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ABSTRACT

We extend the Gaussian process (GP) framework for bounded
regression by introducing two bounded likelihood functions
that model the noise on the dependent variable explicitly.
This is fundamentally different from the implicit noise as-
sumption in the previously suggested warped GP framework.
We approximate the intractable posterior distributions by
the Laplace approximation and expectation propagation and
show the properties of the models on an artificial example.
We finally consider two real-world data sets originating from
perceptual rating experiments which indicate a significant
gain obtained with the proposed explicit noise-model exten-
sion.

1. INTRODUCTION

Regression is typically defined as learning a mapping from a
possible multi-dimensional input to an effectively unbounded
one-dimensional observational space, i.e., the space of the de-
pendent variable. However, in many regression problems the
observational space is clearly bounded. Examples of such
problems include prediction of betting odds, data compres-
sion ratios and ratings from perceptual experiments. When
the observational space is bounded, modeling the observa-
tions with a distribution having infinite support such as the
Gaussian distribution, is clearly incorrect from a probabilistic
point of view. In this work we will extend the GP framework
to allow for principle modeling of such observations.
Gaussian processes (GPs) are currently considered a state-
of-the-art Bayesian regression method due to its flexible and
non-parametric nature. However, bounded regression with
GPs has only indirectly been addressed by mapping or warp-
ing the bounded observations onto a latent unbounded space
in which the observational noise can be assumed to be Gaus-
sian [1]. Hereby, the observational model is only modeled im-
plicitly through the warping function. In contrast, we consider
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observational models or likelihood functions that make as-
sumptions about the noise directly in the observational space,
and thus, model the observational noise explicitly.

Possibly, the simplest way to derive a bounded likelihood
function is to use a truncated distribution. A natural choice
is to use the truncated version of the Gaussian distribution
considered in this work. Alternatively, a bounded likelihood
function could be derived from a distribution that only has
finite support. Of this type, we will consider the beta distri-
bution and derive a bounded likelihood function based on a
re-parameterization. For both models we perform inference
and predictions based on the Laplace approximation and ex-
pectation propagation (EP).

Employing a toy example, we compare the predictive
distributions of warped GPs with regression based on the
bounded likelihood functions mentioned above. We show
that, as expected, the model with the correct noise assumption
provides the best expected predictive negative log likelihood
(or, alternatively, generalization error). Two examples are
used to justify the models in real-world regression scenarios
and they show that the two likelihood models provide better
model fits compared to the warped GP.

2. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is a stochastic process defined as
a collection of random variables, any finite subset of which
must have a joint Gaussian distribution. In effect, we may
place the GP as a prior over any finite set of functional val-
ves f = [f1, fa,..., fu] |, where f; = f(x;), resulting in
a finite multivariate (zero-mean) Gaussian distribution over
the set as p(f|X,0.) = N(f|0,K), where each element of
the covariance matrix [K]; ; = k(x;,X;)g, is given by a
covariance function k(:,-)g, with parameters 6., and where
X = {x;]i = 1,...,n} denotes the set of inputs. The GP is
effectively used as a prior over functions in non-parametric
Bayesian regression frameworks where either the outputs or
a likelihood can be parameterized by a smooth and contin-
uous function f(-). In the simplest case the set of observa-
tions, Y = {y;]i = 1,...,n}, consists of the functional val-



ues themselves with added i.i.d Gaussian noise with variance
o2. Hereby, the likelihood function is a standard Gaussian
likelihood function parameterized by f(-) defining the mean.
Hence, p(yi| fi, 0) = N (yil fi, 0?).

Bayes formula gives us—regardless of the likelihood
function—the posterior distribution,

p(y|f, 95)p(f‘X7 00)
p(Y|X,0) ’

p(f|Y,X,0) =

where it is typically assumed that the likelihood factorizes
over instances such that p(V|f,0,) = [[i—, p(vilfi,0c).
The denominator, p(Y|X,0), is called the marginal like-
lihood or evidence given as p(Y|X,0) = [p(V|f,0r)
p(f|X, 6.)df. In empirical Bayesian methods the evidence is
used to learn point estimates of both likelihood function and
prior parameters 8 = {6.,6,}.

Provided that the likelihood is Gaussian, both the poste-
rior and predictive distribution will be Gaussian (processes)
available in closed form [2, Chapter 2]. However, not all real-
world problems actually justify the observations to be Gaus-
sian distributed. As mentioned, we consider bounded obser-
vations, meaning that they in contrast to Gaussian distributed
observations do not have infinite support.

