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Summary

The goal of the thesis is to give an overview of privacy management in Computa-
tional Social Science (CSS), to show what is the current situation and to understand
areas that can be improved. Computational Social Science is an interdisciplinary
research process that gathers and mines wealth of sensitive data to study human
behaviour and social interactions. It relies on the mixture of social studies and nowa-
days technologies such as smartphones and Online Social Networks. CSS’s studies
are aimed in understanding causes and effects in human behaviour, giving insights
in their interactions, and trying to explain the inner nature of their relationship.

In the first part, it is presented an overview of existing CSS studies and their ap-
proach to participants’ privacy. Section 2 introduces CSS’s capabilities and Section
3 categorizes the works studied for this overview. The current situation regarding
privacy regulations and informed consent practises for social experiments is dis-
cussed in Section 4. Section 5 shows methods employed for securing users’ data
and relative threats. Anonymization techniques are discussed in Section 6. Section
7 presents information sharing and disclosure techniques. Findings are summarized
in Privacy Actionable Items.

Part II briefly illustrates sensible-data, a new service for data collection and analysis
developed by the collaboration of DTU and MIT universities. sensible-data imple-
ments best practises and outlined improvements identified in Part I, de-facto setting
new standards for privacy management in Big Data. In the CSS context, sensible-
data’s contributions are two-fold: researchers have a unique tool to create, conduct,
and share their studies in a secure way, while participants can closely monitor and
control their personal data, empowering their privacy.
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Part III shows the engineering process to create one of sensible-data framework’s
components. sensible-auditor is a tamper-evident auditing system that records in
a secure way all the interactions within sensible-data system, such as users’ en-
rolments, participants’ data flows, etc. Design, implementation, and evaluation of
sensible-auditor ’s realization are presented after a general introduction that explains
the role of auditing in system security.
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Part I

Privacy in Computational
Social Science: A Survey





Chapter 1

Abstract

In recent years, the amount of information collected about human beings has in-
creased dramatically. This development has been driven by individuals collecting
their data in Online Social Networks (such as Facebook or Twitter) or collecting
their data for self-tracking purposes (Quantified-Self movement). In addition, data
about human behaviour is collected through the environment (embedded RFIDs,
cameras, traffic monitoring, etc.), and in explicit Computational Social Science
(CSS) experiments. CSS experiments and studies are often based on data col-
lected with a high resolution and scale. Using computational power combined with
mathematical models, such rich datasets can be mined to infer underlying patterns,
providing insights into human nature. Much of the data collected is sensitive, private
in the sense that most individuals would feel uncomfortable sharing their collected
personal data publicly. For that reason, the need for solutions to ensure the privacy
of the individuals generating data, has grown alongside the data collection efforts.
Here, we focus on the case of studies designed to measure human behaviour, and
note that — typically — the privacy of participants is not sufficiently addressed:
study purposes are often not explicit, informed consent is ill-defined, and security
and sharing protocols are only partially disclosed. In this paper we provide a survey
of the work in CSS related to addressing privacy issues. We include reflections on
the key problems and provide some recommendations for the future work. We hope
that the overview of the privacy-related practices in Computational Social Science
studies can be used as a frame of reference for future practitioners in the field.
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Chapter 2

Introduction

Over the past few years the amount of information collected about human behaviour
has increased dramatically. The datasets come from diverse sources such as user
generated content in Online Social Networks (e.g. Twitter, Facebook) and on other
online services (e.g. Flickr, Blogger); human communication patterns recorded by
telecom operators and email providers; customer information collected by traditional
companies and online wholesalers (e.g. Amazon, Target); data from pervasive en-
vironments such as sensor-embedded infrastructures (e.g. smart houses); Social
Science experiments; the list continues.

As technology advances, the technical limitations related to storing and sharing
these collections of information are gradually overcome, providing the opportunity
to collect and analyse an unprecedented amount of digital data. This ever-increasing
volume of User Generated Content intrinsically carries immense economic and so-
cial value and is thus of great interest for business organizations, governmental
institutions, and social science researchers.

For the research community this data revolution has an impact that can hardly
be underestimated. Data persistence and searchability combined with enhanced
computational power has given rise to “Computational Social Science” (CSS), the
interdisciplinary research process that gathers and mines this wealth of data to study
human behaviour and social interactions [LPA+09, EPL09, CMP09]. Many CSS
studies employ smartphones as sociometers [Pen08, ROE09, OMCP11] to sense,
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collect, and transmit large quantities of multi-purpose data. Data collection includes
WiFi and Bluetooth devices IDs, GPS traces, SMS and call logs, data from social
applications running on the devices (Facebook, Twitter), and more. While such
a longitudinal approach allows scientists to maintain a broad scope, the scale and
accuracy of the collected data often results in large amounts of sensitive information
about the users, resulting in privacy concerns.

To a large degree, the public is unaware of the potential problems associated with
sharing of the sensitive data. This lack of awareness is revealed in a number of
contexts, for example via a documented tendency to ”trade privacy for services”
[Var12], or displaying carelessness regarding possible risks [Kru09, KBN11]. It has
been shown that while many users are comfortable with sharing daily habits and
movements through multiple applications, only a minority of them are aware of
which parties are the receivers of this information. Concurrently pinpointing sen-
sitive information about others is becoming easier using powerful search engines
such as Google, Facebook Graph Search, or smartphone mashup apps (e.g Girls
Around Me). Further aggravating this scenario, scientists have shown that many
of the techniques employed so far to protect users’ anonymity are flawed. Scandals
such as re-identification of user in the NetFlix Prize data set [NS08] and other sim-
ilar breaches [Swe00, BZH06] show that simple de-identification methods can be
reversed to reveal the identity of individuals in those data sets [dMHVB13]. Attack-
ers can also use these de-anonymization techniques to perpetrate so-called “reality
theft” attacks [AAE+11].

For the Computational Social Science field, ensuring the privacy of participants is
crucial. Should scientists fail to defend participant’s rights and their data, even in
a single case, the consequences for CSS as a field could be catastrophic. A breach
of security or abuse of sensitive data, could result in a loss of public confidence and
— as a consequence — a decreased ability to carry out studies.

In order to avoid such a negative scenario and to maintain and increase the trust re-
lation between research community and participants, the scientific community has
to reconcile the benefits of their research with the respect for users’ privacy and
rights. The current situation in the field is a heterogeneous set of approaches that
raise significant concerns: study purposes are often not made explicit, ’informed con-
sent’ is problematic in many cases, security and sharing protocols are only partially
disclosed.

As the bitrate of the collected information, number of participants, and the duration
of the studies increase, the pre-existing relation between researchers and participants
will be growing weaker. Today the participants in the largest deployments of CSS
studies are still students from particular university, members of a community, or
friends and family of the researchers. Studies growing more open, allow for partic-
ipants with no prior relation to the researchers. As a consequence, Ensuring good
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practices in informing those participants about their rights, the consent they express,
the incentives etc. becomes even more important.

Our contributions in this paper are two-fold. First, we provide an overview of the
privacy-related practices in existing CSS studies; we have selected representative
works in the field and analysed the fundamental privacy features of each one. The
result is a longitudinal survey that we intend as a frame of reference for current and
future practitioners in the field. Second, we lay the groundwork for a privacy man-
agement change process. Using the review as a starting point, we have constructed
a list the most important challenges to overcome for CSS studies: we call these
Privacy Actionable Items. For each items, we delineate realistic implementations
and reasonable life-spans. Our goal is to inspire introspection and discussion, as well
as to provide a list of concrete items that can be implemented today and overcome
some of the problems related to the current privacy situation.

2.1 Privacy

Probably the best known definition of privacy is "the right to be left alone"1. People
should be able to determine how much of personal information can be disclosed, to
whom, and how it should be maintained and disseminated2.

Privacy can be understood as a conflict between liberty and control3 where privacy
hinges on people and "enables their freedom". Data confidentiality is one of the
instruments to guarantee privacy "ensuring that information is accessible only to
those authorized"4, [KZTO05]. Privacy is about disclosure, the degree to which a
private information can be exposed. It is also related to anonymity, the property to
remain unidentified in the public realm.

Disclosure boundaries, what is considered to be private and what is not, change
among cultures, individuals, time, place, audience, and circumstances. The notion
of privacy is thus dynamic, people protecting or disclosing their private information in
order to gain some value in return [Cat97]. This process may lead to the paradoxical
conclusion of "trading off long-term privacy for short term benefits" [AG05].

Privacy is a very complex topic that must be addressed from business, legal, social,
and technical perspectives.

1S. D. Warren and L. D. Brandeis in The Right to Privacy (1890) [WB90].
2A. F. Westin Privacy and Freedom [WBC70].
3B. Schneier, http://www.schneier.com/essay-114.html
4http://research.uci.edu/ora/hrpp/privacyAndConfidentiality.htm

http://www.schneier.com/essay-114.html
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Chapter 3

Literature Review

We broadly categorize the projects selected for our survey into two families: generic
frameworks and specialized applications. The former category contains platforms
that collect a variety of different data streams deployed for the purposes of studying
human behaviour in longitudinal studies. The second category consists of particular
applications that collect data for a specific purpose.

3.1 Generic frameworks

Human Dynamics Group Friends and Family [API+11] is a data collection study
deployed by the Massachusetts Institute of Technology (MIT) in 2011 to perform
controlled social experiments in a graduate family community. For the purpose
of this study, researchers collected 25 types of different data signals (e.g. wire-
less network names, proximity to Bluetooth devices, statistics on applications, call
and SMS logs) using Android smartphones as sensors. Funf 1—the mobile sensing
framework developed for this study—is the result of almost a decade of studies in
MediaLab Human Dynamics Group on data collection using mobile devices. In 2008
a Windows Mobile OS [MCM+11] was used to collect data from students and study
connections between behavior and health conditions (e.g. obesity), and to measure

1Released as an open source framework available at http://funf.org/.

http://funf.org/
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the spread of opinions. Four years prior, a team from MediaLab studied social pat-
terns and relationships in users’ daily activities, using Nokia phones [EP06]. And, in
2003 a Media Lab team pioneered the field by developing the first sensing platform
[EP03] in order to establish how face-to-face interactions in working environments
influence efficiency of organizations. While purposes of the studies and mobile sens-
ing technologies have evolved, the general setup with a single server to collect and
store the data coming from the devices, remained unchanged.

OtaSizzle A recent study conducted by the Aalto University in 2011 [KN11] in
which researchers analyzed social relations combining multiple data sources. The
results showed that in order to better describe social structure, different commu-
nication channels should be considered. Twenty students at the university were
recruited by email invitation and participated in the experiment for at least three
months. The research platform involved three different data sources: text mes-
sages, phone calls (both gathered with Nokia N97 smartphones), and data from a
OSN experimental project called OtaSizzle, hosting several social media applications
for Aalto University. All the gathered information were temporarily stored on the
smartphone, before uploading to a central server.

Lausanne Another longitudinal mobile data collection, the Lausanne Data Collec-
tion Campaign (LDCC ) [AN10, KBD+10, LGPA+12] (2009-2011) was conducted
by Nokia Research Center with the collaboration of the EPFL institute of technol-
ogy. The purpose was to study users’ socio-geographical behavior in a region close
to the Geneva Lake. The LDCC platform involved a proxy server that collected raw
information from the phones and anonymized the data before moving them to a
second server for research purposes.

3.2 Specialized frameworks

Here we present an overview of three groups of specialized platforms and smart-
phone applications developed by research groups for different purposes. In Table 3.1
we present seven distributed architecture frameworks. Shifting the focus to privacy
policies creation and management, we list three tools in Table 3.2. In Table 3.3 we
present the privacy related applications that generate, collect, and share informa-
tion about users using smartphones as sensing devices. Other frameworks are also
cited to provide useful examples. We remark that it is not our interest to discuss
the primary goals of the mentioned studies (incentives, data mining algorithms, or
results), but to present an overview on architectures, procedures and techniques
employed for data collection and treatment – with a specific focus on privacy.
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Name Purpose Privacy measures
Vis-a’-Vis [SLC+11]
2011 - Duke University,
AT&T Labs

A personal virtual host running
in a cloud computing infrastruc-
ture and containing users’ (lo-
cation) information.

Allows users to manage their
information directly from their
virtual host with full control; ex-
poses unencrypted data to the
storage providers.

Confab [HL04] 2004 -
University of California
at Berkeley, University
of Washington

A distributed framework facil-
itating development of other
privacy-aware applications for
ubiquitous computing.

Personal data is stored in com-
puters owned by the users, pro-
viding greater control over in-
formation disclosure.

MyLifeBits
[GBL06, GBL+02] 2001
- Microsoft Research

Early example of digital
database for individual’s ev-
eryday life, recording and
managing a massive amount
of information such as digital
media, phone calls, meetings,
contacts, health data etc.

Information kept in SQL
databases. Privacy concerns
mentioned but not addressed
in the project.

VPriv [PBB09] 2009 -
MIT, Stanford Univer-
sity

Privacy-aware location frame-
work for car drivers, produc-
ing an anonymized location
database. Can be used to cre-
ate applications such as usage-
based tolls, automated speed-
ing tickets, and pay-as-you-go
insurance policies.

Homomorphic encryption
[RAD78], ensures that drivers’
identities are never disclosed in
the application.

HICCUPS [MSF09]
2009 - University of
Massachusetts Amherst

A distributed medical system
where a) physicians and care-
givers access patient’s medical
data; b) researchers can access
medical aggregate statistics

Implements homomorphic en-
cryption techniques to safe-
guard patients’ privacy.

Darwin [MCR+10] 2010
- Dartmouth College,
Nokia

A collaborative framework for
developing a variety of sensing
applications, such as place dis-
covery or tagging applications.

Provides distributed machine
learning algorithms running di-
rectly on the smartphones. Raw
data is not stored on do not
leave the smartphone.

AnonySense [CKK+08,
KTC+08] 2008 - Dart-
mouth College

An opportunistic framework
for applications using multiple
smartphones to accomplish a
single sensing task.

Provides anonymity to the users
deploying k-anonymity [Swe02].

Table 3.1: Distributed frameworks. The first three frameworks are personal in-
formation collectors that play the roles of users’ virtual aliases. Two
implementations of homomorphic encryption for drivers and healthcare
follow. Darwin and AnonySense are collaborative frameworks.
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Name Purpose Privacy measures
PViz [MLA12] 2012 -
University of Michigan

A graphical interface that helps
social networks’ users with pol-
icy comprehension and privacy
settings.

Nodes represent individuals and
groups, different colors indicate
the respective visibility.

Virtual Walls
[KHFK07] 2007 -
Dartmouth College,
University of St An-
drews

A policy language that lever-
ages the abstraction of physical
walls for building privacy set-
tings.

Three levels of granularity
("wall transparencies") al-
low users to control quality
and quantity of information
disclosure towards other dig-
ital entities (users, software,
services).

A policy based ap-
proach to security
for the semantic web
[KFJ03] 2003 - Uni-
versity of Maryland
Baltimore Country

A distributed alternative to tra-
ditional authentication and ac-
cess control schemes.

Entities (users or web services)
can specify their own privacy
policies with rules associating
credentials with granted rights
(access, read, write, etc.).

Table 3.2: Policy frameworks. An overview of tools that help users to understand
and control their policy settings.
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Name Purpose Privacy measures
CenceMe [MLF+08]
2008 - Dartmouth
College

Uses smartphones to sense peo-
ples’ activities (such as danc-
ing, running, ...) and results are
automatically shared on Face-
book.

As soon the classification is per-
formed on the devices the data
is erased.

GreenGPS [GPA+10]
2010 - University of
Illinois

A GPS navigation service
which discovers greener (fuel-
efficient) paths through drivers
participatory collaboration
(based on the previous frame-
work Poolview [GPTA08]).

No fine-grained data control: if
users feel the need for privacy,
they need to switch off the GPS
device to stop data collection.

Speechome Recorder
[VGWR12, RPD+06]
2012 - MIT, Northeast-
ern University

An audio/video recording de-
vice for studying children’s daily
behaviour in their family house.

Ultra-dense recordings tempo-
rary kept locally and uploaded
to central server, but only
scarce information about data
encryption and transport secu-
rity protocols.

Cityware [KO08] 2008 -
University of Bath

Application for comparing Face-
book social graph against real-
world mobility traces detected
using Bluetooth technology.

Switching Bluetooth to invisible
as a way to protect users’ pri-
vacy.

FriendSensing [QC09]
2009 - MIT, University
College London

Bluetooth used to suggest new
friendships evaluating device
proximities.

Same as Cityware.

FollowMe [YL10] 2010
- Massachusetts Insti-
tute of Technology

Service that uses HTTP and
Bluetooth to automatically
share indoor position (malls,
hospitals, airports, campuses).

Implements a decentralized ar-
chitecture to improve users’ lo-
cation privacy.

Locaccino [TCD+10]
2010 - Carnegie Mellon
University

A mobile sharing system cre-
ated to study peoples’ location
privacy preferences.

Relevant privacy considerations
will be reported later in the ar-
ticle.

Bluemusic [MKHS08]
2008 - RWTH Aachen,
University of Duisburg-
Essen

Application developed for
studying personalization of
public environments. It uses
Bluetooth public usernames as
pointers to web resources that
store users preferences.

Same as Locaccino.

Table 3.3: Specific applications. Although providing a great functionality for the
users, the privacy-oriented settings for the user are often not sufficiently
implemented.
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Chapter 4

Informed Consent

Here we examine the current situation of the participant’s understanding and control
over their personal data in CSS studies.

4.1 Privacy Regulations

The new ways of communication that have developed in the last decade, make every
user, knowingly or not, a producer of large quantities of data that travel around the
world in instant. Data can be collected in one country, stored in another, modified
and accessed from yet elsewhere in a seamless way. The more global the data flow
becomes, the more difficult it is to track how data is treated from a technical and
legal point of view. For example, different legal jurisdictions may have different data
protection standards and different privacy regulations [HNB11]. The result is that
modern technology’s pace is faster than regulations, leaving the users exposed to
potential misuse of their personal data.

This situation lead the European Union to reform the past data protection regu-
lations 1 into a comprehensive legal framework to strengthen online privacy rights

1 “Recommendations of the Council Concerning Guidelines Governing the Protection of Privacy
and Trans-Border Flows of Personal Data” (1980), “Convention for the Protection of Individu-
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and foster citizens’ trust in digital services. The General Data Protection Regulation
(GDPR)2 updates all the previously outlined principles for information (consent, dis-
closure, access, accountability, transparency, purpose, proportionality, etc.) to meet
the new challenges of individual rights for personal information protection.

Fragmentation of the E.U. legal environment generates incoherences in different
interpretations. This situation is the consequence of divergent implementations in
the enforcement process of the state members, which try to follow the directions
set by the E.U. directives.

