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Summary

With the increase in availability of temporal datasets collected from complex
networks come new possibilities for studying the dynamic patterns formed by
the interactions of such networks. Meaningful networks can be observed any-
where in day-to-day life: in phone-calls and daily social interactions; in public
transportation, in technology and in nature: in interactions between species
or between proteins. Having temporal data about such systems allows for a
temporal networks representation.

While the link prediction problem already has developed well-established meth-
ods for predicting future interactions by analyzing a network’s intrinsic features,
it predates the concept of temporal networks and only assumes a static network
(a single state of the system), only being able to predict a single future state,
of unknown temporal limits. When temporal data is available the expectations
become higher, the occurrence of a new interaction has to be more precisely
delimited in time, and more than a single state of the network has to be taken
into account. Not much literature currently covers the prediction problem for
temporal networks, and what exists is focused on certain domains and very
specific approaches.

This thesis looks at the prediction problem for temporal networks from a broader
angle, aiming to identify general goals for each stage of the problem, we pro-
pose an experimental framework for solving the prediction problem for temporal
networks. The robustness of the framework is tested with an implementation
aimed to obtain results from a temporal network of face-to-face interactions.

The results are collected from multiple experiments aimed to explore the pa-
rameter space, and are validated using state-of-the-art measures for predictive
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performance. These results will demonstrate that, although the specific meth-
ods were relatively simple, their implementation within the proposed framework
brought relatively good results. The proposed framework is just a first step at
generalizing a large problem, and the directions for further development are
many: the framework could be optimized for specific domains or, by contrast,
improved to provide more possibilities while keeping its generality.



Preface

This thesis was prepared at DTU Compute – Department of Applied Mathemat-
ics and Computer Science at the Technical University of Denmark in fulfillment
of the requirements for acquiring a M.Sc. in Computer Science and Engineering.

The thesis deals with studying predictability of temporal networks and describes
an experimental framework for solving the structure prediction problem. The
framework is implemented and tested on a temporal network of face-to-face
interactions.

The thesis consists of an introduction describing the problem domain, goals
and related work (Chapter 1); a specification of the framework components
proposed for extracting predictable patterns and the discussed implementation
for our domain (Chapter 2); the proposed models for prediction and validation,
and the discussed results, based on a set of experiments exploring the parameter
space (Chapter 3); conclusions and possible future research (Chapter 4).

Lyngby, 26-July-2013

Alexandru Marcu
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Chapter 1

Introduction

Everywhere in nature, society and technology we can find dynamic systems
whose evolution is influenced by underlying entities that are interacting with
each other over time.

From our own daily interactions with others, face-to-face [BC13] and via phone
calls or Internet, interactions that occur between species [PD05], ball passing
dynamics in a football game [HT05] to interactions that occur between molecules
of a cell [Pal06]. They are all studied by a certain discipline in an effort to reach
a better understanding of the system and solve problems related to it.

When we can identify certain entities and the interactions between them in a
system, we can get an overview of such a system by representing it as a graph.
A graph is a mathematical representation of a set of entities connected pairwise
by links. The entities that are interconnected are named nodes, and the links
that connect them are named edges.

Representing a system as a graph allows us to learn much about how groups of
entities are connected with each other, what roles certain entities play in the
system, what entities are most influential in the system, etc. Even so, for certain
systems this framework can be improved by adding additional levels of detail,
such as, the weight of an edge [BBPSV04], spatial positioning of a node [Bar11],
etc., depending on the characteristics of the system.
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In this thesis, we are interested in the dynamics of interactions between entities
and we add a temporal dimension to the graph representation of a dataset,
thus we get information about the times at which entities and interactions are
active. By adding the temporal dimension, a static graph can be represented as
a sequence of graphs ordered by the time, where each graph contains a subset
of nodes and edges, that is, those which are active at the given time (as seen in
Figure 1.1). Such a representation is a temporal network.

7 am 10 am 1 pm 4 pm 7 pm

Time

Figure 1.1: A temporal sequence showing face-to-face interactions between students at
DTU Campus between 7 a.m. until 10 p.m. on a regular Monday. The
graphs are arranged in circular layout, so that the activity increase during
study hours is clearly visible, likely due to attending classes.

A great variety of systems can be modeled as temporal networks, yet achieving a
good understanding of such systems requires some degree of preliminary under-
standing of the system and the domain it is part of, thus the study of temporal
networks is an interdisciplinary field. Some examples of real-world problems
where a temporal networks model can prove useful are – finding the path in
spreading of a biological or electronic virus, determining trends in stock mar-
ket prices, understanding relations between individuals in a social network and
predicting future interactions. The latter example makes object of this thesis.

Having enough knowledge of the system to remove undesired noise and time
intervals where the activity is known to be nondeterministic, we are left with
sequences of graphs likely to share a similar topology. Such sequences can form
more or less predictable patterns. For example:

• The change of seasons is known to influence the interactions between
species, this can be more predictable in the case of animal species that
are known to migrate on a seasonal basis. Even so, unknown factors can
influence the location where they migrate, or the other species they inter-
act with.

• Daily routine can be predictable in the case of individuals with traditional
employment or education where we have well-delimited boundaries be-
tween working hours and an individual’s free time, as are the interactions
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with colleagues delimited from those with friends and relatives.

• The interactions between individuals at an airport on the other side, are
very hard to predict accurately since individuals interacting with each
other are always different. In such a network, only regular business trav-
elers may have some predictability. The majority of travelers and tourists
are not regular airport users and would be discarded as noise. On the other
side, including data from individuals who are airport personnel would re-
strict all predictions to their daily routine (which has a much higher reg-
ularity relative to that of business travelers).

In the case of the airport interactions example, while it may be helpful to use
a temporal networks model to study the outbreak of a disease, the number of
relatively reliable positive predictions that can be made is very low compared
to the total number of predictions (reliable or not) that can be produced, which
is proportional to the size of the dataset. We denote such a dataset to yield a
low predictive value compared to the first two examples.

In this thesis we study the predictability problem – which we present in Sec-
tion 1.3 – for a proximity dataset described in Section 1.1, and for doing so, we
propose an experimental framework whose goals are discussed in Section 1.2.
A number of articles have been significant in inspiring the development of the
framework, while others can yet bring further value as a starting point for stud-
ies that would make use or expand the proposed framework, these papers are
presented in Section 1.4.

1.1 Dataset

The main dataset used in the development and testing of our predictability
framework consists of proximity data collected by the SensibleDTU1 team from
the smartphones of ∼140 students via Bluetooth, using a dedicated data collec-
tion app which only became active when students were in the proximity of the
DTU Campus. Due to limited range of Bluetooth visibility, and the requirement
for the devices to be interconnected for at least a certain minimum period before
registering an interaction, the proximity data largely corresponds to face-to-face
interactions. The data was collected throughout a period of 4 months (between
November 12th, 2012 until March 11th 2013) and the temporal resolution is of
1 hr. per timestep. Figure 1.2 shows an overview of the temporal data in terms
of changes in cardinality of node set (individuals) and edge set (interactions) of
the graphs in the time sequence.

1http://sensible.dtu.dk

http://sensible.dtu.dk
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Figure 1.2: The histogram in (a) shows cardinalities of node and edge sets for our entire
dataset with graphs aggregated to 24 hours per timestep, while in (b) we
only show the node set cardinalities within the first three weeks, from graphs
aggregated to 8 hours per timestep. In (a), firstly, we can observe that the
number of edges presents fluctuations in their proportionality to the number of
nodes. Secondly, we can get an overview of the entire temporal sequence and
we can notice the low activity during weekends, the December holiday (∼42–
56), and of the study break between semesters(∼77–84). Figure (b), zooms
in and shows only the cardinality of the node set. Thus, we can observe the
activity fluctuations in different intervals of the day such as: early morning,
study hours, evening.

The students taking part in data collection were enrolled in 3 different ma-
jors (Physics and Nanotechnology, Electro technology and Software engineering)
thus providing a good picture of social interactions within each of these densely
connected groups. Furthermore, in order to reduce the risks of participants
leaving the project, the users were provided with an environment in which they
could access and visualize the data collected about them.

During data collection, entries to the database were added only when an inter-
action (proximity) between at least two individuals took place. In consequence,
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a node in the dataset’s corresponding temporal network will be active only when
it has an active link to at least another node. Therefore it is good to note that,
although the temporal networks model places no restriction on this, there are
no graphs in our dataset’s temporal network containing isolated nodes.

In the context of predictability in temporal networks, examples to show the
value of isolated nodes are yet to be discovered, and although there may be
systems where such nodes hold some value2, our thesis is mainly focused on the
predictability of interactions taking place in the system and not in predictability
of entities.

1.2 Goals

The question our thesis begins from is “can we extract the essence of a dynamic
system based solely on its recurring temporal patterns?”. The question does
not have a straightforward answer: some systems may not present a variety of
evolution patterns enough to be considered their essence, others may have so
complex recurring patterns that extensive domain knowledge may be required,
while others may indeed have accessible recurring patterns, yet – unless the
right questions are asked – there is very little we can learn from.

Therefore, the primary goal of this thesis is to provide an extensible experimen-
tal framework for (a) exploring different data processing and training models,
(b) finding evolution patterns in temporal networks and (c) determining the
predictive value of a temporal network. Furthermore, the proposed framework
should be domain-independent, it should not rely on assumptions which only
apply to datasets coming from specific domains (e.g. social datasets).

While the domain independence cannot be completely guaranteed, we assume
that a dataset that does not fit in the proposed framework cannot be meaning-
fully represented as a temporal network. For certain domains, additional levels
of detail might be of essence and the proposed framework should be able to scale
and support any additional heuristic algorithms or parameters which a certain
domain might require.

The framework for solving the structure prediction problem can be split into
smaller models for solving individual tasks. These smaller models should be
the loose-coupled components of the framework. A component should allow for
its implementation to have any kind of approach without affecting the other

2For example, when the activation of a node would trigger a remote interaction
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components, as long as the input is correctly processed and the expected out-
put is forwarded to the next component. Each of the actual implementations
can therefore be regarded as a heuristic algorithm, for which domain specific
solutions and shortcuts are desirable, and whose individual performance can be
easily assessed.

It is important to specify that while aiming to keep a degree of generality the
specific implementations of each of the framework components were built with
the available dataset in mind. Therefore, while datasets belonging to different
domains may still give adequate results, it is most likely that the current imple-
mentation will perform best with social datasets (and less so with e.g. finance
or microbiology datasets). Furthermore, it should also be noted that the im-
plementations for each component are simple solutions, meant to exemplify the
possibilities of the proposed framework. Each individual component solves a
complex problem for which the simple solution may be further improved with
state-of-the-art methods.

For the developed Python tool which implements the framework and computes
the results, the main goals were extensibility and providing an environment that
allows for easy visualization and comparison of models and their results.

Throughout the thesis, additional detail will be brought to these goals as the
underlying components and concepts of the proposed framework are discussed.

1.3 Definitions and Problem Statement

This section formally defines a temporal network as is required for defining and
discussing the structure prediction problem for temporal networks. Definitions
1.3.1 and 1.3.2 were previously introduced in the work of Lahiri and Berger-
Wolf [LBW07]. A more established and adjacent, yet substantially different
problem – that of link prediction – is also discussed in relation to structure
prediction towards preventing any future confusion.

Definition 1.3.1 A temporal network is a sequence of graphs
G = 〈G1, . . . , GT 〉 where Gt = (Vt, Et) is a graph of pairwise interactions at
time t ∈ [1, T ], represented as edges in Et connecting nodes in Vt.

A value for time t denotes a timestep, whereas an instance of the graph
Gt, ∀t, denotes a snapshot.

We also informally define the resolution of a temporal network as ∆−1
t where ∆t
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is the time difference (i.e. in seconds) between two consecutive timesteps, thus a
temporal network can be said to have a high-resolution when the temporal level
of detail is high, relative to another temporal network, or relative to a 24 hrs.
time difference (when studying social datasets, or other systems where entities
have a behavior corresponding to a circadian rhythm3).

Definition 1.3.2 (Structure Prediction problem) Given a
temporal network G = 〈G1, . . . , GT 〉, predict a set of edges for eachGt where
t > T .

The structure prediction problem can be confused with another closely related
problem of network analysis, that of link prediction. As the names may sug-
gest, similar results are achieved, however at different levels of precision, and
starting from different inputs. To remove all confusion, we give the defini-
tion of link prediction based on the definition provided in the work of Liben-
Nowell et al. [LNK07], with minor adjustments to suit the context in discussion.

Definition 1.3.3 (Link Prediction problem) Given the snap-
shot GT of a temporal network, predict the edges that will be added to the
network during the interval from time T to a given future time T ′.

The link prediction problem uses a single snapshot as input, which can be the
current state of a system, and looks at the features that are intrinsic to the
network itself, without assuming or having knowledge of the previous states
of the network; a large variety of literature has been developed around the
topic (since it predates the temporal networks model) and different heuristic
approaches for extracting predictive network features have been developed. The
model produces a list of edges likely to occur between the (present) state at
time T and a certain point in the future T ′ without predicting the exact time
of occurrence.

In contrast, the structure prediction problem requires an entire temporal network
as input, and a solution to the problem will rely on learning from the recurrent
patterns in the temporal variation of structure, however it can also make use of
the features computed by a link prediction model, or by any other known models.
On the other hand, having knowledge of recurrent patterns, it is expected that
a solution to the structure prediction problem is capable of predicting when an
interaction may occur with a higher precision than in the case of link prediction.

