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Summary

This thesis presents a volume based approach to real-time rendering of highly
detailed procedurally generated scenes. This approach is based on existing meth-
ods for sparse voxel octrees and cache based data management, which aims to
solve the problem of maintaining large volume data sets in memory.

Two extensions, designed to provide an e�cient framework for procedural con-
tent generation in a parallel environment, are suggested: The �rst is a three
step method for subdivision of sparse voxel octree nodes, when the contents of
the node is unknown prior to evaluation. The second is a simpli�cation to cache
invalidation of unused octree nodes.

A hardware accelerated volume rendering implementation is presented. It uses
NVIDIAs CUDA platform to perform volume ray casting in real-time on con-
sumer graphics hardware. The implementation is evaluated based on perfor-
mance, memory requirements and image quality. Performance bottlenecks re-
lated to procedural content generation and scalability are identi�ed, and possible
solutions are presented. Finally, potential areas for further work are outlined.
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Chapter 1

Introduction

This thesis presents a method for producing images of large three dimensional
environments, such as landscapes, in a way that makes it suitable in interactive
simulations. While the title "Real-Time Rendering of Procedurally Generated

Volumetric Models" is quite a mouthful, it highlights the four key elements that
are relevant to this thesis.

Rendering refers to the process of generating an image on a computer, of some
object represented by a virtual model. Real-time indicates that several images
are rendered continuously to the screen, with a speed that provides the user
with an immediate visual feedback as he/she interacts with the program. One
example of this is computer games. Procedural generation is the process of cre-
ating content mathematically and automatically, without the explicit need of
an artist. Figure 1.1 shows the Mandlebrot set which is a popular example of
procedurally generated shape. Volumetric models is related to the representa-
tion of the virtual model used in the rendering process. Medical data acquired
from CT or MRI scanners are both examples of volumetric models.
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Figure 1.1: The Mandlebrot set is a popular example of a procedurally gener-
ated fractal shape.
Source: http://en.wikipedia.org/wiki/Mandelbrot_set

1.1 Background

Creating visual appealing and realistic images often requires rendering highly
complicated scenes, such as the one seen in �gure 1.2. The complexity grows
with the number of objects in the scene and how detailed they are. In inter-
active simulations, such as computer games, the speed at which images can be
produced and displayed is a major concern. Low frame rates, or �uctuations
in the frame rate, means that the illusion of interactivity breaks down. Conse-
quently, maintaining a high and constant frame rate is important for interactive
simulations.

In traditional rendering methods, the surface of an object in a scene is repre-
sented by a triangle mesh. In order to render the object to the screen, the mesh
is converted to pixels through a process known as triangle rasterisation. These
methods tend to be ine�cient for complex scenes because the computational
cost of rendering the �nal image, is proportional to the number of triangles on
the screen [Cra11]. Volume graphics takes a di�erent approach to rendering.
Originally motivated by the need to visualize data sets in scienti�c visualization
and medical imaging, it has several bene�ts when dealing with large data sets
[EHK+06]. One clear advantage is that data can be accessed in a structured way,
that is decoupled from the scene complexity. Recent advancements in consumer
graphics hardware have made it possible to apply volume rendering techniques
at interactive frame rates. A downside to volume rendering is that it typically
requires a lot of memory to store the complete data sets [Cra11].

Problems with scene complexity manifests it self in other ways than just the
computational cost of rendering. Growing demands for visual realism and de-

http://en.wikipedia.org/wiki/Mandelbrot_set
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(a) Rendered image from Epics Unreal Engine 4 Elemental demo.

(b) Wireframe model showing the same scene.

Figure 1.2: Screenshots from Epics Unreal Engine 4 Elemental Demo. Figure
(a) shows the �nal image while (b) hints to underlaying complexity
of the scene [Images are property of Epic Games, Inc.].

tails in computer games requires an increased amount of graphical content to �ll
the virtual worlds. Graphical content in computer games includes elements like
models for characters and objects, surface textures and terrains. However, man-
ually creating every piece of graphical content can potentially have a negative
impact on production time and cost. This impact can be remedied through the
use of procedural content generation. And while not all aspects of game content
lend themselves naturally to a procedural approach, because they might be hard
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to describe by a mathematical process, elements like terrains can bene�t from
being procedural generated as will be shown in chapter 2.

1.2 Objectives

The goal of this thesis is to investigate how large, procedurally generated, vol-
ume data sets can be compactly stored in memory, and how they can be rendered
e�ciently. Consumer graphics hardware will be used as a platform as the solu-
tion should be usable in interactive simulations, such as computer games. This
can be broken into two parts:

• Investigate how large volume data sets can be stored compactly and ren-
dered e�ciently, using current hardware accelerated methods.

• Building upon these methods, investigate how a framework for on-the-�y
procedural content generation could be implemented.

1.3 Overview

This thesis is divided into chapters that aims to familiarize the reader with vol-
ume rendering, procedural content generation and how the two can be combined
into a hardware accelerated solution that allows large volume data sets to be
generated and visualized in real-time.

First, a procedural approach to content generation for volumetric terrains is
presented. Next follows an introduction to the physical foundation for volume
rendering and iterative rendering methods, such as ray casting. Then a group
of data structures, used to compactly store large volume data sets, called sparse
voxel octrees are presented. Next is an introduction to parallel computing, on
consumer graphics hardware using NVIDIAs CUDA platform. This leads to an
analysis and implementation of procedural content generation combined with
ray casting using sparse voxel octrees. Finally the results of the implementation
are evaluated and discussed, based on the original goals of the thesis. Evalua-
tion criteria involves rendering performance, memory requirements and image
quality.

The reader is assumed to be familiar with data structures, such as lists and
trees, and basic concepts related to real-time rendering including: mipmapping,
shaders, transformation matrices and frame rate.



Chapter 2

Procedural Generation

This chapter serves as an introduction to the history of procedural content
generation in games. It will describe one possible approach to generating three
dimensional terrains suitable for use in volume graphics, by evaluating a density
function. As the term procedural generation can refer to anything from music
to animations, this chapter should by no means be considered as an exhaustive
look at procedural generation in general.

2.1 Procedural Content Generation in Games

Procedural content generation is used to describe the generation of content
algorithmically, rather than manually. It was used extensively in the video game
industry at a time where games where severely limited by storage constraints, as
there was simply not enough room to store large amounts of levels and artwork
[Rud09]. Instead content could be generated on-the-�y using some deterministic
algorithm. Determinism is an important factor because the algorithm should
always produce the same content, given a particular input, unless the objective
is to provide the player with a completely random experience.

The game The Elder Scrolls II: Daggerfall, from 1996, used a mostly procedural
approach to generate a massive game world of roughly 200.000 km2 in size
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[Rud09]. Later games in the series moved away from this approach, and used
procedural methods to generate and store landscapes and vegetation during
game development, which were then loaded at run-time. This allowed artists to
manually alter details and make the world more interesting to the player, see
�gure 2.1.

(a) (b)

Figure 2.1: Examples of procedurally generated content in video games. (a)
an enviroment screenshot from The Elder Scrolls II: Daggerfall
where trees and other details are procedurally placed. (b) a screen-
shot from Oblivion, a later game from the same series, where the
content relies more on manual generation [Both games are the
property of ZeniMax].

Entirely procedural worlds are still encountered in the games industry. Recent
independent games with relatively small production budgets, such as Minecraft
and Terraia, uses procedural approach to generate a completely unique world
that gives the games a high level of replay value.

2.2 Procedural Terrain

Traditionally, terrain is represented using a two dimensional height �eld that
encodes elevation data. This can be an image, where the intensity of a single
channel is interpreted as the height of the terrain at a given point. An example
of a height �eld, and its corresponding rendered landscape can be seen in �gure
2.2. Height �elds can either be created manually by "painting" the elevation
data or they can be procedurally generated.

The notion of a height �eld can be extended to three dimensions by using a
3D scalar �eld, typically represented as a volume texture. In this context the
intensity is no longer interpreted as a height value, but rather as a measurement
of how dense the medium is at a speci�c location in the volume. One clear
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(a) (b)

Figure 2.2: Example of a two dimensional height �eld. (a) the elevation data
encoded as intensity and (b) the height �eld rendered as a dis-
placement map.
Source: http://en.wikipedia.org/wiki/Heightmap

advantage of working in three dimensions is the built-in ability to express cli�
overhangs and caves, as this information cannot be encoded in a height map.

2.3 Density Function

Procedurally generating three dimensional terrains can be done by evaluating a
density function [Ngu07]. Such a function f(x) simply takes volume coordinate
x = (x, y, z) and returns the density corresponding a location in the volume as
a scalar value.

Figure 2.3: Density values between the thresholds µair < 0 < µsolid can be
interpreted as a surface.

Applying f(x) to the whole volume it results in a 3D scalar �eld. As will be
described in section 3.6.1, it is possible to interpret a set of points sharing the
same scalar value as a surface (or a level set). By picking some threshold values

http://en.wikipedia.org/wiki/Heightmap
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µair < 0 and µsolid > 0, representing the density of completely empty and
solid space respectively, a surface around d(x) = 0 can be described. This is
illustrated in �gure 2.3.

2.4 Noise Based Density

A good density function is necessary to create believable and aesthetically pleas-
ing terrains. This will be a brief examination of possible ways a density function
can produce interesting results, based on [Ngu07]. Signi�cantly more advanced
ways of generating procedural terrains are possible, but this examination will
be limited to a function taking a single volume coordinate, and evaluating the
density without requiring any other contextual information. This simpli�cation
will make the function more suitable when a large amount of densities must be
evaluated in parallel.

Noise functions are a common method for introducing seemingly random details
in procedural content generation. Noise can be generated in a number of ways,
but two key requirements (from [MPP+94]) of a noise function, intended for
procedural content generation, are: For a given input the result is always the
same, i.e. the result is repeatable and deterministic. The values returned by
the noise function are in a known range, namely [−1..1].

Figure 2.4: A one dimensional example of fractal noise. The noise function
is sampled over a number of iterations at increasing frequency
(octaves) and summed together.

The frequency of a noise function refers to the number of cycles per unit length,
and is a measure of how fast the function changes, see �gure 2.4. When a
noise function is sampled at di�erent frequencies over a number of iterations
and summed together, the result is called fractal noise [MPP+94]. Starting
from a speci�c sampling frequency, the frequency is double with each iteration.
The number of iterations is called octaves, which is a term adopted from music,
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where it means to double frequency (or pitch) of a tone. See �gure 2.4.

