = new TiXmlElement ("VTKFile ") ;
I n i t i a lE l ement1 ->SetAtt r ibute (" type " , " UnstructuredGrid ") ;
I n i t i a lE l ement1 ->SetAtt r ibute (" v e r s i on " , " 0 . 1 ") ;
I n i t i a lE l ement1 ->SetAtt r ibute (" byte_order " , " L i t t l eEnd ian ") ;
DocOut . LinkEndChild (In i t i a lE l ement1) ;

TiXmlElement∗ In i t i a lE l ement2 = new TiXmlElement (" UnstructuredGrid ") ;
I n i t i a lE l ement1 ->LinkEndChild (In i t i a lE l ement2) ;

// Looping over a l l e lements (named Piece ' s in the XML) in the FEM- gr id .
// Plac ing the handle f o r the p i e c e s j u s t i n s i d e <UnstructuredGrid>
// i . e . WE ARE NOW AT: pElem ->Value () = Piece
pElem = hDoc . FirstChi ldElement () . F i r s tCh i l d () . F i r s tCh i l d () . ToElement () ;

TiXmlNode∗ Cloned ;

// In i t i a lE l ement1 ->LinkEndChild (Cloned) ;
whi l e (pElem)

159

A.5 Authors Software A APPENDIX

{

// I d e n t i f y i n g the number o f po in t s o f the f i r s t element
NumPoints = a t o i (pElem ->Attr ibute (" NumberOfPoints ")) ;

// Extract ing the Element coord ina te data
ElementData = pElem ->FirstChi ldElement () ->FirstChi ldElement () ->GetText () ;

double ∗ TempArray = new double [3∗NumPoints] ;

stofaNEW (ElementData , NumPoints , TempArray) ;
max_finder (TempArray , max_values , dim , NumPoints) ;
min_finder (TempArray , min_values , dim , NumPoints) ;

f o r (i n t i = 0 ; i < dim ; ++i)
{

i f (max_values [i] ≤ CroppedDomainSize [0] [i] | |
min_values [i] ≥ CroppedDomainSize [1] [i]) {

}
e l s e
{

CopyPiece += 1 ;
}

}
i f (CopyPiece == dim) {

Cloned = pElem ->Clone () ;
I n i t i a lE l ement2 ->LinkEndChild (Cloned) ;

}
CopyPiece = 0 ;

// Switching to the next element (Piece)
pElem = pElem ->NextSibl ingElement () ;
// c l e a r i n g the temporary array
d e l e t e [] TempArray ;

}

// Saving the new XML to the output f i l e
s t r i n g Temp = argv [1] ;
s t r i n g OutputName = Temp. subs t r (0 , Temp. s i z e ()) ;
OutputName . append (" _cropped . vtu ") ;
FILE∗ OutputFile ;
OutputFile = fopen (OutputName . c_str () , "w") ;

DocOut . SaveFi l e (OutputFile) ;

f c l o s e (OutputFile) ;
}

Makefile : Sample Makefile for compiling the program.

Var iab l e s
CC=g++

TINYXML_CFILES=tinyxml . cpp t inyxmlparser . cpp t inyxmle r ro r . cpp t i n y s t r . cpp

160

A.5 Authors Software A APPENDIX

Targets f o r compi la t ion
a l l :

$ (CC) $ (TINYXML_CFILES) DomainCropper . cpp - o DomainCropper
c l ean :

rm - r f ∗o DomainCropper

A.5.4 FEniCS Poisson Solver

A minimal python script for the FEniCS Poisson equation solver.

