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Abstract

The thesis describes a neuroscience study investigating how the presence of an-
other person will effect people’s perception of emotional scenes. Will one become
more attentive towards the emotional scenes and will they be perceived as more
or less extreme? These questions are answered from a 2 × 3 within-subjects
experimental design with the social context (Alone and Together) and the emo-
tional picture content (Positive, Negative and Neutral) as the two factors.

Consistent with similar studies, the emotional picture content is found to mod-
ulate how the information is perceived. From an ERP analysis, the LPP distin-
guishes the affective pictures compared to the neutral pictures. It is suggested
to be an enhanced attraction of attentional neural resources for processing the
emotional content. Source reconstruction showed increased activity for positive
pictures in the left frontal midline gyrus compared to neutral ones. The left
frontal midline is suggested to be in a network with the limbic system creating
emotional states.

The thesis is the first to study how the neural responses are modulated when
attending IAPS pictures with another person. From a cluster-based permuta-
tion test, a decrease of the LPP (p=0.04) is found when jointly attending the
pictures, which reflects a decrease of the arousal state. Source reconstruction
localized the differences to the left frontal superior gyrus, the left frontal midline
gyrus, the left occipital midline gyrus, the right temporal superior gyrus and
the right temporal midline gyrus, which are areas associated with regulation of
the emotional state and the MNS system. A time-frequency analysis showed
that the presence of another person increased the attention towards negative
pictures (p=0.06) reflected as decreased alpha power.
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Resume

Denne afhandling beskriver et neurovidenskabeligt studie, der undersøger hvor-
dan menneskets opfattelse af emotionelle billeder ændres af en anden persons
tilstedeværelse. Vil man blive mere opmærksom på de emotionelle billeder, og
vil de opfattes som stærkere eller svagere? Disse spørgsmål bliver undersøgt ud
fra et 2 × 3 within − subjects eksperiment, hvor de to faktorer er den sociale
betydning (Alene og Sammen) og det emotionelle indhold af billederne (Positivt,
Negativt, Neutralt).

Afhandlingen viser i overensstemmelse med tidligere studier, at det emotionelle
indhold af billederne påvirker hjerne aktiviteten. Fra en ERP analyse, differ-
entierer the LPP bearbejdningen af emotionelle og neutrale billeder. Dette
skyldes en øget tiltrækning af neuroner til bearbejdning af det emotionelle ind-
hold. Lokaliseringen af strømkilderne viste øget aktivitet i den venstre frontale
midtlinje gyrus for positive sammenlignet med neutrale billeder. Den venstre
frontale midtlinje danner netværk med det limbiske system, der danner følelser.

Afhandlingen er det første studie, som undersøger hvordan den neurale aktivitet
ændres, som følge af en anden persons tilstedeværelse, når man bearbejder emo-
tionelle billeder fra IAPS. En cluster-based permutation test viste et sig-
nifikant fald af the LPP (p=0.04) grundet tilstedeværelsen af en anden person.
Dette reflekterer et fald af den ophidselsestilstand, der opstår pga. emotionelle
billeder. Forskellen er lokaliseret i den venstre frontale superior gyrus, den ven-
stre frontale midtlinje gyrus, den venstre occipitale midtlinje gyrus, den højre
temporale superior gyrus og den højre temporale midtlinje gyrus. Disse om-
råder er associerede med regulering af ens følelser og the MNS system. En
tids-frekvens analyse viste, at tilstedeværelsen af en anden person øger ens op-
mærksomhed af negative billeder (p=0.06).
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Chapter 1

Introduction

The human brain is complex and despite our increased knowledge due to mod-
ern modalities like EEG, MRI, CT and PET, our understanding of the brain
remains very limited. The field of neuroscience is broad, yet the study of social
cognition has been previously neglected. It has only recently become of great
interest [109]. Social cognition covers cognitive processes such as encoding, stor-
age and perception of information that help to create an understanding among
individuals of the same species [8].

Social interaction is an essential part of human function and the daily life. Lack
of social skills can be devastating for the daily functions of the individual and
can result in their rejection from the society [53]. Despite the importance of
social skills, the underlying neural mechanism is still poorly understood. In
addition, because it is known that neurological diseases like schizophrenia and
autism affect the ability to interact socially, a better understanding of social
cognition could improve the current knowledge of such diseases [53]. The area
is very complex to analyze and test as social interaction includes several aspects
such as perception, action, attention, which is often analyzed separately. The
study of social interaction requires simulation in an experimental environment
rather than through more natural social interaction [18].

Even though the interest in the field of social interaction has increased, a "sim-
ple" process of how the presence of another person affects the perception of emo-
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tional scenes remains unanswered [105]. Until now, the literature (elaborated in
Section 1.2) has been focusing on social interaction using experiments originat-
ing from game theory [16, 19, 20, 42] or from action-perception paradigms such
as follower/leader or coordination [39, 71, 117]. Recently, however, Richardson
et al. examined this interesting statement [105]:

"By focusing on this minimal social context (knowing that another
person is seeing the same images), we can explore the shifts in per-
ceptual processes that occur in response to the presence of others,
prior to communication, joint action or cooperation taking place"

Several studies have shown that the neural mechanisms of processing positive,
negative and neutral pictures1 differ [44, 60, 69]. In the thesis, affective pictures
are referred to include both positive and negative pictures. In relation to social
cognition, two important questions need to be answered:

1. Are neural responses pertaining to emotional scenes different when in the
presence of others?

2. Are affective pictures perceived as more or less extreme when the experience
is shared?

To the knowledge of the author no one has looked at the neural mechanisms
behind these questions.

Richardson et al. [105] used an eye tracker2 to analyze which pictures the partic-
ipants looked at (gaze), when four images (one negative, one positive and two
neutral) were presented simultaneously. They investigated whether the gaze
pattern changed as the participants were told that another person was looking
at the same pictures. The participants were not able to see or to interact with
each other. Moreover, they did not have knowledge about the other person’s
gaze. The social context was minimized by participants sitting in opposite cor-
ners of the room and being told by the screen whether they looked at the same
images (joint condition) or not. The distribution of the gaze pattern was mod-
ified in the joint condition analyzed by an eye tracker. The participants were
more attracted in the joint condition, meaning a higher total looking time, at
negative images compared to positive and neutral ones.

1Examples of positive pictures are erotic images or babies, while examples of negative
pictures are mutilated bodies or "threat" images like spiders and snakes. Neutral pictures
might be a cup or a pencil.

2An eye tracker captures the eye movement of a participant and can among others be used
to detect where on the screen the participant is looking.
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Because eye-tracking cannot reveal the level of arousal nor how or when any
increased attention is developed, EEG is used to study the underlying neural
sources. Therefore, the next step is to investigate similar modifications of atten-
tion using EEG to shed light on the underlying neural mechanisms. Utilizing
EEG could give a deeper understanding of the potential modulation of attention
and emotional perception in joint attention scenarios. Sharing experiences, such
as videos or images, is a large part of social interaction. Schilbach et al. [109]
state that being jointly attended can have an impact on the perception of an ob-
ject and its value, not only on the perception of the other person. Understanding
these potential modifications would improve the understanding of the effect of
the mere presence of others on emotional processing and regulation.

1.1 The Human Brain

The following section provides a basic summary of human brain function and
anatomy based on the work by Seeley et al. [113]. The brain consists of four ma-
jor divisions, which are the brainstem, the cerebellum, the diencephalon and the
cerebrum as shown in Figure 1.1. The brainstem works as the pathway between
the cerebrum and the spinal cord and controls reflexes, whereas cerebellum’s
major function is the control and learning of motor skills. The diencephalon
includes the hypothalamus which controls the endocrine function of the brain
and the thalamus that projects the majority of sensory inputs to cerebrum.

The last division is the cerebrum. The cerebrum is divided into the right and
left hemispheres by the medial wall. Each hemisphere is divided into a frontal
lobe, parietal lobe, occipital lobe and temporal lobe as seen in Figure 1.1a.
The function of the frontal lobe includes voluntary movement, motivation and
aggression. The parietal lobe receives the majority of sensory information except
for visual input, which is received by the visual cortex in the occipital lobe. The
temporal lobe is associated with memory, judgment and abstract thinking. The
outer surface of cerebrum consists of gray matter and is called cortex. It is a
folded structure, where the fissures are called sulcus and the ridges are called
gyrus. The white matter is called cerebral medulla and is the layer between the
cortex and basal nuclei. The limbic system is seen in Figure 1.1b and covers
parts of both the cerebrum and diencephalon. Amygdala and thalamus are parts
of the limbic system and play important roles in the perception of emotional
input.
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(a) (b)

Figure 1.1: The figure shows a) the location of the four lobes in Cerebrum
and b) the limbic system, showing the location of amygdala and
thalamus. The image is obtained from [2].

1.1.1 Perception of Affective Visual Stimuli

The processing of a visual stimuli is a very complex process and is still not
fully understood. Moreover scientists do not agree on how the processing works
and especially the roles of thalamus and amygdala [98]. Generally explained, a
human exposed to a visual stimulus will transfer the information from retina via
the optic nerves to the lateral geniculate nuclei of thalamus, which via thalamic
neurons projects the information to the visual cortex in the occipital lobe. The
visual cortex transforms the information into a mental image and depending
on the information projects it to the target part of the brain [113]. Passoa
and Adolphs, [98], discuss the role of thalamus and amygdala in affective visual
processing. At one point, one hypothesis was that an unconscious processing
of affective visual stimuli bypasses the cortex with a path from thalamus to
amygdala. However they [98] propose that the processing of affective stimuli
and emotion is more complex than the first hypothesis claims and that the
cortex has a larger contribution. The role of amygdala originates from its broad
connectivity with the cortex and serves more as a convergence zone, where it
both receives and projects information from and to the visual cortex.

From a meta analysis of neuroimaging studies of functional grouping in emo-
tion, [69], it was found that certain regions were consistently activated across
studies of emotion and affect. Regions of the visual cortex and visual associa-
tion cortex at the occipital and temporal lobe were grouped as a function and
showed consistently activation in both the early and late processing. The activ-
ity of the group was enhanced with increasing emotional content due to neural
projections from the limbic system. The prefrontal area also showed consistent
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activations and is suggested to generate emotions in a network with the limbic
system, amygdala, the visual cortex and the visual association cortex. Amyg-
dala showed consistently activation and is proposed to play a role in both visual
and emotional processing. However, the precise role of amygdala still remains
unclear [69, 93].

1.2 Literature Review

The literature review is divided into two sections. The first part summarizes
findings of Event Related Potential, ERP and brain oscillation studies using
affective pictures to elicit processing of emotional stages mainly based on [67, 93].
The second part reviews recent findings in two-brain studies and serves as an
introduction to the field of social cognition, primarily based upon [72, 109]. Both
reviews are important as the thesis combines these two areas.

1.2.1 Affective Picture Processing

The literature in the field of affective picture processing has increased for the
last decade using both ERP analysis [93] and analysis of brain oscillations [61].
Modulations of pictures are based on two dimensions. The valence dimension
defines the pictures in a scale from pleasant to unpleasant, where the arousal
level defines the picture in a calm/excited scale [74]. The review of ERP studies
will be divided into findings of an early time window from 0 to 300 ms relative
to image onset and a late time window after 300 ms. Furthermore, studies
concerning the brain oscillations will be divided into oscillation bands of specific
frequency content: the theta band (4-7 Hz), alpha band (8-12 Hz) and beta band
(13-30 Hz). Even though the gamma band is interesting and negative valence
pictures have shown an increased gamma activity [89], the thesis limits the
analyses to the theta, alpha and beta bands.

Modulated ERPs:

In the time window (0 - 300 ms), the early sensory processing affects the modu-
lation of the ERP components and is associated with the valence content of the
picture [93]. Pictures with a positive valence are distinguished from negative
and neutral pictures [34, 60, 97]. Kiel et al. [60] investigated positive, negative
and neutral pictures, where the early negative component, N1, was enhanced3

for positive pictures at the occipital site. At the fronto-central sites, the positive
3Enhancement of the N1 component means a larger negative amplitude.
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pictures had a lower negative mean amplitude in the interval from 150 to 300
ms [97]. The review of Olofsson et al. [93] notes large variability across the stud-
ies within the early time window with many studies not finding any differences
between the pictures. Furthermore, they report that some studies find a larger
response for negative pictures compared to positive and neutral ones [93].

The same review, [93], notes very consistent results across the literature in the
late time window (>300 ms), where the arousal level distinguishes affective and
neutral pictures. A larger response to affective pictures compared to neutral is
reported as an increasing positive potential for affective pictures around 400 to
700 ms after image onset. This positive potential in the late latency window
is a consistent finding between neutral and affective pictures [93], where the
arousal state is correlated with a long lasting stronger response. This effect is
found as a positive wave at both the centro-parietal and fronto-parietal sites
[60, 61, 94, 97, 107, 108] and as a negative wave at the temporal and occitpital
sites [60, 97].

To sum up, the early time window is mostly affected by the valence level of
the picture, while the arousal level modulates the ERPs in the late picture
processing.

Modulated Oscillatory Brain Activity:

Low frequency oscillations in the theta band have mainly been associated with
encoding of new information with Event-Related Synchronization, ERS4 , dur-
ing successful encoding [62, 65, 66]. From a review by Klimesch [63], it is
suggested that an increase in theta power more generally reflects an increase in
the attentional demand, task difficulty and cognitive load.

Aftanas et al. [10], showed that the valence dimension in picture presentation
distinguished affective from neutral pictures with an increase in theta power
from 200 to 500 ms after picture onset. Increased theta power for affective
pictures is found in hippocampal5, which is connected with increased frontal
and prefrontal theta power in the first 600 ms after picture onset [68]. It is
consistent with the review by Klimesch [63], as affective pictures have a higher
cognitive load and tend to improve the memory performance [38].

The alpha band is the dominating frequency band in EEG signals and the most
studied, but the precise function of alpha oscillations are still to be defined

4ERS means increased power as more neurons are synchronized and therefore create a
larger potential.

5Hippocampal is a region in the brain that belongs to the limbic system, and plays an
important role in, e.g. memory forming [113].
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[63, 64]. However, an alpha Event-Related Desynchronization, ERD6 has con-
sistently been interpreted as increased engagement in the stimulus and thereby
increased attention [64, 67, 68]. Alpha ERD is seen when affective pictures
are presented in contrast to neutral pictures over the occipital [35] and parietal
[68] electrode sites suggesting a higher activation of the visual processing. The
function of the alpha band has been proposed to be divided into a lower and an
upper alpha band. The lower band is spatially widespread with a less clear func-
tion related to general attentional demands. The upper band is more spatially
widespread and functionally related to semantic memory processing [63].

Literature concerning modulation of beta oscillations, due to affective picture
presentation, is lacking as most studies have been focused on theta, alpha and
gamma oscillations. Güntekin et al. [51] found a significant difference with an
increased beta activity for negative pictures compared to positive and neutral
ones in the early time window. Another study, [103], found that both positive
and negative emotions had increased beta activity.

1.2.2 The Social Brain and Interacting Brains

The brain activity underlying social cognition is as mentioned still poorly un-
derstood, despite the importance of it as a human being. The earliest findings
report that brain lesions in the prefrontal area resulted in social impairment and
changes in personality despite unchanged IQ, language etc. Likewise, damage
of amygdala has showed that recognition and judgment in a social context were
impaired [8]. Hence, these areas were thought to be involved in social cognition.

Social interaction is defined by Sebanz et al. as [112]:

"We propose that successful joint action depends on the abilities (i)
to share representations, (ii) to predict actions, and (iii) to integrate
predicted effects of own and others’ actions"..."Joint attention cre-
ates a kind of ’perceptual common ground’ in joint action, linking
two minds to the same actualities."

A theory to explain crucial processes involved in social interaction is the The-
ory Of Mind, TOM 7. TOM plays an important part in social interaction as
it refers to the ability to distinguish between self and others by believing that
others have their own thoughts, intentions and beliefs. The ability to socially

6ERD means less synchronization of the neurons and therefore a decrease of power.
7TOM is just one of many theories, see [8] for a further elaboration.
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interact is highly dependent on ones ability to understand others’ intentions,
thoughts and beliefs. Successful interaction is not only dependent on under-
standing each others’ actions at the moment but also peoples ability to predict
future actions [48, 124]. If a prediction during social interaction is violated,
the superior temporal sulcus is activated suggesting its role in updating the
predictions and understandings of the other person’s action [18, 43, 49]. The
ability to understand and predict others’ action are linked to two systems the
Mirror-Neuron-System, MNS, and the Mentalizing System, MENT .

The main regions of MNS include the premotor and parietal cortex [112, 121]
and have the primary function as a common coding framework of perception and
action. Activation of MNS has been reported when observing and executing an
action, implying that the MNS is a sensorimotor network. The MNS is only
activated if the observed action is recognized [53, 47].

The MENT has the purpose of understanding others’ thoughts, intentions and
beliefs. The ability to understand these, are derived from our own expectations.
The Anterior Cingulate Cortex, ACC, has been shown, from a game, to be an
important region in making an accurate estimate of others’ thoughts, intentions
and beliefs [19, 20]. The orbitofrontal area has shown to play a role during
cooperation [14], but in general it is also associated with evaluating uncertainty
of outcomes [16]. The orbiofrontal area is a subdivision of the medial Prefrontal
Cortex, PFC that is continuously active and in connection to the temporo-
parietal junction during social interaction and more specifically decoding of
others’ thoughts, intentions and beliefs [18]. As presented earlier, several areas
of the brain have been associated with social interaction, despite the fact that
researchers, until recently, only have investigated brain activity from isolated
individuals [53].

In contrast to the above theory that social interaction can be explained by the
activity of a single brain and certain areas, a different way of understanding
social interaction is by studying two persons engaged in a mutual interaction
with each other. This bidirectional information flow sees the interaction as a
larger and more dynamic process, which cannot be explained solely from an
observing and imitating point of view [53, 72, 109]. Two interacting people
create a shared environment that affects the interacting persons, where one’s
input will be the output of the partner making a perception-action loop. In
addition, each person still tries to understand and predict the actions, beliefs
and intentions of the other interacting partner.

An important factor to create sufficient estimates of the other’s action is the gaze
of the interacting partner. Mutual eye gaze plays an important role in our ability
to socially interaction and is an important part of the perception-action loop [73].
It is also known that infants develop and learn through mutual eye gaze and is
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the foundation of the first social interaction. Because our predicted intentions
of the interacting partner are often based on memory of similar situations in
past, facial expressions, gestures and eye contact all play an important role in
recognizing the present social situation.

One’s motivation towards social interaction is still uncertain, but has been sug-
gested to be connected to the reward system [109]. Schilbach et al. [110], suggest
that humans feel rewarded when sharing experiences, which motivates them to
interact. By examining the eye gaze, they found that there was a difference
between following someones eye and leading the eyes towards a jointly attended
object. The ventral striatum, a region associated with being rewarded, was
activated when the subjects led the gaze.

Recently, studies in neuroscience have moved away from studying the isolated
brain to use the method hyperscanning, defined as simultaneously measuring two
or more brains [72]. Several studies use the hyperscanning method to investigate
the neural mechanisms of social interaction, where experiments originating from
game theories such as Prisoners’s Dilemma [19, 42]8, the Chicken’s game [14]9 or
a card game [16, 20] have been used. Although the studies found active regions
(amygdala, ACC, PFC and fronto-orbital regions) similar to ones studying the
isolated brain, these met criticism [109].

First, the experiments do not capture a true interaction scheme since the ex-
periments are turn based implying that the participants are either receiving
or sending information. Real social interaction is more co-regulated than turn
based [109]. Secondly, the areas found are known to have multiple functions
questioning the true reason for the increased activity [72]. Another experimen-
tal paradigm used with hyperscanning is the synchronization of hand move-
ment [39]. Here participants were told to imitate each others’ hand movement.
The results showed synchronization between the two brains in the right centro-
parietal regions in the alpha-mu frequency band10. It supports the concept that
the alpha-mu frequency band in the right centro-parietal region was also found
as a neural marker complex for social coordination [117]. The neural marker
complex consists of two components, phi1 and phi2, that were active as the
participants either had ineffective or effective synchronization.

8Prisoner’s Dilemma is a game with two participants, each having two choices: cooperate
or defect. If both players cooperate, they will both have a small win, if only one cooperates,
the cooperator has a big loss and the defector has a big win. If both defects they both have
a small loss [19].

9The Chicken game includes two players driving against each other. The players can now
stop or continue giving in total three outcomes: both cooperates (stops) giving both of them
a small win, one cooperate and one defects (continue) resulting in a big loss and a big win. If
neither player gives up, they both have a big loss [14].

10The alpha-mu frequency band is 10-12 Hz and describes a sensorimotor rhythm.
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Figure 1.2: The figure outlines the steps used in the preprocessing pipeline.

Most recent, Konvalinka et al. [71] examined, from a dual-EEG experiment,
a simple action-perception loop in a finger tapping experiment. Participants
aligned their finger tapping beats with either an auditory feedback from a com-
puter (non-interactive) or from another person (interactive). During tapping
suppression of 10 Hz and 12-15 Hz neural oscillations were found in the inter-
active condition compared to non-interactive. Suppression was found at the
sensorimotor, right-frontal and fronto-central electrode locations. The results
are consistent with [90, 117] suggesting that the alpha-mu rhythm is thought to
be a part of MNS activity.

1.3 The Data and Pipeline

The data in the thesis is a 64 channel recorded scalp EEG from 13 females at the
Center for Visual Cognition at Copenhagen University. The experimental design
is a 2×3 within-subjects design with the social context and the emotional picture
content as the two factors. The two social conditions are defined as Alone and
Together, meaning that the participants are viewing the pictures alone or with
another person. The three picture conditions are positive, negative and neutral
which define the valence and arousal level of each picture group.

The experimental design allows a sanity check by reproducing the results in the
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Figure 1.3: The figure outlines the different analyses conducted in the thesis.

literature concerning affective picture processing, and secondly an analysis of
the social context.

As the data is self-produced, it is necessary to conduct a sufficient pipeline to
denoise and prepare the data prior to the analysis. Figure 1.2 shows a schematic
overview of the preprocessing pipeline conducted in the thesis, while Figure 1.3
shows the different analysis applied to the data.