3. BOUNDED LIKELIHOOD FUNCTIONS

We consider a set Y = {y;|¢ = 1,...,n} of bounded re-
sponses y; € |a,b[ to an input x;. In the following we will
present three different observational models for this type of
response. The first is the warped GP [1], where the likeli-
hood describes warped observations rather than the bounded
responses directly. Following this, we propose two differ-
ent likelihood functions that directly model the bounded re-
sponses in a principle probabilistic fashion by assuming par-
ticular distributions of the observations defining the noise in
the original bounded domain.

3.1. Warping

Snelson et. al [1] learn a warping, that transforms the original
data ) into a form where the data is modeled by a traditional
GP with a Gaussian noise model. Here, we will not consider
how to learn the correct warping, but instead use a fixed warp-
ing that transforms the bounded responses y; into unbounded
versions z;. Several warping functions would apply, but to
allow for direct comparison of all the models we use the in-
verse cumulative Gaussian (probit) ®~!(-)—with zero mean
and unity variance—such that z; = ®~*(y;). The resulting
model will be referred to as GP-WA.

3.2. Truncated Distributions

The simplest route to a bounded likelihood function is to use
distributions with infinite support and truncate them to the

v=3 v=10 v =30

p(yilf (x)

ol

Jxi) Jxi) fxi)
Fig. 1. Illustration of the proposed TG likelihood function
with p(y;| fi) shown as a gray-scale level. Left: v = 3, Mid-

dle: v = 10 and Right: v = 30.

bounded domain. There are a number of relevant distributions
including the truncated student-t and of course the truncated
Gaussian (TG) distribution, see e.g. [3, 4]. As a representa-
tive for this type of bounding approach, we consider the TG
and define the corresponding likelihood function as

Lra =p(yilfi,0c)

_ VN (v (i = M(f) 0
(v (b—M(f:) — @ (v(a—M(f))
where the distribution is parameterized by the mode M(f;)
and the domain limits @ and b which we assume to be 0 and
1, respectably'. The mean of the TG distribution is given by

p(fi) = M(fi)
n 1N (v(a—M(fi) —N (v (b—M(fi)))
v @ (b-M(f;)) =@ (v(a—M(f;)

Eq. 2 in effect leaves two parametrization options in the
sense that we may select the non-parametric function, f(-),
to parameterize either the mode or the mean function. Both
options are valid from a modeling perspective, but the easiest
parametrization is by far the mode, M(f;). For prediction
speed it may be beneficial to indirectly parameterize the
mean, but then the (unique) solution to the mode given the
mean must be found numerically or approximately. The nu-
merical approach will severely limit the effectiveness of the
posterior approximation and in this work we will therefore
focus on the mode parametrization for the TG. Thus, the
likelihood function in Eq. 1 is parameterized by the mode as
follows M(f;) = ®(f;) and the resulting model depicted in
Fig. 1 will be referred to as GP-TG

2

3.3. Beta

A distribution that imposes bounded responses in a com-
pletely natural manner is the beta distribution which has
also been applied in standard parametric settings [5, 6]. The
beta distribution is therefore an obvious distribution for the
bounded observations and we select a parametrization which

'We note that the truncated student-t has the same form as the TG and can
easily be realized using the methods and implementations presented in this
work.
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Fig. 2. Tlustration of the proposed beta likelihood function
with p(y;|fi) shown as a gray-scale level. Left: v = 3, Mid-
dle: v = 10 and Right: v = 30.

expresses the shape parameters, «, (3, of the beta distribution,
Beta(a, 8), in terms of the mean p such that

a=vp,  B=v(l-p).
We then parameterize the mean p of the beta distribution by
the cumulative Gaussian, such that p(f;) = ®(f;). The re-
parameterized beta likelihood depicted in Fig. 2 is thereby
given by

Lge = p(yil fi, 0) = Beta(ys[v®(fi), v (1 — (f2))),

and will be referred to as the GP-BE model. Note, that the v
parameter is an (inverse) dispersion parameter.

4. APPROXIMATE INFERENCE AND PREDICTION

For the GP-WA model the likelihood is effectively Gaussian,
hence, inference is analytical tractable [1]. However, nei-
ther the GP-TG model nor the GP-BE model have analyti-
cal tractable posterior distributions. Instead, we must resort
to approximations. We consider two different approximate
inference schemes—the Laplace approximation and expecta-
tion propagation (EP). Both methods approximate the poste-
rior distribution p(f|), X, 0) with a single Gaussian ¢(f). In
the following we briefly give an overview of the two approxi-
mate inference schemes in relations to the bounded likelihood
functions. For more details on the approximation schemes see
for instance [2].