Examples of how different states handle same topics under different legislations are
the recent privacy case of Google Street View and the investigation on the smart-
phone application Whatsapp. In the former case, the German authority for data
protection requested the data collected by the Google cars, intended to photograph
public spaces3. They discovered a piece of code4 that captured unencrypted Wi-Fi
traffic (user names, passwords, bank details, etc.). Immediately after this disclosure,
the respective authorities of U.K. and France inquired the company accordingly to
their respective (different) legislations.

In the latter case, the Dutch Data Protection Authority published5 the findings of
an investigation into the processing of personal data for the well-known smartphone
application Whatsapp. The results revealed a series of security malpractices and pri-
vacy abuses: messages were sent unencrypted, algorithms for generating passwords
used identifiable device information making relatively easy to be compromised; mes-
sage history was stored unencrypted on the SD memory card in Android phones. In
addition, to facilitate the contact between the users, WhatsApp required the access
to the whole address book, leaking phone numbers of non-users of the service. This
violation is now subject of the Italian Data Protection Authority’s inquiry.

These cases show the need for a common regulator that can guarantee to E.U.
citizens privacy rights and allow the states members to join their forces and oppose
abuses. This fragmentation also affects CSS studies in the privacy policy formu-
lation. As we discuss in the next section, in the cases where privacy policies were
created, developers and scientists needed to use their own best judgment, since no
common frameworks to use as reference were available, causing large divergences
among universities and studies. As an example, the LDCC study performed by EPFL

als with regard to Automatic Processing of Personal Data” (1981), “Data Protection Directive”
1995/46/EC, “Privacy Directive” 2002/58/EC , “Data Retention Directive” 2006/24/EC.

2Drafted in 2011 and at the time of writing awaiting for European Parliament’s first reading.
3The interest in the Google Street View project raised after people’s concerns about being

showed in “uncomfortable situations or locations” (e.g. closeness to such as strip clubs, drug
clinics, etc.).

4http://www.dailymail.co.uk/sciencetech/article-2179875/
Google-admits-STILL-data-Street-View-cars-stole.html

5http://www.dutchdpa.nl/Pages/en_pb_20130128-whatsapp.aspx

http://www.dailymail.co.uk/sciencetech/article-2179875/Google-admits-STILL-data-Street-View-cars-stole.html
http://www.dailymail.co.uk/sciencetech/article-2179875/Google-admits-STILL-data-Street-View-cars-stole.html
http://www.dutchdpa.nl/Pages/en_pb_20130128-whatsapp.aspx
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and Nokia Research Center followed Nokia’s generic data treatment for processing
the participants information.

Another point stressed by the regulation is the Right to be forgotten, which states
that every user can request at any time the total deletion of personal data from
any service or study he has been involved with. A recent European campaign
promoted by an Austrian law student interested in Facebook’s use of his personal
information6. Hidden in the 1224 page long report that the social network sent to
him when requested, he found that the social network retained the data that he had
never consented to disclose as well as data he had previously deleted. The right to
be forgotten should also be granted to CSS study participants allowing the user to
remove their personal data from the dataset at any time.

The GDPR facilitates the process of transferring personal information from one ser-
vice provider to another. As already stated, privacy regulations may vary across
country boundaries: it might happen that data of E.U. residents will be process
by foreign entities; therefore it is GDPR’s main concern to extend the whole new
policy framework for data protection to all the foreign countries (data portability
right), assuring users that data will be processed according to the E.U. legisla-
tion. For the studies conducted in the United States, Institutional Review Boards
(IRBs) are the authorities for privacy regulation for behavioral researches involving
humans participants. These academic committees need to “approve, monitor, and
review” all the CSS experiments “to assure, both in advance and by periodic re-
view, that appropriate steps are taken to protect the rights and welfare of humans
participating as subjects in a research study”. One of these step is to obtain trial
protocol(s)/amendment(s) and written informed consent form(s).

To summarize, CSS scientists should move in the direction of deploying tools for
allowing participants to view, cancel, copy, and also transmit collected data from
one study to another in the respect of the new regulation. In addition, given the
massive amount of data collected in CSS studies – which intrinsically contain large
quantities of sensitive personal information – we recommend that the GDPR will
include also common guidelines for the CSS field.

In the CSS studies, informed consent consists of an agreement between researchers
and the data producer (user, participant) by which the latter confirms she under-
stands and agrees to the procedures applied to her data (collection, transmission,
storing, sharing, and analysis). The intention of the informed consent is that the
users comprehend which information will be collected, who will have access to that
information, what the incentive is, and for which purposes the data will be used
[FLM05]. In CSS studies the research ethic is paramount for protecting volunteers’
privacy, therefore scientists might need to work under Non-Disclosure Agreements

6http://www.nytimes.com/2012/02/06/technology/06iht-rawdata06.html

http://www.nytimes.com/2012/02/06/technology/06iht-rawdata06.html
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to be able to perform analyses on the collected data [LGPA+12, KN11].

Here we note the scarcity of available informed consent examples in the published
studies; the majority of the studies we reviewed have not published their con-
sent procedures [MCM+11, EPL09, YL10, MMLP10, CMP09, MLF+08, API+11,
MFGPP11, OWK+09]. Due to this fact, it is difficult to produce comparisons and
create useful models applicable for future studies. Where the procedure for achieving
informed consent are reported, the agreement was carried out using forms contain-
ing users’ rights (similar to http://green-way.cs.illinois.edu/GreenGPS_
files/ConsentForm.pdf, e.g. [KBD+10, GPA+10, KAB09, EP06, MCM+11,
KN11]) or by accepting the Terms of Use during the installation of an application.
It is common among the studied frameworks and applications to allow the users to
opt-out from the experiment at any moment, as required by the research boards or
ethics in general.

4.2 Understanding

Presenting all the information to the user does not guarantee that informed consent
is implemented sufficiently: years of EULAs and other lengthy legal agreements
show that most individuals tend to blindly accept forms that appear before them
and to unconditionally trust the validity of the default settings which are perceived
as authoritative [BK10]. One improvement would be to allow users to gradually
grant permission over time, but the efficacy of this approach is not clear yet: some
studies have shown that users understand the issues about security and privacy
more when the requests are presented gradually [EFW12]; others argue that too
many warnings distract users [KHFK07, FGW11, Cra06]. So far there has been
little interest whether informed consent actually informs the audience. Evaluating
how people understand their privacy conditions can be done by conducting feedback
sessions throughout the duration of the experiment [KBD+10, MKHS08].

Nevertheless, a simple yes/no informed consent option does not live up to the com-
plex privacy implications related to studies of human behaviour. For that reason,
users should play a more active role in shaping their involvement in such stud-
ies. This view gains support from studies showing that people do not in general
realize smartphone sensing capabilities nor the consequences of privacy decisions
[KCC+09, FHE+12, Kru09]. Additionally, special cases where the participants may
not have the competence or the authority to fully understand the privacy aspects
[SO13, URM+12, VGWR12, SGA13] should be carefully considered. Finally, it is
fundamental to clearly state study purposes when performing data collection for
later use and to inform the participants about what happens to the data once the
study is concluded [FLM05].

http://green-way.cs.illinois.edu/GreenGPS_files/ConsentForm.pdf
http://green-way.cs.illinois.edu/GreenGPS_files/ConsentForm.pdf
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4.3 Control

In most cases, the current informed consent techniques represent an all-or-nothing
approach, that does not allow the user to select subsets of the permissions, making
it only possible to either participate in the study fully or not at all [FGW11]. In
addition, once the consent is granted by the user, all his data contribution to the
dataset becomes owned by the researchers, in that they can analyze, modify, or
redistribute it as they see fit, depending on the terms of the consent, but typically
simply provided that basic de-identification is performed. As we suggest in Section
7, it is a good practice for the researchers to clarify to the participants the sharing
schemes and expiration of the collected information: if users cannot follow the
flow of their data, it is difficult to claim that a real informed consent is expressed.
Since so little is understood about the precise nature of conclusions that may be
drawn from high resolution data, it is important to continuosly work to improve
and manage the informed consent as new conclusions from the data can be drawn.
We recommend that the paradigm should move from a one-time static agreement
to dynamic consent management [Sha06]. Furthermore, the concerns related to
privacy are context-specific [TCD+10, LCW+11] and vary across different cultures
[ABK09, MKHS08]. In the literature, the need for a way to let the users easily
understand and specify which kinds of data they would like to share and under
what conditions was foreseen in 2002 by the W3C group, with the aim to define
a Platform for Privacy Preferences (P3P) (suspended in 2006), in 2003 by Kagal
et al. [KFJ03], and also in 2005 by Friedman et al. [FLM05], all shaping dynamic
models for informed consent. Recent studies such as [TSH10] have worked to
design machine learning algorithms that automatically infer policies based on user
similarities. Such frameworks can be seen as a mixture of recommendation systems
and collaborative policy tools where default privacy settings are suggested to the
user and then modified over time.

4.4 Living Informed Consent.

We propose the term Living Informed Consent, for the aligned business, legal, and
technical solutions where the participant in the study is empowered to understand
the type and quality of the data that is being collected about her, not only during
the enrolment, but also when the data is being collected, analysed, and shared
with 3rd parties. Rather than pen & clipboard approach for the user enrolment, the
users should expect to have a virtual place (a website or application) where they can
change their authorizations, drop-out from the study, request data deletion, as well
as audit who, and how much is analysing their data. As the quantity and quality
of the data collected increases, it becomes difficult to claim that single sentence
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description of we will collect your location truly allows the participant to realize
the complexity of the signal collected and possible knowledge that can be extracted
from it. Such engaging approach to the users’ consent will also be beneficial for
the research community: as the relation with the user in terms of their consent
expression extends beyond initial enrolment, the system proposed here makes it
possible for the user to sign up for the new studies and donate their data from the
other studies.



Chapter 5

Data Security

The security of the collected data, although necessary for ensuring privacy goals,
is something that is not often discussed [GPA+10, MCR+10, MLF+08, KAB09,
VGWR12, KN11, SLC+11]. In the next sections we illustrate how security has been
addressed in the centralized frameworks and how it can be integrated in (future)
distributed solutions. This is not an exhaustive list, but a compendium of techniques
that can be applied for CSS frameworks, as well as attacks that one needs to
consider.

5.1 Centralized architecture

The centralized architecture, where the data is collected in a single dataset, has been
the preferred solution in the majority of the surveyed projects [VGWR12, URM+12,
KHFK07, PBB09, MFGPP11, MMLP10, KBD+10, MLF+08, GPA+10, VGWR12,
RPD+06, API+11, OWK+09, EP06, MCM+11, KO08, QC09, TCD+10, MKHS08,
KN11]. The centralized architecture suffers from several problem. First, if the server
is subject to denial-of-service attacks, it can not guarantee the availability of the
service. This might result in the smartphones having to retain more information
locally with consequential privacy risks. More importantly, if compromised, a single
server can reveal all user data.
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The number of malware and viruses for mobile phones is growing. Given the
amount of sensitive information present on these devices, social scientists should
consider using and developing robust portable applications in order to avoid privacy
thefts[AAE+11]. To tackle this problem, some of the studied frameworks reduce
the time that the raw information collected by the sensors is kept on the phone. For
example, in Darwin platform the data records are discarded once the classification
task has been performed. Since most of the sensing applications use opportunist
uproach to the data uploading, they might store a large amount of data temporarily
on external memory [MFGPP11]. This introduces a security threat if the device
does not procure an encrypted file-system by default. A possible way to tackle
this problem is employing frameworks like Funf the open-source sensing platform
developed for [API+11] and also used in the SensibleDTU study. Funf provides a
reliable storing system that encrypts the files before moving them to special archives
on the phone memory. An automatic process uploads the archives, keeping a tem-
porary (encrypted) backup. This mitigates the risk of disclosure of information if
the smartphone is lost or stolen. In such case, the last resort would be to provide a
remote access to delete the data off the phone. Generally, to reduce the risks, good
practice is to minimize the amount of information exchanged and avoid transmitting
the raw data [MLF+08].

Some frameworks use default HTTP protocol to transmit data [HL04, MLF+08,
GPA+10, YL10, MKHS08], other use HTTP over SSL to secure data transmission
[SLC+11, CKK+08, KTC+08, KAB09], but pushing data through WiFi connec-
tion remains the most common scenario [API+11, MCM+11, EP06, EP03, AN10,
KBD+10, LGPA+12, TCD+10]. Event encrypted content can disclose informa-
tion to malicious users, for example by observing the traffic flow: the opportunis-
tic architecture of transmission and the battery constrains do not allow smart-
phones to mask communication channels with dummy traffic to avoid such analysis
[HL04, CKK+08].

When data reach the central server, is is usually stored in SQL databases (e.g.
[API+11, GBL06, GBL+02, MMLP10, MFGPP11]) which aggregate them for later
analysis. We remark that in all of the surveyed frameworks, the mechanisms for
access control, user authentication, and data integrity checks (where present), had
been implemented for the purpose of given study. For example, in OtaSizzle “the
data are stored in local servers within the university to ensure adequate security”
[KN11]. Ensuring security of the data is a very complex task. We believe that
common solutions and practices are important so that the researchers do not need
to worry about creating new security platforms for every new study. Finally, given
the importance of the stored data, the security of the entire CSS platform (network
and server) may be enhanced accordingly to defence in depth paradigm, as illustrated
in the guidelines on firewalls [SH09] and intrusion detection systems [SM07] by the
National Institute of Standards and Technology (NIST).
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5.2 Distributed architecture

In the recent years, the trend has been to store the data in highly distributed
architectures, or even off-site, in the “cloud”. We define the cloud as any remote
system which provides a service to users relying on the use of shared resources
(see [HNB11, FLR12] for different cloud typologies). An example can be a storage
system which allows the users to backup their files and ubiquitously access them
via the Internet (e.g. Dropbox).

Apart from facilitating the processes of data storage and manipulation, employing
cloud solutions can improve the overall security of CSS studies. For every surveyed
study [SLC+11, HL04, GBL06, GBL+02, MSF09, MCR+10, CKK+08, KTC+08,
KAB09, KO08, YL10], the platforms have been designed and implemented from
scratch, in the environment where the thorough testing with respect to security
may not be a priority. On the other hand, if platforms like Amazon EC2 are inte-
grated in CSS frameworks, security mechanisms such as access control, encryption
schemes, and authorization lists can be enforced in standard and well tested ways.
Buying Infrastructure-as-a-Service or Platform-as-a-Service may also be seen to cer-
tain extent as buying Security-as-a-Service. In addition, using the cloud solutions
can make it possible to create CSS frameworks that allow users to own their per-
sonal information. Having the constant option to monitor the status of personal
data, to control who has access to those data and to be certain of deletion, can
make users more willing to participate. One possible way to achieve this, is to
upload the data from the mobile devices not to a single server, but to personal
datasets (e.g.: personal home computers, cloud-based virtual machines) as shown
in Vis-a’-Vis, Confab, MyLifeBits platforms. On one hand, with these electronic
aliases users will feel — and possibly be — more in control of their personal data,
diminishing their concerns about systems that centralize data. On the other hand,
part of the security of users’ own data will inevitably rely on the themselves - and
on the Service Providers (SPs) who manage the data.

Many of the security mechanisms for centralized solutions can be deployed for dis-
tributed approaches too, therefore making a smooth transition towards the cloud
feasible. We illustrate the similarities following CSS study steps. Data is usually
collected using smartphones (e.g. via smartphone sensing platforms like Funf ), then
it is transmitted over HTTPS connections and stored onto personal datasets (in-
stead of a single server). Then, these information can be analysed using distributed
algorithms capable of running with inputs coming from different nodes (the personal
datasets), as illustrated by the Darwin framework. Prior to this, a discriminating
choice determines whether data has to be encrypted or not before being uploaded
in the cloud. For example, the distributed solution Vis-a’-Vis exposes unencrypted
data to the storage providers since this facilitates queries to be executed on the
remote storage servers by other web services. The opposite approach is to encrypt
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data before storing it in the cloud. Unfortunately, while this approach enhances the
confidentiality of users’ data (preventing the SPs from reading personal encrypted
files), it also hinders CSS scientists from running algorithms on the collected data.
We examine in chapter 7.1 how can computations on encrypted data can be per-
formed with the help of two example frameworks: VPriv and HICCUPS.

Given the sensitive nature of the data, vulnerabilities in cloud architectures can pose
serious risks for CSS studies and, while cloud solutions might provide an increased
level of security, they are definitely not immune to attacks. See [CRI10] for a attack
taxonomy, [HRFMF13] for a general analysis on the cloud security issues. Shar-
ing resources is a blessing and a curse of cloud computing: it helps to maximize
the utility/profit of resources (CPU, memory, bandwidth, physical hardware, cables,
operative systems, etc.), but at the same time it makes it more difficult to assure
security since both physical and virtual boundaries must be reinforced. The secu-
rity of the Virtual Machines (VM) becomes as important as the physical security
because “any flaw in either one may affect the other” [HRFMF13]. Since multiple
virtual machines are hosted on the same physical server, attackers might try to steal
information from one VM to another; cross-VM attacks [RTSS09]). One way to vi-
olate data confidentiality is compromising the software responsible for coordinating
and monitoring different virtual machines (hypervisor) by replacing its functionalities
with others aimed at breaching the isolation of any given pair of virtual machines, a
so-called Virtual Machine Based Rootkit [KC06]. Another subtle method to violate
security is via side-channels attacks [AHFG10] which exploit unintended informa-
tion leakage due to the sharing of physical resources (such as CPU’s duty cycles,
power consumption, memory allocation). For example, a malicious software in one
VM can try to understand patterns in memory allocation of another co-hosted VM
without the need of compromising the hypervisor. One of the first real examples
of such attacks is shown in [ZJRR12] where the researchers demonstrated how to
extract private keys from an adjacent VM. Finally, deleted data in one VM can
be resurrected from another VM sharing the same storage device (Data scavenging
[HRFMF13]) or the whole cloud infrastructure can be mapped to locate a particular
target VM to be attacked later [RTSS09]. In addition the volatile nature of cloud
resources makes difficult to detect and investigate attacks: when VMs are turned
off, their resources (CPU, RAM, storage, etc.) become available to other VMs in
the the cloud [HNB11] making it difficult to track processes.

Therefore, while we believe that the cloud is becoming more important in CSS
studies, the current situation still presents some technical difficulties that need to
be addressed. We will focus on methods to control data treatment (information
flow and data expiration) for remote storage systems in section 7.2 to ensure the
users about compliance to privacy agreements.



