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Summary

This thesis explores how predictable human mobility is, and whether knowing
about mobility patterns of other people, who visit same places, can contribute
to better prediction results. Human movements are periodical to some extends,
which means that it is possible to create a model which can predict next place of
a person in some moment based on the data about previous person's movements.
In this thesis, an ensemble method is adopted, which gathers predictive power of
multiple models, each capturing di�erent human mobility features. The predic-
tive models are build using GPS data collected for 136 experiment participants,
during seven and a half months period. Prior to predictive modeling, data was
carefully preprocessed and characteristics of human mobility are analyzed using
multiple visualization techniques.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

This thesis describes the tasks performed with the goal to create predictive
models which can predict next place using past mobility data.

Lyngby, 17-June-2013

Ana Martic
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Chapter 1

Introduction

Every person follows a daily routine, imposed by their daily commitments and
habits. Most people go to work every morning and are at home during the
sleep time. Some spare time activities are also done on regular basis, such as
visits to the same gym, or a favorite bar. Therefore, human mobility shows
both temporal consistency, because certain places are visited periodically, and
geographical consistency, as people are likely to return to places they have visited
before.

This thesis tries to answer to which extent people follow patterns and to which
extent their movement can be predicted when knowing the history of their previ-
ous movements. Authors of [SQBB10] conducted a research on 50.000 selected
cell phone users and concluded that up to 93% of human movements can be
predicted with the right prediction algorithm. The estimation of the limit of
human predictability is based on empirically determined entropy of people's
trajectories represented as a time series. Knowing people's mobility patterns
can be used in various areas: tra�c congestion control, network bandwidth
provisioning [SDK+06], location-aware recommendations [ZZM+11], epidemics
prevention etc.

This research is based on data collected during SensibleDTU experiment for the
period from October 2012 to mid May 2013. All the experiment participants are
DTU students on the �rst year of Bachelor studies. Students form a group which
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is particularly hard to predict. Their daily schedule is more �exible than the
one of employed people and they are more mobile during their "working" hours,
since they have classes at various buildings. In addition, their daily patterns
change throughout a year due to changes of courses timetable every semester,
or changes of home address.

The tasks performed during this research include data preprocessing, data vi-
sualization and, �nally, next place prediction. Data preprocessing consists of
data cleanup and conversion between raw GPS location records to meaningful
stay regions. The places visited by a user are detected using grid-based cluster-
ing algorithm proposed at [ZZXY10] and improved at [MGP10, DGP12] In the
next step, various visualization techniques are applied to get insight into the
dataset with the focus of discovering which factors in�uence human predictabil-
ity. Knowledge from data visualizations is then used to improve the predictive
model proposed at [DGP12] and apply it to this dataset. The prediction method
proposed by [DGP12] combines conditional probability distributions of the out-
put variable given the set of contextual variables which include: current location,
hour, day of the week, weekend indicator, frequency and duration of visits to the
current location. My contributions include changing the model to account for
students' academic calendar, adding previous location and current location pop-
ularity as new contextual variables and �nally an attempt to increase statistical
power of the predictive model by including data from other similar users.

The thesis is organized as follows. Chapter "Related work" gives an overview
of related research about predictability of human behavior. Chapter "Data
collection" provides a brief description of how the mobility data was obtained.
Chapter "Data preprocessing" summarized the steps taken to prepare data for
further data mining. Chapter "Visualization" focuses on various characteristics
of human mobility which can be inferred by visualizing the data set. Chapter
"Next place prediction" describes predictive models which can predict the next
place and includes analysis of the prediction results. Chapter "Conclusion"
highlights main conclusions about human mobility predictability.
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Related work

Previous studies on human mobility di�er by the sources of mobility data, the
method used for discretization of geographical data, the predictive models they
propose and the granularity of predicted location.

Before smart phones, containing GPS sensors, became widely available, cell
phone tower id's were used for tracking location of cell phone users. When
someone makes a phone call, his location is recorded based on the id of the
nearest cell phone tower. Cell phone tower ids provide only coarse location
estimation. Cell phone tower logs are used at [CML11, SQBB10].

Other popular data sources include check-ins from social networks such as
Foursquare or Facebook [CML11, NS12, AN12], WiFi traces [SKJH03, SMM+11],
and �nally data from GPS sensors [SK12, DGP12, SMM+11]. Company Raytheon
created a tool called Riot (Rapid Information Overlay Technology)1 which tracks
people on the Internet by combining location data obtained from check-ins on
di�erent social networks and pictures uploaded to the Internet.

Most prevalent approaches to location data discretizetion include grid-based
clustering [CML11, SK12, MGP10] and density-based clustering, where DB-
SCAN [ZFL+04] and Density-Joinable Cluster [ZFL+04, GKdPC12] are used.

1http://www.guardian.co.uk/world/2013/feb/10/software-tracks-social-media-defence
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In the presented work, both approaches are considered, and will be discussed in
the following sections.

Cho et al. in [CML11] present prediction model based on geographic and tem-
poral periodicity of human movements and existing social ties. A movement
is considered to be in�uenced by social ties if a user is found in vicinity of his
friend's home or if user's friend made a check-in at particular location prior to
user's movement. They propose an ensemble method where they combine a spa-
tiotemporal probabilistic model to predict human movements between "home"
and "work" locations depending on time, and a social model to predict the
movement to locations classi�ed as "other", by spatiotemporal model. They
conclude that long term travel is more in�uenced by social ties then the short
term travel.

Sadilek and Krumm [SK12] propose a model which can predict someone's place
at any time in future. The predicted place is one of the 10 most visited locations
or 11th location which captures all the other places. Location is modeled as a
triangular cell with 400 m long sides. The model is a matrix where rows contain
days and columns contain visited location for every hour of a the day, day of
the week and a holiday indicator. The proposed prediction algorithm is based
on PCA analysis. PCA showed that for all subjects, 10 days (eigendays) are
enough to reconstruct one's entire location history with more than 90% accu-
racy. Prediction is done by projecting the test vector to principal components
(eigendays) and choosing the day with the highest weight. Similar study was
previously described at [EP09], where features include location, modeled as one
of the states "Home", "Work", "Elsewhere", "No Signal", and "Of State", for
every hour of a day.

Authors in [AN12] �t two supervised regressors to the model built upon users'
check-in data from Foursquare, to predict the ranking of the places within one
city, where particular user might check-in within next 24 hours. For every place
in a city, they calculate features categorized as user mobility features, global
mobility features and temporal features. The features which showed the highest
performance include: Categorical Preference (the number of visits to a particular
category of places in the past) , Place Popularity (total number of check-ins at
the venue) , Geographic Distance (the distance between current venue and all
other places) and Place Hour (the number of past check-ins at the particular
place during a particular hour of a day).

Song et al. [SKJH03] propose a 2-order Markov model with fallback to 1-order
Markov model for on-campus next place prediction. State in Markov model is
modeled as a location history containing two or one past location, in case the
previous location is missing. Transitions in Markov model are possible locations
that follow particular state, where the most probable transition is given as the



5

next place prediction. Markov based models are also used at [NS12, SDK+06,
GKdPC12].

Authors of [YLWT11] proposed a novel approach where users are �rstly clustered
based on the similarity of their semantic trajectories, and next place prediction
for a single user is done using geographic trajectories from all users in the same
cluster and the given user's personal semantic trajectories. A geographic seman-
tic information database is used in order to assign semantic labels to location
points, and transform a geographic trajectory to a semantic trajectory. They
use Pre�x-Span algorithm to discover prediction rules, so that every trajectory
with support higher than 50% is transformed to a prediction rule. Prediction is
done by searching through the pre�x tree, containing the prediction rules, for
the path with the greatest support and the longest length which matches the
current trajectory.

