
Badminton shot classification in
compressed video with baseline

angled camera

Sam Careelmont

Kongens Lyngby 2013
IMM-M.Sc.-2013-39

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2013-39

Summary (English)

The goal of the thesis is to classify shots played during a recorded badminton
match. The classification consists of a time chronological list of every shot’s
start and end position. Such classification offers tactical information which
can be used for coaching or display during broadcast matches. The common
camera position in badminton match recordings is behind the baseline of the
court. Compressed video files are considered to accommodate home recordings
and saved broadcasts.

An algorithm is developed that outputs a classification given a certain input
video. The algorithm extract moving objects in every frame and connects them
through time. Next, a shuttle trajectory model is fitted to the extracted data. A
classification is made based on the best fitting model appearance. The moving
object extraction uses background subtraction and connected component labelling.
Connecting the components through time is achieved by a custom matching step.
The shuttle trajectory model uses a physics based shuttle trajectory description
and a camera calibration to establish a model of the image plane behaviour of a
shuttlecock.

The results show that on average 8 percent of the shots’ start and end position can
be classified correctly. The overall performance is not satisfying but intermediate
steps show promising results. Moreover, various bottlenecks are identified and
an extensive list of suggestions for further research is given.

ii

Summary (Danish)

Målet for denne afhandling er at klassificere slagspillet i løbet af en optaget
badmintonkamp. Klassifikationen består af en tidskronologisk liste af hvert slags
start -og slut position. Sådan en klassifikation tilbyder taktiske oplysninger som
kan blive brugt til træning eller visning i udsendte kampe. Den almindelige
kameraposition i badmintonoptagelse er bag banens baglinje. Komprimeret
videoer er undersøgt for at medregne hjemmeoptagelse og gemte udsendelser.

En algoritme er udviklet som udlæser en klassifikation forudsat en korrekt indlæst
video. Algoritmen tager bevægende objekter ud af hvert delbillede og forbinder
dem igennem tid. Følgelig er en fjerboldforløbs model tilpasset de udtaget
data. En klassifikation er lavet baseret på den bedst tilpassede model. Den
bevægende objektfrilæggelse bruger baggrundssubtraktion og sammenhængende-
komponent-mærkering. Forbindelse af komponenterne gennem tid er opnået
ved et specialbygget matchetrin. Fjerboldforløbs modellen anvender en fysisk
baseret fjerboldforløbsbeskrivelse og en kamerakalibrering for at skabe en model
af fjerboldens adfærd i billedplanet.

Resultaterne viser at i gennemsnit er 8 procent af slagenes start -og slut posi-
tionerne klassificeret korrekt. Den generelle præstation er ikke tilfredsstillende
men deltrinnene viser lovende resultater. Endvidere er forskellige flaskehalse
identificeret og en omfattende liste med forslag for videregående undersøgelse er
givet.

iv

Summary (Dutch)

Het doel van deze verhandeling is het classificeren van slagen gespeeld tijdens
een opgenomen badminton wedstrijd. The classificatie bestaat uit een tijd
chronologische lijst van elke slag zijn begin end eind positie. Dergelijke classificatie
biedt tactische informatie die gebruikt kan worden voor coaching of vertoning
tijdens uitgezonden wedstrijden. De gebruikelijke camera positie in badminton
opnames is achter de basislijn van het veld. Gecomprimeerde video bestanden
worden beschouwd om thuis opnames en opgeslagen uitzendingen te kunnen
behandelen.

Een algoritme is ontwikkeld dat een classificatie uitvoert gegeven een zekere invoer.
Het algoritme extraheert bewegende objecten in elk video frame en verbindt
ze doorheen de tijd. Vervolgens wordt een shuttle traject model gepast aan de
geëxtraheerde gegevens. Een classificatie wordt gemaakt van de best passende
modelvorm. De bewegende objecten worden geëxtraheerd middels achtergrond
aftrekking en het labelen van verbonden componenten. Het verbinden van deze
componenten doorheen de tijd gebeurt aan de hand van een op maat gemaakte
stap. Het shuttle traject model gebruikt een fysische shuttle traject beschrijving
en een camera calibratie om een model te vormen van het shuttle gedrag op het
afgebeelde vlak.

De resultaten tonen dat gemiddeld 8 procent start -en eindposities van de slagen
correct geclassificeerd werden. De algemene prestatie is niet voldoende maar
deelstappen van het algoritme tonen veelbelovende resultaten. Daarenboven zijn
verschillende knelpunten geïdentificeerd en een uitgebreide lijst van suggesties
voor verder onderzoek is opgesteld.

vi

Preface

This thesis was prepared during an exchange stay at the department of Informatics
and Mathematical Modelling at the Technical University of Denmark. The thesis
fulfils the requirements for acquiring an M.Sc. in Computer Science from Ghent
University.

The thesis deals with the classification of badminton shots in compressed video
recorded with a baseline angled camera.

The thesis consists of seven chapters. The introduction specifies the considered
problem, motivates the proposed goals and elaborates on related work. The next
four chapters describe the developed method. Chapter six summarizes the most
important results. Concluding remarks and future work are listed in the last
chapter.

Lyngby, 01-June-2013

Sam Careelmont

viii

Acknowledgements

This thesis was realized with the direct and indirect help from many people. I
would like to express my sincere thanks to:

• My supervisors at the Technical University of Denmark Prof. Anders
Lindbjerg Dahl and Prof. Henrik Aanæs for offering me the chance to be
part of their research group, following my progress during weekly meetings
and guiding me towards the essence.

• My supervisor at Ghent University Dr.Ir. Peter Van Hese for tracking my
progress through e-mail and providing helpful advice.

• Prof. Wilfried Philips for coordinating my thesis and offering me the
chance to carry out my research abroad.

• Prof. Filip De Turck for allowing me to pursue my last master’s year as
an exchange student at the Technical University of Denmark.

• My parents, family and friends for their unconditional support.