Chapter 6

Privacy and Datasets

The datasets created for CSS studies often contain extremely sensitive information
about the participants. NIST Special Publication 800-122 defines PII as “any in-
formation about an individual maintained by an agency, including any information
that can be used to distinguish or trace an individual’s identity, such as name, so-
cial security number, date and place of birth, mother’s maiden name, or biometric
records; and any other information that is linked or linkable to an individual, such
as medical, educational, financial, and employment information”1. It is researchers’
responsibility to protect users’ PIIs and consequently their privacy when disclos-
ing the data to public scrutiny [NS08, BZH06, Swe00] or to guarantee that the
provided services will not be abused for malicious uses [YL10, PBB09, HBZ+06].
PII can be removed, hidden in group statistics or modified to become less obvious
and recognizable to others, but the definition of PII is context dependent, mak-
ing it very difficult to select which information needs to be purged. In addition,
modern algorithms can re-identify individuals even if no apparent PII are published
[RGKS11, AAE+11, LXMZ12, dMQRP13, dMHVB13]

We remark that making data anonymous (or de-identified) decreases the data utility
by reducing resolution or introducing noise (“privacy-utility tradeoff” [LL09]). To
conclude we report attacks that deprive users’ privacy, by reverting anonymization
techniques.

1NIST Special Publication 800-122 http://csrc.nist.gov/publications/nistpubs/
800-122/sp800-122.pdf

http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
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6.1 Privacy Implementations

When sensitive information are outsourced to untrusted parties, various technical
mechanisms can be employed to enhance the privacy of participants, by transforming
the original data into a different form. In the next sections we present two common
ways to augment users’ privacy: noise and anonymization, as well as recent devel-
opments in applied homomorphic encryption For a classification of different privacy
implementation scenarios – such as multiple, sequential, continuous or collaborative
data publishing – see [FWCY10].

Noise A difficult trade-off for CSS researchers is how to provide third parties with
accurate statistics on the collected data while at the same time protecting the privacy
of the individuals in the records. In other words, how one may address the problem
of statistical disclosure control. Although there is a large literature on this topic,
the variety of techniques can be coarsely divided in two families: approaches that
introduce noise directly in the database (which are called data perturbation models
or offline methods) and a second group that interactively modifies the database
queries (online methods). The first method aims to create safe views of the data,
for example releasing aggregate information like summaries and histograms. The
second actively reacts to the incoming queries and modify the query itself or affects
the response to ensure privacy.

Early examples of these privacy-aware data mining aggregations can be found in
[AS00]. Here the authors consider building decision-tree classifier from training
data with perturbed values of the individual records, and show that it is possible to
estimate the distribution of the original data values. This implies that it is possible
to build classifiers whose accuracy is comparable to the accuracy of classifiers trained
on the original data. In [AA01] the authors show an Expectation Maximization (EM)
algorithm for distribution reconstruction, providing robust estimates of the original
distribution given that large amount of data is available. A different approach is
taken in [EGS03] where the authors present a new formulation of privacy breaches
and propose a methodology for limiting them. The method, dubbed amplification,
makes it possible to guarantee limits on privacy breaches without any knowledge of
the distribution of the original data. An interesting work on the tradeoff between
privacy and usability of the perturbed (noisy) statistical databases has been redacted
in [DN03].

In [DN04] the results from [DN03] are revisited, investigating the possibility of sub-
linear number of queries on the database which would guarantee privacy, extending
the framework. A second work consolidates discoveries from [DN03], demonstrat-
ing, the possibility to create a statistical database in which a trusted administrator
introduces noise to the query responses with the goal of maintaining privacy of in-



6.1 Privacy Implementations 27

dividual database entries. In [BDMN05] the authors show that this can be achieved
using a surprisingly small amount of noise – much less than the sampling error –
provided the total number of queries is sublinear in the number of database rows.
A different approach is evaluated by Dwork et al. in [DKM+06], where an efficient
distributed protocol for generating shares of random noise and secure against ma-
licious participants is described. The innovation of this method is the distributed
implementation of the privacy-preserving statistical database with noise generation.
In these databases, privacy is obtained by perturbing the true answer to a database
query by the addition of a small amount of Gaussian or exponentially distributed
random noise. The distributed approach eliminates the need for a trusted database
administrator. Finally, in [CDM+05] Chawla and Dwork proposed a definition of
privacy (and privacy compromise) for statistical databases, together with a method
for describing and comparing the privacy offered by specific sanitization techniques.
They obtained several privacy results using two different sanitization techniques, and
then show how to combine them via cross training. They also obtained two utility re-
sults involving clustering. This work is advanced in a more recent study [CDMT12],
where the scope of the techniques is extended to a broad class of distributions
and randomization the histogram constructions to preserve spatial characteristics of
the data, allowing to approximate various quantities of interest, e. g., cost of the
minimum spanning tree on the data, in a privacy-preserving fashion. We discuss
problems with those strategies below.

Anonymization The most common practice in the data anonymization field is to
one-way hash all the PII such as MAC addresses, network identifiers, logs, names,
etc. This breaks the direct link between a user in given dataset to other, possibly
public datasets (e.g. Facebook profile). There are two main methods to achieve this.
The first - used in the LDCC study - is to upload raw data from the smartphone to
an intermediate proxy server where algorithms hash the collected information. Once
anonymized, the data can be transferred to a second server which researcher have
access to. A less vulnerable option is to hash the data directly on the smartphones
and then upload the result the final server for analysis. This alternative has been
selected for many MIT studies [API+11, MFGPP11, MMLP10, MCM+11] and for
the SensibleDTU project (http://www.sensible.dtu.dk/). In principle, hashing
does not reduce the quality of the data (provided that it is consistent within the
dataset), but it makes it easier to control which data are collected about the user
and where it comes from. However, it does not guarantee that users cannot be
identified in the dataset [BZH06, Swe00, NS08].

Finally, some types of raw data - like audio samples - can be obfuscated directly on
the phone without losing the usability before being uploaded [KBD+10, OWK+09].

http://www.sensible.dtu.dk/


28 Privacy and Datasets

Another frequent method employed for anonymization is ensuring k-anonymity
[Swe02] for a published database. This technique ensures that is not possible to dis-
tinguish a particular user from at least k−1 people in the same dataset. AnonySense
and the platform developed for the LDCC both create k-anonymous different-sized
tiles to preserve users’ location privacy, outputting a geographic region containing
at least k − 1 people instead of single user’s location. Nevertheless, later studies
have shown how this property is not well suited for a privacy metric [STLBH11].
First, Machanavajjhala et al. tried to solve k-anonymity weaknesses with a different
privacy notion called l-diversity [MKGV07]; then, Li et al. proposed a third metric,
t-closeness, arguing against the necessity and the efficacy of l-diversity [LLV07].
Although these two techniques seem to overcome most of the previous limitations,
they have not been deployed in any practical framework to date. Finally, while
today’s anonymization techniques might be considered to be robust enough in pro-
viding privacy to the users [CEE11], our survey contains methods that manage to
re-identify participants in anonymized datasets (see section 6.2).

Homomorphic encryption Homomorphic encryption is a cryptographic technique
[RAD78, Gen09] that enables computation with encrypted data: operations in the
encrypted domain correspond to meaningful operations in the plaintext domain.
This way, users can allow other parties to perform operations on their encrypted
data without exposing the original plaintext, limiting the sensitive data leaked.

Such mechanism can find application in health-related studies, where patients’ data
should remain anonymous before, during, and after the studies while only authorized
personnel has access to clinical data. Data holders (hospitals) send encrypted infor-
mation on behave of data producers (patient) to untrusted entities (e.g. researchers
and insurance companies) which process them without revealing the data content,
as formalized by mHealth, an early conceptual framework. HICCUPS is a concrete
prototype that permits researchers to submit medical requests to a query aggre-
gator that routes them to the respective caregivers. The caregivers compute the
requested operations using sensitive patients’ data and send the reply to the aggre-
gator in encrypted form. The aggregator combines all the answers and delivers the
aggregate statistics to the researchers. A different use of homomorphic encryption
to preserve users’ privacy is demonstrated by VPriv. In this framework the central
server first collects anonymous tickets produced when cars exit the highways, then
by homomorphic transformations it computes the total amount that each driver has
to pay at the end of the month.

Secure two-party computation can be achieved with homomorphic encryption when
both parties want to protect their secrets during the computations: none of the
involved entities needs to disclose its own data to the other, at the same they achieve
the desired result. In [FDH+12] the researchers applied this technique to private



6.2 Attacks against Privacy 29

genome analysis. A health care provider holds patient’s secret genomic data, while a
bioengineering company has a secret software that can identify possible mutations.
Both want to achieve a common goal (analyze the genes and identify the correct
treatment) without revealing their respective secrets: the health care provider is not
allowed to disclose patient’s genomic data; the company wants to keep formulas
secret for business related reasons.

Lately, much effort has been made in building more efficient homomorphic cryp-
tosystems (e.g. [TEHEG12, NLV11]), but we can not foreseen whether or when the
results will be practical for CSS frameworks.

6.2 Attacks against Privacy

Every day more and more information about individuals become publicly available
[TP12, LXMZ12]. Paul Ohm in [Ohm10] defines this trend as the "database of
ruin" which is inexorably eroding people’s privacy. While the researchers mine the
data for scientific reasons, malicious users can misuse it in order to perpetrate a new
kind of attack: reality theft, the “illegitimate acquisition and analysis of people’s
information”[AAE+11].

Thus, like scientists, reality thieves aim decode human behaviour such as every-
day life patterns [STLBH11], friendship relations [QC09, EPL09], political opinions
[MFGPP11], purchasing profiles2, etc. There are companies that invest in mining
algorithms for making high quality predictions while others are interested in analyz-
ing competitors’ customer profiles [Var12]. Attackers are also developing new types
of malware to steal hidden information about social networks directly from smart-
phones [AAE+11]. Scandals such as NetFlix Prize, AOL searcher [BZH06] and the
Governor’s of Massachusetts health records [Swe00] show that the anonymization of
the data is often insufficient, as it may be reversed revealing the original individuals’
identities.

A common approach is to compare “anonymized” datasets against the publicly avail-
able ones. These take the name of side channel information or auxiliary data.
For this, social networks are excellent candidates [LXMZ12]. In recent studies
[SH12, MVGD10], researchers have shown that users in anonymized datasets may
be re-identified studying their interpersonal connections on their public websites
like Facebook, LinkedIn, Twitter, Foursquare, and others. The researchers identi-
fied similar patterns connecting pseudonym in the anonymized dataset to the users’
(“real”) identity in a public dataset. Frameworks have great difficulty thwarting

2http://adage.com/article/digital/facebook-partner-acxiom-epsilon-match-store\
-purchases-user-profiles/239967/

http://adage.com/article/digital/facebook-partner-acxiom-epsilon-match-store\-purchases-user-profiles/239967/
http://adage.com/article/digital/facebook-partner-acxiom-epsilon-match-store\-purchases-user-profiles/239967/
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these side channel attacks. For example, users’ anonymity might be compromised
in VPriv and CarTel every time only a single car is driving on a highway, because
it is possible to link the anonymous packets reaching the server to that (unique)
car. Same type of consideration is valid for AnonySense and VirtualWalls (if only
one user is performing the sensing task for the first platform or if only one user is
located inside a room at a certain time for the second platform).

Internal linking [LXMZ12] is another attack that aims to bond together different
interactions of one user within the same system. For example, in [KTC+08] two
reports uploaded by a single user might be linked based on their timing.

More generally, it is not the released data that is the source of privacy issues, but
the unexpected inferences that can be drawn from it, that worry the researchers, as
pointed out by Tene and Polonetsky in [TP12]. Some of the surveyed frameworks
like CenceMe, FollowMe, and Locaccino allow the users to update their daily habits.
Studying symmetries (e.g. in commuting) and frequencies (e.g. meals or weekly
workouts) of these behaviors, it is possible to discover underlying patterns and
perpetrate attacks against users’ privacy [LXMZ12].

Finally, data collected by seemingly innocuous sensors can be exploited to infer
physiological and psychological states, addictions (illicit drugs, smoking, drinking),
and other private behaviors. Time and temperature can be correlated to decrease
location privacy [AA11], while accelerometers and gyroscopes can be used to track
geographic position [RGKS11] (e.g. the platform created for the LDCC did not
anonymize accelerometer data nor other smartphone data, such as battery level and
running applications) or even to infer peoples’ mood [LXMZ12]. A recent study con-
ducted by the University of Cambridge showed that accurate estimates of personal
attributes (such as IQ levels, political views, substance use, etc.) can be inferred
from the Facebook Likes, which are publicly available by default3. These threats
are even more dangerous as people seem to not be aware of what can be inferred
from seemingly harmless data [MKHS08] nor about smartphone sensing capabilities
[KCC+09]. For example, participants of the Bluemusic experiment did not show
any concerns in “recording all day, everyday” and “store indefinitely on their mobile
phone” data collected by accelerometers because perceived as “not particularly sen-
sitive” [MKHS08]. The consequences of reality theft can be long lasting and can
be much worse than any other kind of attack: it is almost impossible to change
personal relationships or life patterns4 to avoid stalking or other types of criminal
activity that might occur because of misuses of behavioral datasets[AAE+11]. Peo-

3http://www.cam.ac.uk/research/news/digital-records-could-expose-intimate-\
details-and-personality-traits-of-millions

4Although for slightly different reasons, in 2010 Google’s Executive Chairman Eric Schmidt
suggested automatic changes of virtual identities to reduce the limitless power of the database
of ruin: http://online.wsj.com/article/SB10001424052748704901104575423294099527212.
html .

http://www.cam.ac.uk/research/news/digital-records-could-expose-intimate-\details-and-personality-traits-of-millions
http://www.cam.ac.uk/research/news/digital-records-could-expose-intimate-\details-and-personality-traits-of-millions
http://online.wsj.com/article/SB10001424052748704901104575423294099527212.html
http://online.wsj.com/article/SB10001424052748704901104575423294099527212.html
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ple have now little control over their data and the release of their information is an
irreversible action. We suggest that the potential for such misuses or attacks during
should be mentioned in the informed consent processes in the CSS field. Finally, as
seen in the previous chapters, many of the studied platforms build privacy for the
users on the hypothesis that techniques like k-anonymity and protections against
traffic analysis or side channels will be possibly added in future. At the time of
writing, such techniques are not yet integrated, leaving the presented solutions only
marginally secure. As practitioners of CSS, we feel the necessity for frameworks
that provide holistic, reusable solutions to privacy concerns.
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Chapter 7

Information Ownership and
Disclosure

CSS frameworks should ideally guarantee the users ways to control who is in pos-
session of their data at any time. Past attempts to create types of Digital Rights
Management systems for privacy purposes did not show the expected results and
without Trusted Computing Bases there is no practical way of being sure that data
has not been retained/copied or forwarded to third parties [HL04]. Trusted Com-
puting Base of a computer system is a collection of all and only those components
(hardware and software) critical to its security. These must be tamperproof and
testable for integrity/authenticity and their vulnerabilities might jeopardize the en-
tire system. Whether the users let the researchers physically own the data stored
on the universities’ servers (see section 5.1) or simply let the scientists borrow the
information from the personal datasets (section 5.2 and 7.1), one problem remains:
users need to trust that researchers and Service Providers properly manage their
personal information as agreed, and do not expose any sensitive data to unautho-
rized parties. In the following sections we provide more details about two main
information disclosure scenarios: the explicit and conscious process of distributing
information to other parties, i.e. information sharing ; and techniques to control
data disclosure: data expiration systems and protections against covert information
flows.
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7.1 Sharing

Individuals’ notion of information sensitivity and therefore sharing patterns vary
[YL10, Sha06, LCW+11, TCD+10]; some information however should always be
perceived as sensitive and requires special attention, examples are health-related,
financial, or location data. It is often the case that the sensitivity of the infor-
mation is proportional to its research value, making users reluctant about dis-
closure [Kot11, RGKS11, KCC+09]. For example, recent studies have demon-
strated that social networks can be mined in order to discover psychological states
[LXMZ12, dMQRP13], which can be later used to detect unusual patterns and
prevent or treat psychological disorders (social anxiety, solitude, etc.).

Sharing with other users. Social networks and smartphone applications such as
CenceMe, Bluemusic, FollowMe, and Cityware show that people are comfortable
with the idea of sharing personal information with friends [KBN11]. Unfortunately,
im most cases the data sharing options lack granularity. For example, users of
CenceMe and FollowMe can unfriend other participants resizing the sharing set
while users of Cityware or GreenGPS need to switch off the Bluetooth/GPS device to
avoid being tracked. More fine-grained systems exist, where the users can visualize
and edit boundaries and resolution of the collected information before sharing it
with others [HL04, KHFK07, KBD+10, TCD+10].

Location sharing is a multifaceted topic. Users today can instantly share their loca-
tion through an increasing number of services: using native applications (Foursquare,
Google Latitude), by means of social network websites (Facebook, Twitter) or
within social experiments [YL10, MLF+08, KO08, TCD+10, LCW+11]. The at-
titude of users towards location sharing varies, it has been established that their
understanding of policies and risks is quite limited and often self-contradictory
[SLC+11, LCW+11, TCD+10, Duc10]. Although the majority of users seem to be
at ease in sharing their check-ins, they assert to be worried about the Big-Brother
effect when asked directly[RGKS11, FHE+12, EFW12]. These contradictions and
the natural complexity of different preferences in location sharing policies raise chal-
lenges for the researchers. First of all, we find that better ways to inform the users
about possible attacks are needed (see section 4 and 6). Secondly, we believe that
new dynamic platforms should be created to enable users to visualize and control
their information flows. For example, how to discern which areas can report user’s
location and which can not [TCD+10]. To reduce the risk of being misused as
a stalking tool, Confab for example trades usability for privacy: whenever a user
requests other user’s location, the latter receives a notification (time constraint)
and queries are allowed only if both users are located in the same building (space
constraint).
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Sharing with researchers. As we have already showed, the most common ap-
proach for CSS studies is to collect users data in centralized servers and then per-
form analysis on it. This way, when the information leaves the smartphone, the
user effectively loses control over it and can not be technically sure that his pri-
vacy will be safeguarded. The opposite approach is to let the users own the data
so they can control, access, and remove them from databases at any moment, as
noted in section 5. A possible way to achieve this is to upload the data from the
mobile devices not to a single server, but to personal data stores (e.g.: personal
home computers, cloud-based virtual machines) as shown in the architectures in
[HL04, GBL06, SLC+11]; it is then possible to deploy distributed algorithms capa-
ble of running with inputs coming from these nodes, as illustrated by the Darwin
framework.

While the advantages in cloud computing for CSS frameworks are numerous (as
seen here and in section 5.2), this architecture is not immune from privacy concerns
for users and technical barriers for scientists. The first are worried about the confi-
dentiality of their remote information, the latter need practical ways to collect and
perform analysis on the data.

7.2 Data Control

The control of the ownership of the digital data is difficult. Whenever images are
uploaded to photo-sharing services or posts are published on social networks, the
user loses the direct control over the shared data. While legally bound by the usage
agreements and terms of service, service providers are out of users’ direct control.
Among the open problems in data disclosure we find time retention and information
flow tracking. Today’s frameworks try to solve these issues by legal means, such
as declarations asserting that “any personal data relating to the participants will
not be forwarded to third parties and will be destroyed at the end of the project”
[KN11]. In this chapter we show the state-of-the-art of the technical means to limit
information disclosures and possibilities of integration with CSS frameworks.

