
An adaptive approach to mobile
sampling

Radu Călin Gătej

Supervisors:

Sune Lehmann
Jakob Eg Larsen
Piotr Sapieżyński

Kongens Lyngby 2013
IMM-M.Sc.-2013-80



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2013-80



Summary (English)

The increase in the number of hardware sensors that smartphones come equipped
with in the past several years has determined the emergence of a new area for
research and application development, called mobile sensing. Mobile sensing
applications make use of the different sensors that a smartphone packs, to de-
termine as much as possible about the context of a smartphone user. Location
can be determined from the GPS sensor, physical activity could be determined
from the accelerometer, or the presence of other users, using Bluetooth. Along
the multitude of other sensors built into a smartphone, information about the
user and his daily habits can be analyzed in order to help improve, for example,
the users health. By combining together data gathered this way from groups of
people and even entire communities, behavioral patterns for specific groups of
people or for humans in general can be studied.

The issue that mobile sensing applications face is the impact that they have on
the battery of a smartphone. Due to sampling a high number of sensors at the
same time, some of them more battery costly than others (Global Positioning
System sensor), the time in which data can be collected while the user mobile is
limited. To reduce battery depletion, mobile sensing applications usually make a
compromise by reducing the temporal resolution of sensor sampling. This thesis
proposes an improvement in both battery life and temporal resolution of the
data by using adaptive sampling, a technique which conditions sensor sampling
on the context of the user, rather then periodically sampling the sensors. The
solution is designed, implemented and tested to work with the SensibleDTU
project, which is a mobile sensing experiment that aims to study the mobility
and personal interaction of students at the Technical University of Denmark.
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The proposed solution intends to decrease the use of the GPS sensor for location
estimation, by using a local database of WiFi access points that have been
already mapped, as WiFi is a cheaper sensor than GPS battery-wise. GPS
scanning would thus be conditioned by the presence of such access points. The
mapping of WiFi access points is designed and implemented in this thesis by
combining WiFi and location data gathered over four months from 160 students.

The adaptive sampling scheme proposed in this project also adds the mobility
of the user as a condition for triggering the GPS, since location data is more
useful if the user changes his position.

Finally, efficiency of the implemented adaptive sampling scheme is evaluated in
terms of battery usage, temporal resolution and accuracy of data.



Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with the improvement of energy efficiency and sensor sampling
time resolution of a mobile application destined to be used in the mobile sensing
experiment SensibleDTU.

The thesis consists of an introduction to mobile sensing and the SensibleDTU
experiment (chapter 1), theoretical documentation and background on adaptive
sampling (chapter 2), the design of an adaptive sampling architecture for the
SensibleDTU experiment (chapter 3), the implementation of the adaptive sam-
pling scheme (chapter 4), testing using test cases suitable for the SensibleDTU
experiment (chapter 5), conclusions on the results of testing (chapter 6) and
future work on adaptive sampling in the SensibleDTU experiment (chapter 7).

Lyngby, 22-07-2013

Radu Călin Gătej
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Chapter 1

Introduction

1.1 Mobile sensing

Over the past several years, smartphones have developed an incredible amount of
processing power and complexity, which has enabled them to become essential in
daily life, as the main personal computing and communication devices. Along
with improvements in computing resources such as memory or CPU, smart-
phones have been equipped with more and more sensors such as the GPS, the
accelerometer, gyroscope, light sensors, which enables the devices to detect mul-
tiple parameters about the context of a user, such as location, physical activity
level, geographical orientation. This myriad of sensors, combined with central
role of the smartphone in everyday life, has created a new area for research and
application development known as mobile sensing [LML+10]. This concept has
found its way (very fast due to very accessible ways of developing and deploy-
ing of a mobile application) into many different areas of everyday life, such as
healthcare[CMT+08], transportation[TRL+09] or social networking[CenceMe].
Sensors such as the accelerometer can be used to track a person’s physical ac-
tivity and draw conclusions on his day to day health[CMT+08], or the location
sensor to provide crowd-sourced traffic information[TRL+09]. A very popular
application created by Google, Google Now, [Inc13], uses the location sensor and
social media information to show the user real-time traffic information about
routes detected by the application as frequented by the user.
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Nicholas et al. classify[LML+10] mobile sensing projects by their scale. Personal
mobile sensing refers to projects that focus on monitoring analyzing just the
individual, such as[CMT+08] which monitors a user’s personal health and gives
him feedback on how to improve it. Group mobile sensing refers to projects
that gather data from a group of test subjects such as the students from an
university[DTU12] or an entire community[RCK+10]. Results gathered from
group sensing can be used to discover patterns and draw conclusions on general
behavior of certain types of communities (students, city dwellers) or even on
behavior patterns of humans in general[SQBB10].

1.2 SensibleDTU

SensibleDTU is an ongoing experiment at the Technical University of Denmark.
The purpose of the experiment is to study the mobility and personal interaction
patterns of students inside and outside the campus. In order to achieve this,
smartphones have been handed out to 160 students, with a mobile sensing ap-
plication running in the background which gathers different phone sensor data
including accelerometer, Bluetooth, WiFi, GPS and others. The project has
been running since October 2012 and in September 2013 it intends to expand
the scale of the project to 1000 students, which should increase accuracy of the
conclusions drawn on the studied behaviors.

The SensibleDTU project, and mobile sensing in general, are confronted with
the issue of battery life. Having a set of sensor run frequently on the phone
can be quite costly in terms of energy, especially when needing high temporal
resolution of the data. If it also considered that students use the phones as their
main communication devices, therefore running different other applications in
addition to the experiment, then the battery life expectancy is not that high.
In tests performed so far, the battery lasts on average about 12 to 14 hours
(about a day). This is not sufficient in cases where students don’t arrive home
to charge their phones until late into the night (parties, late study sessions),
cases which would also be interesting to study, since it can reveal information
about student mobility. A higher temporal resolution of the location data is
also needed, since the current interval for retrieving locations is not performant
enough in cases where the user travels at a high speed or finds himself in places
that cannot be localized accurately by the GPS, such as indoor environments.
As will be explained in the upcoming section, both of these problems can be
addressed using adaptive sampling, a technique that schedules sensor sampling
based on events in the user context, rather then on periods of time.
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Adaptive sampling

One of the biggest challenge that mobile sensing applications face is the fast
depletion of battery due to frequent sampling of more sensors. One way of
reducing the impact on battery life is to simply increase the time interval in
which a sensor is sampled based on how expensive energy-wise the respective
sensor is. The result would therefore be a set of sensors which are sampled at
a certain time interval based on their impact on batter life. This technique is
known as sensor duty-cycling and it is the simplest way of performing mobile
sensing. The disadvantage of this technique, however, is the fact that a tradeoff
between resolution and energy depletion has to be done when establishing the
sampling period. In the case of sensors that need a lot of energy, such as the
GPS, the end result would be a time interval that provides neither the best
resolution nor the best energy saving. As will be argued in the next section, a
possible solution to this problem would be changing the sampling interval "on
the fly" in order to better suit both issues.

2.1 What is adaptive sampling?

Adaptive sampling basically means dynamically changing the sampling interval
of a sensor based on on certain triggering conditions. It can be classified in two
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types:

1. Sampling triggered by other sensors, where how frequent data is
retrieved from one sensor, or even retrieved at all, depends on the output
of another sensor (e.g. waiting for input from the accelerometer about
movement before starting up the GPS).

