
Timeline analysis for

Android-based systems

Yu Jin

Kongens Lyngby 2013

IMM-M.Sc.-2013-42

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-42

Summary (English)

The goal of the thesis is to design and implement a timeline analysis framework
that can be used to analyse events within the Android operating system, with
particular focus on their chronological relations. To achieve this, a study of
Android system was taken place prior to the implementation of this framework.
After that, a framework that consists of two functional components was im-
plemented, the components are namely extraction component and visualisation
component.

The extraction component consists of an Android application and several shell
and python scripts, wherein the application and scripts can be used to extract
and preserve evidential artefacts from mainly three places in the Android sys-
tem, namely Logcat logging buffers, Android system files and SQLite database.
Apart from that, the visualisation component, mainly a graphical timeline analy-
sis tool was designed and implemented. The tool is powered by modern browsers
with novel HTML technologies as well as a web server. This Browser/Server
architecture chosen here has mainly three advantages. First, with proper access
control on the web server, the evidence can be safely preserved. And which
allows multiple investigators to work on the same case simultaneously without
replication and distribution of the original evidence. Secondly, the use of the
server in the backend makes the framework more scalable in case for bulky anal-
ysis demands. Last but not least, the use of browsers and HTML technologies
make the analysis tool truly platform independent, the analysis task could even
be done in mobile devices. In addition, the graphical presentations of evidence
were implemented in the way that users can have full control over what should
be displayed on the timeline and which period should be displayed. This feature
is of utmost importance as patterns of activities can only be seen in relatively

ii

long periods. Whereas coherent activities need to be verified or correlated in
manner of seconds.

Lastly, evaluations were carried out to verify the effectiveness of the framework.
The results from the evaluations showed that the framework is theoretically
effective to locate activity patterns as well as coherent events. However, consid-
ering the fact that the Android system evolves very quickly and the techniques
used by malicious applications vary a lot, the framework should be considered
as a proof of concept. In addition to that, from the experience gained in the
development and evaluation processes, it is deemed that the technologies se-
lected for this implementation were suitable for forensic timeline analysis. More
importantly, the potential of these technologies can be further explored to make
better analysis tools.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Telecommunication.

The thesis deals with the problem of the lacking available tools for conducting
timeline analysis for Android-based system in forensic manner.

The thesis consists of a study of Google Android system in respect to forensics
and a design and implementation of a framework. The framework is dedicated
to provide evidence extraction and timeline analysis for Android-based systems.

Lyngby, 12-June-2013

Yu Jin

iv

Acknowledgements

I would like to firstly thank my supervisor, Doctor Robin Sharp, who inspired
me a lot in this project and kept encouraging me to pursue a better development
of this thesis. What’s more, his spirit of adventure in respect to research and
scholarship let me truely enjoy the thrill in this learning process. Secondly, I
would like to give my gratitude to Android Malware Genome project hosted
by Yajin Zhou and Xuxian Jiang at Department of Computer Science, North
Carolina State University. With their malware samples, this project could be
evaluated under empirical cases. Last but not least, I would also like to express
my appreciation to my families and friends, who have supported me throughout
the entire process by letting me be able to concentrate on this thesis and give
my best to it.

vi

Contents

Summary (English) i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Related works . 1
1.1.1 Zeitline . 2
1.1.2 TSK Autopsy . 2
1.1.3 Ex-Tip . 2
1.1.4 CyberForensic TimeLab 3

1.2 Contributions . 3
1.3 Thesis structure . 3

2 Framework design & architecture 5

2.1 Design requirements . 5
2.1.1 Usability . 6
2.1.2 Accessibility . 7
2.1.3 Extensibility . 7
2.1.4 Scalability . 7

2.2 Framework architecture . 8
2.2.1 Web server . 8
2.2.2 Server side scripts . 9
2.2.3 Android App . 10
2.2.4 Browser side rendering . 10

2.3 Summary . 10

viii CONTENTS

3 Presentation of artefacts 11

3.1 Goals of presentations . 11
3.2 Generic data structure . 13
3.3 Timeline view . 14
3.4 Aggregation view . 17
3.5 Deltatime view . 18
3.6 Classification view . 19
3.7 Summary . 21

4 Implementation 25

4.1 Evidence collection . 25
4.1.1 Android Content Providers 26
4.1.2 Logcat logs . 27
4.1.3 Filesystem . 28
4.1.4 Misc. 28

4.2 Self-Organising Map . 29
4.3 Visualisation of artefacts . 31
4.4 Features & user interface . 33
4.5 Summary . 35

5 Evaluation 37

5.1 LoveTrap . 37
5.2 FakePlayer . 40
5.3 Reliability discussion . 44
5.4 Summary . 45

6 Conclusion 47

A Android App Code Snippet 51

B Scripts Snippets 55

C Visualisation Code Snippet 61

Bibliography 69

Chapter 1

Introduction

Due to the massive deployment of Android devices (including smart phones,
tablets, etc.), these devices have become a new battle field for digital criminals
and investigators. This emerging situation then calls for a dedicated frame-
work aiming at providing forensic timeline analysis for Android-based systems.
In addition, to the best knowledge of the author, there is also a lack of time-
line visualisation studies at present. However, it is deemed that the graphical
presentation of a timeline immensely influences the efficiency of investigation
tasks. Therefore, a carefully crafted timeline visualisation which is capable of
displaying which coherent activities have happened within the target system is
required.

1.1 Related works

So far, several forensic timeline analysis tools have been developed. However,
none of those has visualised activity sequences. In fact, quite a few of those do
not have a graphical representation of timeline.

2 Introduction

1.1.1 Zeitline

Zeitline is a forensic timeline editor developed by Florian Buchholz and Court-
ney Falk [BF05]. Which is designed as an extensible tool that is capable of
using various data source to generate system events. Zeitline treats events as
either atomic events or complex events, wherein complex events consist of mul-
tiple atomic events. Based on these structures, the tool presents the events
timeline just like a directory tree, where events are listed and indexed by the
happened date. For complex events, there will be a sub-directory contains sev-
eral nodes that represent the atomic events that form the corresponding complex
events. Zeitline also supports filtering the results being displayed by using query
mechanism. Nonetheless, the presentation of timeline in Zeitline is considered as
text-based instead of graphics and it also lacks the ability to provide a high-level
overview of the system which is deemed essential for users to better recognise
coherence between multiple events.

1.1.2 TSK Autopsy

The Sleuth Kit is the most well known forensic toolset available today. Which
contains a collection of Unix-like command-line tools that can work together
to extract temporal artefacts from various file systems. Autopsy a.k.a Autopsy
Forensic Browser [Car13a] is a web-based graphical interface to the TSK. Like
Zeitline aforementioned, the timeline presentation is text-based also in Autopsy.
And the timeline only contains file system activities. However, in the most
recent beta version of Autopsy, single navigation tree is added and more types
of activity artefacts other than file system activities are supported as well.

1.1.3 Ex-Tip

Ex-Tip is yet another extensible timeline analysis framework found by the au-
thor. The Ex-Tip is developed by SANS Institute [Clo08]. It supports a wide
range of input sources from classic Mactime body files [Sle09] to various log
files generated by anti-virus softwares. Particularly, for Windows system, the
Registry keys can also be parsed by the Ex-Tip. Though Ex-Tip can support
as many output format as possible by adding output modules to the frame-
work, but it currently only supports Mactime output format, which is again a
text-based timeline.

1.2 Contributions 3

1.1.4 CyberForensic TimeLab

CyberForensic TimeLab is a timeline visualisation tool developed by Jens Olsson
and Martin Boldt [OB09]. This tool can scan multiple source files or data
structures to extract temporal artefacts from target system including JPEG
files, file system itself and Windows events log just to name a few. The feature
in this tool that differentiates from all the other tools mentioned above is that
it expresses each evidence source that found in the target system as a histogram
with Y axis stands for number of records while X axis represents the date. And
these histograms are then vertically stacked together as the final view that is
presented to the users. By showing that graphical timeline view, it makes it
easier for users to find coherent events during inspections.

Summing up, though there are some forensic timeline generation tools exist, but
the lack of graphical representation of timeline has not been filled. Moreover,
these tools examined above mainly focus on conventional systems like Unix
servers or Windows PCs and they only provide a single type of perspective of
artefacts regarding temporal relations – indexing the artefacts by the date they
happened. Indeed it is an intuitive view for timeline analysis but it may not be
suitable for reflecting all the connections between events and it is vulnerable to
date tampering.

1.2 Contributions

The contribution of this thesis is mainly twofold: a) built a framework which can
be used to extract digital evidence from Android systems and process the eviden-
tial artefacts for timeline analysis; and b) explored a novel way for graphically
presenting the timeline and also developed other forms of graphical presenta-
tions for serving the forensic purposes via Web application.

1.3 Thesis structure

The rest of this thesis is structured as following. Chapter 2 discussed design
requirements and the architecture has been chosen to fulfil that requirements.
Chapter 3 then described the presentations of artefacts along with corresponding
data structures backing the presentations. After that, implementation details
were given in Chapter 4 including evidence collection, Self-Organising Map and
artefacts visualisation. Next, an evaluation of the prototype of this framework

4 Introduction

was conducted in Chapter 5. Lastly, conclusion including future work was given
in Chapter 6.

Chapter 2

Framework design &

architecture

Before the framework can be implemented, there were four fundamental aspects
that had to be defined and answered. Based on the reasonable design, an ar-
chitecture has been determined to as much as possible fulfil the requirements
assumed and argued in design procedure. Details are discussed in following
sections.

2.1 Design requirements

Four fundamental requirements of a framework, arguably can be formulated as:
a) Usability that answers how and how well the users can use the framework;
b) Accessibility that defines the convenience of the usability of the framework;
c) Extensibility that enables the framework can be reused and expanded; and
d) Scalability that tries to ensure the framework can be applied in different scale
of incidents.

6 Framework design & architecture

2.1.1 Usability

The first and foremost aspect of a framework is the ability to help users to solve
their problems. For the sake of forensic timeline analysis and particularly in this
thesis, the author believes that the procedures during both evidence collection
phase and examination phase should be as automated and convenient as possible
with very least unavoidable user interactions.

To be more specific, in the evidence collection phase, users should be able to use
just a few scripts with simple parameters to achieve the data transformation
that turns raw evidence data, that extracted from the target device, to the
prepared dataset, which is then ready to be processed for timeline generation in
the examination phase. On the other hand, during the examination phase, users
should be able to filter the data being displayed on the timeline and be able to
zoom and pan the timeline itself with simple and intuitive operations. On top of
that, whatever changes that users want to apply to the timeline being inspected
should be responsive, if possible, so that users’ operations can be consistent
without or with only a few interruptions or waiting time.

