
Predictive Modeling of Expressed Emotions

in Music Using Pairwise Comparisons

Jens Madsen, Bjørn Sand Jensen, and Jan Larsen�

Department of Applied Mathematics and Computer Science,
Technical University of Denmark,

Matematiktorvet Building 303B, 2800 Kongens Lyngby, Denmark
{jenma,bjje,janla}@dtu.dk

Abstract. We introduce a two-alternative forced-choice (2AFC) exper-
imental paradigm to quantify expressed emotions in music using the
arousal and valence (AV) dimensions. A wide range of well-known audio
features are investigated for predicting the expressed emotions in music
using learning curves and essential baselines. We furthermore investigate
the scalability issues of using 2AFC in quantifying emotions expressed
in music on large-scale music databases. The possibility of dividing the
annotation task between multiple individuals, while pooling individuals’
comparisons is investigated by looking at the subjective differences of
ranking emotion in the AV space. We find this to be problematic due
to the large variation in subjects’ rankings of excerpts. Finally, solving
scalability issues by reducing the number of pairwise comparisons is ana-
lyzed. We compare two active learning schemes to selecting comparisons
at random by using learning curves. We show that a suitable predictive
model of expressed valence in music can be achieved from only 15% of
the total number of comparisons when using the Expected Value of In-
formation (EVOI) active learning scheme. For the arousal dimension we
require 9% of the total number of comparisons.

Keywords: expressed emotion, pairwise comparison, Gaussian process,
active learning.

1 Introduction

With the ever growing availability of music through streaming services, and
with access to large music collections becoming the norm, the ability to easy-to-
navigate-and-explore music databases has become increasingly pertinent. This
problem has created the need to use alternative methods to organize and re-
trieve musical tracks, one being cognitive aspects such as emotions. The reason-
ing behind using emotions dates back to Darwin, who argued that music was a
predecessor to speech in communicating emotions or intents [6]. This alternative
seems appealing and a natural way of thinking about music, since most people
can relate to happy or sad music, for example. The aspects about music that

� This publication only reflects the authors’ views.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 253–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



254 J. Madsen, B.S. Jensen, and J. Larsen

express or induce emotions have been studied extensively by music psychologists
[13]. The Music Information Retrieval (MIR) community has been building on
their work with the aim to create automatic systems for recognition of emotions
and organization of music based on emotion. The approach by music psychol-
ogists have been to exhaustively make experiments with human subjects/users
to quantify emotions and analyze this data. To annotate the massive collections
of music using a fully manual approach is not feasible and has resulted in the
increased attention on automatic Music Emotion Recognition (MER).

The approach to automatically predict the expressed emotion in music has
typically relied on describing music by structural information such as audio
features and/or lyrics features. Controlled experiments have been conducted
to obtain data describing the emotions expressed or induced in music. Machine
learning methods have subsequently been applied to create predictive models
of emotion, from the structural information describing music, predicting the
emotional descriptors [1]. The reasoning behind using the emotions expressed in
music and not induced (which describes how the subject feels as a result of the
musical stimuli) has mainly been due to the availability of data. The mechanisms
that are involved in the induction of emotions by music [12] are daunting. To
potentially model this highly subjective aspect, a great deal of additional data
about the user and context should be available in order to recognize the user’s
general state of mind. We see that to solve the MER, three main topics should
be investigated: namely how to represent the audio using feature extraction; the
machine learning methods to predict annotations, evaluations, rankings, ratings,
etc.; and the method of quantifying and representing the emotions expressed in
music. In the present work we want to look more closely into the aspect of
quantifying the emotions expressed in music using an alternative experimental
paradigm to gather more accurate ground truth data.

Music psychologists have offered different models to represent emotions in
music, e.g., categorical [8] or dimensional [25], and depending on these, various
approaches have been taken to gather emotional ground truth data [14]. When
using dimensional models such as the well established arousal and valence (AV)
model [25] the majority of approaches are based on different variations of self-
report listening experiments using direct scaling [26].

Direct-scaling methods are fast ways of obtaining a large amount of data.
However, they are susceptible to drift, inconsistency and potential saturation of
the scales. Some of these issues could potentially be remedied by introducing an-
chors or reference points; hence, implicitly using relative rating aspects. However,
anchors are problematic due to the inherent subjective nature of the quantifi-
cation of emotion expressed in music, which makes them difficult to define, and
the use of them will be inappropriate due to risks of unexpected communica-
tion biases [31]. Relative experiments, such as pairwise comparisons, eliminate
the need for an absolute reference anchor, due to the embedded relative nature
of pairwise comparisons, which persists the relation to previous comparisons.
However, pairwise experiments scale badly with the number of musical excerpts.
This was accommodated in [30] by a tournament-based approach that limits the
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number of comparisons. Furthermore they introduce chaining, that is, inserting
additional comparisons based on subjects’ judgments and disregarding potential
noise on the subjects’ decisions. Multiple participants’ judgments are pooled to
form a large data set that is transformed into rankings which are then used to
model emotions expressed in music.

However, the connection between the artist expressing emotions through mu-
sic and how each individual experiences it will inherently vary. This experience
is to be captured using a model of emotions using an experiment. The setup of
this experiment alone gives rise to subjective differences such as interpretation
and understanding of the experimental instruction, understanding and use of the
scales, and projection of the emotional experience into the cognitive AV represen-
tation. Besides this, a multitude of aspects and biases can effect the judgments
by participants [31]. Most of these effects are almost impossible to eliminate,
but are rarely modeled directly. The issue is typically addressed through outlier
removal or simply by averaging ratings for each excerpt across users [11], thus
neglecting individual user interpretation and user behavior in the assessment
of expressed emotion in music. For pairwise comparisons this approach is also
very difficult. In previous work [20] we showed the potentially great subjective
difference in the ranking of emotions, both in valence and arousal, which is due
to the inherently different subjective judgments by participants.

The main objective in this work is to propose and evaluate a robust and
scalable predictive model of valence and arousal, despite the adverse noise and
inconsistencies committed by the participants. Our solution to this challenge is
based on a two-alternative forced-choice (2AFC) approach, with the responses
modeled in a Thurstonian framework with a principled noise model and a flexible
non-parametric Bayesian modeling approach. This provides a supervised model,
which has previously been applied in [20,21] for analyzing the ranking of excerpts
in the AV space. In this work, we do not focus on the ranking, but the predictive
properties of the approach, i.e., whether the model can predict the pairwise
relations for new unseen excerpts.