• The Belgian state, the Danish state and the European Union for creating
an educational climate with lots of learning opportunities.

x

Contents

Summary (English) i

Summary (Danish) iii

Summary (Dutch) v

Preface vii

Acknowledgements ix

1 Introduction 1
1.1 Related work . 2
1.2 Research overview and goals . 3

1.2.1 Input material . 4
1.2.2 Output format . 6

1.3 The worldwide sport of badminton 12

2 Method 13
2.1 Terminology . 14

3 Trajectory Extractor 17
3.1 Camera calibration . 17

3.1.1 Investigation of test video camera matrices 22
3.1.2 Manual selection of calibration points 23
3.1.3 Automatic calibration point selection 23

3.2 Background subtraction . 28
3.2.1 Basic methods . 28
3.2.2 Mixture of Gaussians method 29
3.2.3 Implementation . 30

xii CONTENTS

3.2.4 Performance . 30
3.3 Shuttle blob extraction . 34

3.3.1 Blob extraction . 34
3.3.2 Blob filtering . 36
3.3.3 Performance . 39

3.4 Trajectory matching . 39
3.4.1 Trajectory descriptor . 39
3.4.2 Trajectory matching threshold 40
3.4.3 Idle time . 41
3.4.4 Performance . 42

4 Shuttlecock dynamics 47
4.1 2D model . 48
4.2 3D model . 50
4.3 Projected model . 51
4.4 Visualizations . 52

5 Trajectory classifier 57
5.1 False positive detection . 57

5.1.1 Trajectory length boundaries 58
5.1.2 Trajectory derivative properties 58

5.2 Initial parameter estimation . 63
5.2.1 Initial speed estimation 63

5.3 Model fitting . 65
5.3.1 Semi-exhaustive fitting . 65

5.4 Classification . 70
5.4.1 Zones . 70
5.4.2 Zone number deduction 70
5.4.3 Performance . 71

6 Results 73
6.1 Algorithm parameters summary 73
6.2 Trajectory extractor . 74
6.3 Trajectory classifier . 74

7 Conclusion 75
7.1 Future work . 76

7.1.1 Algorithm improvements 76
7.1.2 Algorithm extensions . 78

A Install OpenCV on Windows 81

Bibliography 83

Chapter 1

Introduction

Spectator participation in 776BC Olympia required attendance of the games.
Three millennia later in a world vastly changed, the 1936 Berlin Olympic games
showcased the world’s first live broadcast of a sport event. Ever since this ground
breaking event there has been an increase in sport coverage on television. Con-
temporary spectators are even given the choice of on demand sport transmissions
through the internet. Sport videos have been and are playing an important role
in the popularisation of sport.

Spectators aside, coaches and athletes also stand to benefit from video technology
and it is known that sport video sequences are widely used for coaching instruction.
An athlete’s technical skills can be analysed by looking at an isolated movement.
On a more global scale the coach can analyse and rectify the movements of
the athlete and the tactical choices. No matter which approach is taken, video
sequences offer useful information for post-processing any sport event. One of
particular interest is badminton. Since it has a large tactical component, viewing
and analytical opportunities for both spectators and coaches arise. A broadcast
badminton game can be made more interesting by adding advanced statistics of
the shots played. Coaches can use recordings to analyse the tactical implications
of the athlete’s shot decisions. This can be done before a match in order to
prepare the athlete for a certain opponent, or afterwards to learn for future
matches.

2 Introduction

Through these analytic implications badminton game videos become very inter-
esting. What if the game analysis could be done automatically? In this thesis
research is carried out to track the shuttle in compressed video sequences with a
baseline angled camera. The end goal is to have a solid base to perform a stable
shot classification of every shot played in a complete badminton match.

The use of compressed videos with baseline angled camera instead of 3D images
retrieved from multiple high definition cameras has some reasons. Firstly, the
baseline angled camera has been the standard camera angle in badminton
broadcasts for decades. Secondly, working with low quality images enlarges the
pool of test data significantly. Older recordings can also be used for analysis.
Consequently, our method might be useful for archiving purposes of large amounts
of badminton videos. Also lots of data triggers statistical meaningful options to
perform fundamental sport research. Sport scientists would be able to describe
the evolution of the badminton game or generalize the current established tactics.
Another advantage of working with compressed video are the possibilities for
home use. Imagine recording a badminton match yourself with a smartphone,
analysing it at home and uploading the match report on a social network. From
the broadcasting point of view, robust methods offer small broadcast companies
the possibility to display match statistics without the need to buy expensive
high definition cameras.

1.1 Related work

A general overview of video technology use for coaching is given by Wilson [Wil08].
The use of video for coaching goes together with the increased availability of
home computers. It started with plain recordings of sport events and manual
reviews of the coaches. Today’s systems should help the coach in a smart way
and as close as possible to real time.

Yi et al. [YRC04] focus on a general semantic understanding of sport videos
and extract motion trajectories in compressed videos. The generality of their
method outlines the steps needed to perform a trajectory extraction.

More sport specific research was done for baseball [SK04], volleyball [CCL07]
, basketball [CTC+09] and soccer [KSH98], [YXL+03]. These all try to make
inferences about the real world trajectory of the ball based on 2D image sequences.
The goal of this thesis is very alike except for the tracked object. Balls have a
parabolic flight while a shuttlecock follow a more specific path (see chapter 4).
Hence, these papers offer ideas for trajectory extraction and real world trajectory
inferences, yet not every step is directly applicable or useful to solve this thesis

1.2 Research overview and goals 3

problem.

Several efforts have been made to analyse broadcast court-net sport videos. Zhu
et al. [HFdW08] focus on the organization of extracted highlights based on a
variety of features and support vector regression. Han et al. [ZHX+07] also try
to detect certain key events by the use of player tracking and a Bayesian-based
classifier. The goal of these studies differs from ours as no coaching use is aimed.
However, some processing steps apply to our research. For example, an automatic
ground homography is extended to a full camera calibration by assuming that
height changes of real world objects only influence the vertical coordinate in the
frame. Despite the good results these papers achieve, the overall outcome is not
applicable for tactical analysis of a a badminton game.

Lastly, other research was specifically dedicated to badminton video analysis.
[CW07] detects the shuttlecock trajectory based on 2D seriate images. All moving
regions are detected using temporal difference. Trajectories are put together
using properties of the moving regions in each frame. After the identification
of all trajectories, the shuttlecock trajectory is filtered out by mainly looking
at the trajectory length. By using knowledge about the stroke characteristics,
the stroke type is determined. The method yields very good results but the
camera was placed at an optimal position. Also, only six types of strokes are
distinguished. Automated service scene detection in badminton game videos
was done by Yoshikawa et al. [YKWO10]. As opposed to our research, a ceiling
camera was used instead of a baseline angled camera.