Figure 2.5 shows the application of noise within a density function. By sam-
pling the noise function at the volume position with di�erent octave parameters,
interesting e�ects can be obtained. Lower frequencies of noise can be used to
simulate mountains, while high frequencies creates surface details.

(a) Start with a ground �oor. (b) A single noise octave is added.

(c) Three noise octaves is added. (d) Lower frequencies of noise is added.

Figure 2.5: Examples of noise based density in the NVIDIA Cascades Demo
from 2007.
Source: [Ngu07]
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Chapter 3

Volume Rendering

This chapter serves as an introduction to volume rendering. Speci�cally it will
present a physical model for volume rendering that makes iterative rendering
methods, such as volume ray casting possible.

3.1 Physical Model

In volume rendering, light is assumed to propagate along straight lines, unless
it interacts with a participating medium. Participating medium is a general
term used to describe any material that participates in the propagation of light
together with air.

When interaction between light and participating medium occurs, the radiative
energy along the light ray is changed. Typically this energy is referred to as
radiance I(x, ω), which describes the radiation at a point x on a surface given
a light direction ω. In [Cra11] radiance is de�ned by:

I(x, ω) =
dQ

dA cos θ d Ω d t
(3.1)
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where Q is the radiant energy (in Joules), and A is some surface area (in m2). θ
is the angle between the light direction ω and the normal vector n of the surface
A, Ω the solid angle (in steradians) and t is time seconds. See �gure 3.1.

Figure 3.1: Radiance is radiant energy per projected area per solid angle per
unit time.

Normally the three following categories of interaction between light and partic-
ipating medium are considered:

Emission occurs when the medium actively emits light, this increases the ra-
diative energy.

Absorption occurs when the medium absorbs radiative energy converting it
to heat, this causes a reduction in radiative energy.

Scattering occurs when the medium scatter light and causes it to change di-
rection. This e�ect can be divided into two cases: in-scattering and out-
scattering. In-scattering happens when light arriving from elsewhere is
scattered in the direction of the light propagation, thereby increasing the
radiative energy. Out-scattering occurs when light already propagating
along the direction is scattered into another direction. See �gure 3.2.

Absorption reduces the radiance, while emission increases the radiance. Scat-
tering can both increase or decrease the radiance, depending on whether in- or
out-scattering occurs. In total the radiative transfer equation is de�ned by:

ω · ∇xI(x, ω) = −χ(x, ω)I(x, ω) + η(x, ω) (3.2)

where ω ·∇xI(x, ω) describes the dot product between the light direction ω and
the radiance gradient, with respect to position x. This dot product is a scalar
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Figure 3.2: Interactions between light and participating medium.
Source: [EHK+06]

value expressing the change in radiant energy at point x in direction ω. The term
χ(x, ω) is the total absorption, and η(x, ω) is the total emission. Both absorption
and emission depends on the participating medium, and can therefore not be
considered constant throughout the volume. The interpretation of equation 3.2
is that the change in radiance in a speci�c direction, can be expressed as sum
of the total radiance absorbed and emitted.

The total absorption χ can be broken into two parts: the true absorption κ, and
the scattering coe�cient σ which represents energy loss due to out-scattering.
Likewise the total emission η can be expressed as the addition of true emission
q, and the energy gain due to in-scattering j.

χ(x, ω) = κ(x, ω) + σ(x, ω)

η(x, ω) = q(x, ω) + j(x, ω)
(3.3)

While κ, σ and q are optical material properties, the in-scattering coe�cient j is
more complicated to deal with. It represents all incoming energy contributions,
from all directions over the sphere:

j(x, ω) =
1

4π

∫
sphere

σ(x, ω′)p(x, ω′, ω)I(x, ω′)dω′ (3.4)

Radiance incident from I(x, ω′) are weighed by both the scattering coe�cient
σ, and a phase function p(x, ω′, ω) that describes the quantity that light will be
scattered from the incoming direction w′ into the direction w.

Including in-scattering j(x, ω) complicates rendering because it requires eval-
uating the full radiative transfering equation for all directions incident on the
sphere. So the typical approach is to chose an optical model that only con-
siders emission and absorption [EHK+06]. If only emission and absorption is
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considered the equation 3.2 can be rewritten as:

ω · ∇xI(x, ω) = −κ(x, ω)I(x, ω) + q(x, ω) (3.5)

In [EHK+06] equation 3.5 is referred to as the volume rendering equation.
Speci�cally it is the volume rendering equation in its di�erential form, because
it describes the di�erential change in radiance at a point in a given direction.

If only a single light ray is considered it can be parameterized as:

d I(s)

d s
= −κ(s)I(s) + q(s) (3.6)

where the parameter s is the length along some line expressed by x = p + sω
and p is some arbitrary point along the ray.

Equation 3.6 can be solved by integrating for radiance along the ray from the
starting point s = s0, at the back of the volume, to the endpoint s = D, at the
front of the volume. This results in the volume rendering integral:

I(D) = I0e
−

∫ D
s0
κ(s) d t

+

∫ D

s0

q(s)e
−

∫ D
s0
κ(t) d t

d s (3.7)

where the term I0 is the light entering the volume from the background, and
I(D) is the light arriving at the front of the volume. This means that the light,
arriving at the front of the volume, is the light from the background attenuated
by the medium in the volume, and any light contributed within the volume,
attenuated by the remaining medium along the ray.

By introducing a transparency function that describes the absorption of light
along the line segment from s = s0 to s = s1:

T (s0, s1) = e
−

∫ s1
s0

κ(t) d t
(3.8)

equation 3.7 can be rewritten as:

I(D) = I0T (s0, D) +

∫ D

s0

q(s)T (s,D) d s (3.9)
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which will serve as the foundation for a discretization in the next section.

3.2 Discretization

In practice, it is rarely possible to solve the volume rendering, equation 3.9,
analytically. Instead a discretization is necessary to numerically approximate
the solution.

The integration in equation 3.9 can be split into n intervals described by s0 <
s1 < ... < sn = D, this is shown in �gure 3.3. These intervals does not have to
be of equal size.

Figure 3.3: Integration along a ray split into several intervals [s0..sn].
Source: [EHK+06]

If only the light contribution of the ith interval [si−1, si] is considered, and
introduce the notation Ti, for the transparency in the interval, and ci for the
radiance contribution:

Ti = T (si−1, si), ci =

∫ si

si−1

q(s)T (s, si) d s (3.10)

equation 3.9 can be discretized as:

I(D) =

n∑
i=0

ci

n∏
j=i+1

Tj , where c0 = I(s0) (3.11)

which states that the radiance leaving the volume at s = D, is the sum of the
contribution from all intervals, attenuated by the product of the transparency
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of the remaining intervals. It is common to replace transparency of the interval
Ti by opacity de�ned as αi = 1− Ti.

3.3 Compositing

The discrete version of the volume rendering integral, in equation 3.11, can be
evaluated iteratively using a method known as compositing [EHK+06]. Two
basic compositing schemes are common: back-to-front and front-to-back, here
only the latter will be presented.

Radiance is now substituted with a color representation C, typically three com-
ponents RGB (red, green, blue). For a detailed explanation of the relationship
between radiance and color see [MHH08]. Front-to-back compositing requires
that rays are traversed from an origin point into the volume, this leads to the
following equations:

Ĉi = Ĉi+1 + T̂i+1Ci, T̂i = T̂i+1(1− αi) (3.12)

with Ĉn = Cn and T̂n = 1 − αn. This is an iterative de�nition where Ĉi
and T̂i are the results of the current iteration step, and Ĉi+1 and T̂i+1 are the
accumulated results of the previous steps. In [EHK+06] it is shown that this
can be rewritten into the the following compositing scheme:

Cdst ← Cdst + (1− αdst)Csrc,
αdst ← αdst + (1− αdst)αsrc

(3.13)

where the subscript src denotes optical parameters from the volume data set,
and dst denotes the resulting accumulated quantities.

The important observation from equation 3.13 is that it is possible to traverse
a ray from the eye into the volume, accumulating and updating color Cdst and
opacity αdst by sampling the source parameters from the volume, and terminat-
ing as soon as the αdst becomes fully opaque, αdst ≥ 1.



3.4 Volume Representation 17

3.4 Volume Representation

Volume rendering assumes that data is represented as a continuous three di-
mensional scalar �eld: R3 → R. However, in practice volume data is typically
represented as a three dimensional regular spaced grid [EHK+06]. The individ-
ual elements in the grid are called voxels, which is short for volumetric elements.
Each voxel is associated with a number of scalar values such as density, colors
or �ow. The exact data associated with a voxel will depend on the application.
The rigid structure, provided by the regular grid, ensures that individual voxels
can easily be accessed by their three dimensional coordinate within the grid.

This de�nition of a voxel gives rise to two possible interpretations. It can be
viewed as either: a small cube occupying some small volumetric region of space,
or as a single point where an interpolation scheme is used to �ll the space
between the points. In this thesis the latter interpretation is used as it makes it
easier to sample the grid, when the sampling location does not match an exact
voxel coordinate.

3.5 Rendering Methods

Volume rendering methods can generally be divided into two top level categories:
direct- and indirect-volume rendering.

With indirect volume rendering, or surface rendering, the volume data is trans-
formed into another domain before visualization. This will typically be polygons
representing a level surface (or iso-surface) which is extracted using a method
such as marching cubes [Ngu07]. Direct volume rendering methods renders the
volume data directly without any transformation to an intermediate surface rep-
resentation. The three main classes of direct volume rendering are: ray casting,
texture slicing and splatting. Texture slicing and splatting are older methods
that tends to be either in�exible, or produce poor approximations of the volume
rendering integral [Cra11]. While the basic concepts in ray casting is not new,
it is more �exible, and the recent evolution of graphics hardware has made it
feasible to perform volume ray casting in real-time. For this reason volume ray
casting will be the focus of this thesis. For an in depth description of texture
slicing and splatting see [EHK+06].
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3.5.1 Volume Ray Casting

Volume ray casting, also called volume ray tracing, is a popular method for
volume rendering. For each pixel in the �nal image, a single ray originating
from the eye is traversed into the volume, see �gure 3.4. The volume data is
sampled at discreet steps along the ray, accumulating the �nal color of the pixel.
The traversal order is front-to-back which means that the compositing scheme,
from equation 3.13, can be applied.