In this thesis, I try to reproduce and improve the next place prediction method
presented at [DGP12]. Authors at [DGP12] propose an ensemble method, where
conditional probability distributions over di�erent set of input variables are
combined into a single more powerful probabilistic model. This approach is
chosen because the proposed predictive model considers multiple characteristics
of human mobility and because it is easy to extent with new input variables.
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Chapter 3

Data collection

Data collection started in October 2012, as a part of SensibleDTU project.
Participants of the experiment are 136 �rst year students at DTU. As part of
the experiment, students were handed Android smart phones and asked to use
them as their primary phone.

Data is collected using an application based on modi�ed version of open source
framework called Funf Open Sensing Framework, which supports multiple probes.
Probes used within SensibleDTU project include: Location, Bluetooth, Cell
phone ids, Wi-Fi, Contact, SMS, Call log, Facebook, Screen, Battery etc. The
application is deployed to phones and it collects data with prede�ned sampling
rate. Data samples can be temporarily saved on the phone until there is a Wi-Fi
access, when they are uploaded to the central SensibleDTU server. Data can be
retrieved from SensibleDTU server by querying an API which returns response
in JSON format.

This thesis only considers location dataset. Location data is sampled every 15
minutes for the next 30 seconds. It is provided by Android Location Services
which use GPS sensor, Wi-Fi or cell tower ids as data sources. Location data
provided by GPS has the highest accuracy, but it requires higher power cost and
it is not available indoors. Android Location Services sometimes provide less
precise location based on visible Wi-Fi networks/cell tower ids, by maintaining
a mapping between known Wi-Fi hotspots/ cell tower id's and geographical
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coordinates.

Every location object in location dataset contains information about latitude,
longitude, timestamp, location accuracy, and various other information which
was not considered in this work.



Chapter 4

Data preprocessing

4.1 Data cleanup

During data collection stage, various problems occurred a�ecting data quality.
This section describes those problems and undertaken strategies to deal with
missing data and invalid data.

4.1.1 Missing data

Some users joined the experiment late, while others left the experiment early.
Figure 4.1 displays the date of the �rst and the last location point recorded
for each user. The time from the �rst to the last location observation for a
particular user is referred to as observation period, in further text. Users whose
observation period is shorter than 80% of the overall observation period for all
users (marked with horizontal lines on the plot at 4.1) are excluded from any
further analysis, because results obtained using their data would be misleading.

The time interval between any two consecutive location points should be no
longer than 15 minutes. However, it occurs that location points are not sampled
as scheduled, due to one of the following reasons:
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• Turned o� phone

• Battery exhaustion

• Signal loss

Figure 4.1: Observation period

Figure 4.2: Complementary cumulative distribution function
of sampling rate. Median = 1.0 second, Mean =
351.18 seconds, Standard deviation = 10547.23.
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• Turned o� GPS sensor

Figure 4.2 shows the CCDF of sampling rate for all users. It can be observed
that the time di�erence between two location points is most commonly few
seconds, 5 minutes, 10 minutes or 15 minutes and in rare cases (around 2 %),
it is higher, with maximum value of around 7000000 seconds (81 days).

Therefore, when time interval between two consecutive location points is higher
than 15 minutes, location of the user is considered unknown for the time period
which is 15 minutes lower than the time between the two location points.

Figure 4.3: Distribution of percentage of missing data per user. For every bin,
bin edges and a percentage of data it contains are displayed at the
x axis.

Figure 4.3 shows the percentage of missing data per user, calculated as the ratio
between the total time interval when user's location was unknown and the total
length of the observation period for given user. The users which have more than
35% of missing data are removed from the data set. After this step, 75 out of
136 users remain.

For a comparison, a dataset, containing Bluetooth proximity data, described
at [EP06], contains data for 85.3 % of time since the start of the experiment.
In 14.7 % of cases, missing data occurs because users tend to turn o� their
phones during the night. In terms of next place predictability, it is important
to know whether missing data is located in particular interval of the day or a
week. Fiigure 4.4 shows the number of missing location points for every hour
of the week, after users with over 35% of missing data were removed. It can be
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observed that missing data mostly occurs during weekend, due to users probably
forgetting to charge their phone for a long period of time.

Figure 4.4: Number of missing location points per hour of the week

4.1.2 Invalid data

Location points come with an accuracy parameter, which is received from An-
droid Location Services. If accuracy is less than 100m, the location point will
be marked as invalid.

The author of [Cut13] proposed an algorithm for removal of isolated location
points. By studying user trajectories, he noticed that location point jumps may
occur. Namely, there are location points which are too far away to be the part
of user's path, considering user's speed on that path, so it is likely that they
appear due to errors of GPS. The proposed algorithm identi�es a location point
as isolated, if the speed between the location point and the previous location
point is very high ( > 1 m/s), and the speed between previous and next location
point is very low (< 0.5 m/s). This algorithm is also adopted in this thesis. It
checks all location point triplets which are sampled at the regular sampling rate
and marks isolated points as invalid.

In this step, 11% of location points is marked as invalid. They are not removed
because they are taken into account in other analysis where it is important to
know whether location points are missing within some time interval.
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4.2 Stay points and stay regions

Visited places detection is performed according to the method proposed at
[ZZXY10]. The methods consists of 2 steps: a) stay points detection; and
b) stay regions detection using grid-based clustering; Zheng et al. de�ne stay
points as a group of consecutive location points which is constrained by max-
imum distance (maximum distance threshold), and minimum time (minimum
time threshold) between the �rst and the last location point. In this thesis, max-
imum time threshold is used as well, to limit the time which passed between two
consecutive location points, as suggested at [MGP10]. This is necessary from
the perspective of determining duration of stay at certain location. It can hap-
pen that user's trace is lost for certain amount of time between two consecutive
location points which are located close to each other. For example, someone
can stop providing data samples while being at home, then move to some other
location for some time and come back home and start sampling again. In this
case it may seem that the user stayed at home for a very long time, which is not
true. In this thesis, maximum distance threshold is set to 100 meters, minimum
time threshold is set to 20 minutes and maximum time threshold is set to 30
minutes. This means that, it is considered that an individual stayed at some
place if he spent more than 20 minutes within a radius of 100 m. Other sets
of parameters were tested as well, but this one is selected based on prediction
results.

Stay point detection algorithm sets start time, end time and coordinates for
every stay point. Start and end time are set as timestamps of the �rst and the
last location point, respectively. The coordinates are calculated as average of
all location point coordinates within the stay point.

In the next step, stay points are clustered into stay regions using grid based
clustering algorithm. The grid-based clustering algorithm requires dividing the
world into uniform grid cells. Since most location points lay in the area close
to Copenhagen (shown by CCDF of distances between every location point and
Copenhagen at Figure 4.5a), the geographic area for the experiment is limited
by the radius of 45km from Copenhagen (Figure 4.5b). The size of every world
cell is set to 100x100 m and the size of every stay region is set to 300 x 300 m,
as in [ZZXY10].

Every world cell is characterized by North and South geographical latitude and
West and East geographical longitude. World cells are created by assigning co-
ordinates of the North-Western corner of observation area to the �rst cell and
calculating South and East coordinates using formula 1 which accepts the known

1http://www.movable-type.co.uk/scripts/latlong.html
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(a) Complementary comulative distri-

bution of distances from Copen-

hagen. Read lines show the point

where 5% of the user have distance

larger than x

(b) Resulting observation area

(c) Grid-based clustering. Algorithm starts with the cell in the 3th row and 3th col-

umn, which has the highest number of stay points. Stay region which covers the

highest density is the one also containing the cell in the 1st row and 1st column.

