
Algorithms for Compression on
GPUs

Anders L. V. Nicolaisen, s112346

Tecnical University of Denmark
DTU Compute

Supervisors: Inge Li Gørtz & Philip Bille

Kongens Lyngby , August 2013
CSE-M.Sc.-2013-93



Technical University of Denmark
DTU Compute
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@compute.dtu.dk
www.compute.dtu.dk CSE-M.Sc.-2013



Abstract

This project seeks to produce an algorithm for fast lossless compression of data.
This is attempted by utilisation of the highly parallel graphic processor units
(GPU), which has been made easier to use in the last decade through simpler
access. Especially nVidia has accomplished to provide simpler programming of
GPUs with their CUDA architecture.

I present 4 techniques, each of which can be used to improve on existing
algorithms for compression. I select the best of these through testing, and
combine them into one final solution, that utilises CUDA to highly reduce the
time needed to compress a file or stream of data.

Lastly I compare the final solution to a simpler sequential version of the
same algorithm for CPU along with another solution for the GPU. Results
show an 60 time increase of throughput for some files in comparison with the
sequential algorithm, and as much as a 7 time increase compared to the other
GPU solution.

i



ii



Resumé

Dette projekt søger en algoritme for hurtig komprimering af data uden tab
af information. Dette forsøges gjort ved hjælp af de kraftigt parallelisérbare
grafikkort (GPU), som inden for det sidste årti har åbnet op for deres udnyt-
telse gennem simplere adgang. Specielt nVidia har med deres CUDA arkitektur
formået at gøre programmering til grafikkort enklere.

Jeg præsenterer 4 teknikker, der hver især kan bruges til at forbedre allere-
de eksisterende kompressionsalgoritmer. Gennem test udvælger jeg de bedste,
og sammensætter dem til én samlet løsning, der benytter sig af CUDA til kraf-
tigt at nedsætte tiden nødvendig for at komprimere en fil eller strøm af data.

Til sidst sammenligner jeg den endelige løsning med en simplere sekven-
tiel udgave af samme kompressionsalgoritme til CPU’en samt en anden GPU-
løsning. Resultatet viser mere end 60 gange forøget hastighed for enkelte tilfælde
af filer i forhold til den sekventielle algoritme, og op til 7 gange for den anden
GPU-løsning.

iii



iv



Preface

This master’s thesis has been prepared at DTU Compute from February 2013
to August 2013 under the supervision by associate professors Inge Li Gørtz
and Phillip Bille in fulfilment of the requirement for acquiring an M.Sc. in
Computer Science and Engineering. It has an assigned workload of 30 ECTS
credits.

Acknowledgements

I would like to thank my supervisors for their guidance and incredible patience
during the project. A special thanks to my girlfriend who waited for me in the
new apartment 300 kilometres away. Also a thanks to old DDD3, who made
me go through with this level of education.

Anders L. V. Nicolaisen

August, 2013

v



vi



Contents

Abstract i

Resumé iii

Preface v

1 Introduction 1
1.1 This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Lossless Data Compression 5
2.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Sequential Solutions . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Parallel Solutions . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Approach Based on Previous Works . . . . . . . . . . . . . . . . 9

3 Definition of LZSS 11
3.1 The Compression Algorithm . . . . . . . . . . . . . . . . . . . . . 12
3.2 Different Possible Methods for Searching the Dictionary of LZSS 13

4 Graphical Processing Units 15
4.1 CUDA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Reconstructing the CULZSS 19
5.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Output Format of GPU Kernel . . . . . . . . . . . . . . . . . . . 20
5.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 Final Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



viii

6 Improvement Proposals for CANLZSS 23
6.1 A Different Implementation of LZSS . . . . . . . . . . . . . . . . 23

6.1.1 Handling the Buffers . . . . . . . . . . . . . . . . . . . . . 25
6.1.2 Dynamic Block/Thread Assignment . . . . . . . . . . . . 25
6.1.3 Handling the Padded Length . . . . . . . . . . . . . . . . 25

6.2 Bit-Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Increase of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 KMP Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 28

7 Experiments and Results 29
7.1 Testbed Configurations . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Experimental Results of Proposals . . . . . . . . . . . . . . . . . 30

7.3.1 Part Conclusion on the Results . . . . . . . . . . . . . . . 31

8 Parameter tuning 33

9 Performance Evaluation 35
9.1 Potential of Using GPUs for Compression . . . . . . . . . . . . . 35
9.2 Comparing to Other GPU Solutions . . . . . . . . . . . . . . . . 35

10 Conclusion 37
10.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

A Different LZSS implementations 43
A.1 Okumura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Dipperstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



1 Introduction

Compression addresses the issue of reducing storage requirements of data and
still maintaining the integrity of the information or what seems to be the same
data.

When data needs to be interpret by human senses, compressed data may not
need to be a complete representation of the original sequence of bytes. This
is called lossy compression and is used on pictures and music, where some
information can be omitted and still seem to be similar to the original by the
human eye or ear.

Lossless compression is the process where information is not lost - mostly be-
cause the integrity of the data cannot tolerate it to be reduced. Instead, the
data is stored differently, but maintaining the original information when de-
compressed accordingly. The basic principle is, that any non-random file will
contain duplicated information, and by using statistical techniques on these
duplicates,

Lossless compression is a widely researched area and is used in a variety of
applications. One of the largest fields of application is the transfer of data
over I/O channels. Bandwidth is always limited and pose as bottleneck, so
a decrease in information needed to be transferred is always an improvement.
This is especially the case with servers of webpages. In order to reduce the I/O
needed for transferring the webpage or other files to the client, the webserver
often use one or more of the most widespread compression methods, such as
GZIP or BZIP2. As the names suggest, they both are somewhat related. In the
case of these two, they, to some extent, implement the initial works of Lempel
and Ziv from 1977 [17], also known as LZ77. The client then apply the reverse
function of compression (decompression) to the downloaded material and ends



2 Introduction

up with the original collection of data to be read or executed.

1.1 This Report

In this thesis I propose an algorithm for lossless data compression utilising
graphic processing units (GPU) to attain a substantial speed-up and relieve
the CPU for other tasks. The output format of the algorithm is required to
be readable by simpler clients, which might not have a GPU at disposal, so
the format should be able to be reversed by slower CPUs. Preferably should
the output format be well-known and widely implemented, such that additional
software is not needed.

The focus will be on fast compression of files and not fast decompression, as
the format should be usable by already known algorithms.

1.2 Preliminaries

This section introduce some of the notation used throughout the report.

1.2.1 Notation

The term character (char in ANSI C) is often used throughout this report and
represents an octet of bits. Implementations exists where a char is of 16 or 32
bits, but in this report it is always referred to as 8 bit.

Unless otherwise stated, all data (and files) are perceived as a one-dimensional
array in convention with the ANSI C form: type identifier [size] = {first,
second, third, ..., size-1}, with starting index at 0 (zero). Splitting
files or data can simply denote dividing into several arrays or keeping multiple
boundary indices. Length of data will therefore be defined as the size of
the one-dimensional array.

The abbreviations GPGPU for “general purpose graphic processor unit”, and
the simpler GPU, are used arbitrarily throughout the report, but reference the
same thing.



1.2 Preliminaries 3

Also the term of compressing information can also be referred to as encoding.
Even though the two words ordinarily have different meaning, in this context
they both characterise the notion of reducing space requirements of data.

1.2.2 Evaluation

• Speed: The amount of time for the entire execution. It would in some
cases be sufficient to measure the kernel execution of the GPU isolated,
but some preliminary and subsequent work is usually needed, so the speed
or throughput is measured as the total accumulated milliseconds; or sec-
onds where appropriate.

• Ratio: The actual compression in percent. This is the difference between
the size of the compressed output compared to the input data.

Formally we define:

• Execution time for preliminary work (Tpre)

• GPU Kernel execution time (Tkernel)

• Execution time for post-processing (Tpost)

• Count of encoded characters (Nenc)

• Length of original data (Norg)

Speed and Ratio can be defined as:

Speed = Tpre + Tkernel + Tpost

Ratio = (Nenc · 100)/Norg

For both speed and ratio does it hold, that less is better. If a ratio is 100%
or more, then no compression has been done, and the original input should be
returned by the algorithm.



4 Introduction



2 Lossless Data Compression

Two major approaches are used in lossless data compression: Statistical and
dictionary methods. Statistical methods such as the Run-Length Encoding anal-
yses the input and encodes it in terms of the running length of a character, word
or sentence. See this example:

Input : AAABBCCDEEEEEEAAAAAAAAAAAAAAAAAA

Output : 3A2B2C1D6E18A

This form of compression is especially useful when working with highly-redundant
data like images.

Dictionary methods keeps prior analysed portions of the text to search for
existence of a current word and try to replace it with a smaller reference to the
previous encounter. Examples hereof can be seen in chapter3.

2.1 Previous Works

I start by presenting an overview of the previous work in implementing and
extending the algorithms for universal data compression, divided into sections
of sequential and parallel solutions.

2.1.1 Sequential Solutions

Lempel and Ziv 1977 [17] (LZ77) used a dictionary encoding technique with
two buffers: a sliding window search buffer and an uncoded look-ahead



6 Lossless Data Compression

buffer. More on this in chapter 3.

Lempel and Ziv 1978 [28] (LZ78) differ from their previous approach by
constructing an explicit dictionary, that does not need the decoding of
the entire corpus for reference, and can as such be used to do random
lookup during decompression.