" " "
Python s c r i p t f o r a FEniCS based SEM so l v e r :

Poisson equat ion i s so lved with D i r i c h l e t c ond i t i on s :
Equation : - Laplace (u) = f on the un i t square .
BC: u = u0 on the boundary .
IC : u0 = u = s in (5∗ p i ∗x) ∗ s i n (5∗ p i ∗y) ,
Forc ing : f = 50∗ p i ∗ p i ∗ s i n (5∗ p i ∗x) ∗ s i n (5∗ p i ∗y) .
" " "

Importing FEniCS and Python l i b r a r i e s
from do l f i n import ∗
import numpy as np

PI = np . p i
Order = 4 ;
N_elements = 100 ;
Create mesh and de f i n e nodal func t i on space
mesh = UnitSquareMesh (N_elements , N_elements)
V = FunctionSpace (mesh , ' Lagrange ' , Order)

Def ine boundary cond i t i on s
u0 = Express ion (' (s i n (w∗x [0]) ∗ s i n (w∗x [1])) ' ,w=5∗PI)
de f u0_boundary (x , on_boundary) :

r e turn on_boundary
bc = Dir ichletBC (V, u0 , u0_boundary)

Def ine v a r i a t i o n a l problem
u = Tria lFunct ion (V)
v = TestFunction (V)
f = Express ion (' 2∗w∗w∗ s i n (w∗x [0]) ∗ s i n (w∗x [1]) ' ,w=5∗PI)
a = inner (nabla_grad (u) , nabla_grad (v)) ∗dx
L = f ∗v∗dx

Compute s o l u t i o n
u = Function (V)
s o l v e (a == L , u , bc)

Ca l cu l a t ing the L2 - norm e r r o r
E = errornorm (u0 , u , norm_type=" l 2 " , degree_r i s e=1)
Error . append (E)

p r in t Error

161

A.5 Authors Software A APPENDIX

A.5.5 MATLAB Implementation of the SCM

Below follows the MATLAB functions needed to apply the Stochastic Collocation Method to
data obtained for a model problem which depend on a uniformly and normally distributed
underlying random variable. Using these functions it is relatively straight forward to write
a script for applying the method to data obtained from a set of deterministic simulations.
A very basic example script is supplied at the end of the appendix.

PnG: Function for evaluating a gPC expansion at a desired set of points x.

f u n c t i o n [PnG] = PnG(type , t i lde_g , x , ab)
%%
%
% Evaluat ion o f polynomial expansion P [g] at the p o i n t s x f o r a f u n c t i o n
% g given by a sequence o f expansion c o e f f i c i e n t s f o r g => t i l d e _ g
%
% Input :
% type [s c a l a r] : type o f polynomial expansion used based on PDF:
% 1 : Uniform PDF: Legendre p o l y n o m i a l s
% 2 : Gaussian PDF: Hermite p o l y n o m i a l s
% t i l d e _ g [v e c t o r] : expansion c o e f f i c i e n t s f o r g c a l c u l a t e d based on PDF o f
% u n d e r l y i n g random v a r i a b l e .
% x [v e c t o r] : a s e t o f p o i n t s on which P [g] i s e v a l u a t e d
% ab [v e c t o r] :
% - Uniform : s t a r t and end p o i n t f o r the i n t e r v a l from which x was chosen
% - Normal : ab (1) = mean , ab (2) = standard d i v i a t i o n
%
% Output :
% PnG [v e c t o r] : The e v a l u a t i o n o f P [g] at the p o i n t s x .
%
% Written by : Rasmus E . C h r i s t i a n s e n
% Date : 15/03/2013
%
%%

% Evaluat ing the expansion p o l y n o m i a l s
Pn = z e r o s (l e n g t h (x) , l e n g t h (t i l d e _ g)) ;
i f (type == 1) % Legendre p o l y n o m i a l s

% t r a n s f o r m i n g x to the standard d e f i n t i o n i n t e r v a l [- 1 , 1]
x_trans = (2 ∗ x - (ab (1) + ab (2))) / (ab (2) - ab (1)) ;

f o r i = 1 : l e n g t h (t i l d e _ g)
Pn (: , i) = LegendreP_UnNormalized (x_trans , i - 1) ;

end
e l s e i f (type == 2) % Hermite p o l y n o m i a l s

% Transforming x to f i t the standard d i s t r i b u t i o n N(0 , 1)
x_trans = (x - ab (1)) /ab (2) ;

f o r i = 1 : l e n g t h (t i l d e _ g)
Pn (: , i) = HermiteP_UnNormalized (x_trans , i - 1) ;

end
e l s e % Not d e f i n e d

e r r o r (' Use ony 1 : Legendre , 2 : Hermite ') ;
end

% C a l c u l a t i n g the expansion
PnG = Pn∗ t i l d e _ g (:) ;

end

PnG_Coefs: Function for evaluating the expansion coefficients of a gPC expansion using
the interpolation approach PN,D[g](Xj) = g(Xj).