2. Sampling triggered by a sensor’s own output, where the sampling
interval period is dynamically adjusted based on previously retrieved data
of the same sensor. The sampling frequency increases or decreases based on
how "useful" the previously recorded data has been(determined by a clas-
sifier), and the speed with which the interval is modified is usually based
on certain function(linear, exponential, etc). As an example, the sampling
frequency of the WiFi would decrease when a classifier would detect little
or no change in the access points detected in previously recorded samples,
and increase when the detected access points vary with each subsequent
scan.

The benefits of adaptive sampling for battery saving consist in the fact that
energy is only used when useful data is available. As an example of useful and
not useful data, let there be the case of deciding how often to sample the GPS
sensor, one of the most expensive sensors on a mobile phone. It would not make
sense to continue to sample the GPS at the same high rate if, say, two or three
consecutive estimations would show that the user is approximately in the same
location. Similarly, when sampling the WiFi sensor, no detected access points
or no change detected in the access points over the course of a few samples
would mean that the sampling rate should go down, while more access points
detected would mean an increase in the sampling rate. This way, energy can be
spent on data that is really important, thus increasing the size of data that is
useful for research. As proof of the effect of adaptive sampling on battery life,
some previous experiments that made use of this method will be presented in
the following section.

2.2 Related work

The various adaptive sampling techniques used in mobile sensing that will be
presented have been used in experiments for determining the energy saving and
as opposed to a basic form of duty cycling (even though all of them contain duty
cycling in one way or another). The previous classification of adaptive sampling
will be also used in grouping the existing methods.
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2.2.1 Experiments using inter sensor sampling triggering

One of the most elaborate schemes of adaptive sampling employing this tech-
nique has been devised by the EEMS group[WLA+09]. Their method proposes
sensor management by detecting specific states in which the user might be,
states which can determine what kind of sensors need to be triggered. The
detection of these states and the transition from one state to the other is deter-
mined through duty cycling of some specific sensors, which also draws energy.
Energy efficiency comes from duty cycling lower power consuming sensors such
as the accelerometer, and using them as triggers for sensors that use more of the
battery such as the GPS or the microphone. They compare their results with
basic duty cycling of the sensors and with another mobile sensing application,
CenceMe[MLF+08], which are duty-cycling the sensors with respect to balance
between accuracy and battery efficiency, and a simple periodical run of the sen-
sors. The results, portrayed in figure 2.1., show that the inter sensor adaptive
scheme of the EEMSS application comes out on top of the other two options in
terms of battery efficiency.

Figure 2.1: Comparison between EEMSS adaptive scheme, CenceMe adaptive
scheme, and simple periodical sampling of the sensors[WLA+09]

2.2.2 Experiments using own output sensor triggering

In[RMM10] the authors perform a study on the effects of mobile sensing on
battery life using as an adaptive sampling technique each probe’s own output.
They divide data coming from the probe in two types, "MISSABLE" and "UN-
MISSABLE" while using classifiers to detect each of these two states, which
determine if the sampling frequency gets increased or decreased until certain
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defined thresholds. The paper mainly focuses on comparing the accuracy vs.
energy consumed of different functions by which the frequency gets changed,
such as linear, quadratic, exponential, or combinations of these. A dynamic
adaptive sampling scheme is also used, meaning that if more unmissable events
occur, the scheme switches to a more aggressive function. Their results show
that these functions should be chosen based on the energy consumption of each
sensors, as not all sensors behave in the same way when using the same function.
In[Rac11], the authors experiment with the same type of adaptive sampling, also
proposing a dynamic function that changes based on the context (i.e. number
of unmissable events), which they demonstrate more efficient than in[RMM10]

These examples of adaptive sampling techniques refer to experiments that have
only used a smartphone as means of harvesting data. Other setups such as[citation
needed], make use of special hardware installed in buildings where the exper-
iments are conducted, or require the user to wear sensors in different parts of
the body. In the SensibleDTU setup, just a smartphone is used, so that users
are not disturbed from their daily activity. Previous work on this also shows
that adaptive sampling can be a solution for saving battery in a mobile sensing
environment, and an inter sensor sampling scheme design for the SensibleDTU
application will be presented in the following section.



Chapter 3

Adaptive sampling in the
SensibleDTU environment

As stated in the introduction, SensibleDTU’s goals as a mobile sensing ex-
periment are to study patterns in students’ mobility and their interaction with
other students. In order to support these goals, the mobile application used for
the experiment needs to provide accurate and high resolution location data
for accurately tracking mobility, and to impact the battery life as little as pos-
sible, so that monitoring can cover situations when students stay out late into
the night to interact with other students (prolonged studying sessions, parties,
etc), which could mean a span of 20 hrs battery life.

The current iteration of the SensibleDTU mobile application samples 11 types
of sensors, including the GPS, WiFi, and Bluetooth. Sensors that currently
provide location information are GPS and the WiFi system, with the former
one providing satellite locations, while the latter one is employed by the phone’s
operating system to retrieve locations from Google’s database of WiFi access
points with a known location. In the current run configuration, a location
is provided every 15 minutes given the fact that the user is located either in
a location with a clear view of the sky, or near an access points for which
Google can provide a location. If the user of the phone voluntarily uses another
location application, those locations are also registered. The average battery
lifetime with this configuration is of about 12 - 14 hrs. A configuration of
getting locations every 5 minutes was also experimented, but the battery life
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was shortened to 8 hrs. The first problem of this configuration is the temporal
resolution of the location data. It can prove to be too low, especially in an
environment where students frequently use bikes as means of transportation,
leading to strange "jumps" of locations such as in 3.1. The second problem is

(a) (b)

Figure 3.1: Location estimation uncertainties ("jumps) due to low temporal
resolution(a) compared to ground truth (b)

the battery life, which would be suitable in a typical use case of 9 AM to 11
PM. However, during weekends for example, students can be out and active as
long as 4 or 5 AM, causing the experiment to miss quite interesting data related
to student interaction outside of normal class hours.

3.1 Proposed adaptive sampling scheme

In order to address these issues, an adaptive sampling scheme based mainly on
the WiFi sensor is proposed instead of the current configuration. The motivation
for this is that information about the location of the user can be inferred from
the data provided by the WiFi sensor. It is already known that Google, the de-
veloper of the operating system used in this experiment, maintains a database of
WiFi access points across the world and their approximate location[Hou11]. In
order to access these locations, the operating system makes use of the Internet.
Instead of this, however, maintaining a database of trusted access points stored
on the phone itself is proposed, thus eliminating the need of data transfer over
the Internet, and the energy cost that comes with it. The experiment is mainly
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concerned with locations within the Copenhagen area, therefore the size of the
database stored on the phone would not be a concern. The application would
thus try to access locations provided by Google or the GPS satellites only when
detected access points are not found in the local database. Accessing GPS is
has the greatest impact on battery life from the sampled sensor in SensibleDTU
application, and this solution would reduce the need to access this sensor (or ac-
cess the Internet for the Google database) to only when there is no other option.
Moreover, we propose that the configuration first tries to get a location from
Google’s database of WiFi routers, and only if this doesn’t provide an accurate
location should the GPS be scanned, being, as mentioned, the heaviest sensor
on the battery and also the slowest in providing a location. WiFi is scanned
in the current configuration every 10 minutes, but the operating system can
increase the sampling frequency up until every 20 seconds. This solution should
be significantly better as a location provider in terms of battery, since the sys-
tem already schedules WiFi scans, and thus, additional strain on the battery is
avoided. It would also be better in terms of location data resolution since it is
sampled more often than the GPS in the current configuration. Last but not
least, we propose introducing into the adaptive sampling scheme the condition
of mobility, meaning that in order to scan for a location, the user has to have
moved from his current location.