Firstly, the predictive setting requires structural information describing the
audio excerpt, so-called features (or covariates) from which new unseen compar-
isons can be predicted based on observed audio excerpts. Audio features and
the representation of audio excerpts are still an open question in many audio
modeling domains and particularly in emotion recognition. In this work we in-
vestigate the effect of various common audio features in a single mean/variance
representation, given the proposed predictive approach.

Secondly, to model and understand the complex aspects of emotion requires
extensive and costly experimentation. In the 2AFC paradigm the number of
comparisons scales quadratically with the number of excerpts. This is not a
favorable property of the current methodology. Given the best set of features
(selected from the feature set investigation) we investigate two solutions to this
problem: we consider the common approach of dividing the rating task between
multiple individuals and/or pooling individuals’ ratings [30]. Based on the rank-
ings, we show that such an approach is not recommendable in the predictive
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case, due to large subject variability. This is in line with previous work [20] on
ranking. We furthermore propose and evaluate an alternative approach, namely
sequential experimental design (or active learning) for reducing the number of
comparisons required. In the Bayesian modeling approach deployed, this is an
easy extension of the methodology. We show that faster learning rates can be
obtained by applying a principled Bayesian optimal sequential design approach.

The investigation of the outlined aspects requires that all possible unique
comparisons are made on both valence and arousal dimensions. Furthermore,
to show variation across users, it is required to test on a reasonable number
of subjects. Compared to previous work [20,21], the experimental part in this
work is based on an extended data set using the 2AFC experimental paradigm
quantifying the expressed emotion in music on the dimensions of valence and
arousal. Finally, we discuss various extensions and open issues, outlining future
research directions and possibilities.

Outline. In Sect. 2 the general methodology for examining the outlined aspects
is introduced. This includes a relatively technical presentation of the modeling
framework. The underlying experiment and data is described in Sect. 3, and
Sect. 4 contains the experimental results including a description of the most im-
portant aspects. The results are discussed in Sect. 5, and finally Sect. 6 concludes
the paper.

2 Methodology

Cognitive aspects, such as emotion, can be elicited in a number of ways which can
be divided into self-report, observational indirect behavioral measures [29], psy-
chophysiological [9] and functional neuroimaging [15]. Self-reporting approaches
rely on human test subjects to actually be able to express the directed as-
pects, albeit using some experimental paradigm. This work focuses on self-report
methods, thus asking direct questions to the user in order to elicit his or her
understanding and representation of the cognitive aspect under investigation.
This requires careful consideration regarding the experimental paradigm and
subsequent analysis/modeling aspects.

When quantifying a cognitive aspect using either unipolar or bipolar scales,
assuming that one can arrange the cognitive aspect in such a manner that we
can ask the question if one element is more or less than the other. In this case
we can use relative quantification methods to obtain a ranking of objects in that
dimension. How the objects are arranged in the internal representation of the
cognitive aspect is not being asked directly but acquired indirectly, i.e., indirect
scaling. The question to the subject is not to place the object for evaluation on
the scale, but cognitively a much simpler question, namely to compare objects.
The argument is that simple questions about cognitive aspects provide a robust
approach in obtaining information. The simplest of such indirectly scaling meth-
ods is the two-alternative forced-choice model (2AFC). Participants are simply
asked which of the two objects presented has the most/highest (or least/lowest)
of a given cognitive aspect, which is the approach we use in this work.
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In the present setting, we look into the cognitive aspect of expressed emotion
in music. To quantify this we use an experimental paradigm relying on the two-
dimensional valence and arousal model, which consist of two bipolar dimensions,
namely valence, ranging from happy to sad, and arousal ranging from excited
to sleepy [25]. This dimensional approach naturally allows us to use the robust
relative paradigm.

With this in mind, the general framework for the proposed 2AFC for eliciting
and modeling general cognitive aspects is outlined in Fig. 1. Here we aim to
elicit and model the users’ cognitive representation of emotion, thus we present
the user with a general set of instructions regarding the task and intent of the
experiment. There are obvious elements of bias that can be introduced here and
care has to be taken to ensure that the underlying idea of the experiment is
understood to reduce bias.

The Thurstonian based paradigm in essence starts with step A in Fig. 1,
where an experimental design mechanism will select two musical excerpts, in-
dexed u and v, out of total of N . These two excerpts constitute a paired set for
comparison indexed by k and denoted εk, out of K possible comparisons.

In step B, excerpts uk and vk are presented to the user through a user in-
terface (UI), which provides instructions, asking the user to compare the two
excerpts either on the valence or arousal dimension. Understanding and inter-
pretation of the UI and the instructions given can vary between subjects and
bias and variance can be introduced at this stage.

User

Decision

User Interface

Audio Feature Extraction

(Sequential)
Experimental Design

A: The experimental
design selects an
comparison, εk, with
two music excerpts uk
and vk, for presentation

B: Present two
different excerpts
(and instructions)

C: The user selects
the excerpt which
is either the most

D: Update model
based on the users
reponse to
comparison k .

Music Database

Cognitive
representation
of emotion

f : xu �→ f(xu) f : xv �→ f(xv)

p(yk|f(xu), f(xv), σ)

f̂(xu) + eu

Likelihood
”Decision Making”

f̂(xv) + ev

M
o
d
el

Latent Function
”Model of the Cognitive

Representation”

A

D

B C ’happy’ or ’excited.’

xvxu

f̂(xu) + eu>

f̂(xv ) + ev ?

Fig. 1. Overview of the methodology from a system perspective
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Table 1. Notation overview

System Element Description Notation

Music Database Excerpt index u, v, r, s ∈ [1 : N ]
Number of excerpts N

Audio Features Audio feature representation x ∈ R
D

of excerpt (model input) e.g. xu,xv

A test input (to model) x∗
A set of inputs (to model) X = {xi|i = 1..N}

User Comparison with two inputs ε̂k = {uk, vk}
Response to a comparison yk ∈ {−1,+1}
Number of comparisons K

Internal ’value’ of an object f̂(x)
in respect to a given
cognitive aspect.
Internal noise (independent e ∼ N (0, σ)
of other inputs)

Internal basis for decision making f̂(x) + e

Model Comparison εk = {xuk ,xvk}
(non-parametric) A set of K comparisons E = {εi|i = 1..K}

A set of responses Y = {(yk; εk)|k = 1..K}
Hyperparameters in the model θ = {θGP ,θL}

R
es
p
o
n
se Likelihood p(yk|f(xuk), f(xvk ),θL) =

. . .of observing a particular p(yk|fk,θL)
response given the function.