Figure 3.4: Volume rendering using ray casting. For each pixel on the image
plane a ray originating at the eye is traced through the volume.
Source: [EHK+06]

The basic outline of a volume ray casting algorithm is outlined in algorithm
1. The pseudocode can be broken into 2 major components, ray setup and the
traversal loop:

Ray setup Rays needs to be setup according to the viewing parameters. The
rays originates at the eye and their direction is determined by the position
of the pixel on the image plane, a plane somewhere in front of the eye
upon which the volume is projected. The image plane is also sometimes
called the near plane.

For each pixel in the �nal image a ray r, is created from the eye point
peye to the point pnear corresponding to the pixel location on the near
plane. The details will depend on the implementation, but this step typi-
cally involves transforming the ray into world space using the inverse view
matrix.

The ray r is then intersected with the volumes axis aligned bounding box
to determine if the ray hits, and where along the ray it enters the volume
tnear, and where it exits the volume tfar.

Traversal Loop Each ray is traversed iteratively, evaluating the volume ren-
dering integral at discreet positions. This consists of the following sub-
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components:

Data Access The volume data is accessed at the current ray position
psample, which is a point tsample distance along the ray r. As the
sample positions typically does not match an exact grid point in the
original volume data, the function sample yields the color Csrc and
the opacity αsrc using some form of interpolation, on the original
volume data.

Compositing The color and opacity is accumulated using front-to-back
scheme as described in equation 3.13.

Advance Ray Position The current sampling distance along the ray
tsample is advanced by some step value tstep.

Ray Termination The traversal loop is ended when the distance along
the ray tsample is outside the volume. This happens when tsample >
tfar. It is also possible to perform early ray termination when αdst ≥
1 as described in section 3.3.

Algorithm 1: Pseudocode for volume ray casting

1 foreach pnear ∈ image plane do
2 r ← ray from peye to pnear

3 〈hit, tnear, tfar〉 ← intersectVolume(r)
4 if hit then
5 tsample ← tnear

6 while tsample ≤ tfar do
7 psample ← rorigin + rdirection ∗ tsample

8 〈Csrc, αsrc〉 ← sample(psample)
9 Cdst ← Cdst + (1− αdst)Csrc

10 αdst ← αdst + (1− αdst)αsrc

11 tsample ← tsample + tstep
12 end

13 end
14 write the �nal color Cdst into the image at the pixel location

15 end

3.6 Local Illumination Model

In section 3.1 the light transfer equation 3.2 was simpli�ed by ignoring in-
scattering. One implication of this, is that all external light contributions are
ignored, with the exception of the background light I0. External lights add a
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great deal of realism to the �nal rendered image, and as such completely ignoring
the contributions from light sources, results in unappealing images.

In surface rendering, such as triangle rasterisation, the interaction of light from
light sources at material boundaries can be described using the bidirectional
re�ectance distribution function (BRDF). In volume rendering a BRDF can be
applied by assuming, that light is re�ected at surfaces inside the volume data
[EHK+06]. This means a computationally inexpensive method for doing local
illumination can be implemented, using a local illumination model.

3.6.1 Gradient Estimation

Traditionally, local illumination models depend on the notion of a normal vector,
a vector perpendicular to the surface (of unit length), that describes orientation
of the surface. In volume rendering it is assumed that light is re�ected at iso-
surfaces inside the volume data [EHK+06]. A iso-surface can be de�ned as a
set of points in the volume data, that share some scalar value e.g. density,
pressure, etc. Extracting iso-surfaces from a volume, using the marching cubes
algorithm, is a common way to convert volume data to a polygon mesh that can
be rendered using triangle rasterization [JC06] [Ngu07].

If a point x inside the volume, and its associated scalar value f(x), is considered,
then from [EHK+06] we get the gradient of the scalar �eld ∇f(x):

∇f(x) =


∂f(x)
∂x

∂f(x)
∂y

∂f(x)
∂z

 (3.14)

This gradient will point in the direction of the steepest ascent, which is vector
perpendicular to the iso-surface. As the gradient is typically not of unit length,
it must be normalized to be used as a surface normal in lighting calculations:

n(x) =
∇f(x)

‖∇f(x)‖
(3.15)

Equation 3.15 breaks down if ‖∇f(x)‖ = 0. This can happen in regions of the
volume where the scalar �eld is either homogeneous, or has a local extremum.
In this case the normal will considered to be zero, which means that illumination
terms become zero.
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Evaluating the gradient can be done in a number of ways. A very common
approach is to use a method called central di�erences [EHK+06]. Central di�er-
ences simply computes the averaged di�erence of values along each axis around
the neighborhood of some point x = (x, y, z):

∇f(x, y, z) ≈ 1

2h

 f(x+ h, y, z)− f(x− h, y, z)
f(x, y + h, z)− f(x, y − h, z)
f(x, y, z + h)− f(x, y, z − h)

 (3.16)

where h is some step size, typically the grid size. Central di�erences is fast to
compute and can be done either on-the-�y during rendering, or pre-computed
and stored for later use.
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Chapter 4

Sparse Voxel Octrees

Sparse voxel octrees is a class of spatial subdivision data structures, used to
e�ciently store volume data in memory. Generally this means compressing
constant regions of the volume and storing only the volume data needed for
rendering the current view of the scene. Figure 4.1 shows examples of sparse
voxels octrees.

There are a number of di�erent ways to implement sparse voxel octrees, and the
details depends on the application requirements and the algorithms used to tra-
verse the tree. The information presented in this chapter is based mainly on the
GigaVoxels engine from [Cra11][Eng10], because the data producers described
in section 4.3.3 provides a natural extension point for procedural content gen-
eration. GigaVoxels uses a combination of cone tracing, which is a derivative of
volume ray casting, and out-of-core data management to update a sparse voxel
octree in a view dependent manner. The method relies on parallelization on
graphics hardware using NVIDIAs CUDA platform, described in chapter 5, but
the concepts can be applied in any parallel environment.

This chapter will �rst present the basic data structures, followed by the algo-
rithms used to navigate the octree. The concept of cone tracing is de�ned, and
�nally the out-of-core update mechanisms are explained.
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Figure 4.1: Examples of sparse voxel octrees. Notice the compact representa-
tion of empty regions of volume.
Source: [Cra11]

4.1 Data structures

The central component in GigaVoxels rendering approach is a hierarchical rep-
resentation of the voxel data. This structure allows for dynamic updating of
the volumetric data to �t the current rendering requirements, and a compact
representation of empty space.

The volumetric data is encoded in a sparse voxel octree. Each node in the
octree contains a region of the volume data. The root node contains the entire
volume and subsequent levels subdivides the volume into eight equally sized
regions. The structure is outlined in �gure 4.2. The data associated with each
node depends on the content of the region in the original volume data. Regions
of homogeneous material can be e�ciently represented with a constant color,
while all other regions are stored as voxel volumes of some �xed resolution,
called bricks. Each subdivision of non constant nodes further re�nes the level
of detail in the bricks, similar to mipmap pyramid. On the other hand constant
nodes requires no subdivision as the result would be eight new constant nodes,
so constant nodes are considered terminal.

The octree is stored in two memory areas which are pre-allocated with some
�xed size. This is commonly called a memory pool and is used to improve
performance when a number individual elements, of some �xed size, needs to
be managed. The nodes are stored linearly, as a pointer based tree, called the
node pool. The bricks are stored in a volume texture called the brick pool.
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Figure 4.2: The GigaVoxels sparse voxel octree data structure. This structure
stores a volumetric scene at multiple resolutions, where bricks are
referenced by octree nodes creating a sparse mipmap pyramid.
Source: [Cra11]

Node Pool

The basic entity in the node pool is a grouping of eight nodes, called a node
tile. Subdividing a single node will result in new node tile, containing the eight
children stored contiguously in memory. This allows each node to point to all
its children using a single node tile address and an o�set in the range: [0..7].
This property is important during octree navigation, which will be described in
section 4.2.1. As stated in section 4.1 the volume data associated with a node
is either a constant color or a pointer into the brick pool.

Because memory needs to e�ciently managed, node tiles may be recycled when-
ever the view of the scene changes, when this happens the least recently used
node tiles are replaced with new data. For this reason a nodes location in the
node pool, has no relation to its spatial location in the volume.

Brick Pool

The brick pool contains small cubic regions of volumetric data called bricks. All
bricks have the same resolution, typically 163 or 323, but represents volume data
at di�erent levels of detail. In order to take advantage of hardware accelerated
trilinear interpolation, the brick pool is stored in a volume texture. However
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this presents a problem at the boundaries of the bricks where data will "bleed"
from one brick to another when interpolated. The solution is to add a border
all around the brick, e�ectively reducing the resolution of the brick.

4.2 Rendering

The rendering approach is based on volume ray casting as outlined in section
3.5. The main di�erence is that volume data can no longer be sampled directly
from a voxel grid, but must be located in the octree. This means that the
function sample is replaced with a descent into the octree that locates the
node, containing the brick or constant. The node is then traversed using a local
ray cast within its bounds, commonly called brick marching. This is outlined in
�gure 4.3.

Figure 4.3: Illustration of octree traversal during ray casting. Bricks are lo-
cated from the octree and marched.
Source: [Cra11]

4.2.1 Octree Descent

A number of di�erent octree navigation algorithms exists. In [LK11] a stack
of recently visited nodes is maintained. This keeps the cost of locating nodes
in the same region of the octree low, at the cost of maintaining a stack for
each ray cast. [Cra11] argues that stack based traversal tend to be ine�cient
because it requires additional hardware registers, which is an important factor
in performance on current generation graphics hardware.
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Another possible way to navigate a sparse voxel octree is to use an algorithm
similar kd-restart presented in [HSHH07], which is simple to implement and
requires no auxiliary data structures. When the node at position p needs to be
located a search is initiated from the root node, as outlined in algorithm 2.

Algorithm 2: Octree descent using kd-restart

1 node← getRootNode(octree)
2 while hasChildAddress(node) do
3 offset← (int(px ∗ 2), int(py ∗ 2), int(pz ∗ 2))
4 index← getChildTileAddress(node) + offsetx + 2 ∗ offsety + 4 ∗ offsetz
5 node← getNodeByIndex(octree, index)
6 p← 2 ∗ p− offset

7 end

The simplicity of the descent is made possible by the node tile layout in the
node pool, discussed in section 4.1. Using the child address, which points to the
�rst node tile, and an o�set in the range [0..7], the correct child can be located.
The position p, which is updated to match the nodes local bounding box for
each decent, can be converted to an o�set by converting its integer components
to a linear o�set. This can be seen in �gure 4.4. In practice, a full descent is
rarely necessary as demonstrated in the next section.