1.4 Problem Definition

The aim of the thesis is to conduct and analyze a social EEG study serving as a
preliminary work for future studies recording EEG from multiple subjects to see
brain-to-brain interactions. The main problem is to simplify the design while
bringing social cognition into an experimental environment, and to ask the right
questions in order to quantify the effects.

The nature of EEG signals require a detailed and considered preprocessing
pipeline [92]. Great effort and much time was spent on creating an appropriate
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pipeline with the purpose of denoising the signals with a minimum of neural
signal distortion. The extended INFOMAX Independent Component Analysis,
ICA algorithm [58] was applied on the data in order to remove Electrooculog-
raphy, EOG artefacts. Wrongly removing components can introduce artificial
components in the data as some brain activity is removed. It takes many years of
experience to manually distinguish ICA components as EOG and brain activity
components, therefore several automatic and semiautomatic methods have been
developed [25]. The newest state-of-the art method is EyeCatch, which is based
on spatial correlation with templates defined through data mining over thou-
sands of ICA components [25]. To the knowledge of the author, the method
has not yet been used in the literature, therefore the thesis will validate the
performance of EyeCatch using an eye tracker.

In the thesis, the data is analyzed in three different ways:

1. A traditional ERP analysis.

2. A complex Morlet wavelet decomposition for a time-frequency analysis.

3. Source reconstruction using the Minimum Norm Estimate, MNE.

The statistical tests are performed using the non-parametric cluster-based per-
mutation test. In neuroscience, Multiple Comparison Problem, MCP is a com-
mon problem, where the thesis investigates the non-parametric cluster-based
permutation test to solve the MCP using both simulations and real data. The
test will from now on be denoted as a cluster-based permutation test. The test
will be applied on both channel, region and source level. The author has no
knowledge of existing literature applying the cluster-based permutation test on
source or region11 level.

To conduct the pipeline and analysis, a Matlab, [84], based software package
for advanced analysis of EEG, Fieldtrip [95], is used, except for the use of ICA
and EyeCatch. These are performed in EEGLAB [36], which is another Matlab,
[84], software package.

11The AAL atlas, with 116 brain anatomical regions, is used in this thesis [119].
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1.5 The Outline of the Thesis

Chapter 2 introduces the basic concepts concerning the origin of electroen-
cephalogram. It then outlines general challenges prior to an EEG recording and
a description of possible noise sources.

Chapter 3 explains the theory behind the preprocessing steps including filter
design and ICA. The last part of the chapter explains the three analyzing meth-
ods: the ERP analysis, the time-frequency analysis and source reconstruction
using the MNE.

Chapter 4 explains the non-parametric cluster-based permutation test. Fur-
thermore, a simulation study is conducted to investigate crucial parameters of
the test.

Chapter 5 describes the experimental design and the pipeline conducted in the
thesis to prepare the data prior to analysis.

Chapter 6 serves as an independent chapter, where the performance of Eye-
Catch is validated with an eye tracker. The method and results of the validation
are presented in this chapter including a discussion.

Chapter 7 presents the main results in the thesis. The first part concerns
the baseline in the data. The second part shows the results of comparing the
processing of positive, negative and neutral pictures. Finally, results due to the
social context in the experiment, are presented.

Chapter 8 discusses the results from Chapter 7 including a general discussion
of the cluster-based permutation test.

Chapter 9 summarizes the discussion and concludes with the goals set forth in
the thesis followed by a perspective on future work.
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Chapter 2

Background -
Understanding the

Electroencephalogram

This chapter serves as an introduction to the basics of the EEG and is divided
into two sections.

1. The first section gives a brief introduction about the origin and the charac-
teristics of an EEG signal and is based on [92, 113]. In order to compare
results across EEG studies, several parameters have to be defined, e.g
placements of the electrodes and the choice of reference. The section is
based on [92, 79].

2. The last section deals with the poor signal to noise ratio, SNR in EEG
recordings as many different and often high energy noise sources distort
the EEG signals [118].
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(a) (b)

Figure 2.1: Figure a) shows how the postsynaptic potential is a summation of
all ESPS and IPSP. The figure is obtained from [102]. Figure b)
illustrates the alignment of the dipoles and how a scalp potential
is created. The figure is obtained from [22].

2.1 Electroencephalogram

As mentioned in Chapter 1, an external stimulus is transmitted from the retina
through the thalamus to the visual cortex. This path is very complex and in-
cludes thousands of neurons. The transmission of a signal between neurons is
done through a structure called a synapse. The neuron that carries the signal has
its axon at the synapse, where the receiving neuron has its apical dendrites. Ac-
tion potentials and postsynaptic potentials are the two types of electrical activity
in the brain. The postsynaptic potential arrives from Excitatory Postsynaptic
Potentials, EPSPs and Inihibitory Postsynaptic Potentials, IPSPs. EPSPs re-
sult in a positive electrical charged cellbody and a negative electrical charged
apical dendrites, while IPSPs have the opposite effect. The electrical difference
between the cell body and the apical dendrites creates a dipole. The receiving
neuron is affected by many neurons simultaneously, working as either an EPSP
or an IPSP. It is the summation of these that controls if an action potential is
triggered [92].

The electrodes used to measure the electrical potentials in the brain can be scalp
or intracranial electrodes [92]. Recordings obtained with intracranial electrodes
are out of the scope of the thesis and will therefore not be explained. The
largest contribution to the scalp recordings is believed to originate from cortex.
A single electrode measures an electrical potential originating from a tissue area
spanning over hundred millions to billions neurons. It is therefore not the ESPSs
and IPSPs from a single synapse that generate the potentials, but many local
synaptic sources that due to spatial adjacency all contribute to the measured
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signal.

The folded structure of the brain complicates the summation of all the dipoles,
because summation of the dipoles are angle dependent. Dipoles of the oppo-
site direction (180 degrees) will cancel each other. Small cancellations will be
present already from an angle of 90 degrees [79]. The alignment of the dendrites
is therefore an important factor prior to having a measurable signal. The den-
drites are often arranged parallel, meaning that the local synaptic activities add
up their dipole potential by forming a dipole layer. A dipole layer is a forma-
tion of activity of many synapses that are parallel with synchronized activity.
It must consists of approximately 60.000.000 neurons (∼ 6cm2 tissue area) that
are synchronously active in order to produce a scalp potential. Axons are orien-
tated more randomly implying that action potentials at the axons have a much
smaller contribution to scalp potentials. Additionally, action potentials are not
as synchronized as post synaptic activity [92].

The tissue from the generated dipole potential to the scalp electrodes is inho-
mogeneous, where each different layer12 has individual resistances and conduc-
tivity characteristics. It makes it difficult to locate the precise sources of the
EEG signal [92]. The electric potentials therefore provide a large-scale spatial
resolution but a very high temporal resolution, making it possible to obtain fast
modulations of the postsynaptic potentials. The activity can be divided into
two categories: modulations at a short-time scale (milliseconds) and modula-
tions at a large-time scale (seconds to minutes). The short-time modulations
arrive mostly because of external stimulus, for example when a picture is pre-
sented. The large-time modulations are called spontaneous potentials and are
for instance the patterns observed during sleep [92].

The recorded EEG signal can be described according to their frequency con-
tent13 as seen in Table 2.1. The amplitude of EEG signals depends on the
previous discussed factors, but are in the range of 0.1 to 100 µV .

2.1.1 EEG Recording

In order to compare EEG studies accurately and make it reproducible, the stan-
dardized international 10/20 system has been developed. It has been used for
half a century and most newer systems like 10/10 and 10/5 have been devel-
oped from it14. The system describes the electrode placement with respect to
certain anatomical landmarks over the head surface [59]. The landmarks used

12Brain tissue, cerebrospinal fluid, skull and scalp tissue.
13The range of each frequency band can differ slightly depending on the literature.
14The 10/10 and 10/5 systems are used with higher channel density.
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EEG rythm Frequency band [Hz]
delta 1-4
theta 4-8
alpha 8-12
beta 12-30

gamma >30

Table 2.1: The table shows the EEG rythms and their corresponding frequency
content [92].

are nasion, Nz, inion, Iz, Left Preauricular Point, LPA and Right Preauricular
Point, RPA. Nz is the notch area between the eyes and Iz is the lowest point in
the back of your head. LPA and RPA are the peaks at the left and right tragus
located in the ear. Two distances between landmarks (Nz/Iz and LPA/RPA)
are measured to ensure that the electrode headcap is correct placed. The middle
of each distance defines the intersection between the two measurements and is
used as reference point that usually corresponds to a specific electrode depend-
ing on the used system. An example of a widely used electrode cap is Biosemi’s
64 channel headcap [1]. The layout is seen in Figure 2.2, where Cz is used as a
reference point when preparing the participants for the experiments. Using this
approach for each participant in an experiment, will maximize the homogeneity
across the subjects [59]. The 10 and 20 refer to the distance, 10/20 percent-
age of the total front–back/right–left distance of the skull, between adjacent
electrodes in the system. Jurcak et al. [59] discuss that there are two sources
to intersubject variability. First, they argue that the landmarks definitions are
ambiguous. Second, the scalp and cortical anatomies differ across subject. The
10/10 system which is derived from the 10/20 labeling system is used in the
thesis.

To improve the electro-chemical surface between the tissue/skin and the elec-
trode, gel is used between the headcap and participant’s skin before a recording.
The electrode consists of Ag/AgCl to make a stable and sufficient contact with
the skin. The quality of the contact between electrode and skin is measured
with input impedance, which is recommended to keep below 25 kΩ. [79]. Other
settings of the EEG equipment to ensure a first quality EEG recording is the
sampling rate and online filtering. According to Nyquist sampling theorem, [75],
the sampling rate needs to be twice as high as the highest frequency. The online
filtering often consists of both a low-pass and a high-pass filter with a cut off
frequencies, depending on the experiment.
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(a)

Figure 2.2: The figure shows the channel layout for the used Biosemi 64 chan-
nel headcap in the thesis [1].
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2.1.2 The Reference

The obtained signal at a single electrode was previously presented as the summed
dipole current. The measured signal is actually the difference between the elec-
trode and a reference electrode. The choice of reference electrode is not simple
and can depend on the recording system [92]. The reference electrode and the
electrode placement system are two important factors to consider before com-
paring studies. The ideal reference would be a reference placed at a distance
infinitely away from the recording electrodes. Because the localization of the
sources are unknown, it is not appropriate to use a distant reference point. It
implies that the reference electrode also will be a recording electrode in an EEG
recording [92]. The recorded EEG signal is therefore intuitively highly depen-
dent on the chosen reference. Here three widely used methods are presented:

1. The bipolar recording uses an average reference from six adjacent elec-
trodes. The mean of six potential differences between the electrode, n,
and six surrounding electrodes will be the final recorded potential at elec-
trode n [92].

2. A second choice is the linked-mastoid reference. The idea is to create
an artificial reference with a potential corresponding to the average of
the two mastoids. The disadvantage is the dependency of sources at three
different locations (the two mastoids and the recorded electrode) [92]. The
potentials at the mastoids are often measured with external electrodes.

3. A third solution is to use the average reference. The scalp potential at the
average reference, Φ(ravg), is calculated as [92]

Φ(ravg) =
1

N

N∑
n=1

Φ(rn)− 1

N

N∑
n=1

xn, (2.1)

where N is number of channels, Φ(rn) denotes the scalp surface potential
at channel n and xn is the measured potential at channel n. The first term
on the right hand side is the average of the scalp surface potential. It is
assumed that the current leaving the head through the neck is minimal,
which implies that the head can be considered as a closed volume. Due
to the current conservation theorem [92], the scalp surface potential must
be zero and the term can be ignored. Using this assumption, the scalp
potential at the reference will be equal to averaging the measured poten-
tials at all electrodes. An increasing number of electrodes decreases the
error of the assumption about considering the head as a closed volume. A
sufficient number of electrodes is 64-128 [92]. Besides the numbers of used
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electrodes, it is important to have a uniform distribution of the electrodes
to make a valid average reference.

The perfect reference when recording an EEG experiment does not exist, since all
methods have drawbacks and assumptions. In the thesis, the average reference
is used.

2.1.3 The Noisy EEG Signal

A noise free EEG signal is an illusion. Increasing the SNR is very important
and necessary before the signals can be analyzed, since the EEG activity often
has less power than the noise [92]. The potential sources of noise in an EEG
signal are divided into exogenous artifacts and endogenous artifacts. Selected
methods to increase the SNR is described in Chapter 3.

2.1.3.1 Exogenous artifacts

Exogenous artefacts originate from external sources, where the three most com-
mon are presented.

1. Line noise is an external noise source and is seen as a 50 Hz component15
and can be reduced with both online and offline filtering. Active shielding
is the use of special electrode cables in the amplifier circuit, so the EEG
lead is shielded. Usually, the recordings are obtained in an electrically
and acoustically shielded EEG cabin lowering the probability of line noise
[118]. Spurious electrical noise from sources like elevators, engines etc.
can also be present, but an EEG cabin will often prevent such noise.

2. Movement of the electrodes as a result from body movement is an often
seen noise source also called jumps squids or spikes. Their characteristics
are often quick amplitude changes in a short time interval [118].

3. Measuring with metallic electrodes can introduce a DC component in the
EEG signal. The DC component can distort the baseline in the signal.
The DC offset can be removed by subtracting the mean of entire trials
also called baseline correction in the time domain.

15Line noise is 50 Hz noise in Europe and 60 Hz in USA [92].
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2.1.3.2 Endogenous artifacts

Endogenous artefacts originating from the human body are often more difficult
to remove. There are mainly four types of sources to endogenous artifacts:

1. Electrocardiogram, ECG artefacts are caused by the electric activity from
the heart and have a large inter-subject variability mostly due to anatom-
ical and physiological differences. If an electrode is placed directly above
a blood vessel, prominent ECG artifacts will most likely be present. An
ECG artefact is a well defined shape, why a template based subtraction
can be used. ICA has also shown to be a great tool to separate the ECG
artefact from the signal [118].

2. Electromyographi, EMG artefacts are mostly due to muscle movements
of the jaw implying that the energy is localized at the temporal lobes.
McMenamin et. al [85] state that the majority of EMG artefacts is in the
higher frequencies with a peak around 100 Hz, but that EMG artefacts
have been detected to as low as 2 Hz. Generally, it depends on the muscle
groups producing the artifacts and the contraction intensity. ICA has
shown to be effective to detect EMG artefacts [36].

3. EOG artefacts are caused by eye movement such as vertical and horizon-
tal saccades and blinks. EOG artefacts are characterized within the lower
frequency range mostly from 1-20 Hz, but it is not uncommon that they
reach up to 54 Hz [91]. Generally, there are three different variations of
EOG artefacts, 1) the corneo-retinal dipole, 2) blinks and 3) spike po-
tentials. The corneo-retinal dipole is produced during a saccade, where
the orientation of the eyeball is changed causing the retina and cornea to
produce a dipole as they are negative and positive charged, respectively.
Blinks are causing artefacts because the eyelid slides over the cornea and
short-circuiting the inter circuit between the forehead and cornea. Spike
potentials are seen right before a saccade. Microsaccades are defined as
saccades with an angle below one and is reported to distort the signal in
the gamma range [70, 46].

EOG artefacts are the most difficult arefacts to remove as their spec-
tral range overlaps the theta, alpha and lower gamma band [91]. There
are several methods proposed to remove EOG artefacts. Simple thresh-
olds methods16 have been used because of the spikes introduced by EOG
[118]. However using a threshold method often results in rejecting the
trial. Linear regression has also been widely used, but require external
EOG channels in the set up. The linear regression method assumes a

16For example using the amplitude, standard deviation, min/max value, amplitude differ-
ence between adjacent data points [118].
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linear relationship between EOG and EEG channels, where the only com-
mon activity is EOG activity. In reality, EEG activity will also have an
impact on the EOG channels [118]. More advanced methods include Prin-
ciple Component Analysis and ICA, where ICA is used and elaborated in
Chapter 3.

4. The respiratory system and sweat can affect the input impedance on the
electrodes introducing low frequency noise around 0.1-0.5 Hz [118].

2.2 Summary

This chapter outlined how an EEG signal occur, what the scalp electrodes ac-
tually measure and discussed the importance of choosing a proper reference and
electrode measure system. It is all important prior to making and conducting an
EEG experiment. In the last part, several noise sources that often are present in
an EEG signal were presented, in order to understand the next chapter, which
deals with the theory behind the applied methods to remove noise.
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Chapter 3

Theory

This chapter serves to explain the theoretical background of the methods used
to analyze the data and is divided into two sections.

The first section deals with the preprocessing of the data to increase the SNR
and to prepare the data for analysis, and includes:

1. The purpose of preprocessing and the consequences of applying different
filters [75, 79].

2. The use of ICA and the method EyeCatch with the purpose of removing
EOG artefacts [58, 81].

The second part of the chapter explains the three methods used to analyze the
data.

1. The first method is a traditional ERP analysis, where the data is analyzed
in the temporal dimension timelocked to onset of the stimulus [79].

2. The second method is a time-frequency analysis using the complex Morlet
wavelet transformation [116].
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3. Finally, the underlying neural sources of the recorded scalp EEG is mod-
elled using the MNE [22].

The method to statistically test the data is omitted here, but will be elaborated
in Chapter 4.

3.1 Preprocessing

As explained in the previous chapter, EEG signals are often contaminated with
noise originating from different sources. Preprocessing the EEG data is therefore
a very crucial and important step before analyzing the data. In all preprocessing
steps, different trade offs have to be taken into account as removal of noise also
will distort the neural sources [79, 92].

The overall goal of preprocessing is to decrease the amount of noise while min-
imizing the distortion of the neural signals, and thus increase the SNR defined
as, [75],

SNR =
Psignal
Pnoise

, (3.1)

where Psignal denotes the signal power and Pnoise is the noise power, where

power is defined as: Pf = limT→∞
1
T

∫ T
2

−T
2

|f(t)|2dt, over the period T.

3.1.1 Filter Design

The purpose of applying filters is to remove spectral components, which are not
of interest in the analysis. The use of filters does not come without a cost as it
will distort the data. However, because of low SNR in the raw signal, it is often
a necessary step in the preprocessing. The task is therefore to optimize the
filter in order to minimize the modulation of the brain signals while removing
noise. It includes making decisions about filter causality, filter order and cut-off
frequencies.

Causality means that the filter only depends on the past and the present, and will
therefore introduce a linear phase delay of the filtered signal [75]. Introducing
a phase delay is often unwanted in an ERP analysis as the precise latency of
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the ERP components is important. An acausal filter introduces a nonlinear
phase delay as the filter also uses knowledge of the future signal. However, the
nonlinear phase delay can be avoided by applying the filter twice (forwards and
backwards) defining it as a zero-phase shift acausal filter. An Infinite Impulse
Response, IIR, zero-phase shift acausal Butterworth filter is an often used filter
in EEG studies [7, 79, 106, 118].

The choice of filter order has an influence on the level of attenuation and the
transition at the cut-off frequency. Generally, a larger filter order implies a
steeper cut-off, but also increases the oscillations near the cut-off frequency
called ripples. Therefore, the lowest filter order, while making an appropriate
filtration is desired to decrease these oscillations [75]. In general, Finite Impulse
Response, FIR, filters have higher sidelobes than IIR filters with same number
of filter coefficients [101]. Furthermore, IIR Butterworth filters provide a less
steeper cut-off, meaning a longer transient time but less ripples [106].

A low-pass filter is often used to remove high frequency noise such as line noise
and the majority of EMG artefacts depending on your frequency of interest17.
The only concern is to keep an appropriate distance between the cuf-off fre-
quency and the highest frequency of interest [106, 122].

High-pass filters are of more concern in ERP studies. It is reported by Acunzo
et al. [7] that an acuasal high-pass filter introduces a bias in the early ERP
components18 as a consequence of the zero-phase shift (applying the filter twice).
This is especially present if the used cut-off frequency is higher than 0.1 Hz. It is
therefore recommended to avoid using high-pass filter unless much low frequency
noise is present. If the latter is present, then the cut-off frequency should be set
as a low as possible with a maximum of 0.1 Hz [79].

On the basis of the previous discussion, a zero-phase shift acausal IIR Butter-
worth filter is preferred in the thesis both as a low- and a high-pass filter. The
settings of the used filter are elaborated in Chapter 5.

3.1.2 Independent Component Analysis and EyeCatch

ICA is best known from "the cocktail party problem", where two persons are
talking simultaneously while two microphones are recording a linear combina-
tions of the two voices. By applying ICA, the two sources can be separated into
two new "microphones" (ICA components) each only obtaining one voice [26].

17Recall from Section 2.1.3, that EMG artefacts are located at high frequencies.
18More specific, it is a modulation of the C1-component, which is the first visual component

in a respond to a visual stimuli [7].
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In the thesis, the purpose of ICA is to separate the recorded signal into noise
and neural sources and thereby denoising the EEG signal. The algorithm used
in this thesis is the extended INFOMAX introduced by Jung et al. [58], which
is based on the original INFOMAX algorithm developed by Bell et al. [23].
In the original algorithm, the sources are assumed to have a super-Gaussian
distribution, which is extended to vary between a super-Gaussian and a sub-
Gaussian distribution. A super-Gaussian density has a sharper peak19 and a
longer tail than a standard normal distribution and is described in Equation
3.17. The idea behind this distribution is that EEG signals, including EOG,
EMG etc, are usually few samples that produce a strong signal, meaning that
most of the time these sources have close to zero activity [58]. The strictly sub-
Gaussian distribution is described in Equation 3.19 and describes a distribution
of periodic signals. Looking at a simple sinusoidal signal, the probability for
values at the top or the bottom of the sinusoidal is higher than values in between.
It is shown that some EEG sources, e.g. line noise, are better described if the
ICA components can be distributed as sub-Gaussian [58].

The following derivation of the extended INFOMAX ICA algorithm is done from
a maximum likelihood approach based on the work by MacKay et al. [81]. The
recorded signals, X(N ×M) can be explained to time point t, as

xt = Ast, (3.2)

where A (N × N) is an unknown mixing matrix, that linearly mixes the sources
S (K × M) . N is the number of channels, M is the number of time points
(samples) and K is the number of sources. In this section, it is assumed that
N = K, where N will be used as both the total number of channels and sources.
From Equation 3.2, xt and st are defined as xt = x1(t), ..., xN (t) and st =
s1(t), ..., sN (t) respectively. Furthermore, it is assumed that noise is absent.