F
u
n
ct
io
n

Function f : RD → R

i.e. x �→ f(x)
Single value (a random variable) f(x)

Multiple values (L random variables) f = [f(x1), f(x2), ..., f(xL)]
�

. . .for a particular comparison fk = [f(xuk), f(xvk )]
�

In step C users convert their internal cognitive representation of the musical
excerpts into a representation that can be used to compare the two based on
the instructions given, which in our case comprise questions representing valence
and arousal. Our assumption is that humans have an internal value f̂(xi) + ei
representing the valence or arousal value of a given excerpt xi indexed by i.
Given the great number of uncertainties involved in the self-report, we reasonably
assume there is uncertainty on f̂(x) which is denoted e ∼ N (0, σ). Prior to step

C the user decides which of the two excerpts f̂(xu) + eu and f̂(xv) + ev is the
largest given the cognitive dimension, and makes a decision which modelled by
additive noise denoted yk ∈ {−1,+1}, where the subject’s selection is illustrated
by step C in Figure 1.

In step D the analysis and modeling of the user’s response takes place. With
the aim of a predictive model, i.e., predicting the pairwise responses for unseen
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music excerpts, this calls for a special modeling approach. The method applies a
principled statistical modeling approach, relying on a choice model taking into
account the noise, e, on the (assumed) internal representation. Secondly, the
modeling approach places this choice model (likelihood function) in a Bayesian
modeling framework, allowing for predictive capabilities. This results in a math-
ematical representation of the assumed internal representation of emotion, de-
noted f(x), for a given excerpt. This representation like the internal, only makes
sense when compared to the representation of other excerpts. The technical as-
pect of the modeling approach is described in the following sub-sections.

2.1 Likelihood

The decision process underlying 2AFC was considered in the seminal paper of
Thurstone [27]. The main assumption is that the choice between two excerpts is
based on the internal ’value’ for each object which has a particular additive noise
element. The decision is then based on the probability of the noisy internal ’value’
of u or v being larger. If the additive noise is assumed to be distributed according
to a Normal distribution, and independent from object to object, then the well-
know probit choice model is obtained [28]. The probit choice model defines the
likelihood of observing a particular response yk ∈ {−1,+1} as

p
(
yk|f

(
xuk

)
, f

(
xvk

)
, θL

)
= Φ

(

yk
f
(
xuk

)− f
(
xvk

)

√
2σ

)

(1)

where Φ(·) denotes the cumulative Normal distribution. The function values
f(xu) and f(xv) are the model variables representing the assumed internal rep-
resentation. However, the likelihood is seen to be dependent on the difference
between the two (assumed) internal representations, in effect this means that
the function itself has no absolute meaning and decisions are only based on dif-
ferences. The noise variance on the (assumed) internal representation is denoted
σ and provides a simple model of the internal noise process.

2.2 Latent Function

Given the response and likelihood function defined in Equ. (1), the remain-
ing question relates to the latent function f : X → R defining the function
values,f(x), for each input, x ∈ X .

In this work we propose a non-parametric approach, in essence directly es-
timating values for individual f(x)’s, i.e., not through a parametric function
(e.g. f(x) = w�x). This is mainly motivated by the fact that the complexity of
the underlying representation is virtually unknown, i.e., whether the problem is
linear or non-linear is an open question which is best evaluated by allowing for
very flexible function classes.

The non-parametric approach provides extreme flexibility, and we consider
this in a Bayesian setting where we first assume that the likelihood factorizes,
i.e., p (Y|f) = ∏K

k=1 p (yk|fk, θL). This in effect means that, given the cognitive
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representation, represented by f(·), we assume that there are no dependencies
between the responses to the different comparisons. Thus, it is essential that the
experimental procedure does not introduce a particular order of comparisons
which may cause dependencies and systematic errors.

Given the factorized likelihood and placing a prior on the individual function
values, p(f |X ), the Bayesian approach directly provides the inference schema via
Bayes relation. I.e. when keeping the hyperparameters, θ, constant, the posterior
is directly given by

p(f |X ,Y, θ) =
p(f |X , θGP )

K∏

k=1

p (yk|fk, θL)

p(Y|X , θ)
(2)

The natural prior for the individual function values is a Gaussian Process (GP)
[24]. This was first considered with the pairwise probit likelihood in [4]. A GP
is defined as “a collection of random variables, any finite number of which have
a joint Gaussian distribution” [24]. The GP provides a mean for each individual
f(x), and correlates the functional values through a correlation function which
implies some notion of smoothness; the only constraint on the function. With a
zero-mean function, such a GP is denoted by f (x) ∼ GP (0, k (x,x′)) with co-
variance function k(x,x′). The fundamental consequence is that the GP can be
considered a distribution over functions, which is denoted as p (f |X ) = N (0,K)
for any finite set of N function values f = [f(x1), ..., f(xN )]�, where [K]i,j =
k(xi,xj). This means that the correlation between a function value is defined
by the input x, for example audio features. The correlation function allows pre-
diction by calculating the correlation between a new input and already observed
inputs in terms of their audio features.

A common covariance function is the so-called squared exponential (SE) co-

variance function defined as k (x,x′) = σ2
f exp

(
−‖x− x′‖22

/
σ2
l ), where σf is

a variance term and σl is the length scale, in effect, defining the scale of the
correlation in the input space. This means that σ� defines how correlated two
excerpts are in terms of their features. A special case arises when σl → 0 which
implies that the function values of two inputs are uncorrelated. In this case,
knowing the functional of one input cannot be used to predict the function value
of another due to the lack of correlation. On the other hand when σl → ∞ the
functional values are fully correlated i.e., the same.

For robustness, we provide a simple extension to the original model proposed
in [4] by placing hyperpriors on the likelihood and covariance parameters, which
act as simple regularization during model estimation. The posterior then yields
p(f |X ,Y, θ) ∝ p (θL|·) p (θGP |·) p(f |X , θGP)p (Y|f ), where p(θ|·) is a fixed prior
distribution on the hyperparameters and a half student-t is selected in this work.

Inference. Given the particular likelihood, the posterior is not analytically
tractable. We therefore resort to approximation and in particular the relatively
simple Laplace approximation [24], which provides a multivariate Gaussian ap-
proximation to the posterior.
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The hyperparameters in the likelihood and covariance functions are point es-
timates (i.e., not distributions) and are estimated by maximizing the model evi-
dence defined as the denominator in Equ. 2. The evidence provides a principled
approach to select the values of θ which provides the model that (approximately)
is better at explaining the observed data (see e.g. [2,24]). The maximization is
performed using standard gradient methods.