4.1. Laplace Approximation

Possibly, the simplest inference method is the Laplace ap-
proximation in which a multivariate Gaussian distribution is
used to approximate the posterior, such that p(f|X’, Y, 0) ~
q(f) = N(f|f, A1), where f is the mode of the posterior
and A is the Hessian of the negative log posterior at the
mode. The mode is found as f = argmaxg p (£]), X,0) =
argmaxe p (V|f,0,)p(f,X,6.). The general solution to
the problem can be found by considering the un-normalized
log posterior and the resulting cost function which is to be

maximized, is given by
1
w (f‘y7 X7 9) = 1ng(y‘f7 X7 OL',) - §fTK71f
1 N
~3 log | K| — 5 log 27,

where K; ; = k(x;,X;)g,. The maximization can be solved
with a standard Newton-step algorithm given by

f-new _ (K—l + W)71 . [Wf + VIng(ylf,X70£) )

where the Hessian W = —VV¢logp(V|f) is diagonal

with elements defined by the second derivative of the log-
2

likelihood function [W];; = —2tosruilfi) IO%’}gyilf i)

verged, the resulting approximation is

When con-

p (Y, X,0) m\/(ﬂf: z),
where ¥ = (W + Kil)_l.

Approximating the posterior of f by the Laplace approxima-
tion requires the first two derivatives of the log likelihood. For
the TG we will report the general derivatives applicable for
any truncated likelihood function based on symmetric densi-
ties for which the truncated density can be written as the TG,
i.e. in the form

e — r (g (vilf:))
PO = S0 70) — o (o I
where we for the TG model defines g (¢|f;) = v (¢ — M (f;)).

The resulting derivatives for the TG likelihood requires the
following partial derivatives

3)
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[—vN (fi) + 9 (y) (wag (y) N (fi) — fi)],
8;;;) =-vN(g(®)N(fi;) and
»s(-)
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which enter into the derivatives of Eq. 3. The two required
partial derivatives for the beta distribution are given by

PhaBEul) _, (s
- [log(ys) —log(1 — wi) — ¥(@) + ¥(B)] and

9%logBeta(y;|-)
f? B

7
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L (log() ~ (1 = ) = (@) + 0(6)|.



where ¢(-) and (1) (-) are the digamma function of zero’th
and first order, respectively.

4.2. Expectation Propagation

EP also approximates the posterior distribution with a single
multivariate Gaussian distribution ¢(f) = N (f|u, X) by fac-
torizing the likelihood by n Gaussian factors ¢; (| Z;, i;, 2i) =

Z:N (f;|fis, i), where ¢ = 1,...,n. The EP approximation
to the full posterior is thus given by

p(f[Y, X,0) = q(f) = N(f|p, )

1=1

where the means fi; and variances Sl have been collected into
the vector fi and diagonal matrix 3, respectively. The mean
and covariance of the approximation are given by
~—1_ 1 a7l
p=3%"'p, x= (K +3 ) .

EP updates each factor ¢; in turn by first removing the fac-
tor to yield what is called the cavity distribution q_;(f;) =
N(filn—i, %), where p_; = X ([Z]; }ps — 57 i) and
Y= ([2];1 — %71 ~1. Secondly, the factor t; is updated
by projecting the cavity distribution multiplied with the true
likelihood term onto a univariate Gaussian. The projection is
effectively done by solving the following three integrals

Zi= [ bl SN (Flhss -0 @
= [l PN s Z- )

= [plR) = Vs Sy
ngz = dzz_i/p(yilfi)/v(fimiazi)dfi

2
- / p(yi\f»%{N(fim%z,i)}dfi. ©)

Neither the beta likelihood nor the TG likelihood yield an-
alytical tractable solutions for these three integrals, but the
one-dimensional integrals can be solved numerically for the
EP inference.

4.3. Predictive Distributions

Naturally, we want to predict future values of both the latent
functional value f* and data label y*. For all models the pos-
terior distribution over f is effectively Gaussian®. Hence, the

2For the warped GP the posterior is exactly Gaussian, whereas we for the
two other models have approximated—either by Laplace or EP—the poste-
rior with a Gaussian.

predictive distribution p(f*|V, X, x*) = N'(f*|u*, 02) of la-
tent functional values is Gaussian and is derived just as in the
standard cases in a straight forward manner (see e.g. [2, Chap-
ter 2-3]).