The goal is to estimate an unmixing matrix W = A−1 to recover the source
signals. It is done by finding the maximum likelihood of the observed data
matrix, D = {xt}Mt=1, given A

p(D|A) =

M∏
t=1

p(xt|A). (3.3)

The probability of the recorded signals and the sources, given the unknown

19Sharper peak refers to a less flat top than a standard normal distribution.
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mixing matrix is

p(D, {st}Mt=1|A) =

M∏
t=1

p(xt|A, st). (3.4)

Using the rules
∫
p(A,B|C)dB = p(A|C) and p(A,B|C) = p(A|B,C)p(B) in

Equation 3.4 gives an expression for the left hand side in Equation 3.4

p(D|A) =

∫
p(xt|A, st)p(s)dst. (3.5)

The probability of D, is only known when xt = Ast, which can be written with
the use of the dirac delta function, δ, as

p(D|A, st) = δ(xt −Ast). (3.6)

Assuming that the sources are independent implies [26]

p(S) =

N∏
n=1

pn(sn). (3.7)

Inserting Equation 3.6 and 3.7 into Equation 3.5 gives

p(D|A) =

M∏
t=1

[

∫
δ(xt −Ast)p(st)dst]. (3.8)

Since knowledge about the sources are limited, it is necessary to define them
as st = A−1ut from Equation 3.2, where ut is an estimate of xt. Furthermore,
using the relation dst = dut

1
det(A) in Equation 3.8 yields

p(D|A) =

M∏
t=1

[

∫
δ(xt − ut)p(A−1ut)

1

det(A)
dut]. (3.9)
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Given the nature of the δ-function20, Equation 3.9 can be reduced to

p(D|A) =

M∏
t=1

p(A−1xt)
1

det(A)
. (3.10)

Using the logarithm function in Equation 3.10 and the relationship of log(det(A)) =
− log( 1

det(A) ) gives the maximum log-likelihood function

log p(D|A) = − log det(A) +

M∑
t=1

log p(A−1xt). (3.11)

Recall, that the unmixing matrix, W , is defined as the inverse of A. Inserting
this relation and taking the derivative of Equation 3.11 with respect toW results
in

∂

∂W
log p(D|A) =

∂

∂W
log det(W ) +

∂

∂W

M∑
t=1

log p(Wxt). (3.12)

The first term gives ∂
∂W log det(W ) = W−1 from Equation 13 in [81]. The

second term is calculated by making the substitution zt = Wxt, where zt is an
estimate of the st. It yields

M∑
t=1

∂

∂z
log p(zt)

∂zt
∂W

=

M∑
t=1

∂

∂z
log p(zt)xt. (3.13)

Introducing the non-linearity from [76], ϕ(z), as

− ∂

∂z
log p(z) = −

∂
∂zp(z)

p(z)
= ϕ(z) (3.14)

20δ is only defined when ut = xt [75].
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and inserting it into Equation 3.12 gives

∂

∂W
log p(D|A) =

M∑
t=1

ϕ(zt)xt +W−1. (3.15)

The derivation of the learning algorithm that maximizes the log-likelihood with
respect to W in Equation 3.15, is omitted in this thesis, but can be obtained in
[23]. In Equation 7.11 in the study by Amari et. al, [12], it is showed that taking
the natural gradient will optimize the algorithm. The final learning algorithm
is

∆W ∝ [I − ϕ(Z)ZT ]W. (3.16)

Recall that Z is an estimate of S. The next step is to make an assumption about
the distribution of the estimated sources, p(z). The following is shown from a
single estimated source, z. The super-Gaussian distribution is defined as [76]

p(z) ∝ pG(z)sech2(z), (3.17)

where pG(z) is a standard normal distribution, N (0, 1) and sech is defined as
sech(z) = cosh(z)−1. Using Equation 3.17 and the definition of the non-linearity
φ results in

ϕ(z) = z + 2 tanh(z), (3.18)

where the full deviation is shown in Equation A.3.

Until now, it has been assumed that the sources are distributed as having super-
Gaussian distribution. The extended INFOMAX deals with sources distributed
both as super-Gaussian and sub-Gaussian. The strictly sub-Gaussian density is
defined as

p(z) ∝ 1

2
(N(µ, σ2) +N(−µ, σ2)), (3.19)



32 Theory

where the standard deviation and mean are one [76]. Inserting it into Equation
3.14 gives

ϕ(z) = z − tanh(z), (3.20)

where the whole deviation is shown in Equation A.5.

Inserting the results for all source estimates, Z, and for both distributions in
the learning algorithm in Equation 3.16 results in

∆W ∝

{
[I − tanh(Z)ZT − ZZT ]W : supergaussian
[I + tanh(Z)ZT − ZZT ]W : subgaussian

ICA is only valid if it is assumed that each is trial temporal independent, which
can be achieved by the experimental design (cf. Chapter 5). Likewise, it is
assumed that the number of sources is equal to the channels, where in reality
the number of sources contributing to the scalp potential is unknown [118].

3.1.2.1 EyeCatch

The most difficult part in using ICA is to determine which ICA components to
reject. It takes several years of experience to correctly classify ICA components,
and the process is very time consuming to perform manually. Rejecting an
ICA component wrongly will result in removal of neural activity and will in
the worst case introduce artificial components to the signal. ICA components
contaminated with EOG artefacts will be denoted as eye components.

Recently, automatic or semiautomatic methods have been developed to deter-
mine, which ICA components to reject [86, 123]. The newest method EyeCatch
[25], is based on spatial correlation between predefined templates and the spatial
projections from the unmixing matrixW . Thus, it calculates the maximum spa-
tial correlation between an input scalp map and 3425 eye component templates.
A database of ICA components from 80.006 data sets were spatial correlated
with 35 predefined eye components. Based on the highest correlations and vi-
sual inspection 3425 ICA components from the database were chosen as the
predefined templates. These templates are used to detect eye components in
new data sets.
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EyeCatch showed a great performance comparing it with 11 experts. The area
under the Receiver Operator Characteristic curve was 0.993 indicating high
sensitivity and specificity [25]. EyeCatch is applied based on its performance
and the large population (80.006 data sets). In addition, as the author is not
an expert in detecting eye components, it is believed that EyeCatch can provide
a better accuracy than the author. However, it is important to notice that
EyeCatch is not a perfect algorithm.

EyeCatch is, to the knowledge of the author, the newest method for automatic
detecting eye component and has not yet been used in the literature. Therefore,
the performance of the method is validated by an eye tracker before applying
it. This is elaborated in Chapter 6.

3.2 Event Related Potential Analysis

In an EEG experiment, a participant is presented to a fixed stimulus which is
repeated a large number of times. A trial or epoch is a time interval locked to
the presented stimulus. In the thesis, an epoch is defined as 1.5 seconds before
onset of the image and 2 seconds after the image giving an epoch of 3.5 seconds.

The rationale of an ERP analysis is that the neural sources, due to the pre-
sented picture, is a time-locked activity (event-related activity) in the epoch
in contrast to other ongoing brain and non-brain activity. On the basis of this
idea, averaging over multiple trials will serve as a filter operation that cancels all
except the event related brain activity. The phase of the ongoing brain activity,
that is not related to the stimulus, will differ for each frequency and latency
across trials. It means that summing over a number of epochs with random
phases, the ongoing activity will be canceled out. Therefore, the trial averaging
will not only filter non time-locked events but also non phase-lock events [80].
A drawback of an ERP analysis is the absence of the trial-to-trial variability
information in the recorded EEG signals. Both the within-subject variability
and the between-subject variability are known to be high in ERP studies, why
many trials and subjects are needed.

The components of interest depend on the experimental design and the hypoth-
esis, where this thesis is limited to visual stimulus. Two time windows, an early
and late time window, will be used in the thesis consistent with similar studies
[60, 93, 97]. Earlier findings within these time windows and the corresponding
cognitive functions were explained in Chapter 1. Below is a short presentation
of which ERP components that exist in the early and late time windows.
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1. Early time window [0-0.3 s]: In the early window, the ERP compo-
nents (C1, P1 and N1) are present. The first visual ERP component, C1,
peaks at 80-100 ms with onset at 40-60 ms poststimulus and is located at
the posterior midline electrode sites associated with primary visual cor-
tex. It is often difficult to distinguish C1 and P1 as they have temporal
overlap. P1 is located at the occipital lobe with onsets between 60-90 ms
and peaks around 100-130 ms. The first negative peak, N1, is sometimes
divided up into an early and late N1 subcomponent. The early one peaks
at 100-150 ms and is located at parietal cortex, where the occipital lobe
is the origin of the late N1 subcomponent that peaks around 150-200 ms
[79].

2. Late time window [0.3-1 s]: In the late time window, three components
are of interest: the P300, Late Positive Potential, LPP and the slow wave.
The P300 and the slow wave is together sometimes referred to as the
LPP and starts as a positive wave from 300-400 ms after stimulus onset
and continues throughout the picture presentation [78, 93]. The P300
is a positive peak in the interval from 250 to 350 ms depending on the
experiment and is most prominent at the central sites. The P300 is often
followed by a positive slow wave, which is seen from 400 ms after image
onset and continues depending on the duration of the presented stimulus
[93].

3.3 Time-Frequency Analysis

The purpose of a time-frequency analysis is to provide additional information to
the ERP analysis. As the oscillatory neural activity is non-stationary, the time-
frequency analysis is an important tool providing time varying spectral changes
[24]. The traditional method is to compute the short-time Fourier transform
of windowed segments of the signal, where it is assumed to be stationary. The
width of the window used, determines the temporal and spatial resolution of
the time-frequency analysis, and introduces a trade-off [118]

4f4t ≥ 1

4π
, (3.21)

where 4f and 4t are the frequency and temporal resolution respectively. A
long time window results in a poor time resolution for high frequencies, where a
short time window results in an insufficient frequency resolution. For example,
a frequency component of 2 Hz has a wavelength corresponding to 0.5 seconds.
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It means that using a time window in the analysis of 0.5 seconds results in a
very poor estimate of the frequency component as only one cycle will be present.

In contrast to the short-time Fourier transform, the wavelet transform provides
an alternative to optimize the trade-off, by letting the width of the window be
dependent on the frequency band. For low frequencies, the wavelet transform
uses a long time window, where it uses a narrow time window for high frequencies
[24, 118]. The rationale is that high frequencies vary more rapid than low
frequencies in time and a higher temporal resolution is therefore necessary [88].
Figure 3.1 visualizes the differences between using the wavelet method and the
standard short-time Fourier transform with a fixed window.

The complex Morlet wavelet transformation, ψ(t, f), is a Fourier transform with
a Gaussian window function, and is defined by Tallon-Baudry and Bertrand as
[116]

ψ(t, f) =
1√√
πσ

exp(i2πft) exp(− t2

2σ2
). (3.22)

Here σ determines the width of the Gaussian window function in time and
determines the length of the time window for one frequency, f. The advantages
of the wavelet transformation is the constant number of cycles, C , given by

σ =
C

2πf
. (3.23)

It is now seen that increasing the frequency, f, shortens the time window through
a smaller standard deviation of the Gaussian window function, σ. The choice of
C will still have an influence between the spectral and temporal resolution as an
increase of σ imply a higher spectral resolution at the expense of the temporal
resolution [88, 95]. By a convolution of the complex Morlet wavelet in the time
domain with the signal at channel n, x(t)n, it gives the power at time, t, around
frequency, f : P (t, f)n = |ψ(t, f) ∗ x(t)n|2 [116]. Different wavelets can be used,
where the Morlet wavelet is chosen as it has been found very applicable for EEG
data analysis [55, 61, 95, 116].
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Figure 3.1: The figure shows the differences in the time-frequency domain be-
tween the short-time Fourier transform (left figure) and the Morlet
wavelet transformation (rigth figure). The image is obtained from
[57].

3.4 Source Reconstruction

Source reconstruction is the method of estimating the underlying sources (dipoles)
that creates the recorded scalp potential. In order to estimate the sources, the
connection between sources and channels need to be defined, which is called a
forward field [22, 115]. The forward field is modelled from a given headmodel
and Maxwell Equations, where the latter is used to describe the physics of EEG.
The derivation of Maxwells Equations is omitted here, but is shown by Baillet
et al. [22].

The function of the head model is to describe the geometrics (e.g. brain layer
conductivity) of the head. Figure 3.2 shows the headmodel used in the thesis.
It is a template included in Fieldtrip [96], which is based on the Boundary
Element Method (BEM). The BEM assumes homogeneity and isotrophy within
each region, where the surface boundaries for the brain, skull and scalp are
extracted from a MR scan. The assumption of homogeneity and isotrophy is
a simplification, and it contradicts with the knowledge of a real brain [22]21.
Further elaboration of how the head model is constructed is given by Oostenveld
et al. [96]. The scalp potentials can from the forward field and the unknown

21The Finite Element Method does not assume homogeneity and isotrophy, but is very time
consuming to use and is therefore deselected. It is elaborated in [17].
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Figure 3.2: The figure shows the template of the BEM head model, [96], where
the green area is the brain, the light grey is the skull and the dark
grey is the scalp. The small black dots are the locations of the 64
EEG channels.

sources be modelled as

X = FS + E, (3.24)

where X (N ×M) is the measured potential, F (N × K) is the forward field
model relating the sources to the channels, S (K×M) is the underlying sources
and E is white Gaussian noise matrix with same size as X. Recall from Section
3.1.2 that N is the number of channels, M is the number of time points and
K is the number of sources. Notice that unlike Section 3.1.2, the number of
sources is not equal to number of channels, and is only representing neural
sources. Equation 3.24 is often referred to as the forward problem. Estimating
the sources from the forward model and scalp potentials is referred to as the
inverse problem [22].

Several methods have been proposed to solve the inverse problem [115], where
the MNE [52] is used in the thesis. The inverse problem is severely underdeter-
mined as K � N. As the dipole orientation is constrained to be the local surface
normal, the inverse problem is linearly with only the amplitudes as unknown.
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Because the problem is severely underdetermined, a regularization parameter is
needed to restrict the range of solutions and to avoid overfitting [22]. How to
determine the regularization parameter is elaborated later in this section. Using
Bayes theorem to solve the problem yields

p(S|X) =
p(X|S)p(S)

p(X)
, (3.25)

where p(S|X) is the posterior probability of the sources, S, given the recorded
data, X. p(X|S) is the conditional probability of the data given the sources and
p(S) is the prior distribution of the sources reflecting the known statistically
properties of the sources. It is shown, [22], that maximizing the posterior es-
timate gives a Tikhonov regularization problem also known as ridge regression
[22, 37]. The Tikhonov regularization problem is defined as [22]

L(λ) = min
S

(‖Σ− 1
2 (X − FS)‖2F + λ‖S‖2F ), (3.26)

where L is the cost function, λ is the regularization parameter controlling the
range of solutions and Σ is the noise covariance matrix. ‖ · ‖F denotes the
Frobenius norm. In general, the first term measures the fitting to the data,
where the second term ensures the regularization of the solution.

The deviation of Equation 3.26 to the estimate of the sources is shown from one
time point, t, implying that Equation 3.26 can be rewritten as

L(λ) = min
S

(

M∑
t=1

‖Σ− 1
2 (xt − Fst)‖22 + λ‖st‖22) (3.27)

Equation 3.27 can be expanded to

L(λ) = (xt − Fst)TΣ−1(xt − Fst) + λsTt st

= xTt Σ−1xt − 2sTt F
TΣ−1xt + sTt F

TΣ−1Fst + λsTt Ist

= sTt (FTΣ−1F + λI)st − 2sTt F
TΣ−1xt + xTt Σ−1xt.

(3.28)
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Taking the derivative of L with respect to st yields

∂L

∂st
= 2(FTΣ−1F + λI)st − 2FTΣ−1xt = 0. (3.29)

Isolating st is achieved by moving the second term to the right hand side and
taking the inverse22 of the term in the brackets

st = (FTΣ−1F + λI)−1FTΣ−1xt. (3.30)

Using The Woodbury Identity lemma23 [99] gives

st = λ−1FT (Fλ−1FT + Σ)−1xt = FT (FFT + λΣ)−1xt. (3.31)

The regularization parameter controls the fitting of the source reconstruction.
As the regularization goes towards zero, the second term in Equation 3.26 be-
comes negligible. From Equation 3.26, it is seen that having zero regularization
implies that the minimum is X = FS. Thus, besides a possible residual term,
zero regularization means a full fitting solution. However, letting the regular-
ization term going towards infinity, the first term in Equation 3.26 vanish. It
implies that the second term in Equation 3.26 is minimized, when S = 0.

In order to find the optimal value of the regularization parameter, the parameter
is determined for each subject by a cross validation approach. Thus, the model
is first trained on a training set and afterwards tested on a test set. The regu-
larization parameter is then found with respect to minimize the mean squared
error, MSE, of the test set [26]. In the thesis, the MSE is defined as

MSE =

∑N
n=1

∑M
t=1(X(n, t)− U(n, t))2∑N
n=1

∑M
t=1X(n, t)2

, (3.32)

where X(n,t) and U(n,t) are the true and estimated potential respectively at
channel n to time t.

22This operation is straight forward as it is a squared matrix.
23(P−1 +BTR−1B)−1BTR−1 = PBT (BPBT +R)−1 [99].
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In Chapter 5, an example is shown of how the parameter is determined, and
Figure 5.7 shows the MSE of the training- and test set vary as a function of the
regularization. An estimate of the regularization parameter can be calculated
in the white Gaussian noise case24 by the largest value of the singular value
decomposition of the matrix FFT [22, 77].

3.5 Summary

In this chapter, the theory behind the methods used in the thesis was elaborated.
The first part described the importance of choosing a proper filter depending
on the purpose of the study. Next, ICA was elaborated in details to give the
reader an understanding of the method. The thesis uses the ICA to remove
EOG artefacts, but also as a part of the validation of the EyeCatch method
in Chapter 6. In the last part, the theory of three different analyzing methods
were described. With an understanding of the three methods, the next step is
to test the hypotheses statistically, which is elaborated in the next chapter.

24The white Gaussian noise case implies Σ = I.



Chapter 4

Cluster-Based Permutation
Test

This chapter explains, the non-parametric cluster-based permutation test used
throughout the thesis to test different hypotheses statistically, and is based on
the work by Maris et al. [82]. The cluster-based permutation test is complex to
explain and understand, and is not as well-known as the other methods used in
the thesis. Therefore, important concepts and simulations are defined in order
to ease the reader’s understanding of the test. As the test is an essential part
of the thesis, it is assigned to its own chapter.

The chapter is divided up into three sections.

1. First section defines the MCP and outlines the motivation behind the test.

2. The test is then elaborated step by step, supported by a small simulation
to visualize the procedure.

3. In the last section, a more detailed simulation study is presented to inves-
tigate and discuss important parameters of the test.
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4.1 Multiple Comparison Problem

In neuroscience, the MCP is a common problem. As the spatiotemporal location
of the differences between two conditions are rarely known, multiple tests need
to be computed. If it was known beforehand, in which spatiotemporal sample
the effect of the experiment would be, a simple t-test would be sufficient to test
the null hypothesis. Testing a hypothesis, four different outcomes are possible.
The hypothesis can be correctly rejected or correctly accepted. The two errors
are false positive and false negative, and are denoted Type I error and Type II
error respectively. The precise definition of the Type I error25 is giving as

Definition 4.1 The Type I error is the probability under the null hypothesis
of falsely concluding that there is a difference between the experimental condi-
tions [82].

In hypothesis testing, the p-value is the chance of making a Type I error [45].
Before testing a hypothesis, a level of significance is chosen reflecting how large a
probability of making a Type I error is accepted prior to rejecting the hypothesis.
Often, the level of significance is chosen to be 0.05 or 0.01 meaning that the
probability of making a Type I error is either 5 % or 1 % respectively. For
example, conducting a test with a significance level of 5 % means that the
hypothesis is rejected with a 5 % chance of making a Type I error. However,
testing multiple tests of the same null hypothesis increases the probability of
making a Type I error, and the p-value is longer equal to the probability of
making a Type I error. This p-value and the level of significance can therefore
not be compared. This issue is the MCP and is defined as

Definition 4.2 The Multiple Comparison Problem is due to a large number
of statistical comparisons, where it is not possible to control the Type I error
rate by means of the standard statistical procedures that operate at the level of a
single sample [82].

The main reason for using the cluster-based permutation test is to solve the
MCP and thereby control Type I error and to keep a valid level of significance.
It is done by testing all samples in one single comparison through the clustering
approach.

Other methods have been proposed to solve the MCP, where in particular the
Bonferroni inequality [56] has been widely used. The Bonferroni-corrected p-
value is defined as α/J, where α is the critical significance value from which the

25The Type I error is also called the family-wise error rate or false alarm rate.
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null hypothesis is rejected, and J is the number of total samples. The data
structure in the thesis is [spatio × temporal] or [spatio × spectral × temporal],
meaning that the number of tests (one for each sample) will be very large.
Bonferroni inequality method will in such case be very conservative. It can be
illustrated with a simple example, where significance level is 0.05 and the data
consists of 64 channels and 1200 time samples, giving 76.800 samples in total.
The Bonferoni-corrected critical value would in this example be 0.05/76.800 =
0.0000007. Including the frequency dimension would imply an even lower critical
value showing the criticism of using the Bonferroni inequality method to solve
the MCP [82].

4.2 Cluster-Based Permutation Test

The cluster-based permutation test will be explained on the basis of a data
structure of [spatio × temporal], where each point26 will be referred to as a
sample. Two types of designs will be used in the thesis, a between trials for
a single subject and a within subjects for multiple subjects, where the former
design is used to explain the method.

The cluster-based permutation test is used to test the null hypothesis, H0, which
is defined in Definition 4.3.

Definition 4.3 The null hypothesis at subject level is defined as all m con-
ditions have same probability distributions [82]:

H0 : f(D1) = ... = f(Dm), (4.1)

where f(D1) and f(Dm) are the probability distributions for condition 1 and
condition m respectively. Furthermore by rejecting H0, one concludes that the
probability distributions are modulated by the experimental design [82].

Definition 4.3 is only valid under the assumption of statistically independence
between the trials in the experiment. In practice, it means that the EEG signal
has to return to baseline before the next trial is initiated.