It is easy to remark that the two problems are designed to provide precision
levels proportional to the availability of data. Knowing only a single state of

3A circadian rhythm is any biological process that displays an oscillation of ∼24 hours
(Wikipedia)
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the system, there is no way to predict when interactions will occur but only
which interactions are likely to occur. Having access to a larger sequence of
states, it is expected that we are also able to predict when certain interactions
will occur, both by using the strategies of more simple problems as well as
specialized methods for discovering the recurrent temporal patterns. We can
therefore conclude that link prediction and structure prediction are overlapping
problems, and that structure prediction is an extension to link prediction.

The framework proposed by this thesis is built as a model for solving the struc-
ture prediction problem. By default, it supports implementation of algorithms
for link prediction, which may enhance the quality of recurrence based predic-
tions, and thus, significantly improve the accuracy of the produced results.

1.4 Related Work

This section surveys the literature relating to temporal networks and to the
proposed framework. We can split these papers into four categories: 1) papers
used as starting points – that introduced concepts significant in the design of
the framework, 2) papers that introduce network measures that may be ex-
perimented with and which may contribute to producing improved prediction
models, 3) papers describing specific systems which may inspire new experi-
ments with the framework and 4) papers that may be of use in extending the
framework.

The literature which makes the first category can justify many of the decisions
taken in the design of the framework, the second category can be of great use
in creating interesting experiments, the final two categories – with a few excep-
tions – consist of relatively new papers which may prove useful in raising new
questions and introducing new concepts that could prove to be significant in
further development of the proposed framework, these will further be referred
to in Chapter 4, when future work is discussed.

1.4.1 Starting points

An important starting point was the work of Lahiri and Berger-Wolf with “Struc-
ture Prediction in Temporal Networks using Frequent Subgraphs” [LBW07], the
paper introduces the previously described structure prediction problem and pro-
vides an algorithm for discovering the recurrence pattern of interactions based
on the recurrence in their relative delays.
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This approach is central to our method for discovering patterns formed by in-
teractions. To reduce the number of computed delays (which is huge, and has a
negative impact on the computational performance), interactions are redefined
as maximal frequent subgraphs. These are extracted in a preprocessing step us-
ing a data mining algorithm named MAFIA [BCG01]. This algorithm as well
as a different data mining algorithm named FP-Growth [HPY00] were experi-
mented with in the beginning of our framework’s development, they were only
kept as alternate implementation choices, since the computational performance
of both of these frequent itemset mining algorithms is still very low, while the
predictive performance may also be affected. This choice and the solution that
was found, will be detailed in Section 2.4.

One of the challenges of adapting the algorithm proposed by Lahiri and
Berger-Wolf was the resolution difference between our dataset, and the datasets
on which they based their experiments: the Enron dataset [KY04], a financial
dataset of stock market price changes and a biological dataset consisting of in-
teractions between plains zebras. It became obvious that while the delay based
prediction algorithm could provide meaningful information at a resolution of
e.g. 24 hrs. per timestep, its results on a resolution of 1 hr. per timestep were
not as meaningful. That is, because most of the recurring delays had a size of
only a single timestep, thus pointing to interactions that occur at consecutive
timesteps, which are in fact, the continuation of an existing interaction.

Aiming to keep the degree of generality of our implementation, we looked for
models of discovering the optimal resolution. The model provided by Clauset
and Eagle [CE12] looks at the length of interactions as a function of the duration
of the time window. They compute the optimal resolution based on the average
degree of nodes, the clustering coefficient and a measure called the adjacency
correlation between pairs of adjacency matrices.

In another such model proposed by Sulo et al. [SBWG10], a time series is formed
by computing a user-defined network measure to each graph in the temporal net-
work. For different resolutions (which are iterated through), two measurements
having opposite behaviors (relative to window size) are applied to the time
series, these are the variance and the compression ratio of time series’ string
representation. When the difference between the two measurements is minimal,
then the resolution for which the measurements were made is optimal.

Testing these models brought different results, which in most cases had a nega-
tive impact on predictability, with some exceptions for the model of Sulo et al.,
where a list of optimal resolutions is yielded depending on a goodness value
which defines what maximal difference between the two opposing measurements
is accepted for a resolution to be considered optimal. By relaxing this param-
eter a larger list was resulted which included some of the values expected for
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our dataset. Due to the variety of resolutions that can be used, the framework
proposed in this thesis does not assume an optimal resolution, allowing for dy-
namically sized timesteps instead. Research on the effect of temporal resolution
used for temporal networks has been done by Ribeiro et al.[RPB12] who pro-
vide a framework for investigating the consequences of aggregating timesteps to
a fixed resolution.

1.4.2 Network measures

A comprehensive overview of temporal networks and the available metrics was
published by Holme and Saramäki [HS12], their work includes references to a
wide range of papers around the topic. The metrics presented in this paper and
others are detailed in the recently published work by Nicosia et al. [NTM+13]
and in the work of Tang et al. [TSM+10]. The previously mentioned paper by
Sulo et al. [SBWG10] also indicates some of the network measures for tempo-
ral networks, particularly those meaningful to detecting the similarity between
graphs in the context of finding an optimal resolution.

While Nicosia et al. and Tang et al. are focused on those measures that have
to be redefined for temporal networks (e.g. paths, distances between nodes),
small-world behavior and motifs, Sulo et al. proposes measures that can be
applied directly for the graphs corresponding to each timestep (e.g. density,
eccentricity, radius).

1.4.3 Domain-specific systems

In cell biology, a recent paper by Wallach et al.[WSM+13] identifies new protein-
protein interactions (PPIs) and builds a dynamic network of the interactions,
predicting that circadian PPIs “dynamically connect many important cellular
processes, contributing to temporal organization of cellular physiology in an
unprecedented manner”.

The paper of Dechter [DMP91] describes “Temporal Constraint Networks”,
which is a concept not directly related with our temporal networks concept.
However, given its potential utility in solving problems from fields such as Dis-
tributed Computing or Artificial Intelligence, it could be interesting to look into
how this type of problem-solving systems would benefit from a state-of-the-art
temporal networks approach. Especially since temporal constraint networks
present many common challenges with the more recent temporal networks ap-
proaches, such as verification of path consistency, and temporal problems which



1.4 Related Work 11

the more recently developed measurements may address. If such networks are
indeed of use in AI, then with a temporal networks representation and a robust
solution to the predictability problem, a new approach to planning could be
discovered.

A number of face-to-face interaction systems, such as the one which is used by
this thesis, are described in the paper of Barrat and Cattuto[BC13]. Their work
brings comprehensive experiments and results in regards to the particularities
of representing such systems with a temporal networks model.

Finally, as a continuation of the previously mentioned work of Nicosia et al. and
Tang et al., a very recent article of Tang et al.[TLS+13] provides case studies
from different domains and comprehensive results demonstrating the utility of
the network measures presented by their previous papers.

1.4.4 Extending the framework

While this thesis focus is on structure prediction in temporal networks, our ap-
proach to feature extraction could greatly benefit from extension with methods
from the more established and discussed problem of link prediction, adapted
to our temporal context and cross checked with the features that we extract
from the temporal sequence. Good surveys of the existing link prediction meth-
ods and new link prediction approaches can be found in the works of Liben-
Nowell and Kleinberg[LNK07], of Lü and Zhou[LZ11] and of Popescul and Un-
gar [PU03]. A new and comprehensive approach to solving the structure pre-
diction problem that makes use of link prediction is detailed in the more recent
paper by Ouzienko et al.[OGO11].

A significant abstraction of the temporal networks model can be found in the
work of Berlingerio et al.[BCG+11] “Foundations of Multidimensional Network
Analysis”. It argues that, in a multidimensional network there can be multiple
edges connecting two nodes; for temporal networks, the edges would correspond
to each recorded timestep. The paper further presents relevant measures for the
abstraction and tests the proposed framework on a real world multi-dimensional
network constructed from search queries submitted by 650,000 users.

In the paper “Quantifying social group evolution” Palla et al.[PBV07] study the
evolution of communities in temporal networks by looking at two datasets, one
describing the collaboration between scientists and another of phone calls be-
tween users of a mobile network. They provide an algorithm based on the clique
percolation method [PDFV05] that allows investigating the dependencies and
relationships that influence the evolution of communities. Their results show
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that while large groups may persist longer when capable of dynamically alter-
ing their membership, smaller groups tend to remain stable only while their
composition remains unchanged. Community structure is determined using a
different approach by Mucha et al.[MRM+10], their paper provides a framework
that extracts communities based on “combinations of individual networks cou-
pled through links that connect each node in one network slice to itself in other
network slices”.

Richer datasets can say more about the meaningfulness of certain interac-
tions, a detail of great importance to the accuracy of prediction models.
Gilbert and Karahalios [GK09] describe the concept of tie strength, and obtain
results by extracting the features of a Facebook data sample of 35 participants;
their Facebook dataset is rich enough to allow extracting a wide range of fea-
tures, from messages, using sentiment analysis, and from profile data, they can
extract differences of age, education, etc. Although a dataset of this detail might
be hard to acquire on a large scale and for domains other than that of online
social networks, the concept of tie strength could be developed in a more general
model even for less detailed datasets.



Chapter 2

Discovering Predictable
Patterns in Temporal

Networks

In this chapter we present our approach to solving the structure prediction prob-
lem. For this, we propose a framework which includes both solving the problem
as well as collecting statistics from the results and learning the predictive value
of a temporal interactions dataset. At the core of the proposed framework stands
the concept of layers, therefore the framework will henceforth be referred to as
“Layered Predictability Finder”, or in short LPF.

Previously, in Figure 1.2b, discussed when introducing the dataset, we have
shown how the nodes and the edges have a fluctuating cardinality from one
snapshot to another. Knowing the nature of the dataset, one could say that
showing this through a graphical illustration is not necessary, because it de-
scribes an obvious, visible phenomenon. Not all datasets benefit of the same
accessibility to an uneducated observer as a social dataset does.

The proposed framework relies on the premise that, having an observable phe-
nomenon, theory or assumption, that characterizes a system, there must always
be at least one way to quantify the temporal fluctuation in that system such
that, the values of the resulting discrete signal can be mapped to certain states
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of the known phenomenon. If this is true, then the timesteps corresponding
to the mapped values can also classified based on the quantified values of their
corresponding snapshots. We name such a classification of timesteps, a layer.
A reference to a layer will be named a label, and the classification process will
be denoted as labeling.

Known Window Prediction Window

(a)

E

E'

(b)

Figure 2.1: A schematic of the proposed framework. Figure (a) shows how the
timesteps of a temporal network can be classified. For example, a timestep can
be labeled as yellow if the density d of its graph is at least 0.25, blue if d ≥ 0.4
and red if d < 0.25. (b) shows how dyadic interactions from the set E′, formed
by data that was kept after noise reduction are each assigned a layer based on
their regularity. A simple example of what this would mean can be exemplified
by the following scenario: Bob usually meets Charlie during morning classes
(i.e. blue layer), Charlie only meets with Alice in the afternoon (i.e. yellow
layer), Charlie sometimes meets with Bob in the evening (i.e. red layer).
While A − C is always regular in yellow, B − C can be regular in blue, yet
the interaction may not be regular in the yellow layer. In other words, we
classify interactions based on the time intervals where they are known to be
active most regularly. This will be detailed later on in Section 2.4.

Measuring an observable phenomenon produces a set of layers, these we denote
to be a dimension. In order for an observable phenomenon to be useful to
prediction, it must have a measurement which provides a signal of relatively high
variance. If relevant, multiple measurements of the same phenomenon can be
combined (e.g. density with diameter), or multiple dimensions (e.g. proximity
and phone calls) can be aggregated or separately used in prediction.
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In the case of the temporal network formed by our dataset, the observable phe-
nomenon is “the temporal dynamics of face-to-face interactions between students
at the DTU Campus”. Had we not known the underlying context in which the
dataset was extracted, then the phenomenon could have only been expressed as
“the temporal dynamics of proximity interactions between individuals at a fixed
location”, yet we known the test subjects of the experiment, the location, and
more importantly, that the system’s dynamics are dependent on the academic
calendar, furthermore we know that the proximity interactions are actually face-
to-face interactions (as described in Section 1.1). The more it is known about a
dataset whose predictability is studied, the better are the chances of creating a
better performing prediction model.

A schematic of the basic concepts of the proposed framework is shown and de-
scribed in Figure 2.1, it also introduces the aspect of edge classification. Not
every component of LPF could be visually expressed in a drawing, which is why
we give an overview of the framework’s main components in Table 2.1, here we
also show in advance the assessment of their impact on the prediction perfor-
mance, and the flexibility of implementation, these are thoroughly described in
the sections dedicated to each component. The impact of components on each
other is shown by the dependency graph in Figure 2.2.