f u n c t i o n [t i l d e _ g] = PnG_Coefs (type , gX)
%%

162

A.5 Authors Software A APPENDIX

%
% Using the i n t e r p o l a t i o n approach
%
% Evaluat ion the expansion c o e f f i c i e n t s t i l d e _ g f o r the polynomial expansion
% P [g] o f g based on the value o f g at the c o l l o c a t i o n p o i n t s x determined
% by the PDF f o r the q u a n t i t y X.
%
% Input :
% type [s c a l a r] : type o f polynomial expansion used based on PDF:
% 1 : Uniform PDF: Legendre p o l y n o m i a l s
% 2 : Gaussian PDF: Hermite p o l y n o m i a l s
% gX [v e c t o r] : va lue o f g at the c o l l o c a t i o n p o i n t s
%
% Output :
% t i l d e _ g [v e c t o r] : expansion c o e f f i c i e n t s f o r g c a l c u l a t e d based on PDF o f
% u n d e r l y i n g random v a r i a b l e .
%
%
% Written by : Rasmus E . C h r i s t i a n s e n
% Date : 15/03/2013
%
%%

% Evaluat ing the expansion p o l y n o m i a l s c r e a t i n g a vandermonde l i k e matrix
VPn = z e r o s (l e n g t h (gX) , l e n g t h (gX)) ;

% Determining type o f expansion
i f (type == 1) % Legendre p o l y n o m i a l s

% C o l l o c a t i o n p o i n t s
x = JacobiGQ (0 , 0 , l e n g t h (gX) - 1) ;
% Creat ing the Vandermonde - l i k e matrix
f o r i = 1 : l e n g t h (gX)

VPn (: , i) = LegendreP_UnNormalized (x , i - 1) ;
end

e l s e i f (type == 2) % Hermite p o l y n o m i a l s
% C o l l o c a t i o n p o i n t s
% i n t e g r a l o f weight f u n c t i o n f o r normal d i s t r i b u t i o n
mu0 = 1 ;
% 3 - s t e p R e c u r s s i o n R e l a t i o n A' s and B' s .
B = z e r o s (l e n g t h (gX) , 1) ;
A = l i n s p a c e (1 , l e n g t h (gX) , l e n g t h (gX)) ;
% C a l c u l a t i n g the nodes
x = GeneralGaussianQuadrature (A, B, mu0) ;
% Creat ing the Vandermonde - l i k e matrix
f o r i = 1 : l e n g t h (gX)

VPn (: , i) = HermiteP_UnNormalized (x , i - 1) ;
end

e l s e % Not d e f i n e d
e r r o r (' Use only 1 : Legendre , 2 : Hermite ') ;

end

% C a l c u l a t i n g the expansion c o e f f i c i e n t s
t i l d e _ g = VPn \ gX ;

end

LegendreP_UnNormalized: The function evaluates and returns the Nth Legendre
polynomial at the points x along with the associated normalization factor gN .

f u n c t i o n [L , g] = LegendreP_UnNormalized (x ,N)
%%
%
% D e s c r i p t i o n :
% Function which e v a l u a t e s the n ' th o r d e r Un- normal i sed Legendre
% Polynomial at the p o i n t s s u p p l i e d i n the v e c t o r x , based on a
% t h r e e term r e c u r s i o n f o r m u l a r .
%
% Input :
% x [v e c t o r] : Evaluat ion p o i n t s
% N [s c a l a r] : Order
%
% Output :
% L [v e c t o r] : the value o f the Polynomial i n the g r i d p o i n t s x .
% g [s c a l a r] : the n o r m a l i z a t i o n f a c t o r o f the Polynomial .
%
% Written by : Rasmus E . C h r i s t i a n s e n
%
%%