The cluster-based permutation test consists of three major steps. First the
clusters need to be formed, then the corresponding cluster level test statistic
needs to be calculated, and finally the clusters are tested against an estimated

26One channel and one time point.
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permutation distribution. From the data described in Simulation 4.4, and the
work done by Maris et al. [82], the following steps will explain, in details, the
procedure of conducting a cluster-based permutation test to solve the MCP.

Simulation 4.4 The first simulation is used to visualize the procedure of the
cluster-based permutation test. The data simulates an epoch of 600 samples from
one channel with two experimental conditions defined as Condition 1 and Con-
dition 2. Each condition has 50 trials and the averaged signal of the conditions
are seen in Figure 4.1a.

1. The total data-set (Simulation 4.4) consists of 100 trials, where the true
observation is defined as the separation of the data into Condition 1 and
Condition 2 with each 50 trials. The two conditions are seen in Figure
4.1a. For each sample [channel × time points] the independent two sided t-
test statistic is calculated with a given significance level defined as cluster
alpha27. Figure 4.1b shows the t-test statistic for each sample with a
significance level of 5 % (cluster alpha = 0.05) seen as the red vertical
line.

2. Samples, whose t-values from step 1 exceeded the cluster alpha (the red
line in Figure 4.2a), are potential candidates to be included in a cluster.
The cluster alpha is a controllable parameter that reflects how sensitive
the test is. Section 4.3 examines through simulations the influence of this
parameter.

3. It is now possible to form the clusters on the basis of temporal and spatio
adjacency. Temporal adjacent timepoints exceeding the threshold in step
2 will form a cluster in the temporal dimension. The sign of the cluster
is maintained as it has importance for the analysis, e.g. which condition
exhibits the highest amplitude or consists of most power. Figure 4.1c
shows the five clusters formed from the simulated data. It is seen that the
clusters are aligned with the visual difference between the two conditions.
The clustering of channels (spatial dimension) are done on the basis of a
neighbor structure defining which channels that are neighbors. It is done
by the euclidean distance28, where a max distance is given as input to
define the maximal distance between two channels that are neighbors.

4. By taking the sum of the t-test statistics, T, in each cluster, CT =
∑j
l=1 Tl,

the cluster level test statistics, CT, are calculated29. j denotes the number
of samples within the cluster,

27The notation cluster alpha is used to be consistent with the code implemented in the
Fieldtrip framework.

28There are different methods to define the neighbors, e.g. from a pre-defined neighbor
structure.

29An alternative is to calculate the number of samples in each cluster, however the sum
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Figure 4.1: The figures show the idea behind forming the clusters from the
"true observation". In figure a) the two signals correspond to the
two conditions. There are three clear differences, from sample 50-
150, 420-480 and the last 40 samples. In figure b) the t-test statis-
tic for each sample is seen with the corresponding uncorrected crit-
ical value, which is the parameter cluster alpha. Figure c) shows
that five clusters are formed, where the grey color indicates that
they are significant. Samples within the white clusters were found
significant from the t-test, but insignificant by the cluster-based
permutation test. Notice that the clusters are both positive and
negative, and that it is possible to have several significant clusters
in one test.
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Figure 4.2: The figures show the permutation distribution for positive clusters
and the corresponding three positive clusters from Figure 4.1. It
is seen that Cluster 2 and 3 are significant.

5. The next step involves the creation of the permutation distribution of
which each of the five clusters in Figure 4.1c are tested against. The trials
from each condition is combined with a single set of 100 trials. The data is
then randomly separated, independently on the conditions, into two new
subsets of each 50 trials. This new subset is a random permutation. This
operation is valid as the null hypothesis states that all trials are drawn
from the same distribution independently on the experimental condition,
cf. Definition 4.3.

6. Step 1-4 are now repeated with the random permutation in order to find
clusters and their corresponding cluster level test statistics. The cluster
with the largest absolute cluster level test statistic value is selected and
used to establish the permutation distribution.

7. By repeating step 5 and 6 k-times a k-sample distribution, called the
permutation distribution, is established. 1000 random permutations were
used for the simulated data and the corresponding permutation distribu-
tion is shown in Figure 4.2.

8. The clusters formed from the true observation are now tested against the
permutation distribution from the previous step, in order to obtain the
permutation p-value for each cluster.

of the t-values approach is used throughout the thesis. For an elaboration of the different
approaches see [54].
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Since, it is practical impossible to obtain the true permutation p-value30,
a Monte Carlo estimate of the p-value is made instead, based on k -
permutations. k is often chosen to 1000 for a significance value of 5%.
The Monte Carlo p-value explains how many random permutations that
have a higher cluster level test statistic than the original one(s) from the
true observation. It is calculated as

p =
1 +

∑k
i=1 I(CTi ≥ ĈT )

k + 1
, (4.2)

where k is the number of permutations, ĈT is the true cluster level test
statistic and I is a logic function counting one if CTi is larger than ĈT
and zero otherwise. It follows from the Equation 4.2 that the minimum
Monte Carlo p-value is 1

k+1 [40]. Figure 4.2b shows the two significant
positive clusters, one positive insignificant cluster and the permutation
distribution of 1000 permutations.

4.2.1 Extensions of the cluster-based permutation test

Until now, the data is assumed to be [spatio × temporal]. Dealing with 3D data
[spatio × spectral × temporal], the number of calculated t-values increases, but
the procedure remains the same as the previous steps. A sample is now defined
as one channel, one frequency bin and one time point. The clustering of the
samples in the time-frequency domain within one channel is visualized in Figure
4.3. Samples with grey color illustrates samples that exceed the cluster alpha
as described in Step 2, where the white pixels were below. Determination of
neighboring channels is identical to the 2D data approach.

Until now, the test has been explained from a single subject within trial ex-
periment point of view. Using the method to test a hypothesis on group level,
within subject experiment, the sample level statistics are now a dependent t-test
instead of independent t-test, as the samples are subject specific [82].

The subject specific averages for the r ’th subject are defined as a pair (Dr1, Dr2)
with Dr1 being the averaged of the trials belonging to Condition 1 and Dr2 for
Condition 2.

It also changes the null hypothesis in Definition 4.3 to

30Obtaining the true permutation p-value would require to make a permutation distribution
of all possible permutations.
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Figure 4.3: The figure shows how a cluster is formed for data with both the
spectral and temporal dimension. The example is shown for one
channel. Squares with grey color corresponds to the samples that
exceeded the uncorrected critical value (threshold for the t-test
statistic on sample level), corresponding to the parameter cluster
alpha.

Definition 4.5 The null hypothesis on group level is defined as the marginal
distributions for all conditions m within each subject are equal:

H0 : f(Dr1, Dr2) = f(Dr2, Dr1) (4.3)

Rejecting the null hypotheses, therefore implies that the marginal distributions
for Dr1 and Dr2 are different due to modulation of the experimental design [82].

The permutation distribution is now conducted by randomly permuting the
subject specific averages within each subject instead of randomly changing the
trials [82]. For an experiment with three subjects and two conditions the true
observation would be (D11, D12), (D21, D22) and (D31, D32). A random permu-
tation could be: (D11, D12), (D22, D21) and (D31, D32), where (D22 and D21)
have swapped order, which is valid due to the definition of the null hypothesis
on group level, cf. Definition 4.5.

It is important to notice, that it is only possible to obtain a weak control of
the Type I error as the channels not are completely independent of each other.
Therefore, the null hypothesis is actually a global null hypothesis. It means that
if a significant difference between two conditions are found in one channel, it is
not possible to conclude that the difference is not present in other channels as
well [82].
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Simulations data on 64 channels
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Figure 4.4: The figures show the simulated data, where a) shows that the two
signals are present in 12 channels at the right centro-parietal and
right parietal-occipital area. Figure b) shows the two averaged
signals of 120 simulated trials with the correspoding mean error
bar. The blue signal is Condition 1, where the red color reflects
Condition 2.

4.3 Simulation

The purpose of the simulations is to investigate the influence of cluster alpha
and how the amount of samples manipulates the significance of a cluster. Two
time windows are used, a large window consisting of all samples and a narrow
window consisting of the samples from 400 to 600. The simulated data is defined
in Simulations 4.6 and is seen in Figure 4.4.

Simulation 4.6 The simulated signal is created from a real ERP response to
a visual stimulus. The difference is simulated from sample 440 to 550 as seen in
Figure 4.4 with added white noise, N(0,σnoise). σnoise depends on varying SNR
value defined as

σnoise =
x̂2

M · SNR
, (4.4)

where M is number of samples in the simulated signal, x̂, and σnoise is the
standard deviation of the added noise.

Each condition is simulated with 120 trials, each multiplied with a random num-
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ber ranging from zero to one introducing variability across the trials. For the
spatial dimension, the simulated differences between the two conditions are lo-
cated in 12 channels in the right centro-parietal and right parietal-occipital area
as seen in Figure 4.4a. The other 52 channels consist of white noise.
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Figure 4.5: The figures show the results from the simulation study. In figure
a) it is seen that narrowing the window in the test will decrease the
p-value and make it less sensitive to noise. Figure b) and c) show
how the p-value for the cluster is changed as the parameter cluster
alpha varies. Lowering the value will make it less sensitive to noise.
However, a large difference between two conditions are needed to
make it significant. Increasing the cluster alpha value makes the
cluster very sensitive to noise. Figure d) summarizes the variation
of the different parameters and shows that these parameters have
an important influence when using this test.
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Figure 4.5a shows that by decreasing the SNR, the cluster becomes insignificant
meaning that the simulated difference is vanished due to the added noise. De-
creasing the amount of samples to a narrow time window, the same cluster is
still significant for a SNR value of 2 in contrast to the large time window. It
clearly shows that narrowing the time window in the analysis can change the
result of the analysis and the conclusion of accepting or rejecting the null hy-
pothesis. This is however not surprising, as the method has to correct for fewer
samples when solving the MCP.

The cluster alpha controls the sensitivity of the test. Increasing the parameter
will decrease the threshold of the t-test on sample level in Step 2 (the red
line in Figure 4.1b) and thus increase the number of samples exceeding the
threshold. Likewise, a decrease of cluster alpha will increase the threshold and
the sensitivity implying a decrease of samples exceeding the threshold.

Figure 4.5b and 4.5c show how the p-value varies with three values of cluster
alpha (0.025, 0.05 and 0.075) for the narrow and large time windows respectively.
A cluster alpha value of 0.025 is more stable against a varying SNR. It is constant
around the level of significance. It implies that both the SNR and contrast
between the two conditions have to be high before a cluster is found significant.
However, in noisy data, this approach could be preferred to find tendencies
in experiments. For the high cluster alpha value, the highest variance is seen
making it very sensitive to noise. By changing the cluster alpha, it is possible
to manipulate the outcome of the analysis. Testing several cluster alpha values
introduces another MCP, which also should be corrected.

4.4 Summary

This chapter explained the MCP and why it is necessary to correct for in order
to make a proper conclusion for the hypotheses. It presented the cluster-based
permutation test as a method to solve the MCP, which was elaborated step-by-
step. It was shown, from a simulation study, that changing the time window
and the cluster alpha value, it is possible to modulate the result of the test and
in the end change whether the null hypothesis should be rejected or accepted.
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Chapter 5

Methods

This chapter presents the experimental design, the preprocessing pipeline and
data analysis. Reading this chapter will ease the readers understanding of the
results in Chapter 7. It is divided into five sections:

1. The first section describes the participants in the experiment.

2. The second section explains the used stimulus and the experimental design,
which was changed and improved after the first two participants.

3. Section three provides a description of the EEG and eye tracker systems.

4. The preprocessing pipeline is elaborated step by step corresponding to
Figure 1.2.

5. The last section describes how the data analysis methods, explained in
Chapter 3, is implemented and used.

This chapter is also dedicated to the work of Ivana Konvalinka and Carsten
Stahlhut, as they designed, modified and implemented the experiments, in co-
operation with the author.
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5.1 Participants

Thirteen females volunteered for the study recruited via the Center for Visual
Cognitions facebook site. They all gave written informed consent. The partici-
pants were healthy and did not take any form of medication. Furthermore, all
had normal or corrected to normal vision.

Many parameters have an influence on the EEG signal when a participant is
presented to a picture. The idea is to isolate the parameters which are studied.
It is achieved by controlling other parameters as much as possible. Therefore,
as women and men rate pictures from the The International Affective Picture
System, IAPS, differently [27], the participants in the experiment were only
females. The ages of the participants ranged from 22 to 31 with an average age
of 25. The experiments were conducted over seven days.

5.2 Task and Procedure

This section describes the used stimulus from the IAPS and the changes of the
experiment leading to the final experimental design.

5.2.1 International Affective Picture System

The IAPS is a database that categorizes pictures in three dimensions. The first
dimension is valence varying in a pleasure scale form pleasant to unpleasant.
The second dimension is arousal, where the pictures are rated in a calm/exciting
scale. The last dimension is a dominance scale rating the pictures with low or
high dominance [74]. The database is widely used in experiments studying
emotion or attention [44, 60]. Figure 5.1 shows how different images are rated
in the three dimension, which also illustrates the gender differences, which were
mentioned previously.

In the thesis, the pictures are divided into three groups and are referred to as
positive, negative and neutral pictures. Positive pictures31 have a high arousal
and pleasure scale, where negative images32 have high arousal ratings but low
pleasure score. Neutral images33 have a low arousal rating and is in the middle

31Positive pictures could be erotic pictures, pictures of a happy family or baby pictures.
32Negative pictures could be threats like snakes or spiders, but also mutilated bodies.
33Neutral images are for example a cup or a pencil.
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of the pleasure score. The 240 pictures that were used correspond to a number in
the database, which is specified in Appendix B. The dominance scale is not used
in the thesis similar to other studies looking at emotion and arousal [35, 38, 60].

5.2.2 The Experimental Design

The experimental design is a 2 × 3 within subject design with the social context
(Alone and Together) and emotional content of the pictures (Positive, Negative
and Neutral) as the two factors. For each participant, it gives the following six
conditions with each 40 images:

1. Alone with neutral images.

2. Alone with positive images.

3. Alone with negative images.

4. Together with neutral images.

5. Together with positive images.

6. Together with negative images.

The images were pseudo-randomized, but with the two social conditions con-
taining the same mean arousal/valence score across all images. Likewise, the
order of the presented images was pseudo-randomized, such that the partici-
pants never received an image from the same emotional class more than twice
in a row.

The participants were seated 62 cm from a computer screen in an electrically
and acoustically shielded EEG cabin connected to the EEG recording system
and eye tracker system. The chin was leaned to a stand to brace the head and
minimize movements. Furthermore, the stand was fastened to the table, where
a keyboard was placed in front of the participant. The other person in the EEG
room, during the Together condition, was sitting behind and to the left of the
participant.

5.2.3 Improvements of the Experimental Design

The procedure of the first experimental design is seen in Figure 5.3a. It begins
with a 3 second long condition message on the screen stating whether the par-
ticipant is viewing the pictures alone or together. Then, a fixation cross appears
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Figure 5.1: The figure outlines the three dimensions that describe the pictures
in IAPS. Positive pictures have a high arousal and high pleasure
score, where negative pictures have high arousal and low plesure
score (unpleasant). Neutral pictures have a low arousal score and
a middle pleasure score [27].
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Figure 5.2: The figure shows the experimental setup and how the participant
and the "stand in" are sitting relative to each other, in the To-
gether condition.

for 2 seconds, followed by the picture for 2 seconds. After the two seconds, the
participant gets a message saying: press return when ready to continue. A new
trial is then initiated as soon as the participant pressed return.

The following improvements were made going from the first to the final experi-
mental design:

1. A pilot study prior to the actually experiment was conducted34 to inves-
tigate the task and procedure. After the pilot study, the pictures on the
screen were scaled down to a height of 12 cm and a width of 16.3 cm,
yielding a visual angle of 15 degrees horizontally and 11 degrees vertically,
consistent with previous studies [60]. If a picture is large and too close to
the participant, the field of vision will be smaller, which could introduce
more eye movement.

2. After the pilot, it was suspected that the participants did not pay at-
tention to the condition message stating if the picture was viewed alone
or together. The first two participants confirmed this suspicion as they
stated that they did not pay attention to the condition message and did
not realized whether they viewed the pictures alone or together. The ex-
perimental design was therefore changed from writing the social condition
to actually having another person seated next to the participant jointly
looking at the images. The condition message in the final experimental de-

34My co-supervisor was used as a participant.
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sign was therefore replaced by a Get Ready message. The social condition
was changed after the first half of the experiment (120 trials).

3. The trials need to be independent of each other. It is ensured by the
condition message of three seconds. The independence of the trials is
a necessary assumption before performing the cluster-based permutation
test and ICA. Furthermore, it gives the participant the opportunity to
blink, cough and make small movements if needed.

4. The duration of the fixation cross was lowered to 1.5 seconds. As men-
tioned, several repetitions are needed in an EEG study increasing the pos-
sibility of participants getting tired. Lowering the duration of each trial
will minimize the probability of blinks and the participant getting tired.
However, the time interval between the fixation cross and image onset has
to be of sufficient length so the EEG signal will reach the baseline prior
to image onset.

The experimental design makes it possible to test different hypotheses. The
within-subject design has the advantage to increase the statistical power com-
pared to a between-subject experiment. Moreover, the error variance is also
decreased as the same subjects are used for all conditions, which is an impor-
tant factor in the thesis as the number of participants is low.

A disadvantage is the fatigue effect, a negative effect meaning that the mind and
motivation from one subject might change during the experiment. It is known
that participants can get tired in EEG experiments as many repetitions are
required. Therefore when running the second half (either Alone or Together),
the motivation and tiredness could change and affect the results. There could
also be a practice effect meaning that the participants do not respond as strong
to positive and negative images in the end of the experiment compared to the
beginning [87]. The fatigue and practice error are of concern as the number of
participants is low in the thesis. Therefore, the order of the social context was
counterbalanced.

5.2.4 The Final Experimental Design

The experiment was modified with the four previously described items. The
procedure for the final experiment is seen in Figure 5.3b. It begins with a
message saying: Get Ready. Then a fixation cross appears for 1.5 seconds,
followed by an image for 2 seconds. After the 2 seconds, the participant receives
a message saying: press return when ready to continue and a new trial is initiated
as soon as the participant pressed return. After 120 images a small break is
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given, where the Alone/Together condition is changed by seating or removing
the other person. The last 120 images are then presented. The order of the
social condition is counterbalanced to block out the parameter of when the
other person is present.

After seeing all 240 images, the participants rated 60 images, that they had
previously seen, in the scales: pleasant - unpleasant, calmed - aroused.

The procedure for one participant can be summed up as follows:

1. The participant read the information sheet and signed the written consent.

2. The participant received instructions of the experiment.

3. The participant saw examples of pictures similar to the ones presented in
the actually experiment.

4. Preparation of the participant (connecting the EEG and eye tracker sys-
tems).

5. The participant is seeing the first half of the task (120 images).

6. The social condition is changed, and the next 120 images are presented
for the participant.

7. Disconnecting the EEG equipment.

8. The participant rated 60 images.

5.3 EEG and Eye Tracker Systems

This section explains the set-up of the EEG and eye tracker system respectively.

5.3.1 EEG System

EEG was recorded from the participant during the task using a 66 Biosemi
"Pin-type" active electrodes with a sintered Ag/AgCl electrode tip (64 chan-
nels including CMS and DRL channels) and a Biosemi headcap [1]. The elec-
trodes were placed in the positions of the international 10-10 system described
in Chapter 2 with a layout identical to Figure 2.2. It was ensured that the input
impedance was kept below 25 kΩ by creating a good contact surface between the
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(a)

(b)

Figure 5.3: Figure a) shows the experimental design of the pilot study. It
begins with a 3 second message stating the condition (alone or
together) followed by the fixation cross of 2 seconds. Then the
image is on for 2 seconds followed by a message saying press return
when ready to continue. The participant therefore has time to
move a little and get comfortable before next trial begins. b)
The design of the final study follows the same procedure as the
pilot study but with two small changes. The first message is now:
Getready instead of stating the condition. It is changed because
the second person now is seated in the EEG cabin during the first
or second half of the experiment. The second change was the
duration of the fixation cross which was lowered to 1.5 seconds.
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electrodes and skin. This was partly achieved by applying electrode gel in the
holes of the headcap. A visual inspection of the input impedance and the sig-
nals ensured that noise on the channels was minimized. An ActiveTwo AD-box
[1] was used, which was optically coupled to the computer. The sampling rate
was 2048 Hz. An analog high-pass filter with cut-off at 0.16 Hz and an analog
low-pass filter with cut-off at 100 Hz were used. Event triggers corresponding to
conditions were sent to the EEG system at the beginning of each image onset.

5.3.2 Eye tracker System

Eye-tracking was recorded with Eyelink 1000, SR Research Ltd., Mississauga,
Canada [5]. It recorded eye movement using monocular pupil tracking at 1000
Hz. The eye position for each subject was calibrated and validated using a
9-point grid procedure. Eye movement was detected with saccades above 0.1
degrees. It was possible to visually validate the quality of the eye tracker during
the recording. The eye-tracking recordings were sensitive implying that only few
subjects had eye-tracking recordings of good quality. Event triggers also send to
the eye tracker in order to align the EEG and eye tracker system. In the thesis,
the purpose of the eye tracker is to validate the performance of EyeCatch, which
is elaborated in Chapter 6.

5.4 Data Preprocessing

For the data processing and analyzing Fieldtrip35 [95], a MATLAB[84], software
toolbox was used. EEGLAB, [36], another MATLAB [84], software toolbox, was
used for applying ICA and EyeCatch.

Figure 1.2 sums up the pipeline for preprocessing, where each step corresponds
to the description below.

1 The continuous data is loaded into Fieldtrips environment.

2 Before epoching the data, a high-pass and low-pass filter is applied on the
continuous data. Both filters were zero-phase shift IIR Butterworth filters
of order four. The cut-off frequencies were 0.1 Hz and 40 Hz respectively.
Earlier studies have used a cut off frequency for low-pass filtering ranging
from 20 to 40 Hz [71, 30, 32, 60]. The low pass filter is applied to remove

35Fieldtrip version 20130124 was used.
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Figure 5.4: The figure shows the ERPs after applying three different filters,
for subject 4 at channel FC3. The blue color shows the ERP after
applying a high-pass filter with a cut-off frequency of 0.05 Hz. It is
seen that the linear drift is still present. The linear drift is removed
for the ERP of the red color, which uses a cut-off frequency at 0.1
Hz. The green ERP signal is a high-pass filter with a cut-off at
0.5 Hz, where it is seen that the shape of the ERP is modulated.
The yellow ERP shows the signal without applying any high-pass
filter.

high frequency noise including EMG artefacts, while making it possible to
analyze frequencies in the beta band.