Figure 4.4: 2D example of o�set calculating for the point x = (0.6, 0.4). The
point x translates to child node (1, 0) in the �rst node tile, and
(0, 1) one level deeper.

4.2.2 Volume Mipmapping

In classical ray casting each pixel on the screen is associated with a single ray in
space. This can be a source of aliasing problems because the volume is sampled
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exclusively along this ray, regardless of distance. Ray casting can counter the
aliasing problems by casting multiple rays for the same pixel, this is called
multi-sampling. However casting additonal rays incurs a negative impact on
performance.

GigaVoxels uses an derivative of ray casting called cone tracing. It di�ers in the
sense that each pixel corresponds to a cone, expanding from the eye into the
volume, and as such is an area of the volume. The size of this area can be used
to select a node of appropriate depth, and in turn volume data of a detail level
matching the pixel size. This is similar to the mipmapping technique used in
triangle rasterisation.

Figure 4.5: Radius of a cone at the near plane rn and at a sample position rp.

As the octree already encodes are sparse mipmap pyramid, it becomes a problem
of selecting a brick of su�cient resolution from the octree. This must be done
in relation to the size of a pixel on the screen. If we consider the cone in �gure
4.5, we know from similar triangles that the following equation must be true:

rp =
dprn
dn

(4.1)

where rp is the radius of the cone at sample position and rn is the radius of the
cone at the nearplane, dp and dn denotes the respective distances. rn depends
on the size of the screen S:

rn =
1

2 min(Swidth,Sheight)
(4.2)
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The radius of a voxel, rv in the octree depends on the depth in the octree D
and the brick resolution B:

rv =
1

2

D 1

B
(4.3)

which means that the size of a voxel at depth D is half the size of a voxel at
size D − 1. This means that during octree navigation, using algorithm 2, the
descent can be stopped when rv < rp, as this indicates that size of single voxel
will be less than the size of pixel on the screen.

While this approach is elegant it can lead to artifacts caused by discontinuity at
locations where nearby pixels use di�erent mipmap levels, see �gure 4.6. The
solution is to interpolate between the current mipmap levelD and the immediate
parent D − 1. But since the octree is navigated using the kd-restart algorithm,
the parent will always be available at no additional cost.

(a) (b) (c)

Figure 4.6: Comparison between rendering quality without mipmap interpo-
lation (a) and with (b). The di�erence between the two images,
with 2× ampli�cation can be seen in (c).
Source: [Cra11]

4.3 Out-of-core Data Management

The GigaVoxels approach is designed to handle arbitrarily large voxel data sets.
The main use case, as described in [Cra11] and [Eng10], is to stream data from
disc or main memory, so that only the parts contributes to the current view of
the scene are present in graphics memory. In very general terms this is done by
issuing requests for missing data during ray casting. The data is then uploaded,
replacing any data in the octree that has not been used recently.
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4.3.1 Global Scheme

Figure 4.7 shows an overview of the GigaVoxels rendering engine. This �gure
highlights the three main components in the method. The ray caster, which
is responsible to rendering the �nal image, updating usage data, and emitting
requests for needed data that is currently not present in the sparse voxel octree.
The cache manager is responsible for sorting these requests, and prioritizing
what data should be recycled. Finally the producer updates the octree by
placing the new data in node and brick pools.

Figure 4.7: Overview GigaVoxels rendering engine. The voxel raytracer emits
data requests while travsering the octree structure. Data is then
generated using producers, and the octree structure is updated.
Source: [Cra11]

4.3.2 Node Requests

The ray caster uses a combination of the ray casting algorithm, outlined in
algorithm 1, and octree decent from algorithm 2. While descending in the
octree structure, the ray caster might encounter a node that does not yet have
the su�cient level of detail. When this happens it emits a subdivision request
for the node.

As this can happen in parallel for all rays, multiple threads might request the
same node index. Following principals in parallel programming this must be
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done in a way where no race conditions occur, but for performance reasons it
must be done as a non locking operation. By writing the index of the requested
node into a bu�er, of the same size as the node pool that is cleared before
each rendering pass, in the following way: requestBuffer[index]← index, it is
guaranteed that a speci�c request will appear at most once, and simultaneous
request will not interfere with each other. After the request bu�er has been
�lled, it is sorted so all non requested node indexes are moved to the front of
the bu�er.

4.3.3 Data Producers

Data producers responds to requests, emitted by the ray caster, by updating
the octree structure with data from some source. Typically, this source is a
pre-�ltered voxel data set stored on disk or main memory. When a node is
requested, the corresponding data should be located and uploaded to graphics
memory. This presents a problem because the node index has no relation to the
nodes spatial location in the volume. GigaVoxels solves this with an auxiliary
data structure, the localization bu�er, which maps the node index to its spatial
location.

Figure 4.8: Data producers take the request, the least recently used elements
in the pools and the localization bu�er in order to update the
pools.
Source: [Cra11]

The localization bu�er encodes the octree location for each node in the node
pool. It consists of the node depth and three bit vectors, one for each axis,
corresponding the navigation choice in the octree at a certain depth. Given
the original bounding box of the volume, this information is also su�cient to
calculate the bounding volume of the octree node.

Data producers are not limited to loading pre-�ltered voxel data sets. Given
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the bounding volume it is also possible to procedurally generate data on-the-
�y. Neither [Cra11] or [Eng10] supplies any speci�c implementation details on
procedural content generation using data producers, besides stating that it can
be a slow operation.

4.3.4 Cache Mechanism

In order to allocate space for new nodes and bricks, both memory pools are
managed as caches by recycling the least recently used elements. To maintain a
list of candidate elements for recycling, the ray caster provides usage information
collected during rendering. This information is tracked using two timestamp
bu�ers, indicating when the node tile or brick was last used.

Using the timestamps bu�ers alone would require data producers to sort all
timestamps each time elements needs to be recycled. With the additional con-
straint, that this needs to happen in massively parallel environment it becomes
infeasible. The solution is to introduce an additional list, called a usage bu�er,
for each pool. An entry in the usage bu�er consists of an index into its respective
pool, i.e. the node tile index or the brick index, and a �ag that indicates if the
element was used during this frame. This �ag is updated after the ray caster
has updated the timestamps. If the elements entry in the timestamp bu�er does
not match a current global timestamp, it has not been used during this frame.

Figure 4.9: An incremental update of the usage mask, based on timestamp
information.
Source: [Cra11]

The �nal part of the process is to ensure that the least recently used elements are
moved to the front of usage bu�ers, where they can easily be located by the data
producers. This can be done e�ciently by a method called stream compaction.
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By continuously partitioning the updated usage bu�ers, into �agged and un-
�agged elements, a list of least recently used elements emerge. The process can
be seen in �gure 4.9.

4.3.5 Cache Invalidation

As described in the previous section, the node and brick usage bu�ers will be
sorted according to timestamp information, with the least recently used elements
at the front of the list. These elements will be reused and when the octree
structure needs to be updated. But as these elements might still be in use, it is
necessary to invalidate any part of the octree structure that still references these
elements. This is a non trivial problem because GigaVoxels supports recursions
and instancing, which means that a single node or brick could potentially be
referenced by more than one parent, see �gure 4.10.

Figure 4.10: GigaVoxels supports recursivity in the octree, as shown in this
example of a Sierpinski sponge fractal. This complicates the
invalidate procedure.
Source: [Cra11]

This problem is solved with a two step procedure. After the requests from the
ray caster has been collected, the number of node tiles and bricks that needs to
be recycled can be determined. The �rst step is to �ag all elements that needs
to be recycled. This is done by setting their value in the timestamp bu�ers to
some special value (zero is reserved for this purpose). The second step is to
test every single node in the octree to see if it references a node or brick with a
timestamp of zero. If this is the case, the corresponding pointer is nulled.

After the invalidation procedure is complete, the elements at the front of the
usage bu�ers can safely be reused.
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Chapter 5

CUDA Programming Model

This chapter serves as a brief introduction to the parallel computation using con-
sumer graphics hardware with NVIDIAs Compute Uni�ed Device Architecture,
also nown as CUDA.

5.1 A Brief History of Graphics Hardware

Graphics hardware has been in steady development for many years. The de-
velopment has, at least in part, been driven by a demand for consumer graph-
ics hardware capable of rendering 3D graphics in real-time. In the late 1990s
NVIDIA launched the GeForce 256, which was the �rst consumer level graphics
card that supported transform and lighting operation directly on the graphics
processing unit (GPU) [SK10]. Since then GPUs has continuously been evolved
to extend their �exibility. Programmable shaders allowed parts of the render-
ing pipeline, the transformation from triangles to pixels on the screen, to be
replaced with application speci�c code.

In 2006 NVIDIA launched the GeForce 8 series, which was the �rst range of
GPUs that was built on the CUDA architecture. Unlike the previous genera-
tions of GPU hardware, where the computing resources were partitioned into
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speci�c steps in the rendering pipeline (vertex and pixel shaders), the CUDA
architecture was constructed as a uniform shader pipeline [SK10]. This meant
that every arithmetic logic unit could be used for general purpose computing.
Furthermore, the execution units were allowed read and write access to arbi-
trary memory on the hardware, which was not possible before. Methods such
as ray casting, that were previously only possible to do in software, could now
be implemented using hardware acceleration.

5.2 Programming Model

At the top level CUDA operates with two concepts. The host, which is the CPU
and the main memory, and the device, referring to the graphics hardware. The
host executes code on the device by launching kernel code which is then run in
parallel on all the streaming multiprocessors (SMs) on the graphics hardware.
The SMs handles the actual execution, and each of them has their own control
units, registers, caches and cores. The amount of cores determines the number
of instructions that can be executed in parallel. In the third generation of the
CUDA architecture from 2010, codenamed Fermi, each SM has exactly 32 cores
[Cor09].

The basic unit of execution for a CUDA kernel is a thread. Threads are organized
into blocks, which then again are divided into a grid. Grids and blocks can be
one-, two- and three-dimensional, depending on how the kernel is executed. This
hierarchy can be seen in �gure 5.1.

Figure 5.1: The CUDA Thread hierarchy. The grid de�nes a number of blocks,
and the blocks are divided into threads.