Information Flow Control Information Flow(IF) is any transfer of information
from one entity to another. Not all the flows are equally desirable, e.g. a sheet
from a CIA top-secret folder shouldn’t leak to any another file of lower clearance
(a public website page). There are several ways of protecting against information
leaks. In computer science, Access Control (AC) is the collection of network and
system mechanisms that enforce policies to actively control how the data is ac-
cessed, by whom, how and who is accounted for. In softwares, a first approach is
the active defence that strengthens the program to limit information flow before
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the leak happens - a-priori. Language Based Security techniques and languages
are the result of these studies. The complementary approach becomes effective
while and after the leak already happened - run-time and a-posteriori defences.
In this case, the system tries to understand how the data is being (was) accessed,
by whom, how and who is (was) interacting with it. Even if this isn’t an active
approach, it still acts as a defence since the attackers are (usually) conscious know
that their behaviour can be traced back. It acts as a deterrent. So, "instead of
enforcing correct behaviour through restrictions, auditing deters individuals from
misbehaving by creating an indisputable log of their actions (unauthorized uses and
privileges abuses)". The problem of information flow inside one program has been
thoroughly studies in the latest 40 years ([Den76, ML97, VIS96]) and resulted in
the development of language-based techniques that try to detect/track/understand
and avoid unwanted information leak in programming languages, e.g.: data read
from a highly sensitive file and written to a less restricted one. JIF - a famous
example of security-typed programming languages - is an annotated Java exten-
sion that checks confidentiality and integrity labels for command and variable in a
program before and during its execution. These languages are a useful method to
avoid unwanted information disclosure, but they a) require that software develop-
ers know in advance every allowed information flow; b) need labels to be manually
added to commands and variables; c) can track information flow within a single
program. HiStar [ZBWKM06], Asbestos [EKV+05], DBTaint [DC10] and others
are Operative Systems (and OS extensions) specifically designed to perform IF con-
trol among different processes on the same host. Applications can create "taints"
that block threads from reading from objects with higher tainting values and equally
block threads from writing to file with lower tainting values. While these systems
can protect a software from other hostile programs on the same machine trying to
steal/modify sensitive data, they do not comply with applications communicating
on different machines. Some attempts of building Decentralized Information Flow
Control systems (DIFC) to track information flows in distributed environments are
JIF extensions (such as Jif/Split [Zda02] and CIF [SARL10]) or HiStar extensions
like DStart [ZBWM08], which utilizes special entities at the endpoint of each ma-
chine to enforce information exchange control. An interesting approach is taken by
Neon [ZMM+10] which can control not only information containers (such as files)
but also the data that they actually contain (data written inside the files). It is able
to track information flows involved in everyday data manipulations such as cut and
paste from one file to another or file compression. In these cases, privacy policies
about participants’ records stored in datasets can not be laundered, on purpose or
by mistake. Neon applies policies at the byte-level so whenever a file is accessed, the
policy propagates across the network, to and from storage, maintaining the bind-
ing between the original file and derived data to which the policy is automatically
extended.
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Another improvement in managing personal data in CSS studies can be to give
participants a closer control of their data, for example letting them select their own
policies for data treatment and disclosure. Garm [Dem11] is a data provenance
analysis tools that allows users to share sensitive files exactly in this way. Special
files and encryption are used to determine which data sources are used to derive
other files, therefore protecting data from accidental disclosure or malicious tam-
pering. The access policies that contain confidentiality and integrity constraints are
defined directly by the users and are enforced across machine boundaries. Privacy
Judge [KPSW11] is a browser addon for Online Social Networks to control access to
personal information published online which uses encryption to restrict who should
be able to access it. Contents are stored on cloud servers in encrypted form and
place-holders are positioned in specific parts in the OSNs layouts. The plugin auto-
matically decrypts and embeds the information if the viewer has been granted the
access. The domains of Garm and Privacy Judge can be extended by similar tools
to limit access and disclosure of personal datasets: the participant could remove
one subset of his entries from one dataset, affecting all the studies at once.

The complementary approach to the above systems is to ensure control of informa-
tion disclosure a-posteriori. This means that whomever is in possession or processing
the data can be supervised by the users, and therefore each misuses or unwanted dis-
closure can be detected. Among these auditing systems we find SilverLine [MRF11],
a tracking system for cloud architectures that aims to improve data isolation and
track data leaks. It can detect if a dataset collected for one experiment is leaked
to another co-resident cloud tenant. Therefore, users can keep under direct control
where their personal information is stored and who has access to it. CloudFence
[PKZ+12] is another data flow tracking framework where users can define allowed
data flow paths and audit the data treatment monitoring the propagation of sensi-
tive information. This system - which monitors data storage and service providers
(any entity processing the stored data) - allows the user to spot deviations from
the expected data treatment policies and alert them in case of privacy breaches,
inadvertent leaks, or unauthorized access. For maintenance reasons (backups, virus
scanning, troubleshooting, etc.), cloud administrators often need privileges to ex-
ecute arbitrary commands on the virtual machines. This creates the possibility
to modify policies and disclose sensitive information. To solve this inconvenience,
H-one [GL12] creates special logs to record all information flows from the admin-
istrator environment to the virtual machines, therefore allowing the users to audit
privileged actions. Monitoring systems like Silverline, CloudFence, and H-one can
be deployed for CSS frameworks to give the users a high degree of confidence in
the management of their remote personal information stored and access by cloud
systems.

Unfortunately, these solutions are still not easily deployable since a) many of them
require Trusted Computing Bases [KYB+07, SLC+11, Dem11] (to prove trusted
hardware, software, and communications) which are not common at the time of
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writing; b) some requires client extensions that reduce usability and might intro-
duce new flaws [KPSW11]; c) covert channel attacks are not defeated by any IF
techniques (e.g. screenshots of sensitive data). In addition, enforcing information
flow policies also need to take in account incidentally (and intentionally) human
malpractices that can launder the restrictions. We remark that none of the CSS
frameworks surveyed provided Information Flow controls, and only few of them men-
tioned auditing schemes. Finally, it is our belief that the future of CSS will surely
benefit from a paradigm shift in data treatment where users will own their personal
sensitive information.

Data Expiration As we have already seen with the recent cases of Google Street
View and Facebook, service providers are very reluctant in getting rid of collected
data. After user deletion requests, Service Providers prefer to make the data inac-
cessible - hidden from users’ view - instead of physically purging the data from their
databases. To aggravate this situation, data is often cached or archived in multiple
backup copies to ensure system reliability. Therefore, from users’ perspective it is
difficult to be completely certain that every bit of her personal information has been
deleted. Consequences of unlimited data retention can be potentially catastrophic:
“if private data is perpetually available, then the threat for user privacy becomes
permanent” [CDCFK11]. The protection against this can be retroactive privacy :
meaning that data will remain accessible until – and no longer than – a specified
time-out.

Here we illustrate some of the most interesting approaches to address the data ex-
piration problem, narrowing our focus on systems that can be integrated in CSS
frameworks. The criteria in the selection are a) user control and b) ease of integra-
tion with existing cloud storage systems. This choice is motivated mainly by the an-
ticipated evolution of the privacy-aware CSS frameworks: a closer user involvement
in personal data management and the use of the cloud services, such as virtually
unlimited storage space, ubiquitous service availability, and hardware and protocol
independence. Cheap storage prices and ubiquitous Internet access increase data re-
dundancy and dispersion, making almost impossible to ensure that every copy of an
information has been physically deleted from the system. Therefore, self-destructing
data systems prefer to alter data availability instead of its existence, securing data
expiration by making the information unreadable after some time. Boneh and Lip-
ton pioneered the concepts of “self-destructing data” and “assured data deletion”
in [BL96]. First, data is encrypted with a secret key and stored somewhere to be
accessible to authorized entities. Then, after the specified time has passed, the
corresponding decryption key is deleted, making it impossible to obtain meaningful
data back. This is a trusted-user approach which relies on the assumption that
users does not leak the information through side channels, e.g.: copying protected
data into a new non-expiring file. Therefore, these systems are not meant to pro-
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vide protection against disclosure during data lifetime (before expiration), as Digital
Rights Management (DRM) systems try to do instead1. Self-expiring data systems
can be integrated in CSS frameworks to enhance privacy in sharing data, permitting
the participants to create personal-expiring data to share with researchers for only
a predefined period of time.

Key management – becoming the main concern – can be realized either as a cen-
tralized trusted entity holding the keys for all the users or keys can be stored
across different nodes in a distributed network where no trusted entity is in charge.
Ephemerizer [Per05a, Per05b] extends the principles outlined in [BL96] to intercon-
nected computers implementing a central server to store the keys with respective
time-outs. The server checks the keys periodically for their time-out and delivers if
their time is not yet expired. An approach that avoids the necessity for a trusted
party is Vanish [GKLL09], a distributed solution that spreads the decryption key bits
among different hosts: after the usual encryption phase (key creation, file encryption
and storing), the key is split into secret shares and distributed across random hosts
in a large Distributed Hash Table (DHT). DHT are decentralized systems that store
< key, value > mappings among different nodes in a distributed network. The key
tells which node is holding the corresponding value/piece of data allowing the value
retrieval given a key. Accordingly to the secret sharing method [NS95], the recovery
of a k (threshold) shares on n total shares permits the reconstruction of the original
key and therefore the decryption. What makes the data to expire/vanish is the nat-
ural turnover (churn) of DHTs (e.g.: Vuze) where nodes are continuously leaving
the network making the pieces of a split key disappears after certain time. When
there are not enough key shares available in the network, the encrypted data and all
its copies become permanently unreadable. Two are the main limits of Vanish sys-
tem. First, the requirement for a plug-in that manages the keys reduces its usability.
Secondly, the time resolution for expiration is limited on 8 hours - the natural churn
rate of the underlying DHT - and expensive to extend due to re-encryption and key
distribution.

As pointed out in [WHH+10], the clever idea of turning the nodes instability into
a vantage point for data expiration might introduce serious problems. To break
data expiration it is enough to continuously crawl the network and pre-emptively
harvest as many stored values as possible from the online nodes before they leave
the network. Once enough raw material has been collected the attack rebuilds the
decryption key, resuscitating the data. Based on the same cache-aging model of
Vanish, but immune from that attack, is EphPub [CDCFK11] where the key distri-
bution mechanism relies on the Domain Name System (DNS) caching mechanism.
The key bits are distributed to random DNS resolvers on the Internet which main-
tain the information in their caches for the the specified Time To Live. This solution

1DRMs assume user untrustworthiness limiting the use and/or disclosure of a digital content
in all its possible forms e.g.: duplication and sharing.
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is transparent to users and applications, not involving additional infrastructure (a
DHT or trusted servers) nor extra software (DHT client). Another solution for data
expiration is FADE [TLLP12] a policy access control system that permits users to
specify read/write permissions of authorized users and applications other than data
lifetime. The underlying idea is to decouple the encrypted data from the keys:
information can be stored in untrusted cloud storage providers and a quorum of
distributed key managers guarantees distributed access control permissions for the
established period of time.

Given data redundancy and dispersion, it is almost impossible to ensure full control
over distributed data, especially when users are directly involved2. While everlasting
data is generally dangerous in any context, the problem becomes even more impor-
tant for CSS studies, where the amount and the sensitivity of the collected data can
be substantial. The described systems can be used for building complete privacy-
aware CSS frameworks that can automatically take care of purging old information
from the database. Procuring the users with ways to control sharing schemes and
information lifetime might attract more participants, who may currently be reluctant
in providing their personal data. We would like to emphasize that the mentioned
solutions do not provide complete data protection and have been inspected by the
scientific community for only a brief period of time. It is not current practice in the
examined CSS frameworks to include the data retention procedures and lifetimes in
the user agreements or informed consent. While it is still uncertain whether assured
deletion and data expiration are technically secure, we are certain that there are
limits beyond which only legal means can guarantee the users the conformity to
certain procedures in data management and retention.

2“It cannot be prevented that human users manually write down the information, memorizes it,
or simply take a picture of the screen” and share it in a non-secure manner, as stated in [KPSW11].
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Privacy Actionable Items

In this Chapter we present the executive summary for the CSS practitioners.

Regulations. When a new study is provisioned, it must follow the regulations
of the proper authorities. Special attention should be given to the cases where
the data may travel across the borders, either as part of the study operation (e.g.
data storage) or as a part of research collaboration with foreign institutions. The
requirements and guidelines may differ significantly between countries, additionally
if the data collection happens in one country and analysis of the dataset happens
in another, the data analysis may not be considered human subjects study, thus
not requiring IRB approval. The regulations and guidelines of the country where
the study is conducted, reflect expectations of the participants regarding their data
treatment. Researchers need to make sure that those will be respected, even when
the data flows across the boarders.

Informed Consent. Informed consent is the central point of the participant -
researcher relation. We strongly encourage the publication of the informed consent
procedure for the conducted studies, so the best practices can be build around it.
We should be working towards the implementation of living informed consent, where
the users are empowered to better understand and revisit they authorizations and
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relation with the studies and services in general. This relation should ideally last for
as long as the user’s data exist in the dataset. As new techniques of data analysis
are introduced and new insights can be gained from the same data, the participants
should be made aware and possibly in charge of the secondary use. Additionally,
we envision a better alignment of business, legal, and technical dimensions of the
informed consent, where the user’s act of consenting is not only registered for legal
purposes, but technically creates the required authorizations (e.g. OAuth2 tokens).

Security. The security of the data is crucial for ensuring privacy. Moving into the
cloud may require close examination of the infrastructure provider’s policy, as well
as the technical solutions limiting the access to the data in the shared-resources
environment. One of the solutions is to encrypt the data on a server physically
owned by the research unit conducting the studies, and only then pushing it into
the cloud. There are different levels of encryption granularity that may be used; The
less structure is preserved in the data, the less information can potentially leak, but
at the same time, less meaningful queries or data processing can be executed on the
encrypted data. It may be an option to encrypt (or one-way hash) only PIIs, keeping
the structure of the data and certain raw values (e.g. location coordinates); this
allows for effective data querying in the database, but at the same time can expose
the information about the participants (the cloud learns where the participants are,
but doesn’t learn their names or other PIIs). If the data is encrypted in it’s entirety,
effective queries become difficult and may not be feasible.

Privacy Implementation. The data collected is only valuable if it can be ana-
lyzed. It is often desired or necessary to share the data in some form with the 3rd
parties, some of which may be hostile. As it has been shown in multiple cases,
the de-identification, introducing the noise, implementing k−anonymity etc. may
be insufficient against an educated and determined attacker with Internet access
(section 6.2). We can expect this problem to grow, as more publicly available infor-
mation is exposed by the participants in different (non-study related) channels. If
it is sufficient to know several locations to uniquely identify the user [dMHVB13],
all the other data gathered in the study can be then also linked to the real per-
son. Firstly, we suggest that good practice is to make the type of de-identification
performed on the dataset public, helping to establish common practices and under-
standing of what works and what does not. One of the possible directions is to move
away from copying the entire datasets for later offline analysis, which is becoming
impractical anyway, due to large size and real-time nature of the data. Instead,
researchers and other service can interact with the data through APIs, that allow
for control and accountability. If the data dimensionality is additionally reduced
before flowing through the API (e.g. city-level location of the user rather than raw
GPS trace), privacy can be managed in a more robust way.
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Perfect World





Chapter 9

sensible-data

Latest events abruptly brought to people’s attention the problematic relation be-
tween Big Data and information privacy management [GUA]. and consequences of
such events might affect the scientific community. Computational Social Science
(CSS) is an interdisciplinary research process that gathers and mines wealth of sen-
sitve data to study human behaviour and social interactions. "Should scientists fail
to defend participant’s rights and their data, even in a single case, the consequences
for CSS as a field could be catastrophic. A breach of security or abuse of sensitive
data, could result in a loss of public confidence and — as a consequence — a de-
creased ability to carry out studies." People, who were already reluctant to provide
their information for scientific purposes, will now become even more unwilling. This
is a turning point for the future of big data and scientific research, a critical moment
to avoid a domino effect.

The next paragraphs will show design principles and practical applications of an
ongoing project that seeks to establish new standards in information privacy man-
agement: sensible-data.
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9.1 Service

A collaboration between DTU and MIT universities gave birth to "sensible-data",
a service that collects, stores, manipulates, studies, and shares Big Data. What
makes it different from other solutions are the designing principles: sensible-data
does not only strengthen the security of the data, but it specifically focuses on
the respect users’ privacy. Among the main goals, data treatment transparency,
fine-grained control in data collection/distribution, and anonymization. The com-
bination of versatility, modularity and scalability make the integration between the
central service and the data sources (e.g.: web applications, databases and mobile
apps) highly customizable. The platform can be adopted for different purposes,
from scientific studies, to data analysis in e-Commerce, including secure data stor-
age for government institutions. For these reasons, sensible-data can be seen as the
first realization of a privacy-aware solution in users’ data treatment.

Part I showed that Computation Social Science is a very active field of research that
relies on the mixture of social studies and nowadays technologies (e.g.: smartphones,
Online Social Networks). It helps in understanding causes and effects in human
behaviour, it gives insights in their interactions, and can explain the inner nature of
relationship. CSS’s observations and deductions can be adopted in various contexts
and can have huge consequences on people, positively affecting their lives. What
CSS studies need is the participation of a variegate and large set of people so that
studies become more precise and accurate. Part I also demonstrated that there is
still space for improvements in users’ privacy management. Before any "catastrophic
event" endangers the image of CSS, scientists need a new way to do conduct studies
in the field.

sensible-data can provide such solution allowing the researchers to conduct social
experiments in a privacy-aware manner. More in detail,

- scientists can create studies with fine-grained acceptance conditions instead
of "all-or-nothing" approaches that forces participants to accept all the study
conditions or to be left out;

- they can monitor the data streaming in/out of the study in real-time;

- they can share datasets and study results in a seamlessly way.

On the participant perspective, the service will improve the management of their
sensible information, making easier to understand what is happening to their data.
Study participants will be able to:
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- grant authorization to third party applications;

- monitor and control their personal data;

- share data from one study to another in a easy way.

An important aspect of sensible-data is the concept of living informed consent,
deeply outlined in Section 4. The realization of this concept will allow the par-
ticipants to dynamically change study permissions and to be informed about data
treatment/disclosure policies in real-time.

Figure 9.1: sensible-data use cases

9.2 Design

sensible-data is a system composed by three layers: Platform, Services and Ap-
plications (Apps). Third parties’ applications gather data from web services and
smartphones (e.g.: Facebook app, Funf) and interact with customizable services.
The services are specialized functionalities that can be performed using sensible-
data system. These can be study research projects, election polls, or business market
researches. Platform’s components are (see Figure 9.3):
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Figure 9.2: sensible-data system.

- Authorization manager. It holds the user credentials and accounts for the
system.

- Connectors. Applications use connectors to provide or access the data. These
endpoints can be directly managed by the user to regulate the data flows.
They are part of system APIs that allows services to communicate with apps.