On the basis of the discussion in Chapter 2 several cut-off frequencies
for the high-pass filter were tried. As a linear drift was present in some
subjects, it was necessary to apply a high-pass filter. Figure 5.4 shows
an epoch and three different cut-offs to remove the linear drift. For a
cut-off frequency with 0.05 Hz (blue color), the linear drift is still seen
where a cut-off at 0.5 Hz (green color) distorts the ERP shape. A cut-
off frequency of 0.1 Hz (red color) is chosen as the epoch is undistorted
and the linear drift is removed. Furthermore, it is in accordance with the
recommendations from [79] as discussed in Chapter 2. The low-pass and
high-pass filters were both applied prior to epoching to avoid a windowing
effect on the epoched data.

3 The epochs of the data are defined from the event triggers send to the
EEG system corresponding to image onset. One epoch (trial) is defined as
1.5 seconds prior to image onset (trigger event) and 2 second after image
onset giving a total duration of 3.5 seconds. The time prior to image onset
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is important to get an identical baseline for both conditions. Fieldtrip’s
implemented function that finds the triggers could not be used for this
data-set, so a custom made MATLAB script was written by the author
and integrated within the framework of Fieldtrip.

4 After epoching, baseline correction was applied on epoch level by sub-
tracting the mean. In the thesis, the averaged reference method was used
as the 64 channels were distributed uniformly over the head by the 10/10
labeling system as explained in Chapter 2. At last, the signals were down-
sampled from 2048 Hz to 256 Hz to lower the computational time when
processing the signals. A sampling frequency of 256 Hz is sufficient ac-
cording to Nyquist’s sampling theorem [75] and the frequencies of interest
(0-30 Hz).

5 Manual inspection is a necessary and an important step in order to check
the quality of the data and remove bad trials and/or channels. However,
looking through all the channels and trials is very time consuming, why
they were evaluated on the basis of the variance. Figure 5.5 shows the
variance for all trials and channels for subject 12, where trial 111 showed
a high variance. Before rejecting trial 111 a detailed examination is per-
formed. Figure 5.6 shows the data for subject 12 trial 111. It is seen
that some low frequency noise caused the high variance and the trial was
therefore rejected. If a channel was detected a bad (high variance), it is re-
placed by an estimate found from interpolating the average of the nearest
channels36. Table 5.1 shows an overview of removed trials and channels
for each subject.

6 The data was converted into EEGLAB environment as EEGLAB and
Fieldtrip use different frameworks. Despite that Fieldtrip has a function
implemented to go from Fieldtrip to EEGLAB, several modification were
necessary to make, as the function was outdated. EEGLAB is used for
ICA and EyeCatch as EyeCatch is not implemented in Fieldtrip.

7 The ICA algorithm used in the thesis is the extended Infomax, which is
derived in Chapter 3. The performance of ICA is dependent on the amount
of noise in the data and the number of small sources. If these increases,
the performance will decrease. It is therefore recommended to perform
ICA on as clean data as possible [80]. The extended Infomax algorithm
was chosen as it is widely used in similar studies [36]. In addition, the
majority of the templates used in the EyeCatch software were also based
on the extended Infomax [25]. Examples and discussions of different ICA
components are presented in Chapter 6.

8 The EyeCatch software is used as an automatic algorithm to detect EOG
artefacts. Chapter 6 elaborates the use of EyeCatch and how the eye

36The procedure is done with Fieldtrip’s function, ft_sourceinterpolate [95].
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Figure 5.5: The figure shows an example of a visual inspection of subject 12.
It is seen that several trials have very high variance. Two of the
channels show a high variance, however after a more detailed in-
spection the channels were not continously bad, why the trials
were removed instead of the channels.

Subject Trials Channels ICA comp.
3 47, 62, 63, 83, 84, 107, 141, 152, 237 - 5
4 7, 184 O2 (64) 1, 3
5 2, 7, 54, 59, 87, 99, 103, 111, 117, 121,

122, 128, 197, 222, 235, 237
- 1

6 3, 35, 103, 147, 202, 215, 226 - 3, 6
7 4, 109 - 4, 9
8 2, 46, 48, 83, 121, 157, 195 - -
9 13, 18, 34, 53, 56, 64, 65, 97, 111, 121,

124, 150, 205, 212, 228
- 5

10 184 - -
11 85, 219 - 4
12 102, 110, 111, 121, 163, 168, 169, 171,

175, 177, 178, 181, 185, 186, 195, 233
- 8

Table 5.1: The table shows removed trials, channels and ICA components in
the preprocessing step. Removed trials and channels are removed
on the basis of the variance distributions. ICA components are
removed on the basis of EyeCatch similarity score.
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Figure 5.6: The figure shows trial 111 for subject 12. The slow drift starting
around -0.10 seconds relative to image onset, is the reason for the
high variance in this particular example. Trial 111 was therefore
rejected.
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tracker was used as a validation tool. Table 5.1 shows removed ICA com-
ponents for each subject. There was no ICA components that reflected
EMG or EKG artefacts.

It is suggested by Kønig et al. [70] that the amount of eye movement can
vary between different conditions and introduce a behavioral difference.
The eye tracker was therefore also used to check for biases in the data
set, originating from eye movements. Figure B.2 shows, for subject 6,
9, 11 and 12, detected eye movements and blinks for the six conditions.
No differences are seen between the two social conditions, where affective
pictures might tend to consist of more eye movements and blinks.

9 After denoising the data with ICA and removing the detected eye compo-
nents, the data was converted back to Fieldtrip from EEGLAB as done in
Step 6.

10 The data is now assumed to be clean and is ready for data analysis.

Subject 1 and 2 were excluded because of the changed experimental design. Fur-
thermore, subject 13 seemed very uncomfortable during the experiment, which
also reflected very noisy data and was therefore also excluded from further anal-
ysis. The remaining 10 subjects are used in the data analysis.

5.5 Data Analysis

Figure 1.3 outlines the different analysis methods used in the thesis prior to
applying the statistical tests. The theory behind these methods was elaborated
in Chapter 3, where the following section describes how the methods were used.

5.5.1 ERP Analysis

For the ERP analyses, the data was averaged across the conditions37 within
each subject followed by an average across the subjects to obtain the group
level average.

37This average depends on the tested contrast, e.g for the contrast Positive versus Neutral
differs from Alone versus Together.
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5.5.2 Time-Frequency Analysis

For the time-frequency analysis, the complex Morlet wavelet from Equation 3.3
was used. It offers a good trade off between the spectral and temporal resolution
and is widely used in EEG studies [24, 61, 88, 116]. From Equation 3.3, six
cycles (C=6) was used, as it is strictly recommended to use a value above five.
Different values were tried and manually checked looking at the temporal and
spatial resolution. The lowest frequency of interest is 4 Hz giving one cycle
a duration of 0.25 s. Increasing the number of cycles would require a longer
epoch interval or an increase of the lowest frequency of interest. 30 miliseconds
was used as an overlap for the moving window. The time-frequency analysis is
applied for each trial before averaging to keep the non-phase locked activity.

The time-frequency analysis was also applied on source level as an interesting
result in the alpha band was found. The sources were used instead of the 64
channels for the spatial dimension. For each trial and source, the averaged power
in the alpha band was calculated before averaging across the trials.

5.5.3 Source Reconstruction

For the source reconstruction, the headmodel described in Chapter 3 and a
source grid of 2015 sources are used. The regularization parameter, λ, in the
MNE source reconstruction is an important parameter to chose and is deter-
mined from a cross validation approach for each subject. The trials were sep-
arated, independent on the conditions, into three sets: a training set, test set
and a validation set. The MNE was applied on the training set with a noise-
covariance, Σ in Equation 3.4, estimated from -0.4 to -0.1 s prior to image
onset. As explained in Chapter 3, an estimate of λ can be calculated from an
eigen value decomposition of FFT . Starting with the estimate of λ as an initial
guess, a range of λ values were tried on the training and test set to evaluate
the MSE. The training and test errors are seen in Figure 5.7, where Figure B.6
compares, for one trial, the true signal and an estimated version of the signal.
The estimated signal is calculated from Equation 3.24.

The optimal λ corresponds to the minimum error of the test-set. The validation
set was used to test the performance of each subject, which is summarized in
Table B.1. Using the optimal λ from the test set and the noise-covariance from
the training set, the MNE was applied on each trial.

Before visualizing the results from the source reconstruction, it is necessary to
interpolate the sources on a 3D surface grid, which was done from a template
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Figure 5.7: The figures show the MSE for a) the training set and b) test set
for subject 3 as a function of the regularization, λ. The minimum
MSE for the test set, is the optimal λ value.

brain defined in the Montreal Neurological Institute, MNI, space [31]. Using a
template for all ten subjects, will off course introduce a small uncertainty as the
brain anatomy varies between individuals.

In order to retrieve functional information from the sources, the Anatomical
Automatic Labeling, AAL, atlas was used [119]. It defines 116 regions that
outlines the brain anatomy, e.g. ThalamusL which covers the Thalamus in the
left cerebral hemisphere. Figure B.7 shows the different regions where each
color corresponds to a region [4]. Furthermore, all the 116 regions are written
in Appendix B.

5.5.4 Cluster-Based Permutation Test

Applying the cluster-based permutation test, several important parameters need
to be defined.

1. A cluster alpha value of 0.05 is used on the basis of the simulations in
Chapter 4, and from the study by Maris et al. [82].

2. 1000 permutations were used to conduct the permutation distribution,
which is sufficient when using a significance value of 5 % [82].

3. Three different time windows were used. A large time window is defined
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as the whole epoch38. An early time window is defined from 0 to 0.3 s.
relative to image onset and a late time window is defined from 0.3 to 1 s
relative to image onset.

4. On channel level, the neighbor structure is defined from a template39 in
Fieldtrip that correspond to a Biosemi 64 channel headcap. It resulted in
3.7 neighbors on average per channel and is visualized in Figure B.4.

For the test applied on source and region level, the neighbor structure
was calculated using the 3D Euclidean distance. The number of averaged
neighbors was kept as low as possible with the restriction that all sources
or regions had one neighbor. It resulted in 7.7 neighbors on average per
channel for the sources and 6.4 for the regions.

It was challenging to apply the cluster-based permutation test on source and
region level as the method is not implemented in Fieldtrip nor used in the
literature, to the knowledge of the author. In addition, each region needed to
be defined by one coordinate set corresponding to the center of mass. A custom
made Matlab script was used to calculate the average power/amplitude and
the center of mass for each region. The averaged power/amplitude had to be
calculated for each sample in each trial resulting in many calculations. It was
therefore necessary to use the cluster system at DTU compute.

5.6 Summary

This chapter gave a detailed description of the experimental design and why a
visual stimulus from IAPS was used. Furthermore, the advantages and disad-
vantages of the 2 × 3 within-subjects experimental design was outlined. All ten
steps of the preprocessing pipeline in Figure 1.2 were explained and discussed.
The last section of the chapter outlined, how the three analysis methods and
corresponding parameter values were used and implemented.

38-1.5 to 2 s relative to image onset.
39The 2D euclidean distance is used followed by some manually corrections.



70 Methods



Chapter 6

Validation of ICA and
EyeCatch using the Eye

Tracker

The following chapter is an independent chapter in the sense that it has its own
results and discussion. A manually inspection of all ICA components for all
participants is very time consuming and it takes many years of experience to
manually distinguish eye and brain components. Therefore, several automatic
and semiautomatic methods have been used [25]. EyeCatch has, to the knowl-
edge of the author, not yet been implemented in the literature, why the thesis
will, with the use of an eye tracker, validate and discuss the performance of
EyeCatch. This chapter corresponds to step 8 in Figure 1.2 and is an important
step in order to rely on the results presented in Chapter 7.

The chapter is divided up into three sections:

1. The first section describes the method used to validate the performance
of EyeCatch.

2. The second section presents the results.

3. The final section discusses the performance of EyeCatch.
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6.1 Method

Every time a participant moves the eyes above 0.1◦, with respect to a fixation
cross in the middle of the screen, an eye movement is detected by the eye
tracker. With each eye movement the precise angle and duration is recorded.
The duration of each blink is likewise detected. An example of the output data
from the eye tracker is shown in Figure B.1.

The eye-tracking data is now epoched similar to an EEG epoch from the fixation
cross to the end of the picture presentation as seen in Figure 5.3. The epoched
eye-tracking data is assigned an arbitrary value for each sample as

1. If a blink is detected a value of five is assigned to the epoch in that specific
sample. For example, if a blink has a duration of 10 samples, each of the
10 samples are assigned with a value of five.

2. If a saccade above 1.28◦ is detected a value of 1 is assigned to the epoch.

3. If neither a saccade or a blink is detected, the sample will be assigned with
a value of zero.

The bottom figures in Figure 6.3 show examples of epoched eye-tracking data.
By adding up all the values for each sample in the 3.5 second long epoch, each
epoch ends up with an arbitrary number explaining the level of EOG noise.
The value of 1.28 is used as it distinguishes saccades from microsaccades. Large
saccades are defined at an angle of ∼ 23◦ [70]. However, as no saccades above
that value were present, all saccades in the thesis are represented with the same
value. Blink artifacts have 5-10 times larger amplitude than saccades, why the
ratio between blink and saccades is chosen to be five to one [70].

Since EOG artefacts contain more power than brain activity, as explained in
Section 2.1.3, trials with distortion of EOG artefacts should contain more power
than "clean" trials. Therefore, by taking the power of each trial for each ICA
component and calculating the 90th quantile, each trial of each ICA component
is represented by a single value reflecting the power. The 90th quantile is used
instead of the maximum power to increase the robustness.

A single trial is now represented by an arbitrary "distortion" value from the
epoched eye-tracking data and by a single "power" value from each ICA com-
ponents power signal. Pearsons Correlation Coefficient, [45], is used to find the
correlation between these two representations. A high correlation means that
the eye tracker classify the corresponding ICA component as an eye component.
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The correlation between an ICA component and the epoched eye-tracking data
is referred to as a correlation score.

As elaborated in Chapter 3, EyeCatch calculates a similarity between each ICA
component and the templates from the database, where a score above 0.94 means
that the ICA component is classified as an eye component. The similarity will
be referred to as a similarity score.

6.2 Results

As mentioned in Section 5.3.2, the eye tracker was sensitive making the data
from the eye tracker unreliable for some participants. Participant 5, 7, 8 and 10
are therefore not included in the results.

The correlation score for the first five ICA components are presented in Table 6.1
with the corresponding p-value40. The p-value is calculated using a permutation
test with 1000 permutations under the significance level of α = 0.05. The last
number in each cell in the table represents the similarity score.

Figure 6.1 shows all 64 ICA components for subject 3 and their correspond-
ing correlation and similarity score. Similar results for the other subjects are
presented in Appendix B.

ICA component 3, 5 and 13 for subject 3 are used as examples and are presented
in details. ICA component 3 is used as the similarity score is high and the corre-
lation score is low. ICA component 5 is an example of when both the similarity
and correlation scores are high. ICA component 13 has a high correlation score,
but a low similarity score.

Figure 6.2 shows the relationship between the arbitrary distortion values and
the power values for ICA component 3, 5 and 13 for subject 3.

As mentioned, ICA component 3 has a high similarity score, but a low cor-
relation score. It means that EyeCatch classified ICA component 3 as an eye
component as opposed to the eye tracker. Figure 6.3 shows three trials, where
the eye tracker has detected many EOG artefacts, which is not reflected in ICA
component 3 (top figures). Figure 6.4 shows three trials where ICA component
3 has a high power value, but a low distortion value from the eye tracker.

ICA component 5 is used as an example where the two methods are consistent.
40The p-value is calculated under the null hypothesis that there is zero correlation.
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Figure 6.1: The figure shows the correlation between the eye-tracking data and
all 64 ICA components for subject 3. The correlation is symbolized
with blue dots and the blue y-axis to the left. The figure also
presents the similarity score given by EyeCatch for all 64 ICA
components. These are marked with a green + and belongs to the
green y-axis. The vertical line indicates the threshold (0.94) used
for the similarity score by EyeCatch. It is seen, from the green
+, that ICA 3 and 5 are exceeding the similarity threshold. ICA
component 5, 13 and 39 all show a high correlation coefficient.
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Subj ICA 1 ICA 2 ICA 3 ICA 4 ICA 5 Total
3∗ 0.13

p=0.08
sim:0.89

0.06
p=0.2
sim:0.90

0.07
p=0.17
sim:0.96

0.02
p=0.37
sim:0.54

0.51
p=0.001
sim:0.99

0.33

4∗ 0.58
p=0.001
sim:0.99

-0.045
p=0.72
sim:0.74

0.34
p=0.003
sim:0.98

-0.05
p=0.69
sim:0.26

-0.09
p=0.87
sim:0.31

0.56

6∗ 0.19
p=0.009
sim:0.90

0.2
p=0.012
sim:0.90

0.43
p=0.001
sim:0.97

0.09
p=0.07
sim:0.65

-0.05
p=0.83
sim:0.56

0.30

9 0.19
p=0.001
sim:0.93

0.18
p=0.001
sim:0.93

0.019
p=0.35
sim:0.6

0.14
p=0.021
sim:0.5

0.54
p=0.001
sim:0.99

0.42

11 0.17
p=0.012
sim:0.85

0.14
p=0.02
sim:0.84

-0.08
p=0.87
sim:0.45

0.32
p=0.002
sim:0.99

-0.03
p=0.65
sim:0.65

0.31

12 0.07
p=0.12
sim:0.87

0.08
p=0.09
sim:0.87

-0.06
p=0.74
sim:0.51

0.08
p=0.22
sim:0.5

0.05
p=0.19
sim:0.79

-0.05

Table 6.1: The table presents the correlation and similarity score for the first
five ICA components for subject 3, 4, 6, 9, 11 and 12. The similarity
score is denoted with sim. Furthermore, the p-value for the corre-
lation score is presented. ICA components highlighted with bold
are components classified by EyeCatch as eye components. The
last number in the Total column shows the correlation between the
similarity and the correlation score for all 64 ICA components for
each subject. ∗: only the first half (120 trials).
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Figure 6.2: The figure shows the relationship between the epoched eye-
tracking data and the 0.9th quantile power for ICA components 3,
5 and 13 for subject 3. Each sample (blue dots) represents a trial.
The correlation coefficients are 0.07 (ICA3), 0.51 (ICA5) and 0.34
(ICA13) and the similarity score is 0.96, 0.99 and 0.44 respectively.
The contradicting result for ICA component 3 is clearly seen in the
topplot, as a high value for the eye-tracking data is not resembled
in the power score.
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Figure 6.3: The figure shows trial 37, 50 and 106 for subject 3 where the dis-
tortion score from the eye tracker is high because of the detected
blinks and eye movements. The corresponding time series of ICA
component 3 and 5 are also shown. EOG artefacts in ICA com-
ponent 5 are aligned with the detected blinks and saccades from
the eye tracker. This is not the case for ICA component 3.
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Figure 6.4: The figure shows subject 3 in trial 47, 107 and 152 for ICA com-
ponent 3 and the corresponding epoched eye-tracking data. The
high power score is due to the seen spikes, which is not reflected in
the eye-tracking data. The middle plots show the normal epoched
eye-tracking data using the threshold of 1.28. The bottom figures
show the epoched eye-tracking data without any threshold to see
if microsaccades could explain the spikes in the top figures.

The similarity score is 0.99 and the correlation score is 0.51 with a corresponding
p-value of 0.001. Figure 6.3 shows how ICA component 5 consists of EOG
artefacts and is aligned with eye movements and blinks detected by the eye
tracker.

In Figure 6.1, it is seen that ICA component 13 has a similarity score below
0.4, but a correlation score of 0.34. Figure 6.5 compares three trials with a high
distortion and power value to see why the obtained correlation is high. It is seen
that the detected eye movement and blinks are not aligned with ICA component
13.

The topographies, the average time series and the power spectrum of ICA com-
ponent 3, 5 and 13 are shown in Figure 6.6 to further inspect if the components
are eye components or not. Furthermore, ICA component 2 is shown to visualize
a component reflecting brain activity.
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Figure 6.5: The figure shows subject 3 in trial 37, 50 and 106 for ICA compo-
nent 13 and the corresponding epoched eye-tracking data. Pear-
sons correlation showed a high correlation score, where the simi-
larity showed a low score. The detected eye movements and blinks
are not aligned with ICA component 13. The seen fluctations are
not sychronized with the eye tracker.
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Figure 6.6: The figures show the topographies, power spectrums and average
time series for ICA component 2, 3, 5 and 13 respectively. These
are obtained from subject 3. Figure a) shows ICA component 2,
where it is clear that the activity is aligned with the presented
picture (upper right corner). Furthermore, the majority of the
power is in the alpha band meaning that ICA component 2 clearly
reflects brain activity. Figure b) shows that the power is located in
the frontal/temporal area for ICA component 3. The time series
do not show any connection to the ERPs from the visual stimuli.
The power spectrum shows activation of the low frequencies and
in the low alpha band. Figure c) shows ICA component 5, where
the power is located in the frontal area with high activation of low
frequencies. Figure d) shows the characteristics of ICA component
13. It does not contain much energy compared to the three other
ICA components. The power is located at the low frequencies and
in the right parital/occipital-parietal area.
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6.3 Discussion

For the six subjects, where the eye tracker worked, EyeCatch detected 8 ICA
components as eye components, where only one, ICA component 3 for subject
3, was questionable.

ICA component 3 showed a high similarity score and a low correlation score
implying that either the eye tracker or EyeCatch was mistaken. If the eye
tracker is mistaken, it could be due to eye movement that was below the used
threshold of 1.28◦41, and therefore was not included in the epoched eye-tracking
data. However, the bottom figures in Figure 6.4 reject this idea as the eye
movements not are aligned with ICA component 3.