The three operations mentioned just then, filter, zoom and pan are of utmost
importance for a timeline analysis, because the users may easily run into the
cases that tons of records/events have been extracted from the target device
and that makes a lot of “noise” on the timeline being presented. This situation,
definitely, will make the inspection a lot more difficult and may bury the truth.
To encounter this, filter operation can be applied to reduce the amount of data
displayed on the timeline. But more exactly, users should not only have the
ability to reduce unwanted events, but preferably be given the ability to specify
which events should be displayed on the timeline. By doing so, users will get a
better chance to locate coherent activities and find more concrete evidence to
support their decision.

Meanwhile zoom and pan are the very intuitive operations that could be applied
to a timeline. These operations can help the users to select the desired period
and therefore also serve the purpose of reducing interferences. More importantly
and specifically, the zoom capability enables users to not only have a general
view of the whole period being examined to find events patterns but also can
focus on a relatively shorter period in order to check small details that may not
be clear enough in the boarder view.

It is also worthy to mention that the deployment of the framework should also
be painless for users. In other words, the implementation should mainly rely on
standard libraries as much as possible and only introduce third-party libraries
when necessary and the third-party libraries that ever used in this framework

2.1 Design requirements 7

must be easy to obtain and well maintained.

2.1.2 Accessibility

The accessibility should be carefully considered in this project for firstly it is
pertinent to the deployment concern discussed in the previous section. The
technology which carries the timeline inspection tool should be independent of
any specific hardware or operating systems, so the tool is easy to install or even
without installation on users’ devices. Besides, due to the fact that there are
lots of technologies which can be utilised to make the graphical user interface
for this tool, and these GUI bearers are not always available in the full span of
systems or devices. Therefore, the most portable technology that is capable of
backing the timeline visualisation should have the priority in this situation as
such a technology will most likely make this tool easy to access and require less
or even no additional knowledge or training for the users.

2.1.3 Extensibility

Since the Android system is changing rapidly over time, the complexity of exist-
ing Android systems ever increases. In addition to that, manufactures tend to
have their own custom editions of Android system. Therefore, a modularised im-
plementation is required so that when specific demand arises, new input parser
modules or interpreter modules can be loaded into the framework or the old
ones can be extended in order to meet the new scenarios. To achieve this,
extraction modules and format modules should be separated clearly with well
defined data exchange interfaces, so modifying an existing extraction module
or adding new extraction module would be painless. What’s more important,
the parser modules should be independent from the core of the framework as
they are the ones that most probably changing over time. On top of that, the
backing storage technology should be flexible to store various data types and
meanwhile it should be able to keep the data structure unchanged as it is in the
original dataset.

2.1.4 Scalability

Though the amount of artefacts in Android devices nowadays is quite limited
due to Android system’s constraints, but the investigation might apply upon
a massive set of devices, or the artefacts are collected from a single device

8 Framework design & architecture

with a fairly long period. So the amount of data can be large under certain
circumstances. Therefore, the framework should be capable of scaling with the
amount of artefacts available to the users.

2.2 Framework architecture

To meet the requirements discussed in previous section. The architecture of the
framework was designed as demonstrated below. The core of this framework
is a web server which is hosting the collection of evidential artefacts extracted
from mobile devices and the generation of classification of activities that have
been observed in the devices being inspected.

Apart from the server itself, there are other three parts constitute the whole
framework:

• Server side scripts for extracting and parsing evidence from physically
connected devices;

• An Android app being installed in mobile devices for extracting and up-
loading evidence; and

• finally Browser site technology for rendering the graphical presentations
of evidence and user interface.

The Figure 2.1 better demonstrates the architecture of this framework.

2.2.1 Web server

This centralised web server makes it possible to allow multiple agents to work
on the same case (dataset) at the same time without risking forensic principles
as all evidence are processed and saved on the server by a single authority.
And then from client’s perspective, they have no means to modify the original
dataset resides on the remote but can only fetch the data into local memory and
proceed with analysis.

The functionality of this web server is twofold: a) to collect uploaded evidence
from a remote device and use the accumulated data to generate a Self-organising
map [Mas13] of activities of the Android device; and b) to respond to queries
from browsers with corresponding evidence stored in database.

2.2 Framework architecture 9

Figure 2.1: Framework Architecture

2.2.2 Server side scripts

A set of scripts that can be combined together to serve as the evidence extraction
tool. These scripts further can be categorised by whether user interference is
needed or not. For instance, as shown in Figure 2.1, the upload of logs will
trigger the automated scripts to parse the log content and the generation of
Self-organising map on the server side. Whereas, upon a suspicious device is
captured, the experts can use some other scripts to extract more artefacts from
that device. The intermediate results may be temporarily stored as plain-text
files in the server, and the final format of all evidential artefacts are converted
to JSON before being written to database.

10 Framework design & architecture

2.2.3 Android App

This prototyping app serves in two scenarios. Investigators may install the app
on devices over which they have full control, then there is a background service
started by the app to collect logs and send them to the server over time. Thus,
these logs from devices controlled by legitimate users can be used to set up a
classification of activities that would happen during normal usage. And this
classification later can be used to detect malicious or unusual usage cases. In
addition to that, this app can also be installed to a captured suspicious devices
to manually extract more evidence for analysis.

2.2.4 Browser side rendering

d3.js is an open-source Javascript library that helps developers to create various
graphics on web page based on HTML SVG techniques. There are quite a
lot technical specifications or documentations about d3.js available online or in
some dedicated books but the details are out of the scope of this thesis. However
d3.js is the key enabler for rendering the evidential data into graphical timeline
and other relevant graphical representations. This procedure happens in the
users’ browser and users can interact with the graphics to filter and adjust the
display of data. All these operations are driven by Javascript and the libraries
used in this framework are supported by most modern browsers if not all.

2.3 Summary

In a nutshell, the four abilities described above together decide which bundle
of technologies can best fit the requirements of this framework. Thus, an archi-
tecture combines Browser/Server model and Client/Server model was selected
to bear the timeline visualisation. Wherein the browser provides the high level
usability and accessibility to users while by putting heavy computations on
the server side gives the answer to scalability. Besides, the data format in all
transmissions are unified in JSON. This unification gives the dignity of reducing
complexity when defining data exchange interfaces in all parts of this framework.

Chapter 3

Presentation of artefacts

In this work, four types of presentation of artefacts have been implemented,
namely Timeline View 3.3, Aggregation View 3.4, Deltatime View 3.5 and Clas-
sification View 3.6. Each presentation provides a different perspective towards
artefacts and thus serves for different investigation goals.

3.1 Goals of presentations

Specifically, As demonstrated in Figure 3.2, Timeline View presents the entire
history that extracted from the target device in a timeline to give an overview
of all activities. This presentation actually deals with the event reconstruction
for the target device by the means of “time-lining” [BT07]. What’s more, by
vertically piling all the series of events on the timeline, this presentation helps
inspectors to locate coherent activities between different Apps or between Apps
and Android system. This sort of correlation helps the timeline analysis in two
perspectives. First of all, finding coherent activities itself is a very important
task in digital forensics as it can lead to the conclusion that one activity is
the cause of another activity. This relationship between activities should be
carefully examined, particularly when the two activities seem not having such a
casual relation. Secondly, two coherent activities can be also used to correlate
each other’s timestamps, that is, by fitting one series of events to the coherent

12 Presentation of artefacts

series to see if the timestamps could match. Then the chronological order of
two series can be verified basing the matching result [SMC06].

In addition, Aggregation View (shown in Figure 3.5) that presents events on a
timeline just like in the Timeline View. But herein, the events are aggregated
by system calls or PIDs. And thus this view focuses on activities that related
to a particular system call or process. In essence, the intent of this view is to
give a closer look at the behaviours or possible patterns of a particular process
or a system call throughout the time span. And this can possibly yield coherent
activities and/or behavioural patterns of subject being inspected. What’s more,
this view is also complementary to the Timeline View under the scenario that
when some system calls can not be bound to any series of events due to the
logging format but they do belong to certain applications or are triggered by
some applications, then this Aggregation View can be used to examine those
system calls that will not be shown from Timeline View. In addition to that,
since this view shows a timeline of a certaion system call and the occurences are
distinguished by their trigger processes, then this view also provides a means
of comparing how different processes (applications) make use of system calls.
And this comparison may lead inspectors to abnormalies if some applications
execessively use more particular system calls than any other applications.

Moreover, the Deltatime View illustrated in Figure 3.8 focuses on the time in-
tervals between consecutive related events from an App. This presentation is
intended to assist in locating regular repeated events and thus a steady be-
haviour pattern. It is reasonable to assume that normal Apps will have a rather
random distribution of time intervals among events as they rarely do tasks pe-
riodicaly but just respond to users’ actions. Whereas malicious services may
present a special temporal pattern on particular events as these services will
be, for example, fetching device’s GPS location or connecting to a C&C server
repeatedly. Note that, though this time interval analysis would be helpful to
detect abnormal behaviour, but the intervals of which related events should be
examined and which pair of events should be considered as related are difficult
to determine. Under this circumstance, it has been decided to grant the ability
to define related events of an application to the users. Though this approach
will then require more efforts and experience from the users but which can best
eliminate the substantial drawback of either black list or white list approach.
To be more specific, if the black list or white list are not well formed, the in-
vestigation will fail if the malware can somehow circuvment the list mechanism.
Seemingly, this is not acceptable for a forensic investigation. And if the list
covers too many events, then the users may suffer a lot from the noise caused
by the trivial ones. Summing up, the goal of digital investigation, finding ab-
normalies, can not be compromised. Therefore, this sort of gray list approach
was selected for conducting time interval analysis.

3.2 Generic data structure 13

Lastly, an experimental classification graphical presentation was also imple-
mented to support abnormality detection. Though there are quite a few available
classification techniques can be used for this purpose, but the Self-Organising
Map (a.k.a SOM) was chosen based on a blend of considerations that artefacts
extracted from Android system are ambiguous and the resulting classifications
should be presented on a two-dimensional canvas nicely.

To be more specific, as part of a graphical analysis tool, the visualisation of
the neural network comes first. The Self-Organising Map is capable of map-
ping multi-dimensional (more than three dimensions) input vectors onto a two-
dimensional map [Mas13]. This unique capability gives a clear view of how
various Apps fall into different classifications and their differences in the multi-
dimensional space can also be preserved in the two-dimensional map. On the
contrast, for example, the K-means cluster algorithm, though which is capable
of both supervised and unsupervised learning but the result clusters can only
be expressed in that multi-dimensional space. In addition, taken into account
that there is no convincing methods at present to reduce the dimensions of that
result, so the SOM outperforms other clustering algorithms, with the better
presentation capability of its clustering result. Moreover, this type of neural
network can be trained without supervision, this is especially appealing given
that the large variety of Android-based systems makes supervised training al-
most impractical. Therefore, to the best knowledge of author, Self-Organising
Map was chosen to best fulfil the requirements in this work.

It is worthy mentioning that all the graphical presentations of evidential dataset
are driven by the corresponding data structures backing them. Presumably,
these data structures themselves illustrate well how the visualisations will be
done and how the relations of interest among artefacts can be revealed.