NRPP

FL

Fi

TR  P  V

 A  B

 A  B

 A

B requires A

B could require A

A is optional

Figure 2.2: Dependency graph between components in LPF, node labels stand
for the initials of the components presented in Table 2.1. The dependency
between components means that a component requires the output produced by
another. A dashed circle represents an optional component, and a dotted edge
represents an optional dependency (based on the choice of implementation).
A component adds its produced data to the existing framework knowledge and
this is passed to the next component. The last component (Validation) has
access to all the produced data, whereas the first component (Preprocessing
or Noise Reduction) will only have access to the raw temporal network.
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Component Description
Preprocessing (PP) [Optional] Performs any tasks that may be required,

e.g. resolution adjustments, extraction of data samples,
domain-specific adjustments

Noise Reduction (NR) Discards edges and nodes from the temporal network,
if they are noise, the definition of noise is variable.

Find Layers (FL) Uses a variable measurement to label each timestep and
create layers.

Find Interactions (FI) Categorizes the edges into layers and applies an inter-
action principle. The default interaction principle is
that an interaction is formed by a dyad. Changing
this definition is meant to join multiple edges in a sub-
graph, such that interactions become more meaningful,
and the computational performance of the components
that follow is improved.

Training (T) Extracts features from the labeled time sequence and
from the computed list of interactions. These are
trained (i.e. on the known window) using different
methods. The component produces a list features with
different trust levels.

Prediction (P) Uses the list of features to create two prediction sam-
ples, one containing trusted predictions, and another
with negative predictions, made from untrusted fea-
tures.

Validation (V) Tests the predictions against a validation sample and
computes the predictive performance of the model
which was experimented with.

Table 2.1: Overview of the framework components

The rest of this chapter will focus on pattern discovery and describe the compo-
nents that facilitate it. Prediction and Validation will be covered together with
the results in Chapter 3.
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2.1 Preprocessing

Preprocessing (PP) has the purpose of optimizing the dataset before being used
for solving a prediction problem. In itself, PP is not a component for which LPF
provides a general specification; this stage is free to implement any approach
that is found necessary or appropriate.

It is generally recommended that PP does not overlap with other framework
components, e.g. noise reduction. However, this is not mandatory and may be
acceptable, for example, when there is a different (or domain-specific) definition
of noise compared what is implemented by the reduction component, and both
need to be used.

It is important that domain-specific observations or assumptions are considered
here. When a high predictive performance is required, it is better that data
known to be unpredictable is removed, allowing LPF to focus on what is un-
known or not easily observable, rather than learning from the raw data. By
contrast, if a raw dataset with known unpredictable (or outside the scope) sec-
tions is given as input some undesired consequences may be observed. First,
the processing time will be unnecessarily increased, and second, not everything
which is unpredictable may be detected accurately, creating predictions from
interactions outside the scope, therefore likely to be inaccurate. A list that
exemplifies some of the tasks PP may carry is given below.

Time sequence filtering. A dataset may contain time intervals for which the
underlying interactions may have a different scope than what needs to be
predicted; interactions occurring in these intervals may not exhibit the
same patterns as the others. If known, it may be beneficial for the results
if such time intervals are discarded. If not, these intervals are eventually
detected by LPF and treated separately, but this may not always be done
accurately.

Extraction of data samples. In the general case, predictions should be ex-
tracted from a subset of the data, known as a training sample, whereas
validation should be done against a distinct subset, known as a validation
sample. Depending on the validation model, multiple samples can be used
for training, or in validation, meaning to provide a better picture of the
results.

Resolution adjustments. An experiment should start from a resolution that
is minimally optimal to the desired prediction scope, e.g. it might not
make sense to have a resolution of 10 min. per timestep if we are only
interested in predicting interactions across different weeks. This applies
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only when starting from relatively high resolution datasets, and should be
done only when certain that the starting resolution is too high compared to
that of the expected predictions. In the absence of any resolution adjust-
ments, LPF automatically groups intervals together, attempting to find
an optimal resolution based on temporal variations in network topology.

Data adjustments. Meant to handle any other specificities of the dataset,
or fix problems detected in previous experiments; e.g. removing iso-
lated nodes, removing edges with certain properties, applying certain con-
straints.

In our implementation, PP is used to a) extract one or more training samples
and a validation sample, as required by the validation model which will be
described in Section 3.2, and b) to eliminate time intervals which are outside the
prediction scope, in our case these are the winter holiday, the semester break and
the weekends. Although weekends are recurring intervals, interactions tend to
have a different scope and are likely to exhibit different patterns, removing them
from consideration provides extra predictive performance because the scope of
prediction is narrowed to interactions occurring during study weeks, which is the
desired scope for our experiments. The eliminated time intervals are illustrated
in Figure 2.3a.
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Figure 2.3: The dataset, with each bar representing a 24 hrs. interval and its height
representing the number of nodes (i.e. individuals) interacting on that day.
In a) the red timesteps are those that belong to intervals outside the scope,
which have been eliminated, b) shows the remaining dataset. It is observable
that the two weeks period before the winter holiday (before middle), which
represents the exams period and is preserved in the dataset, shows a decrease
in the number of nodes, around the same level as the semester break (after
middle) which is, on the other side, eliminated. The decision assumes that
the exams period is more likely to exhibit the same interaction patterns, than
it is in the case of the semester break. This assumption will be tested later.
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2.2 Noise Reduction

Noise Reduction (NR) has the purpose to discard edges which are considered
to be noise from the set of edges E (of edges occurring in the raw temporal
network). It should be implemented so that, after all the noisy edges are re-
moved, the edges that remain have a high predictability potential. The most
simple way an implementation would define this is by using the probability of
an edge to occur, i.e. the number of known occurrences (timesteps when an edge
is active) divided by the number of known timesteps. However, more complex
or specialized ways of computing the predictability potential may give better
results.

2.2.1 General Specification

Given a temporal network G = 〈G1, . . . , GT 〉 where every Gt = (Vt, Et) for
t ∈ [1, T ] and E = {E1 ∪ . . . ∪ ET }, we want to compute E′ such that ∀ e ∈ E′,
Pred(e) ≥ NR, whereNR ∈ (0, 1) is the predefined noise threshold and Pred(e)
is the predictability potential of an edge e. We subsequently redefine G such that
every Et ⊆ E′.

Removing edges is likely to create isolated nodes, these nodes may not always
represent infrequent or unpredictable entities, however, it is minimally true that
they have no frequent connections with the other nodes. Therefore the isolated
nodes do not fit in the scope of the structure prediction problem and should be
discarded as well.

2.2.2 Implementation

For our proximity dataset, we experiment with two simple implementations.
First one is to compute the probability of edge occurrence in the known win-
dow, that is, the number of known occurrences divided by the number of known
timesteps. We discard edges whose probability is less than a noise-ratio pa-
rameter. noise-ratio is chosen in relation with the number of timesteps in the
temporal network (influenced by size and resolution of the dataset). Therefore,
predictability potential is defined here as the probability of an edge’s occurrence.

The second implementation is similar, yet we look at the number of occurrences
of nodes instead, and we only discard an edge if one of its nodes is not frequent
enough. We define Pred(e) = min (P (ni) , P (nj)) where P (ni) , P (nj) are the
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probabilities of nodes connected by e, as previously defined for edges. In other
words the predictability potential of an edge is the occurrence probability of its
least frequent node. With this definition, only edges connected to a non-frequent
node are discarded, thus their number is reduced relative to the first method
at the same noise-ratio (as shown in 2.4). This also provides control over
which nodes are discarded, solving the previously mentioned problem of leaving
frequently occurring nodes isolated.
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Figure 2.4: The ratio of preserved (colored red)/discarded (colored yellow) edges at each
24 hrs. timestep within the first five weeks. a) and b) show the number of
discarded edges using edges probability at noise-ratio values of 0.05 and 0.07.
c) and d) show the same ratio when using the least frequent nodes method and
noise-ratio values of 0.15 and 0.21. They describe how different definitions
for what is potentially predictable may work with relatively different values of
noise-ratio should we require discarding about the same amount of edges.
This may be required because it determines the number of edges that are kept,
which has a high influence upon the computational efficiency of the other
components. However, the implementation method plays the more important
role, differences between the behaviors of the two noise reduction methods
should be visible when comparing a) and d). Although the two discard roughly
the same quantities of edges (as shown in Figure 2.5), the difference between
their discarding behaviors is visible at certain timesteps.

In the context of our dataset, the first method discards all dyadic interactions
that do not occur frequently, whereas the second method discards interactions
in which one of the individuals does not frequently occur (and therefore no
interactions with him/her can be frequent), this leaves as potentially predictable,
the less frequent interactions between individuals who are frequently at the
campus. In other words, even though two individuals that are frequently present
on campus may not meet very often, their interaction patterns may still be
predictable (they may be meeting only once a week for a certain class).
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Figure 2.5: The percentage of discarded (in green) and that of preserved (blue) edges, from
the raw set E, are shown for the experiments in Figure 2.4a and Figure 2.4d.

Although the second method was not initially expected to perform better, and
only to exemplify a solution to the isolated nodes problem, it does substan-
tially perform better, as shown by the comparison made in Table 2.2 between
the accuracy of positive occurrence predictions (PPV1) (correct occurrence pre-
dictions, divided by total occurrence predictions) in scenarios where the only
different parameters are the noise-ratio and the reduction-method. We can
relate this to the context of our dataset and assume that, students that fre-
quently come to the campus (attend classes, etc.) even though they do not have
frequent interactions are very likely to have regular, predictable interactions,
whereas the non-frequent students are most likely to be random in their pattern
of coming to the campus. We will validate this assumption further in Chapter 3.

Ref. Method NR Total Pred. True Pos. False Pos. PPV
1 edges 0.05 250 28 222 0.11
2 edges 0.07 527 17 510 0.03
3 nodes 0.15 271 90 181 0.33
4 nodes 0.21 95 62 33 0.65

Table 2.2: Relative prediction performance of the scenarios shown in Fig. 2.4. All scenarios
use the same parameters excepting those mentioned in the table. Similarly
to how the noise-ratio threshold needs to be appropriate for the reduction
method, certain other components are influenced as well, but with substantially
less impact. Which is why it becomes clear, by comparing scenarios 1) and 3)
that the method of reduction starting from nodes outperforms the other. With
approximately the same amount of predictions produced as the scenario 1) the
third scenario produces better quality predictions.

1We will detail positive predictive value along with other validation methods, in the next
chapter
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2.2.3 Discussion

Flexibility. More complex ways to define the predictability potential can be
devised, these may suit certain domains more than others. Some concepts that
may be of use in inspiring new definitions could be: the size and regularity of
a clique combined with the frequency of the edge or with certain features of
its community, belongingness to a certain path, degree of the nodes which are
connected by an edge, etc. The number of possible approaches that can be
experimented with might only be limited by the available theory.

Impact. For experiments on large datasets, defining a noise ratio that pre-
serves a large percentage of the raw edges could affect the computational per-
formance of the components that follow, which depends on the algorithms that
are implemented. There is still progress to be made with solving problems that
are relevant in this case, such as finding maximal frequent itemsets or extracting
certain features optimally from big data.

Performance. For the described implementation, a frequency dictionary is
built by counting the occurrences of a node (or edge) in G, which is then used
to remove the nodes or edges at each timestep, since the node set is significantly
smaller, building the frequency dictionary is substantially faster using the nodes
approach, therefore we could say that with such implementation the component
is relatively lightweight.

Noise reduction in general can remove unnecessary load from big datasets, let-
ting the other components focus on predicting interactions which are meaningful.
Even with efficient implementations of the other processing components, having
a noise reduction stage will still provide benefits. Depending on the percentage
of the edges that an experiment can afford to keep, this stage can either have
focus on selecting the most meaningful edges (as is our case), or if the efficiency
is not important (e.g. for small datasets), the focus could be only on what is
being discarded.

2.3 Finding Layers

Layers of a temporal network contain recurrent time intervals in which timesteps
have a similar state in relation to a certain known phenomenon. Our proximity
dataset provides good examples: at high resolutions (1-8 hrs. per timestep)
layers would be based a regular circadian rhythm, and intervals would rely on
the interaction patterns formed by individuals particularly during study hours,
at a 24 hrs. resolution it would only be able to differentiate weekends from
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the rest of the weekdays, and similarly for 7 day resolutions it would be able to
differentiate holidays, and trends that occur during exam periods would become
more visible. One resolution can not efficiently differentiate everything, although
clearly the highest resolution would perform best. Intervals of lower activity2

such as weekends are most likely to have, on average, the same length and
therefore their occurrence patterns can be learned from.

Having time intervals extracted and classified, allows us to study the interaction
patterns in relation to these time layers. Whether the interactions occur at
different time intervals or whether they are likely to regularly occur within the
same layer should be part of domain knowledge, but in any case the intervals
during which entities would interact are very likely to display certain – more
or less complex – patterns. In the discussed proximity network, using a layers-
based approach we can observe interactions to be mainly distributed in the
layer that would correspond to study hours, and therefore most of the predicted
interactions are also likely to occur within that time interval, several students
are only interacting after classes, and therefore their interaction is likely to occur
in that interval rather than any other.

The problem of layer-based prediction can be split in two, in the first place, the
time intervals that form the layers have to be discovered and, having this done,
interactions must be classified based on the layer(s) in which they occur most
regularly, this section will focus on the the general concept of layers and on their
discovery.

2.3.1 General Specification

Before formally introducing the concept of layers we define the basis on which it
builds, an abstraction of the temporal networks concept named labeled temporal
network.