The second option is a wrongly detected eye component by EyeCatch. The
power spectrum in Figure 6.6b shows that the power of ICA component 3 peaks
in the low alpha band. The alpha band is tricky as both EOG artefacts and
brain activity have energy in the alpha band [91]. Looking at Figure 6.4, it is
clear that the spikes seen in the top figures are not brain activity. EMG artefacts
are left out as a possibility as the power spectrum would be distributed over
a broader frequency range with more power at the higher frequencies. ICA
component 3 could therefore reflect both EOG artefacts and brain activity.

From the EEGLAB turtorial, [3], it is recommended to keep such a component,
and run a second round of ICA to see if the ICA algorithm makes a better
separation of the underlying sources. Keeping ICA component 3 and rerunning
the ICA, the EyeCatch did not detect any components as eye components as
the highest similarity score was 0.91. It could imply that the previous ICA
component 3 was falsely detected by EyeCatch. However, the seen artefacts in
Figure 6.4 are still problematic as they still are present in the data. Therefore,
the trials were excluded from the subject 3.

ICA component 5 from subject 3 showed both a high correlation score and high
similarity score, indicating that ICA component 5 is an eye component. In
Figure 6.3, ICA component 5 showed alignment between EOG artefacts and
the epoched eye-tracking data. This is also in accordance with Figure 6.6c,
where the power of the signal is localized in the frontal electrodes and in the
low frequency band.

ICA component 13 is not an eye component, despite the high correlation with
the eye tracker. The power spectrum, topography and the lack of no temporal
alignment with detected eye movements, prove that ICA component 13 is not

41Saccades below this threshold are usually denoted microsaccades [70].
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an eye component.

The results imply that classifying ICA components solely based on the topogra-
phies might not be sufficient. ICA component 3 is suggested removed by Eye-
Catch despite the fact that it most likely also consist of brain activity. It is
also reported that the performance of experts42 manually classifying ICA com-
ponents increases, when the times series and power spectra are used in a com-
bination with the topographies [70]. Therefore, it is suggested to expand the
EyeCatch method to include information about the power spectrum.

Kønig et al., [70], use the eye tracker to classify ICA components by making a
variance ratio between "clean" and "noisy" intervals in the ICA components,
where the intervals are defined by the eye tracker. Their results are remarkable
good, when using a ratio of 1.1, with an area under curve of 0.99. As the
method seemed very promising, the method was implemented and tested in
the thesis. Using the suggested ratio of 1.1, 55 components were classified
as eye components. Increasing the ratio to lower the number of classified eye
components, the results were very contradicting when comparing to EyeCatch’s
similarity score. The experiment in [70] is very controlled with respect to eye
movement and is cleaned from other sources in contrast to the data presented
in the thesis. This difference could explain why the great performance found by
Kønig et al., [70] could not be reproduced.

6.4 Summary

This chapter described a method to validate the EyeCatch with an eye tracker.
The eye-tracking data was epoched and compared to the power of ICA compo-
nents. These were analyzed with Pearsons Correlation Coefficient and compared
to the similarity score given by EyeCatch. EyeCatch detected eight ICA com-
ponents as eye components, where one was a false positive as the component
consisted of both eye and brain activity.

42Here, the experts are referred to the experts from [70].



Chapter 7

Results

This chapter presents the main results forming the basis of the discussion in
Chapter 8. The remaining results are shown in Appendix C.

The chapter is divided into three sections.

1. First, the results concerning the baseline are presented as it varies across
the social conditions. The baseline is defined in a window from -0.4 to
-0.1 seconds prior to image onset. Therefore, an analysis of the baseline
is necessary to provide a sufficient baseline correction before further anal-
ysis. However, it might also indicate a difference during the resting state
(baseline) between the two social conditions.

2. The second section presents the results concerning the emotional content
of the pictures. The section serves as a sanity check by reproducing results
about perception of positive, negative and neutral pictures.

3. The last section presents the results concerning the social context. The
ERP analysis revealed a difference in the LPP, where the time-frequency
analysis showed a difference in the alpha band.

Recall from Chapter 5 that three different time windows are used as input in
the cluster-based permutation test: the large [-2:1.5 s], the early [0:0.3 s] and
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the late [0.3 1 s] time window, where all times are relative to image onset. In
addition, the time-frequency analyses are limited to the three frequency bands:
the theta band (4-8 Hz), the alpha band (8-12 Hz) and the beta band (12-30
Hz).

7.1 Baseline

The time-frequency analysis of the baseline showed a difference between the
two social conditions in the alpha band. The top figure in Figure 7.1 shows,
for channel PO4, that the Alone condition has more power in the alpha band
indicated by the red color. In Figure 7.2, it is seen that the difference is most
prominent at the parietal/occipital-parietal channel sites.

Figure 7.1: The figures show the differences prior to image onset at channel
PO4 for Alone/Together (top figure) and the First/the Second half
of the experiment (bottom figure). The top figure shows increased
alpha activity in the baseline in the Alone condition indicated by
the red color. The bottom figure shows alpha suppression in the
first half compared to the second half, indicated by the blue color.
The differences are calculated as Condition 1 - Condition 2.
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Figure 7.2: The figure shows the raw difference for all 64 channels between
the Alone and Together condtion. The time axis is from -0.5 to
0 s relative to image onset and the frequency axis is from 4 to 30
Hz. The spatial distributions are located at the parietal/occipital-
parietal sites. The red color indicates more power in the Alone
condition.

Recall from Section 5.2.4 that after the first 120 images, the social condition is
changed. Therefore, the first 120 pictures will be referred to as the first half
of the experiment, where the last 120 pictures will be referred to as the second
half of the experiment. The bottom figure in Figure 7.1 shows the difference
between the first and second half, where the blue color indicates more alpha
power in the second half. In contrast to the baseline difference concerning the
social context, the baseline difference here is present in almost all channels, cf.
Figure C.1.

To investigate the intersubject variability, the baseline difference between the
first and second half are shown in Figure 7.3 for the first nine participants43 at
channel PO4. The figure shows a high intersubject variability, where subject 3,
7, 8 and 9 show a large difference between the first and second half in contrast
to subject 4, 5, 6, 10 and 11. Subject 3, 5, 6, 9 and 11 were all in the Together
condition during the first half of the experiment.

43The last person is not included in order to simplify the visual result. Subject 12 did not
show any differences between the first and second half.
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Figure 7.3: The figure shows the raw differences at channel PO4 for the first
nine subjects between the first and the second half of the experi-
ment. It shows that subject 3, 7, 8 and 9 had a large increase in
alpha power during the second half, where subject 4, 10 and 11 do
not show a substantial difference. Subject 3, 5, 6, 9 and 11 were
all in the Together condition during the first half.

7.2 Main Factor - Emotional Content of The Pic-
ture

This section shows the results concerning the emotional content of the pictures,
where the ERP and the time-frequency results are divided up into two sections.

Table 7.1 and 7.2 summarize the results for the ERP and time-frequency analysis
respectively, where only few will be presented and discussed. These are written
in italic type. The tables are divided into the three contrasts; 1) negative versus
positive, 2) positive versus neutral and 3) negative versus neutral. Furthermore,
the contrasts are tested when the data is pooled across the social conditions,
but also separately within each social condition44. Unless otherwise is stated,
the results presented are for the pooled data, using the large time window with
a cluster alpha of 0.05.

44E.g. the contrast viewing negative pictures alone versus viewing neutral pictures alone.
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7.2.1 ERP Analysis

7.2.1.1 Early ERP Components

Figure 7.4 visualizes the ERPs for negative (red), positive (blue) and neutral
(green) pictures at channel O2 and CPz. At channel O2 in Figure 7.4a, a
small difference is seen in the N170 component for positive pictures compared
to negative and neutral ones. For channel CPz in Figure 7.4b, the positive
pictures exhibit a larger response for both the negative peak at 100 ms and the
positive peak at 170 ms.
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Figure 7.4: The figures show ERPs across all ten subjects for channel a) O2
and b) CPz for negative (red), positive (blue) and neutral (green)
pictures. A small modulation, between the positive pictures com-
pared to the negative and neutral ones, is seen at the early latency.
A clear difference is developed at the late latency (>300 ms) be-
tween the affective and neutral pictures.

Figure 7.5 shows the results of testing positive against neutral pictures. From
150 to 300 ms, a significant negative cluster (p=0.05) is seen at the occipital and
parietal-occipital sites. The difference reflects a more positive amplitude for the
neutral pictures. No significant differences of the early ERP components were
found for the contrasts Negative/Neutral and Positive/Negative when using the
large time window. The early time window revealed new significant differences
for the contrast Negative/Neutral (Figure C.5a) over the centro-parietal sites
from 50 to 200 ms, and for the contrast Positive/Neutral (Figure C.6a) at the
frontal sites from 200 to 300 ms. In addition, a significant difference between
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positive and negative pictures was found after 100 ms at the fronto-central and
frontal sites, seen in Figure C.7.

time=[0 0.0508] time=[0.0508 0.102] time=[0.102 0.148]

time=[0.148 0.199] time=[0.199 0.25] time=[0.25 0.301]

time=[0.301 0.352] time=[0.352 0.398] time=[0.398 0.449]

time=[0.449 0.5] time=[0.5 0.551] time=[0.551 0.602]

Figure 7.5: The figure shows the results from the cluster-based permutation
test for positive versus neutral pictures. The first significant clus-
ter is negative (p=0.05) reflecting a difference in the early picture
processing. The difference is located at the occipital-parietal area
from 150 to 300 ms after image onset. The second cluster is pos-
itive (p=0.02) and shows a difference in the LPP after 400 ms.
The difference is located in the centro-parietal and centro-frontal
area.

7.2.1.2 Late ERP Components

In Figure 7.4, clear differences are seen between the affective and neutral pictures
starting after 300 ms and continues throughout the epoch. A similar pattern is
shown for channel FC2 and F1 in Figure C.2.

In Figure 7.5, the second cluster reflects a difference between positive and neutral
pictures starting after 400 ms. The difference is located at the central channel
sites ranging from parietal-occipital to the frontal sites. The cluster is positive
reflecting a stronger response for positive pictures in accordance with Figure
7.4b.
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Time window
Contrast Social context Large:[-2:1.5] Early:[0:0.3] Late:[0.3:1]

Neg/Pos
Pooled - neg:p=0.03,

p=0.03
-

Alone - pos:p=0.03,
p=0.05
neg:p=0.05

-

Together - - -

Pos/Neu
Pooled pos:p=0.02,

p=0.05
pos:p=0.006,
neg:p=0.02

pos:p=0.002

Alone pos:p=0.002,
p=0.02

pos:p=0.05,
neg:p=0.02

pos:p=0.002,
p=0.024

Together pos:p=0.008,
p=0.03

neg:p=0.04,
p=0.03

pos:p=0.04,
p=0.04

Neg/Neu
Pooled pos:p=0.01,

p=0.03
neg:p=0.002 pos:p=0.004

neg:p=0.04
Alone pos:p=0.002,

p=0.01
neg:p=0.04 pos:p=0.008,

p=0.002
Together pos:p=0.03,

p=0.03
neg:p=0.01 pos:p=0.02,

neg:p=0.03

Table 7.1: ERP analysis: The table shows the results from the cluster-based
permutation test, testing the emotional content of the pictures in
three different time windows (large, early, late). A significant dif-
ference between two conditions is presented with a pos or a neg
reflecting the sign of the cluster with the corresponding p-value.
The precise spatial and temporal location are not seen from the
table. E.g for the contrast Neg/Neu for the pooled data, a positive
cluster is seen with p=0.01 within the large time window. The ac-
tual cluster is found from 350 to 500 ms after image onset, as seen
in Figure 7.8.
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(a) (b)

Figure 7.6: The figures show the results of the MNE for the contrast Posi-
tive/Neutral pictures in the interval from 400 to 600 ms. It shows
the normalized differences, where the red color indicates a stronger
signal for positive pictures. It is seen that both the frontal and
left prefrontal area together with the occipital lobe is mostly ac-
tivated. From the AAL atlas, the left frontal gyrus showed high
activation, as seen in Figure a).

From the MNE source reconstruction, Figure 7.6 shows the normalized difference
between the positive and neutral pictures from 400 to 600 ms. It is seen that the
frontal and occipital areas show a stronger response for the positive pictures,
indicated by the red color. Localizing the differences using the AAL atlas, the
left Frontal Midline Gyrus region showed high activity as seen in Figure 7.7.

Figure 7.8 shows significant clusters testing negative against neutral pictures.
A significant cluster (p=0.01) is seen from 370 ms to 480 ms, ranging from
parietal-occipital to the parietal channels, reflecting a difference in the LPP.
The second significant cluster (p=0.03) begins after 570 ms ranging over the
same sites as the previous cluster. Both clusters are positive, meaning that the
negative pictures exhibit a stronger response in accordance with Figure 7.4b.
The MNE source reconstruction showed a widespread difference with activation
of several AAL regions including the left and right Frontal Midline and Inferior
Gyrus and left and right Temporal Midline, Inferior and superior Gyrus, which
is seen in Figure C.8.

Figure C.3 shows the intersubject variability of the ERPs for channel O2 and
CPz. It is seen that the variability across the subjects are much higher than
across the conditions. In addition, Figure C.4 shows the variability across all
trials for subject 3.
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Figure 7.7: The figure shows which AAL regions that showed the highest activ-
ity for the normalized difference between the positive and neutral
pictures from 400 to 600 ms relative to image onset.

time=[0 0.0508] time=[0.0508 0.102] time=[0.102 0.148]

time=[0.148 0.199] time=[0.199 0.25] time=[0.25 0.301]

time=[0.301 0.352] time=[0.352 0.398] time=[0.398 0.449]

time=[0.449 0.5] time=[0.5 0.551] time=[0.551 0.602]

Figure 7.8: The figure shows the results from the cluster-based permutation
test between negative and neutral pictures. The figures show two
positive significant clusters (p=0.01 and p=0.03) reflecting a dif-
ference in the late positive potential, with a higher response to
negative pictures.
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7.2.2 The Time-Frequency Analysis

The time-frequency showed ERS in the theta band right after image onset,
and ERD of alpha oscillations after 200 ms for both positive, negative and
neutral pictures. This is seen in Figure C.9, where the bottom figures show
the normalized differences between affective and neutral pictures. The red color
indicates higher power for affective pictures in the theta band after 200 ms. The
blue color indicates less power for affective pictures in the alpha band starting
from 600 ms. A similar example is shown for channel O2 in Figure C.10.

Table 7.2 summarizes the statistical results when the late time window is used,
as no significant differences were found in the large or early time window.

From Table 7.2, it is seen that for positive against neutral pictures, differences
are found in all three frequency bands. These results are not based on the
pooled data, but solely when the pictures are viewed alone. The clusters for the
theta and alpha bands are seen in Figure 7.9, while the beta band is presented
in Figure C.11. The top figures visualize the spatial location with channels
marked with ?. The bottom figures show the temporal and spectral location of
the clusters. The color bar indicates in how many channels a single pixel (time
point × frequency point) is represented. For example, a color with index value
of ten means that the pixel is found to be a part of the cluster in ten channels.

Late latency [0.3-1 s]
Contrast Social context Theta:[4:8

Hz]
Alpha:[8:12
Hz]

Beta:[12:30
Hz]

Neg/Pos
Pooled - pos:p=0.02 -
Alone - - -

Together - pos:p=0.03 -

Pos/Neu
Pooled pos:p=0.02 - -
Alone pos:p=0.006 neg:0.006 neg:p=0.002

Together pos:p=0.05 - -

Neg/Neu
Pooled pos:p=0.002 - -
Alone - - neg:p=0.02

Together pos:p=0.05 neg:p=0.004 -

Table 7.2: Time-Frequency analysis: The table shows significant clusters
when testing the picture content in the late time window, for three
different frequency bands. The statistical test did not show any
significant differences in the early time window, why these are ex-
cluded from the table. The interpretation of the table is similar to
Table 7.1
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(a) (b)

(c)

Figure 7.9: The figure shows significant clusters for the contrast Posi-
tive/Neutral pictures in a) the theta band (p=0.006) and b) the
alpha band (p=0.006). The top figures visualize the spatial loca-
tion of the differences with channels marked with ?. The bottom
figure shows the location in the spectral and temporal dimension.
The colorbar indicates the number of channels, a single pixel (time
point × frequency point) is represented in. E.g a color with index
value of ten means that the pixel is found to be a part of the clus-
ter in ten channels. Figure c) shows the ERPs and corresponding
normalized difference in the spectogram for channel FCz. Here red
indicates higher power for positive pictures and blue higher power
for neutral pictures. The spectogram clearly shows differences in
the three frequency bands: higher theta power and lower alpha
and beta for positive pictures.
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In the theta band, the significant difference (p=0.006) is seen from 350 to 700
ms around 6 Hz. The spatial location is widely distributed, but mostly located
at the centro-frontal area. The cluster is positive reflecting higher theta power
for positive pictures.

The significant cluster (p=0.006) in the alpha band, has a later onset after 700
ms with a peak frequency of 10 Hz. The spatial location of the cluster is widely
distributed with most of the parietal and right temporal sites included. The
cluster is negative reflecting a higher alpha power for neutral pictures.

7.3 Main Factor - Social Context

This section shows the results concerning the social context, where the ERP
and the time-frequency results are divided into two sections.

7.3.1 ERP Analysis

Figure 7.10 shows the ERP differences between Alone and Together for channel
F2 and PO4 divided into positive, negative and neutral pictures. For affective
pictures, a difference in the LPP is seen in contrast to neutral pictures. The
Alone condition exhibits a larger amplitude after 600 ms, where the two condi-
tions are very similar for neutral pictures. The differences at the LPP are seen
with the mean error bar at channel PO4 in Figure 7.11.

The results from the cluster-based permutation test revealed a significant posi-
tive cluster (p=0.04) averaging over all pictures. The positive cluster is seen in
Figure 7.12 from 850 to 950 ms in the frontal area meaning a larger response
when viewing the pictures alone. As the p-value is close to the level of sig-
nificance, it is recommended to increase the number of permutations [82]. The
number of permutations was increased from 1000 to 5000 to get a more sufficient
permutation distribution, however the cluster was still found significant with a
p-value of 0.04.
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Figure 7.10: The figures show the ERPs at channel F2 and PO4 for the two
social conditions for positive (top), negative (middle) and neutral
(bottom) pictures, respectively. The blue color indicates the To-
gether condition and the red the Alone condition. A difference in
the LPP is seen for affective pictures compared to neutral ones.
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Figure 7.11: The figures show the mean error bar of across the ten subjects for
channel PO4 for the contrast Alone/Together. Figure a) shows
the positive pictures and b) the negative pictures, where the red
color is the Alone condition and the blue color is the Together
condition. It is seen that the ERPs and mean error bars for the
two conditions are separated.

time=[0.5 0.551] time=[0.551 0.602] time=[0.602 0.648]

time=[0.648 0.699] time=[0.699 0.75] time=[0.75 0.801]

time=[0.801 0.852] time=[0.852 0.898] time=[0.898 0.949]

Figure 7.12: The figure shows the results from cluster-based permutation be-
tween the social conditions for all pictures combined. A signifi-
cant cluster (p=0.04) is located in the frontal area from 850 to
950 ms. The cluster is negative, meaning the response is larger
for the Alone condition.
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The cluster was further investigated by rerunning the test after excluding one
participant of the group. Figure 7.13 shows how the p-value varies as each sub-
ject is excluded. The permutation number corresponds to the excluded subject,
for example permutation number 1 is subject 3, where permutation number 10
is subject 12. It is seen that subject 6, 7 and 10 have an important impact
on keeping the cluster below the significance level. This shows the lack of sta-
tistical power, as the statistic should not be influenced by removal of just one
participant.
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Figure 7.13: The figure shows how the p-value of the found significant clus-
ter from Figure 7.12 varies as one of the subjects are excluded
from the group. The permutation number corresponds to the
subject excluded from the group prior to the analysis. The red
line shows the level of significance. Recall that the original p
value for the found significant cluster was 0.04. Subject 6, 7 and
10 (permutation number 4, 5 and 8) have a large impact on the
found difference, whereas subject 4, 5 and 9 are slightly lowering
the p-value.

In Figure 7.10, it was seen that the difference at the LPP was most prominent
for affective pictures. Therefore, a similar cluster-based permutation test was
applied using only affective pictures. However, the test did not reveal any
significant differences.

The MNE source reconstruction was used to localize the sources that exhibited
the differences. Figure 7.14 shows the normalized difference averaged over a
time interval from 0.7 to 1.2 s. It is seen that the frontal area is the active
corresponding to the found cluster in Figure 7.12. Interesting, the source re-
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construction also showed a difference at the parietal-occipital lobe, which was
not revealed by the cluster-based permutation test. Relating the sources to the
AAL atlas, the following regions showed high activation: left frontal superior,
left frontal midline gyrus, left occipital midline gyrus and right temporal midline
gyrus. It is shown in Figure C.13.

(a) (b)

Figure 7.14: The figure shows the MNE result for the normalized difference
between Alone and Together from 0.7 to 1.2 s. It is seen that
the left frontal and the parie-occipital area are activated. The
following regions in the AAL atlas showed high activation: left
frontal superior, left frontal midline gyrus, left occipital midline
gyrus and right temporal midline gyrus.

The cluster-based permutation test on source level did not reveal any significant
for the social contrast. However, it did find a positive cluster with p-value of
0.09 from 700 to 950 ms. The cluster included 807 out of the 2015 sources,
which is seen in Figure C.14. Running the test on region level using 116 regions
instead of the sources or channels as the spatial dimension, did not reveal any
significant differences.

Studying how the social contrast affected the perception of the pictures sepa-
rately, a positive cluster (p=0.06) close to the significance level was found for
positive pictures. The cluster is seen in Figure C.15 at the frontal, centro-frontal
channels from 650 to 750 ms. Rerunning the same test using 5000 permutations
instead of 1000 increased the p-value to 0.08. No differences were found when
testing negative or neutral pictures separately.

It is known that the intersubject variability is high in ERP studies [79], which
Figure 7.4 also visualizes. It is likely that the intersubject variability increases,
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when studying a more complex situation as the effect of the social context causes.
Therefore, a cluster based permutation test was applied on subject level. The
purpose was to see if some subjects exhibited the same results. However, the
results did not reveal any pattern, which is seen in Figure C.16. From the 2× 3
experimental design, the 3 interaction terms45 were also tested, but did not
show any significant differences.