Welch 1984 [27] (LZW) this extension of the LZ78 removes redundant char-
acters in the output, which then consist entirely of pointers. Welch also
introduced variable-encoding, which further reduced the space require-
ment for the pointers, as the first element in the dictionary only took
up 1 bit, and whenever all bit-positions per element where exhausted, an
extra bit got introduced to the coming elements, until some prescribed
maximum. Having an explicit dictionary proved efficient when the input
had a final alphabet, such as the colours of an image. This led to the
usage of LZW in the Graphics Interchange Format (GIF).

Burrows and Wheeler 1994 [5] presented a new variant of Huffman cod-
ing, which proved to have speed improvements compared to implementa-
tions of Lempel-Ziv at the time and still obtain close to best statistical
compression. They used a technique to divide the input into smaller
instances, and processing these blocks as a single unit. using simple com-
pression algorithms

2.1.2 Parallel Solutions

Multithreading data compression can be done by splitting the input data up into
several chunks, preferably into the same number of threads as available cores,
and let each thread do the exact same sequential work, and after processing,
merge the chunks back into a complete result.

This process can be done in disregard of the memory hierarchy, memory latency
and synchronisation of the executing system, but would not be particularly
efficient, so most implementations take these considerations into account, and
do further division of workload to accommodate each level of memory during
execution.

2.1.2.1 Parallel Solutions for CPU

All of the following use the idea of splitting up the work needed into the number
of cores available and using POSIX Threads (Pthreads) for processing.



2.1 Previous Works 7

Gilchrist 2003 [10] extended the approach used in the BZIP2 block-sorting
compression application [24] and let blocks of input data be processed
through the Burrows-Wheeler Transform[5] simultaneously on multiple
processors using Pthreads. For each additional processor to distribute
the algorithm in parallel, a speedup was seen. Trying the algorithm with
2 processors with steps of 2 up to 20 processors, the speedup was near
linear and performed 88% better than the original BZIP2 as baseline.

Adler and Gailly 2004 [19, 1] included into the ZLIB compression library
in 2004 the PIGZ (pig-zee) algorithm, which is a parallel implementation
with Pthreads using GZIP[18] in the same approach as Gilchrist.

Klein and Wiseman 2005 [14] improved the encoding and decoding times
of Lempel-Ziv schemes such as LZSS and LZW. Found improvement in
compression over the simple parallelisation, however, with a greater exe-
cution time. With 4 parallel processors, the proposed method only gained
approximately a 2x speedup over the sequential implementation.

Kane and Yang 2012 [13] utilizing multi-core processors to parallelise block
compression using the Lempel-Ziv-Oberhumer (LZO)[20] to pursue a per-
formance proportional to the number of processor cores in the system.
Gaining a 3.9x performance speedup on a quadcore processor without
degradation of compression ratio, with the possibility for a speedup of
5.4x when compression ratio is not of primary importance.

In 2004 patented Google a “Parallel Compression and Decompression System”[9].
A piece of hardware designed for the reduction of data bandwidth and storage
requirements for in-memory data to be used in a computer architecture. The
purpose of the system, which consists of several compression/decompression
(codec) engines to execute in parallel or in streams, to relieve the CPU from
running software implementations. The engines of the system could in theory
be using different kind of compression algorithms, but the patent itself only
shows a variable-length encoding scheme implemented in hardware.
The purpose of the system was to be implemented in server structures to further
utilise volatile memory and non-volatile storage. However, with the advent of
GPGPUs in servers, and not just in desktop computers, the exact same could
be attained by using the GPU-architecture to reduce the load of the CPU -
and GPUs can even be used by much more versatile algorithms instead of just
compression schemes.



8 Lossless Data Compression

2.1.2.2 Parallel Solutions for GPU

The use of GPGPU in algorithmic design is still a relatively new area of research,
and therefore not many solutions has been made in the field of data compression.
However, some ports of compression algorithms onto GPU have been made, and
the following are the most, though relatively little, cited.

Notice the publication years of the research; it gives an indication of how re-
cently GPGPUs have gotten the attention of scientific computing.

Balevic et al. 2008 [3], 2010 [2] parallellising the inherently serialVariable-
Length Encoding onto a GPGPU. The paper presents the novel algorithm
parallel VLE (PAVLE ), which gives a 35x-50x speedup compared to a
serial Huffman code[11] implementation.

Eirola 2011 [8] addressing the problem of scaling implementations from par-
allel CPU cores onto the GPU efficiently. As the GPU has hundreds
of processors and a non-general memory accessing scheme, splitting the
data into smaller chunks may not be feasible. Eirola singles out the parts
of BZIP2 compression and suggests GPU implementations for each. He
does, however, not combine them in a single implementation, and there-
fore lacks the final results of speedup.

Ozsoy et al. 2011 [22] developed what they called CULZSS, short for CUDA
LZSS, and it used a simple sequential search. They used the implemen-
tation of Dipperstein[7] without modifications to the algorithm itself, but
they used the same approach as Gilchrist[10] and divided the input on
kernel level into blocks and processed each block individually on multiple
cores in the CUDA architecture. Two different versions of this approach
were made, with the difference of how the matching of substrings in the
lookup buffer were made. Speedup of 18x achieved compared to the serial
implementation and 3x compared to a parallel CPU implementation of
LZSS.

Ozsoy et al. 2012 [23] improved the work they had done on CULZSS and
optimised the matching of the algorithm. This improvement was not
a result of a newly devised algorithm, but rather a better use of the
architecture of the CUDA framework. Furthermore, they found that the
best block size of the input correlated with the memory available for each
thread block in the GPU. The algorithm resulted in a 46.65% performance
improvement compared to the serial versions of GZIP and LZIP, however,
with a loss of compression ratio. The lesser compression of CULZSS is due
to the additional use of Huffman coding after the initial LZ77 in the GZIP
and ZLIB algorithms, which ensures close to statistical compression.



2.2 Approach Based on Previous Works 9

The overall conclusion of the GPU implementations has been, that the best
optimisations can be produced by reconstructing the algorithm for better util-
isation of the GPU architecture and CUDA framework, and not necessarily by
rethinking a different algorithm.

Even though, summarising the approaches, it can be seen, that all the imple-
mentations are based on already widely utilised compression schemes, and most
of these are some variations of the works of Lempel-Ziv.

2.2 Approach Based on Previous Works

In this section I will outline the approach of the investigations in this project.
I will use the original findings of Ozsoy et al.[22] to reproduce their results and
further develop the algorithms used.
Especially will it be investigated if the choice of LZSS-implementation based on
the work of Michael Dipperstein[7] could be made more efficient. Better results
may be achieved by using the approach of others.

The original CULZSS will also serve as baseline for the evaluation of the final
implementation as well as the sequential CPU implementation.

Even though both speed and compression ratio is part of the evaluation, speed
(or throughput) will be the key element of success for a given improvement.

It is also imperative, that the output of the work is usable by simple, sequential
CPU implementations, so decompression does not rely on the presence of a
GPU if a stream or file is to be sent to another party.



10 Lossless Data Compression



3 Definition of LZSS

As can be seen in chapter 2, many implementations derive from the LZ77
algorithm. This is not due to superiority over LZ78, but because of the LZ78,
and its derivatives, became patent-encumbered in 1984 by Unisys when they
patented the LZW algorithm[6]. The patent expired in 2003, but did in the
meantime put further research on hold.

The encoding process of LZ77 is more computationally intensive for encoding
with fast decoding, whereas the LZ78 balances resources between both encoding
and decoding, and have a better compression ratio. Consequently, the two
algorithms can be used in different scenarios, where data is to be decoded often
in the case of LZ77, or data is seldom decoded and therefore should use less
resources for storage in the case of LZ78.

LZSS (Lempel-Ziv–Storer–Szymanski) is an improvement of the LZ77 with the
difference of using a single prefix bit to represent whether the next bytes are
a part of a reference or a single (uncoded) character. The length of the found
common sequence with LZSS during encoding is ensured to always be greater
than the size of a reference pointer - a minimum matching length - and with
this invariant, the algorithm renders better compression, than on what it is
based, as the LZ77 had an overhead where reference pointers were longer than
what they substituted, as the algorithm always outputted a reference pointer
along with a, often redundant, character [26] (see figure 3.1).

The reference pointer is a code pair of the form:

<B,L> where B = offset, L = length

The offset is sometimes referred to as the start position of the match, but it is
implemented as a an offset, which is the term used in this report.



12 Definition of LZSS

LZ77 

input 

(0,0)A 

(1,1)B 

(0,0)C 

AABCBBABC 

(2,1)B 

(5,2)C output 

A 

A 

B 

AABBCBBAABC 

B 

C 

(3,2) 

(7,3) 

C 

LZSS 

input 

output 

(a) LZ77

LZ77 

input 

(0,0)A 

(1,1)B 

(0,0)C 

AABCBBABC 

(2,1)B 

(5,2)C output 

A 

A 

B 

AABBCBBAABC 

B 

C 

(3,2) 

(7,3) 

C 

LZSS 

input 

output 

(b) LZSS

Figure 3.1: Output example of the original LZ77 versus LZSS. Notice, that on
LZ77 every output is a reference pointer with either a length = 0
and the current character, or length > 0 and the next character.
The output for LZSS is with a minimum matching length of 2

The minimum matching length can be variable for different implementations,
but it is crucial that the following is true:

minmatch ≥ size(<B,L>)

where the function size() returning the number of bytes needed to represent
the input.
This indicates a relation between B and L, as their combined size optimally
should be a multiple of eight bits to utilise the entire byte. If a packing of bits
are used (see section 6.2), then a calculation of

size(<B,L>) = m · 8− 1, m = number of bytes

could be used, as the prefix bit for representing the reference pointer could be
a part of the byte.