The local database of locations can be constructed from WiFi and location data
previously gathered since the start of the experiment (October 2012). In the
following section, existing methods for doing this will be presented, as well as
the design of a solution that suits the current Sensible DTU environment.

3.2 Adaptive sampling using WiFi

In the mobile world, battery life has always been a big concern. At the same
time, mobile phones’ ability to provide location information of the user has been
one if its greatest features. The classic way of providing location information
has been through the use of the GPS, which despite its accuracy, has proven
time and time again costly in terms of battery life. Because of this, mobile
phone producers have turned to other ways of providing location through the
mobile phone. The most common alternative to the GPS is the WiFi. As an
example, Google uses WiFi gathered data from Android users, and through its
Google Street View program, to map WiFi routers to locations. This enables
to maintain a database of mapped routers which gets queried by mobile phones
whenever they are near WiFi routers. This method, although providing loca-
tions with an accuracy of tens of meters (compared to the GPS which provides
locations with accuracies of a couple of meters), is friendlier to the battery and
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faster, and has proven to be a performant alternative to GPS in situations where
high location accuracy is not a requirement. Not to mention that it can provide
locations in buildings and urban environments where a clear view of the sky
might not be always available.

In the next subsection, a few existing methods of determining location using
WiFi will be presented.

3.2.1 Related work

R. Henniges presents location estimation using WiFi, in his paper [Hen12], using
four methods:

1. Proximity sensing This method simply assumes that if the user detects
a WiFi access point which has a known position, the user is located in that
position. In the case of more detected access points, the location of the one
that has the strongest signal strength is selected. Accuracy can vary here,
depending on the obstacles between the router and the mobile receiver,
which can affect the range of the router. It can be used as a positioning
method due to the short range of WiFi systems (tens of meters), which
gets even shorter if there are walls or other obstacles between the access
point and mobile phone.

2. RSSI based trilateration This method requires at least three access
points to work. It uses the RSSI (Received Signal Strength Indicatior)
to determine the distance to mobile device, and then, considering this
distance as the radius of a circle, all three access points’ radiuses are used
to estimate the position (see Figure 3.2). This method requires that there
are no obstacles between since they can greatly affect the signal strength
based distance estimation.

3. Triangulation method This method requires at least two detected WiFi
routers, and it determines the position of the user using the angle at which
the radio weaves reach the mobile phone. This method however, requires
modification of the router’s hardware since it requires directional antennas
to be able to determine the angle at which the signal hits the antenna.

4. Location fingerprinting This method proposes a slightly different ap-
proach. Instead of knowing the positions of the access points before hand,
the signal strength of different routers at certain positions is recorded.
This way, a radio map with vectors of routers and their respective signals
at certain positions is constructed in the training phase, and then estima-
tion of the location is done by computing the distance (n.b. Euclidean
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Figure 3.2: Trilateration(source: Wikipedia)

distance or any other form of plane distance) from a detected vector of
routers and signal strength levels to the ones in the radio map, and the
position of the closest vector in radio map is assumed. This method pro-
vides very good accuracy given that the initial radio map is accurately
constructed[H+08]. This means that signal strengths must be measured
with a very fine granularity[H+08].

As it will be seen in the following section, the resources available for the Sensi-
bleDTU experiment require a slightly different approach to the issue than the
techniques previously presented.

3.2.2 Resources available

At the time of writing, the SensibleDTU experiment had run for 4 full months.
Data gathered during this time can be used for building a map of access with
an estimated location for each, so that the location of a mobile unit can be
estimated with respect to the access points that it detects. The first thing that
comes to mind when thinking of such a map is the radio map model used for
location fingerprinting. However, as [Hen12] points out, it is quite tedious to
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construct a radio map that can be used for location fingerprinting due high
location resolution requirements. In [H+08], the author had to retrieve RSS
information from a tested office (Figure 3.3) building floor in at least 60 places
in order to construct a radio map, using 20 access points. Also, in order to have
a radio map that can provide performant results, meaning a variation of error
between 6 and 12 m in space as in Figure 3.2, the calibration had to be done in
each calibration point with the mobile unit oriented in four directions. The data

Figure 3.3: Division of an office space for creating a radio map[H+08]

available in the 4 months comes from students with very different patterns of
mobility. WiFi scans and location scans are not closely synchronized in time so
as to say that a scan corresponds accurately to a location. Due to the fact that
users have different degrees of mobility, the density of calibration points can vary,
given the size of the area in which the experiment takes place (Copenhagen area).
Also, there was no systematic retrieval of the RSSI in different orientations. It
was concluded that it is quite difficult to obtain a radio map that can accurately
be used for location estimation in the SensibleDTU environment.

Below, a different approach to building a map of access points with estimated
locations is presented. The data that will be used consists of 456.161 recorded
unique access points, 2.927.355 locations, out of which locations that have a
reported accuracy of 30 m (representing the radius in which the real location
might be) or less will be used. Locations with such accuracy constitute 73
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percent of the location data. As a comparison, The dataset contains about 18
million WiFi scans , retrieved from 162 users over the course of the months
October, November and December 2012, and January 2013.

3.2.3 Proposed strategy

As mentioned previously, the construction of a map of access points with an
estimated location is proposed. This would allow avoiding the sampling of the
GPS sensor for locations if one of the trusted access points is encountered. The
process of building this map would essentially consist of finding a set of possible
locations for each access point, and finding a centroid of the set as the estimated
location of the access point. The following steps describe how this process would
look like in more detail:

1. Finding a set of possible locations for each access point in the dataset

The approach to be taken here is to find all the location scans taken at
the same time as WiFi scans, and for each access point detected in that
WiFi scan, add the location to its list of possible locations, as well as
signal strength of the WiFi scan. As it is quite unlikely that WiFi scans
and location scans happen exactly at the same time, since the scans are
not synchronized, a tolerance interval between the location scan and the
WiFi scan should be used. Special care should be taken of the fact that
the mobility degree of the user is not known, and therefore, during the
selected interval between a WiFi scan and a location scan, the user might
move very little, keeping the WiFi scan quite close to the actual location
reported by the scan, or he might be in a vehicle, thus making the distance
between a location scan and a WiFi scan long in space, even if short in
time.