To summarize, trajectory extraction from single view videos has been done for
other sports than badminton. Badminton shot classification has been done
before, but no real applicable results were described.

More relevant work, related to one of the specific steps in the method, is
introduced in the corresponding sections.

1.2 Research overview and goals

This thesis can be abstracted as follows: some non-perfect input is processed
by some algorithm which outputs some raw number format. The non-perfect
input consists of compressed video of badminton matches with a baseline angled
camera. The raw output format is a formal description of all rallies played during
the badminton match that is recorded on the input video. Next a more detailed
description of the input material and output format is given. An extensive
description of the processing algorithm can be found in the chapter 2.

4 Introduction

1.2.1 Input material

As justified in the general introduction, compressed videos with a baseline angled
camera are considered because it is the common broadcast format and easy to
record a match yourself with these properties. Besides these advantages, the
restrictions on the input material trigger numerous challenges.

Lossy video compression is assumed since most common codecs (MPEG-4 Part
2 and H.264/MPEG-4 AVC) include a quantization step in a standard fashion
[LD03]. Consequently, the input material can suffer from degraded colour
information. Moreover, the frame rate is limited to a maximum of 30 frames per
second. These limitations might hinder the detection of the features of interest
(e.g. shuttlecock detection, see figure 1.4(c)) and the use of certain methods. An
example of the latter is the infeasibility of depth estimation by shuttle size. Size
is an unstable factor when a shuttle is observed with, for example, motion blur.

Other challenges come with the camera stipulations. Due to the nature of single
camera recordings, a 3D world gets projected on a 2D plane. In another parlance,
positional information is lost during the creation of the video material. Here,
the camera is positioned some meters behind the short side of the court. The
camera is assumed to have a certain tilt, no or a small pan and zero roll. In
this setup, one can intuitively see that width information is kept quite intact in
the x-component of the projected image while height and depth are encoded in
the y-component of the projected image. Hence, a mathematical transformation
is needed to find more exact relationships between real world and projected
coordinates. Also, shuttle position evolution over time needs to be handled to
overcome some problems. An illustrative example of this problem is given in
figure 1.5.

Another consequence of the camera position is the possibility of shuttlecock
trajectories with non-registrable parts. Since only objects within a certain real
world space are captured, high flying shuttles might not be recorded (see figure
1.4(d)).

The last type of challenges is inherent to the content of the videos. Namely, the
shuttlecock can be occluded by players. Also, every part in the recorded scene
that has the same color as the shuttlecock (white), possibly interferes with a
distinct shuttlecock observation in the projected image domain. Examples are
white court lines, white coloured advertising signs or spectators wearing some
white clothing (see figure 1.4(b)).

1.2 Research overview and goals 5

1.2.1.1 Test data

The videos are selected to vary in size, encoding, color and general quality. To
this end, every video comes from another tournament. Video descriptions are
found in table 1.2.1.1, video properties in table 1.2.1.1 and example screenshots
in figure 1.1. Videos 1 to 3 are used as a training set, videos 4 to 6 as a test set.
The training videos help choosing optimal values for the algorithm parameters
and accommodate intermediate testing of substeps. The test videos only occur in
the results chapter and are used to test the general performance of the algorithm.

video id video description
1 Macau Open 2007, Men’s Singles Semi Final, Game 1, Rally at 3-3

(Taufik Hidayat versus Park Sung-hwan)
2 Asia Championships 2008, Men’s Singles Semi Final, Game 2, Rally at 7-6

(Sony Dwi Kuncoro versus Park Sung-hwan)
3 China Open 2011, Women’s Singles Quarter Final, Game 2, Rally at 10 16

(Tine Baun versus Wang Xin)
4 French Open 2007, Men’s Singles Final, Game 2, Rally at 8-11

(Lee Chong Wei versus Bao Chunlai)
5 Australian Open 2013, Men’s Singles Final, Game 1, Rally at 3-3

(Tian Houwei versus Xue Song)
6 Beijing Olympics 2008, Women’s Singles Final, Game 1, Rally at 6-8

(Xie Xingfang versus Zhang Ning)

vi
de

o
id

co
de

c

bi
tr
at
e
(K

bp
s)

si
ze

#
fr
am

es

fp
s

le
ng

th

co
lo
rs
pa

ce

ch
ro
m
e
su
bs
am

pl
in
g

1 MPEG-4 Part 2 1061 720x544 25 34s 520ms YUV 4:2:0
2 MPEG-4 Part 2 498 640x480 25 24s 320ms YUV 4:2:0
3 H.264/MPEG-4 AVC 319 636x360 25 20s 440ms YUV 4:2:0
4 MPEG-4 Part 2 638 720x544 25 18s 840ms YUV 4:2:0
5 H.264/MPEG-4 AVC 328 640x360 25 34s 840ms YUV 4:2:0
6 H.264/MPEG-4 AVC 795 640x480 25 20s 40ms YUV 4:2:0

Note that the compressed videos all use chroma subsampling in a YUV colorspace.
This results in frames where the color data is encoded as YCbCr. OpenCV uses
a BGR encoding by default and converts the input video data using following

6 Introduction

transformation:


R = Y + 1.403(Cr − 128)
G = Y − 0.344(Cr − 128)− 0.714(Cb− 128)
B = Y + 1.773(Cb− 128)

(1.1)

1.2.2 Output format

The output is a list containing all rallies played during the input badminton match.
Formally, the list contains chronologically ordered tuples Si,j (see definition 1.1).
An example of the output format can be found in figure 1.3.

Definition 1.1 Let Si,j be a tuple ∈ (zstart, zend) with
i := index of rally
j := index of shot
zstart ∈ N[1, 9]
zend ∈ N[1, 9]

zstart and zend indicate a zone as depicted in figure 1.2. Formally, the zstart and
zend number can be defined as the area wherein the perpendicular projection of
the real world shuttle position falls at the start and end of the flight, respectively.