The predictive distribution of future targets p(y*|Y, X, x*)
involves computing the integral

p(y*Y, &, x") = /p(y*lf*)N(f*\u*,fff)df*-

For the GP-WA, the predictive distribution has a closed-form
solution [1]

N(@ 1 (y*)|u*, o)
D(@-1(y)

In case of the GP-BE and GP-TG the predictive distribution
is not given in closed form. Instead, the integral must be
computed using numerical methods. Predictions of the mean,
E(y) € ]0;1[, are in the bounded case given by

pGP—WA(y*‘y7X7X*) =

1
Epy-0{y"} = / yp(y*|Y, X, x7)dy” (7
0

1
Z/N(f*lu*ﬂf)/ Y p(y* | f)dy*df*

0
_ / NNt 0By (" Y. ®)

Given the cumulative Gaussian warping, Eq. 7 can be solved
analytically for the GP-WA model. In Eq. 8 the mean of the
likelihood occurs, which in the beta case is parameterized by a
cumulative Gaussian and given the specific choice of warping
this results in a closed form solution expressed by?

Ecp-wa{y"} = EcpBe{y '} = @ <1f*(0_*)2> ‘

In case of the GP-TG model, Eq. 7 has no analytical form
and must be solved by one-dimensional numerical approxi-
mation.

5. SIMULATION EXAMPLE

In order to illustrate the difference between the warped and
bounded likelihood approaches we consider an artificial ex-
ample with added noise. It is generated by drawing a one-
dimensional function from a zero-mean Gaussian process
with a squared exponential (SE) kernel with length scale,
oy = 1, and noise variance oy = exp(1). Three different
types of noise are then added: The first type (WA) is i.i.d
Gaussian noise added directly on f and transformed through
®(-) which corresponds to the noise assumption in the warped

3Keep in mind that although there is an equal sign between the predictive
mean of the cumulative-warped and the beta model, the means will in general
be different due to difference in the /atent predictive distributions of the GP.



Squared Exponential (07 = 2, = 1)

WA TG BE
GP-WA | -129.8 (6.4) | -82.0(7.3) | -165.3 (31.1)
GP-TG | 91.0 (19.6) | 96.8 (4.5) | 81.8 (14.5)
GP-BE | -119.8(7.7) | -91.2(6.3) | -195.2 (24.6)

Periodic (a]% =3,/=08,\A=05)

WA TG BE
GP-WA | -93.2(6.9) | -80.6 (11.0) | -70.8 (10.4)
GP-TG | 762 (10.3) | -91.6 (9.4) | -66.0 (12.9)
GP-BE -88.5 (3.8) -84.5 (7.8) -99.8 (15.5)

Table 1. Expected predictive negative log likelihood (and
standard deviation) for each of the three models (GP-WP, GP-
TG, GP-BE)) evaluated on a specific function with additive
noise from ten random realizations of the noise for each cor-
responding noise types: WA, BE and TG. The noise free func-
tion is drawn from a GP prior with the indicated covariance
functions and parameter values (defined in [7])

GP. In the second case (TG), f is transformed through ®(-)
before adding noise based on the mode-parameterized TG
distribution, thus corresponding to the noise assumption of
the TG likelihood. In the third case (BE), we add noise based
on the mean-parameterized beta distribution.

In order to visualize the special nature of bounded re-
sponses and the difference between the models, we have il-
lustrated the WA noise case in Fig. 3, where all three bounded
models are evaluated. Both the Laplace approximation and
EP have been used for inference for the beta and TG model.
The hyper-parameters are in all cases optimized using evi-
dence maximization. The main difference of the three models
occurs at the domain boundaries, where the GP-WA model
concentrates the entire mass almost at the boundary. The pre-
dictive distribution of the GP-TG model generally has a simi-
lar shape over the entire domain with its mean always spaced
significantly far from the boundary, whereas the GP-BE can
also have its mean very close to the boundary as for the GP-
WA model, but still retain mass away from the boundary. No
significant differences between the two inference schemes are
evident. Since the EP scheme requires numerical solutions to
the integrals in Eq. 4-6, the Laplace approximation will be
used in the reminder of this article.

We evaluate the ability of the models to model different
noise distributions by comparing the predictive log likelihood
for the previously mentioned dataset based on the Laplace ap-
proximation. A second example is added in which the func-
tion is drawn from a GP with a periodic covariance function.
The predictive log likelihood for both examples is reported in
Tab. 5 and is the average over ten realizations of the noise. As
expected, we see that the model corresponding to the added
noise type always results in the lowest negative likelihood,
indicating a better model fit.