- Audit. Module that securely records all the events/interactions between users,
apps and the system (e.g.: data flows in/out, users’ app authorization, etc).
This module will be thoroughly detailed in Section 13.

- Anonymizer. A Module for anonymizing the data before pushing it to the
database.

- Database. Physical long-term storage for the data.

- openPDS. It is a Personal Data Storage container for the information col-
lected by the Apps. Users can manually review/modify/remove sensible files
via web browses and smartphone applications.

- Dashboard. Graphical interface that allows the users to monitor and control
the flow of information from/to App to/from the System.

- Application manager. Module for managing the authorizations between the
registered applications (Apps) the sensible-data service.
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Figure 9.3: sensible-data platform.

9.3 Implementation

In its current implementation, sensible-data system is a Django web-based solu-
tion which provides its services through REST APIs. The system is hosted on a
Rackspace server with backed databases on MongoLab (Database As A Service for
MongoDB) that will be replaced in the future by custom instances. User authenti-
cation is now managed through the Django authentication system, by which each
user has is own account registered and authenticated. In the future, sensible-data
will offer authentication through OpenID open protocol. App authorizations are
granted using OAuth2.0.
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Auditing





Chapter 10

Introduction to Auditing

Loggers record the dynamics of a system, keeping track of the noteworthy past
events that changed a system’s state. Each (digital) record includes when an event
occurred, which entity triggered it, and which resource it involved. Examples of
such events are users’ activities, program execution status, resources usages, data
changes, and so on. Logging systems are useful tools for troubleshooting prob-
lems, identifying policy violations, enforcing accountability and generally to monitor
interactions with resources.

There are scenarios in which logs must be available for public inspection. In these
cases, the number and the identities of the verifiers and the frequency of the ver-
ifications highly affect the design of logging system. When record reviewing is a
fundamental feature, logging becomes auditing.

Logging systems can be adopted as security components to record – in secure man-
ner – the events in an environment ("a-posteriori" mechanism). The quality and the
quantity of the retained data make logs important sources of digital evidence for re-
constructing complex events, detect intrusions, and investigate malicious activities.
For these reasons, they need to be protected from misuses.

Although logs are usually kept behind secured systems and adequately protected, it
cannot be guaranteed that those defences will never be compromised. Therefore, it is
necessary to strengthen auditing systems to resist security breaches. Unfortunately,
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once the machine has been taken over by an intruder, there is not much that can
be done to prevent him from corrupting the audit trail at his pleasure. On the other
hand, it is possible to limit the attacker’s ability to corrupt the records generated
prior the machine’s compromise (tamper resistance) through the use of Trusted
Computing Modules or Write Once Read Many (WORM) storage disks. Without
recurring to such expensive and uncommon solutions, it is also possible to build
tamper evident audit trails. These are logs that make it impossible to undetectably
alter pre-compromise entries. Integrity verification of audit logs becomes the primary
security requirement for the secure auditing systems.

Outsourcing logs Long-term storage of logs can be expensive both in terms of
physical resources and integrity revision processes. Therefore more and more of-
ten organizations are delegating the management to the cloud, sending the data
to remote hosts before purging the local copies [RBS+12] (Logging As A Service -
LaaS). Outsourcing the maintenance of logs can reduce costs, but remote auditabil-
ity requires further enhancements to integrity and authenticity. When the owner of
the hosting machine is not the same owner of the secrets within the device it is
essential that audit mechanisms are able to detect attempted fraud. Remote audit-
ing can benefit from replication, a good measure to safeguard data integrity trough
redundancy, based on the assumption that an attacker will not able to compromise
all the remote hosts. On the other hand, data replication rises confidentiality issues,
since all the multiple copies of the audit trails must be secured against unauthorized
viewers.

10.1 Definitions

- Auditing system. System that comprehends all the components for auditing.

- Auditing, auditing process. In computer technology, auditing is defined
as the process of storing and examining digital records regarding the events
happening in well-defined environment constituted by a set of entities. Typical
examples are: the list of read/write operations occurring on a machine’s
operative system or message transactions among different end-points in a
network1. The purpose is to collect enough information to be able to carry
an assessment to identify and quantify future environment’s characteristics.

- Log event, audit event, event. With event is defined an occurrence observ-
able in the monitored environment. A logged event is the digital representation

1Historically, by auditing, is intended the "examination of data belonging to an entity performed
by an (external) independent examiner".



10.1 Definitions 55

of the event once appended to the audit trail. The set of which log events
have to be stored is defined at system design. The format of the logged event
must be concise but rich enough for later analysis.

- Audit, audit trail, audit log, log trail, trail. It is some form of non-volatile
memory such as a local disk or database or a remote log storage that holds
the events and can be later verified.

- Auditor, examiner, verifier. The entity which performs the examination of
the audit trail.

- Auditing report, report. Result of the auditing examination process.

- Append, write, update, store, logging, registration, recording. Action
of appending a new entry at the end of the audit log.

- Verification, integrity check, check, inspection, review. Action of assess-
ing the integrity of the audit trail.
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Chapter 11

Auditing Model

This section describes the how an auditing system can be modelled. As all the
models, it is an abstraction from reality, a representation of how an ideal auditing
system should appear.

11.1 Auditing Protocol

Auditing Types. The Auditing process can be scheduled according to predefined
time-triggered procedure (Time-driven) or performed ad-hoc, when a specific event
requires the generation and the inspection of the audit trail (Event-triggered).

Auditing Trail Format. The Audit trails can be sequential, when every event is
appended to an ever increasing audit trail or circular, where the maximum length
of the audit trail is defined and when reached, new entries overwrite old ones.

Event Format. Log event’s format are not required to have a specific format,
but it must be defined in a way that a later reader will unambiguously understand.
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Design has important consequences in the implementation. In fact, it affects mem-
ory consumption (storage) and performances (time) in logging and retrieving. For
these reasons, it is crucial to determine the necessary and sufficient format for both
trail and log entries. Common fields are:

- Timestamp : identifies when the event occurred. This is usually expressed in
the format of date and time of day, with different degrees of accuracy (i.e.the
granularity can variate from hours to milliseconds).

- Description : human readable description of the event, used for later trail
inspection.

- Entry type : tag used to classify different events under the same category.
Useful during inspection operations for fast retrieval (e.g.: administration
event, data event, ...).

- Severity level : keyword that defines the severity of the event. Common
cases, in increasing order are: debug, informational, notice, warning, error,
critical, alert, emergency.

- Author : is the entity that writes into the audit trail.

- Id : event unique identifier.

- Other : optional information peculiar to the particular auditing case.

- Security fields : optional fields regarding confidentiality, integrity checks or
other security properties.

Roles

- Event generator : the entity/device that creates the event.

- Relay : (optional) is a proxy that forwards the events from devices to collec-
tors.

- Event receiver : receives the events.

- Filter : decides whether the log event must be recorded or not according to
the rules specified by the auditing designer.

- Logger: generates the corresponding log file (also called audit trail). It might
apply cryptographic operations to protect recorded entries against illegal read-
ing, deletion, modification.
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- Verifier, auditor. This principal asserts the authenticity of the audit trail
and/or singular log entries.

- Audit trail. The physical file holding the log records.

Trust With trust is often meant "the assumption that an entity will behave sub-
stantially as expected". A trust level is the degree to which other participants in
the system trust this entity. Whenever a security assessment is to be made, these
labels declare security assumptions.

- Trusted entity. A trusted entity is defined as "an independent, unbiased
party that contributes to, or provides, important security assurances that en-
hance the admissibility, enforceability and reliability of information in elec-
tronic form."[46-]. For secure auditing, it means that this entity can not
be compromised. Empirical evidences show that this property is very hard
to hold, therefore a more realistic definition for a trusted entity could be: an
entity which is "reasonably secure from intrusion and misuse"; which can pro-
vide a "reasonable level of availability, reliability, and correct operation". The
whole system relies one the fact that this entity will always behave according
to the established policies and protocols, in other words, its behaviour does
not vary. Other relying parties use this entity to secure their interactions,
exchange messages, and keep secrets.

- Untrusted entity. This entity is not physically secure or sufficiently tamper-
resistant to guarantee that it will not be taken over by a malicious user.

- Semi-trusted entity. It often presents some of the trusted entity properties,
such as "reasonably secured from intrusion", but the likelihood of being suc-
cessfully compromised is higher. It has granted only with limited privileges
and not trusted as far as holding key material. If compromised (or if behaving
in an unforeseen manner) it does not compromise the security of the entire
system.

11.2 Properties

This section describes the properties of an ideal auditing system.
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Figure 11.1: Auditing roles.

Integrity. The property of maintaining the consistency of data over the entire
life-cycle1: data cannot be modified in an unauthorized manner. For auditing, this
can be translated into the fact that audit trails cannot be changed once recorded.
Integrity can be further analysed into atomic properties, such as accuracy (entries
are not modified), completeness (entries are not deleted), compactness (entries are
not illegally appended), uniqueness (each message is logged once). It is important
to extend these properties from the single entries to the whole audit trail, in other
words, re-ordering should not be possible (stream-integrity). To recap, it is not
possible to (over)write, delete, add, re-order (part of the) entries and the whole
audit trail. Unfortunately, such a property is almost impossible to achieve: no
security measures can protect an audit trails after an attacker has gained control
of the hosting machine. The intruder will be able to force the system - and so the
auditing mechanism - to act as he wants. In this case, it will not possible to prevent
the attacker from adding new log entries, alter or discard new events coming before
they are store in the trail. Nevertheless, strong statements can be claimed about
log entries made before the compromise. What an auditing system can achieve is
Forward Integrity. Proposed by [BY97], it assures that pre-compromise data will
be safe from post-compromise insertion, deletion, modification, and reordering. In
other words, the integrity of the log entries accumulated before the attack should
always be protected even when an adversary successfully compromise the machine2.

1Without going to into details, with consistency is intended that data does not contain contra-
dictions.

2Forward is a misleading word, since the integrity actually pertains to the past, but has been
chosen by Bellare and Yee according to security literature.
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Verifiability. Practically, forward integrity is hard to achieve since tamper resistant
computers are not common and almost every system can be broken. What auditing
system provide instead is tamper evidence: audit trails can not be modified without
detection. By verifiability is intended the possibility to be able to check the integrity
of the audit trail3. The dimension of the auditor set determine if an audit has
restricted verifiability or is public verifiable. In fact, audit records might need to be
made available to a great number of unknown outside auditors for public auditing
(e.g.: public financial auditing, electronic voting, ...).

Accountability. Audit log need to include information about which entity is re-
sponsible for adding the entry to the trail. Accountability means that it is always
possible to determine the author of an appended entry.

Searchability. Audit logs are a mixture of archives and backups, since read and
write capabilities must be considered in addition to the respect of the integrity
property4. Events are automatically appended to trails, without user intervention.
Verification on the other hand might require human interaction.

Confidentiality. While confidentiality is not a strictly mandatory requirement for
auditing, it is often needed for sensitive data. Only legitimate users should be allowed
to browse the log entries. Usually, confidentiality is achieved by authorization lists
and/or encryption mechanisms (see Section 11.3), which can negatively impact
searchability.

Append-only. Property that guarantees that new entries will be always added at
then end of what already present.

11.3 Cryptographic Primitives

Cryptographic primitives are building blocks used to create security systems and
protocols. They are used for encryption algorithms, hashing functions and digital
signatures schemes. Although many of the following concepts have vast application
scopes, greater relevance has been given to characteristics regarding auditing system
designs.

3Integrity by itself does have not much importance, if it can not be verified.
4Archives rely on good browsability, with fast searches, normal writing and integrity. Backups

are for restore, so they can write and read slow but data integrity is fundamental.
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11.3.1 Cryptographic Key

Key. A key is an auxiliary input parameter for cryptographic algorithms. For the
same input message, a cryptographic algorithm produces different outputs according
to different keys. Concrete examples are encryption/decryption cipher schemes,
digital signatures and message authentication codes. According to a widely accepted
security engineering principle, "system security must depend only on the secrecy of
the key, and not on the secrecy of the algorithm"5. Giving the importance of keys,
their management (generation, exchange, storage, use, replacement, expiration,
deletion) is crucial to the security of a system. If an attacker obtains the key,
cryptographic systems cannot hold security properties.

Evolving Keys. As explained in [Fra06] a viable way to limit the damage of key
exposure, is to change the key over time. In this way, even if an attacker learns
the secret, he will be only able to operate on messages belonging to the timespan
in which the key was kept the same. Keys are usually evolved by non-reversible
functions that have as input the previous key.

11.3.2 Symmetric Key Algorithms

Algorithms that use the same key for encryption and decryption are called symmetric-
key algorithms. Encryption algorithms needs to be reversible:

D(Ek(m), k) = m

A first example of symmetric key algorithm are stream ciphers, where each bit of
the original message is encrypted with the corresponding bit in the key to output the
ciphertext; block ciphers instead, take as input a fixed-size block of data and output
another fixed-size block according to a key. Symmetric encryption schemes, require
that the two involved parties pre-share a secret key to maintain their communication
private. For logs which contains sensitive data, the entries can be encrypted using
a secret key shared between the verifier and the logger. Most commonly used
symmetric encryption algorithms are 3DES and AES.

Message Authentication Codes. MACs are symmetric constructions that detect
message alterations. While encryption provides confidentiality, it cannot prevent

5This is a re-formulation given in [FSK12] of the Kerckhoffs’s principle "Cryptosystem should
be secure even if everything about the system, except the key, is public knowledge" and Shannon’s
principle "The enemy knows the system".
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Figure 11.2: Symmetric encryption.

manipulation. When the sender wants to communicate with another entity, it com-
putes the MAC of the message using his key and sends this MAC tag with the
message to the receiver. The receiver recomputes the MAC of the message - with
the key that he also possesses - and determines if the message is genuine comparing
the new calculated value with the received one.

Figure 11.3: Message Authentication Code verification.

For an attacker, it is computationally hard to forge a message and the relative tag
so that they would appear genuine – without knowing the secret key.
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11.3.3 Hashing Function.

Hash Function A hash function is a many-to-one function that maps arbitrarily
long input to a fixed-length output (hash value).

Hash : {0, 1}∗ → {0, 1}k

Different implementations of hash function can be used for file fingerprinting, error
checksum, data structures, password storage, digital signatures6, etc. To be em-
ployed for secure auditing, four properties must be met. It should be computably:

- Hard to find different inputs that generates the same output. That is, it
should be difficult to guess a second pre-image whose image colludes with the
first image (strong collision resistance);

- Hard to reverse the hashing function (to guess the input based on the output);

- Hard to modify the input without modifying the output;

- Easy to apply the hashing function (to go from pre-image to image).

Figure 11.4: Properties of a secure hash function.

If these properties are guaranteed, hashing functions can be used in secure auditing
as one-way function to evolve the secret keys or to compute hash chains. Examples
of cryptographic hash functions are MD5, SHA-256.

Keyed Hash Function or Hash-based Message Authentication Code functions are
MAC algorithms that uses hash functions to provide authentication. The output
value is often called tag or HMAC value and - sent with the original message - is
used to provide integrity (can detect message modifications) and authentication (can
show message’s origin). Examples of HMAC are HMAC-MD5 or HMAC-SHA-256,
according to the cryptographic function.

6Instead of calculating the digital signature over a big file, the signature is applied to its shorter
hash value.
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HMACkey(message) : {0, 1}k × {0, 1}∗ → {0, 1}t

with a k-bit key key and an arbitrary message message outputs a t-bit tag.

Hash Chain A hash chain is the successive application of a hash function to a

Figure 11.5: Hash chain.

message. In secure auditing, hash chains are employed to provide Forward Integrity :
they create an interdependency between an entry and its predecessor, linking entries
to each other. Since element in the hash chain can be seen as then checksums of the
previous entries, the verification of a whole hash chain asserts whether any entries
has been modified: if the chain can be traversed without incurring in broken links, it
means that elements have not been tampered with. For more details on the various
uses of hash chains, [Pag09, Wou12]

11.3.4 Asymmetric key algorithms

or Public-Key Cryptography (PKC) is a family of algorithms that uses two mathe-
matically related keys, one to encrypt and the other to decrypt a message (asym-
metric). Each entity has a public key known by everyone and a relative private key
kept secret. There are several uses of public-key cryptography for secure auditing:

Public-key encryption. As for the symmetric case, to encrypt log entries when
confidentiality is needed. Here, the device creating the log event ensures message
confidentiality encrypting it with the verifier’s public key and the record is stored
in the log. The verifier uses his private key to decrypt the message and check
the content. Examples of widely used asymmetric key encryption algorithms are
ElGamal and RSA.

Digital Signature. Digital signatures are the public-key equivalent of MACs. The
message it signed with the device’s private key and the verifier can assess the au-
thenticity of the message using the device’s public key. Digital signatures provide
integrity (correct decryption of the encoded message digest proves the message has
not been tampered with), authentication (the sender has access to the private key,
so he is the person associated with the public key), and non-repudiation (there is
only one signer, who possesses the correct key and that can compute such a signa-
ture, so it proves the message was signed by none other than that him). The most
common digital signature scheme is the DSA.
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Aggregated Signatures Aggregated signatures are a special kind of signatures that
can be aggregated together. It is not the purpose of this paragrah to specify the
characteristics of such cryptographic systems, therefore suffice it to say that these
special kind of signatures, combines different signatures generated by n signers into
a unique aggregate signature that, when verified, simultaneously verifies all the
component signatures. The same concept can be extended to aggregate – in a
single signature – multiple signatures computed in different periods with different
keys by the same signer [BLS01, MT07].

Key Distribution. Asymmetric key algorithms do not require pre-shared secret
keys, but are computationally more expensive than their symmetric counterpart.
For these reasons, they are often used to create and shared private secret keys to
use later with symmetric algorithms 11.3.2. Example: Diffie-Hellman key exchange.

Identity-Based Cryptography. Identity-based cryptography [Sha85] is a type of
PKC in which any string can be used as a public key to represent an entity. In
this sense, the email address can bee seen as the equivalent of a certificate in the
normal PKC. The corresponding private key is generated by a trusted third party
(Key Generation Center). Every time an entity need its private key to verifying a
sign or decrypt a message, this entity needs to authenticate to the KGC and after
it gets the private key. This is one of the main drawbacks of IBC, since the PKG
generates the key for the users, it also may sign and/or decrypt messages without
their authorization (cannot provide non-repudiation)

11.4 Design

Depending on the underlying cryptography, there are two main design patterns for
auditing systems.

11.4.1 Symmetric-key based

Auditing systems built upon symmetric key cryptography use evolving keys, (keyed)
hashing functions, hash chains, and symmetric key algorithms. A simplified example
of how symmetric auditing work, can be extracted from the Schneider-Kelsey (SK)
scheme, used as a reference by a number of successive secure logging systems
[SK99]. The scheme involves three actors:
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- U. An untrusted logging machine that creates and stores the log records. It
replies to V ’s queries.