Definition 2.3.1 (Labeled temporal network) A represen-
tation G′ for a temporal network G, is called a labeled temporal network
given that G′ = 〈Gt1 , . . . , Gti , . . . , GtN 〉 with Gti = (Vti , Eti) the sets of
edges and nodes occurring in a snapshot Gti where ti = (i, σi, λi) is a la-
beled timestep, in which i is the ordering of the snapshot within the time
sequence, σi is the size of the interval in which Gti occurs, and λi is a la-
bel which corresponds to a certain set of results obtained from applying a
predefined network measurement on Gti .

2When referring to activity in our dataset, we refer to the number interacting nodes (stu-
dents).
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For a labeled temporal network G′, V ′ and E′ are the complete sets of nodes
and edges occurring at a labeled timestep in τ (G′) = 〈t1, . . . , ti, . . . , tN 〉.
Each labeled timestep ti corresponds to an interval of standarda timesteps
in G as follows: ti ≡

[(∑i−1
j=1 σj

)
+ 1,

∑i
j=1 σj

]
, where the symbol ≡ is

used to express equivalence.
aWe refer to the timesteps of a temporal network based on the standard definition as

standard timesteps, when discussed in the same context with labeled timesteps.

Labeled timesteps can have a fixed or a dynamic size, depending on the im-
plementation. By setting the size restriction σti = 1, ∀ti ∈ G′, the labeled
temporal network becomes equivalent with the standard temporal network G.

Definition 2.3.2 (Layer) In a labeled temporal network G′, a subset
of τ (G′) in which all timesteps have the same label λ is defined as a layer,
Lλ = {ti = (i, σi, λi) | λi = λ}.

2.3.1.1 Representing G as labeled temporal network

First step in converting a temporal network G into a labeled representation is
to compute φ – a discrete signal for the temporal network – by measuring each
snapshot using a function m : G → R. The network measurement should
reflect the change of states in the system in relation to an observable behavior
which must to be predicted. A few papers that discuss network measures that
may be applied here have been previously described in Section 1.4.2. A labeling
function is used afterwards to map the time-value pairs of the resulting signal
to labels that represent the states of that observable behavior, we denote this
set of labels with Ω. An overview of this process is shown in Listing 2.1.

Let
m : G→ R be a graph measurement function
τ (G) be the set of timesteps in G and Ω a set of labels
lf : (R, τ (G))→ Ω be a labeling function

For ∀ Gt ∈ G
Compute φt ← m(Gt)
Compute λt ← lf (φt, t)

Listing 2.1: An overview of the described labeling process, functions and notations

Computing a label for every timestep will result in a sequence of labels
〈λ1, . . . , λT 〉. If useful, this sequence can be processed using heuristic rules (ad-
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justments) established by the implementation. For example, when a certain la-
bel λi = L1 is surrounded by two subsequences 〈λi−x, λi−1〉 and 〈λi+1, . . . , λi+y〉
where each λ = L2, than it may be acceptable for λi to be relabeled as L2 and
be assimilated into the sequence, instead of splitting it in two. While this ex-
ample is meant to be simple, more complex adjustments are possible and may
be relevant for certain datasets.

Labeled timesteps can be computed differently, and it’s up to a specific imple-
mentation to choose the best method. There are two general methods: dynamic-
size and fixed-size timesteps.

Dynamic-size labeled timesteps. A subsequence of consecutive labels
〈λi, . . . , λj〉 forms a labeled timestep tk with size σk = j − i + 1 if all the la-
bels in the sequence are identical, λi = λi+1 = . . . = λj . For example, having
labels A and B and a label sequence λex = 〈A,A,A,B,B,A,A,A,A,B,B,B〉,
would allow computing a sequence of four labeled timesteps of different sizes:
〈(A, 3), (B, 2), (A, 4), (B, 3)〉.

Fixed-size labeled timesteps. In this case, each subsequence is limited to
a fixed size, σ. Such a subsequence forms a labeled timestep with a label λ if λ
is the most frequently occurring label in that subsequence. Computing labeled
timesteps with a fixed-size requires domain knowledge in order to properly apply.
For the previously exemplified sequence λex, having a fixed size of σ = 6 would
provide difficulties in computing the label of the second timestep, since both A
and B occur in equal measure, by contrast a value of σ = 4 would provide three
timesteps where each label can be computed, having 3 occurrences in the case
of each timestep formed from 〈A,A,A,B〉 , 〈B,A,A,A〉 and 〈A,B,B,B〉.

Good results can therefore be obtained with a fixed-size approach, only when
certain intervals are known to have a prevailing label, thereby producing a nor-
malization of interval sizes. A good example coming from our dataset is that,
knowing that most of the activity occurs during study hours, setting a fixed
interval size of 8 timesteps at resolution of 1 hr per timestep, would compute
timesteps corresponding to the following intervals of the day: 0 am–8 am, 8 am–
4 pm and 4 pm–0 am; the three intervals show different behaviors in relation to
the activity of students at the campus.

While the dynamic-size approach would be the preferable approach, predicting
sizes of intervals may not always be simple. In the case of our dataset and
domain, the intervals where the activity of students is high is in most cases
easy to predict, exactly as it would make sense it can between 9 hrs (near exam
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periods, Mondays, etc) to 6–7 hrs (on Fridays), which makes a dynamic-size ap-
proach give a good predictive performance. Having knowledge that the activity
tends to fluctuate in intervals of ∼8 hrs, similar results may seem achievable
with fixed-size timesteps. Chapter 3 will, however, demonstrate that predictive
performance is improved with dynamic-size timesteps.

It is also important to remark that a) in dynamic-size timestep sequences no two
consecutive timesteps can have the same label, whereas in fixed-size timestep
this is acceptable, and it may lead to predicted timesteps being mislabeled,
this can be acceptable unless it’s meant to be explicitly studied (not part of
the structure prediction problem) or unless the prediction model explicitly uses
the labels to create predictions (i.e. will not predict an interaction unless the
predicted timestep has the same label as the layer in which the interaction is
regular in). Also, b) if fixed-size timesteps create a loss of precision, the sizes of
dynamic-size timesteps can be wrongly predicted, this is worse than mislabeling
and can have a chain-effect on the other predictions. Generally speaking, the
best method of creating labeled timesteps would therefore be that which has
the least negative impact on the results.

By having obtained the labeled timesteps of G′, a subset of timesteps where all
timesteps have the same label is a layer. Section 2.4 will deal with classifying
interactions into each of these labeled timesteps in order to create the actual
graphs that make the snapshots of G′.
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Figure 2.6: An example of how la-
beling is done using thresholds defined
by the ratio and ordering parameters of
the layer.

With a dataset which observes the dynamics
of face-to-face interactions at the university
campus, we can infer that most interactions
occur when a large number of students is
present on campus, that is because students
are most likely to attend courses together.
We can further observe that the number of
interactions (edges) is not always propor-
tional with the number of students (nodes),
this may be because they are spread at dif-
ferent locations in the campus (perhaps dur-
ing lunch time).

Also it is noticeable that the variation in the
number of students at the campus is given
by the 24 hours cycle, weekends, and other
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academic events such as holidays and exam periods. Since we can describe this
variation based on the number of students, our chosen network measurement is
the number of nodes active in a snapshot, so that m (Gt) = |Vt| ∀ Gt ∈ G.
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Figure 2.7: Creating labels from the raw signal. Figure a) shows the raw signal
φ, based on which timesteps are labeled as illustrated in Figure 2.6, and the
result of such a process is shown through the colored signal sequences of b).

Having computed the discrete signal for the temporal network G using the given
measurement, we map the values at each timestep to different states of activity.
The set of states could for example be, Ω = {high,mid, low}. Regardless of their
explicit names, they are defined by a layer ratio and layer ordering attributes
based on which a layer’s threshold we denote with thr (Lλ), is computed, as
illustrated in Figure 2.6.

Given a set of labels Ω = {λ0, λ1, . . . , λK} where the index of each label repre-
sents (in this example) the ordering of its corresponding layer and φ is a discrete
signal based the graph measurement m, we define our labeling function lf as
shown in Equation 2.1.

lf(m(Gt), t) =


λ0, if 0 ≤ m(Gt) < thr(Lλ0

)

λ1, if thr(Lλ0
) ≤ m(Gt) < thr(Lλ1

)
...

...
λK , if thr(LλK−1

) ≤ m(Gt) < thr(LλK
)

(2.1)

In addition to implementing both dynamic and fixed-size methods for timestep
labeling, we also implemented an automatic setting, which in essence, uses a fixed
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size timestep approach based on the average size of all timesteps pre-computed
with the dynamic size method. Given that for our dataset, this computed size
provided realistic values (8–12, depending on the size of the known window),
we could premise that the computed size is also an optimal resolution, and that
using a labeled temporal networks representation to extracting it could be a
valid alternative to the approaches presented in [SBWG10] and [CE12]. This
will be further looked at in one of the experiments presented in Chapter 3.

2.3.3 Discussion

Using layers allows grouping timesteps in relation to states of the variation
that has to be predicted. By zooming out to the states observed during larger
intervals, it provides a good way to observe time sequence patterns. The fixed
size method facilitates testing the predictability in a more traditional fashion,
at different resolutions, without explicitly changing it in the data set.

2.4 Interactions

The purpose of this component is twofold: one is to classify edges into layers
and the other, more complex, is to aggregate edges into larger subgraphs which
still hold a close meaning to that of dyadic interactions.

Classifying edges is straightforward, for each edge in the complete set of edges
(E) we calculate its regularity in a layer. Regularity may use a similar approach
to noise reduction: computing the probability of an edge to occur within a
layer as its support in that layer divided by size of the layer. Starting from
nodes or using any other concepts is also a possibility. Similarly to the noise
ratio parameter, the regularity defines the minimum threshold which must
be calculated in order for an edge to be considered regular. The regularity
definition is not fixed.

An edge can be regular one or more layers, or in none, in which case it is denoted
as irregular. This happens when its activity is distributed through multiple
layers, but in none of them shows regularity. Classifying edges as irregular,
in essence, acts as an additional level of noise removal (with a more complex
definition), since none of the edges found irregular are used (at least by our
implementation) for prediction making.
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For large datasets in which the set of edges is high, training pairwise dyadic
interactions would require performing |E|2 operations. This brings a very high
price on the computational performance, one which is not always justified by
an increased quality in the results. Therefore in order to solve this issue, mul-
tiple dyadic interaction should be meaningfully aggregated into a larger one.
The meaning can be domain dependent and therefore the definition of how the
larger interaction is created should be given by the implementation. Provid-
ing a meaningful definition with an efficient algorithm to compute the larger
interactions might not always be trivial (see Section 2.4.3).

2.4.1 General Specification

There are no constraints regarding the order in which the two goals of this
component are completed, however in most cases edges should first be classified,
such that those which are irregular can be discarded allowing larger interactions
to be formed only based on the edges which are regular in a given layer.

2.4.1.1 Edge classification

To classify edges, a regularity ratio should define the minimum value which a
regularity function computed for an edge must return in order to consider the
edge regular in a layer. The regularity function should depend on the size of the
layer and the occurrences of the edge within the timesteps of that layer. The
same methods used in noise reduction may not always prove suitable here. An
edge may be regular in one or more layers or it can be irregular; ideally, most
of the edges should have only one corresponding layer. By classifying the edges,
we can compute the sets E′ and V ′, allowing for the labeled temporal network
G′ to be completely created.

Each edge regular in a layer will be active at the labeled timesteps that corre-
spond to the timesteps where it was originally active. When distributing edges
back into the timesteps of G′, in some cases an edge would be assigned to an
interval in which it’s occurrence length was small. For example, consider an
edge e which has been found regular in a layer Lλ and previously occurred be-
tween timesteps 10− 12, yet now these timesteps are part of a timestep labeled
λ of size 20. Assigning the edge to a labeled timestep when its occurrences are
few compared to the size of the timestep may not always be acceptable. Unless
timesteps don’t generally have large sizes or unless the domain allows it, it is a
good approach to verify that the edge meets a minimum number of occurrences
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(e.g. computed using the regularity ratio and the size of the interval) within
that interval as well.

2.4.1.2 Interactions as subgraphs

In most cases, an interaction in a temporal network naturally refers to the oc-
currence of a connection between two nodes (dyadic interaction). However in
particular domains an interaction can also be meaningfully defined by connec-
tions between more than two nodes.

When extracting predictable features from the dataset, it is most likely that
the relations between interactions may need to be investigated. In most cases,
there is no relation between individual dyadic interactions, and a lot of time is
spent on unproductive computations. To address this problem a solution is to
look at interactions as more meaningful units than individual edges. A general
definition of these units is given in 2.4.1.

Definition 2.4.1 (Interaction) A subgraph G′ is an interaction if
it has a property IP (G′). This property is the interaction principle.

Basically, an interaction principle is defined by the implementation and sub-
graphs that satisfy it are considered to be interactions themselves. This is
exemplified further by our implementation and the alternate approaches to be
discussed in the rest of this section.

The timesteps at which interactions occur will be of use in studying the pre-
dictable patterns (temporal relations) formed by two interactions. Therefore we
define the concept of support set of an interaction in 2.4.2. The definition was
first introduced by Lahiri et al. [LBW07].

Definition 2.4.2 For any arbitrary interaction G′ we define the support
set of G′ as the set of timesteps in which G′ occurs, S(G′) = {t | G′ ⊆ Gt}.
The cardinality of the support set, |S(G′)|, is called the support of G′ in
the temporal network G.
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2.4.2 Implementation

2.4.2.1 Edge classification

To classify edges in our dataset we use as a regularity function the number of
occurrences of that edge in the timesteps of a layer relative to the size of the
layer, as defined in 2.2, where e is an edge and S(e) its support set.