2. Using the centroid of the location set as an estimate for the actual location
of the access point

Having collected a list of possible locations for each access point, an esti-
mation of its location can now be made. The mean of the locations should
be good for finding a central location, however other methods should be
experimented, such as the weighted mean based on the signal strength,
or the median. The degree of trust in the estimation should be assessed
by computing the average deviation of all the possible locations from the
central estimated location. This basically means that the more that access
point has been observed in roughly the same place, the more likely it is
to actually be there. The time frame on which the possible locations of
the access point spread should be experimented with, since a bigger time
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frame of observation might give more accurate results. Special care should
be taken here to mobile hotspots (mobile phones turned into WiFi access
points, or public transportation WiFis) since their location changes often
over time. This problem can be solved partially by eliminating access
points that have a network name which indicates a mobile hotspot (e.g.
"Android hotspot") and by making sure that the locations have happened
in a large time frame (the more days the access point has been observed
in the same location, the more likely it is to be fixed in that location).
Thresholds for the minimum number of possible locations should be ex-
perimented, as well as for the deviation.

3.2.4 Expected outcome

The expected result of this strategy is a map of access points with estimated
locations, which have a low deviation (as explained above) and are very likely
to be fixed. It is expected that most of the access points will be concentrated
around the DTU campus given that the users of the application are DTU stu-
dents, and the experiment had run during a semester. The usefulness of the
generated map will be evaluated using two criteria:

1. The prevalence of the mapped access points in the existing dataset

This means that the access points for which a location has been estimated
should appear as often as possible in the scans, since this would mean that
users often pass through those places.

2. The accuracy of the estimated locations compared to ground
truth

This should be assessed by comparing a subset of the map with access
points for which ground truth is available. Currently, there is access to
the approximate locations of the access points in the DTU campus (infor-
mation about the building number in which the access point is located).
Field testing should also be performed to asses accuracy.

3.3 Adaptive sampling using mobility detection

As previously described, another component in the adaptive sampling scheme
is conditioning location scanning on the activity level of the user. In short,
this means that before scanning for a location, the system should first check if
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the user has moved away significantly from his previous already known location.
This is desired in the cases in which users are at their homes for a long time (e.g.
sleeping) or when they are in a 2 hrs lecture for example. In those cases, the user
does not move for a longer period than the duty cycle period and it would be
redundant to scan for locations more often than that. This is not a new idea, the
[WLA+09] group also implements this making use of the accelerometer, which
can be used for detecting different types of activities such as walking, riding in a
car, on a bike, etc. However, this project proposes making use of the WiFi as a
means of detecting if a user has moved. This method is described in [Sap13] and
it demonstrates that a change in the strongest WiFi router indicates that the
user has moved from his current location. This method should be preferred to
the accelerometer method since it would make the implementation much simpler
by not involving an extra sensor. Also, the movement detection heuristic is
quite simple to implement and it would therefore not cause too much load on
the processor, thus not affecting the battery.

The mobility detection component should pose the first condition after a WiFi
scan has been performed: if the detected access points indicate that the user
has moved, then the system should carry on with first looking in the local
database of access points, and then if none if the detected access points is in
the database, it should continue with scanning for a location from the Google
database of routers, and finally from the satellites.



16 Adaptive sampling in the SensibleDTU environment



Chapter 4

Implementation

The target of battery improvement using adaptive sampling is, as mentioned
before, the mobile application of the mobile sensing SensibleDTU experiment.
The application is based on an open source mobile sensing framework called
Funf [API+11], which runs on the Android mobile operating system. It is meant
to aid researchers in harvesting data in a secure and reliable way, while keep-
ing the impact on the user that is using the phone, as low as possible. Since
the implementation of the adaptive sampling techniques presented will involve
extending the Funf code base, a high level description of its architecture follows.

4.1 Adaptive sampling using Funf

The central concept in Funf is the probe. Probes are background Android
services[Goo13b] which are scheduled to run at a specified time interval for a
specified duration of time. The framework contains probes that sample many
of the phone’s sensors (location, bluetooth, accelerometer, etc). Configuration
of the mobile sensing scheme is done through a JSON file where the probes that
are supposed to run are specified, along with the interval and duration of the
run. The application runs in the background of the phone, so as to not disturb
the user experience of the phone’s user. After the probe samples the sensor at
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the specified interval, the the retrieved data is stored in a database, to which
other applications have no access. At a pre-specified interval, the database is
encrypted and dumped to a file on the phone’s external storage1. Finally, when
the phone connects to a WiFi Internet connection, the stored data file is sent
to a central server to be analyzed by researchers.

In order to implement the adaptive sampling scheme proposed in Chapter 3,
the Funf framework is extended with a new probe, called WifiLocation probe,
which has the purpose of analyzing the data captured by the WiFi probe and
decide if the location[Fun13b] probe should be turned on. The WifiLocation
probe is no longer scheduled by the Funf framework to run, but instead uses the
Delegate probe scheduler [Fun13a], which delegates the triggering responsibility
to a chosen probe, in this case the WiFi probe. The WifiLocation probe is thus
triggered whenever the WiFi probe runs, and has access to the data retrieved
by the WiFi probe.

The first step in the adaptive sampling scheme is evaluating whether the user has
moved or not (algorithm explained in more detail in section 4.3), and afterwards,
if the algorithm indicates movement, the detected access points are compared
with a list of access points that have a location estimate ("known"), as described
in 3.2.4, in order to determine if the location probe should be run or not. The
list of known access points is stored under the form of a flat file containing the
MAC addresses[Wik13b] of the access points, and loaded into memory at the
start of the application. If there is at one detected access points that is found in
the list, the probe does nothing, as the WiFi data, which was already retrieved
by the Wifi probe, will be analyzed in post processing on the server in order to
extract the location. If there is no known access point detected, the location
probe is fired2, which accesses the GPS satellites and the Google access point
database (using Android’s LocationManager[Goo13a]), and stores the location
that is the most accurate. The duty cycling interval of the location probe is
maintained if there are no known access points, therefore the location probe
is still constrained to run not more often than 15 minutes as in the previous
configuration.

The WiFi probe is scheduled to run every 10 minutes, however it is programmed
to "piggy-back" on other uses of the WiFi receiver, such as when Android looks
for new WiFi routers. This means that the probe might run at intervals ranging
from every 20 seconds to a maximum of 10 minutes as it is scheduled.

1Applications with root access to the phones can still gain access to the internal databases
of other Android applications. Encrypting the Funf database should be considered in future
versions of the framework

2Note that triggering runs of the location probe without having it scheduled through the
initial configuration might affect the results, since in the implementation provided in Funf for
triggering a probe at any time does not easily provide control over the run time of the probe
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The location probe, on each run, requests locations from Android’s network
provider (which accesses Google’s database of access points) and the satellites, at
the same time. Battery could be improved here by asking the network provider
first, as it is more battery friendly, and if the needed accuracy is not supplied,
the GPS provider should be started.

The smartphones used for testing are Samsung Galaxy phones with the latest
iteration of the Android operating system, Jelly Bean 4.2.2. For the purpose of
testing different configuration on multiple phones at the same time, the batteries
of the test phones were compared by running the same application on all of them,
so as to establish their level compared to a phone selected as reference.

In the following section, the implementation steps taken for creating the map
of trusted access points are explained.