This encoding facilitates future developments in several ways. Firstly, the start
and end position of the shuttle trajectories encompass the most fundamental
ground truth needed for further deductions. Secondly, the tuples can be extended
with new elements without affecting existing statistical post processing built on
the previous encoding. Lastly, identifying trajectories in this way is one of the
least time consuming method for manual annotation. This is an advantage in
the creation process of ground truth data, which is used to test the algorithms
performance.

Extensions are beyond the scope of this thesis. But one can easily think of
a graphical presentation layer built on top of the raw data. This layer could
visualise patterns in the played shots. Other ideas are situated around statical
reasoning and querying possibilities.

1.2 Research overview and goals 7

(a) Video 1: Macau Open 2007 (b) Video 2: Asia Championships 2008

(c) Video 3: China Open 2011 (d) Video 4: French Open 2007

(e) Video 5: Australian Open 2013 (f) Video 6: Beijing Olympics 2008

Figure 1.1: Test videos

8 Introduction

(a) Ground plane (b) Court from video extract

Figure 1.2: Visual representation of possible values for zstart and zend.

1.2 Research overview and goals 9

j LAUNCH ARRIVAL
1 1 3
2 3 1
3 1 8
4 8 5
5 5 1
6 1 1
7 1 9
8 9 4
9 4 6
10 6 1
11 1 9
12 9 4
13 4 3
14 3 7
15 7 6
16 6 7
17 7 4
18 4 6
19 6 7
20 7 9
21 9 1
22 1 8
23 8 8
24 8 1
25 1 7
26 7 9
27 9 3
28 3 7
29 7 9
30 9 4
31 4 6
32 6 6
33 6 4
34 4 1
35 1 9

Figure 1.3: Annotation example of Macau Open 2007, Men’s Singles Semi
Final, Game 1, Rally at 3-3.

10 Introduction

(a) An easy frame for shuttle detection. There is a high contrast
between the shuttle and the background.

(b) The shuttle is close to the lines. These have the same colour,
yielding possible confusion.

(c) The shuttle is stretched out due to motion blur. The low
video resolution causes an extreme pixelation in this case.

(d) The shuttle disappears from the canvas.

Figure 1.4: Test videos

1.2 Research overview and goals 11

(a) The shuttle is at the far end of the court, flying towards the
close end of the court in a straight trajectory.

(b) The shuttle is at the close end of the court, flying in a cross
trajectory towards the closest player The shuttle will be hit in
the right corner of the court as the player is late to intercept the
shuttle.

(c) The shuttle has a similar flight as the shuttle in figure 1.5(b).
However, the shuttle will be hit in the middle of the back court.

Figure 1.5: All shuttles in these frames can be detected as a blob on a dark
background with some image plane coordinates. Solely this infor-
mation is not sufficient to deduce the position of the shuttle in
the real world. Humans can deduct information from the moving
image sequence and the players movements. The algorithm has to
consider players or shuttle evolution through time to infer more
about the real world shuttle position.

12 Introduction

1.3 The worldwide sport of badminton

Badminton is especially popular in Denmark, China, South Korea, Indonesia
and Malaysia. However, the sport is played and watched all over the world. The
Fifa World Cup Final 2010 was watched by 700 million people worldwide [Hib],
while the number of viewers for the Olympic Badminton Final 2012 is estimated
at 1.4 billion [citb]. About 20 percent of the world population was watching a
badminton game. This underlies the immense popularity of the sport.

Chapter 2

Method

The processing algorithm can be split into two subalgorithms. The first takes
the input video and outputs a list of trajectories. We call this the ’Trajectory
extractor’ (see figure 2.1(a)). The second starts from the list of trajectories
and outputs a classification, further referred to as the ’Trajectory classifier’ (see
figure 2.1(b)).

The trajectory extractor consists of following steps: camera calibration, back-
ground subtraction, shuttle blob extraction and trajectory matching. To start,
the camera calibration finds the parameters of the camera that produce images
as observed. Thereupon, the background subtraction detects moving pixels by
extracting the foreground of the image. These foreground pixels are clustered in
connected components and non-interesting blobs are left out during the shuttle
blob extraction step. At last, blobs are connected over time to create trajectories.
Every step is described in detail in chapter 3.

The trajectory classifier is made up of following steps: false positive detection,
initial parameter estimation, model fitting and classification. The false positive
detection tries to rule out obvious outliers from the list of trajectories. Next, an
initial parameter estimation is carried out to assist the consequent step where a
3D shuttle model is fitted to the trajectories. Finally, the eventual classification
is performed. Chapter 5 describes the subalgorithm more specifically.

14 Method

Chapter 4 describes in detail how the shuttlecock model is constructed. This
chapter precedes chapter 5 since the latter refers extensively to the shuttlecock
model in every subsection.

2.1 Terminology

Throughout this thesis, certain vocabulary is recurring. To not confuse the reader
and to fully understand the arguments made, a list of important terminology is
given:

General terms of a badminton match

Definition 2.1 A rally is a collection of shots that belong together because
they are part of the same point in a certain badminton match

Definition 2.2 A shot is the flight of a shuttle from the moment a player hits
the shuttle until the flight halted. A flight halt occurs when the opponent hits
the shuttle, the shuttle hits the court net or the shuttle touches the ground.

Terms applying to the algorithms

Definition 2.3 A blob trajectory is a time chronological list of blob centroid
coordinates that are matched together

Definition 2.4 A ground truth trajectory is a time chronological list of
shuttle centroid coordinates as observed during one shot in a badminton match
video

Definition 2.5 A model trajectory is a time chronological list of shuttle
centroid coordinates calculated by a shuttle model given some parameters

Definition 2.6 An observation is an extracted blob that is part of a certain
blob trajectory

Definition 2.7 An observed trajectory is a blob trajectory that contains a
ground truth trajectory

Definition 2.8 A shuttle trajectory is used to refer to the general notion of
a characteristic shuttle flight

2.1 Terminology 15

(a) Trajectory extractor subalgorithm (Chapter 3).

(b) Trajectory classifier subalgorithm (Chapter 5)

Figure 2.1: Visual overview of building blocks in the processing algorithm.