Predictions. To predict the pairwise choice y∗ on an unseen comparison be-
tween excerpts r and s, where xr ,xs ∈ X , we first consider the predictive dis-
tribution of f(xr) and f(xs). Given the GP, we can write the joint distribution

between f ∼ p (f |Y,X ) and the test variables f∗ = [f (xr) , f (xs)]
T
as

[
f

f∗

]

= N
([

0

0

]

,

[
K k∗
kT
∗ K∗

])

, (3)

where k∗ is a matrix with elements [k∗]i,2 = k(xi,xs) and [k∗]i,1 = k(xi,xr)
with xi being a training input.

The conditional p (f∗|f) is directly available from Equ. (3) as a Gaussian
too. The predictive distribution is given as p (f∗|Y,X ) =

∫
p (f∗|f) p (f |Y,X ) df ,

and with the posterior approximated with the Gaussian from the Laplace ap-
proximation then p (f∗|Y,X ) will also be Gaussian given by N (f∗|μ∗,K∗) with
μ∗ = kT

∗ K
−1f̂ and K∗ = K∗ − kT

∗ (I+WK)−1W k∗, where f̂ and W are
obtained from the Laplace approximation (see [24]). In this paper, are often in-
terested in the binary choice y∗, which is simply determined by which of f(xr)
or f(xs) is the largest.

2.3 Sequential Experimental Design

The acquisition of pairwise observations can be a daunting and costly task if the
database contains many excerpts due to the quadratic scaling of the number of
possible comparisons. An obvious way to reduce the number of comparisons is
only to conduct a fixed subset of the possible comparisons in line with classical
experimental design. In this work we propose to obtain the most relevant exper-
iments by sequential experimental design, also known as active learning in the
machine learning community. In this case comparisons (each with two inputs)
are selected in a sequential manner based on the information provided when
conducting the particular comparison. The information considered here is based
on the entropy of the predictive distribution or change in the entropy.

We consider the set of comparisons conducted so far, Ea, which gives rise to
a set of unique inputs Xa and a response set Ya which are all denoted as active
set(s). Secondly, we consider a set of candidate comparisons, Ec, , which gives
rise to a set of unique inputs Xc and an unknown response set Yc. The task is to
select the next comparison ε∗ = {xu∗ ,xv∗} from Ec. The following three cases is
considered for solving this task:
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Random: The next pairwise comparison is selected at random from the set of
candidate comparisons.

VOI (Value of Information): Selection of the next comparison with the max-
imum entropy (i.e., uncertainty) of the predictive distribution of the model1,
S (f∗|ε∗, Ea,Ya, θ).

The next comparison is simply selected by argmax
ε∗∈Ec

S (f∗|ε∗, Ea,Ya, θ).

The predictive distribution is a bivariate normal distribution which has the

entropy [5], S (f∗|ε∗, Ea,Ya, θ) = 1
2 log

(
(2 · π · e)D|K∗|

)
. Where |K∗| de-

notes the determinant of the (predictive) covariance matrix.
EVOI (Expected Value of Information): In the Bayesian framework it is

possible to evaluate the expected entropy change of the posterior which was
suggested in the work of Lindley [18]. Hence, the information of conducting
a particular comparison is the change in entropy of the posterior i.e.,

ΔS (f) = S (f |y∗, ε∗,Xa,Ya, θ)− S (f |Xa,Ya, θ)

The expectation in regards to y can be shown to yield [19]

EVOI (ε∗) =
∑

y∈{−1,1}
p (y∗|ε∗,Xa,Ya, θ)ΔS (f |y∗, ε∗,Xa,Ya, θ) (4)

=
∑

y∈{−1,1}

∫
p (y∗|f∗,Xa,Ya, θ) p (f∗|ε∗,Xa,Ya, θ) log p (y∗|f∗,Xa,Ya, θ) df∗

−
∑

y∈{−1,1}
p (y∗|ε∗,Xa,Ya, θ) log p (y∗|ε∗,Xa,Ya, θ)

(5)

Thus, the next comparison is chosen as argmax
ε∗∈Ec

EVOI (ε∗). The (inner) inte-

gral is analytical intractable and requires numerical methods. This is feasibly
only due to the low dimensionality (which is effectively only one, since con-
sidering the difference distribution). An analytical approximation has been
proposed for standard classification [10]; however, here we rely on numerical
integration based on adaptive Gauss-Kronrod quadrature.

2.4 Evaluation

In order to evaluate the performance of the proposed modeling approach, we
use a specific Cross Validation (CV) approach and baselines for verification and
significance testing. When dealing with pairwise comparisons the way the cross
validation is set up is a key issue.

1 Alternatively we may consider the predictive uncertainty on the response, y∗. See
e.g. [3] for a general discussion of various information criterion.
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Cross Validation
In previous work [21] we evaluated the ability of the GP framework to rank ex-
cerpts on the dimensions of valence and arousal using learning curves. To obtain
the learning curves, Leave-One-Out CV was used and in each fold a fraction
of comparisons was left out. These comparisons are potentially connected and
thus, to evaluate the ability of the model to predict an unseen excerpts rank, all
comparisons with an excerpt must be left out in each fold. Thus in the present
work we use a Leave-One-Excerpt-Out (LOEO) method. Learning curves are
computed as a function of the fraction of all available comparisons, evaluating
the question of how many pairwise comparisons are needed to obtain a com-
petitive predictive model. Each point on the learning curves is computed as an
average of 50 randomly chosen equally-sized subsets from the complete training
set. The reasoning behind this is that testing all unique possible combinations of
e.g. choosing 8 out of 15 excerpts is exhausting, so random repetitions are used
to obtain robust learning curves.

Baselines
Three basic baselines are introduced that consider the distribution of the pair-
wise comparisons, namely a random baseline (Basernd) and two that only predict
one class (Base+1 and Base−1), i.e., excerpt u always greater than excerpt v, or
vice versa. This takes into account that the data set is not balanced between the
two outcomes of +1 and −1. An additional baseline (Baseupper) is introduced.
Given a model type, a baseline model of same type is trained on both training
and test data and evaluated on the test data for that given CV fold. This pro-
vides an upper limit of how well it is possible for that given model and features
can perform. Furthermore, a baseline model Baselow is introduced that only
uses information from the comparisons available in each CV fold (not the audio
features). The model ranks excerpts using a tournament approach, counting the
number of times a specific excerpt has been ranked greater than another. The
number of wins is assigned to each excerpt’s f value. All excerpts that have no f
assignment are given the average f value of all available f values. To predict the
test data in each CV fold, the assigned f values are used, and for f values that
are equal a random choice is made with equal probability of either class. This
naive baseline model serves as a lower limit, which all models have to perform
better than.