- T. A trusted machine holding a secret key. It can verify the log trail by itself
or it helps the verifier in a different verification process. Interactions with this
entity are minimized.

- V. A semi-trusted verifier, that interacting with T, can verify the integrity of
the audit log stored on the logging machine.

Log Entry Format. The particular format of SK log entries (see Section 11.1) is:
(D) the event data to be logged; (Y ) a hash chain element that links to the previous
element; (Z ) a forward secure HMAC (Z ) computed over Y with the evolving key
starting with the value A0

7.

Procotol. A trusted server and the logger share a secret key A0 out-of-band. The
logger U computes a forward secure MAC for each log entry and evolve the secret
key A. All the entities who know the secret are able to verify MACs interacting with
the trusted server.

Logging.

Figure 11.6: Append in a SK-like auditing system.

1. When a new event Dcurrent is registered on U, the hash chain link Ycurrent
is calculated as the hash function of Dcurrent and Yprevious 8:

7In the original SK scheme, D is encrypted and an authorization mask provides a fine-grained
an access control to the log entries.

8Y0 is a pre-defined seed value.
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Ycurrent = Hash(Dcurrent‖Yprevious)

2. The relative forward secure HMAC Zcurrent is computed over Ycurrent with
the current value of the evolving key:

Zcurrent =MACAcurrent(Ycurrent)

3. As soon as the Z value is created, U evolves the key Acurrent by means of a
one-way hash function and securely deletes the previous one to guarantee the
forward integrity property:

Acurrent = Hash(Acurrent)

4. Finally, the entry < D,Y, Z >, is appended to the trail.

Verification. There are two different verification systems. The first one involves
only the trusted entity T and the logger U. T requires the audit trail from the logger
U and recomputes Y and Z values.

One of SK scheme’s assumptions is that there is no "reliable, high-bandwidth chan-
nel constantly available between T and U", therefore the interactions with T must
be minimized. In the second verification protocol, the semi-trusted entity V inter-
acts with T – which securely holds A0 – only to verify the Z value of the last entry.
More in details:

1. V requires to verify records stored on U, receives them and goes through
the hash chain (recomputing Y values) verifying that each link has not been
broken.

2. When the last Y value YlastByV value is computed, V sends the tuple
< YlastByV , Zlast > to T 9.

3. Upon reception of the tuple, T calculates Zrecomputed using its secret key
Acurrent with the received value YlastByV :

Zrecomputed =MACAcurrent(YlastByV )

4. If Zrecomputed == Zlast, the audit trail is correct (the chain is not broken).
In any other cases, the audit trail has been tampered with. The answer it
sent back to V.

9It has to be noted that V cannot compute Zlast since V does not possess the necessary key
A0.
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Figure 11.7: Three party verification protocol.

Evaluation

Advantages of symmetric-key based auditing systems:

- Simple to design, implement and deploy;

- Computationally and memory efficient in logging and verification.

Disadvantages:

- No public verification. Only fully trusted entities can hold the secret key.

- No non-repudiation. Any entity possessing the secret key A0 has the ability
to falsify the log entries.

- Verification require online trusted server T.

- It suffers from truncation and delayed detection attacks10 (see later in Para-
graph 11.5).

10A slightly improved version of SK ([MT07]) prevents truncation attack and permits verification
without online trusted server but doubles the use of forward-secure MACs.
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11.4.2 Asymmetric-key based

The mathematical properties of asymmetric aggregated signatures can be exploited
to replace the use of keyed hash chains for integrity verification. Instead of using
MAC tags containing values from predecessors, signatures of each entry are sequen-
tially combined into a single aggregate signature. The verification of such aggregate
signature implies the integrity of the whole trail. An example of asymmetric scheme
for auditing is proposed in [MT09].

Logging. (Prior to logging, a Certification Authority binds U’s identity to its public
key through a certificate). When a new event is generated, the respective signature
is computed over the new data and the previous signature:

aggregateSignature = SIGNskcurrent(σprevious‖Entrycurrent),

As for the symmetric scheme, U’s private signing sk is updated at every event
through a one-way function. Therefore an intruder is not able to recover any previous
keys and so is unable to forge signatures for previous entries. The audit trail is
compound by the the list of all the log entries and a single signature-so-far, which
is recomputed at every new event.

Audit trail =< [Estart, ..., Elast], aggregateSignature >

Verification. The verifier requests the log trail from U and, if not already in posses-
sion, it also retrieves the certificate holding U’s public key. The special verification
algorithm takes as input the single aggregate signature, the list of entries to verify
and U’s public key (extracted from U’s certificate). The successful verification of
one aggregate signature is equivalent to that of each previous one, thereby asserting
the integrity of the whole audit log.

Evaluation Advantages:

- Delayed detection attack-free. Each signature entry can be immediately ver-
ified using the corresponding signature so far and the public key, so there is
no time gap between event generation and verification.

- Allows public verifiability without online trusted server. Anyone who can
obtain a copy of the audit trail can verify it.

- PKC properties provide non-repudiation. Since only a specific entry know the
private signing key, that specific entity must be the one who signed the event,
and no one else.
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Disadvantages:

- Computationally expensive for loggers and verifiers.

- Necessity for Certificate Authority to create U’s certificate and a Public Key
Infrastructure for later key management.

- In its basic version, it suffers from truncation attack.

11.5 Attacks

When audit logs are employed as security components to record events in a system,
they the first target after an attacker intrusion since the attacker will try to delete
his traces in the most recent log events. But not only malicious intrusions can
endanger the audit. Also system malfunctions or human errors can alter the logs.

11.5.1 Threat Model

The purpose of the following section is to give an high level understanding of which
are the security threats to consider in the design of a secure auditing system and
not to give mathematical proof of the primitives (see Section 11.3). With attack, is
defined "any attempt to destroy, expose, alter, disable, steal or gain unauthorized
access to or make unauthorized use of an asset" [WAT]. The threat model is this
representation of the set of possible attacks. The most common threat model is the
"honest but curious" threat model. That is, the logging service correctly provides
the service as expected, but it may try to breach confidentiality and get information
from the log entries.

An attacker situated between the devices and the logger might intercept, eavesdrop,
replicate, eavesdrop, synthesize, insert, delay, schedule, modify, block, discard, mes-
sages. These actions are specified by the attacker model, a representation used by
security scientists to prove the validity of the security systems11. For the storage
phase, the penetrator is already inside the machine holding the audit trail and has
control over the system. So he can read, (over)write, re(move), delete (fields of
the) log entries.

11These concept and the mathematical proof have been studied in the paper with the Dolev-
Yao attacker model, where a computationally bounded enemy is in control of the communication
channel and can be a legitimate participant or try to impersonate a legitimate one.
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There are no security measures that can protect the log audit after the attacker
succeeds in compromising the system. In fact, if the attacker gains control over the
machine holding the audit trail, no one can prevent her from alerting/deleting post
attack log entries.

11.5.2 Assumptions

- The primitives involved in the audit (Section 11.3) always hold the expected
properties. For example, it is infeasible to intentionally cause collision of hash
values or calculate the pre-image of hash function (strong one-way hash prop-
erty holds); the decryption of messages requires the appropriate cryptographic
key (the attacker can decrypt messages and get the content of an encrypted
message/log entry only if he possess the corresponding key).

- The hardware and the hosts’ operating systems are not corrupted at the be-
ginning of the protocols.

- The pre-shared key are not compromised at the beginning and the are shared
off-the-band (email, sms, other ways) or set up through secure methods. As
we have already seen, if an attacker gains access to these secrets, no security
properties can be guaranteed.

- An attacker is anyone who behaves maliciously and does not know the secret
key.

- If an attacker compromises a machine, he obtains the secret key at the time
of compromise.

11.5.3 Types of Attack

The attacker’s goal is to tamper with the log file by removing, altering, appending
or reordering log entries. Most commons attacks against auditing systems are:

Key Stealing and Log Alteration. With symmetric schemes, verifiers must posses
the secret used as the hash chain seed, in order to rebuild the hash chain during
the verification process. If the attacker can get access to this key, for example,
penetrating the verifier’s machine, this will give him the ability to falsify the log
entries before the compromise time.
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Truncation Attack. Removing or altering data within the hash chain – where
every record is linked to the previous one – is detectable by verifiers, since hash
chains provide tamper evidence. On the other hand, removing a continuous set of
entries from the end of the audit trail (tail-truncation) will go undetected, since no
fake MACs are recomputed and consequently no links in the hash chain are broken.

Figure 11.8: Truncation attack. Log entries with darker background are removed.

This attack can be avoided in two ways. A first solution is to make the verifier aware
of the length of the hash chain, so it will notice the lack of entries. The second
manner is to integrate a tag which protects the integrity of the entire audit trail.

Figure 11.9: Delayed detection attack.

Delayed Detection Attack. This attack is a consequence of the three party
verification protocol and therefore will be eventually detected the first time two
party verification is executed. The time span in which this attack goes undetected
depends on the frequency of the interactions between U and T.
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The attack is illustrated in Figure 11.9. At time a the attacker breaks into U and
obtain the current key Aa which has not been evolved yet. The attacker modifies D
values and Y values (not Z values) of pre-compromise entries from Ec+1 to Ea−1.
The attacker can modify D,Y and Z values from the time a to r (request time),
since now in possession of the secret key Aa.

After time r, V starts the three party verification and obtains the entries from Ec

to Er. It recomputes the hash chain values from Yc to Yr and it sends to T the last
result < YlastByV , Zr >. T recomputes Zrecomputed = MACAcurrent

(YlastByV )
and the identity (Zrecomputed = Zr) will be verified.

Since the V was not able to verify the Z values from Ea to Er and T only verifies
the last entry Zrecomputed == Zr, no broken links are detected. On the other hand,
the first time T will proceed with the autonomous verification of the whole chain,
it will encounter a wrong correspondence between the altered Yc+1 and the Zc+1

which the attacker could not recompute without the knowledge of Aa−1.
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State of the Art

The roots of digital auditing can be tracked down to the first logging solution,
Syslog. Developed in the 1980s as auxiliary component for the early mail protocol,
Syslog rapidly became standard de-facto as multi-purpose network monitoring tool,
because capable of supporting a great variety of operating systems and network
devices (routers, printers, servers, ...). In its simple protocol, each message specifies
the network facility that generates the event and a severity level (e.g.: <auth,
alert>, for an alert alarm regarding the authentication system). Relying on UDP
Transmission protocol (no reliable delivery) and without any secure protection for
transmission between the end-points, it was a very bare-bone logging system, not
suitable for secure auditing (more recent solutions have been developed since then
to add confidentiality and reliable delivery, [RBS+12]).

The pioneer auditing solution has been presented by Bellare et Yee in their foun-
dational paper [BY97]. Their goal was to create a new kind of MAC that was
unforgeable even if an attacker could get the keys, protecting the integrity of the
entries pertaining to the past: the Forward Integrity property. Audit records were
tagged and secure together by means of these special MAC tags computed with
evolving keys.

Schneider et Kelsey took the work from Bellare and Yee and proposed a new scheme
SK (detailed in 11.3.2) for distributed systems [SK99]. Like BY solution, SK is
based on forward secure MACs, but the rekeying is done after each single entry.
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Now each entry is linked to the previous one in a hash chain. In addition, they pro-
vided confidentiality and authorization to verification process, employing symmetric
encryption and a permission mask for selective disclosure of the entries. SK scheme
requires an online trusted server for the verification process. In other words, T must
be available whenever V needs to verify the integrity of the audit trail. Being a
centralized solution, SK suffers fro architectural design risks, primarily Single Point
Of Failure. Both previous solutions suffer from delayed detection attack.

Holt removed the necessity for the online server in the verification process with a
public key approach. In LogCrypto [Hol06] the concepts shown in the BY and SK
schemes are extended to the PKC replacing MACs with digital signatures. Authentic
signatures correspond to the verification of hashed MACs in the previous schemes.
In addition, the use of digital signature also provides public verifiability : now entries
are signed and stored with one key and verified with public one.

Unfortunately, the three previous solutions suffer from the truncation attack. Also,
the verification of one particular record in the log forces the verifier to check the
whole chain, which is computationally linear with the entry number.

Ma et Tsudik solved the problem of truncation attack while at the same time improv-
ing the performances of the public key solutions. In their solution FssAgg [MT09],
they proposed a new scheme for signature aggregation that avoids the storage/-
transmission of the authentication tag for each single entry. Individual signatures
generated by the same signer are sequentially combined into a single aggregate one,
and all the component signatures are deleted. The successful verification of the
aggregate signature is equivalent to that of each component signature, thereby im-
plying no tampering on the audit trail. An attacker that breaks into the system can
not craft this signature without knowing the previous (deleted) component signa-
tures. Nevertheless, it remains very expensive to verifying a single entry, because
the chain need to be checked from the beginning.

A different solution is given by Accorsi in his work [Acc11] which is focused on
improving the performances for public verification trough the use of Trusted Com-
puting Platform components. It recurs to the utilization of a hash-table containing
the pre-images for all the computed entries. While this memory-time trade-off low-
ers the computational demand, it introduces a security vulnerability: the security of
this table.

A first work by Yavuz et al. [YN09], called BAF (Blind-Aggregate-Forward) im-
proved the performances of aggregate signatures for the signing process. A suc-
cessive work [MT09] lowered the computational demand for the verifying process.
LogFAS achieves faster verification storing all the signatures in their original form,
without aggregating them. Every time a verifier needs to check the integrity of the
log trail, it reconstructs the aggregate signature.
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Among other complementary works: Chong ’s application of the SK scheme to
realize tamper resistant hardware [CPH03]; Water ’s work in auditing with encrypted
searches [WBDS04]; secure data structures, such as the authenticated hash tables
in [PTT08] and the tamper-evident data structure shown in [CW09]. More recently,
a solution proposed in [RBS+12] leverages Tor as anonymization infrastructure to
transmit and retrieve log entries in an privacy-aware manner.
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Chapter 13

sensible-auditor

Here are exposed the design, the implementation and the evaluation of sensible-
data’s auditing system.

Based on the properties acknowledged in the previous chapters, "sensible-auditor"
has been designed as a symmetric tamper evident logging application. Its role is
to record – in a secure manner – events happening whiting the sensible-data system.
It inherits from the Schneider-Kelsey scheme, which guarantees forward integrity of
the audit trail and allows such property to be verified by the users of the system
(e.g.: study owners, sysadmins, participants).

sensible-auditor has been implemented as a Django application integrated in sensible-
data web service. Its design permits the audit trail to be hosted locally on the same
machine with sensible-data (as a MongoDB instance) or onto a remote database.
Data transport among the parts is secured over HTTPS.

13.1 Design

This section illustrates the design of the symmetric tamper-evident solution for
the auditing of sensible-data service. Its architecture relies on the principles shown in



80 sensible-auditor

the Schneider-Kelsey scheme [SK99]. Logging and verification are computationally
cheap respect the asymmetric alternatives, a fundamental factor for a system such as
sensible-data which needs to bear numerous simultaneous records to append/verify.
In addition, the specific configuration of the sensible-data platform made possible to
adapt SK scheme in a different – simpler but secure – fashion. The distinguishing
peculiarities have been outlined in the following paragraphs, while evaluations of the
architectural design and security properties are given in Section 13.3.

13.1.1 Principals.

In sensible-auditor, with the term principal is intended a representation of an entity
that needs authentication. Those entities constitute a subset of the roles established
by the sensible-data system1. For the specific case of a CSS study, the categories
for these entities are: administrator (who is in charge of the management of the
system, study owner (who creates and manages the study), and study participant
(who provides the data).

To each principal are assigned rights and privileges over the services offered by
sensible-data. sensible-data system identifies principals, check their rights and grant
authorizations, therefore providing sensible-auditor with the concept of (un)authorized
entities.

13.1.2 Log Events.

Whenever such principals affect sensible-data resources (data, services, and pro-
cesses), a representation the event is stored by the logger. Each record contains
information about the interaction with the system and specifies the principals in-
volved through their associated identifiers, written in the record field D, as shown
in Figure 13.1.

Some examples of events are study creation, user secret key update, participant
add/removal to/from the enrolment list, app add/removal to/from whitelists. In
addition, the logger records data flows in and out of the system (from the application
towards the system or viceversa, e.g.: alert messages through the smartphone app);
app authorizations, audit trail integrity check.

1To not be confused with the term role intended in the auditing literature.
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13.1.3 Protocol

Secure Log Entry Format. As specified in Section 11.1, each log record may
contain fields employed for security reasons. In the sensible-auditor design, these
fields are necessary to provide the audit trail with the forward integrity property.
This security property is achieved through the use of "MAC hash chains" (the use
of hash chains is illustrated in Paragraph 11.3.3). Each entry in the log contains a
value from the previous record creating a chain of interdependent links. If data get
modified, the chain breaks (re-computed fields will have different value from the
stored ones) making alterations evident.

sensible-auditor ’s design is:

- Symmetric : the same evolving key is employed to compute a MAC tag and
to verify it;

- Tamper evident : for the properties explained in Section 11.3 and demon-
strated by the works of Bellare, Yee, Schneier, and Kelsey [BY97, SK99].

The structure of the log entries is as follows:

Figure 13.1: sensible-auditor log entry.

- D : contains all the fields as specified in Section 11.1 for later analysis. Events’
payload are stored as digest values (smaller and of fixed length). The payloads
are stored in sensible-data’s long-term storage database of for later analysis.
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D is stored in clear-text, but the users’ information identifying a specific
Personally Identifiable Information user are anonymized by the sensible-data
anonymizer. D contains also a FlowID, the unique identifier of each event in
sensible-data system for retrieval in log examination. The integrity is protected
by the checksum value store in V.

- V : is the checksum of D. Any alteration of the data saved in the D value,
is later detected in the process of chain verification by this value. Being the
output of a hashing function, V ’s value is not distinguishable from a random
string.

- Z : is a HMAC tag that constitutes the hash chain link. It integrates value
regarding the current data to log (V ) and a value (Z ) from the previous entry
to form the hash chain. Its value depends on the evolving key A. The correct
value of a MAC tag on a hash chain link is equal to a MAC of all the previous
entries, therefore assessing the integrity of the whole chain (the verification
process is shown later in Paragraph 13.1.3).

Z = HMACAcurrent
(Vcurrent‖Zprevious)

Entities. Figure 13.2 shows the entities involved in the auditing process. These
are a subset the software components of sensible-data platform (Section 9.2) paired
with their corresponding auditing roles and trust levels (Section 11.1):

- Third party application : is the trusted event generator which generates
authenticated streams of data through smartphone apps or web applications.

- Connector: sensible-data’s connector is the trusted event receiver which
forwards the events to both the long-term storage and the audit module.

- Database : is the untrusted long-term storage for the data used in the studies.
If an intruder penetrates the database and changes the entries, the checksums
contained in the secure audit’s records will show mismatches.