16 Method

Chapter 3

Trajectory Extractor

3.1 Camera calibration

Video sequences are created by a camera in a certain position and with certain
internal settings. This camera projects an observed world into a 2D image
plane. The most common way to mathematically model this phenomenon is the
pinhole camera model [HZ03]. This pinhole model describes a transformation
that transforms real world coordinates into image domain coordinates. Having
such a transformation allows to interfere about image plane implications of real
world objects. Concretely, we use the transformation to make a court width
estimate (see 3.3.2.1), to estimate how image plane observations translate into
3D information (see 5.2) and to calculate how a shuttle flight is seen in a video
(see 4.3, 5.1.1). Due to the stationary camera, the camera calibration only needs
to be performed once. This step is thus executed during the first frame, assuming
that the badminton court is visible in this frame.

An illustration of the pinhole model can be seen in figure 3.1, equation 3.1
describes the transformation that forms the basis of the model. Real world

18 Trajectory Extractor

coordinates x, y and z are be transformed to image plane coordinates u, v:

uv
1

 =

susv
s

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



x
y
z
1

 (3.1)

Figure 3.1: The pinhole camera model. Figure adapted from [HZ03].

To obtain this matrix, the same method is used as presented by [CTC+09]. Since
the camera matrix is involved in the mapping between elements of two projective
spaces, it can also be regarded as a projective element. This means that it has
only 11 degrees of freedom since any multiplication by a non-zero scalar results
in an equivalent camera matrix:

uv
1

 =

susv
s

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 1



x
y
z
1

 (3.2)

The real world court model is based on the official dimension of a badminton
court (see [cit12] and figure 3.2) and the default main camera positioning (see
figure 3.4). The eight points used to calculate the camera matrix are visualized
in figure 3.3. The coordinates of these points are given by:

p1 = (3.05, 0.0, 6.7)
p2 = (−3.05, 0.0, 6.7)

3.1 Camera calibration 19

p3 = (−3.05, 0.0,−6.7)
p4 = (3.05, 0.0,−6.7)
p5 = (3.05, 0.0, 0.0)
p6 = (−3.05, 0.0, 0.0)
p7 = (−3.05, 1.55, 0.0)
p8 = (3.05, 1.55, 0.0)

Figure 3.2: Dimension of a badminton court.

The coordinate system of the real world court model is aligned with the coordinate
system of the pinhole model to ease the interpretation of the calculated results.
This coordinate system is right handed. The y-axis is used to describe the height
by convention, while the z-axis corresponds with the depth. This implies that
the long side of the court is located along the z-axis and the short side along
the x-axis. Due to the right handed orientation of the coordinate system, the
right side of the court has negative x-coordinates. These coordinate system
characteristics can be seen in figure 3.3.

Each of the real world model points has a corresponding point in the image plane
domain. These points can be selected by user input or automatically found by
an algorithm. Every point-to-point correspondence gives rise to equations (3.3)
and (3.4).

p11x+ p12y + c13z + p14 = u(p31x+ p32y + p33z + 1) (3.3)

20 Trajectory Extractor

p21x+ p22y + c23z + p24 = v(p31x+ p32y + p33z + 1) (3.4)

A linear system is build with 6 point-to-point correspondences from the court
plane and 2 point-to-point correspondences from the top of the net. Solving this
linear system in a least squares manner results in an estimate for the projective
matrix. To solve the least squares problem, QR-factorization is applied.

Figure 3.3: Court model and calibration points.

3.1 Camera calibration 21

Figure 3.4: The main view of a badminton match recording is created by
camera 1. Figure from [cita].

22 Trajectory Extractor

3.1.1 Investigation of test video camera matrices

The linear system to find the camera matrix should be well conditioned to
yield feasible results (see [Hea96] and [HZ03]). The accuracy of the obtained
solutions is found sufficient by visual observation (see figure 3.5). To support
these findings, the maximum reprojection error (see equation 3.5) is calculated
for all test videos (see table 3.1.1).

η = max
i
||calibrationPointsImageP lane(i)− calibrationPointsProjectedModel(i)||2

(3.5)

video id maximum reprojection error
1 0.8765
2 1.9931
3 1.3893
4 1.9393
5 0.6648
6 1.5825

The reprojection error is not higher than 2 for any of the test videos. This entails
that a projected model point differs at maximum 2 pixels from the annotated
image plane point. Knowing that the manual point annotation has pixel precision
(see 3.1.2), the accuracy of the P matrix estimate is sufficient. After all, the
reprojection error is influenced by both the camera calibration matrix estimation
and the error introduced to human annotations (i.e. fiducial localization error).

The camera matrix is also decomposed in order to investigate some intrinsic
and extrinsic parameters of the camera [Kov]. The advantage of this verification
method is the human interpretability of these parameters. Table 3.1.1 shows the
position of the camera in the real world court model (figure 3.3), focal length
and rotation angles. The real world position coordinates are according to the
real world court model. The focal length is given by 10 ·K11/dpcm with K11 the
first element of the intrinsic matrix and dpcm the number of dots per centimetre
of the video. Since K11 encodes the focal length in meter (same unit as real
world court model) divided by the pixel width, a multiplication by 10 is done to
get the focal length in mm. Lastly, the rotation angles are calculated from the
rotation matrix using the method described by Slabaugh [Sla]. Pan, tilt and roll
describe the rotations around the y,x and z axis in the model coordinate system,
respectively (figure 3.3).

3.1 Camera calibration 23

video id real word position focal length pan, tilt, roll
1 (0.3, 5.0, -22.6) 19 mm -1.7◦,-6.8◦,-0.3◦
2 (0.0, 9.8, -33.0) 24 mm -3.2◦,-5.4◦,-1.0◦
3 (0.2, 9.9, -33.1) 17 mm 1.5◦,-23.6◦,0.3◦
4 (0.0, 4.5, -15.2) 17 mm 0.6◦,-8.7◦,0.0◦
5 (0.6, 7.0, -28.6) 15 mm 4.5◦,-3.8◦,1.7◦
6 (-0.3, 10.2, -30.2) 17 mm 2.0◦,-5.4◦,0.1◦

The camera is positioned from 8.5 to 26.4 meters behind the court (see figure 3.2
for court dimensions), right in the middle and 5.0 to 10.2 meters high. The roll
is negligible, the pan is slightly left or right and the tilt varies between -23.6◦
to -3.8◦. The focal length corresponds to typical wide-angle lenses. All these
parameters are realistic values and accord with the observed images (see figure
1.1).