The cell in the 2nd row and 5th column has the highest density out of remaining

cells. This cell is assigned to the region which does not form a full square, becuase

two of its cells already belong to the �rst region.

Figure 4.5: Grid-based clustering

coordinates, distance (100 m) and bearing. The algorithm proceeds by creating
adjacent cell in the same row, until the whole observation area is covered. The
world grid is stored in a matrix where rows are populated in descending order
of geographical latitude and columns are populated in ascending order of geo-
graphical longitude. Therefore, assigning a location point to a world cell is done
in logarithmic time.

The grid-based clustering algorithm contains the following steps (see Figure
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(a) Original grid-based clustering al-

gorithm. Central Station and

Tivoli Gardens are in separate re-

gions.

(b) Implemented grid-based clustering

algorithm.The most visited area of

Central Station and Tivoli Gar-

dens belongs to the same region.

Figure 4.6: Comparisson between two versions of grid-based clustering algo-
rithm.

4.5c:

1. Creating world grid

2. Assigning stay points to world grid cells.

3. Selecting an unassigned cell with the highest density. If all the cells con-
taining stay points are assigned, the algorithm �nishes.

4. Creating a region with a unique ID

5. Choosing a square of dimensions of 3x3 cells which contains the cell and
covers the highest possible density of unassigned stay points.

6. Assigning a newly created region to every cell, which does not belong to
any other region, and to all stay points in the cell

7. Repeat from step 3.

In the original algorithm at [ZZXY10], step 5 was performed by creating a region
of same size, which contains the highest density cell in the middle. The change
in step 5 was proposed at [DGP12] in order to create more precise regions. With
this approach, it takes less regions to cover the whole density, which has positive
impact on the next place prediction accuracy. By observing stay regions on a
map, I concluded that the original algorithm is better in separating semantically
di�erent locations (see Figure 4.6).
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Figure 4.7: Number of regions per user

Figure 4.7 shows the number of detected stay regions per user for the entire
period of 7.5 months.

After stay region detection, every stay point which lays within the observation
area has its "region ID" assigned. All stay points outside the observation area
will be removed. There might be consecutive stay points in one region, as
maximum stay point area is smaller then stay region's area. In the next step,
every two consecutive stay points with the same region IDs are merged into one
if the time di�erence between them is lower than 30 minutes, or if there are
location points every 30 minutes from the end of the �rst until the start of the
second and if these location points lie within the same region , or any adjacent
regions. This is done in order to disregard transitions within a single region.
Namely, if someone stays at one place and moves to stay at another place in the
same region, it is regarded as a single stay starting from the start time of the
�rst stay until the end time of the second stay.
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4.3 Comparison between grid-based clustering and

DBSCAN

Figure 4.8: Stay regions and DBSCAN cluster. The shape of DBSCAN is
approximated using convex hull algorithm

DBSCAN 2 is a representative of density-based clustering algorithms. It receives
two parameters: MinPts, minimum number of points in the neighborhood, and
Eps, maximum distance between neighboring points. The algorithm starts from
the �rst stay point and it checks if there are any points in the point's Eps
neighborhood. If the number of neighboring points is not less than MinPts, all
previously not assigned neighboring points are added to the new cluster. Then,
the cluster is expended to all other unassigned points which can be reached from
the neighboring points with respect to Eps. Points which are not assigned to
any cluster are considered outliers.

Figure 4.8 shows detected regions and DBSCAN clusters at the surrounding
area of DTU campus. The color of the overlays signi�es the importance of the
area with respect to how much time a user spent there on a log scale. More
important regions/clusters have darker color. Stay points detection algorithm
was also run prior to DBSCAN clustering, using the same parameters as for

2http://en.wikipedia.org/wiki/DBSCAN
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stay regions detection. The parameter MinPts is set to 2 and Eps is set to 200
m.

The di�erences between two clustering algorithms can be summarized as follows:

� Stay regions cover the entire density while DBSCAN leaves not frequently
visited places out. In terms of predictability, it is reasonable to leave out
the places which are visited once or twice during a long period of time.
This can be achieved with grid-based clustering approach by �ltering out
the regions depending on the frequency of visits over some time period.

� All stay regions have equal size, while DBSCAN produces clusters of di�er-
ent sizes and shapes. Having places which are close to each other clustered
together is a good idea if the prediction goal is just to get a coarse loca-
tion of user. However, DBSCAN is not capable of separating semantically
di�erent locations. For example, if a user lives on campus, it is likely that
his home and all university buildings would be detected as the same place,
so the next place prediction would run only for transitions between one
region, where user spends the most of his time, and few other regions,
which are probably not visited on regular bases.

� DBSCAN algorithm requires storing a table containing distances between
every pair of stay points.Therefore, its complexity is quadratic, while stay
region detection algorithm has linear complexity with respect to the num-
ber of stay points.

Having taken these issues under consideration, I decided to use grid-based clus-
tering algorithm for place discovery.

4.4 Trusted observations

Due to missing data, some visits might not be recorded at all, or partially
recorded, with incorrect start and end time. In data mining for predictive
modeling, it is important to know whether some visit happened immediately
after another visit and whether the stay duration of some visit is trustworthy.
Trusted observations are, therefore, introduced, as means for additional data
cleanup necessary for some models. The concept of trusted observations was
previously used at [DGP12].
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(a) Distribution of number of trusted

transitions per user

(b) Distribution of average number of

trusted transitions per day per user

(c) Distribution of percentage of trusted transitions per user

Figure 4.9: Trusted transitions per user

4.4.1 Trusted transitions

A transition between two places is trusted if location points are recorded during
the transition time in a time interval, speci�ed by some threshold. Do et al.
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[DGP12] set the time interval threshold to 10 minutes, as the minimum stay
duration is set to 20 minutes, so by knowing that data was recorded every 10
minutes, it is certain that another unobserved visit did not occur in between. In
this thesis, the time interval threshold is set to 30 minutes because the sampling
rate of location points is 15 minutes and because of the need to be more tolerable
to errors in sampling in order to keep more data for predictive modeling. If
transition time between two visits is lower than 30 minutes, or if location point
is recorded every 30 minutes from the end time of �rst visit to the start time of
the second visit, that transition is considered trusted.

Trusted transitions are converted to feature vectors and used in predictive
model. On average, a user has 265 trusted transitions during the whole ob-
servation period (see Figure 4.9a), 60.57% of transitions are trusted transitions
(see Figure 4.9c) and the average number of trusted transitions per day is 1.26
(see Figure 4.9b).

In order to test if the algorithms for stay points and trusted transitions detec-
tion correctly represents the recorded location points for a user the following
visualizations are created:

� A matrix showing the number of location points in an hour of a day for a
month long period (see Figure 4.12a).

� A matrix having days as rows and hours as columns where cells show start
and end time of transitions and visits (see Figure 4.12b).

� A map which shows location points, stay points with start and end time,
transitions between stay points for one day of recording (see Figure 4.13).

4.4.2 Trusted visits

A stay point is considered as a trusted visit if location points are recorded during
a speci�c period of time before and after the visit. Trusted visits are introduced
in order to know whether start time and end time of some visit are trustworthy.
For example, if a user starts recording data at some location, after a long period
without recording, the time of the �rst location point will be considered as a
start time of a visit. Such visit will not be trusted, as user might have arrived
to that location long before the �rst location point was recorded. Trusted visits
are used in models when it is important to know the exact stay duration at
some place.
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Figure 4.10: Distribution of stay durations. Mean: 7.92; Standard deviation:
11.85; Mode: 1; Median: 3.83; Min: 0.33; Max: 221.5.

Figure 4.10 shows the cumulative distribution function of a stay duration for
trusted visits of all users. It can be observed that short stay durations are
dominant, while, in rare cases, stays last for a few days. However, as explained
in section 4.2, someone is considered to be staying at some location, as long as
he does not move and stay at another location for at least 20 minutes.