3.2 Generic data structure

Due to various data sources from Android system have quite different formats,
a generic data structure that can unify these ambiguous data types is defined.
Considering the forensic context, information pertaining to “who did what at
what time” must be included in the generic data structure. Thus, the data struc-
ture is defined as shown in Figure 3.1. All data being used to generate graphical
presentations will be firstly converted to generic data structure, then the unified
data can be grouped and/or ordered in respect to the type of presentations they
belong to.

14 Presentation of artefacts

Figure 3.1: Generic Data Structure

3.3 Timeline view

Timeline View is the view that gives all series of events in multiple rows with a
different color for each row on the timeline. Each row represents an application
that owns the series of events on that row. All the events in the series and all
series are ordered chronologically. Figure 3.2 shows this Timeline View and Fig-
ure 3.3 illustrates the corresponding data structure. From the data structure,
it can be seen that there are four attributes for each event. The _id attribute
contains the name of the application to which this event belongs. Seemingly,
which color will be used for each event is determined by this attribute at the
time the events are being rendered on the timeline. In addition, date attribute
is the time at which the event occurred, this attribute has two kinds of format,
one is the Unix epoch format while the other is then a human readable date
string. This attribute is the only reference when deciding the event’s chrono-
logical position in a series. Apart from that, display name is just as the name
indicated, a string representation of the event. However the content attribute
has a rather more complicated structure than any other attributes. Specifically,
this attribute contains a dictionary structure to store all the system calls invoked
in the event, wherein the key attribute of this dictionary is the system call ob-
ject and the value attribute is the log messages produced by that call. Each
system call can have more than one log message because the system call can be
invoked at the same times multiples times and for different purposes in Android
system. What’s more for these messages is that a process ID is appended to

3.3 Timeline view 15

Figure 3.2: Timeline View

Figure 3.3: Timeline Event Data Structure

the end of each message so later all the events related to the same process can
be connected as shown in the figure. This modification of log messages also
explains the data structure demonstrated in Figure 3.4, which is used for gen-
erating paths for different processes of an App. This is done by iterating the

16 Presentation of artefacts

PID array of each App and then for each process ID, the events with messages
that contain the same ID will be connected with a path line. These lines are
not trivial for investigation because each process should be examined separately
and there should be a way for distinguishing different processes. Note that each

Figure 3.4: Timeline Event Series Data Structure

process stands for an active period of an application and each application may
have several active periods in Android systems. Within an active period, a pro-
cess of the application is started and destroyed with various time intervals in
between. Further, in these durations the process may do some operations or
simply be idle, but either way it will be the case that two or more events can be
grouped by their process ID and therefore form a series of events that actually
expresses an active period of an application, and then such a series of events is
defined as an activity of the application. This activity notion will be referred
to in the following text whenever the word “activity” is used.

The reason for introducing the activity concept for applications instead of show-
ing single events is twofold: firstly, displaying all events without any grouping
will make the investigation tedious and hard to find a start point. However, if
the events are grouped together and displayed separately on the timeline presen-
tation, it yields a clearer view of the relations between events. Second of all, by
finding the start event and end event of each activity, it automatically produces
the time bounds [GP05] or the time frame for all the events that related to or
within an activity. Such a time bounding is critical for timeline analysis as it
establishes relations between timestamps among events and therefore which can

3.4 Aggregation view 17

further correlate the chronological order of events.

3.4 Aggregation view

Aggregation View shows another picture of occurrences of system calls or pro-
cesses in the temporal manner. Before this presentation is made, a system call
object or a process ID will be specified by the user, then all the artefacts related
to that system call object or the ones contain that specified process ID will be
aggregated. Note that if it is a system call is specified for the aggregation, then
the result is grouped by process ID, otherwise, the aggregation result is grouped
by system call. This grouping is to achieve that when the result is presented
on the timeline, events that come from different system calls or processes will
be assigned a different Y index on the Y axis, and the ones with same system
call or process will be plotted on the same row. Finally the aggregated data
is grouped again by their occurrence date when presented to the user so that
events of same system call or process that happened at the same time will be
presented together and the number of those events decides the size of the circle
in the timeline. The result timeline is shown in Figure 3.5. Seemingly, the

Figure 3.5: Aggregation View

data structure (shown in Figure 3.6) behind this expresses the same meaning
as the graphical representation, wherein data is firstly aggregated by the key
field (either a system call or a process ID), associated with the key, there are

18 Presentation of artefacts

Figure 3.6: Aggregation Data Structure 1

two arrays carrying all the occurrence dates and corresponding event messages.
Noteworthy that values with the same index in these two arrays are from the
same event. In other words, the original events can be reformed by taking a date
value from dates array and then using the same index to fetch the corresponding
log message from the msgs array. In addition, there is a count attribute stores
the total occurrence times of the system call or the process specified by the key
field. Before the aggregated data being presented to the user, the original events
are reformed as described above and then further grouped again by occurrence
date. Therefore, the data structure transforms into another form as given in
Figure 3.7.

3.5 Deltatime view

DeltaTime View is a quite different temporal perspective than the ones above,
which focuses on showing the variance of time intervals – delta time of all related
event pairs of a particular App. By related, it means the event pairs have some
particular meanings than other event paris, for example the start event of a
process and the end event of a process may form an event pair, and which
expresses the life circle of a process, therefore the interval between these two
events are the lasting time of that process. Alternatively, this event pair can
also be a event indicates the start of a service and the other event is of a certain
operation. Then this pair will reveal if there is a causality between the two

3.6 Classification view 19

Figure 3.7: Aggregation Data Structure 2

events. More over, if the event pair is of two identical operations, then it can
show whether the frequency of the operation and also tell if the operation is
periodically occurred. The view is illustrated in Figure 3.8. Wherein the X
axis expresses the delta time of those event pairs, the color differentiates types
of event pairs and lastly the length of those bars indicate the number of event
pairs. In order to hold this expression, the data structure is defined as shown
in Figure 3.9. Noteworthy that a complementary structure named signature
is defined to distinguish various event pairs, this structure is demonstrated in
Figure 3.10. The event pair of interest is defined by users and upon an event
pair is set, a signature will be produced to represent the chosen event pair. Then
this signature is later used to filter event pairs in the dataset. When a matching
pair is found in the dataset, the data structure in Figure 3.9 is produced to
contain the content of the matching event pair. As can be seen in this data
structure that a count is associated with each event pair of a given delta time.
The count of each event pair with this delta time is critical to the analysis as for
excessively periodically repeated events should have significant difference in the
timeline presentation in this view, and the difference, the height of the rectangle,
is directly related to the count of the event pair.

3.6 Classification view

There are two types of data structure drive the presentation of classification of
activities in Android system. The first one is used to generate the Self-organising
map which holds the map nodes data in training process. However, when pre-

20 Presentation of artefacts

Figure 3.8: DeltaTime View

Figure 3.9: DeltaTime View Data Structure

3.7 Summary 21

Figure 3.10: DeltaTime Event Pair Signature Structure

senting the map to users, the data used for training becomes meaningless. Thus,
these data are cut off after map training and therefore the second data structure
comes into play. To be more specific, the transition of the two data structures
is that Euclidean Distance field, SOM field and Mahalanobis Distance field are
removed from the original data structure. The tree fields are marked in a dif-
ferent color in the figure and the data structure for training the map is given in
Figure 3.11. Seemingly, the x and y attributes denote the position of the map
node in SOM and the weights_vector is kept in the structure because it would
be helpful to see the weights from the SOM presentation in order to compare
to other clusters or appended applications. In addition, the offset_distribution
describes how these apps that of this cluster are distributed in a spatial rela-
tion to the central point. This distribution is used later to measure whether an
application is close enough to the central point of this cluster so that it can be
categorised in this cluster. In addition, extra_data and bmu_count are kept for
rendering the map node, where node’s radius depends on the bmu_count and
related apps are drawn depends on the extra_data. A view of the generated
Self-organising map is shown in Figure 3.12. Note that each App can have sev-
eral quite different activities which then lead to the situation that an App may
relate to more than one classification in the map.

3.7 Summary

In essence, four kinds of graphical presentation described in previous sections
provide sort of basic and necessary views and interpretations of evidence. The
presentations are intended to help investigators to find implicit connections/-
patterns among massive dataset. Whereas under the skins, the data structure
is the backbone of any types of graphical representation. No doubtably, there

22 Presentation of artefacts

Figure 3.11: Self-organising Map Training Node

Figure 3.12: Self-organising Map View

are other tons of ways of organising or interpreting the raw artefacts. But in
whichever way, a data structure is created to interpret the relations among the
artefacts. And then such a structure is visualised, on the other hand, to help

3.7 Summary 23

improve the explicitness of the relations or even revealing unknown connections.

24 Presentation of artefacts

Chapter 4

Implementation

The implementation of this framework are demostrated as three parts Evidence
collection, Self-organising map and Visualisation of artefacts. Wherein the im-
plementation of evidence collection involving an Andorid App and some other
complementary scripts are given in the first section. The second section illus-
trates the feature selection and training process of the self-organising map. Last
but not least, visualisation techniques are demonstrated in the last section of
this chapter.

4.1 Evidence collection

This framework relies on evidence collected from two kinds of procedure. The
first way of getting evidential artefacts is through an Android app as shown
in Figure 4.1. The second procedure consists of several scripts that pull out
evidence from a physically connected device via USB connection. The app is
in charge of extracting evidence from Logcat logs as well as Android build-in
ContentProvider. Whereas, the scripts are used also for retrieving evidence from
Logcat logs, SQLite database files and disk image of either internal or external
(SD card) storage of the device. In addition, part of the scripts are also in charge
of parsing the ambiguous raw artefacts and saving them into JSON format.

26 Implementation

Figure 4.1: Application Screenshots

4.1.1 Android Content Providers

In a forensic context, Android Content Providers have a rich meaning in re-
spect to how and when the device is used or modified. Android system provides
the access to various records through Content Providers including but not lim-
ited to Contacts, Call Logs, SMS, Installed Applications etc.. In this work,
these informations are extracted in an Android App, wherein an Interface Class
namely Extractor is defined for extensibility. Then, due to Android system
stores aforementioned records more or less in the same way in SQLite database,
so an Abstract Class – GenericExtractor implements the Extractor interface
is defined for providing generic extraction function for most content providers.
Lastly, several independent extractor Classes that extend the GenericExtractor
are implemented to complete all the other functions and/or particular extrac-
tion functions for extracting records of interest. A class diagram is given in
Figure 4.2 to illustrate the relations between these components. The extraction
is de facto done by means of database query. Where the table being queried

4.1 Evidence collection 27

Figure 4.2: Extractor Class Diagram

is selected by a URI and the fields interested are specified by selection, output
results format is defined by projection, there are other parameters when execute
a query but those parameters are non-sense in this context. Then these param-
eters are passed to an instance of ContentResolver to finish the query. Code
snippets are attached in Appendix A.

4.1.2 Logcat logs

Logcat logs are the merely main logging source can be found in Android system.
There are four logging buffers managed by Logcat. Namely main, system, events
and radio. Wherein main is the log buffer to which applications write their
logs by default, while events buffer stands on the system side to record system
event information. Besides, system buffer and radio buffer logs low-level system
activities and cellular network information respectively.