This practise of using the least significant bit as an indicator for the following
byte(s) has later been adopted by several other applications, one of the more
recently is the Protocol Buffers1 from Google and as a storage optimisation at
Twitter2.

3.1 The Compression Algorithm

The original dictionary encoding technique used in LZ77 (and in extension,
LZSS) consists of two buffers: a sliding window search buffer and an uncoded
look-ahead buffer (see figure 3.2). The search buffer is also called history buffer,

1https://developers.google.com/protocol-buffers/docs/overview
2https://blog.twitter.com/2010/hadoop-twitter



3.2 Different Possible Methods for Searching the Dictionary of LZSS 13

AABCEFBFDDBCCCAEDA… 

search / history lookahead 

BCEFFAADCBA.. 

substring search starts with the first 
character 3 match 

1 match 

2 match 

Figure 3.2: Example of the matching stage with sliding buffers

fill search buffer 
with known state 

read characters 
into look-ahead 

buffer 

current char in 
look-ahead = first 

match 
length < 

minimum
? 

exhaustively 
search for match 

output current 
char 

output reference 
pointer 

is look-
ahead 

empty ? 

is end of 
look-ahead 
reached ? 

read in more 
characters 

current char = 
next + match 

length 

YES NO 

YES 

NO 

NO 

YES 
END 

Figure 3.3: State diagram over the LZSS compression process

as it holds the “recently seen” characters.
As these buffers both “slide” over the same set of data - each processed character
from the look-ahead will be put at the end of the search buffer - they are merely
theoretical and can be implemented as a single buffer with pointers defining
their boundaries.

3.2 Different Possible Methods for Searching the
Dictionary of LZSS

As the LZSS is a dictionary compression, several methods for speeding the
lookup can be applied, and has been in various variants of the LZ-family.

In the following I will describe some of the general lookup/search algorithms,
that has been used in the LZ-family

• Sequential searchWith a search buffer of length h, and a word to search
for w, renders a total search time O(h · w).



14 Definition of LZSS

• Knuth-Morris-Pratt[16] A somewhat significant linear search optimi-
sation of O(n + w), with a lookup table precomputed over string length
n and word length w.

• Hashtable Has a search complexity of O(1), however, this comes at a
cost of calculating hash-values, which always will be of at least w.

• Binary search trees Average search complexity of O(log(n)).

• Suffix trees The same theoretical lookup as KMP due to an initial built
tree: O(n+ w).

All of these, except for the linear sequential search, promise faster lookup com-
plexity, however, on the cost of memory. This makes them undesirable in some
applications such as embedded systems, where memory is scarce. The sequen-
tial search can furthermore ensure fixed size memory, due to the bound buffers.
Parallellising these methods also proves difficult, and the question always arises:
Is the benefits of larger memory footprint for faster lookup and the CPU cycles
needed to maintain the structures really great enough for not using the simple
buffer-approach?
In some cases, the benefit does not show when parallellised, and Ozsoy et al.[22]
states that in massive parallel architecture of GPUs, it seems better to use as
simple structures as possible.



4 Graphical Processing Units

In this chapter I introduce relevant aspects of GPU architecture, especially
focusing on the CUDA framework.

GPUs are specialised in compute-intensive and highly parallel computation,
where a CPU is optimised for long-lived single-threaded applications. A mod-
ern CPU has several ALUs (arithmetic logic unit) for performing arithmetic
and logical operations - a GPU has a considerable multitude more ALUs, which
makes it especially well-suited for data-parallel computations with high arith-
metic intensity.

CUDA (Compute Unified Device Architecture) is somewhat high-level GPU-
programming and therefore seems simpler to programme, even though the stan-
dards OpenCL and OpenGl is much more widespread and implemented by
a large variety of hardware manufacturers, whereas CUDA is a solely imple-
mented by nVidia. This limits the usage of CUDA-code to graphic cards with
nVidia technology, but benefit from the simplicity.

4.1 CUDA Architecture

A CUDA GPU is composed of a number of streaming multiprocessors (SM),
each having a number of compute units called streaming processors (SP) run-
ning in lock-step. This enables SIMD-style execution of many concurrent
threads (Single Instruction Multiple Data), but is, however, refined on the
GPU into the SIMT (Single Instruction Multiple Thread). Instructions are is-
sued to a collection of threads called a warp. As warp of threads execute in
lock-step, the execution is most efficient when all threads of a warp agree on



16 Graphical Processing Units

Figure 4.1: Taxonomy of the CUDA work partitioning hierarchy 1

their execution path.

The CUDA programming model provides two levels of parallelism: coarse and
fine-grained. On the grid-level is the coarse partitioning of work done by di-
viding the problem space into a grid consisting of a number of blocks. A block
is mapped to a symmetric multiprocessor of which holds several threads at the
fine-grained thread-level. The number of threads per block is limited by the
GPU and in the case of nVidia GeForce GT 620M it is set to 256. Every block
of threads can cooperate with each other by sharing data through shared mem-
ory and thread-synchronisation within a single block only.
A warp is the term of execution of a block of threads that are physically exe-
cuted in parallel and is also a defined by the GPU in terms of how many threads
can be executed concurrently, commonly 32.
A kernel is the set of functions and parameters that define the instructions to
be executed.

4.2 Memory

The CUDA memory hierarchy is pictured in figure 4.2. Registers are the private
memory per thread, while all threads within the same block can access the
shared memory. All threads, disregarding block grouping, have read and write
access to the global memory, and read-only of the constant and texture. Each
type of memory has their justification as outlined in table 4.1.

1http://www.sciencedirect.com/science/article/pii/S0743731513000130
2http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html


4.2 Memory 17

Figure 4.2: An illustration of the memory spaces on a CUDA device 2

Type Location Access Scope Lifetime
Register On chip R/W 1 thread thread
Local Off chip R/W 1 thread thread
Shared On chip R/W all threads in block block
Global Off chip R/W all threads + host host allocation
Constant Off chip R all threads + host host allocation
Texture Off chip R all threads + host host allocation

Table 4.1: Memory types in CUDA architecture

The access time for registers is 1 cycle and for shared memory it is 2-4 cycles, so
it quickly becomes expensive. When accessing global memory it costs 400-800
cycles with a penalty of 400 in best case. It can also be a good idea to pay
attention to the local memory that each thread will allocate whenever registers
are full. The local memory is as slow as global memory to access.



18 Graphical Processing Units



5 Reconstructing the CULZSS

As described in section 2.2, the work in this project will be based on the GPU
implementation of CULZSS. I have unsuccessfully tried to get in touch with
the authors of the original papers, and as a result I need to reconstruct their
work in order to use it as a baseline for measuring any improvement proposed
in this report.

In this chapter I will describe the different segments of CULZSS, that also will
serve as a part of the implementation in later improved versions.

5.1 Pre-Processing

If the workload is to be evenly distributed to a series of CUDA-blocks, each with
a fixed number of executing threads, then the division needs to be a multiple
of the buffersizes defined beforehand. Otherwise the last CUDA-block to get a
chunk of input assigned might get less than the algorithm expects. And with the
GPU-kernel needing to be as general as possible, without too many branching,
then it is crucial to ensure that input is within some expected bounds.

If the following does not hold for a predefined size of the buffers, or simply a
set value per chunk, that the sequential algorithm works fast on, then the input
must be enlarged - preferably with some value, that can be filtered later.

size(input) ≡ 0 (mod size(buffer))

The length of the enlargement, or padding, is simply:

padding = (size(buffer)− (size(input) mod size(buffer)))



20 Reconstructing the CULZSS

A A B B C B B A A B C 

do matching 

A A B B C 3 B A 7 B C 

reduce 

0 0 0 0 0 2 0 0 3 0 0 

char / offset 

length 

AABBC(3,2)(7,3)C 

input 

output 

A A B B C B B A A B C 

do matching 

A A B B C 3 B A 7 B C 

reduce 

0 0 0 0 0 2 0 0 3 0 0 

char / offset 

length 

input 

input 

cunks 

history 

look-ahead 

Figure 5.1: How the buffer is divided into several chunks, where each chunk
is processed independently of each other. The history buffers
overlap in order to not compromise on the compression ratio. The
non-allocated part of the chunks will be covered as the “sliding”
of the buffers approach the end of the chunks

The number of needed CUDA-blocks is simply assigned the division:

blocks = (size(input) + padding) / size(buffer)

5.2 Kernel

In the case of CULZSS, the kernel is a directly importation of the sequential
code for LZSS by Michael Dipperstein[7], and differs in none of the crucial
elements of the code.

What needs to be taken care of, is the access of data, each thread should have.
This means, that each CUDA-thread needs to be aware of where in the original
input, which at this point resides in the slow global memory, the assigned
portion of clear text reside. For improvement of speed, each thread is at first
responsible for copying a portion of clear text into a shared buffer, which reside
on the block-level of memory hierarchy. This shared buffer is then distributed
virtually amongst the threads by using boundary pointers into the buffer, such
that each thread work on its own portion of the original input.