Grids and blocks serves as a tool for organizing the relationship and dependency
between threads. When a kernel is executed, the blocks are distributed across
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the available SMs, which allows the execution to scale with more powerful hard-
ware [Cor09]. This is illustrated in �gure 5.2. The number of simultaneous
threads a single SM can handle in parallel depends on the amount of cores, but
this might not match the exact number of threads in a block. For this reason
the actual thread execution happens in groups called warps, which is a subset
of the threads in the original block. Every thread in a warp executes the same
instruction on di�erent data. This implies that if one thread takes a divergent
branch, the entire warp execution has to wait, a process called serialization
[Cor12]. This means that in order to optimize performance, threads allocated
in the same warp should take similar paths through the kernel code.

Figure 5.2: Thread blocks are distributed across the available streaming mul-
tiprocessors (SMs). This allows CUDA programs to scale with
more powerful hardware.
Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide

5.3 Memory Model

CUDA kernels work exclusively with device memory, which is divided into a
number of di�erent memory areas1. Global memory is accessible from all threads
and can be allocated from the host as either linear memory or as CUDA Arrays.

1For a full overview of the CUDA memory model, see: [Cor12]

http://docs.nvidia.com/cuda/cuda-c-programming-guide
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Linear memory exists in 32/40 bit address space2, allowing separate entities to
reference each other using pointers. This makes linear memory suitable to for
containing tree structures. CUDA Arrays are optimized for texture fetching,
and supports di�erent interpolation schemes for data reads. They can also
be accessed as surface memory which allows writing to texture memory from
kernels.

Finally it is possible to map selected resources from graphics libraries (OpenGL,
Direct3D) to CUDA device memory. Using this technique it is possible for
CUDA to read and write directly to bu�ers allocated by the graphics library.

2The address space depends on the compute mode capabilities of the GPU, see [Cor12]



Chapter 6

Analysis and

Implementation

This chapter presents an analysis and implementation details, of a CUDA based
ray caster, for rendering large completely procedural volumetric scenes in real-
time. The GigaVoxels rendering engine, outlined in chapter 4, has shown good
results when dealing with complex volumetric scenes and serves as a foundation
for the method described in this chapter. The implementation has been made
from scratch based on information from [Cra11] and [Eng10].

Two contributions has been made that distinguish this work from the standard
GigaVoxels engine. The �rst contribution is a three step method for e�ciently
subdividing nodes and updating the octree structure, in a purely procedural
environment, and is described in section 6.2.1. The second contribution is a
simpli�cation of the invalidation procedure which is described in section 6.3.
Together the contributions helps to form a framework for procedural content
generation using a density function, as described in chapter 2.
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6.1 Data Formats

The following is a description of the data formats and their interpretation, which
will be helpful in the remaining sections of this chapter.

6.1.1 Octree Representation

The otree consists of two data structures: the node pool and the brick pool. As
described in section 4.1, the node pool is divided into groups of 8 nodes, called
a node tile, that represents all children of a single node. During a decent into
the octree only the nodes structural information, such as child addresses and if
the node is terminal, is typically of interest. To exploit cache coherency, octree
nodes are split into two data structures each encoded in a 32 bit value. They
are stored linearly in memory as a structure of arrays, meaning that all data
used for traversal is stored contiguously. This increases the chance that threads,
which takes a similar path in the octree, will have access to a cached version of
the data.

Node Pool

The main data structure of the octree node pool is called NodeChildData and is
shown in �gure 6.1. This data structure contains the address of the �rst child in
the node tile, childAddress, and the �ag maxSubdivision signaling if the node
is terminal. It also contains a �ag dataType, that determines that interpretation
of the second data structure. If the �ag is DATA_TYPE_CONSTANT it means that
the second 32 bit value should be interpreted as a NodeConstantColor otherwise
it is a NodeBrickPointer.
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Figure 6.1: NodeChildData is encoded in a 32 bit int. It contains the address
of the �rst child in the node tile, and two �ags signaling: if the
node is at max subdivision level, and the data type of the volume
data associated with the node.

Figure 6.2 shows the two possible interpretations of the second 32 bit value.
The �rst possibility is that the node contains a region of volume data in the
form of a brick. In this case it should be unpacked as a NodeBrickPointer that
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points into the brick pool using (x, y, z) coordinates. The second possibility is
that the node is entirely homogeneous. This is represented by a RGBA color,
where completely empty regions have a zero alpha component.

302420161080

brickX brickY brickZ ...
}
NodeBrickPointer

colorR colorG colorB colorA

}
NodeConstantColor

Figure 6.2: The two possible interpretations of the second 32 bit value.
NodeBrickPointer encodes a pointer into the brick pool.
NodeConstantColor encodes a constant color.

Brick Pool

The brick pool is implemented using CUDA Arrays, which are con�gured to act
as writable volume textures. The arrays are allocated at startup, for some �xed
volume dimension, and then divided into a number of smaller cubic regions that
serves as bricks. Bricks are referenced from nodes using a NodeBrickPointer

as described in the previous section.

The number of arrays and their layout depends on the application requirements.
This implementation uses two CUDA Arrays as shown in �gure 6.3. The �rst
array describes the voxel color in RGB format, while the second contains the den-
sity of the voxel. Storing the density as a full 32 bit �oat might seem excessive,
but as normals are not explicitly stored they must be calculated using central
di�erences during rendering. On the other hand, if normals were pre-calculated
they would have to be stored with su�cient precision to avoid artifacts. The
last 8 bit in the color array could be used to store material parameters, but is
currently unused.

241680

colorR colorG colorB ...
}
uchar4

density

}
float32

Figure 6.3: Voxel format used in bricks.
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6.1.2 Usage Data

Usage data is stored as a combination of timestamp and usage bu�ers as de-
scribed in section 4.3.4. All timestamps are stored as 32 bit ints. As nodes are
managed on a tile basis, only one timestamp per tile needs to be stored in the ar-
ray tileTimestamp. Brick timestamps are stored in the array brickTimestamp

with one element per brick.
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Figure 6.4: Usage information encoded in 32 bit values. Both TileUsage

BrickUsage contains a 1 bit usage �ag which is updated according
to timestamp information, and is used to sort the usage bu�ers as
described in section 4.3.4.

The usage bu�ers contains a list of all node tile addresses and brick pointers,
sorted in a least recently used fashion according to the timestamp informa-
tion. Figure 6.4 shows the encoding of the usage elements TileUsage and
BrickUsage. As elements in the usage bu�ers are constantly moved around,
their indexes does not correspond with the pools or timestamp bu�ers. Instead,
the address information contained in the usage elements is used to map back
to the correct index. For example the tileAddress in TileUsage maps di-
rectly to the index in the node pool, and tileAddress/8 maps to index in the
tileTimestamp bu�er.

6.1.3 Localization Data

Localization data is used during procedural content generation to determine
the spatial extent of a nodes bounding box. NodeLocalizationCode, shown
in �gure 6.5, contains three bit vectors representing the choice along each axis
in an octree descent. An 8 bit value NodeLocalizationDepth determines the
depth of the node, and therefore how many bits of the choice vectors should be
used.

The node pool has the potential to scale to 1073741823 elements1, which is
roughly the number of nodes in a fully populated octree of depth 10. The 10 bit

11073741823 is the maximum number of nodes addressable by 30 bit node address
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.
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NodeLocalizationCode

Figure 6.5: NodeLocalizationCode encodes localization information in 32 bit
value. The contents is three bit vectors of 10 bit each, that repre-
sents the choice along each axis in an octree descent.

choice vectors restricts the depth to a maximum of 10. Exploiting the full size
of the node pool, to accommodate deeper sparse voxel octrees, could be done
by extending the choice vectors to some appropriate size.

6.2 Procedural Content

As described in section 4.3.3 the GigaVoxels octree structure is updated using
data producers. These producers responds to node requests emitted by the ray
caster during rendering. The GigaVoxels rendering engine makes the distinction
between subdivision requests and data requests. This is done by analyzing the
state of the requested node. This process is described in [Eng10]. The idea
is that nodes can be subdivided, without necessarily uploading the associated
brick data to the GPU, which can be a relatively costly operation.

While the distinction between subdivision and data requests works well for pre-
computed voxel data, where it is known in advance whether a node is constant
and terminal, this is problematic for completely procedural volume data. There
is no way to know if an octree node is terminal without evaluating all voxels
insides its corresponding brick. Given this observation, a node request should
always perform a complete subdivision and brick evaluation. This also simpli�es
the update process as no preprocessing step has to be performed prior to the
node requests.

6.2.1 Three step method

Using a single kernel for subdivision and brick evaluation would mean that a
single thread is responsible for calculating the contents of every voxel in all
eight resulting bricks. In order to e�ectively exploit parallelization with CUDA
during processing of node requests, a three step method is used.

The �rst step is to subdivide the nodes. This is followed by the evaluation of
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all voxels in the resulting bricks and lastly the nodes are �nalized. Finalization
means to check if the nodes should be considered constant. At each step the
number of threads running simultaneously should be maximized.

Node Subdivision

The �rst step is to handle subdivision of all nodes that the ray caster has
requested during rendering. After a single rendering pass the request bu�er,
raymarcherRequests, contains the indexes of all nodes that did not contain
a su�cient level of detail for the current view of the scene. As described in
section 4.3.2, multiple rays may potentially request the same node, which was
solved by writing node index to the request bu�er in a way that is robust against
race conditions. Each requested node index appears exactly once in the request
bu�er, but scattered with gaps between them corresponding to the node indexes
that were not requested. These gaps are removed by using a stream compaction
operation2, that that pulls all non empty node indexes to the front of the bu�er.

Figure 6.6: The node subdivision process. The array raymarcherRequests

contains a list of all nodes that must be subdivided. A single
CUDA thread handles subdivision for a single node. Each node
is allocated a node tile to contain its children and the indexes of
these nodes are placed into the array dataRequests.

Once all node requests are located at the front of raymarcherRequests they can

2All stream compaction operations are implemented using CUDA Thrust which is essen-
tially a collection of parallel algorithms that resembles the C++ Standard Template Library
(STL). More information is available at https://code.google.com/p/thrust/.

https://code.google.com/p/thrust/
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be processed. Subdividing a node requires allocating a new node tile that will
contain all eight children. This is done by executing a kernel with one thread
per requested node. The maximum number of requests considered should be
limited, in order to avoid the process consuming to much time and causing low
frame rates. One brick must be evaluated for each child in the new node tile,
and this can be tracked using a second request bu�er called dataRequests. For
each child node a single brick is reserved from the brick pool, and the child
nodes index is placed in dataRequests. This array is allocated to contain the
maximum number data requests per frame, which is eight times the maximum
number of subdivide requests per frame. This is shown in �gure 6.6.