These buffers are presented as binary files in directory /dev/log. The parent
directory of these log buffers is in fact a file system named tmpfs that the file
system is backed in RAM as a piece of virtual memory [Hoo11], which means
the content under this directory is volatile and can only be accessed when the
device is running. The buffers are of different sizes, where events has 256KB
space and the other three have 64KB for each. These limited buffer sizes are
presumably obstacles for forensic purposes as important evidence will be easily
overwritten due to the sizes are small. In general, if the extraction is done in a
post-incident manner, the period that can be reflected in those logs are around
couple of hours to the best.

28 Implementation

4.1.3 Filesystem

In this framework, two command line tools fls and ils were compiled from the
latest source code of The Sleuth Kit [Car13b]. The fls is to extract temporal
artefacts from disk images. The image can be the external SD card or the
internal storage of the device. Notably, for the sake of internal storage root
privilege is required to use dd command in Android shell environment. The
output of fls is the Bodyfile of MAC times of all files reside in the storage
being examined [Car05]. Whereas, ils aims at extracting temporal evidence
from inode, the metadata structure in Unix like systems [Nar07]. Both output
from fls and ils are passed into complementary scripts to convert them into
JSON format. The purpose for extracting temporal artefacts from filesystem is
to correlate them with the evidence in logs so that the timeline analysis is more
resistent to timestamp tampering. Scripts for parsing output of those tools are
appended in Appendix B.

4.1.4 Misc.

There are yet other sources of evidence in the device. One of them is SQLite
database file that stored in the device storages. In Android system, Apps save
usage statistics and user credentials just to name a few using SQLite so these
database files are the actual holders of aforementioned information. However,
one cannot access to these databases programmatically since the internal rep-
resentation of these databases and tables are unknown to inspectors. However,
if with root privilege one can pull out the files and access them directly outside
the device via various script languages, here Python is used. The database files
can be loaded into memory and where queries can be done to fetch content of
the database.

Besides, there are some system files that contain precious information regard-
ing the time and installed application. Firstly, there is a file packages.list in
directory “/data/system/” which provides all Apps’ name along with their uid,
gid and installation location. Then this information is used to connect Apps
with files in the device storage where uid is the bridge. Secondly, in directory
“/proc/”, a file stat stores the date that the device is lastly booted as well as the
system up time. Seemingly, putting these two timestamps together, a non-trivial
bounding of all timestamps found in the artefacts can be formed [GP05].

4.2 Self-Organising Map 29

4.2 Self-Organising Map

To speak of Self-Organising Map, the foremost task is to define the feature set.
In contrast to the feature selection in scenarios of network intrusion detection,
where artefacts can be easily vectorised. For instance the port numbers, connec-
tion duration and payload length and so on. However, the artefacts, mainly log
entries, from an Android system are more linguistic, complex and ambiguous
so that they can not be vectorised directly. Therefore, text searching technique
has to be introduced to turn those artefacts into vectorial dataset. That is to
say, for each log entry, it will be firstly tokenised. And then from the resulting
tokens, keywords can be detected. Later on, by analysing those keywords, types
of the event can be distinguished. Moreover, subjects and objects involved in
those logs can be carved as well.

Presumably, to classify every single event in the logs would not tell any be-
havioural characteristics of Apps and also they are too verbose to be classified.
So the concept of series of events which has been described in Section 3.3 was
brought up again in the process of vectorization. Therefore a feature set with a
cardinality of seven can be defined out of a series of events. The features are:

• duration of the series

• total number of events

• number of different system calls

• tokens signature index

• number of database operations

• number of ContentProvider operations

• number of network operations

For most of them, their name speaks the content of the feature. However,
tokens signature index requires a bit more explanation. Recall that all the
events will be tokenised, thus a series of events will have set of tokens. These
tokens contain the information about ever appeared subjects (system calls) and
objects (database, files etc.) of operations occurred in that series of events,
perhaps also some operation details like query selections. However, the tokens
themselves can not be used in the feature vector, so in order to involve this
information, these tokens have to be indexed somehow to represent them as a
numeric value. The method applied in this implementation is that, all token

30 Implementation

sets are compared with each other by calculating the Jaccard distance between
two arbitrary token sets. The distance is defined as:

distance = (|A [B|� |A \B|)/|A \B|, |A \B| /2 �

distance = max(|A|, |B|), otherwise

Then by randomly choosing a token set as index zero, the whole set of token sets
is ordered as each following token set has the minimum distance to its previous
token set. The resulting set gives the situation that if two indices are close to
each other, then the content of two token sets are relatively similar. Due to
time constrains of this work, this is only a rough and almost trivial similarity
estimation which should be redefined if given sufficient amount of time.

These features were selected because they can well express the behaviour of
Android Apps. For example a contact App will relatively have more Content-
Provider operations and very few database or network operations. On the other
hand, an social networking App will have its own database for friends, news feeds
and so on. So it can be expected that it will have higher number of database
operations. Another example for explaining this could be that a weather fore-
cast App will have relatively shorter duration and less number of events as users
just open the App, check the whether and exit it. However, say a game App,
then it is very likely that lots of events will happen during the execution be-
cause of complex user interactions. For the sake of malware, it can be arguably
expected that they will have extremely high values on some particular features
and meanwhile have extremely low values for the rest. This is because that the
malware have the trend to either do something repeatedly (communicating with
C&C server) or do as little as they can in order to hide themselves.

Upon the feature vector was defined, the distance algorithm that used in the
training process of the neural network was selected, the Mahalanobis distance.
Wherein the distance algorithm considers the mutual influence of features in
the vector. This is more accurate and reasonable than Euclidean distance in the
way that the features defined in this implementation are coherent. For instance
the duration and number of events of a series. Also, it is arguably that given a
total number of events within the series then the number of database operations,
content provider operations and network operations are mutually exclusive.

4.3 Visualisation of artefacts 31

4.3 Visualisation of artefacts

The visualisation of artefacts in different perspectives are powered by Javascript,
or to be more general, browser side rendering techniques. The visualisation tech-
niques on browser side has been used in business or biological fields for a while
but it is novel to forensic context. Conventional approaches have two main
shortages that the tools are out compatible to all platforms and the procedure
of processing evidence can only rely on one sigle workstation which leads to per-
formance issues when the amount of evidence is sufficiently large. Nevertheless,
these two are no long problems as the visualisation can be done in a browser.
Because the heavy computations can be carried in remote servers while HTML
and Javascript are presumably most compatible techniques throughout all plat-
forms. If ignoring the fact that small screen size downgrades the display effects,
this visualisation can also be accessed from mobile devices or tablets, even the
target device itself.

For the sake of actual implementation, d3.js [Bos12] is the key enabler which is
a Javascript library using HTML, SVG and CSS techniques to visualise various
data in web pages. Combining with AJAX queries backed by Zepto.js [Fuc13],
the JSON formatted evidential artefacts stored in database are transmitted
to the front-end and further rendered and plotted on web pages by d3 in-
stances. Besides, a tool-tip like popup dialog that shows more details of an event
that being currently focused by users is implemented via OpenTip [Men13] and
jQuery [jF13]. The whole visualisation process can be further divided into four
sequential parts, fetching dataset, initiating graph axes, appending dataset and
finally associating extra information to the data plotted on the graph, the whole
procedure is demonstrated in Figure 4.3. And code snippets are enclosed in Ap-
pendix C. In data retrieval part, there is only one type of interface existing
between front-end and back-end, AJAX. However, when speaking of fetching
data from the database, there are two different approaches since MongoDB sup-
ports 3rd party drivers as well as native shell commands and scripting. When
using a database driver, like the one used in this work mongoosejs [Lea11], data
models represent corresponding items in MongoDB have to be defined before
any queries can be done. This mechanism provides relatively strong regulations
on how the database can be manipulated programmatically. But it becomes a
tedious work when writing data models for dynamic or complex data. On the
other hand, by using MongoDB scripting technique, no data model is needed.
Thus it is a light-weight way for saving or reading data with MongoDB. How-
ever, there is a limitation of the output buffer size in MongoDB shell, which
means, a database driver is required for massive data exchange.

On data retrieval complete, the boundaries of the dataset can be determined.
For instance, the earliest timestamp and latest timestamp. The two timestamps

32 Implementation

Figure 4.3: Visualisation Procedure

are used for setting up the horizontal axis of the graph. Besides, basing on the
type of the graph, Apps’ names or system call objects are needed to initialise
the vertical axis of the graph. Upon the boundaries of axes are set, correspond-
ing intervals on each axis will be calculated so that the graph can present an
understandable and clear view. That is to say, a proper interval is chosen so
that events and description text will not overlap.

Once the axes of the graph is ready, events can be plotted onto the graph
depending on their properties. Intuitively, the time property of an event is used
to determine the horizontal position of the event. Whereas, the index property
which can be the App name, process ID etc. is used to determine the vertical
position. Therefore, every event will have a set of coordinates in the scale of
the graph. In addition, to distinguish different events, the color, shape and size
of different events are calculated in respect to events properties like event type,
number of events at the given time, system call object and so on. Recall that
the actual graph shows not only events but rather the series of events. Wherein

4.4 Features & user interface 33

the series of events are formed using three source logs events, main and system
and a complementary file packages.list.

Firstly, all installed App names are extracted from packages.list, then each of the
App names is used to form an initial selection statement to find processes that
of the App specified by the name. Due to the events that indicate the start or
end of a process are logged in events buffer and those events contain App names
as well as process IDs that are needed as reference for further queries, so the
events collection are queried firstly with previously formed selection statement.
The result of the query has two parts which are a list of process IDs related
to the App specified in the query and another list that contains ever occurred
system calls in respect to the same App. After that, with the detected process
IDs, more events pertinent to specified App can be located in all the source logs.
Thus, a refined selection statement is formed to include detected process IDs
found in previous query and then applied to all source logs. Note that because
events collection is queried twice and to avoid duplicate results, the selection
statement with App names is removed in the second query to events collection.

After the queries finished, each App has a set of system calls that are ever used
by the App. Then, for each App, all these system calls are further divided into
three parts: system calls that indicate the start of a process, the ones represent
the end of a process and the rest that happened during each process’s life circle.
Recall that the process ID can be found in objects that represent the start of
a process, which means all system calls in the duration part can be assigned
to a corresponding start system call and an end system call. Seemingly, the
result of this assignment is the series of events pertaining to each App and each
execution period. Figure 4.4 demonstrates the grouping procedure described
above. Lastly, relevant information of each event that being plotted on the graph
is associated with the graphical representation of that event. This is achieved
by assigning the corresponding event id to the element in the generated DOM
tree. In this way, each element in the HTML DOM that stands for an event
then can be linked to its source data in the dataset, where all information about
the event can be fetched.