5.3 Output Format of GPU Kernel

A second shared buffer for the output of the threads needs to be initialised. As
it can be difficult to ensure the size of an output buffer for each thread, that
needs to write into it, Ozsoy et al. devices a two-dimensional array as described
in figure 5.2.



5.4 Post-Processing 21

A A B B C B B A A B C 

do matching 

A A B B C 3 B A 7 B C 

reduce 

0 0 0 0 0 2 0 0 3 0 0 

char / offset 

length 

AABBC(3,2)(7,3)C 

input 

output 

Figure 5.2: An illustration of the two-dimensional output form of the
CULZSS, that afterwards needs to be stripped of the redundant
data to produce the correct form of encoded information

The CUDA-threads, just as with the shared input buffer, needs boundary point-
ers to define, which part of the output buffer to write into. Consequently, an
entire output buffer may be filled with empty entries, due to the fixed size of
the buffer along with the reduced, encoded text of the compression. It is too
branching to be efficient for the kernel to handle (and it would require expen-
sive, dynamically allocated arrays), so it has to be dealt with on the CPU.

5.4 Post-Processing

The resulting output from the kernel needs to be pruned to get a result, that
can be read from a different LZSS implementation - and more importantly, be
written to a stream output.
This can be seen as the reduction step in figure 5.2.

The API proposed by Ozsoy et al. describes a function with a pointer to an
output array and the length of the compressed text. As this output is ensured
to be less than or equal to the input size (as defined in section 1.2.2), the
provided pointer for an output array, could as well be the same as for the input
array.



22 Reconstructing the CULZSS

5.5 Final Note

As a final note of this chapter, the original version of CULZSS from [22] was
later found at Indiana University GIT repository 1 and this implementation is
used without modifications for all the subsequent testing.

As this original code was retrieved at the very end of the project, none of the
original code has been used for the further development. Some implementation
details differ from my reconstruction, but the test results are the same.

Because of this, some of the reconstructed CULZSS is used unmodified in the
construction of the CANLZSS. All reference to CULZSS beyond this point in
the report is to the original CULZSS from Ozsoy et al.

1http://phi.cs.indiana.edu/gitweb/?p=Public/CUDA-Compression.git

http://phi.cs.indiana.edu/gitweb/?p=Public/CUDA-Compression.git


6 Improvement Proposals for
CANLZSS

Of the reconstructed CULZSS implementation, primarily the pre-processing
remains unchanged, and leaves the kernel and post-processing to be the point
of improvements.

6.1 A Different Implementation of LZSS

The CULZSS was originally constructed using the serial implementation of
LZSS by Michael Dipperstein[7], and Dipperstein has since been further de-
veloping this implementation several times - mainly by implementing other
datastructures for searching the lookup buffer, as described in section 3.2.

However, by exploring other implementations of LZSS, one explicitly seems as
a faster solution. The work of Okumura[21] uses a much simpler use of buffers
- just one circular with boundary pointers - and the bit-packing used is more
streamlined than that of Dipperstein. In addition to this, the Okumura uses
far less instructions, so the complexity is less.
It is difficult to pinpoint the differences, though they exist, with simple algo-
rithm samples, so the two implementations are presented in the appendix A.

In order to compare the two algorithms, I let them work on the same dataset,
using the same parameters for buffer size and minimum length word before
reference is output.
The results in figures 6.1 and 6.2 shows, that the Okumura implementation is
overall superior in both speed and compression ratio.



24 Improvement Proposals for CANLZSS

Filesize in kilobytes
Original Dipperstein Okumura

bib 108 52 45
book1 750 414 375
book2 596 280 254
geo 100 82 76
news 368 191 165
obj1 21 12 11
obj2 241 101 93
paper1 52 24 22
paper2 80 39 36
pic 501 103 96
progc 39 18 16
progl 70 23 21
progp 48 16 14
trans 91 34 30

Table 6.1: Using the Calgary Compression Corpus[12] to compare the two
different sequential and single-threaded implementations of LZSS.
The shown filesizes besides Original are post compression

Dipperstein 10.089
Okumura 4.893

Table 6.2: Total elapsed time for each algorithm to process the entire Cal-
gary Compression Corpus. The time includes reading from the
harddrive and writing the compressed file onto the harddrive. The
implementations are compiled with the same GNU C Compiler
without compiler flags



6.1 A Different Implementation of LZSS 25

Based on these results, the Okumura implementation will be used as basis for
the GPU-kernel in rest of improvement proposals in this project.

6.1.1 Handling the Buffers

At this point, the difference between the CULZSS and the base implementation
pose some concerns to attend. The CULZSS uses a shared output buffer, that
each thread writes results into. When the matching is finished, this shared
buffer is copied to the global output buffer.
This is not a particular efficient approach, as (shared) block-level memory offers
slower access than the local thread-level memory. Instead each thread has a
local output buffer, that will be copied directly to the global output, when
processing is finished. However, each thread does not have nearly as much
memory as the block-level, so this thread-level buffer only needs to be of the
size according to the workload assigned to each thread.

6.1.2 Dynamic Block/Thread Assignment

If the number of CUDA-blocks has to be able to be dynamically assigned in
accordance to the size of the input text, then it must be considered how many
blocks is assignable on the GPU, as this has an upper limit. The solution is to
enlargen the chunk of input each buffer should manage, but even though the
memory bounds are considerably larger for the block-level compared to thread-
level, then this is also not limitless.
A true buffering scheme is added, exactly as it is done for ordinarily implemen-
tations, that reads from streams or filesystems. This implementation just uses
global memory as the filesystem.

6.1.3 Handling the Padded Length

To save CPU cycles in the post-processing, looking for matches outputted due
to the padded length of the input text, and removing these from the final
output, a special char (NULL) is used in the padded part of the input. When
this character is encountered in succession three times, the executing thread
stops the matching process and waits for the rest of the block.
It does not give a speedup due to the warp execution, but prevent the algorithm
to output extra matches.



26 Improvement Proposals for CANLZSS

6.2 Bit-Packing

The bit-packing used in Okumura uses two 8-bit variables: a bit_buffer and
bit_mask. These variables are used in the process to hold single bits until the
bit_buffer is filled and then output (either directly into a file or output buffer).
The mask is initialised with 0x80 and thus holds a 1 as a most significant
pointer. This pointer is marking into where the next bit is to be written on
the bit_buffer and shifted for each bit write. When the mask is 0 (zero), the
buffer is full and outputted.

Operating on only 1 bit at a time seems, however, inefficient when one knows
the exact number of bytes to be written: a single char when no reference is
found, and 2 bytes per reference pointer.

Instead I propose a faster bit-packing more suitable during post-processing (it
is not efficient to let the GPU handle the bit-packing, as the output is in two
dimensions, and still needs to be parsed individually by the CPU).

The bit_buffer and bit_mask is kept, as single bits still needs to be output
as the prefix bit. In the example below, the bit_buffer already holds a single
bit, as denoted by the bit_mask shifted one to the right. Thus only the first 7
bits of the character to write need to be output, denoted by 6.2.

bit_mask 0100 0000 (6.1)
(bit_mask « 1)-1 0111 1111 (6.2)

negated 1000 0000 (6.3)
character to write 1011 0010 (6.4)

right rotated 0101 1001 (6.5)

The («) denotes a left bit-shift. A single rotation of the character in 6.5 along
with the mask from 6.2, the first 7 bits can be added to bit_buffer, and
immediately output. With the negated mask from 6.3, the last bit can be
put into the bit_buffer, and bit_mask remains unaltered after this entire
operation.

By using this method, the amount of CPU operations for bit-packing is reduced
by 60% (removing unnecessary checks and bit-operations).



6.3 Increase of Parallelism 27

6.3 Increase of Parallelism

In their paper from 2012[23] Ozsoy et al. proposed an optimised matching
scheme to be used on the highly parallel GPU execution.

Algorithm 1 Matching of the LZSS
while i < buffer_end do

if buffer[history_start + j] = buffer[i + j] then
while MATCH do

j = j + 1
end while
update matching information

end if
j = 0

end while
store matching information
history_start = history_start + match_length, i = i + match_length

Using their proposed optimisation, the matching will instead take place in
matching states, that embraces the warp of execution as described in section 4.1.

Algorithm 2 Proposed optimisation of matching
while i < buffer_end do

if buffer[history_start + j] = buffer[i + j] then
j = j + 1 //matching state

else
update matching information
j = 0 //exit matching state

end if
end while
store matching information
history_start = history_start + match_length, i = i + match_length

The inner-loop is eliminated, which greatly reduces control-flow divergence.
This also improves reading from the shared input buffer, as all threads consumes
the same memory bank block, which then only uses a single memory call.



28 Improvement Proposals for CANLZSS

6.4 KMP Optimisation

In section 3.1 it is described how the sequential search is executed, and from
this it seems somewhat intuitive to incorporate the same mechanics as Knuth-
Morris-Pratt[16] published in 1977 when improving simple string matching.

Disregarding the precomputed lookup table, the main contribution was the
observation, that the length of the current match needs not to be tested again,
and can therefore be skipped before the next test of matching.

It is clear, that implementing this will theoretically increase the compression
ratio (remember: less is better), as the following scenario could occur:

Text : BAAAABCDCDCD

Word : AAAB

This search would find a match starting from the first A, but stop the matching
state, when the last A is met, as this ought to be a B, and thus the word would
not be found in the text.