3.1.2 Manual selection of calibration points

Because of the implementation complexity of the automatic model fitting, an
interface is created on which users can indicate the court and net corners points.
By means of this, camera calibration can be performed without an operative
version of the automatic calibration point selection.

3.1.3 Automatic calibration point selection

An automatic playing field detection algorithm is implemented based on previous
research from Farin et al. [FHD05], [FKE+04]. However, the implementation
has some incompletenesses and is not optimized for speed. Therefore, we stick to
the manual selection of calibration points. Nevertheless, the description of the
automatic method might aid further developments based on the existing code.

The method of Farin et al. focuses on finding a ground homography that maps
court points to a court model. The ground homography is useful to find the
real world position of objects on the court plane (for example: players’ feet).
A homography estimation only needs four point correspondences. To get the
camera projection matrix, these points can be used in combination with manually
annotated points or the method can be extended to find more calibration points.
Consequently, the next paragraphs focus on the extraction of calibration points
in the image plane rather than the homography details.

24 Trajectory Extractor

(a) Video 1: Macau Open 2007 (b) Video 2: Asia Championships 2008

(c) Video 3: China Open 2011 (d) Video 4: French Open 2007

(e) Video 5: Australian Open 2013 (f) Video 6: Beijing Olympics 2008

Figure 3.5: Model points and court model projected on image plane using the
calculated P matrix.

3.1 Camera calibration 25

3.1.3.1 White pixel detection

Court lines are assumed to be white. Therefore, pixels are first classified using
a luminance threshold. To prevent large white areas to be selected, a local
constraint is added. The luminance difference of the considered pixel and some
pixels away neighbouring pixels in the horizontal or the vertical direction should
be bigger than a certain threshold. Formally: let θ1 and θb be thresholds, µ the
estimated line thickness upperbound (eg. 8 pixels) and l(x,y) the luminance of a
pixel at position (x,y). Then a pixel is classified as a court candidate pixel as
follows:

cc(x, y) =


1 : l(x, y) ≥ θ1 ∧ l(x, y)− l(x− µ, y) > θ2 ∧ l(x, y)− l(x+ µ, y) > θ2

1 : l(x, y) ≥ θ1 ∧ l(x, y)− l(x, y − µ) > θ2 ∧ l(x, y)− l(x, y + µ) > θ2

0 : else.

(3.6)

To exclude small white areas from the selection, a structure tensor is calculated.
For a candidate pixel (Px,Py), a structure matrix S is calculated according to
following formula:

S =
x=Px+b∑
x=Px−b

y=Py+b∑
y=Py−b

∇l(x, y).(∇l(x, y))T (3.7)

with 2b+ 1 the window size and ∇ the image gradient.

The eigenvalues of this matrix yield information about the structure of the pixels
inside the considered window. This can intuitively be understood since the
eigenvalues indicate the main directions of variation of the luminance values
gradients. See figure 3.6 for an overview of the possible cases.

Line color problem
Note that not every court has white playing lines. An algorithm could be invented
which searches for the dominant court color and the court line color. Next, the
same steps as in the white pixel case can be executed by replacing white pixels
with the found color pixels.

3.1.3.2 Line extraction

Hough transform
After the pixel selection task, a Hough transform is performed to get parametrized

26 Trajectory Extractor

(a) Line (b) Surface

(c) Point

Figure 3.6: Structure tensor visualizations (illustration from [Nie10])

3.1 Camera calibration 27

lines (and not just a list of possible court pixels). A Hough transform transforms
the image to a parametrized form where every pixel has an associated sinusoid.
Points lying on a straight line will then produce sinusoids crossing at the param-
eters for that line. The result is a set of lines specified by (r, θ) where r is the
distance of the line to the origin and θ the angle between the line normal and
the horizontal axis.

Parameter refinement
As the candidate court lines are quite thick (> 1 pixel lines), the Hough transform
detects several close-lying lines for every court line. Therefore, the line param-
eters of all lines are refined, minimizing their distance to the court candidate
pixels. This yields an overdetermined linear system of equations which has to be
solved with a robust least trimmed squares estimator. After this step, lines are
considered equal if their angle and distance is small enough. The refinement and
duplication deletion steps are repeated until a stable number of lines is achieved.

Alternative
An alternative for the Hough transform is a RANSAC-like algorithm [FHD05].
This works also well and is a bit faster. Since the camera calibration only has to
be done for the first frame, speed is not a huge issue. A court tracking mechanism
is sufficient for the consequent frames. Nevertheless, the RANSAC-like algorithm
omits the necessity for the difficult parameter refinement (as described above)
and can thus lower the implementation complexity.d

3.1.3.3 Model fitting

The remaining lines are ordered in a set of vertical and a set of horizontal lines.
Within every set, the lines are sorted respectively from left to right and from top
to bottom. Correspondences between court lines in the image and court lines in
the model are now found by iterating all quadrangles that preserve the indices
order after sorting. From these quadrangles, the four intersections are calculated
as correspondence points.

Possible assignments are tested by calculating the homography, projecting model
court lines to the image plane domain based on this homography and calculating
the matching between these projected lines and the extracted lines. The points
from the assignment with the largest matching score are selected as the calibra-
tion points. Remark that the researchers [FKE+04] speed up this process by
introducing a quick parameter rejection test.

28 Trajectory Extractor

3.2 Background subtraction

Since a moving shuttlecock is the object of interest, an essential step is to extract
motion from the input video sequence. So, in this step, the moving pixels in a
frame are detected.

The background subtraction problem can be formulated as follows: identify all
foreground objects given a certain video frame from a stationary camera. In
abstracto, the absolute difference between the considered frame and the static
background is compared against a certain threshold (|framei − backgroundi| >
Threshold). Every pixel with a value above the threshold is classified as part of
the foreground.

A good background subtraction algorithm can track different changes in the
background: illumination changes (both sudden and gradual), motion changes
(small camera movements, high frequency moving object such as a waving flag)
and long term changes in background geometry (for example: a parked car drives
away after some time).

3.2.1 Basic methods

In this section, some basic background subtraction methods are described. Non
of them is eventually used in the algorithm, they are merely stated here as an
introduction to the used mixture of Gaussian method.