4.2 WiFi map creation

The project databases contain meta-information about each data sample (in-
cluding user id, timestamp, probe name) as well as the actual sample data.
Here, I combine the output from the WiFi probe and the Location probe in
form of JSON dumps of the database in order to estimate physical location of
the discovered WiFi routers. As the data gathered in 4 months was numerous,
due to the sampling interval of each of the two probes (10 minutes or less for
the WiFi, and 15 minutes for the GPS), the size of each file was quite large,
22 GB for the WiFi file and 2 GB for the location file. This is inconvenient
for data analysis, as parsing files of such size takes a large amount of time and
resources. Therefore the huge file of the two, the one containing WiFi data,
was split up into four SQLite3[SQL13] databases, corresponding to each of the
four months, and the data that was stored in them contained only information
that was actually needed in the analysis (BSSID, SSID, signal strength, user id
and timestamp). Other information such as the security type or other technical
information about the unit was discarded.

Analysis of the data was performed using Python as it is a convenient scripting
language for fast data analysis. The implementation of the steps required to
build the map follows, as it was proposed in 3.1.3.
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4.2.1 Finding a set of possible locations for each access
point

The first step in building the map of trusted access points is finding a set of
possible locations for each one of them, which we will call observations. This
part of the algorithm starts with matching WiFi scans with location scans time-
wise. A location estimate is considered an observation of a WiFi scan if both the
WiFi scan and the location scan belong to the same user, and if the distance
in time between the scans is not greater than a certain time threshold. The
explanation for this is that ideally, if a WiFi scan happened at exactly the same
time as a location scan, then it can be assumed with certainty that the WiFi
scan happened at that location. Since this is not possible in our configuration,
due to the fact that scans from different probes are run asynchronously, a time
interval between the scans can be allowed, assuming that the user has not moved
from that location, or has moved very little.

After the algorithm matches one WiFi scan (or more, since there could be more
scans in the time interval) with one location scan, it assigns that location to
each router from that specific WiFi scan. Experiments have been done with
matching a location scan with strictly one WiFi scan in the time interval, the
one that is the closest in time, since this method can eliminate situations where
the user is extremely mobile in the short time interval (e.g. in a car).

The outcome of this step is a map-like data structure, having as keys the MAC
addresses of each access point that had at least one observation, and as values a
list of tuples containing the latitude, longitude, user id, timestamp of the WiFi
scan, timestamp of the location scan, and the signal strength of the router at
which the respective location was matched. Experiments were also performed
with having in the list of observation just one location from the matching time
interval, as this takes care of the situation where the user is moving fast and
receiving location updates faster than 2 minutes (even though the location scan
time interval is set at 15 minutes, the location probe also receives updates from
other application that use the GPS independently of the SensibleDTU applica-
tion).

4.2.2 Finding a centroid of the set of locations to use an
estimate for the location of an access point

The second step, in the compilation of a map of access points, is using the
acquired list of locations to extract their centroid. The measures experimented
were the mean and the median. The 1D median is usually computed by sort-
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ing an array of values and taking the middle value. Calculating the 2D me-
dian for the given coordinates required, however, the use of the geometric
median[Wik13a]. The geometric median represents the point from which the
sum of distances to all the other points in the list is minimum. This was com-
puted using the Weiszfeld algorithm[Wik13a]. Since the latitude and longi-
tude are in polar coordinates[Wik13d], and computing the mean and median
requires Carthesian coordinates, the latitude and longitude were converted to
their equivalent Carthesian coordinates (the ECEF projection[Wik13d]), using
the Haversine formula[cod13]. After the median is computed, its Carthesian
coordinates are converted back to polar coordinates. The outcome is a map
like structure which has as keys the mac adresses of the access points and the
centroid location as values. Worth mentioning here is that due to a bug in the
Android location system, some locations were misplaced in the Cisco campus in
Texas. Therefore these locations were filtered out when computing the median.

4.2.3 Degree of trust in the estimation given by the cen-
troid

The obtained list of access points with estimated locations was analyzed in terms
of its degree of trust, and it was filtered based on a number of attributes that can
influence this. The degree of trust is given by the deviation of the observations
from the computed centroid. This is based on the heuristic that "the more
observations of the access point in the same location, the more probable it is
that the access point is there". The deviation was computed using the standard
deviation when using the mean as a measure for the centroid, and using the
median absolute deviation[Wik13c] for the median estimated centroid. The
maximum accepted deviation from the centroid considered "good enough" was
30 meters.

The effect of the number of possible locations on the centroid was studied by
computing the variation of the deviation with respect to the number of loca-
tions. This analysis was performed on access points with a number of obser-
vations ranging from 100 to 1000. Their deviations were computed by using a
gradually increasing number of observations (chosen randomly), and a thresh-
old was chosen after the point where the deviation would start oscillating only
within 30 meters. The average number of observations at which the deviation
would vary within 30 meters or lower, from all the analyzed access points, was
then computed and used as a filtering condition.

Some of the access points were considered "mobile" by using their SSID (the
network name). A set of network names that indicate that an access point
is actually a mobile hotspot was compiled using the default network names
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that some popular smartphones use when setting up a mobile hotspot (iPhone,
Nexus series, HTC series). Also the names of the WiFi networks offered by the
public transportation in Copenhagen were added to this set. These names are
specified in the trains and busses ("Bedrebustur" for buses and "CommuteNet"
for trains).

4.2.4 Validation of the strategy

The validation of the map of trusted access points was considered using the two
criteria proposed in 3.1.3. The set of access points that resulted from applying
the strategy described above and filtering was compared with the entire initial
set of WiFi scans to see how many of the trusted access points appear in the
scans (assuming that if at least one access point appears in a scan the user is in
that location), in order to determine how much of the locations frequented by
the user group are covered by the map of trusted access points. The distance in
meters between a WiFi location estimate and a GPS location estimate, where
both scans were triggered at the same time or within maximum 5 seconds, was
used for evaluating the performance of the WiFi location estimation.

Ground truth data for the access points belonging to the DTU Campus System
was available in the form of a list of MAC addresses of access points mapped to
a building number. These MAC were compared with the list of trusted access
points and were represented on a map representing the DTU campus and the
numbered buildings.

4.3 Implementing mobility detection

Detecting the mobility of the user, so as to condition the location probe sam-
pling on it, was implemented using data provided by the WiFi probe. The
implementation of the algorithm decides that the user has changed his position
by observing if the access point which holds the strongest RSSI from all access
points in a scan has changed compared to the previous scan. If there are mul-
tiple access points that have the strongest RSSI, it is considered that the user
has not moved from a scan to the next, if at least one of them reappears in the
subsequent scan. This is implemented in the WiFi location probe by doing the
intersection of the set of the strongest access points in a scan with the set of
strongest access points in the previous scan. There are two aspects that were
considered in this specific implementation (as opposed to the one in[Sap13]):
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1. Mobile hotspots and public transport WiFi networksMobile hotspots
are not taken into consideration in mobility recognition since they from
the range of the phone’s WiFi thus falsely asserting that the user has
moved, when actually the person that initiated the hotspot has moved.
Also, WiFi networks belonging to the public transportation system are
not taken into account in order to detect mobility when the user is on
the bus/train. If these networks were considered, the application would
falsely show that the user is not moving since it would always detect the
same signal strength level for the bus/train network. It would also falsely
detect mobility in the case when the user is very close to a station and a
bus or train stops.