Regularity(Lλ, e) =
|S(e) ∩ Lλ|
|Lλ|

(2.2)

The decision whether an edge is regular or not is taken using a regularity thresh-
old Rmin ∈ (0, 1). At a resolution of 1 hrs. per timestep, this would correspond
with the total length of interactions that have occurred within the time inter-
vals of a layer. Keeping the alternate method used by noise reduction – that is,
classifying edges based on a regularity of nodes – would constrain the nodes to
certain layers, which is not preferable since certain students may have different
regular interactions in different layers, therefore in this case it is a better choice
to look at edges instead of nodes.

Each edge found to be regular in a layer is active in the graph at a labeled
timestep ti if it is active in at least Ceil(Rmin×σi) standard timesteps included
in the labeled timestep (Rmin is the regularity threshold). For example, with a
regularity threshold of 0.2, in a layer with a size of 200, an edge would have to
occur at least 40 times to be regular in the layer, and given a labeled timestep
of size 10 in the same layer, the edge would have to occur at least 10× 0.2 = 2
times in that interval in order to be active.

2.4.2.2 Interaction principle

Since our dataset consists of students, we can have face-to-face interactions
registered during classes and during group work. Dyadic interactions are here
part of more complex interactions where multiple students are all interconnected.
Even in large class-rooms, where they may sit at a distance slightly larger than
the Bluetooth range, students that work together as a group are more likely to
sit together and be mutually interconnected during classes. Outside classes on
the other hand, we have fewer interactions, likely to be fragmented into smaller
components where large mutual interactions are rare.
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Based on these observations, the interaction principle we implement first looks
at the fragmentation level of a snapshot at a given time. If the snapshot is too
fragmented, interactions keep their default definition and are created from dyads.
During high activity intervals, when snapshots are more dense, interactions are
defined as subgraphs formed by cliques. The fragmentation factor for a snapshot
Gti is defined in 2.3.

Fti = |Eti | ×
1

Conn (Gti)× α
(2.3)

Conn(Gti) gives the number of connected components of the snapshot, and
the coefficient α is the expected minimal size of the component, measured in
edges. More specifically, having α = 3 would mean that at least 3 edges per
component (on average) are expected in order to have a fragmentation that is
less than 1.0, which is the threshold based on which the interaction principle
considers interactions to be formed by either dyads or cliques.

To keep the interaction principle uniform throughout each layer, the level of
fragmentation of the entire layer can be calculated by aggregating together each
of its labeled timesteps and computing it for the aggregated graph. If this
does not work as expected (since aggregating fragmented graphs might result
in a dense graph), the fragmentation values obtained from each snapshot in the
layer can be averaged. Regardless of how the fragmentation is computed for
each layer, it is important that the correct choice is made about what definition
is used for its interactions (this can be verified fairly easy, by analyzing the
topology of the aggregated snapshots of each layer).

If for a given layer, it is chosen to consider interactions as those being formed
by cliques, the regularity of these interactions within the layer should be reeval-
uated. Some cliques are indeed groups of individuals working together regularly
while others may be formed arbitrarily from regular interactions which are not
also forming a regular clique (i.e. regular interactions which do not usually co-
occur). Therefore a regularity value is computed for each clique with the same
regularity function defined in 2.2, excepting that in this case, the parameter e
is the subgraph formed by a clique. Furthermore, a new regularity threshold
must be defined for cliques, since aggregated interactions cannot be expected to
occur with the same regularity as dyadic interactions.

For the same case, each dyadic interaction can also be considered a clique but
only if this interaction does not belong to any regular clique with more than two
nodes, then – since the edge is most regular in the clique formed only by its own
nodes – the edge can be considered a regular clique. Otherwise, a regular edge
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must not be considered a regular clique as long as it belongs to any larger clique
that is above the minimum regularity threshold.

2.4.3 Discussion

Flexibility The interaction principle can be defined in many ways, as long as
it can be verified whether or not a subgraph satisfies it. Secondly, it should be
meaningful to the system that is studied. Thirdly, for a given graph – the number
of subgraphs that satisfy the principle should be smaller than the number of
edges. For certain domains interactions can be defined, for example, as paths,
closed walks, bipartite components, or by any other rules which can possibly
define a subgraph meaningful to the studied system.

In previously discussed work of Lahiri et al. [LBW07], an interaction is defined
for multiple domains as a frequent subgraph, as extracted from all timesteps
using an Apriori-like maximal frequent itemset mining algorithm by Bur-
dick et al.[BCG01]. This was also our original approach to defining interac-
tions. However, the mining algorithm proposed could not sufficiently scale to
the size of our dataset and computational performance was very low3. For the
same approach a different mining algorithm proposed by Han et al.[HPY00] was
also tested yet with similar results. The problem of frequent itemsets mining
has been demonstrated to be #P-complete by Guizhen Yang[Yan04]. By con-
trast, the algorithm for extracting maximal cliques performs in linear time, as
demonstrated by Bron and Kerbosch [BK73].

Performance This component may include some of the most computationally
intensive operations of solving the structure prediction problem. In our current
implementation edge classification is one such operation, whose time increases
with the number of edges, but a lot of space for further improvement should
exist. In regards to the interaction principle, based on the experience from
working on this thesis, we could premise that it may be generally better to
aggregate edges based on simple, domain-specific heuristics instead of aiming
to keep a general implementation with expensive algorithms that do not scale.
To test this premise, other options of general algorithms should be investigated,
and if one or more such algorithms that scale to large datasets are found, they
should be compared with domain specific approaches for a number of different
datasets.

Impact Edge classification adds a second verification level – to edges which
were not discarded as noise – which is more specific to the variation of the

3Some of the initial experiments would take hours to complete
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dataset. Furthermore, aggregating edges based on an interaction principle lowers
the number of pairs for which temporal relations must be investigated, and if
well chosen, predictions are also likely to become more meaningful.

2.5 Training

The training component extracts features from the labeled temporal network G′
with interactions from each timestep aggregated as previously discussed. Any
available characteristics of the patterns formed by interactions or by the se-
quence of labeled timesteps can be used to generate predictions. There are no
constraints on what types of features should be extracted, but it is important
that at least a category of features gives information that can be used to predict
interactions (by contrast, other features may predict characteristics of the time
sequence that can be used to validate a set of predicted interactions, but do not
provide these interactions themselves).

Along with features extracted from the temporal patterns, features can also be
extracted only from the topology of certain snapshots, using well established
methods from link prediction. To exemplify a few cases, features could discover
relations between interactions, such as relative influence, conditional behavior
or common entities; mapping of interactions to time, particularly to smaller
sections such as quarters, make it possible to learn what interactions emerge
and which interactions disappear near to the end of the known window. Finally,
if the labeled timesteps of G′ are dynamically sized it is important to learn these
sizes and the order in which they occur, otherwise valid interaction predictions
may be placed in the wrong time intervals (i.e. if we make predictions into fixed
size intervals).

2.5.1 General Specification

Having the labeled temporal network G′ we use it as a training set and ex-
tract features from the temporal sequence 〈t1, . . . , tN 〉 and from the interactions
identified in each snapshot Gti . Features can be extracted from:

• Recurring patterns formed by support sets of interactions (relations)
• Recurring patterns formed by labeled timesteps (label variation)
• Topology features in a snapshot or in aggregated snapshots (link predic-

tion)
• Combinations between the above
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The main goal for extracting features is being able to build an extension of the
temporal network consisting of timesteps and interactions predicted at unseen
timesteps. Features which can be linked to one or more known timesteps and
explicitly describe an interaction occurring at an unseen timestep, will be de-
noted as primary features and are grouped by the timesteps they are extracted
from, as a sequence 〈Ft1 , . . . , FtN 〉. All primary features must have a trust value
Φ(f), whose definition must be provided by an implementation, such that a
minimum trust threshold Φmin can classify these features as either trusted or
untrusted.

Auxiliary features may also be extracted, and may count as extra variables in
the definition of trust. While these do not predict interactions by themselves,
they may be used, for example, to identify certain trends and have a “vote” on
whether an interaction is trusted or not. These can play an important role in
the classification of features. If no good primary features are found, yet there
are many auxiliaries that can be found, a naïve prediction model could be an
appropriate solution, i.e. a model that assumes every interaction can occur in
every unseen timestep, leaving the auxiliary features to decide how much of this
is true.

2.5.2 Implementation

The first two feature extraction sources are used by our implementation. First,
we discover features of the time sequence, which allow predicting the size (if
dynamic-size timesteps are used) and label of future timesteps; trends can also
be extracted since the activity of interactions varies between sections (usually
quarters) of the labeled time sequence. These trends and patterns are the aux-
iliary features which are correlated with the relations between interactions. Be-
fore discussing these relations, we enumerate the features which have been iden-
tified and are extracted from the time sequence.

• Timestep sizes. For each layer it is computed what are the most common
sizes that timesteps in the layer have. If a fixed-size timesteps method is
used, than this is known by default with maximum reliability.

• Neighbors. For each layer it computes what are the most common labels
of timesteps that surround a timestep from the layer it is computed for
(i.e. what layers do succeeding and preceding timesteps commonly belong
to).

• Regular differences between occurrences of timesteps in the same layer
measured in a) labeled timesteps and b) size of labeled timesteps (std.
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timesteps).

• Occurrences per section of the labeled time sequence and probability per
section. Helps us compute trends based on how often has a timestep
occurred in e.g. the last quarter, what was its probability to occur in that
quarter and how is it relative to the other quarters.

The primary features are extracted from the trigger-forecast relation between
interactions. This relation was first described in [LBW07] and considers that
one interaction can be a good predictor for another if there is a regular time
difference, a constant delay between them. For our dataset, examples could be
extracted from how a single student interacts throughout a week: in different
days the student may interact with other students from different groups, since
different courses are attended. If there are best friends with whom a student
regularly meets after classes then it is likely that the time differences of that
interaction and its previous occurrence is regular, and we can predict it based
on its own delays.

Delays are computed by a function of two support sets as shown in Listing 2.2.

Input: The support sets of two interactions where:
xt considered to be the trigger
xf considered to be a forecast

For each timestep tα in S (xf ):
For each timestep tβ in S (xt):
Compute ∆(tα, tβ)← tα − tβ

Let ∆v be a list of valid delays
For each diff in the ∆ matrix:
if diff > 0:

∆v ← diff

Return ∆frq, the list of mode values of ∆v

Listing 2.2: The function for computing frequent delays

The size of main diagonal of matrix ∆ is given by min(|S(xt)|, |S(xf )|). This
value represents the maximum number of possible occurrences of a delay between
the two interactions, and we also denote it as the size of a delay. Therefore the
probability of each valid delay δ occurring in ∆v is the number of occurrences
of δ divided by the size of the diagonal, the delays from ∆frq have the highest
probability and we only consider these for each pair of interactions; the prob-
ability of a delay should not be confused with their trust value, which will be



2.5 Training 37

defined later. The distribution ∆v can be multi-modal or it can also be empty,
if the interaction considered to be a forecast only has occurrences before those
of the trigger. In such cases the two interactions are not in a trigger-forecast
relation.

The delays can be computed between pairs of interactions in the same layer,
or between all pairs of existing interactions. The first approach can reduce the
number of computed delays but would restrict the relations to a single layer,
since it would not be computed between interactions from different layers. If
only one layer has the majority of interactions, this has no impact.

The probability of a delay alone may not always be an appropriate measure for
the trust we assign to a delay. The trust value can be strengthened by taking
additional features into consideration. Therefore, we also consider the number
of times a delay occurred in the last quarter of the time sequence compared
to the number of times it could have occurred, i.e. it measures how many
times the forecasted interaction appears with the expected delay compared to
total number of times the forecasted interactions appears in the last quarter,
the function computing this feature is denoted as LastQ(δ) where δ is a delay.
Another feature is the number of times the delay occurs relative to the size of
its layer, this feature is denoted as LayerOcc(δ). Lastly, the probability of the
delay P (δ), is also taken into consideration. Each of these features is assigned
an importance coefficient (power), based on which the trust value is calculated
as shown by 2.4.

Φ(δ) = LastQ(δ)× LastQpower
+ P (δ)× Ppower
+ LayerOcc(δ)× LayerOccpower (2.4)

Generally, the sum of all power coefficients should be 1.0 and these are assigned
by specific experiments based on the importance we put on each feature. Cer-
tain features, such as LayerOcc may never give a value of 1.0 unless there are
two interactions occurring at each timestep of the layer. It may therefore be
acceptable in such cases that the sum of all power coefficients is allowed (at least
theoretically) to be > 1.0 and that features known to be unable to reach high
values compared to the others are regarded as a bonus.

We classify these delays into trusted and untrusted using a delay-ratio param-
eter, which is multiplied with the average trust of all delays in order to obtain
the minimum threshold Φmin = DelayRatio × AverageTrust. This allows the
trust threshold to remain proportional with the trust values, regardless of the
trust definition. A fixed threshold method of delay classification (original im-
plementation) was also kept and can be used to set an minimum in case the
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Figure 2.8: Delays from multiple layers relative to their value (time difference) and num-
ber of occurrences. In this experiment LastQpower = Ppower = 0.5 and
LayerOccpower = 1.0. Green dots are trusted delays and red dots are un-
trusted, they correspond to the closest integer coordinates. Generally, the
most trusted delays are those with small time differences and many occur-
rences. However, a notable exception can be observed in the case of the delays
at (2, 5). Despite having few occurrences, delays may have been recovered by
an excessively high importance given to LastQpower, i.e. if these delays occur
2 out of 2 possible times in the last quarter, 0.5 is added to their trust value.

average trust is too low.