Never the less, tests on sequential code shows an improvement in execution
time of ≈ 20% when compressing the Calgary Corpus, however, with a slight
increase in storage requirement of ≈ 1%.

It would be optimal, if the search did not include matching of words less than
the longest match, but as the matching is executed on single characters and
not entire words, this is not feasible with the current approach.

6.5 Implementation Details

Using an API similar to the proposed in CULZSS[22]:
1 Gpu_compress (*buffer , buf_lengt ,

** compressed_buffer , &comp_length ,
compression_parameters)

the implementation can be used as in-memory compression in applications that
perform compression on-the-fly, like webservers, or other I/O intensive works,
and ease whatever other tasks the CPU might need to handle.

The application can also be used as stand-alone, accepting files as input and
writing the compressed file back as a output file.



7 Experiments and Results

7.1 Testbed Configurations

All testing have been done on a simple laptop with a general purpose GPU, and
not a scientific GPU, which is optimised for extreme parallellisation, whereas
GPGPUs consider tradeoffs between bus transfers and number of available
cores1 - and of course pricing.

The test machine has an nVidia GeForce GT 620M with 1GB dedicated RAM
and CUDA version 2.1 along with Intel(R) Core(TM) i7 CPU 1.9GHz.

7.2 Datasets

As test data, the Calgary Compression Corpus2 is used. The Calgary is a
collection of different files - text inputs as well as non-text inputs - used as an
agreed upon baseline for new implementations of compression algorithms. By
using the same corpus as other researchers, the results are directly comparable.

When the file sizes of the Calgary are not sufficiently large, a Large Corpus3
can be used to supplement. This corpus includes a version of the Bible, the
complete genom of E. Coli and the CIA world fact book.

1http://www.nvidia.com/object/gpu_science.html
2http://corpus.canterbury.ac.nz/descriptions/#calgary
3http://corpus.canterbury.ac.nz/descriptions/#large

http://www.nvidia.com/object/gpu_science.html
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#large


30 Experiments and Results

Time in milliseconds
CANfirst CANbp CANpar CANkmp

bible 303 731 280 309
E.coli 266 262 273 271
world192 210 206 194 206

Table 7.1: Test results on speed of running the Large Corpus on each of the
proposals. The timing is including reading and writing from/to
disk

Compression ratio
CANfirst CANbp CANpar CANkmp

bible 4.37% 4.25% 4.57% 4.34%
E.coli 4.18% 4.07% 3.99% 4.06%
world192 4.41% 4.31% 4.75% 4.31%

Table 7.2: Test results on compression ratio of running the Large Corpus on
each of the proposals

7.3 Experimental Results of Proposals

Until now, each proposal has not been explicitly referred, but in the following
naming will be be needed.

• CANfirst The base implementation of the Okumura-LZSS including the
subsections of section 6.1.

• CANbp Improved bit-packing described in section 6.2

• CANpar The improved parallelism from section 6.3

• CANkmp Usage of KMP-method, section 6.4

The tables 7.1 and 7.2 show the test results from each of the proposals. The
results of CANfirst should be regarded as a baseline in the assessment of best
proposals, as all the subsequent proposals build on top of this. All the results
are based on the same parameters such as number of executing threads per
block, number of blocks, and blocksize.



7.3 Experimental Results of Proposals 31

7.3.1 Part Conclusion on the Results

The purpose of this chapter is to find an ideal combined solution compiled of
the best proposals into a single, final CANLZSS algorithm. When using the
CANfirst as baseline, it seems clear, that CANbp gives all-round better results,
so it can easily be incorporated in the final solution. Unfortunately, the last
two, CANpar and CANkmp, are mutually exclusive. They both try to improve
the matching process. Yet it seems that CANkmp performs better in both speed
an compression compared to the CANfirst, whereas CANpar on average only
performs better in execution time.

Further tests between CANpar and CANkmp when increasing the number of
threads per block only reveals a larger gap between the two, as CANpar contin-
ues to perform better on the speed, but get worse compression ratio. CANkmp,
on the other hand, gets speed and holds the compression ratio.

The ideal solutions seems to be a combination of CANfirst, CANbp and CANkmp

into one final CANLZSS. This is the



32 Experiments and Results



8 Parameter tuning

Finding the optimal parameters for the execution is a key task in optimising
performance. Especially with GPU applications, which are near impossible
to analyse theoretically, so a series of automated tests to serve as empirical
evidence can be devised.
The key parameters to test in this application is:

• Number of threads per block - needs to be a multiple of 2.

• The size of buffers used, which in turn has an impact on the number of
CUDA-blocks allocated.

Tests are conducted in accordance to guidelines described in [25].

The results of the tests should reveal the most optimal settings of parameters in
the CANLZSS, which then will be used in the final evaluation of performance.
Success is based on lowest execution time.

Results are not feasible, when using only 4 threads and lower or using 64 and
beyond, so these data are emitted from the graph. An upper and lower bound
also showed when changing the buffer sizes. So the presented results in figure 8.1
are the feasible solutions.

From the results it is somewhat evident, that the best result comes from a
buffersize of 2048 bytes with 32 threads per block. So these are the parameters,
that will be used in the final comparison.



34 Parameter tuning

0

200

400

600

800

1000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

200

400

600

800

1000

1200

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

500

1000

1500

2000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

(a) Buffer size of 2048 bytes

0

200

400

600

800

1000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

200

400

600

800

1000

1200

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

500

1000

1500

2000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

(b) Buffer size of 4096 bytes

0

200

400

600

800

1000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

200

400

600

800

1000

1200

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

0

500

1000

1500

2000

8 16 32

M
ill

is
e

co
n

d
s 

e
la

p
se

d
 

Threads per block 

bible

E.coli

world192

(c) Buffer size of 8196 bytes

Figure 8.1: The result of the parameter tuning when adjusting the threads
per block and buffer size. Due to the unfeasible solutions, number
of threads below 8 and above 32 are omitted.



9 Performance Evaluation

9.1 Potential of Using GPUs for Compression

In this chapter I evaluate the potential of using graphical processors in com-
pression schemes. The results found of the CANLZSS is compared to the se-
quential LZSS CPU algorithm and the CULZSS GPU implementation, which
this project use as baseline. As the Okumura LZSS[21] implementation proved
faster than the Dipperstein LZSS[7], the former is used as basis for this com-
parison. No comparison where made with a parallelised CPU implementation,
as the CULZSS already have showed results of outperforming such algorithms,
and consequently can act on behalf of this by induction.

Table 9.1 shows the performance comparison and outlines the speed-up over
both the CPU and GPU implementations. This overview, however simple,
demonstrate the potential of using GPU hardware in compression.

9.2 Comparing to Other GPU Solutions

It is difficult to compare with results of parallelised CPU and GPU versions of
other compression algorithms, as some are designed to be fast in compression,
but uses more decompression time. For true comparison, both compression and
decompression times should be valuated along with the compression ratio.



36 Performance Evaluation

Running time in milliseconds
CPU GPU GPU CPU/GPU
LZSS CULZSS CANLZSS Speed-up

bible 3299 991 543 6X/2X
E.coli 7406 778 118 63X/7X
world192 2248 324 92 24X/6X

Table 9.1: Performance comparison of the sequential CPU implementation of
LZSS, the GPU implementation of CULZSS and the newly devised
CANLZSS. The testbed configurations from section 7.1 still holds
for these results. The timing include both reading and writing of
files from the filesystem. The test have been conducted with the
same parameters as found in chapter 8. The last column shows the
speed-up achieved compared to the LZSS and the CULZSS



10 Conclusion

This project set out to examine the feasibility for using the CUDA framework
to improve upon the speed of lossless data compression without neglecting the
compression ratio. The focus of the project was to achieve substantial speed-up
compared to a CPU implementation and the CULZSS GPU algorithm.

I have proposed a set of possible enhancements to the CULZSS, and evaluated
the performance of each proposal in order to construct a final solution, that
meets and succeeds the outlined criteria.

Tests have shown that the devices new algorithm called CANLZSS outperforms
the serial LZSS implementation, of which it was based, by up to 63 times. The
implementation also performs better than the baseline of CULZSS by up to 7
times.

The implementation offers an API for programmers to use in their applications,
but can also be used as a stand-alone application for handling files as input and
output the compressed data. With the offered API, and due to its compatibil-
ity with simpler CPU implementations, the application could serve well as a
webserver implementation for swifter transfer of files to clients.

10.1 Further Work

An update of the post-processing for compatibility with more commonly used
decompression algorithms, such as BZIP2 and GZIP used in modern browsers
and standards on operating systems.



38 Conclusion

As stated in section 4.1, the local memory of the threads is extremely slow, so
some work should be put in to further evaluate if the memory consumption of
each thread could be optimised.

By rewriting the kernel into using OpenCL devices for it to be supported by
various more graphic processors along with the possibility for collaborating with
CPUs without any further modifications.

If the CANLZSS is to be used on webservers with multiple simultaneous con-
nections to be handled, a pipeline processing scheme could be used for better
utilisation of the many compute cores of the GPU.

Consider the problematics from section 6.4, make the matching possible on
words instead of just single characters. Preferably of variable lengths to ac-
commodate the need to search for bigger words per each match.
Some research should go in to test algorithms for fingerprinting of limited
lengths such as [4, 15]



Bibliography

[1] Mark Adler. Pigz - a parallel implementation of gzip for modern multi-
processor, multi-core machines. http://zlib.net/pigz/. Last checked
11-04-2013.