The time threshold for trusted visits is set to 30 minutes. On average, a user
has 261 trusted visits during the whole observation period (see Figure 4.11a),
59.69% of stays are trusted visits (see Figure 4.11c) and the average number of
trusted visits per day is 1.24 (see Figure 4.11b).
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(a) Distribution of number of trusted vis-

its per user

(b) Distribution of average number of

trusted visits per day per user

(c) Distribution of percentage of trusted visits per user

Figure 4.11: Trusted visits per user
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(a) Number of location points per hour. Red - no location points. Blue - location

points are outside of the observation area. Greens - number of location points

depends on a shade of green. Dark green - at least one location point every quarter

of an hour. White - there are location points only in one quarterly interval.

(b) Visits and transitions start and end time. Green - arrival to a new location when

both previous and next locations are known. Red - arrival to a new location

when previous location is unknown. Black - arrival to a new location when both

previous and next locations are unknown. Yellow - stay at some location.

Figure 4.12: Matrix visualizations of user's behavior over a month
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Figure 4.13: Visualization of location points, stay points, regions and trusted
transitions on the map for 22th day of a month. Stay points
are marked with a marker with a label showing the start and the
end of the visit; regions with squares; location points with circles.
Map shows three visits where both previous and next locations
are known.
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Visualization

This chapter contains visualizations of the data set, which reveal more charac-
teristics of human mobility.

5.1 Time distribution

The goal of visualizations in this section is to show how many regions is enough
to explain most of users' movements.

Figures 5.1a and 5.1b show the percentage of time spent in top 2 and top 10
regions, respectively, out of total time spent in all detected regions. On average,
a user spends around 84% of his time in the top 2 regions, and 98% of time at
top 10 regions. Figure 5.1c shows how many regions explain over 95% of user's
mobility.

Figures 5.2 to 5.5 depicts how detected regions are distributed in space and how
much time is spent at each region for three users. Title of the graph shows the
number of detected regions and the number of regions which account for 95% of
user's time. Users at Figures 5.2, 5.3 and 5.4 have the number of detected regions
equal to minimum, median and maximum in the whole dataset, respectively. It
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can be observed that there is a single location where users spend the most of
their time - home location. This is the case for most of the users, while some
have most of their time divided between two dominant regions (Figure 5.5).

(a) Time spent in top 2 regions. Mean:

80.36; Standard deviation: 10.20;

Median: 81; Min: 55; Max: 97

(b) Time spent in top 10 regions. Mean:

97.75; Standard deviation: 2.53; Me-

dian: 98; Min: 86; Max: 100

(c) Distribution of number of regions where each user spends over 95% of time

Figure 5.1: Distribution of time spent at the most important regions
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Figure 5.2: User A. Number of detected regions is 9. Number of regions which
account for more than 95% is 2.

Figure 5.3: User B. Number of detected regions is 35. Number of regions
which account for more than 95% is 6.
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Figure 5.4: User C. Number of detected regions is 82. Number of regions
which account for more than 95% is 24.

Figure 5.5: User D. Number of detected regions is 55. Number of regions
which account for more than 95% is 13.
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5.2 Categories of places

The purpose of visualizations in this section is to analyze whether place's pop-
ularity, frequency and duration of stays can indicate a particular semantic cat-
egory a given place belongs to.Since dimensions of a stay region are 300x300m,
it can contain multiple semantic places. Therefore, a category of a stay region
cannot be used reliably in predictive modeling.

Figure 5.6 shows stay duration probability distributions at stay regions of dif-
ferent categories. The stay regions include two home places, two places at DTU,
where students have lectures and do project work, Copenhagen Central Station
and the area including a part of pedestrian street in Copenhagen.Width of each
bin, at the main probability distribution plots, corresponds to a stay duration
of 1h . Expectedly, long, over 12h stays, occur only at home places. Students
most likely stay at DTU places for 2 or 4 hours, while stays at central station
are rather short.

User's home place is set to a stay region where he spent the most of his time.
Total stay duration is calculated for the period of last 12 weeks, because there
is a higher chance of users moving to another place over a longer period of time.
The resulting home places are compared with the home places determined as
stay regions where users spent most of their time in the interval between 2am

and 6am. The home places were not matching only for one user.

Figures 5.7 and 5.8 show characteristics of stay regions from four categories:
"Homes", "Dorms", "DTU" and "Other". Parameter values for every stay
region are o�set for a random value in the interval between -0.2 and 0.2 on both
axes, in order to split stay regions with equal values.

Stay regions containing dormitories are detected using text search feature from
Google PlacesAPI1. For every stay region, a request is sent, to search for nearby
locations matching the search word "kollegier". For each dormitory in the search
result, it is veri�ed whether it is located within the given stay region's bounds, in
which case a "dorm" category is assigned to that stay region. Only dormitories
where users live are labeled as "Dorms" at the plots, with "Dorms" category
having precedence over other categories.

"DTU" stay regions are determined manually, based on a map showing all de-
tected stay regions as overlays with attached info box containing stay region's
ID.

1https://developers.google.com/places/documentation/
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Figure 5.6: Stay duration distribution probabilities at selected stay regions.

Figure 5.7 shows the correlation between average monthly frequency of visits,
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popularity and semantic category of a stay region.The average monthly fre-
quency of visits to some stay region is calculated for every user independently,
and a maximum value is set as parameter of a stay region. The maximum value
is considered as a better representative, than median and mean, as they depend
on the number of users who visited a particular stay region, which varies a lot
between di�erent stay region categories. Stay region popularity is determined
by the number of users who visited the given stay region.

The �gure shows that average monthly frequency is good in isolating stay regions
containing users' homes, including dormitories. As expected, some dormitories
have higher popularity than other home places. That is also the case for few
homes, which are probably located at the same stay region as other places
that are visited by a lot of people. The most popular places are four stay
regions at DTU. It is expected that DTU stay regions are less frequently visited
than homes, however that is not always the case, probably due to missing data
a�ecting the average monthly frequency.

Figure 5.8 shows the correlation between average stay duration, popularity and
semantic category of a region. Stay duration is not as good in separating home
locations as average monthly frequency, nor as good in separating DTU regions
as popularity.
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(a) Linear scale

(b) Log scale.

Figure 5.7: Correlation between average monthly frequency of visits, popular-
ity and semantic category of regions
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(a) Linear scale.

(b) Log scale.

Figure 5.8: Correlation between average monthly frequency of visits, average
stay duration and semantic category of regions
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5.3 Changes of behavior over time

It is essential to consider changes of users' behavior over time while selecting the
time duration of training data for next place prediction. Students' daily routine
can be a�ected by changes of residence address, lectures schedule, changes of
seasons etc. If the training set accounts for too long period of time, there is
a chance that data collected at the beginning of the period does not represent
user's current behavior patterns correctly.

Figure 5.9 illustrates how long time of recording it takes to detect most of
the stay regions that user visits. Two plots at Figure 5.9 show cumulative
distributions and average values of number of new stay regions detected per
user for a week long period. The average number of discovered regions drops
steeply during the �rst 6 weeks and, afterwards, it varies within the range from
0 to 1.5. Cumulative distributions for weeks from 6th of January 2012 and on
show that no new regions were detected for more than 50% of users. In the
weeks from 1st of April and from 6th of May 2013 more than 90% of users had
less than 2 new stay regions detected.

Figure 5.9: Number of stay regions detected per user during one week period

Figure 5.10 shows Jaccard similarity coe�cient between a particular week and
previous weeks with respect to stay regions visited during those weeks. The
Jaccard similarity coe�cient is calculated as the size of intersection divided
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by the size of union of stay regions visited during particular two weeks. This
measurement gives only coarse idea of similarity between two periods. as it does
not consider frequency and time of the visits. However it clearly shows that stay
regions change over time.