2.5.3 Discussion

Flexibility. As shown in Figure 2.8, there may be no perfect measure for trust
but when more auxiliary features are combined and given the right importance,
the trust measure is likely to classify primary features (i.e. interactions at
unknown timesteps) better than the score given by a single auxiliary feature
would. The use of multiple models for training based on distinct categories of
features (Ensemble learning) can also bring a better predictive performance and
improve the existing approach.

Performance. The implementation of the training component can be very
expensive in terms of computational performance; even if interactions are com-
bined into larger components, extracting a large number of auxiliary features
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can have a significant impact if the algorithms grow with the size of the dataset.

This component plays an important role in solving the prediction problem, and
the perspectives from which it can be approached are unlimited. Its implemen-
tation is certainly one of the most interesting and relevant aspects of solving
the structure prediction problem.
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Chapter 3

Prediction Results and
Validation

This section describes our method for creating predictions and the methods for
validating them and discusses the results. These components are dependent on
what is produced by the previous components, and aiming to keep them loose
coupled required that their general specification is given with less detail; which
is why in the largest part of this chapter, the focus is placed on our own dataset,
implementation and results.

3.1 Predictions

A prediction model uses the features extracted from the known window with
the purpose of extending the known window with the predicted snapshots
GtN+1

, GtN+2
, . . ., such a predicted sequence is called a predicted sample. Fea-

tures that are extracted through training can have a different nature and a pre-
diction model should be constructed to handle these features. In our training
model, the main predictive features are the delays between interactions and the
time sequence features, therefore our prediction model will make use of these.

For validation purposes and correctly computing the prediction performance of
the model, features that are below the minimum trust threshold are also consid-
ered, and it is verified whether predictions created from these untrusted features
are actually incorrect. Using trusted and untrusted features two predicted sam-
ples can be created. The one created from trusted features is called a positive
predicted sample and holds the predictions we classified as positives, the other is
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the negative predicted sample with predictions classified as negative and formed
by untrusted features. The features used for classification of predictions are
the delays. In order to keep the prediction model simple and have an uniform
evaluation of these samples, the features which are extracted from the time se-
quence and predict the labels and the sizes of unseen timesteps are regarded
as a trusted assumption (having the prediction samples with different unseen
timestep sizes would over-complicate the prediction model and add bias to how
the predictions are evaluated).

3.1.1 General Specification

Given a sequence of features for each known timestep Ft1 , . . . , FtN , this
component predicts a set of interactions which occur at unseen timesteps
GtN+1

, GtN+2
, . . .. Each pair formed by an interaction and an unseen timestep

P(k,x) = (Ix, tN+k) is a prediction. If P(k,x) is created using a trusted feature
than P(k,x) is classified as a positive prediction, otherwise it is negative. Two
sets of predictions P+ and P− contain the positive and negative predictions.
The time sequence GtN+1

, GtN+2
, . . . created with the predictions of P+ and P−

form the positive and negative predicted samples.

Each predicted sample has its size limited by the temporal distance of the
extracted features (i.e. some features may predict an interaction to occur k
timesteps away from the last known timestep, k varies based on the extracted
features). If it is necessary to predict timesteps at longer temporal distances
than the capabilities of the extracted features, new features should be found.
An alternate choice, yet perhaps a superficial one, would be to extract features
formed by the predicted interactions themselves and apply a penalty to the trust
value of each second generation prediction. It could only work in highly pre-
dictable systems, with efficient models and for features with high trust values.

The resolution of predicted samples should generally be the same resolution
that has been used when features where extracted. This becomes more complex
when using a dynamic-sized labeled timestep resolution. The labels and sizes
of each predicted timestep tN+k will also have to be predicted. Since these
predictions will not predict interactions, but instead, the intervals in which they
are expected to occur, it is acceptable that both P+ and P− are computed for
the same intervals, which we consider to be trusted knowledge.
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3.1.2 Implementation

The predictive features extracted from each timestep ti are 3-tuples (Itr, Ifc,∆),
where Itr is an interaction which occurs at ti and Ifc is an interaction which
occurs at ti+∆, with ∆ being the delay between the two interactions.

We split the features in the two sets P+ and P− based on the trust value of the
delay ∆, and compute the negative and positive predicted samples. It should
be noted that ∆ has a timestep difference value expressed in labeled timesteps,
therefore two delays having the same values of timestep difference can actually
refer to different temporal distances if labeled timesteps have dynamic sizes. To
find out when do the predicted interactions actually occur, we compute the labels
and sizes of unseen timesteps, as far as the timestep tN+k with a maximum k
for which an interaction is predicted to occur. Labels of predicted timesteps are
only meaningful because they link the timesteps to a layer, and the size of the
timestep can be predicted based on the most common size of labeled timesteps
in that layer. If labeled timesteps are fixed-size, than the ∆ differences always
express the same temporal distance and the labels and sizes of unseen timesteps
are known.
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Figure 3.1: A matrix showing labeled timesteps corresponding to three layers, each in-
terval stretches over multiple timesteps classified based on the number of
interacting individuals, the fourth week (bottom five rows) is the predicted
sequence of labeled timesteps, based on the most regular sizes of timesteps in
a layer. For our dataset, since the variation of sizes in these intervals is low,
the error caused by predicting sizes is negligible, while the prediction benefits
can be significant.
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3.1.3 Discussion

When correctly predicted, dynamic-sized timesteps allow better estimations of
when an interaction is expected to occur. Correctly delimiting intervals in which
interactions are less predictable can still provide quality predictions. For our
dataset, the interval in which interactions are most predictable usually has a
predictable size (∼7–9 timesteps, study hours), other interactions may regu-
larly occur outside the study hours, but the exact time is harder to estimate
(interactions here are not always scheduled). If we have two layers, one for
study hours and another for the remaining time, we can precisely predict reg-
ular interactions that do not occur within study hours. Although the problem
of precise prediction is relaxed, it allows for correctly predicting an interaction
which is regular but whose exact time is harder to estimate.

3.2 Validation

The validation component has the purpose of verifying the classification of
computed predictions in P+ and P−. This can be trivially performed by testing
if the predicted interactions occur in the interval in which they are expected to
either occur or not to occur. Beyond this, it is up to each implementation to
choose the best tools and algorithms for learning from these results. This section
will describe the general validation method and the tools that have been used
for learning from our experiments. In Section 3.3 a set of experiments will be
evaluated using the described tools.

3.2.1 General Specification

In a single validation run, two sets of computed predictions P+ and P− classified
as either positive or negative are tested against a validation sample. If an
interaction occurs in its predicted interval, the prediction is considered true,
otherwise the prediction is false. This binary answer is correlated to the expected
result which is given by how the prediction was initially classified. This allows
further classification of the validation results into four distinct classes. Multiple
validation runs can be performed for different pairs of training and validation
sets.

Predictions in the negative sample formed by P− are expected to be false,
and predictions here that are indeed false are true negatives (TN); if they are
actually true, these predictions are classified as false negatives (FN). Similarly,
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for the positive predicted sample, true predictions are true positives (TP) and
false predictions are false positives (FP). Together these values form a confusion
matrix as illustrated in Figure 3.2, where the columns stand for a predicted class
(for each predicted sample) and rows stand for the actual class. In other words,
having all predictions classified on the main diagonal and none on the secondary
would mean that the classification was perfect.

Predicted
Negative (P-)

Predicted
Positive (P+)

Actual
Negative

Actual
Positive

True 
Positive

True 
Negative

False
Positive

False
Negative

Figure 3.2: A confusion matrix where each class is obtained by testing two sets of predic-
tions against a validation sample, and correlating the actual result with the
expected result. In many cases, predictions may not be proportionally dis-
tributed in these classes, and/or the number of predictions in a certain class
may have a higher importance than those from another.

3.2.1.1 Accuracy and imbalanced datasets

The predictive accuracy is computed as the the number of correctly classified
predictions (main diagonal) divided by the total number of predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

However, this may not always be an appropriate measure of prediction perfor-
mance for imbalanced datasets, where the classification categories are not being
near evenly represented, or when the cost of different errors significantly varies.
For example, consider an experiment which gives 100 predictions of which 90
are classified as TN, the remaining 10 as FN, and no predictions are classified as
TP or FP. This would give an accuracy of 90%, but the predictive performance
of a model which provides no positive predictions can not be considered good.
Furthermore, in many cases the cost of false positives may be significantly higher
than that of true negatives. In such cases, accuracy is clearly not an appropriate
measure of predictive performance, and more advanced measures for evaluating
it should be used, those that are used by our implementation are discussed in
Section 3.2.2.
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3.2.1.2 Overfitting

Overfitting occurs when a model describes noisy data instead of, or along with
generalized data, depending on the models implemented by each component,
this may occur when certain thresholds are set too low, when infrequent edges
are incorrectly used, or when considering features with low trust value. Al-
though a model may perform decently on a certain training set, if the validation
set is changed or when different data is provided, the results will have an unusu-
ally high fluctuation. A good method to prevent overfitting is cross-validation,
discussed in Section 3.2.2.3.

3.2.2 Validation Methods

3.2.2.1 Receiver Operating Characteristic

A measure useful for data sets where classification categories are not evenly
balanced, is given by the Receiver operating characteristic (ROC) curve, which
summarizes classifier performance over a range of trade-offs between true posi-
tive and false positive error rates [Swe88]. This measure is the Area Under the
ROC Curve (AUC) and computing it is a standard technique for evaluating the
predictive performance of a model. An ROC curve is obtained by plotting the
results of multiple tests for different values of the trust threshold used to classify
prediction.

ROC curves can be seen as a family of best decision limits for relative costs
of TP and FP. On an ROC curve the X-axis represents the percentage of false
positives from the total predictions classified as false FP/(TN + FP ) (False
Positive Rate (FPR)) and the Y-axis represents the percentage of true positives
from the total predictions classified as true TP/(TP +FN) (True Positive Rate
(TPR), also known as Recall). The ideal point on the ROC curve is (0, 1)
which indicates that all positive predictions have been classified correctly and
no negative predictions are misclassified as positive. The line y = x represents
the scenario in which the predictions are randomly guessed [Cha05]. Therefore,
an adequate level of predictive performance is considered to characterize a model
when AUC > 0.5. These notions are illustrated by Figure 3.3.
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Figure 3.3: General aspects of the Receiver Operating Characteristic (Source: [Wik13])

3.2.2.2 Precision and Recall

A good way to learn if the trust threshold – that classified predictions as neg-
ative or positive – was appropriately chosen, is to study whether by lowering
this threshold we can obtain a better TPR or recall value, without affecting
the precision value, also known as the Positive Predictive Value (PPV). These
measures are defined as follows.

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

Lowering the minimum trust requirement will result in predictions classified
as false negatives becoming true positives because these predictions correctly
described an occurring interaction, but their trust value was too small. On
the other side, lowering this threshold also means moving true negatives into
the positive sample, where they become classified as false positives. In other
words, the question that is answered by studying TPR in relation with PPV is
how many good predictions can we recover from the negative sample without
introducing more false positives than the true positives that we recovered. An
example from one of our experiments is illustrated in Figure 3.4.
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Figure 3.4: PPV relative to TPR. In this set of results the experiments have
their thresholds gradually lowered from P4 (1.35× Average-Trust) to P0
(0.5× Average-Trust). It can be observed that the PPV is not significantly
affected by the increase in TPR. This means that the number of true positive
(relevant) predictions recovered by lowering the trust threshold is proportional
to the number of false positives recovered.

3.2.2.3 Cross-validation

A standard method used to prevent overfitting is cross-validation. The method
broadly refers to validating the data using different pairs of training and vali-
dation samples and averaging the results. If individual results for these pairs
are fluctuating, then the model is likely too complex or it may at least indicate
problems with the choice of parameters. Using cross validation we can average
these fluctuations and get a more accurate picture of the results.

This is done by testing the results from multiple equally sized training samples
against a validation sample. This method is known as k-fold cross-validation,
and k represents the number of equally sized samples that are used, one for
validation and the others for testing. This method specifies that, the process
of cross-validation should be performed for k times (folds) so that each sample
plays the role of validation sample once, and the results are averaged to produce
a single estimation. However, in the context of temporal prediction, testing a
training sample that occurs after the validation sample might not be acceptable
(the future cannot be expected to “predict” the past), which is why our imple-
mented approach only uses the final two samples as validation samples, while
the others are training samples.



3.3 Experimental Results 49

Once every training sample has been cross-validated with both validation sam-
ples, the relevant measures (e.g. TPR, PPV) from each test are averaged to-
wards providing a better estimation of the results. The tested sample sizes for
our dataset have so far been of two and three weeks, and as expected, the results
were usually better for the larger sample size.