7.3.2 Time-Frequency Analysis

Figure 7.15 shows the spectograms at channel F3 and C4 for negative pictures in
the Together condition (top figures) and in the Alone condition (middle figures).
The bottom figures show the normalized difference, where a red color indicates
more power when viewing the pictures alone. A suppression of alpha power in
the Together condition is seen after 200 ms until 1 second.

The spectograms are consistent with the result from the cluster-based permu-
tation test46 indicating higher alpha power in the Alone condition. Figure 7.16
shows the negative cluster (p=0.06), which ranges from 600 to 900 ms. It is
spatially located from left prefrontal area to right centro-parietal area. As the
p-value is close to the significance level, the same test was conducted using 5000
permutations, but it did not change the p-value of the cluster.

The source reconstruction analysis did not provide further information about the
spatial location of the underlying neural sources of the cluster. The difference
was widely spread out as seen in Figure C.18 with several AAL regions activated.

Similar tests were applied for positive and neutral pictures using both the large,
early and late time windows, but no clusters near or below the significance level
were found. Pooling the data across the pictures did nor reveal any differences
in the time-frequency analysis for the social context.

45One interaction term is Alone/Together × Positive/Neutral.
46The late time window and the alpha band were used as inputs in the cluster-based per-

mutation test.
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(a)

(b)

Figure 7.15: The figures show the averaged spectograms across all ten sub-
jects for negative pictures for channel a) F3 and b) C4. The top
figures are the average spectograms for negative pictures in the
Together condition, and the middle figures are the spectograms
for the Alone condition. The color indicates changes relative to
the baseline. The blue color indicates power suppression, where
the red color indicates increased power. The bottom figures show
the normalized differences for the contrast Together versus Alone.
Channel F3 and C4 are included in the cluster shown in Figure
7.16. Consistent with the cluster-based permutation test, alpha
suppression are seen in both channels, when viewing the pictures
together, indicated by the blue color.
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[0.5938 0.6992] [0.7031 0.7969]

[0.8008 0.894] [0.9062 1.000]

(a) (b)

Figure 7.16: The figures show a negative cluster (p=0.06) for the contrast
Together/Alone for negative pictures. In figure a) the spatial
location of the cluster is seen for four different time steps. It is
ranging from the left prefrontal area to the right centro-parietal.
In figure b) the temporal and spectral samples of the cluster are
seen. The colorbar indicates the number of channels a single
pixel (time point × frequency point) is represented in. E.g a
color with index value of ten means that the pixel is found to be
a part of the cluster in ten channels. The cluster is found in the
alpha band most prominent around 10 Hz from 600 to 900 ms.
The negativity of the cluster implies higher alpha power in the
Alone condition.
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Chapter 8

Discussion

This chapter discusses the main findings presented in Chapter 7. The chapter
has the same structure as Chapter 7 to ease the understanding for the reader:

1. The first section provides a discussion of the baseline and prestimulus
alpha.

2. The second section compares the results of the emotional content of pic-
tures to similar studies.

3. The third section discusses, how the presence of another person can mod-
ulate attention and the level of arousal.

4. The chapter ends with a general discussion of the cluster-based permuta-
tion test, taking both the simulation from Chapter 4 and the real data
into account. Furthermore, it provides a discussion of the implementation
of the cluster-based permutation test on source and region level.

8.1 Baseline

It is well-known that alpha activity is connected to the state of attention of a
person [63]. It is therefore not surprising that the alpha power increases during
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the second half of the experiment as participants tend to tire. Furthermore, it
is important to make clear that the baseline modulation is not related to the
emotional content of a picture, as the participants had no knowledge about the
upcoming picture beforehand.

The modulation of prestimulus alpha between Alone and Together can be ex-
plained in two ways. First, the participants are more attentive during the resting
state (baseline), as one might feel more alert by the presence of another person.
Second, the modulation could be a coincidence as a high intersubject variability
in the baseline is present (cf. Figure 7.3). In theory, the effect of being Together
or Alone in the first half should have been blocked by the experimental design,
as the order of being Alone or Together is counterbalanced. However, the ex-
periment included only 10 participants, which means that the large intersubject
variability still could have an effect. The result also shows why counterbalancing
the order of conditions is so important.

The differences between Alone and Together are located at the parietal and
occipital sites, where the differences due to the order are present at all channels,
cf. Figure 7.2 and C.1. In addition, prestimulus alpha has shown to play
a role in a visual discrimination task. Increased alpha power in the baseline
decreased the ability to detect a difference in gray levels between two discs
[120] and decreased the performance of short time memory [83]. Both findings
indicate prestimulus alpha as a measure of awareness prior to image onset. It is
also shown that memory performance increases when another person is present
[104, 105]. These results would support the idea of decreasing alpha power in
the baseline for the Together condition.

It is difficult to conclude, if the prestimulus alpha difference between Alone and
Together is a result of participants being more alert or an effect of the high
intersubject variability.

8.2 Main Factor - Emotional Content of the Pic-
tures

This section will discuss results from the ERP analysis divided up into the
early and late time window. Next, the time-frequency results are discussed with
respect to the theta and alpha band.
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8.2.1 ERP Results

Early ERP modulations: The positive pictures were distinguished from neu-
tral pictures within the latency of 150 to 300 ms in the parietal and occipital
lobe, which is consistent with the literature [60, 97, 100]. It has been proposed
to be allocation of attentional resources [60, 97, 100], where the limbic system
enhances activation in the visual cortex when emotional pictures are presented
[69]. The limbic system is connected to the prefrontal cortex during generation
of emotions [69], which would explain the found significant cluster at the frontal
and prefrontal sites when testing with the early window, cf. Figure C.6a.

An alternative explanation of increased activity for affective pictures compared
to neutral ones, is the complexity of the picture as the neutral pictures in gen-
eral are less complex [69, 93]. A study by Bradley et al. [28] compared simple
and complex affective pictures, and found a difference at the early ERP compo-
nents. However, studies comparing affective and neutral pictures while keeping
the picture complexity equal, studies have still found differences at early ERP
components [28, 69].

Late ERP modulations: The cluster-based permutation test showed signif-
icant differences between affective and neutral pictures after 350-400 ms. The
results are consistent with similar studies [28, 60, 97, 111], and reflect enhanced
attraction of attentional neural resources for processing the emotional content.
In addition, when comparing the spatial location of the cluster with the one
in the early time window, the cluster is more widely distributed and not very
located at the occipital and parie-occipital sites.

A recent study by Liu et al. [78] showed that by combining fMRI and EEG, the
differences between positive and neutral pictures are located to medial PFC,
where the differences between negative and neutral pictures are located at the
midline parietal cortex. Amygdala and visual cortices show increased activity
when processing affective pictures. In the thesis, the source reconstruction re-
vealed increased activity in the left frontal midline gyrus for positive compared
to neutral pictures. Left frontal midline gyrus is located in the left prefrontal cor-
tex including the left dorsolateral prefrontal cortex. The dorsolateral prefrontal
cortex has been associated with processing emotions [33, 50]. In addition, it
has been suggested that the left dorsolateral prefrontal cortex is connected to
positive emotions, where several areas in the right prefrontal cortex has been
associated with processing negative emotions [33]. For the negative compared
to neutral pictures, several areas showed activation in both the right and left
prefrontal area and in regions at the right temporal lobe. A recent study by
Aldhafeeri et al. [11] also showed activation of the temporal lobe for negative
pictures and a review by Kobe et al. [69] noted the right temporal cortex to be
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a part of the visual association group which shows activation in both the early
and late visual processing.

Amygdala has been identified as a key structure during perception of affective
pictures compared to neutral ones [50], however the source reconstruction did
not show any activation of amygdala. One reason for this could be that amygdala
is a deep structure, which is difficult for the source reconstruction.

8.2.2 Time-Frequency Results

Theta oscillations: Figure 7.9a shows increased theta power for positive pic-
tures compared to neutral ones47 from 350 to 700 ms. The effect is mostly
located at the frontal electrode sites, which could indicate increased theta os-
cillations from hippocampal in the limbic system. It is similar to earlier studies
that report a difference from 200 to 500 ms [10] and within the first 600 ms [68].
The hippocampal structure is related to the memory, where increased theta os-
cillation is positively correlated with memory performance and encoding of new
information [62]. Increased theta oscillation has been shown during processing
of emotions and has been proposed to play a role for the connection between
amygdala, hippocampal and prefrontal cortex [41].

Alpha oscillations: The significant difference between positive and neutral
pictures is mostly located at the parietal electrode sites with lower alpha power
for positive pictures similar to earlier findings [35, 68]. The difference begins
after 700 ms, which is in the interval of LPP. It is consistent with Cesarei et al.
[35] who suggest a functional association between the LPP and alpha ERD. In
Table 7.2, it is seen that alpha ERD differences are not consistently found for the
different combinations48 compared to findings in the LPP, cf. Table 7.1. Cesarei
et al. [35] report similar that the modulations of the LPP are more consistent
as the intervariability is greater in the alpha modulation. In the thesis, the
alpha band is defined from 8 to 12 Hz, where there is evidence of interpersonal
variability of the alpha band [63]. The high interpersonal variability could be
the reason for the more consistent findings in the ERP analysis compared to the
time-frequency analysis. Defining subject-specific frequency band prior to the
time-frequency analysis might decrease the high variability.

The alpha modulation between negative against positive pictures is an inter-
esting finding, as it was only expected to find differences between affective and
neutral pictures. The result suggests, that the subjects were more attended to

47The difference presented is for pictures solely in the Alone condition.
48Different combinations refer to the different tests, where both the pooled data and data

separated in the Alone and Together conditions are used.
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positive pictures. This is in contrast to men, as they are more aroused by erotic
(positive) pictures, where females are more attentive to threats and mutilated
bodies (negative) pictures [27]. As only female subjects were used, the opposite
result was expected.

8.3 Main Factor - Social Context

The significant cluster for the contrast Together/Alone begins after 850 ms and
reflects a higher response in the Alone condition within the LPP. The result
might reflect a higher arousal state when viewing the pictures alone as LPP is
connected to arousal [111].

Interestingly, the difference is visually most prominent for affective pictures as
seen in Figure 7.10. In addition, neutral pictures are not believed to create an
arousal state. Therefore, it is reasonable to believe that the effect of the social
context only should modulate the signals for affective pictures. If the difference
was caused by a non-event related activity (e.g. noise), it would also be present
for neutral pictures. It is supported by Figure 7.11 that shows the mean error
bars for the ERPs of the affective pictures, where the two social conditions still
are separated. It is therefore strongly believed that the effect is caused by the
social context. However, excluding the neutral pictures in the cluster-based
permutation test did not enhanced the difference. Removing one third of the
trials decreases the statistical power and affect the cluster-based permutation
test during both the formation of the clusters and the permutation distribution.

The presence of another person has previously been shown to lower the arousal
state measured by a decrease in heart rate [29], such that

"In the past few years, several studies examining effects of social
presence manipulations on blood pressure and heart rate responsiv-
ity to laboratory stressors have been presented (1-6). Many of these
studies demonstrate that the presence of a person who behaves in a
supportive manner has the effect of attenuating cardiovascular re-
sponses to psychological stress".

One possible explanation is that people might share the arousal load, and hence
distribute the emotional effect. Another possibility could be that they are more
controlled when the other person is in the room, and hence suppress the emo-
tion. In the thesis, the second person did not behave in a supportive manner.
However, the study [29], does not outline what supportive manner precisely
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means nor tested if any difference is seen between the presence of a supportive
person and a passive person.

From the MNE, the left frontal superior gyrus, the left frontal midline gyrus,
the left occipital midline gyrus, the right temporal superior gyrus and the right
temporal midline gyrus were the most activated AAL regions from the normal-
ized difference from 0.7 to 1.2 s. The prefrontal cortex has consistently found
to play an important role in late processing of emotional pictures and in regu-
lation of the emotional state [11, 41], which might support the idea of emotion
suppression. It is interesting that the temporal superior gyrus and prefrontal
cortex are activated as it is consistent with studies of social cognition [8, 9, 53].
Adolphs [9] proposes a model of social cognition that includes the two areas,
which also are connected to the MNS [53]. However, the same areas were ac-
tivated for affective against neutral pictures as described earlier. This shows
the aforementioned criticism, in Section 1.2.2, from isolated studies of social
cognition, in that specific areas are social areas despite the fact that the same
areas are active for non-social stimulus.

The time-frequency analysis showed a trend49 of decreased alpha power when
jointly viewing negative pictures, compared to being alone. The difference in
the alpha band means that the participants were more attended towards the
negative pictures with the presence of the other person. Richardson et al. [105]
found that participants shifted their attention50 towards negative pictures in
contrast to positive or neutral pictures when viewing the pictures together.
Thus, the participants became more attended to negative pictures when jointly
seeing the pictures. However, they showed that the difference is enhanced if
the participants had a shared goal, belief or task implying joint engagement.
Therefore, they propose that a shared exposure without being jointly engaged is
not enough to produce a difference in cognitive effects, despite that the attention
was shifted towards negative pictures when they shared the pictures passively.
It is important to notice that the participants in [105] were told by a message on
the screen whether they were looking at the same or different pictures51. Recall
from Chapter 5 that the experimental design was changed from giving a message
to actually having a person inside the EEG cabin, because the participants did
not pay enough attention to the presented messages. Having a person next
to you, rather than only believing another person is seeing the same image as
yourself, could enhance the effect of jointly looking at the pictures.

Richardson et al. [105] propose that the increased attention in the Together
condition reflects an increase of generally alertness due to the presence of another

49Recall that the cluster-based permutation test found a cluster with p-value of 0.06.
50In the study [105], attention was measured as total looking time obtained by an eye

tracker.
51The two participants were sitting back to back in opposite corners of the same room.
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person. This hypothesis is supported by the difference in the baseline, where
the Alone condition showed a higher alpha power. However, it does not explain
why the increased attention only is seen for negative pictures. They explain the
increased attention towards the negative pictures as an enhancement of the pre-
existing bias meaning that people in generally is more engaged towards negative
pictures.

A second hypothesis is proposed by the same study, [105], that viewing the
pictures together align the emotions between the interacting persons, which
would enhance the attention towards the pre-existing bias for negative pictures.
This contradicts the results in this thesis as the ERP analysis showed a decrease
of the arousal level in the Together condition reflected by a decrease in the LPP.

The presented results concerning the social context suggest that the arousal
state is decreased, but that the attention is increased when jointly looking at
the negative pictures. As mentioned earlier, Cesarei et al. [35] propose that the
LPP and alpha ERD is connected, which contradicts the results in the thesis.
They do, however, suggest that this connection needs to be studied further,
including different cognitive processes. It raises the question of how the arousal
state and attention can be disentangled from each other as LPP reflects arousal
and alpha ERD reflects increased attention.

8.4 Cluster-Based Permutation Test

It was shown in the simulations that it is possible to manipulate the significance
of a cluster by changing the time window in the analysis and/or the cluster
alpha parameter52. Going from the large time window to the early time window
revealed new significant clusters in the real data. The significant difference
between negative and neutral pictures starting from 50-100 ms (Figure C.5a)
was only present when using the early time window in contrast to the large. To
the knowledge of the author, the current literature that uses the cluster-based
permutation test does not provide information about the used cluster alpha
parameter nor the used time window. Testing a hypothesis with several cluster
alpha values or time windows introduces another MCP, which in theory should
also be corrected.

It was shown that it is possible to apply the cluster-based permutation test
on source and region level. However, prior to sufficiently perform the tests,
an appropriate neighbor structure is necessary. In the thesis, the 3D euclidean
distance was used to define the neighbor structure, which is a simplification

52Recall that the cluster alpha is the threshold when testing on sample level, cf. Chapter 4.
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of the real source structure. The rationale is that two sources may appear
as disconnected (e.g. being on two sides of a sulcus) whereas, given the poor
spatial resolution, they belong to the same spatial blob. An improvement would
be to use the geodesic distance as seen in Figure B.5 or define the neighboring
structure from functional connections between the sources. It might explain
the reason that the clusters on source level included so many sources, e.g. 809
sources out of 2050 as seen in Figure C.14. In addition, the MNE is known to
have a poor performance as all the sources are distributed to the entire brain
[115].

The low subject number in the thesis has its influence on the results from the
cluster-based permutation test. Figure 7.13 shows how dependent the results
are on a single person (e.g. subject 10 - permutation number 8). Increasing the
number of subjects will increase the statistical power and lower the influence of
the interpersonal variability. The interpersonal variability is visualized in Figure
C.3b, where e.g. subject 3 and 9 show a strong negative response(200-250 ms
after picture onset) in contrast to the rest of the subjects for both neutral,
negative and positive pictures.
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Conclusion

In the thesis, a social neuroscience study was conducted in order to investigate
how the presence of other human beings can affect one’s attention and state of
arousal when looking at emotional pictures.

The experimental design made it possible to reproduce earlier findings of how
the neural mechanisms differ the processing of positive, negative and neutral
pictures. In the early processing, it was shown that positive pictures were dis-
tinguished from negative and neutral pictures at the parietal and occipital sites
associated with visual cortex consistent with similar studies [60, 97, 111]. At the
late processing stage affective pictures showed an increase of a LPP mainly over
the central sites compared to neutral pictures, which is also consistent with ear-
lier studies [35, 60, 93]. The MNE source reconstruction showed high activation
of the left frontal midline gyrus for positive pictures compared to neutral ones.
The left prefrontal cortex has previously been shown to be connected to the
processing of positive emotions [33]. The time-frequency analysis also showed
consistent results compared to earlier findings with increased theta power and
decreased alpha power for affective pictures [35, 62, 68].

By reproducing these results, it can be concluded that the used preprocessing
pipeline was successful implemented with the applied analysis methods. During
the preprocessing, the performance of the method EyeCatch was validated, with
the use of an eye tracker. It was shown that one out of eight ICA components
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was a false positive. Expanding the EyeCatch to include the frequency spectrum
could improve the performance.

The cluster-based permutation test was of certain interest and was therefore
investigated using both simulation and real data. The parameter cluster alpha
was shown to have an important influence on the conclusion of whether to accept
or reject the null hypothesis. Furthermore, it was shown using both simulation
and the real data, that it is possible to manipulate the results by changing the
time window in the cluster-based permutation test. The importance of these
parameters complicates the fact that studies using the method in the literature
are not reporting which values they are using and why they are used.

The cluster-based permutation test was also applied on source and region level.
However, the tests did not show any significant differences, which is probably
due to the insufficient defined neighbor structure. The 3D euclidean distance
was used to define the neighbor structure, and it is proposed that using the
geodesic distance would improve the tests. Another important factor could be
the used source reconstruction method as it is shown to have a poor perfor-
mance distributing the sources to the entire brain compared to newer and more
advanced methods [115].

The analysis of the social context showed that the presence of the another person
increased the attention when viewing negative pictures. It was consistent with
Richardson et al. [105] who showed an increased attention towards negative
pictures when the pictures are viewed jointly. Furthermore, the baseline showed
increased attention prior to image onset. This could reflect a tendency toward
general increased alertness due to the presence of another person. In the ERP
analysis, the alone condition exhibited a larger LPP, which is associated with
a higher aroused level. The decreased aroused level due to the presence of
another person is proposed to be a sign of controlling one’s emotion or sharing
the emotional load. From the source reconstruction, the sources creating the
difference were located at regions in the left prefrontal and right temporal area.
These areas have been associated with processing information concerning social
cognition [9, 53].

It can be concluded, that due to the high intersubject variability in the data and
the differences being close to the significance level, more subjects are needed to
increase the statistical power and to confirm the two findings. Furthermore, the
presented study is the first of its kind and should be used as inspiration and as
a preliminary work for future studies.
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9.1 Future Work

One essential limitation of the thesis is the lack of statistical power due to the
low number of participants. Although that results were reproduced using only
ten participants, the results concerning the social context were very close to the
significant level and dependent on single participants. The intersubject vari-
ability is known to be high in ERP studies and was also shown in the thesis,
cf. Figure C.3 and 7.13. It indicates that more participants are needed be-
fore drawing a final conclusion. Furthermore, the social context complicates
the analyzed neural mechanisms, which most likely increases the intersubject
variability, requiring an even higher number of subjects.

In addition to recruit more participants, it would also be desirable to add a sec-
ond experiment, where the participants after viewing the pictures had a task.
Richardson et al. [105] propose that the effect of being jointly attended is en-
hanced if the participants are engaged in the same task, because this requires
to process the meaning of the image. A memory task could therefore be added
with the hypothesis that being jointly attended and engaged would increase
the memory performance. As mentioned, decreased prestimulus alpha has been
shown to increase the performance [83, 120], which was found in the Together
condition.

In a future study, it would also be highly relevant to add third social condition,
in which a person is present in the EEG-cabin but is not jointly looking at the
images. It could answer whether the results were due to the subjects being
jointly looking at the pictures or the fact that another person is just present
in the room. If this condition showed a decrease in alpha power compared to
the Alone condition, it would indicate that simply having a person in the same
room increases the alertness.

To support the finding of decreased arousal level when jointly looking at the
pictures, it could be interesting to measure the pulse and see if the pulse varied
between the seeing the pictures alone or together. Likewise, it would be of
interest to study the ratings that the participants made of the 60 images. First,
these could be compared to the IAPS database ratings to see if the ratings were
consistent. Secondly, these could be compared to the neural mechanisms (for
example to see the arousal differences between positive and negative pictures).

The increased attention towards negative pictures when jointly looking at pic-
tures could be further investigated by dividing the negative pictures up into
threats and mutilated bodies. The source reconstruction found areas that are
associated with the MNS. It could be interesting to see if the difference would
be enhanced for the mutilated bodies compared to threats. It would shed light
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on whether this increased attention is due to negative pictures in general or pic-
tures concerning humans (e.g. mutilated bodies), which already activates the
MNS.