- Audit module: semi-trusted, filters the event and decides which of them
need to be stored in the trail.

- sensible-data server : it incorporates the connector and the audit mod-
ules. It also helps the user in the verification process as a proxy between
him and the remote log. There are differences with SK scheme. First, in
sensible-auditor scheme this server needs to be always running for logging
and verifying. Affecting server’s availability compromises the whole system
function. Therefore, it has been assumed that there is a constantly available
high-bandwidth channel between the logger U and the user T. Consequently,
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user and sensible-data server can communicate frequently. Second, the server
needs to acquire the lowest level of trust among the component it is hosting
(untrusted). It provides the service as needed but it is not trusted to store
the seed key.

- Audit trail : is the physical storage for the audit trail. The machine hosting
the tamper-evident audit trail can be considered untrusted or semi-trusted,
in fact audit trail’s forward integrity property can tolerate an intrusion by an
attacker.

- Key Store : it holds the key for the next entry. < username, nextKey >.
Even if compromised, it does not endanger log’s forward integrity property
(Semi-trusted).

- User : the trusted verifier, as opposed to SK scheme where the verifier is
semi-trusted.

Figure 13.2: sensible-auditor roles.
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Protocol steps. The protocol outlined below follows the concepts delineated in
SK scheme 11.4.1:

A) Logging. When a user signs up to sensible-data system, he creates a passphrase
from which the hash chain key is derived. It has to be noted that the secret key is
never stored within sensible-data server.

1. Event generation. A new data event is generated (e.g.: a study questionnaire
is filled out by a participant using an app on his smartphones).

2. Event collection. Data is collected on sensible-data server (push or pull
policy) and checked for authenticity by sensible-data’s authentication module.
sensible-data calls the logger method to append the event data.

3. Creation of D value. The logger extracts the payload and computes its
checksum. All the information required by the log entry format (see 11.1) are
now filled and stored into the field Dcurrent.

4. Creation of V value. Once D has been created, the logger generates the
corresponding digest and saves the Vcurrent.

5. Creation of Z value. (5a) The logger retrieves the current value of the
evolving key Acurrent from the key-store. (5b) It also extracts from the audit
log the Z value of the previous entry (Zprevious). (5c) Then, it computes
the forward secure HMAC for hash chain link: Zcurrent is computed over the
current data Vcurrent and Zprevious with the current value of the evolving
key, resulting in:

Zcurrent =MACAcurrent(Vcurrent‖Zprevious)

6. Key overwrite. As soon as the Z value is created, the key Acurrent is
immediately evolved and overwritten in the key-store by means of a one-way
hash function to guarantee the forward integrity property:

Acurrent = Hash(Acurrent)

7. Record append. The logger proceeds in writing the security fields with the
computed data and appended the resulting entry at the end of the log trail:

LogEntry = < D, V, Z >

8. Data storage. Finally, the data payload is stored in the database for later
purposes (e.g.: CSS study analysis).
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Figure 13.3: sensible-auditor logging protocol.

B) Verification. As stated, any entity in possession of the secret key A is allowed
to verify the integrity of the audit trail. In sensible-auditor ’s scheme, this entity is
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the user, the owner of the data created by the applications. Since the verifier is a
trusted entity, sensible-auditor ’s protocol does not require a two party verification
as seen in the SK scheme.

1. Integrity verification request. A user requires sensible-auditor to check
the integrity of the entries in the range flowID = firstID to flowID =
lastID, with lastID >= firstID. He also communicates the secret key to
sensible-auditor over a secure channel.

2. Records retrieval. sensible-auditor retrieves all the entries that must be
checked from the log plus the entry that precedes the first one:

[logEntry(firstID−1) ... logEntry(lastID)]

3. Secret key evolution. The secret key is evolved (one-way hashed) as many
time as required to be aligned with that very first entry.

4. Verification algorithm. The following pseudo-code traverses the hash chain
(Z values) verifying that each link is correct.
After retrieving the necessary records (current and previous), it recomputes
the checksum Vtest using the data from the current entry Dcurrent.
If (Vtest == Vcurrent), the algorithm goes on, otherwise it means that or
Dcurrent or Vcurrent (or both) have been modified. Since the record integrity
has been nullified, the algorithm exists.
Then, it extracts the Z values from the current entry Zcurrent and from the
previous entry in order to recompute Ztest =MACAcurrent(Vtest‖Zprevious).
This time the logger checks whether (Ztest == Zcurrent). If these two value
do not correspond, the chain has been broken: or Zcurrent or Zprevious have
been altered2

If the chain link is not broken, the algorithm evolves A and increments the
flowID to check the next entry.

2It is taken for granted that A has not been compromised since originally provided by the trusted
user.
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begin
while (flowID <= lastID) do

current = getCurrentEntry(flowID)
previous = getPreviousEntry(flowID − 1)
Vtest = checksum(Dcurrent)
if (Vtest! = Vcurrent)
then exit fi

Ztest = MACAcurrent(Vtest‖Zprevious)
if (Ztest ! = Zcurrent)
then exit fi

Acurrent = hash(A)
flowID = flowID + 1

od
end

Finally, if at the exit of the loop (flowID == (lastID + 1)), the chain has
been fully traversed without incurring in any broken links, therefore the audit
trail has not been tampered, implying its integrity.

13.2 Implementation

This section illustrates how the design specifications previously outlined have been
technically realized.

13.2.1 Sensible-auditor modules

Modules. sensible-auditor is a Django application written in Python programming
language for the sensible-data web service. The code – presented in Appendix B –
has not been optimized but written to be self-explanatory and easy to maintain3.

The helperModule.py contains all the functions used by both logging and ver-
ification processes. These are instructions to handle data structures ("convert",
"extract") and the methods for computing the security field for the log entries
("createV", "createD", "createZ"). These latter methods implement steps 4, 5,

3"Premature optimization is the root of all evil", Donald Knuth, the "father" of the analysis
of algorithms.
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Figure 13.4: A simplified class diagram for sensible-auditor.

6 shown in the logging protocol. The python cryptography library PyCrypto4 has
been used To calculate hashes and HMACs ("calculateHash").

The loggerModule.py is the main class of sensible-auditor app. It contains the
setup method "createUser" which is invoked when a new participant join the service.
It creates e new personal log trail and updates the relative secret key, created by
the user himself at registration moment5.

The "append" method is the callable function used by other modules in sensible-
data whenever an event needs to be stored. This function takes different inputs
according to which event needs to be stored (e.g.: participant’s data coming into
the sensible-data server, system owner update of the study detail, etc.). Whenever
it gets called, it first checks whther the calling principal has the right authorizations,
then using the helperModule’s method, it creates a new log entry and appends the
new entry to the log trail. Finally, it evolves the secret key and overwrite the old
one with the new value in the key-store.

For the trail integrity verification, there are two main methods. First, "getDataForCheck"
retrieves data that need to be checked and caches them into memory to speed-up

4https://www.dlitz.net/software/pycrypto/
5In the current implementation, it also holds the connections with the remote audit log and

with the remote key-store.

https://www.dlitz.net/software/pycrypto/
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the verification process. Then, the "startCheck", recomputes the hash chain as
previously outlined in the protocol steps.

"logAPI.py" module groups all the functions related to the specific back-end where
the audit trail is hosted. Whenever a different back-end is employed, methods in
this module needs to be overridden6.

13.2.2 Storage

Audit trail and key-store are both implemented as MongoDB instances. Mon-
goDB7 is a NoSQL database system that stores data in JSON-like documents:
documents are like SQL records and collections correspond to SQL tables. Its
flexible schema is very well suited for archiving and event logging. In addition,
it can be queried through REST and HTTP interfaces. For the auditing, the
correspondence between MongoDB and sensible-auditor is simple: to each user
has been assigned one collection (audit trail) which contains all the relative doc-
uments (events). The key-store is a unique collection containing document/pairs
< user, evolvingKey >. As established at design phase, the audit trail is sequen-
tial, therefore it is assumed that MongoDB instances are sufficiently large to hold
all the documents (events).

13.3 Evaluation

13.3.1 Design Evaluation

Forward integrity and tamper evidence rely on the hash chain properties demon-
strated by Bellare, Yee, Schneider and Kelsey in their works [BY97, SK99].

SK scheme is prone to truncation attacks, delayed detection attacks and it also
requires an online trusted server during verification. Nevertheless, the particular
scenario of sensible-data permitted to create a secure design for its auditing system.

Truncation attack. As shown in Section 11.5, a truncation attack consists of
deleting a continuous set of entries from the tail of the audit log. This attack is
possible if there is no "reliable, high-bandwidth channel constantly available between

6Currently it implements the connection to the remote log hosted on MongoLab.
7http://www.mongodb.org/

http://www.mongodb.org/
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T and U" [SK99]. In other words it the trusted verifier T is not aware of the total
length of the trail on the logger U. For sensible-auditor the trusted verifier is the
user, and the untrusted logger is the machine hosting the audit trail. Each user of
sensible-data service is aware of what is happening to his personal data by the use
of the dashboard, a live monitor of his data streams. This guarantees that the user
is always aware of the last entry that must be appended to the trail. Any deletion
will be detected as soon as the integrity of the chain is verified. The user is able to
check the integrity of his chain at any time, since the verification is immediate and
only needs his secret key.

There is also another possible solution to truncation attacks. This method employs
special entries that surrounds block of records as shown in [RBS+12]. At the
beginning of each block, a random number n is generated and hashed with the
rest of the security fields. For each subsequent entry in the block, this number is
decreased until it reaches the value of zero. At this point, a special closing entry is
appended to seal the block of entries. This procedure is repeated during the entire
data stream. If an intruder tries to cut entries from the tail, he will not be able to
forge an authentic hash since he does not know the value of n at that moment. In
addition, the lack of these special entries (open/close) will be detected during the
verification process.

Delayed detection attack. In SK scheme, delayed detection attack can be per-
petrated since the semi-trusted entity V does not possess the secret key A0 to verify
the MAC tags. In sensible-auditor, the trusted verifier possesses the secret key and
can immediately very each single entry in the log, therefore defeating this attack.

Online trusted server. The last difference with SK is the requirement for the
online trusted server T for the verification process. Once again, in sensible-auditor
the user is the trusted entity holding the key, so it redundant that he must be
present during the verification process: without him, there is no key, so there is no
verification.

Other peculiar security characteristics of sensible-auditor design are:

Key security. The security of this particular design relies on the secret key. There-
fore it is necessary to mitigate potential key compromise. First, there is only one
entity which holds the key, the user T. Secondly, sensible-auditor employs an "evolve
and delete" key update strategy to preserve the forward integrity property. During
the logging process the key is retrieved, used for computing the secure MAC and
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immediately one-way hashed (irretrievably deleting the previous value in the key-
store). Therefore, even if an intruder breaks into the machine holding the keystore,
he will not be able to retrieve the past keys and modify pre-compromise entries.

Users’ personal audit trail. In sensible-auditor design, instead of having one
single audit trail for the whole system and for all the users, each principal has his
own personal log (hash chain). This particular design has two main consequences.
First, scalability, allowing the concurrent logging of events of different users without
accessing a unique chain. Second, if – for whatever reason – a chain gets compro-
mised, only that particular principal, and therefore that particular chain, looses its
integrity, avoiding a domino effect to all the others. This principle is reflected in the
implementation, since each og trail has been implemented as a different collection
in MongoDB.

Auditing Properties. Finally, we conclude with an analysis of the auditing main
properties shown in Section 11.2:

- Integrity. Auditing log’s main purpose is to be a truthful representation of
the events happened in a system. sensible-auditor achieves this goal storing
sensible-data’s events in a secure form. Relying on SK ’s design, it employs
MAC tags to build hash chains that create dependencies between each record.
Any modification of the hash chain makes tampering detectable to verifiers
(tamper evidence). This design crystallises the past state of the trail at
every new entry, making it impossible for an intruder to modify what already
stored in the log (pre-compromise). Such property is called forward-integrity
and protects the integrity of log entries accumulated before the attack, from
insertion, alteration, deletion and re-order and can be verified through a chain
verification process which detects broken links.

- Verifiability. sensible-auditor provides restricted verifiability, not public ver-
ifiability. Each user possess a secret that permits log integrity verification.
Since this secret makes the alteration in the chain detectable, its knowledge
must be restricted to trusted entities only.

- Accountability. The D field in each entry specifies the author of the ap-
pended event.

- Searchability. Each log entry contains a field (D) that permits browsability.
Data contained in such field are previously anonymised by sensible-data’s
anonymizer component.
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- Confidentiality. Even if not the primary purpose of auditing system, confi-
dentiality is guaranteed on the limits of what provided by sensible-data system.
sensible-data system encrypts and/or hashes information before storing them
in the audit log making them anonymized.

- Append-only. The forward integrity property guarantees that no record can
be inserted before the last-in-the-chain event.

13.3.2 Implementation evaluation - Architectural Analysis

sensible-data is a system meant to support the concurrent access of numerous users.
The performances of the auditing component need to be adequate to the data
throughput that sensible-data service might generate, otherwise it will turn out to
be an unreliable representation of the events. Often, in the implementation process
of adapting an abstracted design to the concrete reality, constraints are met in
using, transmitting and storing the data. The following problematics have been
considered due to the distributed nature of sensible-auditor.

Assumptions

For both data in use and data at rest, two main assumptions have been made:

- Memory erasure. Audit log’s forward integrity property relies on the secrecy
of the evolving key. It is assumed that the operative systems hosting sensible-
auditor, audit trail and the key store completely remove from the memory
any traces of old data, such as the keys used during logging and verification
processes.

- Memory isolation. For the same reason as above, it is assumed that the
operative systems are strengthened against covert, side, and time-channel
attacks.

Data in use

Excessive computational cost might slow down logging and verification processes,
making the auditing system unable to record or verify. The symmetric architecture
preferred at design phase allows to keep the computationally requirements low (no
cumbersome PKC signing procedures).
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The decisions about which algorithms should have been employed for the hash
chain generation and the key evolution are implementation details. The current
implementation of sensible-auditor uses SHA-512 hashing function for evolving the
secret key A and for computing Y and Z values. SHA-512 is a secure hashing
algorithm designed by the NSA and published as NIST standard [FIP]. It is a general
purpose hash functions, designed to compute digests of big amounts of data in as
short a time as possible. Being fast makes it very suitable for ensuring the integrity
of hash chains in the log audit [SHA]. In addition, data from other sensible-data’s
modules come already hashed or encrypted, therefore those expensive operations
are not necessary.

Data in transit

sensible-auditor ’s audit trail is located onto the same machine hosting sensible-
data service. In scenarios where remote hosting is necessary8, data throughput
might become a problem. In these cases, the minimization of the communication
overhead is fundamental to avoid bottlenecks situations especially with bursts of
data at about the same timings. For example, it is reasonable to assume that a
lot of Bluetooth dyads can be uploaded as soon as students meet each other at
the university. There are three events in which sensible-auditor would interact with
the remote machine: storing new entries, verification and key retrieval. A possible
manner to minimize connections to the remote machine would be to implement
ad-hoc caching mechanisms. The verification process, for example, could benefit
from the retrieving of (parts of the) whole block of entries to check, instead of
establishing different singular requests. All data transmissions among sensible-data
components are carried over TCP protocol which implements reliable delivery and
manages data retransmission.

Data at rest

As shown in Section 13.1.3, sensible-auditor provides forward security to the audit
trail by means of security fields in each log entry. Two concepts must be considered
to assess the negative impact of such storage overhead. First, the proportion of
the overhead must be related to the size of what to store. Events in the log trail
have been represented in the efficient ways to keep the storage to minimum size.
The security fields Y and Z are short-size digests that ensure data integrity. As
explained above, Y and Z are the outputs of SHA-512 hashing algorithm, therefore
each of them requires 512 bits. On MongoDB these values have been stored as

8Like during the development phase.
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hexadecimal representation with the result of 16 bytes each (each digit codes holds
4 bits, 512/4 = 128 bits).

The second factor to consider is the storage capacity of the system. During the
development phase of sensible-auditor, it has been adopted a third party Database-
as-a-Service that provides a large storage at a low pricing. For such scenario, it is
reasonable to store enough information to make retrieval an analysis fast and easy.
Efficiency is an important concern for practical audit log systems.

It is worth to mention that confidentiality of the stored data and availability of the
auditing service (logging and verification) depend on the security of the MongoDB
instances.

13.4 Future Work

Section 13.3 has shown room for improvement in both architectural and security
design of sensible-auditor module.

Security Requirements

- Adding automatic routines to verifying log’s integrity check could be a
valid security enhancement. As shown in [SK99, MT09], this could be easily
achieved. First, another security field (MAC tag) needs to be added in each
log entry; then to a new semi-trusted entity will be integrated the knowledge
of the key for the verification of this new security field.

- Some deployment of sensible-data service could benefit from publicly verifi-
ability (e.g.: electronic vote). In such scenario, an asymmetric solution could
replace the actual symmetric design. A very simplified protocol has been ex-
plained in Section 11.3.4 and some fitting examples have been mentioned in
Section 12. Further studies are needed to assess a) security implications and
b) the feasibility of the necessary Public Key Infrastructure.

Architectural improvements

- First of all, it has be mentioned that sensible-auditor has been tested only
in closed development environments. Benchmarks about performance, scala-
bility, and robustness must be run in a live "production" environment before
discussing any other improvements.
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- If those tests successfully validate the capabilities of sensible-auditor, the mod-
ule can be developed as a remote auditing web service accessible through
REST APIs. In this way, its auditing capabilities would be usable by more
applications.