Fig. 3. Predictive distributions for the three models: GP-WA,
GP-TG and GP-BE. For GP-TG and GP-BE both Laplace and
EP inference are shown, where training data: -+, test exam-
ples: -, predictive mean: — and 68% and 95% percentiles:
- -+ Also, contours of the predictive distribution are shown
in gray, where the intensity reflects probability mass concen-
tration.

6. PERCEPTUAL AUDIO EVALUATIONS

In order to demonstrate the difference between the three con-
sidered models in a real-world scenario, we have tested the
three models on two data sets consisting of subjective ratings
performed while listening to audio through a hearing aid (HA)
compressor with different settings.

The first dataset [8], HA-I, contains six compression ra-
tio settings (including one without compression) and three
release-time settings. This results in sixteen non-trivial com-
binations of settings that are rated three times by each of the
seven test subjects while listening to a speech signal. The
dataset also contains the audiogram of the hearing impaired
test subjects. The audio signal resulting from each compres-
sor setting is represented by standard audio features, namely
thirty Mel frequency cepstral coefficients (MFCC). Thus, for
one setting, s, each test subject, ts, rated the audio signal, a.
This results in a collection of inputs for this specific rating
which we collect in x = {x'¥ x% x*}. We use the multi-
task kernel formulation [9] and define the covariance function
as k (x5, %;) = kigp (x¥,x%) (k* (x¢,x7) + k* (x5,%x3))
where all covariance functions are squared exponentials, the
first one with automatic relevance determination (ARD).

The second dataset [10], HA-II, contains three input pa-
rameters related to the compression ratio, attack time and re-
lease time of a HA dynamic range compressor. Four subjects
have rated 50 combinations of inputs in relation to general
preference while listening to a speech-in-background-noise



GP-WA | GP-TG | GP-BE

“Tog p(y™) 66.1 | 96.1 | -101.2

HA-I MSE | 0.013 | 0.001 | 0.010
“log p(y™) 77 93| -141

HA-II MSE | 0.031 | 0.030 | 0.035

Table 2. HA-I Mean square error (MSE) and expected pre-
dictive negative log likelihood over 10 random sets. We find
a significant difference in log likelihood at the 5% level be-
tween GP-TG and the two other models but not between GP-
TG and GP-BE. For MSE the only significant difference is be-
tween GP-TG and GP-BE. HA-II Mean square error (MSE)
and negative log likelihood over 10 folds. Considering the
negative log likelihood only the GP-BE is significantly better
than the GP-WA in a paired t-test. There is no significant dif-
ference between GP-TG and the other models. The GP-BE is
significantly different in terms of MSE than the two others.

signal. The dataset does not contain any data describing the
subjects, hence we use only one squared exponential covari-
ance function.

We initialize the hyper-parameters in the (common) co-
variance function to the same value for all models, but ini-
tialize the likelihood noise parameter with multiple values in
a grid pattern after which all the hyper-parameters are opti-
mized using evidence maximization. We then report the per-
formance of the model which yields the largest evidence after
maximization. For the purpose of comparing the three mod-
els, we will simply consider the Laplace approximation and
a retest scenario in which we train on a random repetition
and test on another repetition for each setting. We repeat this
three times and evaluate the resulting predictive likelihood
and mean square error (MSE). The results are listed in Tab. 6.
We note from the negative predictive log likelihood that the
beta distribution provides a better fit to the noise compared to
the other two models given the two real-world datasets pre-
sented here.

7. DISCUSSION AND CONCLUSION

In the present work, we outlined two bounded likelihood
functions for bounded Gaussian process regression which in
contrast to previous work make explicit assumptions about
the noise in the bounded observation space. In the two con-
sidered examples we found the beta model to be better than
the two other models in terms of the predictive log likelihood.
These results together with the artificial examples support
the application of all three models in the non-parametric
Gaussian process framework. However, the optimal model
obviously depends on the actual noise distribution in a given
application. We therefore foresee addition and inclusion of
other noise models based on other distribution with finite
support.

Likelihood-model implementations are available [11] for
use in the gpm1 toolbox [7] and can easily be extended to sup-
port more advanced link functions [12], which will make the
models (both the bounded and the warped) even more flexi-
ble. In particular, we suggest to use a mixture of cumulative
Gaussian link functions which do not complicate predictions
significantly. Furthermore, we suggest to evaluate the per-
formance of the deterministic approximations by the use of
MCMC-sampling methods.

In conclusion, we have extended the Gaussian process
framework to include bounded likelihood functions allowing
for explicit specification of the likelihood model in applica-
tions where bounded observations are present and support an
explicit noise model.
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