2. Variation of the RSSI between two scans, even though the user
has not moved It was observed during some preliminary tests of the mo-
bile recognition implementation that the variation in the signal strength
can affect the order of the strongest access points. A particular test re-
vealed that even though the phone was held very close to an access point
(less than 1 meter), and moved only from one hand to another, that spe-
cific access point was not always the strongest, even though other access
points were at least about 6 meters away and behind walls. It is for this
reason that implementation assumes that two or more access points are
equally the strongest if the signal strength difference between them is less
than 12 dB. This particular threshold was determined by observing the
variations in RSSI when holding a test phone close to (30 cm) a test WiFi
access point and taking the average distance in dB whenever this access
point would not have the strongest RSSI in the list due to fluctuations
of RSSI and small movements of the phone which should be classified as
movement (e.g. moving it 50 cm away).
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Chapter 5

Results

This section presents the results of the experiments described in the previous
section. First, the results of creating the map of trusted access points are pre-
sented, followed by the results of the entire adaptive sampling scheme.

5.1 The map of trusted access points

The end result of the described map creation process can be seen in Fig. 5.1. It
contains around 17000 WiFi access points mapped with an accuracy of under
30 meters. The results of each step in the map creation process are presented
in the following subsections, together with the discussions and motivations for
the decisions taken at each step.

5.1.1 The list of location observations for each access point

The effect of the time interval on the accuracy of the data is influenced primarily
by the fact that in that time interval, a user can be static or walking on foot,
which means that location observation is more accurate, and similarly, by the
fact that a user might be in a car and thus changing her position significantly
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Figure 5.1: The map of over 15000 WiFi access points in the Copenhagen area
(and other locations in Denmark not visible in this illustration)

in the chosen time window. However, the smaller the time interval, the less ob-
servations there are for each access point, and access points observed altogether
(this is because WiFi and location scans are run independently from each other,
and at different time intervals). A trade-off between the number of observations
per access and the accuracy given by the small time interval is considered, thus
ending up with the 2 minute interval.

The experiments done with selecting just the closest in time WiFi scan to a
location scan in the chosen time interval, while also keeping just the closest
location to a Wifi scan, with the purpose of diminishing the effects of mobile
users has proven quite effective as can be seen in Figure 5.3. The problem is that
since the Funf application also gets location data whenever other applications
request it, when a user turns on a navigation app while he is in a car or on
a bike, locations are updated very fast (every second) and therefore the same
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WiFi scan would receive multiple locations (illustrated in Figure 5.2). Here, the
blue dots represent the possible locations of an access point, i.e. the locations
from which the user has observed an access point within the time interval of 2
minutes. From the timestamps of the locations that form the path, which are 1
second away from each other, it can be seen that there were more location scans
in under 2 minutes.

Figure 5.2: The location observations of one access point, with location up-
dates more frequent than the time interval

After choosing just the closest location in time, the situation is improved as can
be seen in Fig. 5.3.

As an effect of using this method, the average number of observations per ac-
cess point has decreased to 136 and the number of access points that have
observations has decreased to 56086.

5.1.2 Estimating the location of an access point

In the second step of the map creation process, experiments were performed
using the mean and median as a centroid estimation method. In figure 5.4, two
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Figure 5.3: The location observations of one access point, when only the clos-
est location scan to a WiFi scan in 2 minutes is chosen

of the location observations appear to be much further way from the cluster
of observations (where the access point is most likely to be located due to the
amount of observations in that area), probably due to the fact that the users
were moving fast within the selected 2 minutes interval between a Wifi scan
and a location scan. Their location on the highway indicates that they were
probably in a car. The location estimation using the mean as centroid appears
to be affected by the two outliers, since the mean centroid is placed at the edge
of the cluster, towards the outliers. The median however, is positioned at the
centre of the cluster, thus proving that it is more efficient against outliers than
the mean. As a result, the median was selected as the favored measure for the
location estimation of the access points.

5.1.3 Refining the map

The deviation of the access points from the centroid is, as stated in the imple-
mentation, the measure used for the accuracy of the location estimation. This
was measured using both the standard deviation from the centroid, and the
median absolute deviation from the centroid, which should be more effective
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Figure 5.4: Location estimation using mean and median. The blue points
represent the location observations, while the red ones represent
centroids.

against outliers and report the deviation more accurately. The deviation his-
tograms of the access points are illustrated when using the standard deviation
(Figure 5.5) and the median absolute deviation (within 100 meters) (Figure 5.6).
The one using the median deviation shows a lot more access points with a de-
viation under 30 meters than the one using standard deviation. The one using
the median deviation shows a lot more access points with a deviation under 30
meters than the one using standard deviation.

The minimum number of location observations needed was thus set to 5 taking
into consideration the number of access points that would be discarded using
this threshold, and the fact that this number was sufficient for the deviation to
stay within 30 meters.
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Figure 5.5: Histogram of access point deviations using the standard deviation

The number of WiFi access points which had an SSID corresponding to the
public transportation WiFi system or default SSIDs of smartphones that can
setup mobile hotspots resulted was reported at 6327. These access points were
removed from the set of trusted access points.

At this point, after filtering out location estimations that have a deviation
greater than 30 meters, a number of observations smaller than 5 and have an
SSID which indicates a mobile hotspot, the number of access points that can be
used for estimating locations good enough for the SensibleDTU experiment has
decreased to 17986. It appears to be quite small compared to the total number
of detected access points (the mapped access points represent 4 percent of the
total detected access points), however, the usefulness of this subset of access
points will be seen in the upcoming section, with regards to both the accuracy
of the estimations compared to ground truth, and the coverage of the places
visited by students. The geographical coverage of the final set of access points
can be seen in Figure 5.7. The Copenhagen area is covered, with large concen-
trations of mapped access points in the DTU campus and central Copenhagen.
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Figure 5.6: Histogram of access point deviations using the median absolute
deviation

Other cities in Denmark, such as Odense, Aarhus and other smaller cities are
also partially covered.

5.1.4 Revisiting the dataset of WiFi scans

On revisiting the full dataset of WiFi scans, it was found that 77 percent of
all of the WiFi scans performed in 4 months (this means about 14 million scans
out of 18 million) contain at least one of the access points in the subset for
which an accurate enough location estimation was determined. Therefore, even
though the number of access points with an accurate location estimation is very
low compared to the total unique access points detected, it has still covered a
very large amount of the total of scans performed over 4 months. This means
that using this set of access points it is possible to cover 77 percent of the places
that students visit. It can also be inferred that students move 77 percent of
the time within the locations determined by this small subset of access points.
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(a) (b)

(c)

Figure 5.7: Geographical coverage of the access point subset with location esti-
mates. DTU campus (a) and central Copenhagen(b) have a higher
density of mapped APs. Greater Copenhagen region coverage is
also illustrated (c)

This relates to[SQBB10] which has also studied human mobility using GSM
towers and has concluded that 93 percent of the time, people move within the
same areas. For the sake of comparing with this paper, if the threshold for the
accuracy is set to 100 meters, 84 percent of the total WiFi scans contain at
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least one of the trusted access points. This number is even closer to Barabaszi’s,
also keeping in mind that location provided by GSM cell towers can estimate
location within more than 100 meters.