3.2.2.4 Matthews Correlation Coefficient

Matthews correlation coefficient (MCC) is another measure for predictive perfor-
mance which can be applied to imbalanced datasets. It is an useful alternative
to the AUC, for which an exact value cannot be computed as trivially as the
MCC. It can also be used to verify the AUC or any other measures of predictive
performance. MCC is relatively straightforward compared to AUC, it returns
a value between −1 and +1, where a coefficient of +1 represents a perfect pre-
diction while 0 corresponds to the random guess scenario. The MCC can be
calculated directly using the values of the confusion matrix as defined by 3.4.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.4)

3.3 Experimental Results

This section discusses the results of a number of relevant experiments that were
identified. It starts with a baseline experiment which uses a set of parameters
considered to be defaults, and explores how altering these parameters can impact
the results.

In order to build the ROC curve and compare how precision changes at different
levels of recall, each experiment will consist of five scenarios (called contexts in
the implementation) which only differ in the values computed for the delay trust
threshold. We remind that the trust threshold is the main classifier, and is com-
puted as delay-ratio × average-trust, where delay-ratio is a parameter
and average-trust is the average trust of all delays.

These scenarios are labeled P4, P3, . . . , P0 and P4 has the highest delay-ratio,
of 1.5 which decreases in steps of 0.25 such that P0 has a delay-ratio of 0.5.
An overview of the defaults is given in Table 3.1. The choice for each default
value is justified and explained when discussing specific experiments. At this
point, let’s assume that these defaults provide the best known results. The
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following sections will test whether modifying them produces the anticipated
results and will discuss whether the prediction performance is improved or not.

3.3.1 Default parameters

Parameter Default Range
noise-ratio 0.4 [0.25, 0.45]
layers 3 at (0.3,0.4,0.3) 2–4
Labeled timestep size 24 24, Dynamic, Auto
Layer regularity (Edges) 0.25 [0.10, 0.35]
Layer regularity (Clique) 0.15 [0.5, 0.25]
Aux. feature power: Prob 0.5 [0.25, 1.0]
Aux. feature power: LastQ 0.5 [0.25, 1.0]
Aux. feature power: LayerOcc 1.0 [0.5, 1.5]
delay-ratio 0.5–1.5 Fixed
Reduction method Nodes Fixed

Table 3.1: Default parameters. Each parameter’s role was previously discussed with the
implementation of its parent component. By experimenting different settings,
we learn more about the how each parameter influences the results.

Along with providing the default parameters provided in Table 3.1 it is also
important to note that – by default – weekends and holidays are removed from
the data set by preprocessing.

Scenario Delay Ratio Predictions PPV MCC
P0 0.5 87 0.66 0.33
P1 0.75 89 0.67 0.031
P2 1.0 97 0.72 0.11
P3 1.25 93 0.79 0.14
P4 1.5 81 1.0 0.16

Table 3.2: The number of produced predictions, precision (PPV) and Matthews correla-
tion coefficient (MCC) for each scenario using the default values. The average
MCC is 0.15.

We also mention that by default, we use the simpler method of validation which
splits the dataset in two equal halves of 7 weeks each. An experiment with cross-
validated results will however, be provided in Section 3.3.8. This choice had to
be made due to large processing time required by applying k-fold validation to
our dataset, also – since the method was learned of towards the end of the LPF
tool’s development – a number of bugs were created which require refactoring.
Furthermore, due to dataset size, we can at best use samples of 2–3 weeks, and
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due to the nature of the data, we cannot validate samples from the future to
with samples from past. Simply said, this method requires further work on both
how it’s implemented in a temporal context, and on the actual implementation
in our tool.

The results we obtain by using the default set of parameters are shown in Ta-
ble 3.2 and illustrated in Figures 3.5 and 3.6.
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Figure 3.5: Results for the default parameters. It can be observed that P1 scenario
has a relatively higher FPR. This may not seem significant when looking at
AUC alone (which is > 0.5), however this deviation has considerable impact
on MCC (see Table 3.2). It’s also shown in b) that PPV is not significantly
affected by the increase in TPR, which is the desirable behavior.

3.3.2 Lower noise ratio

Modified Param. New Value(s) Default
noise-ratio 0.25 0.4

Table 3.3: Discussed parameters.

In the results obtained with the default parameters (i.e. Table 3.2), it is shown
that with a noise-ratio value of 0.4, ∼90 predictions are usually generated
and the precision (PPV) is high and it is not substantially affected when the
recall (TPR) increases. Decreasing the noise-ratio to 0.25 can be expected
to lower the quality of predictions and negatively impact these results, because
noisy and less predictable nodes are preserved.
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Figure 3.6: Processing statistics for the default parameters. a) and b) show the
ratio of preserved (red or blue) and removed (yellow or green) edges for each
timestep and the overall percentage, which is of 1% preserved edges. c) shows
the measured signal and how timesteps are classified in layers. d) shows the
delays, as they are colored in P2 at a ratio of 1.0 (where the trust threshold
is the average delay trust).

Scenario Delay Ratio Predictions PPV MCC
P0 0.5 402 0.61 0.073
P1 0.75 535 0.6 -0.02
P2 1.0 554 0.62 0.0007
P3 1.25 439 0.48 -0.111
P4 1.5 383 0.0 -0.110

Table 3.4: The number of produced predictions, PPV and MCC at lowered noise-ratio.
Average MCC is −0.03. Not good!

As expected, Table 3.4 shows that at a noise-ratio of 0.25, a significantly larger
set of predictions is produced, but these predictions have a clearly lower quality.
Since some of the tested scenarios yield negative values for MCC coefficients,
which is also in agreement with the observation that AUC is below 0.5, we stop



3.3 Experimental Results 53

at 0.25 as the lower limit value for this parameter.

The decrease in quality of results is explainable because at 0.25 noise-ratio
24% of the edges are preserved (see Figure 3.8), which is huge compared to
the default parameter value of 0.4 which only preserves 1%. As a result, pre-
viously fragmented layers become dense and interactions also increase in size,
from dyads to cliques, or in the number of nodes in a clique. Since the noise
reduction method affects nodes, we can describe this for our dataset as having
untrusted (i.e. irregular) individuals being introduced into previously trusted
cliques. It is usually the backbone of a group that is the most predictable, when
irregular nodes are introduced, the group becomes only as predictable as its
least predictable node.

If we experiment in the opposite direction and increase noise-ratio to 0.5,
predictions are no longer generated by all the tested scenarios. Therefore we set
that 0.4 is the maximum acceptable noise-ratio value when using the node
frequency method. Clearly, the direction for improvement is towards obtaining
a better prediction performance with a lower noise-ratio. Therefore, in the
next experiment in 3.3.3 we keep noise-ratio at 0.25 and aim to improve the
prediction model using other parameters.
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Figure 3.7: Results at lower noise-ratio.

3.3.3 The power of layers

The default parameter for the size of a labeled timestep is fixed at 24 hrs, there-
fore layers are not yet made full use of. The default was chosen because timesteps
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Figure 3.8: Noise reduction statistics for noise-ratio of 0.25. The percentage of
preserved edges is clearly better and more meaningful than for the default
noise-ratio. But, can the predictions also be more meaningful?

Modified Param. New Value(s) Default
layers 4 at (0.2,0.3,0.2,0.3) 3
Labeled timestep size Dynamic 24
noise-ratio 0.25 0.4

Table 3.5: Discussed parameters.

of 24 hrs seem to make sense given our dataset, furthermore, it was important
that we started with a default model closer to the traditional approach. In this
experiment we stay at the previously discussed 0.25 noise-ratio, but we clas-
sify timesteps into four distinct layers (an additional one is added) and we use
dynamically sized timesteps.

Timesteps are classified into layers based on the number of nodes (activity)
measured at each timestep, and the layers are delimited as follows: 1) the lower
layer holding timesteps with activity lower than 0.2 of the maximum registered
activity, above it 2) the mid-lower layer with 0.3 ratio, 3) the mid-high layer
with 0.2 ratio and, at the top is 4) the high activity layer with a ratio of 0.2.
Given the decreased level of noise-ratio the majority of the edges is grouped
in the upper layer as shown in Table 3.6.

Layer Std. Timesteps Labeled Ts. Edges
upper 278 31 348
midup 241 69 8
midlow 0 0 0
low 321 43 3
irregular - - 629

Table 3.6: Edge classification statistics. The regularity threshold by which edges are
classified may act as an additional noise reduction measure, removing inter-
actions which are not regular from prediction. When having a dynamic size,
timesteps generally have a smaller size and edges are classified more precisely.
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Because dynamic size labeled timesteps are usually smaller than 24 hrs (in our
dataset), edges are more accurately classified. Layers now have different sizes
and present a more fluctuating pattern than it previously did. The classification
of edges is less balanced (at least given our chosen measure and dataset), but
what is classified in a layer with dynamic sized timesteps is usually more reliable,
because timesteps are labeled in the order in which they naturally occur. On
the other side, a large number of interactions are irregular. In this manner, edge
classification acts as an additional level of noise reduction. Because of that we
have fewer predictions than in the previous experiment but more than we would
have at 0.4 noise-ratio.

It can also be observed from Table 3.6 and in Figure 3.9b, that adding an extra
layer and splitting the middle layer in two layers did not have any effect, there
are no timesteps that are labeled as midlow. midup also has a low average size
of 69/241 =∼ 3. This means that the activity (number of nodes) in our dataset
drops very fast from high to low, as it is expected when study hours are over.

Scenario Delay Ratio Predictions PPV MCC
P0 0.5 130 0.32 0.24
P1 0.75 132 0.36 0.27
P2 1.0 132 0.36 0.24
P3 1.25 132 0.54 0.34
P4 1.5 133 0.62 0.26

Table 3.7: Produced predictions, PPV and MCC for dynamic-sized timesteps.
Average MCC is of 0.27.

What gives the clear advantage of making full use of layers is that instead of 1%
of the edges, we can consider 24%, giving edges that are not in the top 1% “a
chance” to be regular within a certain layer (i.e. time interval). It is also likely
that the results are boosted by the fact that timestep size is now lower, and
predictions are no longer made that far into the “future”. This will be verified in
Section 3.3.6, where the experiment will involve smaller fixed-size timesteps. As
the results in Table 3.7 and Figure 3.9 show, the model for noise-ratio of 0.25
has been improved to an average MCC of 0.27 and an AUC > 0.5. Therefore,
we keep these parameters for the next experiment, in which we look at what
happens if we decrease the number of irregular edges.
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Figure 3.9: Results and timestep classification for dynamic-size timesteps.
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3.3.4 Lower regularity requirements

Modified Param. New Value(s) Default
Layer regularity (Edges) 0.15 0.25
Layer regularity (Clique) 0.1 0.15
layers 4 at (0.2,0.3,0.2,0.3) 3
Labeled timestep size Dynamic 24
noise-ratio 0.25 0.4

Table 3.8: Discussed parameters.

This experiment’s goal is to study the impact of lowering the regularity re-
quirements for interactions, this allows for previously irregular interactions to
be considered regular in a layer. The requirement is lowered by decreasing the
regularity thresholds which are applied to dyadic and to aggregated interac-
tions. We lower the two thresholds as shown in Table 3.8 and we obtain the
classification shown in Table 3.9.

Layer Std. Timesteps Labeled Ts. Edges
upper 278 31 421
midup 241 69 26
midlow 0 0 0
low 321 43 3
irregular - - 556

Table 3.9: Edge classification statistics for lowered regularity thresholds.

By lowering the thresholds we recover 73 edges, which are added as regular in the
upper and midup layers. As expected, the quality of predictions is negatively
affected. While the number of recovered edges is not significant, the average
MCC is lowered from 0.27 to 0.09. On the positive side, we can see in Table 3.10
that this produced almost as many predictions as the first experiment from
Section 3.3.2, but with relatively better predictive performance, which means
that using layer regularity thresholds as an extra filtering method for edges is
a good choice, which allows for decent results even when starting with a low
noise-ratio.
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Scenario Delay Ratio Predictions PPV MCC
P0 0.5 451 0.38 0.06
P1 0.75 462 0.39 0.09
P2 1.0 469 0.41 0.08
P3 1.25 437 0.48 0.11
P4 1.5 418 0.58 0.14

Table 3.10: Produced predictions, PPV andMCC for lowered regularity thresh-
olds. Average MCC is of 0.09.
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Figure 3.10: Results obtained with lowered regularity thresholds.

3.3.5 Measures for trust

Modified Param. New Value(s) Default
Aux. feature power: Prob 0.3 0.5
Aux. feature power: LastQ 0.7 0.5
Aux. feature power: LayerOcc 1.5 1.0
layers 4 at (0.2,0.3,0.2,0.3) 3
Labeled timestep size Dynamic 24
noise-ratio 0.25 0.4

Table 3.11: Discussed parameters.

Trust is calculated using the probability of a delay and two auxiliary features, as
discussed in Section 2.5.2. By default, we start with a balanced set of importance
ratios. In this experiment we lower the importance of a delay’s raw probability
and give more importance to the auxiliary features which measure the number of
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times a delay occurs relative to the size of its parent layer and to the size of the
last quarter of the time sequence. It is expected that the quality of predictions
will be further improved.

Scenario Delay Ratio Predictions PPV MCC
P0 0.5 130 0.32 0.25
P1 0.75 132 0.36 0.27
P2 1.0 132 0.37 0.25
P3 1.25 133 0.52 0.33
P4 1.5 133 0.56 0.25

Table 3.12: Produced predictions, PPV and MCC with the new trust definition.
Average MCC is of 0.27.
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Figure 3.11: Results and delays map obtained with the new trust definition.
The delay map shows no significant changes from that produced by previous
experiments.