% Assures that the p o i n t s ar e s t o r e d as a row v e c t o r
x=x (:) ;

PL = z e r o s (l e n g t h (x) ,N+1) ;

163

A.5 Authors Software A APPENDIX

% I n i t i a l v a l u e s P_0(x) and P_1(x)
PL (: , 1) = 1 . 0 ;
PL (: , 2) = x ;

% Forward r e c u r r e n c e u s i n g the symmetry o f the r e c u r r e n c e
f o r i =1:N- 1

PL (: , i +2) = (2∗ i + 1) /(i +1) ∗ x . ∗ PL (: , i +1) - i /(i +1) ∗ PL (: , i) ;
end

L = PL (: ,N+1) ;
g = 2/(2∗N+1) ;

HermiteP_UnNormalized: The function evaluates and returns the Nth Hermite poly-
nomial at the points x along with the associated normalization factor gN .

f u n c t i o n [H, g] = HermiteP_UnNormalized (x ,N)
%%
%
% D e s c r i p t i o n :
% Function which e v a l u a t e s the n ' th o r d e r Un- normal i sed Hermite
% Polynomial at the p o i n t s s u p p l i e d i n the v e c t o r x , based on a
% t h r e e term r e c u r s i o n f o r m u l a r .
%
% Input :
% x [v e c t o r] : Evaluat ion p o i n t s
% N [s c a l a r] : Order
%
% Output :
% H [v e c t o r] : the value o f the Polynomial i n the g r i d p o i n t s x .
% g [s c a l a r] : the n o r m a l i z a t i o n f a c t o r o f the Polynomial .
%
% Written by : Rasmus E . C h r i s t i a n s e n
%
%%

% Assures that the p o i n t s ar e s t o r e d as a row v e c t o r
x=x (:) ;

PH = z e r o s (l e n g t h (x) ,N+1) ;

% I n i t i a l v a l u e s P_0(x) and P_1(x)
PH(: , 1) = 1 . 0 ;
PH(: , 2) = x ;

% Forward r e c u r r e n c e u s i n g the symmetry o f the r e c u r r e n c e
f o r i =1:N- 1

PH(: , i +2) = x . ∗ PH(: , i +1) - i ∗ PH(: , i) ;
end

H = PH(: ,N+1) ;
g = f a c t o r i a l (N) ;

JacobiGQ: Function which calculates the Gauss quadrature points x and associated
weights w of the Nth Jacobi polynomial J (α,β)

N . This function is taken directly from [14].

f u n c t i o n [x ,w] = JacobiGQ (alpha , beta ,N)

% f u n c t i o n [x ,w] = JacobiGQ (alpha , beta ,N)
% Purpose : Compute the N' th o r d e r Gauss quadrature points , x ,
% and weights , w, a s s o c i a t e d with the Jacobi
% polynomial , o f type (alpha , beta) > - 1 (<> - 0 . 5) .

i f (N==0) x (1)= - (alpha - beta) /(alpha+beta +2) ; w(1) = 2 ; r e t u r n ; end ;

% Form symmetric matrix from r e c u r r e n c e .
J = z e r o s (N+1) ;
h1 = 2 ∗ (0 :N)+alpha+beta ;
J = diag (- 1/2∗(alpha ^2 - beta ^2) . / (h1+2) . / h1) + . . .

d iag (2 . / (h1 (1 :N) +2) . ∗ s q r t ((1 :N) . ∗ ((1 :N)+alpha+beta) . ∗ . . .
((1 :N)+alpha) . ∗ ((1 :N)+beta) . / (h1 (1 :N) +1) . / (h1 (1 :N) +3)) , 1) ;

i f (alpha+beta <10∗ eps) J (1 , 1) =0.0; end ;
J = J + J ' ;