The estimation accuracy of the access points was evaluated also by comparing
them to the locations provided by the Android location providers (GPS, WiFi
and GSM cell tower providers), which is what the Funf location probe has used.
The number of WiFi scans containing access points from the trusted set and that
happened within 5 seconds of a location probe scan was of 12 000. The location
estimation provided by the trusted access point was compared with the location
provided by the Android location providers, by looking at the distance between
them. It was found that 93 percent of the location estimations provided by
the trusted access points were maximum 30 meters away from the locations
provided by the Android location providers. The histogram of the estimations
which are at most 30 meters away from a Android estimation can be seen in
Figure 5.8.

Figure 5.8: WiFi location estimates which are at most 30 meters away from an
Android location estimation hapenning within 5 seconds of each
other



34 Results

By comparing the number of WiFi scans that could have provided a location
estimate with an accuracy of 30 meters or better, with the number of loca-
tions provided using the Funf location probe (which uses the Android location
provider), which means 13 million WiFi scans against 2 million location scans,
we can obtain a temporal location resolution 6.5 times higher than the current
one, without affecting battery life, within the areas where the trusted WiFi
access points are present.

5.1.5 Validation using the DTU campus system

The access points in the final map that were corresponding to the DTU Campus
WiFi system (identified by their SSIDs for the ones names "dtu", "eksamen" or
"device" but also by their estimated location for the ones named "eduroam",
since this network name is also used by other universities in Copenhagen) were
compared to a list supplied by the IT department which mapped MAC addresses
to building numbers. The distance from the location estimation of the access
point to the building which it claimed to have been in, was computed. It should
be noted the location for each building was considered the location of its center,
and therefore errors of about 10 - 20 meters should be expected due to the ac-
tual positioning of the routers. The results show that about 60 percent of the
location estimations were less than 30 meters away from the real location of the
building. Taking into consideration that access points could be 10 or 20 meters
away from the center of the building, thus raising the accepted distance from
the building to 50 meters, the results show that 85 percent of the location
estimations were satisfactory. About 3 percent of the locations were estimated
with a deviation of more than 100 meters from the real location. The cause of
this might be errors in the dataset, which, as stated by the campus IT depart-
ment, is not completely up to date, and some of the access points might have
been moved around campus. The total number of access points in the DTU
campus system that were mapped is 2634. In Figure 5.9, the histogram of the
deviations from the real location of the DTU access points is illustrated. Figure
5.10 illustrates an example of a correct location estimation in the DTU campus
system, while Figure 5.11 shows all of the access points in the campus system
that have location estimates. As a side note, the coverage of the DTU campus
presented here is different (contains less mapped access points) from the one in
5.7(c) because it does not include the access points belonging to users living in
the on campus dormitory.
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Figure 5.9: Histogram representing the deviation of the location estimates
from the real locations for access points in the DTU campus sys-
tem

Figure 5.10: Location estimations for DTU WiFi access points
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Figure 5.11: DTU campus system coverage

5.2 WiFi adaptive sampling in the SensibleDTU
mobile application

The test setup used comprised of four configurations of the adaptive sampling
scheme, run at the same time on different phones. The following configurations
were tested:

1. Old configuration, with location scans being run every 15 minutes, abbre-
viated as "Old"

2. Adaptive configuration, using as a condition for location scanning the
nearby presence of access points with a known location, abbreviated as
"Trusted APs"

3. Adaptive configuration, using as a condition for location scanning the
detection of user mobility, abbreviated as "Mobility"

4. Adaptive configuration, using both detection of user mobility and the
nearby presence of known access points as a condition for location scan-
ning, abbreviated as "Mobility+TrustedAPs"
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Configuration Location estimates per hour
"Old" 6

"Trusted APs" 58

Table 5.1: Impact of adaptive sampling on temporal resolution

The application under test was the only application running on the phone while
testing (except operating system processes). The areas covered for testing in-
cluded the DTU campus, the city centre (since these places contain most of the
mapped access points) and also places where there are no mapped access points.
Travel was done by foot, by bus and by bike. The test cases also contained long
periods of time when the user was static (so as to test the efficiency of the
mobility recognition). Testing was performed for a total duration of 60 hours,
and it tried to mimic the scenarios of a student that commutes to school or to
the city by different means of transportation, and spends time during the day
sitting and studying at university and visits the city.

5.2.1 Effects on location resolution

In order to establish the effects of the adaptive sampling scheme on the temporal
resolution of location estimates, the number of location estimates provided per
hour, calculated over the whole test period of 60 hours is presented in Table
5.1. The configurations compared are the "Old" configuration and the "Trusted
APs" configuration since the latter one influences the location temporal reso-
lution by providing estimates for detected access points. The "Trusted APs"
configuration contains locations both estimated using WiFi scans and using the
location probe.

The results show an increase of almost 10 times in the number of locations
provided over the whole tested period of 60 hours, which is an impressive in-
crease in temporal resolution, considering that the sampling rates for the old
configuration were not increased at all. It should also be noted that the "Old"
configuration has an average of 6 locations per hour, instead of 4, as is expected
considering the 15 minutes duty cycle of the location probe, due to location
estimates received from other applications on the phone using the Android lo-
cation provider. This behavior was not caused intentionally during the testing,
but it was observed that the OS runs the "Maps" application in the background
when the SensibleDTU application is running the location probe. It should also
be noted that the "Trusted APs" configuration does not have implemented a
means of retrieving locations from the passive location provider. Therefore, if
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just the locations retrieved by the SensibleDTU application would be reported,
the number of locations estimated by the "Trusted APs" configuration would
be about 15 times greater than the "Old" configuration.

In Figure 5.12, the location estimates obtained from the "Trusted APs" config-
uration is compared on a map with the "Old" configuration in order to better
visualize the areas where a a high temporal resolution was obtained. The areas
with a denser concentration of estimates are DTU and the city centre, due to
the fact that these were the most frequented locations by students during the
four months of study.

(a) (b)

Figure 5.12: Geographical distribution of location estimates when using con-
figurations "Old" (a) and "Trusted APs"(b).

In Figure 5.13 a detailed view of the location estimates is presented, more exactly
a day at DTU campus, to where the user has traveled by bike. An interesting
aspect to notice here is that the "Trusted APs" configuration manages to capture
the moments when the user is arriving and leaving DTU by bike (the area south
of the campus), due to the higher temporal resolution of the WiFi scans. The
user used one bike path for arriving at DTU and another one for leaving DTU.
This aspect can only be distinguishable from the high location resolution one,
thus proving the great advantage of having data of higher location resolution.
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(a) (b) (c)

Figure 5.13: Detailed view of location estimates in the DTU campus when
using configurations "Old" (a), "Trusted APs"(b) and ground
truth (c). Lines represent user movement paths.

In order to validate the accuracy of the WiFi location estimates, the map was
put side by side with the ground truth path (Figure 5.13(c)).

It can be observed in Figure 5.13(b) that there is a "jump" in the user’s trail, to
a place hundreds of meters further, which does not appear in the ground truth
figure. This is due to the fact that the access point to which the user "jumps"
very fast, might have been moved in time between mapping and testing, or
it might have not been observed for a sufficient amount of time in the same
position. This error seems to appear rarely though having shown up only 2 or
3 times in the approximately 3000 location estimates performed during testing.
A closer look at the issue can be seen in Figure 5.14.