4.4 Features & user interface

It is of utmost importance to allow users be able to choose what should be
displayed on the screen in a timeline analysis tool. Therefore, the zoom and
pan functionalities were implemented on the graphical presentations to enable
users to have a closer/wider view of the timeline or pick a particular display
period from the timeline. These functionalities are accomplished by a blend

34 Implementation

Figure 4.4: Form Of Event Series

of mouse events response and a time brush feature. Wherein the graphical
presentations can respond to mouse actions applied on the graphics to zoom or
pan the timeline. And the time brush provides a similar feature but in a quicker
way as users can select a period for display and navigate to that period at
once. Besides, an auto scrolling (both directions) of timeline was added to free
users’ hands in the case that the whole timeline has to be examined thoroughly.
However, with zoom and pan are just not sufficient for a timeline analysis tool.
There is yet another crucial feature has to be implemented, that is, the ability
to append or remove specified events on the timeline. By appending new events
on the timeline, it not only enables users to correlate different types of evidence
to either find inconsistent evidence or coherent activities but also grants users
the ability to decide what should be displayed on the timeline. On the other
hand, by removing events from the timeline helps user to eliminate interference
from trivial evidence and thus concentrate on important ones. So that there
are five control panes embedded in the window. These panes provide interfaces
where users can add or remove certain evidence on or from the timeline being
presented. A screenshot is given in Figure 4.5.

In order to save window space so that timeline presentations could be as large
as possible, these panes are hidden in the edges by default and control buttons
are provided to control their display. All the operations from the panes are
responsive. Thus the changes are applied to the timeline immediately with-
out refreshing the page upon users’ input. This ensures that users have the

4.5 Summary 35

Figure 4.5: User Interface of Control Panes

minimum waiting time and therefore their thoughts can be consecutive. These
operations include append radio network activities on the timeline to correlated
activities from Apps and cellular network events; append file system activities
to verify consistence of file modification and App operations; append or remove
Apps/processes on/from the timeline; and especially for the Deltatime View,
event pairs of interest can be fully defined by users so that users are able to to
analysis delta times between various event combinations case by case. Though
this approach requires extra efforts from users but it can avoid possible misses
caused by either white list or black list filtering.

4.5 Summary

In this chapter, the key techniques used in this implementation were discussed
along with the reasons why these techniques had been chosen. In essence, the
characteristics of Android system is the key factor in consideration of which
techniques should be applied to best eliminate negative impacts caused by that
system and to leverage the useful aspects of it for forensic purposes. The vi-

36 Implementation

sualisation techniques were chosen mainly due to its high flexibility, reasonable
responsiveness and huge potential in providing better graphical representations
in foreseeable future.

Chapter 5

Evaluation

This framework has been evaluated under two empirical malware infection sce-
narios for its effectiveness. Wherein the first case is of a malware that sends
IMSI to a remote server and communicates with sort of C&C server for further
operations. And in the second case the malware stealthily registers the victim
mobile subscription to some services that will cause significant financial loss to
the user. The registration is done by SMS (cellular network) without user’s
admission. Noteworthy that to avoid financial loss as well as to have potential
threats in control, all evaluations were done in an emulator created via Android
Development Kit. The emulator runs Android 2.3.3 system which is theoretically
“old” but the dominated system version at present. Between two evaluations,
the emulator was swapped thoroughly to avoid interference. And the malware
samples were obtained from Android Malware Genome Project [ZJ12].

5.1 LoveTrap

The setup of first evaluation is demonstrated as below. Firstly the emulator
aforementioned was started freshly so only system Apps were existed. Then,
those Apps were used randomly to fill up the log buffers. After that LoveTrap
was installed to the emulator via ADB shell command and executed upon in-
stallation. The LoveTrap is pretended to be simple game between lovers, but

38 Evaluation

once it gets running it starts sending device info to a remote server. Besides,
it has a Client/Server mechanism so that the App keeps communicating with
a remote server. However, the server had been swapped out so the content of
their communication left unknown in this evaluation and only error messages
recorded in the log. After left the LoveTrap running for some time, scripts from
this framework were used to extract logs from the emulator and then save them
into MongoDB. At this point, the setup of the evaluation was done and so the
timeline analysis began.

Figure 5.1 shows the series of events related to LoveTrap (dark blue circles) on
Timeline View. And the first isolated blue circle represents the installation of
LoveTrap and the actual execution starts by the second blue circle. Wherein
the radius of circles indicates the number of events happened at the given time.
The details of installation will be shown when users put mouse over a circle as
demonstrated in Figure 5.2. As a comparison, series of events from system Apps
are given in Figure 5.3. Roughly, activities in Figure 5.3 followed similar patterns
as the device user opened an App, made some operations and quitted it. With
normal human operations, the intervals between consecutive activities are rather
random, and the number of events within a given activity also varies. On the
other hand, as shown in Figure 5.1, there are quite a few activities have exactly
same radius (number of events) and the intervals are mostly identical. Therefore,
the Deltatime View can be utilised to have a concentrated view over those
intervals. Besides, in Deltatime View similar events will be group and further
distinguished by colors. Figure 5.4 and Figure 5.5 illustrate two deltatime

Figure 5.1: LoveTrap Timeline

5.1 LoveTrap 39

Figure 5.2: LoveTrap Activity Details

Figure 5.3: System App Activity Timeline

views where the first one is from a system App with human interactions and the
latter is from the LoveTrap. Significant difference can be located based on the
two differed graphs. Wherein for system App, though lots of activities happened
at the same time but the details are different as indicated by their colors. Also
there are a few activities had serveral different intervals and the number of same

40 Evaluation

events are well balanced (indicated by the length of each rectangle). To the
contrast, as can be seen in Figure 5.5, abundance of identical events happened
with the same interval. And this is the signal that those events are very likely
not triggered by human operations. Then the details of those events can be
inspected as demonstrated in Figure 5.6. From the details one can then tell
there should be a process running in background started by the App LoveTrap
and that process was trying to connect to a server repeatedly at a given rate
with no sucess. The point of this analysis is not to give an answer that what
this malicious App does but to rise the awareness of this App does something
abnormal. The further examination or analysis of the malicious App is out of
scope of this work.

Figure 5.4: System App Deltatime Distribution

5.2 FakePlayer

The setup of the second evaluation is mostly identical to the first one, but the
emulator was swapped and rebooted and the malware for this evaluation is called
FakePlayer which is an App that claims it is a media player in the App store.
Nonetheless, after the installation the App names itself “PornPlayer” to cheat
users to open it. Once users clicked the launcher the App starts without any
windows or user interfaces. But, two SMSes will be sent out to some services
for registering premium account. And that premium membership will charge

5.2 FakePlayer 41

Figure 5.5: LoveTrap Deltatime Distribution

Figure 5.6: LoveTrap Deltatime Distribution

a great amount of money to the subscribers. In this case the launch of the
malware FakePlayer is coherent to a radio network activity – sending SMS. And
the use of this framework as demonstrated below can help investigators to find
such coherent activities.

42 Evaluation

As shown in Figure 5.7, cellular network activities particularly SMS events can
be appended to the Timeline View as the black squares in the graph. From

Figure 5.7: FakePlayer Timeline Overview

the first sight, it is deemed that the SMS activities have potential relations to
three Apps: FakePlayer represented by the blue circles, Android.Launcher repre-
sented by red ones and lastly Android.Contacts represented by the yellow circles.
Then a closer view for each SMS event can be achieved by zooming in on those
events. And the view therefore yielded the following graphs as demonstrated
in Figure 5.8. Note that irrelevant parts of those graphs were cut off for bet-
ter demonstration here. As can be seen in these closer view, Android.Contacts
can be firstly concluded having no connections with those SMS events because
the occurrence sequence of SMS events and Android.Contacts activities do not
match causality restrictions. And in the only exception captured in the graph
(first graph from right), the activity from Android.Contacts is garbage collection
which would not cause any SMS related events. Secondly, apart from the SMS
events, the activities from FakePlayer and the ones from Android.Launcher are
actually coherent. This is due to that the Android.Launcher records launches
of Apps in the system. Thus, there is only one App left in this analysis and
which should be further examined for sound evidence. In order to accomplish
the task mentioned in previous step, the view was furthered zoomed in and then
an occurrence pattern appeared. In Figure 5.9, graph A-1 and A-2 illustrate
the pattern that an SMS will be sent after the launch of FakePlayer, then the
App does nothing else but waits for termination. Besides, it is clear that graph
B-1 and B-2 have a nice compliance with the pattern induced previously.

5.2 FakePlayer 43

Figure 5.8: Coherence Comparison Between Candidates

Figure 5.9: Events Occurrence Pattern

This evaluation demonstrated that the framework is capable of showing coher-
ent activities between running Apps and cellular network events. This is an
important feature for inspectors as they can quickly stick out irrelevant Apps
and thus put more focus on suspicious ones.

44 Evaluation

5.3 Reliability discussion

Though the framework showed promising results in the above evaluations, but
these results are not enough to eliminate the concerns of the reliability for this
framework. In fact, there are scenarios that can have negative impacts on the
effectiveness of the analysis.

For instance, if there are quite a lot applications are running at the same time,
then this kind of runtime environment may obfuscate the delta time analysis or
the attempts to find coherent activities (as demonstrated in the second evalua-
tion). This is because that the Android system allows multiple processes to run
in the background at the same time but as for mobile devices, the computing
resources are quite constraint, like memory space or CPU time span etc.. There-
fore, the more running processes in the system, the more frequent the Garbage
Collection (a.k.a. GC) will be conducted by the system. And this means that
processes or services running in the background will be terminated and started
again later at some point. Seemingly this phenomenon, if severe enough, will
cause the sort of time skew in the intervals, and thus the delta time analysis will
suffer as the regularly repeated events may disappear. And it will be harder to
locate coherent activities with the time skew as well because the skew may lead
to the situation that more applications may seem to be coherent with the event
of interest chronologically.

Besides, as already noticed by the author, the logging format in Android system
is rather ambiguous so the series of events approach could fail if not enough
information can be obtained from the log. This leaves the risk that important
system calls that invoked by the malware may not be bound to that malware
during analysis and so the malware may look “innocent” in this case. The
countermeasure for this scenario is to conduct the Aggregation View on all
“innocent” suspects to have a complete view of system calls. What’s more,
basing on the experience gained from the evaluations, it is worthy to mention
that if the authors of malware do not leave log messages in the log buffers, there
will be hardly no means to find the traces of the malware and thus the analysis
on that malware can not be conducted. But if this situation ever occurs, it
means the application may be deliberately hiding something, so other forensic
methods can be used to inspect that application.

Apart from these, due to the current implementation of Deltatime View, the
delta time analysis would fail if a pattern can not be seen by checking the
intervals between every two consecutive events in the sequence, but rather it has
to be detected in a more sophisticated manner. For example, given a sequence
of events with indices, if there is a pattern only exists in the events with odd
index, then the current implementation will not be able to detect such a pattern

5.4 Summary 45

because the events with even index may well crumble the intervals between every
two consecutive events to somewhat random state. Though there is still a chance
to locate such patterns through Timeline View or Aggregation View with very
intense inspection but it certainly requires an awful lot of efforts from the users
and there is no guarantee that the pattern can be detected. In a nutshell, this
kind of situations will immensely compromise the effectiveness of this tool and
thus the reliability of the analysis results.