Data Requests

The next step is to evaluate all voxels associated with the bricks of the newly
created nodes placed in dataRequests. Parallelization with CUDA can be used
to optimize this process. Each element in dataRequests maps to a brick that
must be processed, and each brick contains N3 voxels where N is the brick res-
olution. This translates to launching N3 threads per element in dataRequests

with the sole responsibility of evaluating a single voxel.

Figure 6.7: Handling data requests. For each element in dataRequests N3

threads are launched where N is the brick resolution. Each thread
evaluates a single voxel based on its world space position.

A three dimensional CUDA kernel is launched, which maps to a speci�c voxel
position x ∈ [0..1]3 within a brick associated with a speci�c child node from
dataRequests, see �gure 6.7. Using the localization bu�er, described in section
6.1.3, the coordinate x can be multiplied with the bounding volume of the
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child node yielding the exact location of the voxel in the volume. The volume
coordinate and the depth of the node is passed to a function, that returns the
density and color of the voxel.

Finalize Child Nodes

The �nal step is to determine if any of the newly created child nodes should
be �agged as constant and terminal. Based on the density model described in
section 2.3 this can be the case in one of two situations: Either the density of
all voxels in the brick is below the threshold µair, indicating that the node is
completely empty, or all densities are above µsolid, which means that the node
is completely solid.

This requires the context of the entire brick which means a kernel, with a thread
per element of dataRequests, is launched. It loops over each voxel in the newly
evaluated brick and continuously updates the minimum and maximum density
values encountered. If the maximum density value, for all voxels, is below the
threshold µair, then the brick is recycled and the brick pointer is converted to a
constant color with a alpha value of zero. Analogously if the minimum threshold
is above µsolid, then the constant color is set to the average color of the voxels,
and the brick is recycled. A di�erent strategy could be to keep the brick, and �ag
the node as terminal. But completely solid bricks will typically not be visible,
as the nodes that make up boundary of the level set would occlude them.

6.2.2 Voxel Evaluation

Voxel evaluation is done with a density function, as described in chapter 2,
with the addition that a color for the voxel is also returned. As the CUDA
Array that stores the color and density values is con�gured to support trilinear
interpolation, care must be taken at the borders of the bricks. Figure 6.8 shows
a 2D case where values are sampled near the border.

If the implementation used pre-computed normals it would be su�cient to have
a single voxel border surrounding the brick. But since normals are computed
during rendering, using central di�erences and triliear interpolation, the sam-
pling neighborhood extends two voxels beyond the voxel center. For this reason
it is necessary to use a two voxel wide border around the brick. Alternatively, it
would be possible to treat normal estimation at brick borders as a special case.
But this would introduce divergent branches in a central part of the implemen-
tation, and incur a negative performance impact.
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Figure 6.8: Voxel interpolation requires a border around the brick. Because
normals are estimated with central di�erences, this border must
be two voxels wide.

This means that before a voxel can be evaluated, the octree nodes bounding
box must be expanded to account for the brick border. During brick marching
the reverse operation must be performed.

6.3 Cache Invalidation

As described in section 4.3.5, the invalidation process in GigaVoxels is non trivial
to perform, because it supports recursive octree de�nitions. While recursive
structures and instancing could make sense in the context of entirely procedural
volume data, for example instancing of trees or rocks, for procedural generation
of terrain, it complicates the framework and adds a potentially very costly scan
of the entire node pool during each frame.

Invalidation can be simpli�ed by disallowing multiple references to node tiles
and bricks, while tracking where in the octree they are referenced. To do this
two additional bu�ers are introduced, tileAttachment and brickAttachment.
When a node tile or a brick is allocated from the pools, the address of the node
pointing to the element is put into the respective attachment bu�er. When a
node tile or a brick is about to be recycled, the attachment bu�er can then be
checked to see if the element is in use, and what node in the octree has a pointer
to it. This node may then be invalidated.

6.4 Rendering

Ray casting in CUDA can be done by launching a two dimensional kernel, sized
to �t the target image resolution, as seen in �gure 6.9. Block and thread indexes
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are used to map the particular thread instance to x, y coordinates in the image.
This thread is responsible for casting the corresponding ray. A nice property is
that all treads in a block, will have rays with similar directions and typically
require the same octree nodes. This will keep warp serialization due to divergent
execution paths, as described in section 5.2, as low as possible.

Figure 6.9: CUDA Raycasting. The image is divided into a grid of blocks, and
each block is divided into a grid of threads. Each thread handles,
casting a single ray for its corresponding pixel.

The mapping from the thread pixel coordinates x, y in the image, to the near
plane coordinates u, v is illustrated in �gure 6.10. Image coordinates x, y are
normalized by dividing with the width and height of the image, and mapped
to the range [−1..1]. They are then converted to near plane coordinates u, v by
multiplying them with the view frustum values for top and left (shown in �gure
6.11b), taking into account that the y axis in the image is inverted.

Figure 6.10: The pixel coordinates for p in the image is mapped to a position
p′ on the near plane.
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Using the u, v coordinates, of the point on the near plane, a ray is created from
the eye towards the point. This is shown in �gure 6.11. The ray originates at the
eye, which has coordinates (0, 0, 0) in view space, and has a direction towards
the u, v coordinates on the near plane. In order to transform the ray into world
space, it is multiplied by the inverse view matrix.

(a) (b)

Figure 6.11: Rays originates at the eye and has a direction towards the pixel
position on the near plane, as shown in (a). The view frustum is
shown in (b), where the top, left values are shown in relation to
the eye.

While ray casting is performed entirely within a kernel, the image needs to
be copied to the screen bu�er before it is visible in the application. To avoid
copying the image rendered by the ray caster multiple times, it should be directly
accessible from the graphics library which will display the image. As described
in section 5.3 CUDA supports interoperability with existing graphics libraries,
in this case OpenGL.

One way of approaching the problem is to create an OpenGL pixel bu�er of
su�cient size to hold the pixel data written by CUDA. This pixel bu�er can be
mapped to CUDA device pointer, which can be accessed in the same way as a
normal array stored in global memory. This requires remapping the pixels x, y
coordinate to a linear o�set into the pixel bu�er. This device pointer is injected
into the kernel, where pixel values are written. When the kernel is done the
pixel bu�er must be unmapped to return control to OpenGL. Finally the image
can be copied to the screen bu�er, by rendering a screen �lling quad with the
pixel bu�er mapped as a texture. The approach is outlined in �gure 6.12.
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Figure 6.12: The relationship between the pixel bu�er, the CUDA device
pointer used to access inside the kernel, and the texture used
in the GLSL shader.

6.4.1 Ray Casting Algorithm

The ray casting pseudocode used in the implementation is outlined in algorithm
3. It is an extension of the ray casting algorithm presented in chapter 3, that
incorporates octree descent and brick marching. The algorithm can be broken
into 5 main parts:

Ray setup View rays needs to be correctly setup according to the view pa-
rameters. The ray originates at the eye and the direction is determined
by the position of the pixel on the near plane, as described in the previous
section.

Volume Intersection The ray r is then intersected with the volume bounding
box to determine if it hits, and where along the ray it enters the volume,
nearvolume, and where it exits the volume farvolume. See �gure 6.13.

Node Lookup While traversing the rays through the volume, the correspond-
ing octree nodes must be located. The octree node is found by doing
an octree descent as described in section 4.2.1 while using the projected
voxel size, vsize, on the near plane as per section 4.2.2. The function
octreeDescent is also responsible for emitting subdivision requests, if no
node of suitable depth exists.

Node Intersection Once the node has been located, a local intersection with
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the nodes bounding box is made to determine the entry and exit points
nearnode and farnode of the ray. See �gure 6.13.

Node Traversal The traversal complexity depends on the type of node. For
constant nodes, i.e. nodes without a brick pointer, the traversal is straight
forward, as they are either completely empty or solid. For brick nodes a
local ray cast is performed on the volume data referenced by the brick
pointer. This ray cast must respect the brick borders, which keeps voxel
data from bleeding during interpolation, as described in section 6.2.2.

After the node has been traversed, the distance along the ray tvolume is
advanced to the exit point of the node farnode. In practice it seems to
be a good idea to add a small epsilon value to the exit distance. This
avoids problems, caused by numerical errors due to glancing ray angles,
that would cause the exit point to remain within the bounds of the node.

(a) (b)

Figure 6.13: Illustration of volume and node intersections with a ray. In (a)
the intersections are conceptualized in 3D and (b) shows how
this translates to volume mipmapping, where nodes are selected
based on the distance to the eye.
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Algorithm 3: Pseudocode for octree volume ray casting

1 foreach pnear ∈ image plane do

2 r ← ray from peye to pnear
3 〈hit, nearvolume, farvolume〉 ← intersectVolume(r)
4 if hit then

5 tvolume ← nearvolume
6 while tvolume ≤ farvolume do
7 pvolume ← rorigin + rdirection ∗ tvolume
8 vsize ← size of voxel at distance tvolume
9 node← octreeDescent(pglobal, vsize)
10 〈nearnode, farnode〉 ← intersectNode(r, node)
11 if node has brick then
12 tstep ← step size at the depth of node
13 tnode ← nearnode
14 while tnode ≤ farnode do
15 pnode ← rorigin + rdirection ∗ tnode
16 〈Csrc, αsrc〉 ← sample(brick, pnode)
17 Cdst ← Cdst + (1− αdst)Csrc
18 αdst ← αdst + (1− αdst)αsrc
19 tnode ← tnode + tstep
20 end

21 else

22 〈Csrc, αsrc〉 ← costantColor(node)
23 Cdst ← Cdst + (1− αdst)Csrc
24 αdst ← αdst + (1− αdst)αsrc
25 end

26 tvolume ← farnode
27 end

28 end

29 write the �nal color Cdst into the image at the pixel location

30 end



Chapter 7

Results and Discussion

This chapter will evaluate and discuss the results of the implementation de-
scribed in chapter 6. The performance of the individual components will be
evaluated quantitatively, as well as their memory consumption. Invalidation
and image quality problems related to the three step subdivision process will
also be examined and discussed.