Figure 5.10: Similarity between the week from 5.5.2013 to 12.5.2013 and pre-
vious weeks

5.4 Co-location

Since all the experiment participants are �rst-year DTU students, it is safe to
assume that they interact with each other or at least have similar schedule
and spend time at the same places. The aim of this section is to provide an
overview of when the experiment participants co-locate and how consistently
that happens. If an individual regularly spends time at the same place as a group
of other people, the data recorded for all of them together can be combined in
the next place predictive model.

Figure 5.11 shows when and with how many other participants a particular par-
ticipant co-locates with per 2 hour interval, during April 2013. It is considered
that two participants co-locate during a particular time interval, if they are
staying at the same stay region at any point of time during that time interval.
The participant whose data is visualized at Figure 5.11 probably lives at the
same place as few other participants, as even during the night he co-locates with
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others. However, there are co-locations with more people on weekdays from 8-16
o'clock.

Figure 5.11: Co-locations for a particular participant during April 2013. Ma-
trix cells represent the number of participants which have the
same location as the observed participant, during a particular
time interval of a particular day. Rows in the matrix repre-
sent days in a month and columns represent 2-hour intervals in
a day.The number of participants is discretized into 4 bins us-
ing the following bin edges: 3, 10, 30.The color scheme includes
shades of blue and a gray color, so that the darkest color cor-
responds with the bin containing the highest numbers and gray
color corresponds to 0 co-locations.

During weekends , there are barely any co-locations, except Sunday afternoon
(Weekends in April are 6th and 7th, 13th and 14th, 20th and 21th, and 27th and
28th.).

As shown at Figure 5.11, there is some consistency with respect to when the
co-location with other participants occur. However, it is not visible with whom
the observed participant co-locates, nor whether the co-locations with the same
participants repeat with certain temporal consistency. Degree of co-location is
introduced as a measurement for temporal consistency of co-location between 2
participants in certain time interval. Figures 5.12 and 5.13 show the degree of
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co-location calculated based on data for all Fridays in April for the participant
whose data was shown at 5.11. A day is divided into four 6-hour intervals and
the degree of co-location is calculated for the participant in question and all
other participants he meets in particular interval (The plots at 5.12 and 5.13
only show 10 participants with whom the participant in question has the highest
degree of co-location). The degree of co-location during the 6-hour interval for
two participants is calculated as the number of 2-hour intervals within the 6-
hour interval for all Fridays in April when the participants are observed at the
same location divided by the total number the intervals when the location of
the �rst participant is known.

Figure 5.12a shows that in more then 50% of cases, a participant, marked as
user 16, is at the same stay region as participants marked as 56, 5 and 2 on
Fridays between midnight and 6 o'clock. According to this, and the degree of
co-location values for the same interval on other days of the week , it seems that
the participant is question is living at the same location as above mentioned
participants. On Fridays between 6 and 12 o'clock, participant 16 shows high
degree of-co location with multiple other participants, which probably means
that he has morning classes at DTU on Fridays. Participant 16 does not show
high degree of co-location with other participants in remaining 6-hour intervals
on Fridays.
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(a) 0-6 o'clock

(b) 6-12 o'clock

Figure 5.12: Degree of co-location for Friday.



5.4 Co-location 39

(a) 12-18 o'clock.

(b) 18-24h

Figure 5.13: Degree of co-location for Friday.
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Chapter 6

Next place prediction

6.1 Conditional Contextual Models

A contextual conditional model estimates the probabilities that an experiment
participant will visit one of previously visited destinations, given the current
context. The current context is de�ned by a single or a combination of the
following contextual variables: current location, hour, day of a week, weekend
indicator, previous location, frequency and duration of visits, and popularity of
current location. Accordingly, the model is equivalent to a conditional probabil-
ity distribution where output variable is potential next place and input variables
are given by a particular subset of contextual variables.

This model is originally proposed at [DGP12]. In this thesis, two new contextual
variables are considered, which include popularity and previous location. The
overview of variables is given in Table 6.1. Conditional probability distribution
can be estimated only if both input and output variables are discrete. The
variables are discretized using di�erent bin edges comparing to [DGP12]. Bin
edges for frequency, popularity and duration are decided based on the plots
5.7a and 5.8a at section 5.2 and by adjusting their values based on the resulting
prediction performance.

The model which depends only on LOC variable is equivalent to the 1-order
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Markov model, and the model depending only on PREV variable is similar to
2-order Markov model with fall-back, proposed at [SKJH03].

Name Description
LOC Current stay region ID
H Hour of the day when a particular transition

occurs. The variable is discretized into 12 lev-
els, each containing a 2-hour interval.

D Day of a week when a particular transition
occurs. The variable ranges from 0 to 6, for
days from Monday to Sunday.

W Weekend indicator. A variable takes 0 or 1 val-
ues, which indicate whether a particular tran-
sition occurred on weekend.

DUR Average duration of trusted visits to current
stay region. The variable is discretized into 3
bins using 4 and 10 hours as bin edges .

FREQ Average monthly frequency of visits to current
stay region. The variable is discretized into 3
bins using 5 and 12 as bin edges.

POP Popularity of current stay region expressed
with number of users who visited it. The vari-
able is discretized into 4 bins using 3, 10 and
50 as bin values.

PREV IDs of previous and current stay regions. If the
previous location is not available, the model
falls back to the model containing only current
location ID.

Table 6.1: Contextual Variables

Each trusted transition corresponds to a record in the conditional contextual
model. A trusted transition contains a pair of visits, which occur one after
another. The end time of the �rst visit is regarded as trusted transition time.
Values of FREQ and DUR variables are calculated based on all user's visits and
trusted visits, respectively, occurring before the the current trusted transition.
Value of PREV variable is calculated based on the previous trusted transition.
If the stay region of the �rst visit, of the current trusted transition matches
the stay region of the second visit, of the previous trusted transition, then the
stay region of the �rst visit, of the previous trusted transition, is considered
as previous location, otherwise,value of PREV is considered unknown. Values
of all other contextual variables are calculated based on information about the
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�rst visit of the trusted transition, while the output variable is set to the stay
region ID of the second visit.

The model can be formally expressed as follows. Let the following be the vari-
ables used in the model formula:

• i is trusted transition index in particular user's trusted transitions history.

• u is a particular user

• xk(u, i) is a vector consisting of values for particular contextual variables,
calculated based on user's past mobility at the time of trusted transition
i.

• y(u, i) contains the ID of destination stay region of trusted transition i.

• Y (u, i) is a set containing distinct IDs of destination stay regions of trusted
transitions occurring before trusted transition i and a {NewPlace} desti-
nation.

• α - regularization factor

Probability of potential next destination y for user u and trusted transition i is
calculated as follows, having that the context given by xk(u, i) occurred in the

past (
∑i−1
j=1 1[xk(u, j) = xk(u, i)] > 0):

pk(y|xk(u, i)) =
∑i−1
j=1 1[xk(u, j) = xk(u, i) ∧ y(u, j) = y] + α∑i−1

j=1 1[xk(u, j) = xk(u, i)] + α|Y (u, i)|
, (6.1)

where pk(y|xk(u, i)) is an abbreviation for conditional probability pk(Y = y|X =
xk(u, i)).