164

A.5 Authors Software A APPENDIX

%Compute quadrature by e i g e n v a l u e s o l v e
[V,D] = e i g (J) ; x = diag (D) ;
w = (V(1 , :) ') . ^ 2 ∗ 2 ^ (alpha+beta +1) /(alpha+beta +1)∗gamma(alpha +1) ∗ . . .

gamma(beta +1)/gamma(alpha+beta +1) ;
r e t u r n ;

GeneralGaussianQuadrature: Function implementing the Golub-Welsch algorithm, [21,
Section 4.6.2], for calculating Gaussian quadrature points x and associated weights w for
the class of orthogonal polynomials satisfying the three term recursion relation
pn+1(x) + (Bn − x)pn(x) +Anpn−1 = 0, n = {1, 2, ...}.

f u n c t i o n [nodes , weights] = GeneralGaussianQuadrature (A, B, mu0)
%%%
%
% Function f o r c a l c u l a t i n g g e n e r a l g a u s s i a n q u a d r a t u r e s .
% C a l c u l a t e s the nodes and weights to use f o r g a u s s i a n quadrature
% with the o r t h o g o n a l p o l y n o m i a l s which s a t i s f y the r e c u r s i o n
% r e l a t i o n :
%
% p_{n+1}(x) + (B_n - x) p_{n }(x) + A_n p_{n - 1} = 0 , n = 1 , 2 , . . .
%
%
% Input :
% A [v e c t o r] : C o e f f i c i e n t o f the polynomial p_{n - 1}
% Must be s o r t e d as [A_0, A_1 , . . . , A_{n - 1 }]
% B [v e c t o r] : C o e f f i c i e n t o f the polynomial p_n
% Must be s o r t e d as [B_0, B_1 , . . . , B_{n - 1 }]
% mu0 [s c a l a r] : I n t e g r a l o f the weight f u n c t i o n a s s o c i a t e d with the
% p o l y n o m i a l s
%
% Output :
% nodes [v e c t o r] :
% weights [v e c t o r] :
%
% Written by : Rasmus E . C h r i s t i a n s e n
%
%%%

%
n = l e n g t h (B) ;

% B u i l d i n g the matrix
M1 = diag (A(2 : end) , - 1) ;
M2 = diag (B, 0) ;
M3 = diag (ones (n - 1 , 1) , 1) ;
M = M1+M2+M3;

% Determining the e i g e n v a l u e s and v e c t o r s from which nodes and weights ar e
% found
[weights , nodes] = (e i g (M)) ;

% Extract the nodes
nodes = diag (nodes) ;
% S o r t i n g the nodes i n a s c e n d i n g o r d e r
[nodes , i d] = s o r t (nodes) ;

% C a l c u l a t i n g the weights
weights = mu0 ∗ weights (1 , :) . ^ 2 ;
% s o r t i n g the weights to correspond to the s o r t e d nodes
weights = weights (i d) ;

end

Example Script: A simple example of applying the SCM for calculating a gPC expansion
based on a uniformly distributed random variable. The mean and variance are also calculated
and results plottet.

%%
%
% S c r i p t : SCMexecution .
%
% D e s c r i p t i o n : A p p l i e s the S t o c h a s t i c C o l l o c a t i o n Method f o r u n c e r t a i n t y

165

A.5 Authors Software A APPENDIX

% q u a n t i f i c a t i o n based on a uniform d i s t r i b u i o t n .
% The r e s u l t i n g polynomial expansion along with i t s mean and mean p l u s
% and minus a standard d e v i a t i o n ar e p l o t t e t .
%
% Written by : Rasmus E . C h r i s t i a n s e n
% Date : 15/03/2013
%
%%