7.1 Performance Analysis

In order to study the performance rendering and cache mechanisms the imple-
mentation have been tested in some typical usage scenarios. All tests have been
performed using a NVIDIA Geforce GTX 670 and a Intel Core 2 Duo CPU
running at 2.6 GHz.
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Figure 7.1: The di�erence between frames per second measured with and with-
out the performance impact incurred by instrumentation. Actual
performance, in a typical usage scenario, will be about 15 frames
per second better.

7.1.1 Measuring Approach

The measurements have been made with a combination of CUDA event timers1

and in-kernel timers, that allows to pro�le speci�c segments of a CUDA kernel2.
Both types of measurements requires code instrumentation, and does incur a
negative impact on the performance. In the following scenarios the actual num-
ber of frames per second will, on average, be around 15 higher if instrumentation
was disabled. This can be seen in �gure 7.1.

The overall frame rate is measured by the engine and includes all overhead
from input processing, OpenGL rendering and animation systems as well as the
CUDA kernels.

7.1.2 Global Performance

Due to the nature of the implementation, the performance must be analyzed as a
sequence. Each frame consists of a rendering phase and a subsequent subdivision

1Full details of the CUDA Event API can be found here: http://docs.nvidia.com/cuda/
cuda-runtime-api/.

2The in kernel timers are inspired by this thread on stack over�ow: http://

stackoverflow.com/questions/11209228/timing-different-sections-in-cuda-kernel.

http://docs.nvidia.com/cuda/cuda-runtime-api/
http://docs.nvidia.com/cuda/cuda-runtime-api/
http://stackoverflow.com/questions/11209228/timing-different-sections-in-cuda-kernel
http://stackoverflow.com/questions/11209228/timing-different-sections-in-cuda-kernel
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Figure 7.2: This image shows the scene used for the performance analysis.

phase, where the cache mechanism subdivides nodes and produces new volume
data in the form of bricks. These bricks will then be available in the next frame
and used for rendering. This means that a change in the camera con�guration
will cause the need for subdivision.

The following analysis is based on data gathered during a key framed animated
�y by of the scene shown in �gure 7.2, rendered at 800×600. The key frames has
been setup to highlight three di�erent scene exploration speeds, which means
camera movement and rotation. At the start of the animation only the visible
part of the scene is cached, and any new parts of the octree must be subdivided,
as part of the exploration.

Figure 7.3 shows the cost, in milliseconds, of the rendering and subdivision
phases, as well as the overall frames per second achieved. The animation se-
quence can be divided into three parts: A (frames 0 to 70) which consists of
some fast movement, B (frames 70 to 170) where the camera is slowly rotated
and �nally C (frames 170 to 310) where the camera is slowly accelerated.

The �rst thing to observe is the fairly consistent performance of the ray casting
phase, even when the layout of the scene changes rapidly. An important part of
the steady rendering performance is due to the cone tracing model described in
section 4.2.2. Bricks are selected from the octree to match the their projected
screen size, meaning that far-o� details are cheaper to render then in standard
ray casting. A more detailed breakdown of the rendering kernel is covered in
section 7.1.3.

While rendering performance looks good, there are major �uctuations in the
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Figure 7.3: Global performance divided into rendering and subdivision.

frame rate. Looking at 7.3 it is clear that the cost of node subdivision varies a
lot. In sequence B where the camera is only rotated slowly very few nodes needs
to be subdivided, and the frame rate remains consistent. However sequence A
and C reveals that cost of subdivision, due of movement, at times exceeds the
cost of rendering to the point that the frame rate dips below 30. Section 7.1.4
will cover the individual cost of subdivision phases in detail.

7.1.3 Rendering Performance

Figure 7.4 shows a breakdown of the time spent in di�erent segments of the
rendering kernel. Out of the total 7 kernel segments, only 5 have a visible
impact on the overall cost.

The segment KERNEL_LOOKUP covers octree descent described in algorithm 2. It
is not surprising that this, is the most costly operation, as a descent from the
root node must be started for each node visited in the octree. The �uctuation
observed here can be attributed to the fact that when the camera moves closer
to the terrain, the descent needs to be deeper in the octree to retrieve nodes at
the lowest level.

KERNEL_LOCALIZE is a measurement of the time spent unpacking node localiza-
tion codes and determining their bounding volumes. This appears to be the
second most costly segment in the rendering kernel. An interesting fact is that
localization could be omitted, as the bounding volume could easily be calculated
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Figure 7.4: A breakdown of the cost of individual kernel segments during ray
casting.

during the octree descent.

The �nal three segments: KERNEL_LOCAL_INTERSECT, KERNEL_MARCH_CONSTANT
and KERNEL_MARCH_BRICK make up the remaining cost. They correspond to
local ray cast within in the bounding volume calculated in KERNEL_LOCALIZE.
A major factor of the performance in the rendering kernel, is that empty space
can easily be skipped as it is stored in constant nodes, this is represented in
KERNEL_MARCH_CONSTANT. Unsurprisingly KERNEL_MARCH_BRICK makes a con-
siderable part of the total cost as this covers all texture sampling and lighting
calculations. But without the concept of constant nodes this cost would have
been much higher.

7.1.4 Subdivision Performance

Figure 7.5 shows a breakdown of the kernel calls and stream compaction oper-
ations used during the subdivision phase.

The �rst thing to notice is that the cost of the compaction operation on the node
requests emitted from the ray caster, SUBDIVIDE_REQUESTS_COMPACT, remains
steady through out all sequences of the animation.

During the subsequent usage bu�er updates, only the compaction operations in
SUBDIVIDE_USAGE_MASK_COMPACT have a visible impact. Usage mask updates
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Figure 7.5: A breakdown of costs during the subdivision phase.
The majority of the time is spent evaluating voxels in
SUBDIVIDE_REQUESTS_DATA.

based on timestamp information, SUBDIVIDE_USAGE_MASK_TILE and SUBDIVIDE

_USAGE_MASK_BRICK, have a negligible cost.

This leaves the three step method of node subdivision described in section 6.2.1.
At this point it should be clear, that the primary reason for frame rate �uctua-
tions can be traced to the voxel evaluation in SUBDIVIDE_REQUESTS_DATA. This
is not surprising as the scene used in the pro�ling example relies on a fairly
complex density function. For each voxel evaluated 35 calls to the function
noise3(x,y,z), which is an implementation of Perlin noise, are made in a com-
bination with a host of addition, multiplication and trigonometric function calls.
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Figure 7.6: At frame 294 the number of node subdivision requests is 10 which
translates to the evaluation of 327680 voxels.

The number of voxels evaluated at peak costs, such as frame 294 where 10
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node subdivision requests are emitted as per �gure 7.6, can be calculated as:
NODES_SUBDIVIDED × 8 × BRICK_SIZE3. Using the parameters for the build
used in this performance analysis this equals 10 × 8 × 163 = 327680 voxels, or
11468800 calls to the fairly costly noise3 function. The CUDA kernel handles
these evaluations in 15.5 milliseconds, which if nothing else is quite impressive.

A Simple Density Function

To con�rm that the frame �uctuations are indeed a result of the complexity of
the density function, a more simple function is considered. Figure 7.7 shows
a simple sphere, with some noise applied to its surface. This density function
makes 2 calls to noise3.

Figure 7.7: A simple density function used for performance analysis.

The analysis is not as extensive as the terrain scene, but merely an examination
of the requests per frame and the resulting frame rate. Figure 7.8 shows the
pro�ling data. The maximum observed subdivision requests are 64, which is the
limit enforced by the con�guration parameters of the implementation. Following
the formula for the number of voxels evaluated, this translates to 64×8×163 =
2097152. This is over 6 times the number of voxels evaluated roughly 1.9 ms,
as opposed to 15.5 ms in the previous test scene. It should be noted that the
increase in subdivisions also causes the subsequent �nalization to increase in
cost from 1.37 ms to 5 ms.
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Figure 7.8: The frame rate for the simple test scene is shown together with
the number of subdivision requests per frame.

As a side note the density function used in both scenes can arguable be described
as unoptimized, and similar visual results could be obtained in a much less
costly way. Following the example of [Ngu07] the volume noise could have
been pre-calculated and cached in texture memory, which would greatly increase
performance.

7.1.5 Image resolution

The performance analysis was done at a resolution of 800 × 600. But as the
number of rays casted are dependent on the resolution of the �nal image, it
makes sense to examine what happens with the frame rate when the resolution
is increased.

Figure 7.9 shows the rendering performance at di�erent common image resolu-
tions. From this graph it becomes apparent that there is a linear relationship
between the number of rays casted, and the frame rate. Even though 26 frames
per second is not terri�c at a resolution of 1600 × 900, the linear relationship
is an indication that the rendering should scale with more powerful graphics
hardware, as they would have more cores to distribute the work load.
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Figure 7.9: A linear relationship exists between the image resolution (the num-
ber of rays) and the frame rate.

7.2 Invalidation

As described in section 6.2.1 the procedural evaluation relies on the three step
method, which does not make the distinction between subdivision requests and
data requests. This means that brick pointers can not be invalidated on their
own, but requires the entire node tile to be invalidated in order to recycle the
allocated bricks.

Figure 7.10: When a brick from a top level node is recyled, as part of a sub-
divsion, the entire node tile where the brick is referenced must
be invalidated. This causes the subtree of the parent node to
become invalid.

During scene exploration it becomes necessary to recycle the bricks, previously
allocated for nodes elsewhere in the octree. This will typically be nodes close to
the root, as their bricks are not used frequently when the camera is close to the
model. But without the ability to have nulled brick pointers, the only option is to
invalidate the entire node tile containing the brick. When a node tile somewhere
in the top of the octree is invalidated, all children at the lower levels e�ectively



62 Results and Discussion

becomes invalidated as well. The result is that brick invalidation, caused ray
casting requests, often causes an endless chain where the octree never reaches a
depth beyond 2 and resulting in �ickering images. The problem is illustrated in
�gure 7.10. A solution to the problem will be presented in section 8.1.

The cache invalidation design using attachments bu�ers, described in section
6.3, could still be used to simplify the invalidation process as long as recursive
octree de�nitions are not allowed.

7.3 Memory Consumption

Table 7.1 presents an overview of the memory consumption of various pools and
bu�ers in a typical con�guration. This speci�c con�guration is the same as used
in the performance analysis in section 7.1. The brick pool is stored in a volume
texture of dimension 5123 with a brick resolution of 163 giving a total of 32768
bricks.