The most basic method to solve the background subtraction problem uses the pre-
vious frame as an estimate of the static background: |framei−backgroundi−1| >
Threshold. This frame difference method is very sensitive to the chosen thresh-
old and only works well with very specific video properties. Better meth-
ods try to make a better estimate of the static background by considering
more frames. The mean filter method uses the mean of the previous n frames:
|framei− 1

n

n∑
j=1

framei−j | > Threshold, while the median filter method exploits

the median of the previous n frames: |framei−median(framei−j)| > Threshold
with j ∈ {n, n − 1, ..., 2, 1}. In the running average method the background
is calculated as weighted combination of the current frame and the previous
background: |framei − backgroundi| > Threshold
with backgroundi = α ∗ framei + (1 − α) ∗ backgroundi−1 and α is known as
the learning rate with a typical value of 0.05.

Each of these basic methods can be extended using selectivity. Histograms of

3.2 Background subtraction 29

pixel values through time are created. Thresholds are placed on these histograms
to classify pixels of the current frame in foreground and background pixels. Next,
foreground pixels are ignored in the calculation of a new background model.

For all basic methods, the value of each background pixel is a chronological
average of previous pixel values. Hence, these algorithms do not take advantage of
any spatial correlations in the background. Therefore, calculating the background
model for each color channel does not significantly improve the performance in
comparison with the use of a greyscale version of the video. Also, the results of
these mostly depend on the chosen threshold.

3.2.2 Mixture of Gaussians method

Stauffer and Grimson describe [SG99] a method that models each pixel as a
mixture of Gaussians (= weighted sum of Gaussian distributions): P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, ui,t Σi,t) withXt the considered pixel values (= RGB components)

at time t, K the number of Gaussians (typically 3 or 5) and ωi,t a weight associated
to the ith Gaussian at time t with a mean ui,t and standard deviation Σi,t. The

weight at a given time should sum up to one:
K∑
i=1

ωi,t = 1.

The Gaussian density function is given by: η(Xt, µ,Σ) = 1
(2π)

n
2 |Σ|

1
2
e−

1
2 (Xt−µt)TΣ−1(Xt−µt)

The pixel values are assumed to be independent and have the same variance for
computational reasons. Thus, the covariance matrix is of the form Σi,t = σ2

i I.

For every new frame, pixel values are tested against their Guassians. Whenever
the pixel value lies within 2.5 standard deviations, it is classified as a match.
The weights of the distributions are changed in order to give higher weight to
matched Gaussians: ωk,t = (1− α)ωk,t−1 + α(Mk,t) with α a constant learning
rate. Mk,t equals 1 if the pixel value matches the kth Gaussian at time t, 0
otherwise.

The mean and variance are only updated for matched Gaussians: µt = (1 −
ρ)ut−1 + ρXt, σ2

t = (1− ρ)σ2
t−1 + ρ(Xt − µt)T (Xt − µt) with ρ = αη(Xt|µk, σk)

If the pixel value matches none of the K Gaussians, the least probable one is
replaced by a new Gaussian. This new distribution gets a low weight, large
variance and a mean equal to the pixel value.

The distributions for every pixel are ordered to find the Gaussians with the

30 Trajectory Extractor

most supporting evidence (= big weights) and the least variance. The first B
distributions are chosen to be the background model.

B = argminb

(
b∑

k=1
ωk > T

)

B depends on the desired portion of the data one wants in the background model.
This portion is described by the threshold value T . Pixels that do not match one
of these distributions in the background model, are considered as foreground.

The online adaptive mixture model copes with light changes, while the multiple
Gaussians model the variety of surfaces that might contribute to one pixel
value. For many applications, this method yields robust results. This mixture
of Gaussians background subtraction algorithm is used for the background
subtraction step.

3.2.3 Implementation

The running average method is implemented and tested by visual observation.
The algorithm only works average when using an appropriate threshold (different
for every video sequence). It is clear that a more complex background modelling
is needed.

The mixture of Gaussians background subtraction uses the OpenCV library
implementation of the algorithm which is based on the work of Kaewtrakulpong et
al [KB01]. The described method changes the way the Gaussians are updated to
improve the speed and accuracy of the original algorithm. The update equations
use a recent window update to give priority to recent data and thus allowing the
Gaussians to adapt to changes in the environment. These changes boil down to
removing the η(Xt|µk, σk) term from ρ, resulting in ρ = α. Nothing is changed
to the main principles of the background modelling.

A visualization of the result can be seen in figure 3.7.

3.2.4 Performance

The background subtraction is tested by manually counting the number of frames
where the shuttlecock is among the extracted foreground pixels. Besides α, the

3.2 Background subtraction 31

(a) Original frame

(b) Foreground mask

Figure 3.7: An example the mixture of Gaussian background subtraction result

32 Trajectory Extractor

parameter values are set to default: the number of Gaussians in the mixture K
= 5, initial weights ωk,1 = 0.05 and the background ratio T = 0.7.

Following table summarizes the results for the background subtraction run with
learning rate α = 0.05:

vi
de

o
id

A
=

to
ta
l
#

fr
am

es

B
=

ba
ck
gr
ou

nd
in
it
ia
liz

at
io
n
(#

fr
am

es
)

C
=

pr
e
ra
lly

(#
fr
am

es
)

D
=

sh
ut
tl
e
oc
cl
ud

ed
(#

fr
am

es
)

E
=

sh
ut
tl
e
ou

t
of

im
ag
e
(#

fr
am

es
)

F
=

sh
ut
tl
e
no

t
de

te
ct
ed

(#
fr
am

es
)

de
te
ct
io
n
%

1 863 24 0 4 72 25 96.72
2 608 9 33 14 24 6 98.86
3 511 9 0 64 0 43 90.18

The detection percentage is calculated as follows:
detection% = # frames shuttle is detected

frames shuttle is detectable = 1− F/(A−B + C +D + E)

B represents frames where the court is not completely visible (due to transits,
players on court, ...) leading to wrong background subtraction. C encompasses
the frames when the rally is not started yet (the shuttlecock is not moving). In
D frames the shuttle is not detectable because a player or other object is position
in front of the shuttle (for example: shuttle on a court line). E are frames where
the shuttle is going so high that the shuttle is not captured by the camera.