If the context did not occur before, the probability is calculated as by the
formula:

pk(y|xk(u, i)) =

{
2α

|Y (u,i)| , y = NewPlace.
α

|Y (u,i)| , otherwise.
(6.2)

Let the vector Pk(y|xk(u, i)) = {pk(y|xk(u, t)) | y ∈ Y (u, i)} be the vector
of estimated probabilities for each potential next destination for the trusted
transition i of user u. Then the prediction is given by the formula:

ypredicted(u, i) = argmaxyPk(y|xk(u, i)) (6.3)



44 Next place prediction

If the most probable destination is equal to the current location, the next most
probable destination is given as the next place prediction.

According to equations (6.2) and (6.3), if particular combination of values for
contextual variables, given by the vector x(u, i), does not exist in the training set,
NewPlace will be predicted as the next destination. In this case, probabilities
for all potential next destinations, including NewPlace, will be low. This is
done in order to lower the impact of probabilities from the models which cannot
give a prediction based on a particular context, to the combined Model. The
combined model is explained in the next section.

Multiple conditional contextual models are tested for each user, by using the �rst
half of particular user's trusted transitions for the training set and second half for
the test set. In each step, a training set is updated with the trusted transition,
which was just tested. If the result of next place prediction is NewPlace, the
result is treated as correct if the actual next place was not visited in the past.
Accuracy of particular model for particular user is calculated as the number
of correct predictions divided by the total number of predictions. The average
prediction accuracy for each considered model is provided in the Table 6.2.

Name Acc. Name Acc.

LOC 0.454 FREQ + H 0.495
DUR 0.453 FREQ + H + W 0.488
FREQ 0.449 FREQ + H + D 0.455
H 0.495 FREQ + DUR 0.457
D 0.447 FREQ + DUR + H 0.491
W 0.444 FREQ + DUR + H + W 0.484
LOC + H 0.457 FREQ + DUR + H + D 0.449
D + H 0.478 FREQ + POP 0.448
W+ H 0.493 FREQ + POP + H 0.495
LOC + H + D 0.424 FREQ + POP + H + W 0.488
LOC + H + W 0.453 FREQ + POP + H +D 0.455
DUR + H 0.495 PREV 0.451
DUR + H + W 0.490 PREV + H 0.455
DUR + H + D 0.465

Table 6.2: Average prediction accuracy per conditional contextual model

The models with the highest performance are models depending on H, DUR+H,
FREQ+H and FREQ+POP+H. Therefore, the most important contextual vari-
ables for next place prediction are hour of the day and contextual variables
determining the type of current location, but not the current location itself.
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Additionally, a weekend indicator plays more important role than the day of
a week variable. The reason for the above might be the lack of data samples,
manifesting in the lack of occurrences satisfying a condition given by particular
values for variables of higher granularity.

6.2 Combined Model

Do at al. [DGP12] proposed an ensemble method with the purpose of increasing
prediction performance over the conditional contextual models. The ensemble
method consists of learning weights for each individual model and combining
weighted probabilities, given by individual models, into a single probabilistic
model. They introduced the combined model to resolve two con�icting needs: a
need to do more informed predictions, relying on multiple contextual variables,
and a need to estimate the conditional probability distribution accurately, which
requires having enough data samples satisfying the condition given by the con-
textual variables. If the context was given using all contextual variables, the
model would have poor prediction performance due to lack of data to estimate
the conditional probability distribution accurately. The proposed model is sim-
ilar to Naive Bayes model, however Naive Bayes model combines conditional
probability distributions on equal grounds, where each conditional probability
distribution depends on a single variable. Naive Bayes predictor relies on an
assumption that conditional variables are mutually independent, which is not
the case with the proposed combined model.

Combined model provides a probability distribution over a set of potential next
places, where each probability is calculated as a weighted combination of prob-
abilities given by multiple conditional contextual models for a particular user
and a particular transition. Probabilities for combined model are calculated by
the following formula:

p(y|x(u, i)) =
∏K
k=1 pk(y|xk(u, i))wk

Z(x(u, i))
(6.4)

Symbols introduced by the formula are the following:

• K is the number of conditional contextual models considered. In this
thesis, 27 contextual conditional models are considered (see Table 6.2).

• wk weight of kth conditional contextual model.
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• pk(y|xk(u, i)) - conditional probability given by a particular conditional
contextual model.

• Z(x(u, i)) - normalization constant. Z(x(u, i)) =
∑
y′∈Y (u,i)

∏K
k=1 pk(y

′|xk(u, i))wk

Learning weights is set as an optimization problem with the goal to maximize
the di�erence between probability of the actual next place and the probability
of any other candidate for the next place, over the whole data set including
all transitions for all users. Accordingly, for every user u and for every trusted
transition i, the following in-equation should be valid:

K∏
k=1

pk(yactual|xk(u, i))wk >

K∏
k=1

pk(y|xk(u, i))wk , ∀y ∈ Y (u, i) ∧ y 6= yactual

(6.5)

The optimization problem is solved using Stochastic Gradient Descent method 1.
Stochastic Gradient descent estimates parameter w by minimizing an objective
function of the following form:

Q(w) =

n∑
i=1

Qi(w), (6.6)

where Qi(w) is a value of loss function of ith data sample. Stochastic Gradient
Descent iteratively minimizes given objective function by subtracting the value
of a gradient of a loss function, multiplied by a small step size α, from the
parameter w for each data sample:

w = w − α∇Qi(w), ∀i ∈ 1, ..., n (6.7)

The objective function for the given optimization problem is formulated as fol-
lows. A natural logarithms are applied to both sides of the in-equation at (6.5),
which results in the following in-equation:

K∑
k=1

wk ln pk(yactual|xk(u, i)) >
K∑
k=1

wk ln pk(y|xk(u, i)), ∀y ∈ Y (u, i)∧ y 6= yactual

(6.8)

If W = {wk | k ∈ {1, ...,K}} and Pu,i,y = {pk(y|xk(u, i)) | k ∈ {1, ...,K}} are
two vectors, then the in-equation (6.8) can be rewritten using the inner product
of the two vectors:

〈lnPu,i,yactual ,W 〉 > 〈lnPu,i,y,W 〉 , ∀y ∈ Y (u, i) ∧ y 6= yactual (6.9)

1http://en.wikipedia.org/wiki/Stochastic_gradient_descent



6.2 Combined Model 47

Accordingly, Do et al. [DGP12] de�ne the objective function as follows:

Q(W ) =
λ

2
||W ||2 +

∑
u,i

∑
y

max(0, 1− 〈(lnPu,i,yactual − lnPu,i,y), W 〉)︸ ︷︷ ︸
hinge loss2

(6.10)

In this thesis, additional constraint is speci�ed: wk ≥ 0,∀k ∈ 1, ...,K, which I
assume is implied at Do et al. work [DGP12]. Initially, all weights in the the
weight vector W are set to 1. In every iteration of Stochastic Gradient Descent,
weights are adjusted and the value of the objective function in recalculated. If
the value of the objective function is greater in the current iteration than in the
previous, the algorithm terminates.

The estimated weights are reused in the combined models for all users. There-
fore, the training set for learning weights contains the �rst half of trusted transi-
tions of every user. Furthermore, the training set was again divided on 2 halves.
The �rst half is used to train the conditional contextual models, so that the
second half can be used for estimating the probabilities for each conditional
contextual model , which are used as constants in the objective function. Com-
bined model is tested using the remaining have of trusted transitions per user,
so same data is not used in the training set and the test set. Do at al. [DGP12]
use leave one user out cross validation to learn weights; they estimate combina-
tion weights based on all trusted transitions of all users but one, and then test
the combined model using the trusted transitions of the remaining user.

Figure 6.1 shows weights of each conditional contextual model, where weight is
greater than zero.