Significance Testing
To ensure that each of the trained models perform better than Baselow we use
the McNemar paired test with the Null hypothesis that two models are the
same, if p < 0.05 then the models can be rejected as equal on a 5% significance
level.

AV-Space Visualization
In the principled probabilistic GP framework the latent function f(·) is directly
available to compare rankings between models. However for visualization to
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compare the rankings we use a reference numerical space. The ranking of ex-
cerpts, given by f(·), is assigned the same functional value as the reference
space, preserving the ranking of excerpts, but losing the relative distance given
by f(·). This allows us to average rankings across users, folds and repetitions.

3 Experiment and Data

3.1 Experiment

A listening experiment was conducted to obtain pairwise comparisons of ex-
pressed emotion in music using the 2AFC experimental paradigm. A total of 20
different 15 second excerpts were chosen, in the middle of each track, from the
USPOP20022 data set as shown in Table 2. The 20 excerpts were chosen such
that a linear regression model developed in previous work [19] maps 5 excerpts
into each quadrant of the two-dimensional AV space. A subjective evaluation
was performed to verify that the emotional expression throughout each excerpt
was considered constant. This fact, and using short 15 second excerpts, should
reduce any temporal change in the expressed emotion thus making post-ratings
applicable. A sound booth provided neutral surroundings for the experiment to

Table 2. Excerpts used in experiment

No. Song name

1 311 - T and p combo
2 A-Ha - Living a boys adventure
3 Abba - Thats me
4 Acdc - What do you do for money honey
5 Aaliyah - The one I gave my heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These R the thoughts
8 Alice Cooper - I’m your gun
9 Alice in Chains - Killer is me
10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 Ub40 - Version girl
20 Zz top - Hot blue and righteous

2 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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reduce any potential bias of induced emotions. The excerpts were played back
using closed headphones to the 13 participants (3 female, 10 male) age 16-29,
average 20.4 years old, recruited from a local high school and university. Par-
ticipants had a musical training of 0-15 years, on average 2 years, and listened
to 0-15 hours of music every day, on average 3.5 hours. Written and verbal in-
structions were given prior to each session to ensure that subjects understood
the purpose of the experiment and were familiar with the two emotional di-
mensions of valence and arousal. Furthermore instructions were given ensuring
that participants focused on the expressed emotions of the musical excerpts.
Each participant compared all 190 possible unique combinations. To reduce any
systematic connection between comparisons, each comparison was chosen ran-
domly. For the arousal dimension, participants were asked the question Which
sound clip was the most exciting, active, awake?. For the valence dimension the
question was Which sound clip was the most positive, glad, happy?. The reason-
ing behind these question lies in the communication of the dimensions of valence
and arousal, pilot experiments showed a lack of understanding when fewer words
were used. The two dimensions were evaluated independently and which of the
two dimensions should be evaluated first was chosen randomly. The total time
for the experiment was 4 hours, each session taking 1 hour in order to reduce
any fatigue. After the experiments, participants rated their understanding of the
experiment, the results can be seen in Table 3.

The understanding of the experiment and the scales was generally high, and it
was noted that people rated the audio higher than the lyrics as a source of their
judgments of the emotions expressed in music. The experiment had two atypical
participants, one had low overall understanding of the experiment because he did
not find the scales appropriate, and the other did understand the experiment,
but did not understand the scales or found them inappropriate.

Table 3. Results of post-experiment questions to the 13 participants. All ratings were
performed on a continuous scale, here normalized to 0-1. Results are presented as:
minimum-maximum (average).

Question Rating

General understanding 0.36-0.99 (0.70)
Understanding of scales 0.34-1.00 (0.84)
Appropriateness of scales 0.36-0.99 (0.78)
Lyrics, source of expressed emotion 0.00-0.74 (0.43)
Audio, source of expressed emotion 0.18-1.00 (0.69)

3.2 Audio Features

In order to represent the 15 second musical excerpts in later mathematical mod-
els, each excerpt is represented by audio features. These are extracted using four
standard feature-extraction toolboxes, the MIR[17], CT[23], YAAFE[22], and
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MA3 toolboxes, and furthermore the Echonest API4. An overview is given in
Table 4 of the features used from these toolboxes.

Due to the vast number of features used in MIR, the main standard features
are grouped. In addition, the Echonest timbre and pitch features have been
extracted, resulting in a total of 18 groups of features. The audio features have
been extracted on different time scales, e.g., MFCCs result in 1292 samples for 15
seconds of audio data, whereas pitch produce 301 samples. Often the approach
to integrate the feature time series over time is to assume that the distribution
of feature samples is Gaussian and subsequently the mean and variance are
used to represent the entire feature time series. In the present work, Gaussian
distributions are fitted where appropriate and beta distributions are fitted where
the distribution has a high skewness. The entire time series is represented by the
mean and standard deviation of the fitted distributions.

4 Experimental Results

In this section we evaluate the ability of the proposed framework to capture
the underlying structure of expressed emotions based on pairwise comparisons
directly. We apply the GP model using the squared exponential (SE) kernel
described in Sect. 2 with the inputs based on the groups of audio features de-
scribed in Sect. 3.2 extracted from the 20 excerpts. The kernel was initialized
with σl = 1 and σf = 2, furthermore the half student-t [7] hyperprior is initial-
ized with df = 4 and scale = 6. We present three different investigations into the
modeling of expressed emotions using the 2AFC paradigm. First a performance
evaluation of the 18 groups of features is performed finding the best combination
of features. These features are used in all subsequent results. Second, to investi-
gate the scaling issues of 2AFC, the subjective variation in the model’s predictive
performance is investigated, along with a visualization of the subjective variation
in rankings. Third, the question of how many pairwise comparisons are needed
to obtain a predictive model of expressed emotions in music is investigated. This
is evaluated using three different methods of selecting pairwise comparisons in
an experimental setup, namely using the EVOI or VOI active learning methods
or choosing comparisons randomly.