5.4 Summary

Summing up, based on the results from evaluations conducted above, it is
deemed that this framework can reveal useful insights about the stochastic ev-
idential dataset. Wherein particular patterns can be seen from the graphical
presentation and coherent activities can be discovered. However, some impor-
tant pieces of information might be overlooked because some data of unknown
formats can not be parsed at present. Also, it is noteworthy that these evalua-
tions were conducted in a way that the existence of malicious Apps is known. So
to some extent that the analysis process in the evaluation can not be considered
as it is supposed to be in a real investigation scenario.

46 Evaluation

Chapter 6

Conclusion

In this thesis, a framework for conducting timeline analysis targeting Android
systems was implemented. The framework provides means to a) extract eviden-
tial artefacts in post-incident context; b) automatically gather logs and use them
to nurture a neural network to generate activity classifications; and c) visualise
extracted artefacts in four different perspectives for timeline analysis. One of the
two main features that differentiates this framework from other timeline anal-
ysis approches is that the timeline of the target system as well as other forms
of evidence presentation are indeed visualised and the graphics are rendered in
the browser via HTML technology family. In addition, the second feature is the
use of a centralised web server and thus the Browser/Server architecture which
breaks the limitation of computational resources in conventional analysis tool,
where the data processing can only be done in a single computer. What’s more,
this architecture also makes the collaborative investigation much easier as there
is no need to replicate and distribute original evidence to each investigator.

Basing the results of evaluations, the graphical presentations can reveal nice
impressions on behaviour patterns or coherent activities in the system, there-
fore presumably help inspectors to locate suspicious behaviours in an efficient
way. However, due to the complexity of Android system and the variety of An-
droid Apps, the implementation and evaluations had been done in this thesis
are very primitive. From the experience ever gained in the development of this
framework, especially the part that deals with parsing log contents, a concrete

48 Conclusion

conclusion can be made that to develop an effective timeline analysis tool tar-
geting Android system requires not only tremendous amount of time and efforts
but also expertise in Android system. In addition to that, as the Android sys-
tem is evolving or being customised rapidly over time and the amount of Apps
available in the market is ever growing, an once and for all development for
such analysis tools is nearly impractical. Moreover, it is worthy to mention that
though the implementation of this work had tried to avoid using root privilege in
Android system as having root privilege on all devices are not guaranteed. But
the final implementation is not a compliance of that requirement because read-
ing log contents from an Android App has to be done with root privilege. Lastly,
recall the fact that log buffers are quite small so the evidence can therefore be
easily overwritten if not preserved in somewhere else. This intrinsic setting of
Android systems leaves high uncertainty in evidence collection procedure and
thus may have huge negative impacts on analysis results.

Due to time and hardware constraints, not all evidence extracted from Android
system are visualised or even used in analysis and some data formats that ap-
peared in newly released Android systems may not be supported in this work.
Thus, if given more time on this project, more experiments should be conducted
to gain better understanding of Android system and the contents of logs. For
instance, the kernel log of the system which can surely provide valuable informa-
tion for correlation. In addition, due to the ambiguous logging formats used by
various Apps, more advanced text searching methods, expectedly with linguistic
intelligence, should be developed to further interpret the contents of logs. This
is of utter importance for forensic analysis as valuable information may be ne-
glected due to the lack of understanding of log messages. On top of that, there
are spaces to try out more graphical presentations like a coherent occurrence
matrix, which can be used to establish connections between high-level events
(from Apps) and low-level events (system or kernel level events). By the time
this thesis was being written, it had been reported that some malicious Apps
can only be activated under certain physical environments like being exposed
under particular radio frequencies or brightness of the environment. For the
sake of this emerging scenario, the occurrence matrix would help the inspectors
to find the “coincidence” that substantially triggers the abnormal behaviours.

In essence, this work, to its current development state, should only be consid-
ered as a proof of concept implementation. However, it indeed proves that the
timeline analysis on Android systems is feasible to achieve and the techniques
and architecture used by this work are capable for the given tasks. More im-
portantly, this work signifies that the effectiveness of such a graphical timeline
analysis tool can be promising in the filed. What’s more, this work also shows
that a post hoc analysis on Android systems may not be accurate as important
evidence may be overwritten due to the small capacity of log buffers. Thus, a
real time approach like the App implemented in this work that monitors the de-

49

vices of interest and periodically collects log messages to preserve the evidence
for later analysis is recommended for Android systems. Last but not least, this
work denotes that a framework which can be expanded to support more types
of evidence source is more appropriate than a single tool because the former can
best fit the large variety and rapid development of Android life circle.

50 Conclusion

Appendix A

Android App Code Snippet

package imcom . f o r e n s i c s . e x t r a c t o r s ;

import java . i o . Buf feredWriter ;
import java . i o . F i l e ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

import android . content . ContentResolver ;
import android . content . Context ;
import android . database . Cursor ;
import android . net . Uri ;
import android . u t i l . Log ;
import imcom . f o r e n s i c s . EscapeWrapper ;
import imcom . f o r e n s i c s . Extractor ;
import imcom . f o r e n s i c s . FormatHelper ;

public abstract class Gener icExtractor implements

Extractor {
protected f ina l St r ing extractor_name ;

protected Uri u r i ;
protected St r ing s e l e c t i o n ;
protected St r ing [] s e l e c t i on_arg s ;

52 Android App Code Snippet

protected St r ing sort_order ;
protected St r ing [] p r o j e c t i o n ;
protected FormatHelper he lpe r ;

public Gener icExtractor (S t r ing extractor_name) {
this . extractor_name = extractor_name ;

this . u r i = null ;
this . s e l e c t i o n = null ;
this . s e l e c t i on_arg s = null ;
this . sort_order = null ;
this . p r o j e c t i o n = null ;

}

public int ex t r a c t (ContentResolver r e s o l v e r , Context
context , F i l e dst_dir) {

Log . d(LOG_TAG, extractor_name + "� l aunches ") ;
Cursor cur so r = null ;
Buf feredWriter record_writer = null ;

i f (he lpe r != null && ur i != null) {
cur so r = r e s o l v e r . query (ur i , p ro j e c t i on , s e l e c t i o n ,

s e l e c t i on_args , sort_order) ;
Log . d(LOG_TAG, extractor_name + " ’ s �done�query , �" +

cur so r . getCount () + "� i tems ") ;
} else {

Log . d(LOG_TAG, extractor_name + "���URI� or �Format�
not� s e t ") ;

return �1;
}

i f (cu r so r != null && curso r . moveToFirst ()) {
try {

//SDWriter sd_writer = new SDWriter (con t ex t) ;
record_wri ter = new Buf feredWriter (

new Fi l eWr i t e r (
new F i l e (

dst_dir ,
// sd_writer . g e tS to rageDi r e c t o ry (

i n v e s t i g a t i o n , tag) ,
extractor_name + " . pjson "

)
)

) ;

53

St r ing [] col_names = cur so r . getColumnNames () ;
int records_num = cur so r . getCount () ;
int col_num = curso r . getColumnCount () ;

do {
St r i ngBu i l d e r extracted_item = new

St r ingBu i l d e r () ;
for (int index = 0 ; index < col_num ; ++index) {

St r ing f i e l d_va lue = EscapeWrapper . nomar l i ze (
cur so r . g e tS t r i ng (index)) ;

S t r ing fo rmatted_f i e ld = he lpe r . f o rmatStr ing (
col_names [index] , f i e l d_va lue) ;

extracted_item . append (fo rmatted_f i e ld) ;
extracted_item . append ("�") ;

}
record_wri ter . wr i t e (extracted_item . toS t r i ng () .

tr im ()) ;
i f (! cu r so r . i sLa s t ()) record_wri ter . newLine () ;

} while (cu r so r . moveToNext ()) ;

i f (record_wri ter != null) record_writer . c l o s e () ;

Log . d(LOG_TAG, extractor_name + "��� f e t c h e s �" +
records_num + "� r e co rd s ") ;

return records_num ;

/⇤} catch (Timel ineExcept ion e) {
// TODO Auto�generated catch b l o c k
e . pr in tS tackTrace () ;
Log . e (LOG_TAG, e . getMessage ()) ;
re turn �1;⇤/

} catch (IOException e) {
// TODO Auto�generated catch b l o c k
e . pr intStackTrace () ;
Log . e (LOG_TAG, e . getMessage ()) ;
return �1;

} f ina l ly {
i f (cu r so r != null) cu r so r . c l o s e () ;

}
} else {

Log . d(LOG_TAG, extractor_name + "���Empty�query . . . �
Query� u r i : �" + ur i) ;

54 Android App Code Snippet

return �1;
}

}
}

Listing A.1: GenericExtractor Class

Appendix B

Scripts Snippets

#!/ bin / bash

s h e l l s c r i p t f o r pars ing body f i l e and inode
a c t i v i t i e s

i f [$# � l t 4]
then

echo ’ Usage : � ’ $0 ’ � body_f i l e �disk_image�output_dir�
start_time (yyyy�mm�dd) ’

e x i t �1
f i

using [0�9] i s more gener i c
echo $4 | egrep " [0�9]{4}�[0�9]{2}�[0�9]{2}" 1>/dev/ nu l l