The performance of the combined model is estimated using average accuracy,
based on the data for 75 users. The average accuracy is equal to 0.552, which
is higher than average accuracy of any individual conditional contextual model,
where maximum average accuracy is 0.495.
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Figure 6.1: Weights for conditional contextual models

6.3 Baseline Models

As previously discussed, at Section 5.1, the time a user spends at di�erent stay
regions is not balanced. On average, users spend 83.5% in top 2 regions. This
is also re�ected on trusted transitions, where, on average, for more than 50%
of trusted transitions, destination stay region is one of top 2 most frequently
visited regions. Figure 6.2 shows the average fraction of trusted transitions to
10 most visited regions and the fraction of trusted transitions to all remaining
stay regions.

Since the data set is imbalanced, the accuracy of predictive models is not a
good estimation of the predictive performance, if it is not compared to the
performance of baseline models which give the most frequent value of the output
variable as a prediction. In this thesis, the performance of combined model and
individual conditional contextual models is compared with the performance of
three baseline models:
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a) Most frequent - always gives the most frequently visited stay region as
next place prediction.

b) Longest stay - predicts the stay region where a user spent the highest
amount of time in in total.

c) Longest stay per hour of a week - predicts the stay region where a user
spent most of the time per particular hour of particular day in a week.

Figure 6.2: Average fraction of trusted transitions per region rank. The stay
regions are ranked by frequency of visits in descending order.

In all baseline models, most frequently visited region, or region with longest stay
in total, is determined based on the past trusted transitions which occurred in
a �xed-length period before the current trusted transition. This is done in
order to acknowledge the changes occurring in user's mobility patterns over
time. For example, most visited stay region during one month is not equal
to the most visited region during last four months. Figures 6.3a, 6.3b and
6.3c show how the average accuracy of the baseline models changes depending
on the number of weeks used for calculating most frequently visited region,
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region with longest stay in total, and region with longest stay per hour of the
week predictors, respectively. Accordingly, the length of training data is set
to 5,6,13, for most frequent, longest stay and longest stay per hour of a week,
respectively. All baseline models are tested using the second half of each user's
trusted transitions, as it is done for other models. The average accuracy per
baseline model is displayed at Table 6.3.

Name Avg. Accuracy

Most Frequent 0.489
Longest Stay 0.481
Longest Stay per Hour of a Week 0.498

Table 6.3: Average prediction accuracy per conditional contextual model

None of the baseline models outperforms the combined model. However, longest
stay per hour of a week outperforms each conditional contextual model.
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(a) Most Frequent. (b) Longest Stay.

(c) Longest Stay per Hour of a Week

Figure 6.3: Correlation between accuracy and training set length for baseline
models.

6.4 Improvements to next place prediction model

6.4.1 Academic calendar aware predictive model

This section provides a summery of the approaches considered towards encom-
passing the fact that human mobility changes over time into the conditional
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contextual models. Do et al. proposed a weighted conditional contextual model
where higher weight is assigned to more recent trusted transitions in the train-
ing set. In weighted conditional contextual model, the observations are �rstly
ordered in a reverse order of the time when they are occurring, so that obser-
vations occurring sooner to the current time have lower indices in the ordered
list. Then, when estimating the conditional probability distribution, every ob-
servation is weighted using the inverse value of the observation's index in the
ordered list. This approach was tested, but it did no bring any improvements
to the prediction results.

Since it is known that the students had two lectures periods during the course of
the experiment, I assumed that the predictive performance could be improved by
predicting next place for trusted transitions which happened in certain lectures
period, using the trusted transitions from the same period. This resulted in no
improvement of prediction performance due to small number of data samples.

Name Acc. Name Acc.

LOC 0.475 FREQ + H 0.511
DUR 0.475 FREQ + H + W 0.504
FREQ 0.473 FREQ + H + D 0.467
H 0.511 FREQ + DUR 0.479
D 0.472 FREQ + DUR + H 0.507
W 0.470 FREQ + DUR + H + W 0.497
LOC + H 0.469 FREQ + DUR + H + D 0.470
D + H 0.497 FREQ + POP 0.473
W+ H 0.506 FREQ + POP + H 0.511
LOC + H + D 0.433 FREQ + POP + H + W 0.504
LOC + H + W 0.465 FREQ + POP + H +D 0.467
DUR + H 0.510 PREV 0.472
DUR + H + W 0.504 PREV + H 0.466
DUR + H + D 0.481

Combined model: 0.563

Table 6.4: Average prediction accuracy per model

To improve this idea, I considered using all available past trusted transitions
in the training set, provided that the trusted transitions occurring in the same
period as the current trusted transitions had higher weight than trusted transi-
tions occurring in other periods. According to the academic calendar at DTU,
the whole experiment time is divided into three bins using dates of the end
of �rst semester and the start of second semester as bin edges. The period in
between the two semesters consists of winter exam period and winter break or
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three weeks course period. The largest predictive performance improvement is
achieved if the weight is set to 3. The model was tested using 2, 2.5, 3, 3.5
and 4 as weight values. The results at Table 6.4 show improvement in perfor-
mance for each conditional contextual model and for the combined model. The
conditional contextual models with the highest performance are H, DUR+H,
FREQ+H, FREQ+POP+H, which is the same as for the �at models.

6.4.2 Co-location aware predictive model

It is expected that, as experiment goes forward and more data is collected,
the prediction results will improve. However, by testing the predictive models
from April until June, I noticed no improvement or only limited improvement
of predictive performance.

An alternative way to increase the number of data samples is to join the data
from other users into the predictive model build for a single user. This can only
be done if there is certain similarity in users' mobility patterns. The similarity of
users' mobility patterns have temporal characteristics, as shown in the Section
5.4: a particular user might meet a particular group of people only during certain
part of a day, or he can stop meeting certain group of people he used to meet on
daily basis. In this thesis, temporal similarity of mobility patterns of every two
users is measured by the degree of co-location per 6-hour interval of a particular
day of a week during 30 days period.

For every user's trusted transition for which the next place prediction is done,
conditional probability distribution is calculated based on previous observations
for that particular user and previous observations of all other users who co-
located with the particular user during the day of a week of the trusted transition
in any 6-hour interval of that particular day of a week. Degree of co-location
between user and other users is calculated for 30 days period, and only the
observations of other users' mobility during last 30 days period are included,
provided that they occurred within a particular 6-hour interval, where degree
of co-location between the two users was higher than 0.5.

The results of academic calendar and co-location aware conditional contextual
models and the combined model are given at the Table 6.5. The results of
the conditional contextual models which depend on hour of a day show slight
increase in performance over the performance of only academic calendar aware
models. For example, average accuracy for co-location and academic calendar
aware models for H and H+W increased from 0.511 to 0.527, and from 0.506 to
0.521, respectively. However, I noticed slight fall in performance of the models
depending on a day of a week, which might be due to the way how data from
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other users was sampled. In total, the performance of the combined model is
0.558, which is lower than the performance of only academic calendar aware
combined model.

Name Acc. Name Acc.

LOC 0.474 FREQ + H 0.517
DUR 0.482 FREQ + H + W 0.509
FREQ 0.474 FREQ + H + D 0.464
H 0.527 FREQ + DUR 0.483
D 0.461 FREQ + DUR + H 0.509
W 0.473 FREQ + DUR + H + W 0.500
LOC + H 0.472 FREQ + DUR + H + D 0.460
D + H 0.482 FREQ + POP 0.474
W+ H 0.521 FREQ + POP + H 0.517
LOC + H + D 0.423 FREQ + POP + H + W 0.509
LOC + H + W 0.466 FREQ + POP + H +D 0.464
DUR + H 0.519 PREV 0.473
DUR + H + W 0.514 PREV + H 0.467
DUR + H + D 0.478

Combined model: 0.558

Table 6.5: Average prediction accuracy per model

6.5 Analysis of next place prediction results

The best performing model is academic calendar aware combined model whose
average accuracy is 0.563. The distribution of accuracy per user is shown at
Figure 6.4. The accuracy per user varies from 0.35 to 0.82. In order to bet-
ter understand what in�uences on how predictable some user is, I investigated
the correlation between accuracy and the number of detected regions per user
(Figure 6.7) and I compared the accuracy between best performing conditional
contextual models, baseline models and combined model for each user (Figure
6.9). By viewing the plots such as the one at Figure 6.9 for every user, I noticed
that, in most cases, the performance of all models is in tight relation with how
much time a particular user spends at the most visited stay region. This relation
can be observed at Figure ?? showing the comparison between accuracy of most
frequent and combined model for every user.