4.1 Performance of Features

The performance of the GP framework using the 18 different feature groupings
is evaluated using LOEO learning curves. The predictive performance for the va-
lence dimension is shown in Table 5. The single best performing feature, modeling
the valence dimension is the Fluctuations feature resulting in a classification er-
ror of 0.2389 using the entire training set. For valence the Echonest pitch feature
perform worse than Chroma and Pitch features from the CT toolbox although
the timbre features perform slightly better than the MFCC features which are

3 http://www.pampalk.at/ma/
4 http://the.echonest.com/

http://www.pampalk.at/ma/
http://the.echonest.com/
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Table 4. Acoustic features used for emotion prediction

Feature Description Dimension(s)

Mel-frequency
cepstral coeffi-
cients (MFCCs)1

The discrete cosine transform of the log-transformed
short-time power spectrum on the logarithmic mel-
scale.

20

Envelope (En)
Statistics computed on the distribution of the ex-
tracted temporal envelope.

7

Chromagram
CENS, CRP [23]

The short-time energy spectrum is computed and
summed appropriately to form each pitch class. Fur-
thermore statistical derivatives are computed to dis-
card timbre-related information.

12
12
12

Sonogram (Sono)

Short-time spectrum filtered using an outer-ear model
and scaled using the critical-band rate scale. An
inner-ear model is applied to compute cochlea spec-
tral masking.

23

Pulse clarity [16]
Ease of the perception by listeners of the underlying
rhythmic or metrical pulsation in music.

7

Loudness [22] Loudness is the energy in each critical band. 24

Spectral descrip-
tors (sd) [22] (sd2)
[17]

Short-time spectrum is described by statistical mea-
sures e.g., flux, roll-off, slope, variation, etc.

9
15

Mode, key, key
strength [17]

Major vs. Minor, tonal centroid and tonal clarity.
10

Tempo [17]
The tempo is estimated by detecting periodicities on
the onset detection curve.

2

Fluctuation Pat-
tern [17]

Models the perceived fluctuation of amplitude-
modulated tones.

15

Pitch [23]
Audio signal decomposed into 88 frequency bands
with center frequencies corresponding to the pitches
A0 to C8 using an elliptic multirate filterbank.

88

Roughness [17] Roughness or dissonance, averaging the dissonance
between all possible pairs of peaks in the spectrum.

2

Spectral Crest fac-
tor [22]

Spectral crest factor per log-spaced band of 1/4 oc-
tave.

23

Echonest Timbre Proprietary features to describe timbre. 12

Echonest Pitch
[17]

Proprietary chroma-like features.
12



268 J. Madsen, B.S. Jensen, and J. Larsen

Table 5. Valence: Classification error learning curves as an average of 50 repetitions
and 13 individual user models, using both mean and standard deviation of the features.
McNemar test between all points on the learning curve andBaselow resulted in p < 0.05
for all models except results marked with *, with a sample size of 12.350.

Training size 5% 7% 10% 20% 40% 60% 80% 100%

MFCC 0.4904 0.4354 0.3726 0.3143 0.2856 0.2770 0.2719 0.2650
Envelope 0.3733 0.3545 0.3336 0.3104 0.2920 0.2842 0.2810 0.2755
Chroma 0.4114* 0.3966* 0.3740 0.3262 0.2862 0.2748 0.2695 0.2658
CENS 0.4353 0.4139 0.3881 0.3471 0.3065 0.2948 0.2901* 0.2824
CRP 0.4466 0.4310 0.4111 0.3656 0.3066 0.2925 0.2876 0.2826
Sonogram 0.4954 0.4360 0.3749 0.3163 0.2884 0.2787 0.2747 0.2704
Pulse clarity 0.4866 0.4357 0.3856 0.3336 0.3026 0.2930 0.2879 0.2810
Loudness 0.4898 0.4310 0.3684 0.3117 0.2854 0.2768 0.2712 0.2664
Spec. disc. 0.4443 0.4151 0.3753 0.3263 0.2939 0.2857 0.2827 0.2794
Spec. disc. 2 0.4516 0.4084 0.3668 0.3209 0.2916 0.2830 0.2781 0.2751
Key 0.5303 0.4752 0.4104 0.3370 0.2998 0.2918 0.2879 0.2830*
Tempo 0.4440 0.4244 0.3956 0.3559* 0.3158 0.2985 0.2933 0.2883
Fluctuations 0.4015 0.3584 0.3141 0.2730 0.2507 0.2433 0.2386 0.2340
Pitch 0.4022 0.3844 0.3602 0.3204 0.2926 0.2831 0.2786 0.2737
Roughness 0.4078 0.3974 0.3783 0.3313 0.2832 0.2695 0.2660 0.2605
Spec. crest 0.4829 0.4289 0.3764 0.3227 0.2994 0.2942 0.2933 0.2923
Echo. timbre 0.4859 0.4297 0.3692 0.3127 0.2859 0.2767 0.2732 0.2672
Echo. pitch 0.5244 0.4643 0.3991* 0.3275 0.2942 0.2841 0.2790 0.2743
Baselow 0.4096 0.3951 0.3987 0.3552 0.3184 0.2969 0.2893 0.2850

said to describe timbre. Including both mean and variance of the features showed
different performance for the different features, therefore the best performing for
valence and arousal was chosen resulting in both mean and variance for valence
and only mean for arousal.

The learning curves showing the predictive performance on unseen compar-
isons on the arousal dimension are shown in Table 6. The single best performing
feature, using the entire training set is Loudness resulting in an error rate of
0.1862. Here a picture of pitch and timbre related features seem to show a good
level of performance.

Using a simple forward feature selection method. the best performing combi-
nation of features for valence are fluctuation pattern, spectral crest flatness per
band, envelope statistics, roughness, CRP and Chroma resulting in an error of
0.1960 using the mean of the features. It should be noted that using only the
4 first produces an error of 0.1980. For arousal the best performing combina-
tion was Spectral descriptors, CRP, Chroma, Pitch, Roughness and Envelope
statistics using mean and standard deviation of the features results in an error
of 0.1688. All models trained for predicting valence and arousal are tested with
McNemar’s paired test against the Baselow, with the Null hypothesis that two
models are the same, all resulted in p < 0.05 rejecting the Null hypothesis of
being equal at a 5% significance level.
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Table 6. Arousal: Classification error learning curves as an average of 50 repetitions
and 13 individual user models, using only the mean of the features. McNemar test
between all points on the learning curve and Baselow resulted in p < 0.05 for all
models except results marked with *, with a sample size of 12.350.