2>&1
i f [! $? �eq 0]
then

echo ’ I nva l i d � s t a r t � time , �date � should �be� l i k e � ‘ yyyy�
mm�dd ‘ ’

e x i t �1
f i

BODY_FILE=$1

56 Scripts Snippets

DD_IMAGE=$2
OUTPUT=$3
START_TIME=$4

INODE_TIMELINE=$OUTPUT"/ inode . tmp"
FS_TIMELINE=$OUTPUT"/ f s . tmp"

wait u n t i l the dev i c e i s connected
echo �ne ’ wa i t ing � f o r � dev i c e � connect ing . . . \ t ’
adb wait�for�dev i c e
echo ’ ok ’

i f [! �d $OUTPUT]
then

echo " c r e a t i n g � d i r e c t o r y . . . �"$PWD"/"$OUTPUT
mkdir �p $PWD"/"$OUTPUT

else

echo $OUTPUT"� e x i s t s ! "
f i

ge t t imezone from the dev i c e
TIME_ZONE=‘adb s h e l l date +%Z | awk ’ {sub ("\ r$ " , � "") ; �

p r i n t f �"%s " , �$0} ’ ‘
echo ’ dev i c e �Timezone : � ’$TIME_ZONE

echo �ne ’ s t a r t � pro c e s s i ng � inode � t imes . . . \ t ’
remove the d e s c r i p t i o n on f i r s t l i n e
mactime �b $BODY_FILE �d �y �z $TIME_ZONE $START_TIME |

sed ’ 1�d ’ > $FS_TIMELINE

inodes=‘ cat $BODY_FILE | grep �v ’Orphan ’ | awk �F ’ | ’ ’ {
p r i n t �$3} ’ | s o r t �n | uniq | awk ’ { p r i n t f �"%s � " , �$0} ’
‘

crea t e a c l ean inode t ime l i n e f i l e
> $INODE_TIMELINE

for inode in $ inodes
do

when s e t timezone , a l l t ime i s s e t to UTC
i s t a t =‘ i s t a t �z $TIME_ZONE �f ext $DD_IMAGE $inode ‘
i f [$? �eq 0]
then

inode_time=‘echo $ i s t a t |

57

sed ’ s /� (’$TIME_ZONE’) //g ’ |
awk ’ { p r i n t f �"%s , " , �$0} ’ |
sed ’ s / Di rec t .⇤ $// ’ |
sed ’ s /Group .⇤ uid /uid / ’ |
sed ’ s /num.⇤ Accessed /Accessed / ’ ‘

echo $inode_time | grep ’Not ’ 1>/dev/ nu l l 2>&1
i f [! $? �eq 0]
then

l i n e =‘echo $inode_time | sed ’ s / Al located /
Al located : �1/ ’ ‘

else

l i n e =‘echo $inode_time | sed ’ s /Not� Al located
/ Al located : �0/ ’ ‘

f i
echo $ l i n e |

awk ’ {$6�=� " :" $8 " , " ; $8�=� "" ; $9�=� "" ; � pr in t �$0
} ’ |

sed ’ s / Al located / , a l l o c a t e d / ’ |
sed ’ s / uid / , uid / ’ |
sed ’ s /mode/ ,mode/ ’ |
sed ’ s / s i z e / , s i z e / ’ |
sed ’ s /Accessed / , acce s s ed / ’ |
sed ’ s / F i l e �Modif ied / , f i l e_mod i f i ed / ’ |
sed ’ s / Inode�Modif ied / , inode_modif ied / ’ |
sed ’ s /Deleted / , d e l e t ed / ’ |
grep �v ’ 0000�00�00 ’ >> $INODE_TIMELINE #

f i l t e r out meaning less records
f i

done
echo ’ ok ’

echo �ne ’ par s ing �and� f o rmatt ing � timestamps . . . \ t ’

python fs_times . py $FS_TIMELINE $OUTPUT"/ fs_time . j son "
1>&2

python inode_times . py $INODE_TIMELINE $OUTPUT"/ inode_time
. j son " 1>&2

echo ’ done ! ’

Listing B.1: File System Extractor

#!/ usr / b in /python

58 Scripts Snippets

’ ’ ’
python s c r i p t f o r pars ing body f i l e genera ted v ia TSK

f l s t o o l

Author : Yu Jin (imcom)
’ ’ ’

import sys
import j s on
import codecs
import i s o8601
import time

col_names = [’ date ’ , ’ s i z e ’ , ’ a c t i v i t y ’ , ’ perms ’ , ’ uid ’ ,
’ g id ’ , ’ inode ’ , ’ f i l e ’]

mactime_fi le = open (sys . argv [1])
output_f i l e = codecs . open (sys . argv [2] , ’w ’ , encoding = "

utf�8")

content = mactime_fi le . read ()

r e co rd s = l i s t (map(lambda x : x . s p l i t (’ , ’) , content . s t r i p ()
. s p l i t (’ \n ’)))

for record in r e co rd s :
j son_dict = d i c t ()
for index , va lue in enumerate (record) :

i f index == 0 :
date = i so8601 . parse_datetime (value)
timestamp = time . mktime (date . t imetup le ())
j son_dict [col_names [index]] = in t (timestamp)

e l i f index == 1 : # conver t the s i z e from s t r i n g
to i n t f o r query s e l e c t i o n purpose
j son_dict [col_names [index]] = in t (va lue)

else :
j son_dict [col_names [index]] = value

j son .dump(json_dict , output_f i l e)
output_f i l e . wr i t e (’ \n ’)

mactime_fi le . c l o s e ()
output_f i l e . c l o s e ()

59

Listing B.2: Bodyfile Parser

#!/ usr / b in /python

’ ’ ’
python s c r i p t f o r pars ing inode a c t i v i t i e s and

conver t ing r e s u l t to j son
source f i l e i s generated by TSK i l s t o o l

Author : Yu Jin (imcom)
’ ’ ’

import sys
import j s on
from datet ime import datet ime
import time
import re

i n od e_ f i l e = open (sys . argv [1])
output_f i l e = open (sys . argv [2] , ’w ’)

date_mask = re . compile ("^(?P<date>\d+�\d+�\d+�\d+:\d+:\d
+)\ s ? .⇤ $")

content = inode_ f i l e . read ()

r e co rd s = l i s t (l i n e . s p l i t (’ , ’) for l i n e in content . s t r i p
() . s p l i t (’ \n ’))

for record in r e co rd s :
j son_dict = d i c t (map(lambda x : x . s p l i t (’ : ’ , 1) , r ecord

))
for key in j son_dict :

va lue = json_dict . pop (key) . s t r i p () # remove the
o ld key , s ince in some cases the key has ex t ra
spaces

date = date_mask . match (va lue) # ge t r i d o f
t a i l i n g timezone e . g . (CEST)

i f date :
va lue = in t (time . mktime (datet ime . s t rpt ime (

date . groupd ic t () [’ date ’] , "%Y�%m�%d�%H:%M
:%S") . t imetup le ()))

60 Scripts Snippets

i f key . f i nd (’ s i z e ’) i s not �1:
va lue = in t (va lue) ; # conver t s i z e from

s t r i n g to i n t
j son_dict [key . s t r i p ()] = value # remove ex t ra

spaces in the key s t r i n g
j s on .dump(json_dict , output_f i l e)
output_f i l e . wr i t e ("\n")

i n od e_ f i l e . c l o s e ()
output_f i l e . c l o s e ()

Listing B.3: iNode Parser

Appendix C

Visualisation Code Snippet

/⇤
⇤
⇤ Timeline c l a s s f o r genera t ing t ime l i n e
⇤ Author : Yu Jin
⇤ Date : 2013�03�06
⇤
⇤/

/⇤
⇤ Parameter :
⇤ name �� s p e c i f y the d i v to bear SVG element
⇤
⇤/

f unc t i on Timel ine (name) {
// s t a t i c cons tant va l u e s
this . name = name ;
// t h i s . t ime l ine_he i gh t = 850;
var height_margin = 100 ;
this . t ime l ine_he ight = window . innerHe ight �

height_margin ;
// t h i s . width = 1850;
this . width = window . innerWidth � 50 ;
this . c o l o r_sca l e = d3 . s c a l e . category20 () ;

62 Visualisation Code Snippet

// ch r ono l o g i c a l path genera tor
this . time_path = d3 . svg . l i n e ()

. x (func t i on (d) { return d . x ; })

. y (func t i on (d) { return d . y ; })

. i n t e r p o l a t e (" l i n e a r ") ;
/⇤Disab l e g l o b a l name $ from jQuery and re l oad i t i n t o

Zepto ⇤/
jQuery . noCon f l i c t () ;
$ = Zepto ;

// OpenTip con f i g
Opentip . s t y l e s . t o o l t i p_s t y l e = {

stem : true ,
h ideDelay : 0 . 2 ,
de lay : 0 . 3 ,
t i p J o i n t : " r i g h t " ,
t a r g e t : true ,
borderWidth : 0

} ;
// i n i t t ime l i n e SVG and p r o p e r t i e s
Timel ine . prototype . i n i tT ime l i n e = func t i on () {

this . t ime l i n e = d3 . s e l e c t (this . name)
. append (" svg")
. a t t r ("width" , this . width)
. a t t r (" he ight " , this . t ime l ine_he ight)
. a t t r (" c l a s s " , " t ime l ine�graph")
. append ("g")
. a t t r (" trans form" , " t r a n s l a t e (10 , � 10) ") ; //

t ime l i n e margins

this . t ime l i n e . append (" svg : c l ipPath ")
. a t t r (" id " , " t ime l ine�c l i p ")
. append (" svg : r e c t ")
. a t t r ("x" , 0)
. a t t r ("y" , 0)
. a t t r ("width" , this . width)
. a t t r (" he ight " , this . t ime l ine_he ight) ;

}
// prepare raw da t a s e t f o r d i s p l a y
Timel ine . prototype . s e tDatase t = func t i on (dataset ,

path_dataset) {
// only check f o r su sp e c t s f o r android l o g s
var s e l f = this ;

63

this . path_dataset = path_dataset ;
var _dataset = {} ;
// group data by 1 s t date , 2nd _id (a p p l i c a t i o n) , 3 rd

o b j e c t (system c a l l)
datase t . forEach (func t i on (data) {

// the s e p r o p e r t i e s has noth ing to do wi th date
var _id = data . _id ;
var ob j e c t = data . ob j e c t ;
var message = data . msg + " [" + data . l e v e l + "] " ;
i f (! _dataset . hasOwnProperty (data . date)) {

_dataset [data . date] = {} ;
}
var date_group = _dataset [data . date] ;
i f (! date_group . hasOwnProperty (_id)) {

date_group [_id] = {} ;
date_group [_id] . d i sp l ay = data . d i sp l ay ;
//date_group [_id] . l e v e l = data . l e v e l ;
date_group [_id] . content = {} ;

}
var id_group = date_group [_id] ;
i f (! id_group . content . hasOwnProperty (ob j e c t)) {

id_group . content [ob j e c t] = [] ;
}
id_group . content [ob j e c t] . push (message) ;

}) ;

// output data sample :
// data {
// date : <timestamp >,
// _id : <app name>,
// d i s p l a y : <display_name >,
// content : {<ob j ec t > : [messages , . . .] , <ob j e c t >

: [messages , . . .] , . . . }
// }
for (var timestamp in _dataset) {

i f (timestamp != ’ undef ined ’) {
for (var record_id in _dataset [timestamp]) {

i f (record_id != ’ undef ined ’) {
this . updateYDomain (record_id) ; //

form an app name array f o r Y�ax i s
domain

var display_name = _dataset [timestamp
] [record_id] . d i sp l ay ;

64 Visualisation Code Snippet

// var l e v e l = normal_dataset [
timestamp] [record_id] . l e v e l ;

this . da tase t . push ({
date : Number(timestamp) ,
_id : record_id ,
d i sp l ay : display_name ,
// l e v e l : l e v e l ,
content : _dataset [timestamp] [

record_id] . content
}) ;

}
}

}
}

// so r t a l l e ven t s by date
this . da tase t . s o r t (func t i on (x , y) {

i f (x . date <= y . date) return �1;
i f (x . date > y . date) return 1 ;

}) ;
this . onDataReady () ;

}
// draw t ime l i n e on SVG
Timel ine . prototype . onDataReady = func t i on () {

var s e l f = this ;
// t ime l i n e coords , c o l o r and rad ius f unc t i on s
f unc t i on x (d) {

return d . date ;
}

func t i on y (d) {
return d . _id ;

}

func t i on c o l o r (d) {
return d . _id ;