Another measurement of model performance is average distance between the
actual and predicted stay regions. The distances probability distribution (see
Figure 6.6) is left skewed with over 60% of distances bellow 1 km.
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Figure 6.4: Distribution of accu-
racy per user for aca-
demic calendar aware
combined model

Figure 6.5: Distribution of number
of stay region visited
more than 5 times a
month by one user.

Figure 6.6: Probability distribution of distances between actual and predicted
place for all trusted transitions.

Other picks of the probability distribution, at 2.5, 9.5 and 12.5 km might indicate
the geographical distribution of stay regions, users visits. Average distance error
for academic calendar aware model is equal to 3.83 km.

The same prediction method shows better results, when applied to another
data set at [DGP12]. The average accuracy of the conditional contextual mod-
els at[DGP12] ranges from 0.392, for weighted conditional contextual model
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depending on day of a week, to 0.604 for weighted conditional contextual model
depending on current location and hour of a day. As a consequence, their com-
bined model also has higher average accuracy, equal to 0.64.

Figure 6.7: Correlation between the
number of detected stay
regions and accuracy
of academic calendar
aware combined model
per user.

Figure 6.8: Correlation between the
accuracy of most fre-
quent and academic cal-
endar aware combined
model per user.

Figure 6.9: Accuracy of 5 best performing conditional contextual models,
baseline models and combined model for a particular user.
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Their dataset contains data for 17 months and 153 users, consisting of students,
professionals, few retired people and housewives, while data set used in this
thesis accounts for 7,5 months and 75 users, all of which are students. They
use the same plot as 6.2, to show the number of transitions per stay region,
showing that almost 70% of trusted transitions has one of the two most frequent
stay regions as destination. In this data set, two most frequent regions are
destination for something above 50% of trusted transitions. This might mean
that participants of this experiment are more mobile. However, I cannot be
certain about such conclusion due to a big di�erence in the time lengths of the
two data sets.

One of the problems regarding next place predicting is the lack of data samples
to accurately estimate conditional property distributions. In order to simulate
the situation when that is not longer an issue, I trained and tested the predictive
models using only transitions between stay regions where monthly frequency of
visits is greater than 5. Figure 6.5 shows the distribution of the number of stay
regions per user where monthly frequency of visits is greater than 5. The average
accuracy of the calendar aware combined model in such setting is 0.737. The
average accuracies of baseline models are 0.630, 0.610 and 0.606 for the most
frequent, longest stay and longest stay per hour of a week models, respectively.

I assumed that the prediction performance would improve with better data
quality. To verify that, I tested the prediction models only for 44 users for
whom more than 60% of transitions were trusted. However, this resulted in
lower average accuracy of the academic calendar aware combined model, 0.548,
comparing to the following average accuracies 0.489, 0.481 and 0.498 of the most
frequent, longest stay and longest stay per hour of a week baseline models.

Figures 6.10a and 6.10b show particular details about users' weekly mobility
patterns. Figure 6.10a shows number of transitions per hour of a week, and Fig-
ure 6.10b shows regularity per hour of a week.In the context of human mobility
predictability, regularity is a term previously used at [SQBB10], and shows the
probability that user will be at the most probable place for particular hour of a
week. Both visualizations are able to show DTU students daily patterns. Num-
ber of transitions is low by night and increases starting from 7am on a weekday,
then it picks at noon, during the lunch time, and then again at the afternoon,
when students leave the university. It appears that there is a low number of
trusted transitions after school and during weekend. However, this might be
misleading because the number of transitions is calculated based on mobility
of all users, and users' mobility patterns are very similar during school hours,
but not in the afternoon. Similarly, the regularity is highest during the night
and lowest during the lunch time and the time when lectures end. Furthermore,
regularity image shows that users are least regular during Friday afternoon. Do
et al. [DGP12] compared number of transitions and accuracy per hour of a
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week. I tried to do the same, however it is impossible to see daily patterns at
the accuracy image due to low number of transitions at certain hours. Instead,
the accuracy image only shows that the accuracy is lower during weekend and
Friday evening. Figure 6.10d shows that the average accuracy is higher at the
beginning of the week and it achieves its lowest value on Saturday. This might
be correlated to how missing data is distributed, which was shown at Figure 4.4
at Section 4.1.1.

(a) Number of transitions per hour of a

week.

(b) Regularity per hour of a week.

(c) Accuracy per hour of a week. (d) Accuracy per day of a week.

Figure 6.10: Users' weekly mobility patterns.



Chapter 7

Conclusion

The work presented in this thesis includes thorough analysis of human mobility
patterns with the goal to predict next place based on previous mobility. At
the �rst stage, data was prepared for data mining, which consisted of handling
of a large amount of missing data and turning raw GPS data to �nal set of
stay regions. At the second stage, various data visualizations are done to re-
veal important characteristics of human mobility patterns, such as unbalanced
distribution of time spent at di�erent stay regions, characteristics of stay re-
gion categories, changes over time and existence of patterns in when, and with
whom users co-locate. Finally, predictive modeling is implemented by adopting
the framework proposed at [DGP12] to this data set. The framework consists of
joining multiple conditional probability distributions, capturing various mobil-
ity patterns, in a single combined model, with the goal to maximize predictive
performance. A conditional probability distribution depends on a subset of con-
textual variables including current location, hour of a day, day of a week, week-
end indicator, duration and frequency of visits, previous and current location
combined, and popularity of current location. The best performing conditional
contextual model is the one depending only on hour of a day. The framework
could be further expended by considering other relevant information such as
weather history. Currently, the conditional contextual models do not depend
on any characteristics of potential next destinations, which could be included
to the models by assigning weights to model records, depending on character-
istics of candidate destinations, such as general popularity of certain place, the
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distance between current place and the candidate place, number of friends who
are already there etc.

I introduced two alterations to the predictive framework: academic calendar
aware models and co-location aware models. The academic calendar aware
models give more relevance to the mobility patterns which occurred in the same
period of a year as the current visit. With this approach, the predictive per-
formance of all contextual conditional models is improved, which results in im-
proved performance of the combined model as well. Co-location aware models
join data of other users to particular user's predictive model based on when and
how often a particular pair of users co-locates. Co-location aware models bring
improvement to certain contextual conditional models which depend on hour of
a day, however they do not bring improvement to the combined model. This
might be due to the way data of other users is sampled, which requires further
investigation.

The main reason of rather low accuracy of the predictive models is lack of data
samples eg. users visit certain places seldomly or change mobility patterns, so it
is hard to learn under which circumstances visits to those places occur. In order
to partially overcome this problem, predicting of the semantic category of the
next place could be considered, rather than predicting the exact next place. This
could still have practical usage in advertising eg. if it is known that someone is
going shopping, discounts can be o�ered to that person. Another option would
be to reformulate the prediction task into predicting whether a user will visit a
particular place among the most important places, or some other place. This
is not considered in this thesis, because as seen at various visualizations, users
most commonly have one or two most important places, and all other places
have much lower relevance. I assumed that predicting transitions between home
and work is not challenging, as it could be achieved by simple visualizations of
someones schedule.
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