In future studies, it would be interesting to do multiple EEG recordings (5-
10 subjects) simultaneously while jointly attending a video to study the inter-
personal dynamics since this can capture co-regulated couplings. It is suggested
by Konvalinka and Roepstorff [72], that studying inter-personal dynamics in-
stead of intra-personal dynamics might help us understand the underlying neu-
ral mechanism about social cognition. Several studies have used coherence and
granger causality to capture inter-personal dynamics [13, 15, 14, 19, 21, 114].
For the present paradigm, coherence and functional connectivity could be used
to find connection between arousal/emotional brain areas. It would also be
interesting to study large groups and see whether group size had an effect on
processing emotional scenes.

The cluster-based permutation test was tested on source and region level, which
is highly desirable because the advantage of test is the ability to include many
time points and spatial points (regions, channels or sources). Prior to applying
the test, it is necessary to define a proper neighbor structure, e.g. by the geodesic
distance or a functional structure. A better source reconstruction method would
also improve the ability to locate the neural sources. Due the limited time, it
was not possible to try these improvements . However, it would as mentioned
be very relevant in a future perspective.
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Mathematical Derivations

A.1 ICA

This appendix presents excluded mathematical derivations of ICA, which was
presented in Chapter 3.

Recall that

ϕ(z) = −
∂
∂zp(z)

p(z)
(A.1)

For the super-Gaussian it yields

ϕ(z) = −
∂
∂zPG(z)sech2

PG(z)sech2 (A.2)

Defining N (0, 1) = exp(− z
2

2 ) and taking the derivative gives
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ϕ(z) =
−1

pG(z)sech2(z)
(p′G(z)sech2(z) + pG(z)(sech2(z))′)
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2

2 )sech2(z)

exp(− z22 )sech2(z)
+ 2

exp( z
2
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= z + 2 tanh(z).

(A.3)

For the sub-Gaussian it yields

ϕ(z) = −
∂
∂z

1
2 (N(µ, σ2) +N(−µ, σ2))

1
2 (N(µ, σ2) +N(−µ, σ2))

(A.4)

Defining N (0, 1) = exp(− z
2

2 ) and taking the derivative gives

ϕ(z) =
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2 )− exp(− (z−1)2
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2 ) + exp(− (z+1)2

2 )

exp(− (z−1)2
2 ) + exp(− (z+1)2
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= z − tanh(z).

(A.5)
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Method

This appendix presents information about the task and procedure and settings
about the eye tracker, cluster-based permutation test and the source reconstruc-
tion.

B.1 Task and Procedure

The following 240 pictures were used from the IAPS database:

[1019;1022;1033;1050;1051;1120;1200;1201;1202;1205;1220;1240;1270;1271;1274;
1275;1300;1304;1310;1321;1930;1931;1932;2036;2038;2039;2045;2050;2055;2057;
2070;2071;2075;2080;2091;2101;2102;2104;2107;2150;2151;2152;2153;2154;2155;
2156;2158;2160;2165;2170;2190;2191;2214;2215;2216;2221;2222;2396;2398;2411;
2435;2441;2480;2488;2491;2493;2495;2499;2500;2506;2511;2512;2513;2518;2530;
2550;2570;2595;2749;2811;2850;3000;3001;3005;3010;3015;3016;3019;3030;3051;
3053;3059;3060;3061;3062;3063;3064;3068;3069;3071;3080;3100;3101;3102;3110;
3120;3130;3131;3140;3150;3168;3185;3195;3225;3250;3261;3266;3400;3530;4490;
4520;4531;4533;4538;4542;4550;4559;4561;4572;4575;4604;4606;4607;4608;4609;
4611;4612;4624;4625;4626;4628;4641;4643;4647;4650;4651;4652;4656;4658;4659;
4660;4664;4666;4670;4672;4677;4680;4687;4690;4693;4698;4800;4810;6150;6190;
6231;6244;6260;6263;6300;6312;6313;6350;6510;6520;6550;6555;6560;6570;7002;
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7003;7004;7006;7009;7010;7012;7014;7017;7019;7020;7025;7030;7031;7035;7038;
7040;7041;7045;7050;7052;7055;7057;7058;7059;7060;7062;7078;7080;7090;7100;
7110;7130;7150;7175;7179;7185;7233;7235;9070;9253;9405]

B.2 The Eye Tracker

Figure B.1 shows an example of how the eye-tracking data looked like. The
example shows the data for one trial.

MSG 4291338 TRIALID 11
MSG 4294366 RECCFG CR 500 2 1 L
MSG 4294366 ELCLCFG MTABLER
MSG 4294366 GAZE_COORDS 0.00 0.00 1023.00 767.00
MSG 4294366 THRESHOLDS L 74 219
MSG 4294366 ELCL_PROC ELLIPSE  (5)
MSG 4294366 ELCL_EFIT_PARAMS 1.01 4.00  0.15 0.05  0.65 0.65  0.00 0.00 0.30
MSG 4294367 !MODE RECORD CR 500 2 1 L
START 4294368 LEFT EVENTS
PRESCALER 1
VPRESCALER 1
PUPIL DIAMETER
EVENTS GAZE LEFT RATE  500.00 TRACKING CR FILTER 2
SFIX L   4294602
EFIX L   4294602 4294846 246   515.6   368.1    9361
SSACC L  4294848
SBLINK L 4294894
EBLINK L 4294894 4294904 12
ESACC L  4294848 4294984 138   518.3   363.7   502.6   360.0    0.50    1533
SFIX L   4294986
MSG 4295867 TRIAL_000011
EFIX L   4294986 4296028 1044   512.3   368.7    9518
SSACC L  4296030
ESACC L  4296030 4296052 24   512.4   368.0   447.0   343.1    2.20     162
SFIX L   4296054
EFIX L   4296054 4297876 268   552.0   424.1    8238
END 4297879 EVENTS RES   33.23   26.00

Figure B.1: The figure shows an example of how the data file from the eye
tracker looked like. The string START indicates the fixation
cross, TRIAL_000011 represents image onset and END means
that the trial is ended. SBLINK L indicates the beginning of a
blink for the left eye, and SSACC L indicates the beginning of a
saccades. In this example one blink and two saccades are found
for trial 11. The corresponding saccade degree are seen to be 0.5
and 2.20.

Figure B.2 shows the distribution of detected eye movements and blinks for
subject 6, 9, 11 and 12 across the six conditions.

Figure B.3 belongs to Chapter 6 and shows the correlation between the eye-
tracking data and all 64 ICA components for the remaining subjects. Figure 6.2
shows the corresponding figure for subject 3.
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Figure B.2: The figure shows the distribution of detected eye movements and
blinks for subject 6, 9, 11 and 12. The figure shows an equal dis-
tribution between the two social conditions, Together and Alone,
but less detected eye movements and blinks for neutral pictures
compared to positive and negative ones.
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Subject 4: Pearsons correlation coefficient and Similarity
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Subject 6: Pearsons correlation coefficient and Similarity
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Subject 9: Pearsons correlation coefficient and Similarity
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Subject 11: Pearsons correlation coefficient and Similarity
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Subject 12: Pearsons correlation coefficient and Similarity
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Figure B.3: The figures show the correlation between the eye-tracking data
and all 64 ICA components for a) subject 4, b) subject 6, c)
subject 9, d) subject 11 and e) subject 12. The correlation is
symbolized with blue dots and the blue y-axis to the left. The
figure also presents the similarity score given by EyeCatch for
all 64 ICA components. These are marked green by + and the
corresponding green y-axis to the right. ICA components above
the threshold indicated by the vertical line are suggested removed
by EyeCatch.
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B.3 Cluster-Based Permutation Test

Figure B.4 shows the structure used to define which channels that are neighbors
in the cluster-based permutation test. The black dots corresponds to channels,
where the red lines symbolize the connection between two channels.

Figure B.5 visualizes the difference between the geodesic and euclidean distance.[Click on a sensor to see its label]

Back Front

Figure B.4: The figure shows the structure for 64 channels, which is used in
the cluster-based permutation test to define the structure of the
neighbors. The black dots corresponds to channels, where the red
lines symbolize the connection between two channels.

Figure B.5: The figure shows the difference between the geodesic and eu-
clidean distance. The image is obtained from [6].



122 Method

B.4 Source Reconstruction

Table B.1 shows the λ values for each subject and the MSE when performing
source reconstruction, which is obtained on the validation set.

Subject λ MSE
3 5.8e-6 0.53
4 1.1e-6 0.23
5 9.4e-6 0.38
6 7.3e-6 0.26
7 3.7e-6 0.25
8 1.5e-6 0.21
9 5.3e-6 0.22
10 1.6e-5 0.48
11 3.4e-6 0.13
12 7.3e-6 0.15

Table B.1: λ values in the MNE and MSE of the validation set for each subject.

Figure B.6 compares the true recorded EEG signal with an estimated version of
the signal after performing source reconstruction.

Figure B.7 shows the 116 regions in the AAL atlas with each region correspond-
ing to a color. Below are all the regions written in the order of how they are
presented in the x-axis in Figure 7.7, C.8, C.13 and C.18b.
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The estimated signals from the reconstructed sources
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Figure B.6: The figure shows the true (bottom figure) and the estimated (top
figure) signal from the source reconstruction. It is obtained for
all 64 channels (y-axis) and all 897 samples (x-axis) for one trial.
The estimated signal is computed from Equation 3.24.

Figure B.7: The figure shows the 116 brain regions from the AAL atlas, where
each color corresponds to a region [4].
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AAL Regions:

1. Precentral-L

2. Precentral-R

3. Frontal-Sup-L

4. Frontal-Sup-R

5. Frontal-Sup-Orb-L

6. Frontal-Sup-Orb-R

7. Frontal-Mid-L

8. Frontal-Mid-R

9. Frontal-Mid-Orb-L

10. Frontal-Mid-Orb-R

11. Frontal-Inf-Oper-L

12. Frontal-Inf-Oper-R

13. Frontal-Inf-Tri-L

14. Frontal-Inf-Tri-R

15. Frontal-Inf-Orb-L

16. Frontal-Inf-Orb-R

17. Rolandic-Oper-L

18. Rolandic-Oper-R

19. Supp-Motor-Area-L

20. Supp-Motor-Area-R

21. Olfactory-L

22. Olfactory-R

23. Frontal-Sup-Medial-L

24. Frontal-Sup-Medial-R

25. Frontal-Med-Orb-L
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26. Frontal-Med-Orb-R

27. Rectus-L

28. Rectus-R

29. Insula-L

30. Insula-R

31. Cingulum-Ant-L

32. Cingulum-Ant-R

33. Cingulum-Mid-L

34. Cingulum-Mid-R

35. Cingulum-Post-L

36. Cingulum-Post-R

37. Hippocampus-L

38. Hippocampus-R

39. ParaHippocampal-L

40. ParaHippocampal-R

41. Amygdala-L

42. Amygdala-R

43. Calcarine-L

44. Calcarine-R

45. Cuneus-L

46. Cuneus-R

47. Lingual-L

48. Lingual-R

49. Occipital-Sup-L

50. Occipital-Sup-R

51. Occipital-Mid-L

52. Occipital-Mid-R
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53. Occipital-Inf-L

54. Occipital-Inf-R

55. Fusiform-L

56. Fusiform-R

57. Postcentral-L

58. Postcentral-R

59. Parietal-Sup-L

60. Parietal-Sup-R

61. Parietal-Inf-L

62. Parietal-Inf-R

63. SupraMarginal-L

64. SupraMarginal-R

65. Angular-L

66. Angular-R

67. Precuneus-L

68. Precuneus-R

69. Paracentral-Lobule-L

70. Paracentral-Lobule-R

71. Caudate-L

72. Caudate-R

73. Putamen-L

74. Putamen-R

75. Pallidum-L

76. Pallidum-R

77. Thalamus-L

78. Thalamus-R

79. Heschl-L
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80. Heschl-R

81. Temporal-Sup-L

82. Temporal-Sup-R

83. Temporal-Pole-Sup-L

84. Temporal-Pole-Sup-R

85. Temporal-Mid-L

86. Temporal-Mid-R

87. Temporal-Pole-Mid-L

88. Temporal-Pole-Mid-R

89. Temporal-Inf-L

90. Temporal-Inf-R

91. Cerebelum-Crus1-L

92. Cerebelum-Crus1-R

93. Cerebelum-Crus2-L

94. Cerebelum-Crus2-R

95. Cerebelum-3-L

96. Cerebelum-3-R

97. Cerebelum-4-5-L

98. Cerebelum-4-5-R

99. Cerebelum-6-L

100. Cerebelum-6-R

101. Cerebelum-7b-L

102. Cerebelum-7b-R

103. Cerebelum-8-L

104. Cerebelum-8-R

105. Cerebelum-9-L

106. Cerebelum-9-R
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107. Cerebelum-10-L

108. Cerebelum-10-R

109. Vermis-1-2

110. Vermis-3

111. Vermis-4-5

112. Vermis-6

113. Vermis-7

114. Vermis-8

115. Vermis-9

116. Vermis-10



Appendix C

Results

The following appendix presents results omitted from Chapter 7. It follows the
same structure as the Chapter 7 with three sections concerning the baseline, the
emotionally content of pictures and the social context.

C.1 Baseline

Figure C.1 shows the baseline differences between the first and second half of
the experiment for all channels, where it is seen that the difference is present in
almost all channels.
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Figure C.1: The figure shows a difference between the first and second half
of the EEG recordings. The time axis is from -0.5 to 0 sec-
onds prior to image onset, and the frequency axis is from 4 to
30 Hz. The blue color indicates higher alpha power during the
second half of the experiment. The differences are strongest in
the parietal/occipital-parietal brain regions, but also clear at the
frontal sites.

C.2 Main Factor - Emotional Content of the Pic-
tures

The following section concern the results of testing the emotional content of the
pictures.
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Figure C.2: The figures show ERPs at channel FC2 a) and F1 b) for positive
(blue), negative (red) and neutral (green) pictures.

C.2.1 ERP Analysis

Figure C.2 shows the ERPs at channel FC2 and F1 for positive (blue), negative
(red) and neutral (green) pictures.

Figure C.3 shows the intersubject variability for the ERPs at channel O2 and
CPz divided into positive (top figures), negative (middle figures) and neutral
(bottom figures) pictures. Figure C.4 shows the ERPs for all 240 trials within
subject 3 at channel O2. It is seen that the variability here is smaller than
between subjects.

Figure C.5 and C.6 show the results of the cluster-based permutation test when
using a) the early time window and b) the late time window respectively. Com-
pared to using the large time window, more significant clusters are found.

In Figure C.7, the result for the contrast Negative/Positive in the early time
window are shown. Two negative significant clusters (p=0.03, and p=0.03) are
seen, one ranging from 120 to 180 ms in the centro-frontal area and the second
from 200 to 270 ms in the frontal area. The result reflects a difference in the
early visual processing between the negative and positive pictures.

Figure C.8 shows AAL regions activated contrasting negative and neutral pic-
tures from 400 to 600 ms. It is seen that several frontal and temporal areas are
activated including the left and right Frontal Midline and Inferior Gyrus, and
left and right Temporal Midline, Inferior and superior Gyrus.
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Figure C.3: The figures show the intersubject variability in the ERPs across
all ten subjects, for a) channel O2 and b) channel CPz. They are
divided into positive (top figures), negative (middle figures) and
neutral (bottom figures) pictures. It is seen that the variation
between the subjects are larger than between the conditions.
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Figure C.4: The figure shows the ERPs for all 240 trials for subject 3 at chan-
nel O2.
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Figure C.5: The figures show the results of the cluster-based permutation test
when using the a) early time window and b) the late time window
for the contrast Negative/Neutral. Figure a) shows a significant
negative cluster (p=0.002) from 90 to 140 ms relative to image
onset. Figure b) shows two significant clusters. The first cluster
(p=0.04) from 350 to 500 ms, and the second positive cluster
(p=0.004) from 550 to 750 ms, both relative to image onset.
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(a)
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time=[0.699 0.75] time=[0.75 0.801] time=[0.801 0.852] time=[0.852 0.902]

(b)

Figure C.6: Figure a) visualizes the contrast Positive/Neutral in the early win-
dow. Two clusters are seen, where the first is positive (p=0.006)
and is located in the occipital and parietal sites from 230 to 270
ms. The second cluster is negative (p=0.02) and is located at
the frontal sites from 170 to 270 ms. Figure b) shows the same
contrast in the late window. One positive significant clusters
(p=0.002) are found, one from 420 to 720 ms.
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Figure C.7: The figure shows two different significant clusters for the contrast
negative versus positive pictures in the early time window. The
first negative cluster (p=0.03) are in the time range of 100 to 200
ms located at the centro-frontal area, where the second negative
cluster (p=0.03) is found from 200 to 300 ms in the prefrontal
and frontal area. A negative cluster reflects a higher response for
positive pictures. Recall that the time steps of 50 ms do not reflect
the temporal resolution used in the cluster-based permutation
test.
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Figure C.8: The figure shows the activated AAL regions for the contrast Neg-
ative/Neutral from 400 to 600 ms relative to image onset. It is
seen that several frontal and temporal areas are activated includ-
ing the left and right Frontal Midline and Inferior Gyrus, and left
and right Temporal Midline, Inferior and superior Gyrus.
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C.2.2 Time-Frequency

Figure C.9 and C.10 show the averaged spectograms across all ten subjects
for positive, negative and neutral pictures for channel FCz and O2. The bot-
tom figures show the normalized difference between Positive/Neutral and Neg-
ative/Neutral.

In the beta band, the significant cluster (p=0.002) is very wide spread including
almost all channels and ranges from 15 to 30 Hz in the frequency band, but
most prominent around 20 Hz. The cluster is found in the late window ranging
from 600 ms to 1 s after image onset.

Figure C.12 shows found a positive significant cluster in the theta (p=0.002)
band and a negative cluster in the alpha (p=0.004) band for the contrast Neg-
ative/Neutral. Both clusters are located at the frontal sites, where the theta
differences are in the low theta band (4-6 Hz) and alpha is in the upper alpha
band (10-12 Hz). The clusters reflect a higher theta power and a lower alpha
power for negative pictures compared to neutral ones.
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(a)

(b)

Figure C.9: The top and middle figures show, for channel FCz, the averaged
spectograms across all ten subjects for a) positive and neutral
picutres, and b) for negative and neutral pictures. The power is
the relative change to the baseline defined from -0.4 to -0.1 prior to
image onset. The bottom figures show the normalized difference
between Positive/Neutral and Negative/Neutral respectively. It
is seen that both positive and negative pictures have higher theta
power and lower alpha power compared to neutral ones.
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(a)

(b)

Figure C.10: The top and middle figures show, for channel O2, the averaged
spectograms across all ten subjects for a) positive and neutral
picutres, and b) for negative and neutral pictures. The power
is the relative change to the baseline defined from -0.4 to -0.1
prior to image onset. The bottom figures show the normalized
difference between Positive/Neutral and Negative/Neutral re-
spectively.
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Figure C.11: The figure shows a difference in the beta band. The significant
cluster (p=0.002) is very wide spread including almost all chan-
nels and ranges from 15 to 30 Hz in the frequency band. The
cluster is found in the late window ranging from 600 ms to 1 s
after image onset.

(a) (b)

Figure C.12: The figures show results from the cluster-based permutation test
for the contrast Negative/Neutral. Figure a) shows a positive
significant cluster in the theta (p=0.002) band located at the
centro-frontal area. The cluster reflects a higher theta power for
negative pictures. Figure b) shows a negative significant cluster
in the alpha (p=0.004) band at the central and frontal chan-
nel sites. The cluster reflects a higher alpha power for neutral
pictures.
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Figure C.13: The figure shows activated AAL regions for the contrast,
Alone/Together. It is calculated from 0.7 to 1.2 seconds rela-
tive to image onset. The four most activated regions are: left
frontal superior, left frontal midline gyrus, left occipital midline
gyrus, right temporal midline gyrus and right temporal superior.

C.3 Main Factor - Social Context

The following results concern the tests between the two social conditions.

C.3.1 ERP Context

Figure C.13 shows the activated AAL regions for the contrast Alone/Together
from 0.7 to 1.2 seconds relative to image onset. The four most activated regions
are: left frontal superior, left frontal midline gyrus, left occipital midline gyrus
and right temporal midline gyrus.

Figure C.14 shows the 807 out of the 2015 sources that were included in the
found cluster (p=0.09) between Alone/Together when using the cluster-based
permutation test on source level.

Figure C.15 shows an almost significant negative cluster (p=0.06) between Alone
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(a) (b)

(c)

Figure C.14: The figure shows the cluster, which was found when testing the
contrast Alone/Together on source level. The time of the cluster
is from 0.700 to 0.950 seconds relative to imagae onset. 807 out
of the 2015 sources were included in the cluster.
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Figure C.15: The figure shows a negative cluster (p=0.06) in the left prefrontal
area from 0.650 to 0.750 seconds. The cluster is close to the
significance level of 0.05.

and Together for positive pictures. It is located at the left prefrontal area from
650 to 750 ms relative to image onset.

Figure C.16 shows the results testing the contrast Alone/Together on subject
level instead of group level.

C.3.2 Time-Frequency

Figure C.17 shows the spectograms for the Together (top figures) and Alone
(middle figures) conditions for negative pictures. The bottom figures show the
normalized difference between the two conditions. Figure C.18 shows the results
from the source reconstruction and which AAL regions that are active. As seen
the difference is very widespread including many areas.
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Figure C.16: The figure shows the scatterplot of positive and negative clusters.
In a) positive clusters are seen. Figure a) shows that only subject
3, 8, 10, 11 and 12 had positive clusters. Each subject is assigned
to a specific color. One subject can have more than one cluster,
e.g. subject 12 has four positive clusters. Figure b) shows that
only subject 4, 6, 8, 9, 10, 12 had negative clusters.
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(a)

(b)

Figure C.17: The figures show spectograms for two channels a) FCz and b)
PO4. The top figures are the average spectograms across all ten
subjects for negative pictures in the Together condition, where
the middle figures are the spectograms for the Alone condition.
The color changes indicate the relative changes with respect to
the baseline. The blue color indicates power suppression, where
red indicates increased power. The bottom figures show the nor-
malized differences for the contrast Together versus Alone. E.g
a blue color means decreased power when viewing the pictures
Together.
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Figure C.18: The figures show a) the result of the MNE source reconstruction
and b) the active AAL regions from 0.6 o 1 second relative to
image onset. As both figures indicate, many areas are included
and reflect the found differences in the alpha band between To-
gether and Alone. The blue color indicates higher alpha power
in the Alone condition.
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