[2] Ana Balevic. Parallel variable-length encoding on gpgpus. In Euro-Par
2009–Parallel Processing Workshops, pages 26–35. Springer, 2010.

[3] Ana Balevic, Lars Rockstroh, Marek Wroblewski, and Sven Simon. Using
arithmetic coding for reduction of resulting simulation data size on mas-
sively parallel gpgpus. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 295–302. Springer, 2008.

[4] Philip Bille, Inge Li Gørtz, and Jesper Kristensen. Longest common ex-
tensions via fingerprinting. In Language and Automata Theory and Appli-
cations, pages 119–130. Springer, 2012.

[5] Michael Burrows and David J Wheeler. A block-sorting lossless data com-
pression algorithm. Technical report 24, Digital Equipment Corporation,
Systems Research Center, Palo Alto, California, May 1994.

[6] Martin Campbell-Kelly. Not all bad: An historical perspective on software
patents. 11 Mich. Telecomm. Tech. L. Rev. 191, 2005. http://www.mttlr.
org/voleleven/campbell-kelly.pdf.

[7] Michael Dipperstein. Lzss (lz77) discussion and implementation. http://
michael.dipperstein.com/lzss/index.html. Last checked 19-06-2013.

[8] Axel Eirola. Lossless data compression on gpgpu architectures. arXiv
preprint arXiv:1109.2348, 2011.

[9] Peter D Geiger, Manuel J Alvarez, Thomas A Dye, et al. Parallel com-
pression and decompression system and method having multiple parallel
compression and decompression engines, November 16 2004. US Patent
6,819,271.

http://zlib.net/pigz/
http://www.mttlr.org/voleleven/campbell-kelly.pdf
http://www.mttlr.org/voleleven/campbell-kelly.pdf
http://michael.dipperstein.com/lzss/index.html
http://michael.dipperstein.com/lzss/index.html


40 BIBLIOGRAPHY

[10] Jeff Gilchrist. Parallel data compression with bzip2. In Proceedings of
the 16th IASTED International Conference on Parallel and Distributed
Computing and Systems, volume 16, pages 559–564, 2004.

[11] D.A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[12] Tim Bell Ian Witten and John Cleary. The calgary compression cor-
pus. http://corpus.canterbury.ac.nz/descriptions/#calgary. Last
checked 20-06-2013.

[13] J. Kane and Qing Yang. Compression speed enhancements to lzo for multi-
core systems. In Computer Architecture and High Performance Computing
(SBAC-PAD), 2012 IEEE 24th International Symposium on, pages 108–
115, 2012.

[14] Shmuel Tomi Klein and Yair Wiseman. Parallel lempel ziv coding. Discrete
Appl. Math., 146(2):180–191, March 2005. http://dx.doi.org/10.1016/
j.dam.2004.04.013.

[15] John Kloetzli, Brian Strege, Jonathan Decker, and Marc Olano. Parallel
longest common subsequence using graphics hardware. In Proceedings of
the 8th Eurographics conference on Parallel Graphics and Visualization,
pages 57–64. Eurographics Association, 2008.

[16] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern
matching in strings. SIAM journal on computing, 6(2):323–350, 1977.

[17] A. Lempel and J. Ziv. A universal algorithm for sequential data compres-
sion. Information Theory, IEEE Transactions on, 23(3):337 – 343, may
1977.

[18] Jean loup Gailly and Mark Adler. The gzip home page. http://www.
gzip.org/. Last checked 11-04-2013.

[19] Jean loup Gailly and Mark Adler. Zlib compression library. http://www.
dspace.cam.ac.uk/handle/1810/3486, 2004. Last checked 11-04-2013.

[20] M.F.X.J. Oberhumer. Lzo real-time data compression library. http://
www.oberhumer.com/opensource/lzo/, 2011. Last checked 19-06-2013.

[21] Haruhiko Okumura. Lzss encoder-decoder. http://oku.edu.mie-u.ac.
jp/~okumura/compression/lzss.c. Last checked 19-06-2013.

[22] Adnan Ozsoy and Martin Swany. Culzss: Lzss lossless data compression
on cuda. In Cluster Computing (CLUSTER), 2011 IEEE International
Conference on, pages 403–411. IEEE, 2011.

http://corpus.canterbury.ac.nz/descriptions/#calgary
http://dx.doi.org/10.1016/j.dam.2004.04.013
http://dx.doi.org/10.1016/j.dam.2004.04.013
http://www.gzip.org/
http://www.gzip.org/
http://www.dspace.cam.ac.uk/handle/1810/3486
http://www.dspace.cam.ac.uk/handle/1810/3486
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://oku.edu.mie-u.ac.jp/~okumura/compression/lzss.c
http://oku.edu.mie-u.ac.jp/~okumura/compression/lzss.c


BIBLIOGRAPHY 41

[23] Adnan Ozsoy, Martin Swany, and Arun Chauhan. Pipelined parallel lzss
for streaming data compression on gpgpus. In Parallel and Distributed
Systems (ICPADS), 2012 IEEE 18th International Conference on, pages
37–44. IEEE, 2012.

[24] Julian Seward. The bzip2 and libbzip2 official home page. http://bzip.
org/. Last checked 11-04-2013.

[25] Hans Henrik Brandenborg Sørensen. Auto-tuning of level 1 and level 2
blas for gpus. Concurrency and Computation: Practice and Experience,
2012.

[26] James A Storer and Thomas G Szymanski. Data compression via textual
substitution. Journal of the ACM (JACM), 29(4):928–951, 1982.

[27] T.A. Welch. A technique for high-performance data compression. Com-
puter, 17(6):8–19, 1984.

[28] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. Information Theory, IEEE Transactions on, 24(5):530–536,
1978.

http://bzip.org/
http://bzip.org/


42 BIBLIOGRAPHY



A Different LZSS
implementations

A.1 Okumura

/* LZSS encoder -decoder (c) Haruhiko Okumura */
2

/* http :// interblag.com/lzss -compression -algorithm.html */

#include <stdio.h>
#include <stdlib.h>

7 #include <time.h>

#define EI 11 /* typically 10..13 */
#define EJ 4 /* typically 4..5 */
#define P 1 /* If match length <= P then output one character */

12 #define N (1 << EI) /* buffer size */
#define F ((1 << EJ) + P) /* lookahead buffer size */

int bit_buffer = 0, bit_mask = 128;
unsigned long codecount = 0, textcount = 0;

17 unsigned char buffer[N * 2];
FILE *infile , *outfile;

void error(void)
{

22 printf("Output error\n"); exit (1);
}

void putbit1(void)
{

27 bit_buffer |= bit_mask;
if (( bit_mask >>= 1) == 0) {

if (fputc(bit_buffer , outfile) == EOF) error ();
bit_buffer = 0; bit_mask = 128; codecount ++;



44 Different LZSS implementations

}
32 }

void putbit0(void)
{

if (( bit_mask >>= 1) == 0) {
37 if (fputc(bit_buffer , outfile) == EOF) error ();

bit_buffer = 0; bit_mask = 128; codecount ++;
}

}

42 void flush_bit_buffer(void)
{

if (bit_mask != 128) {
if (fputc(bit_buffer , outfile) == EOF) error ();
codecount ++;

47 }
}

void output1(int c)
{

52 int mask;
putbit1 ();
mask = 256;
while (mask >>= 1) {

if (c & mask) putbit1 ();
57 else putbit0 ();

}
}

void output2(int x, int y)
62 {

int mask;
putbit0 ();
mask = N;
while (mask >>= 1) {

67 if (x & mask) putbit1 ();
else putbit0 ();

}
mask = (1 << EJ);
while (mask >>= 1) {

72 if (y & mask) putbit1 ();
else putbit0 ();

}
}

77 void encode(void)
{

int i, j, f1 , x, y, r, s, bufferend , c;

//fill start of the buffer with a known state
82 for (i = 0; i < N - F; i++) buffer[i] = ’ ’;

//read in characters into the lookahead buffer
for (i = N - F; i < N * 2; i++) {

if ((c = fgetc(infile)) == EOF) break;



Okumura 45

buffer[i] = c; textcount ++;
87 }

bufferend = i; r = N - F; s = 0;//s = start of history
buffer , r = end of the history buffer
while (r < bufferend) {

f1 = (F <= bufferend - r) ? F : bufferend - r;//makes sure
we do not do bufferoverflow - might have used min()

x = 0; y = 1; c = buffer[r];//x = offset , y = length of
match

92 for (i = r - 1; i >= s; i--)
if (buffer[i] == c) {

for (j = 1; j < f1; j++)
if (buffer[i + j] != buffer[r + j]) break;

if (j > y) {
97 x = i; y = j;

}
}

if (y <= P) output1(c);
else output2(x & (N - 1), y - 2);

102 r += y; s += y;
//there is no more room left in the lookahead buffer
if (r >= N * 2 - F) {
//shift the buffer N backward

for (i = 0; i < N; i++) buffer[i] = buffer[i + N];
107 bufferend -= N; r -= N; s -= N;

while (bufferend < N * 2) {
if ((c = fgetc(infile)) == EOF) break;
buffer[bufferend ++] = c; textcount ++;

}
112 }

}
flush_bit_buffer ();
printf("text: %ld bytes\n", textcount);
printf("code: %ld bytes (%ld%%)\n",