Training size 5% 7% 10% 20% 40% 60% 80% 100%

MFCC 0.3402 0.2860 0.2455 0.2243 0.2092 0.2030 0.1990 0.1949
Envelope 0.4110* 0.4032 0.3911 0.3745 0.3183 0.2847 0.2780 0.2761
Chroma 0.3598 0.3460 0.3227 0.2832 0.2510 0.2403 0.2360 0.2346
CENS 0.3942 0.3735 0.3422 0.2994 0.2760 0.2676 0.2640 0.2621
CRP 0.4475 0.4336 0.4115 0.3581 0.2997 0.2790 0.2735 0.2729
Sonogram 0.3325 0.2824 0.2476 0.2244 0.2118 0.2061 0.2033 0.2026
Pulse clarity 0.4620 0.4129 0.3698 0.3281 0.2964 0.2831 0.2767* 0.2725
Loudness 0.3261 0.2708 0.2334 0.2118 0.1996 0.1944 0.1907 0.1862
Spec. disc. 0.2909 0.2684 0.2476 0.2261 0.2033 0.1948 0.1931 0.1951
Spec. disc. 2 0.3566 0.3223 0.2928 0.2593 0.2313 0.2212 0.2172 0.2138
Key 0.5078 0.4557 0.4059 0.3450 0.3073* 0.2959 0.2926 0.2953
Tempo 0.4416 0.4286 0.4159 0.3804 0.3270 0.3043 0.2953 0.2955
Fluctuations 0.4750 0.4247 0.3688 0.3117 0.2835 0.2731 0.2672 0.2644*
Pitch 0.3173 0.2950 0.2668 0.2453 0.2301 0.2254 0.2230 0.2202
Roughness 0.2541 0.2444 0.2367 0.2304 0.2236 0.2190 0.2168 0.2170
Spectral crest 0.4645 0.4165 0.3717 0.3285 0.2979 0.2866* 0.2828 0.2838
Echo. timbre 0.3726 0.3203 0.2797 0.2524 0.2366 0.2292 0.2258 0.2219
Echo. pitch 0.3776 0.3264 0.2822 0.2492 0.2249 0.2151 0.2089 0.2059
Baselow 0.4122 0.3954 0.3956 0.3517 0.3087 0.2879 0.2768 0.2702

4.2 Subjective Variation

By letting multiple test participants rate the same musical excerpts and model
these responses individually we can explore the subjective differences in greater
detail.

Learning Curves
To evaluate the differences between subjects in how well the model predicts their
pairwise comparisons, the LOEO learning curves for each individual are shown
in Fig. 2. The Baselow and Baseupper described in Sect. 2.4 are shown, which
indicate the window in which the proposed model is expected to perform. In
Fig. 2(b) the individual learning curves are shown, computed by using the best
performing combination of features as mentioned in Sect. 4.1. The difference in
performance between the average of all individual models and the Baseupper is
0.0919. Compared to the Baselow we see a difference of 0.0982, showing a large
improvement. The models trained in the data for participants 6 and 7 results
in a classification error of 0.2553 and 0.2526 respectively, compared with the
average of 0.1688 for the arousal dimension. Post-experiment ratings show that
participant 6 rated a low rating of understanding and appropriateness of the
scales of 0.3033 and 0.3172 respectively, although participant 7 rated a high un-
derstanding. In Fig. 2(a) the individual learning curves for the valence dimension
are shown. Participants 1 and 5 have an error rate when using the whole training
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Fig. 2. Individual classification error learning curves; Dashed black lines: individually
trained models, Bold black crosses: average across individual models

set of 0.2421 and 0.2447 respectively compared to the average of 0.2257. Partici-
pant 5 rated in the post questionnaire a lack of understanding of the scales used
in the experiment and furthermore did not find them appropriate. Participant 1
on the other hand did not rate any such lack of understanding. To investigate if
there is an underlying linear connection between the models’ classification error
and the participants’ post-questionnaire ratings, simple correlation analysis was
made for all questions, a correlation of 0.13 for the appropriateness of the scales
and the arousal was found and even less for the other questions, so no significant
correlation was found. Comparing the average performance of the individual
models and Baseupper , the difference in performance is 0.1109 using the whole
training set. Furthermore comparing it to Baselow the difference in performance
is 0.0887, showing an improvement of using audio features compared to only
using comparisons.

AV Space
The Gaussian Process framework can, given the features, predict the pairwise
comparisons given by each participant on unseen excerpts. This on the other
hand does not necessarily mean that participants’ rankings of excerpts on the
dimensions of valence and arousal are the same, which was investigated in pre-
vious work [20]. These variations in rankings of excerpts between subjects are
visualized in the AV space on Fig. 3 using the method mentioned in Sect. 2.4. Ex-
cerpts 5, 2, 7, 9 and 20 in the low-valence low-arousal quadrant of the AV space
show a relatively low variation in ranking, both in the dimension of valence and
arousal, whereas the excerpts in the low-valence high-arousal quadrant, namely
excerpts 12 and 15, have a high variation in both dimensions. It is evident that
participants agree on the ranking of some excerpts and fundamentally disagree
on some.
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Fig. 3. Variation in ranking of excerpts in the valence and arousal space. Solid lines:
5% percentile, dashed line 50% percentile. Number refers to Table 2.

4.3 Reducing the Number of Required Comparisons

In this section we investigate how the model performs using only a fraction
of available comparisons in predicting comparisons for unseen excerpts and to
visualize the subsequent change in ranking of excerpts in the AV space.

Learning Curves
We investigate howmany comparisons are needed to obtain a predictive model us-
ing LOEO learning curves. The traditional method of selecting a comparison in an
experimental setup is simply to choose one at random fromthe comparisonsdefined
by the experiment. This was the procedure in the listening experiment described in
Sect. 3. But on the other hand this might not be the optimal way of choosing what
comparisons should be judged by participants. Thereforewe simulate if these com-
parisons can be chosen in alternative ways that can potentially improve the per-
formance and decrease the number of comparisons needed to obtain a predictive
model. As described in Sect. 2.3 we compare the procedure of using random se-
lection of comparisons and the EVOI and VOI model. On Fig. 4 we see the three
methods in detailed learning curveswith aMcNemar paired test between themodel
selecting comparisons at random and the EVOI and VOI models. The largest per-
formance gains using the sequential design method EVOI are seen on the valence
dimension using 4% of the training data, improving 0.105 and for arousal at 2.5%
improving 0.106. Visually it is apparent that the EVOImodel produces the largest
improvement compared to selecting comparisons randomly. The difference after
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Fig. 4.Classification error learning curves comparing the EVOI, VOI and Rand models.
The secondary graph below the learning curves shows filled squares when p > 0.05 and
white when p < 0.05 using the McNemar’s paired test. The test is performed between
the the Rand model and the two EVOI and VOI.