}

func t i on rad iu s (d) {
return s e l f . getMessageNumber (d) ;

}

65

// conver t epoch timestamp to date f o r d3 time s c a l e
and i n i t d i s p l a y da t a s e t

var d i sp lay_dataset = [] ;
this . da tase t . forEach (func t i on (data) {
// t h i s . d a t a s e t . s l i c e (t h i s . s tar t_index , t h i s . end_index

) . forEach (func t i on (data) {
var display_data = {} ;
var date = new Date (data . date ⇤ 1000) ; // conver t

to m i l l i s e c ond s
display_data . date = date ;
display_data . _id = data . _id ;
display_data . content = data . content ;
display_data . d i sp l ay = data . d i sp l ay ;
d i sp lay_dataset . push (display_data) ;

}) ;
// ge t the en t i r e time per iod
var start_date = disp lay_dataset [0] . date ;
var end_date = disp lay_dataset [d i sp lay_dataset . l ength

� 1] . date ;
var tota l_per iod = (Number(end_date) � Number(

start_date)) / 1000 ;

// de f i n e c i r c l e rad ius s c a l e
var radius_range = [10 , 2 0] ;
var rad ius_sca l e = d3 . s c a l e . pow()

. exponent (2)

. domain (this . initRadiusDomain ())

. range (radius_range)

. clamp (true) ;

// de f i n e Y ax i s s c a l e
this . y_scale = d3 . s c a l e . o rd i na l ()

. domain (this . y_domain)

. rangePoints (this . y_range , 1 . 0) ;

// de f i n e X ax i s s c a l e
this . x_range = this . initXRange () ;
this . x_scale = d3 . time . s c a l e . utc ()

. domain ([start_date , end_date])

. range (this . x_range) ;

// i n i t t i c k i n t e r v a l on X ax i s
this . i n i tT i c k I n t e r v a l () ;
// de f i n e X ax i s

66 Visualisation Code Snippet

var x_axis = d3 . svg . ax i s ()
. s c a l e (this . x_scale)
. o r i e n t ("bottom")
. t i c k s (this . t ick_unit , this . t i ck_step)
// . t i c k s (d3 . time . minutes . utc , 5) // s t a t i c t e s t

c on f i g
. t ickPadding (this . t ick_padding)
. t i c k S i z e (0) ;

// de f i n e X ax i s l a b e l format
x_axis . t ickFormat (func t i on (date) {

formatte r = d3 . time . format . utc ("%Y%m%d�%H:%M:%S")
;

return f o rmatte r (date) ;
}) ;

// append X ax i s on Timeline
this . t ime l i n e . append ("g")

. a t t r (" c l a s s " , " time�ax i s ")

. a t t r (" id " , " timeline_main")

. a t t r (" trans form" , " t r a n s l a t e (0 , �" + (this .
t ime l ine_he ight � 100) + ") ")

. c a l l (x_axis) ;

// append g i r d on the t ime l i n e
var g r id = this . t ime l i n e . s e l e c t A l l (" l i n e . gr id�main")

. data (this . x_scale . t i c k s (this . t ick_unit , this .
t i ck_step))

. en te r ()

. append ("g")

. a t t r (" c l i p�path" , " u r l (#t ime l ine�c l i p) ")

. a t t r (" c l a s s " , " gr id�main") ;

// append l i n e s on the g r i d
g r id . append (" l i n e ")

. a t t r (" c l a s s " , " gr id�l i n e�main")

. a t t r ("x1" , this . x_scale)

. a t t r ("x2" , this . x_scale)

. a t t r ("y1" , 0)

. a t t r ("y2" , this . t ime l ine_he ight � 100) ;
// . . . ///
// append a l a y e r f o r F i l e / Radio a c t i v i t i e s
this . extra_arena = this . t ime l i n e . append (’ g ’)

. a t t r (" id " , " extra�arena ")

67

. a t t r (" c l i p�path" , " u r l (#t ime l ine�c l i p) ") ;

// append even t s on t ime l i n e
this . t ime l i n e . append (’ g ’)

. a t t r (" id " , " events�arena ")

. a t t r (" c l i p�path" , " u r l (#t ime l ine�c l i p) ")

. s e l e c t A l l (" c i r c l e ")

. data (d i sp lay_dataset)

. en te r ()

. append (" c i r c l e ")

. a t t r (" c l a s s " , " t ime l ine�event ")

. a t t r (" id " , f unc t i on (data , index) {
return " datase t " + "�" + index ;

})
. a t t r ("cx" , f unc t i on (data) {

return s e l f . x_scale (x (data)) ;
})
. a t t r ("cy" , f unc t i on (data) {

return s e l f . y_scale (y (data)) ;
})
. a t t r (" r " , f unc t i on (data) {

return rad ius_sca l e (rad iu s (data)) ;
})
. a t t r (" f i l l " , f unc t i on (d) {

return s e l f . c o l o r_sca l e (c o l o r (d)) ;
})
. s o r t (func t i on (x , y) {return rad iu s (y) � rad iu s (x

) }) ;

// draw ch r ono l o g i c a l paths on t ime l i n e f o r
a p p l i c a t i o n t r a c e s

i f (this . path_dataset !== null) {
for (var app in path_dataset) {

i f (app === undef ined) continue ;
path_dataset [app] . forEach (func t i on (path_group

) {
s e l f . f i l lPa thData (path_group) ;
s e l f . drawPath () ;

}) ;
}

}

// append graph l egend (a p p l i c a t i o n names)
var text_padding = 30 ;

68 Visualisation Code Snippet

var legend = this . t ime l i n e . s e l e c t A l l (" . l egend ")
. data (this . y_scale . domain () . r e v e r s e ())
. en te r () . append ("g")
. a t t r (" c l a s s " , " legend ")
. a t t r (" trans form" , func t i on (d , i) { return "

t r a n s l a t e (0 , " + i ⇤ 14 + ") " ; }) ;

l egend . append (" r e c t ")
. a t t r ("x" , 10)
. a t t r ("width" , 12)
. a t t r (" he ight " , 12)
. s t y l e (" f i l l " , this . c o l o r_sca l e) ;

l egend . append (" text ")
. a t t r ("x" , text_padding)
. a t t r ("y" , 5)
. a t t r ("dy" , " . 35em")
. s t y l e (" text�anchor " , " s t a r t ")
. t ex t (func t i on (d) { return d ; }) ;

} // func t i on onDataReady ()

Listing C.1: Timeline Class

Bibliography

[BF05] Florian Buchholz and Courtney Falk. Design and implementation
of zeitline: a forensic timeline editor. In Digital forensic research
workshop, 2005.

[Bos12] Michael Bostock. D3.js - data-driven documents. http://d3js.org/
[Visited 31 May 2013], 2012.

[BT07] Florian Buchholz and Brett Tjaden. A brief study of time. digital
investigation, 4:31–42, 2007.

[Car05] Brian Carrier. File system forensic analysis, volume 3. Addison-
Wesley Boston, 2005.

[Car13a] Brian Carrier. The sleuth kit and the autopsy forensic browser. http:
//www.sleuthkit.org/autopsy/ [Visited 31 May 2013], 2013.

[Car13b] Brian Carrier. sleuthkit/sleuthkit. https://github.com/sleuthkit/
sleuthkit [Visited 31 May 2013], 2013.

[Clo08] Michael Cloppert. Ex-tip: an extensible timeline analysis framework
in perl. Bethesda, MD: SANS Institute, 2008.

[Fuc13] Thomas Fuchs. Zepto.js: the aerogel-weight jquery-compatible
javascript library. http://zeptojs.com/ [Visited 31 May 2013], 2013.

[GP05] Pavel Gladyshev and Ahmed Patel. Formalising event time bounding
in digital investigations. International Journal of Digital Evidence,
4(2):1–14, 2005.

http://d3js.org/
http://www.sleuthkit.org/autopsy/
http://www.sleuthkit.org/autopsy/
https://github.com/sleuthkit/sleuthkit
https://github.com/sleuthkit/sleuthkit
http://zeptojs.com/

70 BIBLIOGRAPHY

[Hoo11] Andrew Hoog. Android forensics: investigation, analysis and mobile
security for Google Android. Syngress, 2011.

[jF13] The jQuery Foundation. jquery. http://jquery.com/ [Visited 31
May 2013], 2013.

[Lea11] LearnBoost. Mongoose odm v3.6.11. http://mongoosejs.com/ [Vis-
ited 31 May 2013], 2011.

[Mas13] Giulia Massini. Visualization and clustering of self-organizing maps.
In Intelligent Data Mining in Law Enforcement Analytics, pages 177–
192. Springer, 2013.

[Men13] Matias Meno. Opentip | the free tooltip. http://www.opentip.org/
[Visited 31 May 2013], 2013.

[Nar07] Gregorio Narváez. Taking advantage of ext3 journaling file system in
a forensic investigation. SANS Institute Reading Room, 2007.

[OB09] Jens Olsson and Martin Boldt. Computer forensic timeline visualiza-
tion tool. digital investigation, 6:S78–S87, 2009.

[Sle09] SleuthKitWiki. Body file - sleuthkitwiki. http://wiki.sleuthkit.

org/index.php?title=Body_file [Visited 31 May 2013], 2009.

[SMC06] Bradley Schatz, George Mohay, and Andrew Clark. A correlation
method for establishing provenance of timestamps in digital evidence.
digital investigation, 3:98–107, 2006.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95–109. IEEE, 2012.

http://jquery.com/
http://mongoosejs.com/
http://www.opentip.org/
http://wiki.sleuthkit.org/index.php?title=Body_file
http://wiki.sleuthkit.org/index.php?title=Body_file

	Summary (English)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Related works
	1.1.1 Zeitline
	1.1.2 TSK Autopsy
	1.1.3 Ex-Tip
	1.1.4 CyberForensic TimeLab

	1.2 Contributions
	1.3 Thesis structure

	2 Framework design & architecture
	2.1 Design requirements
	2.1.1 Usability
	2.1.2 Accessibility
	2.1.3 Extensibility
	2.1.4 Scalability

	2.2 Framework architecture
	2.2.1 Web server
	2.2.2 Server side scripts
	2.2.3 Android App
	2.2.4 Browser side rendering

	2.3 Summary

	3 Presentation of artefacts
	3.1 Goals of presentations
	3.2 Generic data structure
	3.3 Timeline view
	3.4 Aggregation view
	3.5 Deltatime view
	3.6 Classification view
	3.7 Summary

	4 Implementation
	4.1 Evidence collection
	4.1.1 Android Content Providers
	4.1.2 Logcat logs
	4.1.3 Filesystem
	4.1.4 Misc.

	4.2 Self-Organising Map
	4.3 Visualisation of artefacts
	4.4 Features & user interface
	4.5 Summary

	5 Evaluation
	5.1 LoveTrap
	5.2 FakePlayer
	5.3 Reliability discussion
	5.4 Summary

	6 Conclusion
	A Android App Code Snippet
	B Scripts Snippets
	C Visualisation Code Snippet
	Bibliography