117 codecount , (codecount * 100) / textcount);
}

int getbit(int n) /* get n bits */
{

122 int i, x;
static int buf , mask = 0;

x = 0;
for (i = 0; i < n; i++) {

127 if (mask == 0) {
if ((buf = fgetc(infile)) == EOF) return EOF;
mask = 128;

}
x <<= 1;

132 if (buf & mask) x++;
mask >>= 1;

}
return x;

}
137



46 Different LZSS implementations

void decode(void)
{

int i, j, k, r, c;

142 for (i = 0; i < N - F; i++) buffer[i] = ’ ’;
r = N - F;
while ((c = getbit (1)) != EOF) {

if (c) {
if ((c = getbit (8)) == EOF) break;

147 fputc(c, outfile);
buffer[r++] = c; r &= (N - 1);//(N - 1)

} else {
if ((i = getbit(EI)) == EOF) break;
if ((j = getbit(EJ)) == EOF) break;

152 for (k = 0; k <= j + 1; k++) {
c = buffer [(i + k) & (N - 1)];
fputc(c, outfile);
buffer[r++] = c; r &= (N - 1);

}
157 }

}
}

int main(int argc , char *argv [])
162 {

int enc;
char *s;
clock_t time = clock();

167 if (argc != 4) {
printf("Usage: lzss e/d infile outfile\n\te = encode\td =

decode\n");
return 1;

}
s = argv [1];

172 if (s[1] == 0 && (*s == ’d’ || *s == ’D’ || *s == ’e’ || *s ==
’E’))

enc = (*s == ’e’ || *s == ’E’);
else {

printf("? %s\n", s); return 1;
}

177 if (( infile = fopen(argv[2], "rb")) == NULL) {
printf("? %s\n", argv [2]); return 1;

}
if (( outfile = fopen(argv[3], "wb")) == NULL) {

printf("? %s\n", argv [3]); return 1;
182 }

if (enc) encode (); else decode ();
fclose(infile); fclose(outfile);

printf("time: %.2f \n", (double)(clock() -
time)/CLOCKS_PER_SEC);

187 return 0;
}



Dipperstein 47

A.2 Dipperstein

/* **************************************************************************
2 * Lempel , Ziv , Storer , and Szymanski Encoding and Decoding

*
* File : lzss.c
* Purpose : Use lzss coding (Storer and Szymanski ’s modified

lz77) to
* compress/decompress files.

7 * Author : Michael Dipperstein
* Date : November 24, 2003
*
****************************************************************************
* UPDATES

12 *
* Date Change
* 12/10/03 Changed handling of sliding window to better match

standard
* algorithm description.
* 12/11/03 Remebered to copy encoded characters to the

sliding window
17 * even when there are no more characters in the

input stream.
*
****************************************************************************
*
* LZSS: An ANSI C LZss Encoding/Decoding Routine

22 * Copyright (C) 2003 by Michael Dipperstein (mdipper@cs.ucsb.edu)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either

27 * version 2.1 of the License , or (at your option) any later
version.

*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

32 * Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not , write to the Free

Software
* Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA

02111 -1307 USA
37 *

************************************************************************** */

/* **************************************************************************
* INCLUDED FILES

42 ************************************************************************** */
#include <stdio.h>
#include <stdlib.h>
#include "getopt.h"



48 Different LZSS implementations

47 /* **************************************************************************
* TYPE DEFINITIONS
************************************************************************** */
/* unpacked encoded offset and length , gets packed into 12 bits

and 4 bits*/
typedef struct encoded_string_t

52 {
int offset; /* offset to start of longest match */
int length; /* length of longest match */

} encoded_string_t;

57 typedef enum
{

ENCODE ,
DECODE

} MODES;
62

/* **************************************************************************
* CONSTANTS
************************************************************************** */
#define FALSE 0

67 #define TRUE 1

#define WINDOW_SIZE 4096 /* size of sliding window (12 bits)
*/

/* maximum match length not encoded and encoded (4 bits) */
72 #define MAX_UNCODED 2

#define MAX_CODED (15 + MAX_UNCODED + 1)

/* **************************************************************************
* GLOBAL VARIABLES

77 ************************************************************************** */
/* cyclic buffer sliding window of already read characters */
unsigned char slidingWindow[WINDOW_SIZE ];
unsigned char uncodedLookahead[MAX_CODED ];

82 /* **************************************************************************
* PROTOTYPES
************************************************************************** */
void EncodeLZSS(FILE *inFile , FILE *outFile); /* encoding

routine */
void DecodeLZSS(FILE *inFile , FILE *outFile); /* decoding

routine */
87

/* **************************************************************************
* FUNCTIONS
************************************************************************** */

92 /* ***************************************************************************
* Function : main
* Description: This is the main function for this program , it

validates
* the command line input and , if valid , it will



Dipperstein 49

either
* encode a file using the LZss algorithm or decode a

97 * file encoded with the LZss algorithm.
* Parameters : argc - number of parameters
* argv - parameter list
* Effects : Encodes/Decodes input file
* Returned : EXIT_SUCCESS for success , otherwise EXIT_FAILURE.

102 *************************************************************************** */
int main(int argc , char *argv [])
{

int opt;
FILE *inFile , *outFile; /* input & output files */

107 MODES mode;

/* initialize data */
inFile = NULL;
outFile = NULL;

112 mode = ENCODE;

/* parse command line */
while ((opt = getopt(argc , argv , "cdtni:o:h?")) != -1)
{

117 switch(opt)
{

case ’c’: /* compression mode */
mode = ENCODE;
break;

122

case ’d’: /* decompression mode */
mode = DECODE;
break;

127 case ’i’: /* input file name */
if (inFile != NULL)
{

fprintf(stderr , "Multiple input files not
allowed .\n");

fclose(inFile);
132

if (outFile != NULL)
{

fclose(outFile);
}

137

exit(EXIT_FAILURE);
}
else if (( inFile = fopen(optarg , "rb")) == NULL)
{

142 perror("Opening inFile");

if (outFile != NULL)
{

fclose(outFile);
147 }



50 Different LZSS implementations

exit(EXIT_FAILURE);
}
break;

152

case ’o’: /* output file name */
if (outFile != NULL)
{

fprintf(stderr , "Multiple output files not
allowed .\n");

157 fclose(outFile);

if (inFile != NULL)
{

fclose(inFile);
162 }

exit(EXIT_FAILURE);
}
else if (( outFile = fopen(optarg , "wb")) == NULL)

167 {
perror("Opening outFile");

if (outFile != NULL)
{

172 fclose(inFile);
}

exit(EXIT_FAILURE);
}

177 break;

case ’h’:
case ’?’:

printf("Usage: lzss <options >\n\n");
182 printf("options :\n");

printf(" -c : Encode input file to output
file.\n");

printf(" -d : Decode input file to output
file.\n");

printf(" -i <filename > : Name of input file.\n");
printf(" -o <filename > : Name of output file.\n");

187 printf(" -h | ? : Print out command line
options .\n\n");

printf("Default: lzss -c\n");
return(EXIT_SUCCESS);

}
}

192

/* validate command line */
if (inFile == NULL)
{

fprintf(stderr , "Input file must be provided\n");
197 fprintf(stderr , "Enter \"lzss -?\" for help.\n");

if (outFile != NULL)



Dipperstein 51

{
fclose(outFile);

202 }

exit (EXIT_FAILURE);
}
else if (outFile == NULL)

207 {
fprintf(stderr , "Output file must be provided\n");
fprintf(stderr , "Enter \"lzss -?\" for help.\n");

if (inFile != NULL)
212 {

fclose(inFile);
}

exit (EXIT_FAILURE);
217 }

/* we have valid parameters encode or decode */
if (mode == ENCODE)
{

222 EncodeLZSS(inFile , outFile);
}
else
{

DecodeLZSS(inFile , outFile);
227 }

fclose(inFile);
fclose(outFile);
return EXIT_SUCCESS;

232 }

/* ***************************************************************************
* Function : FindMatch
* Description: This function will search through the

slidingWindow
237 * dictionary for the longest sequence matching the

MAX_CODED
* long string stored in uncodedLookahed.
* Parameters : windowHead - head of sliding window
* uncodedHead - head of uncoded lookahead buffer
* Effects : NONE

242 * Returned : The sliding window index where the match starts
and the

* length of the match. If there is no match a
length of

* zero will be returned.
*************************************************************************** */
encoded_string_t FindMatch(int windowHead , int uncodedHead)

247 {
encoded_string_t matchData;
int i, j;



52 Different LZSS implementations

matchData.length = 0;
252 i = windowHead; /* start at the beginning of the sliding

window */
j = 0;

while (TRUE)
{

257 if (slidingWindow[i] == uncodedLookahead[uncodedHead ])
{

/* we matched one how many more match? */
j = 1;

262 while(slidingWindow [(i + j) % WINDOW_SIZE] ==
uncodedLookahead [( uncodedHead + j) % MAX_CODED ])

{
if (j >= MAX_CODED)
{

267 break;
}
j++;

};

272 if (j > matchData.length)
{

matchData.length = j;
matchData.offset = i;

}
277 }

if (j >= MAX_CODED)
{

matchData.length = MAX_CODED;
282 break;

}

i = (i + 1) % WINDOW_SIZE;
if (i == windowHead)

287 {
/* we wrapped around */
break;

}
}

292

return matchData;
}

/* ***************************************************************************
297 * Function : EncodeLZSS

* Description: This function will read an input file and write
an output

* file encoded using a slight modification to the
LZss

* algorithm. I’m not sure who to credit with the
slight

* modification to LZss , but the modification is to



Dipperstein 53

group the
302 * coded/not coded flag into bytes. By grouping the

flags ,
* the need to be able to write anything other than

a byte
* may be avoided as longs as strings encode as a

whole byte
* multiple. This algorithm encodes strings as 16

bits (a 12
* bit offset + a 4 bit length).