10% of the training data is 0.041 decreasing to 0.015 at 20% with the same perfor-
mance gain until 40%and gain in performance is obtained until all comparisons are
judged for the valence dimension. On the arousal dimension the improvement after
4 comparisons is 0.104 and from 10% to 50% an improvement is achieved around
0.015 and 0.010. For arousal the VOImodel improves the performance around 0.08
in the beginning of the learning curve at around2-3%.Using 20%of the training set
and above, selecting comparisons at random results in a better performance than
selecting with the VOI model for arousal.

To evaluate the number of comparisons needed to obtain a predictive model we
set a 95% performance threshold, using the entire training set. The EVOI model
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Fig. 5. AV space visualizing the change in ranking of the models trained on a fraction
of available comparisons. EVOI model trained on 15.20% and 8.77% of the training set,
VOI model trained on 21.64% and 14.04% and model selecting comparisons randomly
(Rand) on 23.39% and 15.79% for valence and arousal respectively. Numbers refer to
Table 2. Method of visualization in the AV space is described in Sect. 2.4.

achieves this performance corresponding to 0.2362 using only 15.2%of the training
set, whereas the VOImodel reaches this level using 21.64% andwith random selec-
tion at 23.39% for the valence dimension. On the arousal dimension, the threshold
performance corresponds to an error rate of 0.2104, choosing comparisons at ran-
dom the model reaches this 95% performance level at 15.79% of the comparisons
in the training set, the VOI model at 14.04% and the EVOI at 8.77%.

AV Space
Using a threshold we ensure that we reach a certain predictive performance,
the consequence this has on the ranking of the excerpts in the AV space on the
other hand could potentially be dramatic. Therefore we visualize the ranking of
excerpts using the threshold discussed in the last section. The reference point
to compare the change in rankings is the model trained on all comparisons for
each subject individually. The rankings are visualized in the AV space on Fig. 5.
Judging by the position of the excerpts in the AV space, the change in ranking
is relative small, although on some excerpts the ranking does change, using the
95% performance threshold ensures that we have a good predictive performance
and still reach the final ranking.
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5 Discussion

The results clearly indicate that it is possible to model expressed emotions in
music by directly modeling pairwise comparisons in the proposed Gaussian pro-
cess framework. How to represent music using structural information is a key
issue in MIR and the field of MER. In this work we use audio features and the
optimal combination is found using learning curves and forward-feature selec-
tion. On the data set deployed, we find the gain of using audio features to predict
pairwise comparisons on the dimensions of valence and arousal is 0.09 and 0.10,
respectively. To make this comparison it is essential to have a proper baseline
model which we introduce using the novel baseline Baselow. The baseline makes
predictions solely by looking at the comparisons, and by disregarding any other
information. The baseline performs similarly to a model with σl → 0, resulting in
no correlation between any excerpts as mentioned in Sect. 2.2. We can therefore
ensure that we do capture some underlying structure represented in the music
excerpts that describes aspects related to the expressed emotions in music.

Furthermore we observe a small gain in performance on the learning curves
when including more comparisons for prediction. One aspect could be attributed
to the pairwise comparisons, but the Baseupper shows a very high performance,
and given the flexibility of the GP model, it is plausible that this lower perfor-
mance can be attributed to the audio feature representation.

The issue of scalability is addressed in the present work by investigating the
possibility of using multiple participants to make judgments on subsets of a
larger data set, and subsequently pooling this data to obtain one large data set.
This is investigated by having 13 subjects make comparisons on the same data
set and training individual models on their comparisons. The GP framework
can model each individual well, although a few models show a relatively higher
error rate than others. These can be attributed to lack of understanding of the
experiment, scales and appropriateness of scales. Although no clear connection
can be attributed solely to the post-questionnaire answers by participants as
investigated by using simple correlation analysis. Either they reported incorrectly
or the model and features do not capture their interpretation of the experiment.
If one used comparisons from these subjects it could increase the noise in the
larger data set. When visualizing the ranking in the AV space, as investigated in
previous work, we furthermore see a large subjective difference in both valence
and arousal for some excerpts. Even though individual models are trained, the
difference in rankings would make the solution to the scalability of the 2AFC by
pooling subsets of data sets problematic at best.

An alternative method in making 2AFC scalable for evaluating large music
collections is to reduce the number of pairwise comparisons, which we investi-
gate by detailed learning curves. The full Bayesian active-learning method EVOI
shows the ability of potentially substantially reducing the required number of
comparisons needed to obtain a predictive model down to only 15.2% of the
comparisons for valence, resulting in 1.3 comparisons per excerpt, and 8.77%,
resulting in 0.75 comparisons per excerpt. Although this result is obtained by
sampling from the experimental data, the results are promising. Future work can
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look into the performance achieved by following the active learning principle ap-
plied in the experimental design. In addition, more efficient methods of relative
experimental designs should be investigated to obtain multiple pairwise compar-
isons and still preserving the robustness that the 2AFC provides. Furthermore,
based on the findings in present work, more extensive work should be done to
find features or representations of features that describe and capture the aspects
that express emotions in music.

6 Conclusion

We introduced a two-alternative forced-choice experimental paradigm for quan-
tifying expressed emotions in music along the well-accepted arousal and valance
(AV) dimensions. We proposed a flexible probabilistic Gaussian process frame-
work to model the latent AV dimensions directly from the pairwise comparisons.
The framework was evaluated on a novel data set and resulted in promising
predictive error rates. Comparing the performance of 18 different selections of
features, the best performing combination was used to evaluate scalability issues
related to the 2AFC experimental paradigm. The possibility of using multiple
subjects to evaluate subsets of data, pooled to create a large data set was shown
to potentially be problematic due to large individual differences in ranking ex-
cerpts on the valence and arousal dimensions. Furthermore, the scalability of the
2AFC and the possibility of using only a fraction of all potential pairwise com-
parisons was investigated. By applying the active learning method, Expected
Value of Information, we showed that a suitable predictive model for arousal
and valence can be obtained using as little as 9% and 15% of the total number
of possible comparisons, respectively.
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