% I n i t i a l i z a t i o n
c l c
c l e a r a l l
c l o s e a l l

% Uncertain Quantity i n t e r v a l f o r uniform d i s t r i b u t i o n .
ab = [5 0 , 6 0 0] ;
% C o l l o c a t i o n p o i n t s
X = [7 5 . 8 0 0 5 ; 1 7 6 . 9 2 0 9 ; 3 2 5 ; 4 7 3 . 0 7 9 1 ; 5 7 4 . 1 9 9 5] ;
% Value o f g at X
gX = [0 . 9 9 0 8 8 ; 1 . 0 6 8 4 3 ; 1 . 1 8 0 3 5 8 ; 1 . 2 6 1 8 3 6 ; 1 . 2 9 8 4 1 2] ;

% C a l c u l a t i n g d i s c r e t e p r o j e c t i o n c o e f f i c i e n t s
t i l d e _ g = PnG_Coefs (1 , gX) ;

% C a l c u l a t i n g the needed n o r m a l i z a t i o n f a c t o r s : g_N = 2/(2∗N- 1)
gamma_k = 2 . / (2 ∗ (2 : 1 : l e n g t h (gX)) - 1) ' ;

% C a l c u l a t i n g mean and v a r i a n c e
mean = t i l d e _ g (1) ;
v a r i a n c e = sum(t i l d e _ g (2 : end) . ∗ t i l d e _ g (2 : end) . ∗gamma_k) ;

% P l o t s
x_eval = l i n s p a c e (5 0 , 6 0 0 , 1 0 0) ;
se mi l ogx (x_eval , PnG(1 , t i lde_g , x_eval , ab)) ;
hold on ;
se mi l ogx (X, gX , ' o ') ;
se mi l ogx (x_eval , mean∗ ones (l e n g t h (x_eval) , 1) , ' r ') ;
se mi l ogx (x_eval , (mean + s q r t (v a r i a n c e)) ∗ ones (l e n g t h (x_eval) , 1) , ' r - - ') ;
se mi l ogx (x_eval , (mean - s q r t (v a r i a n c e)) ∗ ones (l e n g t h (x_eval) , 1) , ' r - - ') ;

166

	Introduction
	Notation
	The Problem and Underlying Physics
	The Purpose
	The Model Problems
	Physics and Model Equations
	General Navier-Stokes Equation
	Incompressible Navier-Stokes Equation
	Mass Conservation
	Model Equations

	Physical Quantities
	A Vortex:

	Theory
	Dynamical Systems Theory
	Bifurcations
	Tools for Analysing Flow Topology

	Orthogonal Polynomials and Approximation Theory
	The Spectral Element Method
	Overview of the Method

	Uncertainty Quantification
	Statistical Quantities
	The Monte Carlo Approach
	generalized Polynomial Chaos
	Stochastic Collocation Approach

	Discretizing the Problem
	The Time Stepping Scheme
	The Discrete Domain

	Software
	Pre Processing
	Simulation
	Post Processing
	The Finished Simulation Package
	UQ Software

	Hardware

	Parallel Execution with MPI
	Simulations
	Visualization
	Critical Point Identification
	Validation Simulations
	Cylinder near the Moving Wall
	Uncertainty Quantification

	Validation
	Convergence
	Comparing Results
	Free Flow
	Cylinder Near Wall

	Death of the Transient Solution

	Analysis
	Initial Investigation for the Cylinder and Wall
	Stabilizing Effect of the Wall
	Different Critical Point Structures
	Downstream Surviving Vortices, Creation Points and Movement Patterns
	Vortex Strength Reduction

	Formation and Disappearance of Extrema-Saddle Pair
	Constant Re Bifurcation Diagrams

	Vortex Creation Point Jumping Downstream
	Uncertainty Quantification
	Cylinder in free flow
	Cylinder Near Moving Wall

	Method Limitation

	Conclusion and Future Work
	References
	Appendix
	Sample mesh used for simulations
	Nektar++ XML Extract
	The Nektar++ framework
	Installing Nektar++
	Navigating Nektar++
	Setting Up a Problem

	Validation of Nektar++
	Simple Domain Convergence Test
	Incompressible Navier-Stokes Solver

	Authors Software
	Shell Scripts
	Python Scripts
	C++ Program
	FEniCS Poisson Solver
	MATLAB Implementation of the SCM