5.2.2 Effects on battery life

Battery performance of was evaluated using the average battery consumption
per hour, measured on a scale of 0 to 100, 100 representing the maximum battery
charge. Table 5.2 shows the average battery consumption of each of the four
configurations over the whole period of testing (excluding, of course, values from
the charging periods). The results show that the configuration which used only
user mobility recognition as a condition for location triggering proved to be the
most battery efficient overall. This can be explained by the fact that during the
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Figure 5.14: Error in location estimation caused by moved or incorrectly
mapped access point

test period, the user has spent about two thirds of the time being static.

The most battery consuming configuration was not, as expected, the "Old" con-
figuration, but instead the "Trusted APs" configuration. This (surprising) result
might be explained by the different implementations of triggering the location
probe. After testing two "Old" configuration with the two implementations for
triggering the location probe, results have shown that the implementation de-
scribed in 4.1, which is used by the adaptive sampling configurations, affects the
battery 1.12 times per hour (3.53 battery units per hour vs 3.13 battery units
per hour) more than the implementation used in the "Old" configuration. The
cause appears to be the longer GPS run time (about 2 times longer) of the imple-
mentation used by the adaptive sampling configurations. This claim is partially
supported by the number of times the location probe has been triggered by
the "Trusted APs" configuration, higher than in the case of the other adaptive
sampling configurations (as seen in Table 5.3). This explanation is, however,
not consistent with the behavior of the "Mobility" and "Mobility+Trusted APs"
configurations, where the "Mobility" configuration is more battery efficient than
the "Mobility+Trusted APs" configuration, even though it has triggered the lo-
cation probe more times (Table 5.3). The problem seems to lie somewhere in the
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Configuration Battery con-
sumption per
hour (in battery
units)

Improvement
over "Old" con-
figuration

"Old" 2.85 -

"Mobility+Trusted APs" 2.53 12%

"Mobility" 2.41 18%

"Trusted APs" 3.12 -9%

Table 5.2: Battery consumption of different configurations

Configuration No. of calls to the location probe

"Old" 190

"Mobility+Trusted APs" 96

"Mobility" 110

"Trusted APs" 161

Table 5.3: Number of times each configuration triggered the use of the location
probe

implementation of the "Trusted APs" configuration, since it appears to affect
the battery consumption of "Mobility+Trusted APs". Regardless of the problem
however, the "Mobility" configuration can be used as an adaptive sampling so-
lution, while still maintaining the improved temporal resolution of the "Trusted
APs", since the collected WiFi is already collected and can be analyzed.

5.3 Performance of mobility detection

As seen in the previous section, the effects of mobility detection on battery life
are quite significant. With regards to its performance in detecting user mobility,
Figure 5.15 shows the scenario of a user sitting in an office for 2.5 hours. The
"Old" configuration triggered the location probe a total of 10 times, while the
"Mobility" configuration triggered the location probe only 3 times (which means
that it detected user movement 3 times). This does not correspond to the
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ideal case (only 2 locations should have been provided, when entering and when
leaving the room), however the outcome is significantly better for the battery,
as the location probe gets triggered less. The error probably comes from higher
fluctuations in the RSSI of the strongest access points as described in 2.

(a) (b)

Figure 5.15: Location estimations when the user was static for 2.5 hrs. "Mo-
bility" configuration(a) and "Old" configuration(b)
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Conclusions

The initial goal of this project was to increase the temporal resolution of the
location data, while also improving the battery efficiency of the SensibleDTU
application.

Regarding temporal resolution of location, the average number of 58 locations
per hour, or one location almost every minute, seems quite satisfying. It should
be noted however, that testing was performed primarily in areas with a high
density of mapped access points, such as DTU or the Copenhagen central area.
As was shown in section 5.1.4, more than half of the time is spent by the
students in the places that have a high density of mapped access points, with
DTU campus and central Copenhagen being the most dense areas. It is thus safe
to conclude that temporal resolution of location estimates has been improved
significantly.

The battery efficiency has also seen improvement. The best improvement ob-
served by testing different adaptive sampling configurations is of 18%. This
means an addition of about 2.5 hours more to the 14 hour battery life of the
previous configuration (less than the proposed goal of 20 hours of battery life).
This was obtained using a configuration that only prevents location scans using
the GPS/network when the user is not moving, compared to an adaptive sam-
pling configuration that does this by using both user mobility and the detection
of access points known to the application, or a configuration that uses just the
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latter condition. The cause of this appears to be the under performance of the
configuration that uses just detection of known access points, which affects the
battery life more than the old configuration. The reason for why this happens is
still open to discussion and further experimenting, but by judging by the number
of times each configuration has accessed the GPS/network location providers,
the combination of mobility detection and known access point detection should
have been the most performant (with 14% less times requesting locations from
the Android providers). Until this is resolved though, the mobility detection
adaptive sampling scheme will be using for battery saving, while WiFi data can
still be processed offline in order to obtain high temporal resolution.

A notable aspect encountered in the development of this project, was the cre-
ation of a map of access points in the Copenhagen area (and to a lesser extent
Denmark), which can cover the locations of students 74% of the time with an
accuracy of 30 meters or better, and 84% of the time with an accuracy of 100
meters or better. This is a quite an impressive result, considering the fact that
the data was crowdsourced, with no special equipment, other than a smartphone
needed, and no special behavior required from the experiment participants. It
should be noted though that complete tracking of the users’ mobility was only
possible by also including GPS retrieved data, however, further improvement of
the WiFi map should minimize the need for using GPS more, given the urban
nature of the environment in which the experiment mostly takes place.
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Future work

The first and most important next step to be performed in this project is the re-
implementation of the way adaptive sampling configurations request locations
from the Android provider. It appears to be more energy consuming than the
implementation of the previous configuration. This should improve the battery
efficiency of the adaptive sampling scheme and it would also help shed some
light in the unexplained behavior of the configuration using known access points
detection. This is another area which should be investigated and experimented
more, in order to establish why is it actually consuming more battery than the
previous configuration.

Another feature discussed and designed in this paper was using the recently
launched Google Location Provider which boasts a more efficient use of the
battery. This should also be experimented on top of the other adaptive sampling
schemes.

The creation process of the map of WiFi access points in the environment used
in the experiment, should be improved by analyzing the number of days an
access point was observed in (roughly) the same location. This would help
to better identify access points that are mobile or have been moved. Also, the
locations of access points should be re-evaluated constantly, in order to detect
access points that have moved.
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Another approach to reducing the usage of the location sensor is to use only
one device to request locations, when more users are together in the same place.
This method can make use of Bluetooth to detect when more users using the
SensibleDTU application are in the same place and have just one of them (e.g.
the one that has a higher battery charge) request for a location. This situation
would be frequently encountered in the SensibleDTU experiment, since students
are often in the same place (classrooms, library, bars, etc). In[Sap13] it is shown
how WiFi can be employed to detect when users are together.

Further work should be put into implementing adaptive sampling framework-
wide. Researchers should be able to easily implement conditional sampling
for every probe in the Funf framework. Therefore, a way that can enable the
developer/researcher to easily add and remove conditions for adapting sampling
frequency would be quite useful. It could be something similar to the current
way in Funf to configure sampling intervals and periods. Judging by the results
obtained in this project, adaptive sampling in a generic way would prove to be
quite an asset in a mobile sensing framework such as Funf.
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