Results in Table 3.12 are almost the same as those from Section 3.3.3. The
expected improvement in prediction quality is hardly observable, and the av-
erage MCC is the same. The map of delays in Figure 3.11b is also close to
that from the previous experiment. Although the expectations were higher, this
can perhaps be explained. By default, the primary features (delays) only have
predictive ability if they occur close to the end of the time sequence, that is
generally the last quarter (or other subdivision). In the case of delays LastQ
must inherently be high in order to generate a prediction, thus it is a neutral
statistic. Perhaps the only minor fluctuation is given by LayerOcc, but since
layers also have different sizes and since the value is generally smaller than
0.1 for most delays, this feature does not bring very much impact either. The
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conclusion is that, while using auxiliary features may bring substantial quality
to the trust measure, the auxiliary features chosen by our implementation do
not provide any substantial impact because the primary feature indirectly takes
them into account. Further work should take this into account and identify
relevant auxiliary features which are not directly connected with the primary
feature.

3.3.6 Optimal timestep size

Modified Param. New Value(s) Default
Labeled timestep size Auto 24
layers 4 at (0.2,0.3,0.2,0.3) 3
noise-ratio 0.25 0.4

Table 3.13: Discussed parameters.

For this experiment we set the size of a labeled timestep to auto, which as
discussed in Section 2.3.2 is computed by averaging the size of dynamic sized
timesteps. The purpose is to find out whether having timesteps at the fixed-size
value which is considered optimal by our method will give any better predic-
tive performance than the previous fixed-size experiment when we lowered the
noise-ratio to 0.25, with a timestep size of 24.

Scenario Delay Ratio Predictions PPV MCC
P0 0.5 166 0.38 0.11
P1 0.75 185 0.42 0.20
P2 1.0 189 0.46 0.10
P3 1.25 173 0.46 0.04
P4 1.5 166 1.0 0.14

Table 3.14: Produced predictions, PPV and MCC for optimal fixed-size
timesteps (of 6 hrs). Average MCC is of 0.11.

The optimal timestep size found by our method is 6. We can observe that the
results are not as bad as those obtained for Section 3.3.2 but not as good as those
obtained in Section 3.3.3. The fact that the average size of dynamic timesteps
is much smaller than 24 may suggest that, in part, the results obtained with
dynamic size timesteps are positively influenced by smaller timestep sizes. This
is likely, because delays describing short term differences (less than 24 hrs) were
previously removed when assimilated by the 24 hrs large timesteps.
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Figure 3.12: Results for optimal fixed-size timesteps (of 6 hrs).

3.3.7 Predicting weekends

Modified Param. New Value(s) Default
Included Interval Sem. Break -
Included Interval Weekends -
layers 4 at (0.2,0.3,0.2,0.3) 3
Labeled timestep size Dynamic 24
noise-ratio 0.25 0.4

Table 3.15: Discussed parameters.

In this experiment, we test the predictive performance when keeping two sets
of timesteps which by default were removed in preprocessing (see Figure 2.3a).
The two sets are those corresponding to weekends and the semester break, as
illustrated in Figure 3.13c both have timesteps with about average levels of ac-
tivity (much better than the winter holiday, which is discarded). With this, we
are looking to determine whether the defined layers model can handle the new
timesteps, and whether or not, the performance is negatively affected. Fewer
predictions are likely to be produced since the size of the training sample is
increased, but the noise threshold defined with the same noise-ratio also in-
creases.
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Scenario Delay Ratio Predictions PPV MCC
P0 0.5 44 0.45 0.26
P1 0.75 44 0.55 0.48
P2 1.0 49 0.62 0.22
P3 1.25 53 0.75 0.34
P4 1.5 48 0.83 0.26

Table 3.16: Produced predictions, PPV and MCC for the extended dataset.
Average MCC is of 0.31.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPR (1 - Specificity)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P
R

 (
S
e
n
si

ti
v
it

y
)

P2

P3

P0P1

P4

Receiver Operating Characteristic curve of Tested Scenarios

Random Guess

(a) ROC Space

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
TPR (Recall)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
P
V

 (
P
re

ci
si

o
n
) P2

P3

P0

P1

P4

Precision and Recall

(b) PPV and TPR

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112
Days

0

20

40

60

80

100

N
o
d
e
 S

e
t 

S
iz

e

Preserved Timesteps
Removed Timesteps

(c) Excluded Intervals

Figure 3.13: Results for the extended dataset. For comparison with c), the timesteps
that were previously removed by default are illustrated in Figure 2.3a
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The obtained results are most likely caused by the increase in the noise threshold,
even so – the fact that the results describe an even better performance than
previously suggests that the use of dynamic sized timesteps is appropriate and
the new timesteps are correctly treated. Furthermore we can learn that the
patterns of interaction in weekends and in the semester break remain close to
those from regular week days, and that the measure of number of interacting
nodes, is still a valid measure for the introduced timesteps.

3.3.8 Cross validation

To increase the confidence in our results we perform cross-validation by splitting
the temporal window extended by the previous experiment in 4 samples of equal
sizes, of which the first 3 are used as training sets and the last one is the
validation sample. Although cross-validation was not fully implemented in our
tool, we still can test whether for a single scenario the three training sets give
the same results on the validation sample. Two scenarios are tested: P2 and P3,
with the parameters from the previous experiment, shown in Table 3.3.7. We
expect that, since the samples fluctuate the results for each sample should have
a slight fluctuation, and that since we use the extended dataset, the results may
not be as good as those obtained from Section 3.3.3.

Scenario Delay Ratio Predictions PPV MCC
P2-T1 1.0 66 0.19 0.08
P2-T2 1.0 122 0.12 -0.13
P2-T3 1.0 1423 0.29 0.05
P3-T1 1.25 72 0.2 0.08
P3-T2 1.25 119 0.08 -0.10
P3-T3 1.25 1356 0.33 0.04

Table 3.17: Produced predictions, PPV and MCC for samples of P2 and P3.
Average MCC for P2 is 0.27, and for P3 is 0.0.
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Figure 3.14: Cross-validation results for P2 and P3

In terms of MCC the results certainly do not describe the same predictive perfor-
mance shown by previous experiments. This can be justified by the reduced size
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of samples and the extended timesteps. If we would eliminate the consideration
of the reduced size of samples and its impact, we could say that the improved
results obtained in the previous experiment (Section 3.3.7) were a sign of over-
fitting. However, the results for the tested samples do not show more than the
expected fluctuation, the samples T1 and T2 generate significantly fewer predic-
tions than T3, and this could also be justified by the temporal distance between
these samples and the validation sample as well as their variation. A lower level
of activity (a week is cut in half by the winter holiday) in the timesteps of T2
(which corresponds to the intervals 28–42, 56–70 in Figure 3.13c) makes the
sample have a lower predictive performance compared to T1 and T3.

As shown in Figure 3.14, the results of tested samples form a triangle which
allows us to extract results using simple geometrical features, the averaged result
of the trained samples would be the geometric center of the triangle, and the
error would be the radius of the circle which borders the triangle. Overall,
the results are both near the random guess line but would have been higher
had it not been for T2. Since, with the exception of this sample there are no
major fluctuations, we have no evidence to suspect overfitting. It is important
to remark that a model for cross-validation in the temporal context needs to be
further investigated and developed, since the temporal distance between samples
has impact on the results, furthermore our results come from only 3 training
sets whereas cross-validation is usually performed with 10.

3.4 Supporting tool

The discussed results were obtained with the supporting LPF tool developed for
this thesis, and included with it. The tool is implemented in Python 2.7 (32-bit)
and allows testing a data set provided as input in Cytoscape1 DynNetwork2

format (XGMML). Our dataset is included with the thesis in the datasets
directory and can be visualized using the mentioned plugin for Cytoscape 3.0.

The logs and generated visualizations from the previously discussed experiments
are included in the thesis-results folder. Additional experiments can be fur-
ther configured using the base context configuration file from the tests folder.

The tool has only been tested on a 32-bit Python 2.7 environment running
on Windows 7. A number of packages used which the tool depends on are
enumerated in the tool’s readme file. Given that these packages are installed

1http://www.cytoscape.org/
2https://code.google.com/p/dynnetwork/

http://www.cytoscape.org/
https://code.google.com/p/dynnetwork/
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the tool can be run from command line with the following command in the tool’s
root directory:

python main.py [-c <a_context_file>] [-v <int>]

-v is the level of verbosity on the console, where 1 is the least detailed and
5 is the most detailed, the default is 3. -c is the name of a context file (test
scenario) specified in the tests folder. The context files are specified in YAML
and, as mentioned, the _base.yml file is a configuration file with a default set
of parameters. Not specifying a context file leads to all contexts defined in the
tests folder being processed and comparative statistics and plots are created
along with individual log files, this way the results of multiple contexts can be
compared and plotted together.

The core package contains the main implementation of the tool, with compo-
nents specified in the core.comps package, the ext folder contains functions for
producing plots and statistics and extensions of such nature are fairly simple to
create.



Chapter 4

Conclusions and Further
Work

This section wraps the work done for this thesis, describes the remaining chal-
lenges and the potential of future work.

4.1 Conclusion

In this thesis we explored the domain of the structure prediction problem in
temporal networks, identified primary tasks involved, and developed a set of
loose-coupled components as an experimental framework for exploring the so-
lution space, we provided methods for validating it and inherently for studying
the predictability of a given temporal networks representation.

Furthermore, the framework was tested for a temporal network of face-to-face
interactions, and implemented methods from existing literature which proved to
give good results within the proposed framework. Through the conducted exper-
iments we have explored the impact of different parameters on the results, using
validation methods such as the Receiver Operating Characteristic, Matthews
Correlation Coefficient, Precision vs Recall. We have identified that similarly to
how certain static network measures do not apply to temporal networks, neither
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are validation methods such as cross-validation fully compatible to a temporal
context, yet problems such as overfitting remain considerably relevant.

Even though further research is still required, looking at a temporal network as
a set of different temporal layers allows for a strong binding between an actual
interaction and the context when it occurs, layers could be seen as a special set of
features which we can premise that are likely to be consistent with all domains in
which a system can benefit from a temporal networks representation. Layers can
work together with applied domain knowledge which can remove the observable
variations and let layers focus on those that are microscopic, narrowing the
range and focus of predictions to very specific intervals. But also, layers can
automatically adapt to unspecified observable variations, being able to treat
each of them individually, at the expense of a lower focus.

We have observed that, particularly in social temporal networks, the behavior
of individuals is more dependent on time than on relations between entities, but
relations also can be better understood from the temporal context in which they
occur, e.g. an interaction occurring during evening hours may suggest friendship
better than interactions during working hours.

Temporal networks prediction can be applied to a wide range of real problems,
e.g. predicting information spread in social networks, disease spreading, opti-
mizing transportation infrastructure or large enterprise server networks; these
are all problems where a temporal networks representation does much of the
work by itself.

An important future application could be looking at the predictions as a source
of artificial intelligence. Many systems provide behavior patterns which show
some intelligence, but clearly the ultimate dataset will consist of brain activity
patterns1. This has been an important source of inner motivation in writing
this thesis. Even with our dataset, an intelligent persona could be built given
the predictions and a single additional dimension, e.g. a personality trait or
course that each student liked the most. The possibilities of combining models
created by temporal networks with artificial intelligence are indeed very large,
and their exploration is only just beginning.

4.2 Future Work

There may be no general implementation for a solution to structure prediction in
temporal networks, further work should expand the components identified by the

1See, for example http://milab.imm.dtu.dk/eeg

http://milab.imm.dtu.dk/eeg
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proposed framework and most importantly, test their boundaries of generality,
which can be done, for example, using synthetic temporal networks generated
with random patterns; or with any other kinds of big data. Once this has
been done, the large components may be further divided into smaller and more
specialized components which should remain loose-coupled.

Specifically, the training component could be divided in smaller individual com-
ponents that split the problems of extracting features, training them on known
data and computing their trust value. The component could be further im-
proved with a more general way of computing the primary feature and leaving
specific auxiliary features and training models that compute them to have a
“vote” on whether the general primary features can be trusted or not.

Overfitting is also an important issue that needs to be investigated further using
methods more appropriate than cross-validation, which tends to require large
datasets and which – although, due to time constraints has not been fully im-
plemented and tested – we premise that it might not be completely appropriate
for temporal networks. Further work is certainly required in devising a cross-
validation model that remains impartial in a temporal context.

The framework uses a configuration over convention approach, which allowed
for investigating the impact of each parameter on predictive performance, the
developed tool allows for a simple way of learning the impact of parameter
changes through the logs, comparison tables and visualizations produced for
individual experiments. Since validation methods are likely to be general to a
wide range of results, a better structured and automated tool for learning from
these results could be developed, along with a better structured supporting
library for implementing the proposed framework. An important feature for
such a future library would be to allow for caching of results, such that different
scenarios can be more efficiently tested without running each component every
time. This was half-implemented by the developed tool, but did not sufficiently
scale as the set of parameters and the level of data produced grew.

When the framework reaches a more mature state, the focus can than be moved
towards creating optimized instances of the framework for specific domains and
sets of problems. One such problem, and perhaps the most interesting: that of
using the predictable patterns in an AI context.
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