307 * Parameters : inFile - file to encode
* outFile - file to write encoded output
* Effects : inFile is encoded and written to outFile
* Returned : NONE
*************************************************************************** */

312 void EncodeLZSS(FILE *inFile , FILE *outFile)
{

/* 8 code flags and encoded strings */
unsigned char flags , flagPos , encodedData [16];
int nextEncoded; /* index into encodedData */

317 encoded_string_t matchData;
int i, c;
int len; /* length of string */
int windowHead , uncodedHead; /* head of sliding window and
lookahead */

322 flags = 0;
flagPos = 0x01;
nextEncoded = 0;
windowHead = 0;
uncodedHead = 0;

327

/* ***********************************************************************
* Fill the sliding window buffer with some known vales.
DecodeLZSS must
* use the same values. If common characters are used , there ’s
an
* increased chance of matching to the earlier strings.

332

*********************************************************************** */
for (i = 0; i < WINDOW_SIZE; i++)
{

slidingWindow[i] = ’ ’;
}

337

/* ***********************************************************************
* Copy MAX_CODED bytes from the input file into the uncoded
lookahead
* buffer.

*********************************************************************** */
342 for (len = 0; len < MAX_CODED && (c = getc(inFile)) != EOF;

len ++)



54 Different LZSS implementations

{
uncodedLookahead[len] = c;

}

347 if (len == 0)
{

return; /* inFile was empty */
}

352 /* Look for matching string in sliding window */
matchData = FindMatch(windowHead , uncodedHead);

/* now encoded the rest of the file until an EOF is read */
while (len > 0)

357 {
if (matchData.length > len)
{

/* garbage beyond last data happened to extend match
length */

matchData.length = len;
362 }

if (matchData.length <= MAX_UNCODED)
{

/* not long enough match. write uncoded byte */
367 matchData.length = 1; /* set to 1 for 1 byte uncoded

*/
flags |= flagPos; /* mark with uncoded byte flag

*/
encodedData[nextEncoded ++] =

uncodedLookahead[uncodedHead ];
}
else

372 {
/* match length > MAX_UNCODED. Encode as offset and

length. */
encodedData[nextEncoded ++] =

(unsigned char)(( matchData.offset & 0x0FFF) >> 4);

377 encodedData[nextEncoded ++] =
(unsigned char)((( matchData.offset & 0x000F) << 4)

|
(matchData.length - (MAX_UNCODED + 1)));

}

382 if (flagPos == 0x80)
{

/* we have 8 code flags , write out flags and code
buffer */

putc(flags , outFile);

387 for (i = 0; i < nextEncoded; i++)
{

/* send at most 8 units of code together */
putc(encodedData[i], outFile);



Dipperstein 55

}
392

/* reset encoded data buffer */
flags = 0;
flagPos = 0x01;
nextEncoded = 0;

397 }
else
{

/* we don’t have 8 code flags yet , use next bit for
next flag */

flagPos <<= 1;
402 }

/* *******************************************************************
* Replace the matchData.length worth of bytes we’ve

matched in the
* sliding window with new bytes from the input file.

407

******************************************************************* */
i = 0;
while ((i < matchData.length) && ((c = getc(inFile)) !=

EOF))
{

/* add old byte into sliding window and new into
lookahead */

412 slidingWindow[windowHead] =
uncodedLookahead[uncodedHead ];

uncodedLookahead[uncodedHead] = c;
windowHead = (windowHead + 1) % WINDOW_SIZE;
uncodedHead = (uncodedHead + 1) % MAX_CODED;
i++;

417 }

/* handle case where we hit EOF before filling lookahead */
while (i < matchData.length)
{

422 slidingWindow[windowHead] =
uncodedLookahead[uncodedHead ];

/* nothing to add to lookahead here */
windowHead = (windowHead + 1) % WINDOW_SIZE;
uncodedHead = (uncodedHead + 1) % MAX_CODED;
len --;

427 i++;
}

/* find match for the remaining characters */
matchData = FindMatch(windowHead , uncodedHead);

432 }

/* write out any remaining encoded data */
if (nextEncoded != 0)
{

437 putc(flags , outFile);



56 Different LZSS implementations

for (i = 0; i < nextEncoded; i++)
{

putc(encodedData[i], outFile);
442 }

}
}

/* ***************************************************************************
447 * Function : DecodeLZSS

* Description: This function will read an LZss encoded input
file and

* write an output file. The encoded file uses a
slight

* modification to the LZss algorithm. I’m not sure
who to

* credit with the slight modification to LZss , but
the

452 * modification is to group the coded/not coded flag
into

* bytes. By grouping the flags , the need to be
able to

* write anything other than a byte may be avoided
as longs

* as strings encode as a whole byte multiple. This
algorithm

* encodes strings as 16 bits (a 12bit offset + a 4
bit length).

457 * Parameters : inFile - file to decode
* outFile - file to write decoded output
* Effects : inFile is decoded and written to outFile
* Returned : NONE
*************************************************************************** */

462 void DecodeLZSS(FILE *inFile , FILE *outFile)
{

int i, c;
unsigned char flags , flagsUsed; /* encoded/not encoded
flag */
int nextChar; /* next char in sliding
window */

467 encoded_string_t code; /* offset/length code for
string */

/* initialize variables */
flags = 0;
flagsUsed = 7;

472 nextChar = 0;

/* ***********************************************************************
* Fill the sliding window buffer with some known vales.
EncodeLZSS must
* use the same values. If common characters are used , there ’s
an

477 * increased chance of matching to the earlier strings.



Dipperstein 57

*********************************************************************** */
for (i = 0; i < WINDOW_SIZE; i++)
{

slidingWindow[i] = ’ ’;
482 }

while (TRUE)
{

flags >>= 1;
487 flagsUsed ++;

if (flagsUsed == 8)
{

/* shifted out all the flag bits , read a new flag */
492 if ((c = getc(inFile)) == EOF)

{
break;

}

497 flags = c & 0xFF;
flagsUsed = 0;

}

if (flags & 0x01)
502 {

/* uncoded character */
if ((c = getc(inFile)) == EOF)
{

break;
507 }

/* write out byte and put it in sliding window */
putc(c, outFile);
slidingWindow[nextChar] = c;

512 nextChar = (nextChar + 1) % WINDOW_SIZE;
}
else
{

/* offset and length */
517 if ((code.offset = getc(inFile)) == EOF)

{
break;

}

522 if ((code.length = getc(inFile)) == EOF)
{

break;
}

527 /* unpack offset and length */
code.offset <<= 4;
code.offset |= ((code.length & 0x00F0) >> 4);
code.length = (code.length & 0x000F) + MAX_UNCODED + 1;



58 Different LZSS implementations

532

/* ***************************************************************
* Write out decoded string to file and lookahead. It

would be
* nice to write to the sliding window instead of the

lookahead ,
* but we could end up overwriting the matching string

with the
* new string if abs(offset - next char) < match length.

537

*************************************************************** */
for (i = 0; i < code.length; i++)
{

c = slidingWindow [(code.offset + i) % WINDOW_SIZE ];
putc(c, outFile);

542 uncodedLookahead[i] = c;
}

/* write out decoded string to sliding window */
for (i = 0; i < code.length; i++)

547 {
slidingWindow [( nextChar + i) % WINDOW_SIZE] =

uncodedLookahead[i];
}

552 nextChar = (nextChar + code.length) % WINDOW_SIZE;
}

}
}


	Abstract
	Resumé
	Preface
	Contents
	1 Introduction
	1.1 This Report
	1.2 Preliminaries
	1.2.1 Notation
	1.2.2 Evaluation


	2 Lossless Data Compression
	2.1 Previous Works
	2.1.1 Sequential Solutions
	2.1.2 Parallel Solutions

	2.2 Approach Based on Previous Works

	3 Definition of LZSS
	3.1 The Compression Algorithm
	3.2 Different Possible Methods for Searching the Dictionary of LZSS

	4 Graphical Processing Units
	4.1 CUDA Architecture
	4.2 Memory

	5 Reconstructing the CULZSS
	5.1 Pre-Processing
	5.2 Kernel
	5.3 Output Format of GPU Kernel
	5.4 Post-Processing
	5.5 Final Note

	6 Improvement Proposals for CANLZSS 
	6.1 A Different Implementation of LZSS
	6.1.1 Handling the Buffers
	6.1.2 Dynamic Block/Thread Assignment
	6.1.3 Handling the Padded Length

	6.2 Bit-Packing
	6.3 Increase of Parallelism
	6.4 KMP Optimisation
	6.5 Implementation Details

	7 Experiments and Results
	7.1 Testbed Configurations
	7.2 Datasets
	7.3 Experimental Results of Proposals
	7.3.1 Part Conclusion on the Results


	8 Parameter tuning
	9 Performance Evaluation
	9.1 Potential of Using GPUs for Compression
	9.2 Comparing to Other GPU Solutions

	10 Conclusion
	10.1 Further Work

	Bibliography
	A Different LZSS implementations
	A.1 Okumura
	A.2 Dipperstein