- It is worth to explore more efficient-data structures for storing/retrieving
records and also to investigate the possibility of encrypted queries to improve
confidentiality when the content of an audit log contains sensitive information
(see [WBDS04] on searchable encrypted audit logs).
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Appendix A

PiCSS Poster

The poster "Privacy in Computational Social Science: A guide for practitioners"
has been exposed and presented at:

- NetMob 2013,
"Third conference on the Analysis of Mobile Phone Datasets",
MIT - Massachusetts Institute of Technology,
May 1-3 2013,
http://perso.uclouvain.be/vincent.blondel/netmob/2013/NetMob2013-program.
pdf

- NetSci 2013,
"International School and Conference on Network Science",
Copenhagen, Denmark,
June 3-7 2013,
http://netsci2013.net/wordpress/wp-content/uploads/2012/09/booklet_
NetSci_2013_forWeb_4.pdf

http://perso.uclouvain.be/vincent.blondel/netmob/2013/NetMob2013-program.pdf
http://perso.uclouvain.be/vincent.blondel/netmob/2013/NetMob2013-program.pdf
http://netsci2013.net/wordpress/wp-content/uploads/2012/09/booklet_NetSci_2013_forWeb_4.pdf
http://netsci2013.net/wordpress/wp-content/uploads/2012/09/booklet_NetSci_2013_forWeb_4.pdf
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Appendix B

sensible-auditor Module

1 from Crypto . Hash impor t SHA512
2 from Crypto . Hash impor t HMAC
3 impor t os
4 from u t i l s impor t l og_con f i g as CONFIG
5 from Crypto impor t Random
6 from Crypto . Pub l i cKey impor t RSA
7

8 impor t s t r i n g
9 impor t random

10 impor t t ime
11 impor t da t e t ime
12

13 from django . c o n t r i b . auth . models impor t User
14

15 de f c onv e r t ( i n pu t ) :
16 i f i s i n s t a n c e ( input , d i c t ) :
17 r e t u r n { conv e r t ( key ) : c onv e r t ( v a l u e ) f o r key , v a l u e i n

i n pu t . i t e r i t e m s ( ) }
18 e l i f i s i n s t a n c e ( input , l i s t ) :
19 r e t u r n [ c on v e r t ( e l ement ) f o r e l ement i n i n pu t ]
20 e l i f i s i n s t a n c e ( input , un i code ) :
21 r e t u r n i npu t . encode ( ’ u t f−8 ’ )
22 e l s e :
23 r e t u r n i npu t
24

25

26 de f e x t r a c t (myDict , myL i s t ) :
27 i f myDict i s None :
28 r e t u r n
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29 f o r v a l u e i n myDict . v a l u e s ( ) :
30 i f i s i n s t a n c e ( va lue , d i c t ) :
31 e x t r a c t ( va lue , myL i s t )
32 e l s e :
33 myLis t . append ( v a l u e )
34

35

36 de f create_V (D) :
37 o u t p u t L i s t = [ ]
38 e x t r a c t (D, o u t p u t L i s t )
39 r e s u l t L i s t = conv e r t ( o u t p u t L i s t )
40 r e s u l t L i s t . s o r t ( ) # s o r t the va l u e s , done so when l a t e r i t w i l l

be checked , the hashes w i l l be the same
41 r e t u r n ’ ’ . j o i n ( r e s u l t L i s t ) # from l i s t to s t r i n g
42

43

44 de f create_D ( username , data ) :
45 appID = data [ ’ appID ’ ]
46 pay load = data [ ’ pay load ’ ]
47 r e t u r n {" use r ID " : username , "appID" : appID , " pay load " :

pay load }
48

49 de f create_Z ( current_V , previous_Z , prev ious_A ) :
50 hmac = HMAC. new ( prev ious_A )
51 hmac . update ( current_V )
52 hmac . update ( prev ious_Z )
53 r e t u r n hmac . h e x d i g e s t ( )
54

55

56 de f ca lcu lateHash_A ( rounds , A) :
57 f o r i i n range (0 , rounds ) :
58 h = SHA512 . new ( )
59 h . update (A)
60 A = h . h e x d i g e s t ( )
61 r e t u r n s t r (A)
62

63

64 de f getTimestamp ( ) :
65 r e t u r n da te t ime . da t e t ime . f romtimestamp ( t ime . t ime ( ) ) . s t r f t i m e ( ’%

Y−%m−%d %H:%M:%S ’ ) # Format : "2013−06−08 12 : 01 : 15"
66

67

68 de f pe rm i s s i onCheck ( _request , _permi s s i on ) :
69 i f _request . u s e r . i s_au t h e n t i c a t e d ( ) :
70 auth = True
71 e l s e :
72 p r i n t "User NOT au t h e n t i c a t e d "
73 auth = Fa l s e
74

75 i f _request . u s e r . has_perm ( _permi s s ion ) :
76 perm = True
77 e l s e :
78 p r i n t "he has NO p e rm i s s i o n s "
79 perm = Fa l s e
80 r e t u r n ( auth and perm )
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81

82

83 de f i s S up e rU s e r ( _request ) :
84 supe rUse r = _request . u s e r . i s_ sup e r u s e r
85 i f not supe rUse r :
86 p r i n t "Not a s u p e r u s e r "
87 r e t u r n Fa l s e
88 r e t u r n supe rUse r

code/helperModule.py

1 impor t pymongo
2 impor t s e r v i c e_ c o n f i g
3 impor t l og_con f i g
4 from u t i l s impor t l og_con f i g as CONFIG
5 from loggerApp impor t he lpe rModu le
6

7 c l a s s Key s to r e ( o b j e c t ) :
8

9 k e y t a b l e = None
10

11 de f __init__( s e l f ) :
12 s e l f . c l i e n t = pymongo . MongoCl ient ( l og_con f i g .

LOGGER_DATABASE[ ’ params ’ ] [ ’ u r l ’ ]%( l og_con f i g .LOGGER_DATABASE[ ’
params ’ ] [ ’ username ’ ] , l o g_con f i g .LOGGER_DATABASE[ ’ params ’ ] [ ’
password ’ ] ) )

13 s e l f . db = s e l f . c l i e n t [ l o g_con f i g .LOGGER_DATABASE[ ’ params ’ ] [
’ da tabase ’ ] ]

14 s e l f . k e y t a b l e = s e l f . db [ l og_con f i g .LOGGER_KEYS[ ’ params ’ ] [ ’
c o l l e c t i o n ’ ] ]

15

16 de f addUserKey ( s e l f , _username , _key ) :
17 r e t u r n s e l f . k e y t a b l e . i n s e r t ({ "username" : _username , " key " :

_key })
18

19 de f getUserKey ( s e l f , _username ) :
20 r e t u r n s e l f . k e y t a b l e . f ind_one ({ "username" : _username }) . ge t

( " key " )
21

22 de f r e s e t ( s e l f ) :
23 r e t u r n s e l f . k e y t a b l e . remove ( )
24

25 de f update_A ( s e l f , _username ) :
26 A = s e l f . getUserKey (_username )
27 A = he lpe rModu le . ca lcu lateHash_A (1 ,A)
28 s e l f . k e y t a b l e . update ({ "username" : _username } , { " $ s e t " : {

" key " : A } } )
29 r e t u r n True
30

31 de f e x i s t s U s e r ( s e l f , _username ) :
32 e x i s t s = Fa l s e
33 i f ( s e l f . k e y t a b l e . f i n d ({ "username" : _username }) . count ( ) !=

0) :
34 e x i s t s = True
35 r e t u r n e x i s t s
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36

37 de f d e l e t eU s e r ( s e l f , _username ) :
38 r e t u r n s e l f . k e y t a b l e . remove ({ "username" : _username })

code/keystore.py

1 impor t pymongo
2 impor t s e r v i c e_ c o n f i g
3 impor t l og_con f i g
4 from u t i l s impor t l og_con f i g as CONFIG
5 from loggerApp impor t he lpe rModu le
6

7 # SQL <==> NoSQL
8 # Table <==> Co l l e c t i o n
9 # Column <==> F i e l d

10 # Entry <==> Document
11

12 # Log en t r y f o r debugg ing = <flowID , D, V, Z>
13

14 c l a s s LogDatabase ( o b j e c t ) :
15

16 c l i e n t = None
17 db = None
18 c o l l e c t i o n L i s t = None
19

20 de f __init__( s e l f ) :
21 s e l f . c l i e n t = pymongo . MongoCl ient ( l og_con f i g .

LOGGER_DATABASE[ ’ params ’ ] [ ’ u r l ’ ]%( l og_con f i g .LOGGER_DATABASE[ ’
params ’ ] [ ’ username ’ ] , l o g_con f i g .LOGGER_DATABASE[ ’ params ’ ] [ ’
password ’ ] ) )

22 s e l f . db = s e l f . c l i e n t [ l o g_con f i g .LOGGER_DATABASE[ ’
params ’ ] [ ’ da tabase ’ ] ]

23

24

25 de f c r e a t e C o l l e c t i o n ( s e l f , _username ) :
26 co l l e c t i onName = _username
27 s e l f . w r i t e En t r y ( co l l e c t i onName , CONFIG .FIRST_ENTRY,

CONFIG .D0 , CONFIG . V0 , CONFIG . Z0 ) # Seed en t r y f o r a g i v en u s e r
28 r e t u r n None
29

30

31 de f w r i t e En t r y ( s e l f , _co l lect ionName , f lowID , D, V, Z) :
32 r e t u r n e d = s e l f . db [ _co l l ec t ionName ] . i n s e r t ({ " f l ow ID " :

f lowID , "D" : D, "V" : V, "Z" : Z})
33 r e t u r n s t r ( r e t u r n e d )
34

35

36 de f getMaxFlowID ( s e l f , _co l l ec t ionName ) :
37 maxFlowID = 0
38 r e s u l t E n t r y = s e l f . db [ _co l l ec t ionName ] . f ind_one ( s o r t =[(

" f l ow ID " , −1) ] )
39 i f ( r e s u l t E n t r y i s not None ) :
40 maxFlowID = r e s u l t E n t r y [ ’ f l ow ID ’ ]
41 r e t u r n maxFlowID
42
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43

44 de f g e tP r e v i o u s ( s e l f , _co l lect ionName , f l ow ID ) :
45 p r e v i o u s = f low ID − 1
46 r e t u r n s e l f . db [ _co l l ec t ionName ] . f ind_one ({ " f l ow ID " :

p r e v i o u s })
47

48

49 de f getLast_Z ( s e l f , _co l l ec t ionName ) :
50 maxFlowID = s e l f . getMaxFlowID ( _co l l ec t ionName )
51 r e t u r n s e l f . g e tEn t r y ( _col lect ionName , maxFlowID ) . ge t ( "Z

" )
52

53

54 de f g e tEn t r y ( s e l f , _co l lect ionName , f l ow ID ) :
55 r e t u r n s e l f . db [ _co l l ec t ionName ] . f ind_one ({ " f l ow ID " :

f l ow ID })
56

57

58 de f getZ0 ( s e l f ) :
59 r e t u r n CONFIG . Z0

code/log_database.py

1 impor t pymongo
2 from u t i l s . l og_database impor t LogDatabase
3 impor t j s o n
4 from u t i l s impor t l og_con f i g as CONFIG
5 from Crypto . Hash impor t SHA512
6 impor t he lpe rModu l e
7 from u t i l s . k e y s t o r e impor t Key s to r e
8 from django . c o n t r i b . auth . d e c o r a t o r s impor t u s e r_pas s e s_te s t
9 impor t bson . j s o n_u t i l as j s o n

10 from django . h t tp impor t HttpResponse
11

12 c l a s s Logger ( o b j e c t ) :
13

14 l ogDatabase = None
15 k e y s t o r e = None
16 f lowID_to_end = 1
17

18 de f __init__( s e l f ) :
19 s e l f . l ogDatabase = LogDatabase ( )
20 s e l f . k e y s t o r e = Keys to r e ( )
21

22

23 # Get r eque s t , check p e rm i s s i o n s , c r e a t e p a i r i n k e y s t o r e , s t a r t
the l o g

24 de f createNewUser ( s e l f , _request , newUser , newBaseKey ) :
25 i f not he lpe rModu l e . i s S up e rU s e r ( _request ) :
26 r e t u r n Fa l s e
27 i f s e l f . k e y s t o r e . e x i s t s U s e r ( newUser ) : # Only i f the u s e r i s

not a l r e a d y i n the db
28 p r i n t "User a l r e a d y p r e s e n t i n th DB"
29 r e t u r n Fa l s e
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30 s e l f . k e y s t o r e . addUserKey ( newUser , newBaseKey ) # Add new
p a i r <use r , key>

31 s e l f . l ogDatabase . c r e a t e C o l l e c t i o n ( newUser ) # S t a r t the l o g
32 r e t u r n " Created "
33

34

35 de f append ( s e l f , _request , _data ) : # who i s r e q u e s t i n g to
append , the data to append , who a r e we t a l k i n g about

36 i f not he lpe rModu l e . p e rm i s s i onCheck ( _request , " loggerApp .
aud i tEntry_append " ) :

37 r e t u r n Fa l s e
38 _username = s t r ( _request . u s e r )
39 i f not s e l f . k e y s t o r e . e x i s t s U s e r (_username ) : # I n t e g r a t e

t h i s check i n the p r e v i o u s one
40 r e t u r n Fa l s e
41 s t = he lpe rModu le . getTimestamp ( ) # add t h i s i n the l o g

e n t r y
42 cu r r en t_f l ow ID = s e l f . l ogDatabase . getMaxFlowID (_username ) +

1
43 current_D = he lpe rModu l e . create_D (_username , _data )
44 current_V = he lpe rModu l e . create_V ( current_D )
45 prev ious_A = s e l f . k e y s t o r e . getUserKey (_username )
46 prev ious_Z = s e l f . l ogDatabase . g e tP r e v i o u s (_username ,

cu r r en t_f l ow ID ) . ge t ( "Z" )
47 current_Z = he lpe rModu l e . create_Z ( current_V , previous_Z ,

s t r ( prev ious_A ) )
48 s e l f . k e y s t o r e . update_A (_username ) # evo l v e the key
49 mongo_id_str ing = s e l f . l ogDatabase . w r i t e En t r y (_username ,

cur rent_f lowID , current_D , current_V , current_Z )
50 r e t u r n ( cur rent_f lowID , " " , mongo_id_str ing )
51

52

53 de f u s e r R e g i s t r a t i o n ( s e l f , _ r eg i s t e r e d , _secretKey ) : #
_r e g i s t e r e d = True/ Fa l s e

54 pas s
55

56 de f appAutho r i z ed ( s e l f , _author ized , _appName , _request ) :
57 pas s
58

59

60 de f d e l e t eU s e r ( s e l f , _request ) :
61 i f not he lpe rModu l e . i s S up e rU s e r ( _request ) :
62 r e t u r n Fa l s e
63 username = _request .GET. ge t ( " username" )
64 r e t u r n s e l f . k e y s t o r e . d e l e t eU s e r ( username )
65

66

67 de f updateUserKey ( s e l f , _request ) :
68 pas s
69

70

71 de f check ( s e l f , _request , _key ) :
72 i f not he lpe rModu l e . p e rm i s s i onCheck ( _request , " loggerApp .

a u d i t T r a i l _ v e r i f y " ) :
73 r e t u r n Fa l s e
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74 username = s t r ( _request . u s e r )
75 i f not s e l f . k e y s t o r e . e x i s t s U s e r ( username ) :
76 r e t u r n Fa l s e
77 r e t u r n s e l f . startCheck_Z ( username , s e l f . l ogDatabase . getZ0 ( )

, s e l f . l ogDatabase . getLast_Z ( username ) , s e l f . flowID_to_end ,
_key )

78

79

80 de f checkGroup ( s e l f , _request , _group_name ) :
81 g roups_Va lue sL i s tQue rySe t = _request . u s e r . g roups .

v a l u e s_ l i s t ( ’ name ’ , f l a t=True )
82 g r o u p s_ l i s t = l i s t ( g roups_Va lue sL i s tQue rySe t )
83 in_group = Fa l s e
84 i f _group_name i n g r o u p s_ l i s t :
85 in_group = True
86 r e t u r n in_group
87

88

89 de f d a t a I n t e g r i t yCh e c k ( s e l f , current_D , current_V ) :
90 s t a t u s = Fa l s e # f a l s e=KO, True=OK
91 temp_V = he lpe rModu l e . create_V ( current_D )
92 i f ( temp_V == current_V ) :
93 s t a t u s = True
94 r e t u r n {" s t a t u s " : s t a t u s , "temp_V" : temp_V}
95

96

97 de f cha i n I n t eg r i t yCheck_Z ( s e l f , previous_Z , current_V ,
current_Z , A, f l ow ID ) :

98 s t a t u s = Fa l s e # f a l s e=KO, True=OK
99 prev ious_A = he lpe rModu le . ca lcu lateHash_A ( f lowID −1, A)

100 temp_Z = he lpe rModu le . create_Z ( current_V , previous_Z ,
prev ious_A )

101 i f ( temp_Z == current_Z ) :
102 s t a t u s = True
103 r e t u r n {" s t a t u s " : s t a t u s , "temp_Z" : temp_Z}
104

105

106 de f startCheck_Z ( s e l f , username , previous_Z , Z_last , f lowID , A)
:

107 keepLook ing = True
108 aud i t = {}
109 wh i l e ( ( f l ow ID <= s e l f . l ogDatabase . getMaxFlowID ( username ) )

and ( keepLook ing==True ) ) :
110 dataForCheck = s e l f . getDataForCheck ( username , f l ow ID )
111 i n t e g r i t y D i c t = s e l f . d a t a I n t e g r i t yCh e c k ( dataForCheck [ "

current_D" ] , dataForCheck [ " current_V" ] )
112 i f ( not i n t e g r i t y D i c t [ " s t a t u s " ] ) :
113 keepLook ing = Fa l s e
114 cha i nD i c t = s e l f . c ha i n I n t eg r i t yCheck_Z ( previous_Z ,

dataForCheck [ " current_V" ] , dataForCheck [ " current_Z" ] , A, f l ow ID
)

115 i f ( not c h a i nD i c t [ " s t a t u s " ] ) :
116 keepLook ing = Fa l s e
117 aud i t = { f l ow ID : [ i n t e g r i t y D i c t [ " s t a t u s " ] , c h a i nD i c t [ "

s t a t u s " ] ] }
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118 prev ious_Z = cha i nD i c t [ "temp_Z" ]
119 f l ow ID = f lowID + 1
120 r e t u r n a ud i t
121

122

123 de f getDataForCheck ( s e l f , username , f l ow ID ) :
124 i f ( f l ow ID < 1) :
125 p r i n t " f l ow ID = " + s t r ( f l ow ID ) + " can not be checked "
126 e x i t (−1)
127 c u r r e n t = s e l f . l ogDatabase . g e tEn t r y ( username , f l ow ID )
128 r e t u r n {" current_D" : c u r r e n t . ge t ( "D" ) , " current_V" :

c u r r e n t . ge t ( "V" ) , " current_Z" : c u r r e n t . ge t ( "Z" ) }
129

130

131

132 ####################################################
133 # Ca l l examples :
134

135 de f createNewUser ( r e q u e s t ) :
136 l o g g e r = Logger ( )
137 u s e r = r e qu e s t .GET. ge t ( " u s e r " )
138 key = r e qu e s t .GET. ge t ( " key " )
139 r e t u r n e d = l o g g e r . c reateNewUser ( r eque s t , use r , key ) # Ca l l t h i s
140 r e t u r n HttpResponse ( r e t u r n e d )
141

142

143 de f append ( r e q u e s t ) :
144 l o g g e r = Logger ( )
145 f a k eJ son = {"appID" : "FUNF" , " pay load " : "FUNF_dummyPayload"} #

get t h i s from c a l l e r
146 r e t u r n e d = l o g g e r . append ( r eque s t , f a k eJ son )
147 r e t u r n HttpResponse ( r e t u r n e d )
148

149

150 de f check ( r e q u e s t ) :
151 key = r e qu e s t .GET. ge t ( " key " ) # Get from the c a l l e r
152 l o g g e r = Logger ( )
153 r e t u r n e d = l o g g e r . check ( r eque s t , key )
154 r e t u r n HttpResponse ( r e t u r n e d )

code/loggerModule.py
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