Name Size Elements
Memory

MegaBytes Percentage

Node Pool 64 bit 2097152 16 1.49

Node Localization Data 40 bit 2097152 10 0.93

Node Tile Timestamp 32 bit 262144 1 0.09

Node Tile Usage 32 bit 262144 1 0.09

Node Usage Attachment 32 bit 2097152 8 0.74

Brick Pool 64 bit 5123 1024 95.84

Brick Timestamp 32 bit 32768 0.125 0.01

Brick Usage 32 bit 32768 0.125 0.01

Brick Attachment 32 bit 32768 0.125 0.01

Raymarcher Request 32 bit 2097152 8 0.74

Raymarcher Data Requests 32 bit 512 0.001 0.00

1068.376

Table 7.1: An overview of the memory consumption used by the various pools
and bu�ers in the implementation. The brick pool is assumed to be
stored in a volume texture of dimension 5123 with a brick resolution
of 163.

Unsurprisingly, the brick pool is by far the largest bu�er accounting almost 96%
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of the total memory used. The size of the pool could be reduced by �xing the
brick invalidation described in section 7.2.

7.3.1 Volume Resolution

As stated in chapter 4, one reason for using a sparse voxel octree implementation,
is the ability to represent volume data at a much higher resolution, than possible
if using a volume texture as data storage. Figure 7.11 shows two images rendered
with a sparse voxel octree implementation as described in chapter 6, and a ray
caster using a volume texture implemented based on algorithm 1.

(a) Image rendered at 800×600 by a CUDA raycasting using a sparse voxel

octree implementation at around 60 fps.

(b) Image rendered at 800×600 by a CUDA raycaster using a static volume

texture as source for volume data at around 28 fps.

Figure 7.11: A comparison between the data resolution: (a) sparse voxel oc-
tree implementation and (b) a implementation using static vol-
ume texture. The raytracing parameters for both implementa-
tions have been tweaked to create similar conditions for step
length.
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The images have been cropped to highlight the resolution of the data in the
foreground. Both implementations uses a volume texture, with a resolution of
5123, as storage for volume data. However the octree version, which in this case
has a maximum depth of 8, has allocated the majority of the bricks to represent
the details closer to the camera. A very rough estimate3 of the resolution needed
to achieve similar results in the standard ray caster would put the size of the
volume texture at around 30003, or nearly 100 gigabytes (assuming the volume is
represented using a RBGA8 format). Even though this is a crude simpli�cation
it does give an idea of the order of magnitude achieved with sparse voxel octrees.

7.4 Image Quality

The volume data in the octree is constructed from the root node and down
through the tree, as described in chapter 6. This means that a brick associated
with a node at depth = D, is normally constructed before a brick at depth = D+
1. The consequence is that low detail bricks can not be created by downsampling
from higher detail bricks. They are instead evaluated from the same density

Figure 7.12: A test scene rendered at two di�erent zoom levels. The bricks
at a high level in the octree fails to capture the details of the
lower levels, due to the lack of downsampling in the three step
subdivision method.

3This estimate based on the length of a single voxel at a depth of 8 in the octree, with a
brick resolution of 16.
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function, that may contain high frequency noise which causes aliasing. This
results in an inaccurate description of the contents of bricks, that fails to capture
subtle details of volume data at a distance. An example of this can be seen in
�gure 7.12, showing a rendered terrain at two di�erent zoom levels.

GigaVoxels does not normally su�er from this problem, as it uses pre-�ltered
volume data, where the octree is constructed by downsampling the original
volume data as a pre-processing step. Something similar could be done in this
implementation if the brick evaluation was done using downsampling. This
would however strain the already costly data requests step, so it comes down
to a performance/quality trade o�. Alternatively, the frequency of the density
could be adjusted by choosing the number of noise octaves according on the
node depth. But this could potentially lead to problems where a parent node
is characterized as solid or empty, and therefore terminal, even though its child
nodes would not have been solid or empty. In section 8.2 an alternative possible
solution is presented.

Finally another noticeable artifact, related to brick marching, is shown in �gure
7.13. This artifact is caused by a bug in the implementation, that occurs when
mapping local ray casts into the reduced node bounding volume to account for
brick borders, but only a�ects the normal estimation using central di�erences.
While this could be solved with more work it should be mentioned, because it
is very apparent in the screenshots found in this chapter.

(a) With lighting (b) Without lighting

Figure 7.13: Lighting artifacts caused by incorrect mapping of local position,
within node bounding boxes, to brick coordinates when account-
ing for brick borders.
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Chapter 8

Future Work

This chapter describes a possible solution to the brick invalidation problem dis-
cussed in section 7.2, as well as suggest some extensions to the method presented
in this thesis to improve its capability to create more varied worlds, improved
lighting quality, and integration with existing technology.

8.1 Invalidation

As described in section 7.2, the three step method for node subdivision does
not make the distinction between subdivision requests and data requests. This
causes problems with brick invalidation, because they can not be invalidated on
their own, and requires the full node tile to be invalidated.

This problem could be �xed by reintroducing the distinction between subdivision
requests and data requests by having the notion of invalidated brick pointers. If
a request from the ray caster targets a node that has children, but an invalidated
brick pointer, a data request for a new brick can be sent to the subsequent data
producer. If the node on the other hand has no children, it should be processed
as normal.
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8.2 Varied, Modi�able and In�nite Worlds

The method presented in this thesis could be used to create highly detailed
landscapes in interactively simulations, such as computer games. The expres-
siveness of voxel grids makes it possible to describe environments that contains
elements such as caves, tunnels and cli� overhangs that normal 2D methods do
not easily describe. It would be interesting to investigate how the technique
could be used to create a more varied world. The main problem would be the
shear complexity of a single density function describing such a world.

Variation could be introduced by dividing the world into areas, described by
their location in the world which could be determined procedurally. Each area
could be assigned a speci�c density function giving each area a unique look.
When evaluating voxels, a blended weighting of the density functions associated
with nearby areas, could produce interesting results.

However, a blended weighting does not mitigate the computational cost of the
voxel evaluation described in 7.1.4. It also does not counter the aliasing problems
caused by the lack of downsampling of voxel data described in section 7.4. Both
problems could be addressed by procedurally evaluating a coarse pre-�ltered
version of the world, and storing it on disc and introduce details in the voxel data
when it is streamed to the GPU. This would also allow for run-time modi�cations
of the coarse volume data, which could then be written back and stored on disc
and used the next time the application is started. If the world was stored in
blocks it would be possible to store only the blocks that were modi�ed during
run-time, and procedurally generating the rest again when the application is
started. This would help to keep storage requirements low.

Finally it would be possible to create an in�nite world. The pointer based nature
of the octree would make it possible to move the bounding box of the volume,
and invalidate the octree nodes that are no longer contained within the new
bounding box, by moving child pointers around in the top of the tree. This
would also require updating the localization bu�er, to make sure that the choice
vectors correspond to the new structure. This must be done whenever the eye
position has moved some distance, and the visible world no longer �ts inside the
current bounding volume.
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8.3 Ambient Occlusion

The lighting quality could be improved by using a simple global method like
ambient occlusion, which is a crude approximation to real global illumination,
but tend to produce a nice soft look, see �gure 8.1.

(a) (b)

Figure 8.1: Ambient occlusion estimates the visibility of a point on a surface.
In (a) the ambient occlusion is shown, and (b) shows the results
when combined with a local illumination model.
Source: [Ngu07]

Ambient occlusion approximates the amount of ambient light reaching a point on
a surface, by approximating the visibility of the background over the hemisphere
of the surface. In ray casting this translates to casting a number of secondary
rays, into the hemisphere, to determine the visibility, see �gure 8.2. [Cra11]
shows that cone tracing can be used to reduce the number of secondary rays
and use volume mipmapping to e�ciently compute the visibilty factor.

Figure 8.2: Ambient occlusion approximates the visibility of a point p by cast-
ing rays into the hemisphere over the surface described by the
normal N .



70 Future Work

8.4 Combined with Triangle Rasterisation

The rigid structure of voxel based representations makes them very suitable for
static models, such as terrains and buildings. But if deformations are needed,
when for example character models are animated using skeleton animation and
skinning, triangle rasterisation methods tend to be more �exible and mature.

The method presented in this thesis could be used in combination with triangle
rasterisation, by including depth information when the pixel bu�er is written.
This information could be written to the depth bu�er before triangle models are
rendered to the screen. In the OpenGL Shading Language (GLSL) this could
be achieved by writing to gl_FragDepth. The process could also be reversed
by using depth information from triangle rasterisation for early ray termination
in the ray caster. In any case, care must be taken in areas were transparent
geometry from the �rst rendering occludes geometry from the second.

Finally, it is shown in [CR12] that it is possible to leverage the existing rasteri-
sation pipeline to voxelize triangle models in real-time. In [CNS+11] it is shown
that voxelization may be integrated into the GigaVoxels engine to incorporate
animated triangle based models.
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Conclusion

It has been shown that large volume data sets can be compactly represented
in GPU memory using sparse voxel octrees. Bene�ts such as compression of
homogeneous regions and view dependent updating of the tree structure have
been discussed. A possible way of implementing sparse voxel octrees, inspired
by the GigaVoxles engine, exploiting the parallel nature of consumer graphics
hardware has been presented. This includes the central octree data structures,
auxiliary bu�ers and related algorithms.

The physical foundation leading to volume ray casting has been presented. It
has been shown that volume mipmapping and cone tracing can improve the
standard ray casting method, when the volume data is compressed using sparse
voxel octrees. An in-depth performance study of the individual step related to
volume ray casting, using cone tracing, has been carried out.

Two extensions to the GigaVoxels engine, aimed at procedural content gener-
ation, has been examined: A three step method for subdividing octree nodes
and procedurally evaluating their contents, and a simpli�cation to the node and
brick pool invalidation. The performance of the three step method has been ex-
amined, and a bottleneck was identi�ed in the data request step, when complex
density functions are used. Problems related to invalidation caused by a miss-
ing distinction between subdivision- and data-requests in the three step method
were identi�ed, and a possible solution has been presented.
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Appendix A

Appendix

The source code is avaible on Github at:
https://github.com/udsholt/thesis-cuda-sparse-voxel-octree.git

https://github.com/udsholt/thesis-cuda-sparse-voxel-octree.git
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Figure A.1: The long road to real-time rendering of procedurally generated
volumetric models...
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