Following table summarizes the results for the background subtraction run with
learning rate α = 0.25:

3.2 Background subtraction 33
vi
de

o
id

A
=

to
ta
l
#

fr
am

es

B
=

ba
ck
gr
ou

nd
in
it
ia
liz

at
io
n
(#

fr
am

es
)

C
=

pr
e
ra
lly

(#
fr
am

es
)

D
=

sh
ut
tl
e
oc
cl
ud

ed
(#

fr
am

es
)

E
=

sh
ut
tl
e
ou

t
of

im
ag
e
(#

fr
am

es
)

F
=

sh
ut
tl
e
no

t
de

te
ct
ed

(#
fr
am

es
)

de
te
ct
io
n
%

1 863 4 0 4 72 15 98.08
2 608 3 33 14 24 6 98.86
3 511 9 0 64 0 43 90.18

The learning rate compromises between being fast enough to adapt to changes
and slow enough to store a useful temporal history. Due to the stationary camera
and the relatively stable background, the mixture of Gaussians background
subtractions shows little performance variation for different values of α (see
tables 3.2.4 and 3.2.4). α is further referred as αMOG.

Three main observations are made in case the shuttlecock pixels are not extracted.
Firstly, a not detected shuttlecock is often an isolated case, only leaving out
one shuttlecock observation on a whole trajectory. Secondly, non detected
shuttlecocks appear the most when the shuttlecock is accelerating very fast or
under a steep angle. This happens the most when the shuttle leaves the racket
and thus starts a new trajectory. These cases yield observed trajectories without
the first shuttlecock image plane positions. Lastly, the algorithm has more
problems if the resolution of the video goes down (see video 3). However, most
non detected shuttlecocks are very hard cases where even a human would fail
to detect the shuttlecock without seeing the images in a sequence (see figure
3.8). Investigating these extreme cases for an ever bigger value of αMOG (= 0.5),
shows no improvements.

The above observations and the good performance of the algorithm with the
chosen parameters justify the limited investigation of background subtraction
algorithms. The possible gain one can make in this step is marginal. αMOG is

34 Trajectory Extractor

set to 0.25 since it slightly performs better and requires a lower initialization
time.

Figure 3.8: Frame 149 from video 3. The location of the shuttlecock is indicated
by the red square.

3.3 Shuttle blob extraction

3.3.1 Blob extraction

The background subtraction step gives a mask which indicates the foreground
pixels in a frame. However, pixels by themselves are not powerful enough to
accommodate object extraction. Therefore, pixels are connected into components,
the so-called connected-components or blobs.

Traditional component-labelling algorithms use two passes and relabel compo-
nents according an equivalence relation induced by 8-connectivity. During the
first pass, the neighbours of each foreground point F are investigated. If none
of them has a label, F is given a new one. In the other case, the labels of the
neighbours are equivalent and F is assigned the minimal equivalent label. So any
foreground pixel F has a pair of arrays that hold the current labels and the other
minimal equivalent labels of those current labels. The second pass is executed
to make the necessary label replacements, so that every F has its minimal label.

Blob extraction is implemented using the cvBlob library [N´]. It implements
the component-labeling algorithm proposed by Chang et al [CCL04] that runs
in linear time to find 8-connectivity components. To achieve this, the image is
scanned from top to bottom and from left to right and encountered contours are
traced back to their starting point to resume scanning.

3.3 Shuttle blob extraction 35

(a) Foreground mask on which the blob extraction algorithm is
applied

(b) Blobs contours are outlined in red. The blue crosses indicate
the centroids

Figure 3.9: Visualization of blob extraction result.

36 Trajectory Extractor

3.3.2 Blob filtering

The blob extraction (see 3.3.1) gives a list of connected-components. These
components encode more information than single pixels and can thus be investi-
gated further. From this list of blobs, the blob corresponding to the shuttle is to
be found. Therefore, several properties of the blobs are examined and used as
discriminating properties. Note that the output of this step is a list of possible
shuttle blobs rather than just one shuttle blob since there are always non shuttle
blobs that pass the blob filtering. Ideas for blob discriminating properties were
found in [CTC+09].

3.3.2.1 Size properties

Image plane proportions of projected real world objects differ for every video
and are dependent on the camera matrix. Therefore, the size constraints in the
blob extraction step are deducted from a court width estimate. To achieve this
estimate, the width of the court in pixels (dcw) is calculated by transformidng a
real world court line to the projected space. The service line on the closest court
part is used to accommodate the slightly bigger projections of shuttles flying on
that side of the court.

It is known that the court width measures 6.1 meters in the real world. A
shuttlecock measures 0.07 meters on its longest side. Next, the ratio between the
shuttlecock size and the court width is multiplied by the image domain court
width estimate. This gives a good estimate of the image domain shuttle size.
Consequently, blobs are only considered as shuttlecock candidates if their length
and width is smaller than the estimated image domain shuttle size multiplied by
3. The tripling is done to address motion blur which makes the image domain
shuttle size bigger.

So every blob B on every frame is removed from the list of blobs if Bwidth >
dcw ∗ 0.0115 ∗ 3 or Bheight > dcw ∗ 0.0115 ∗ 3.

3.3.2.2 Color properties

To investigate the color properties, 15 shuttles are manually segmented. By
looking closely at these images, a wide variation of colours is observed. Since a
shuttle is made from goose feathers, it is not a dense object. Therefore a shuttle
observation in a video will be intermixed with background colours depending on
the shuttle’s position. Looking at individual pixel color values is thus useless.

3.3 Shuttle blob extraction 37

To find the best discriminative color properties, histograms of the average color
values of the manually segmented shuttles (see figure 3.10) are compared. Useful
color values for filtering are those that have little variation and thus show some
typical value range for shuttles. However, to be discriminative it is also important
that this range differs from what is observed in the histogram of possible non-
shuttle blobs. To this end, the histograms of 15 manually segmented possible
non-shuttle blobs are created (see figure 3.11). The most discriminative color
value is the saturation. Every segmented shuttle has a saturation value below
90.

So every blob with an average saturation value higher than θBFS is removed
from the list of blobs. Unfortunately, when testing the shuttle blob extraction
with θBFS set to 90, insufficient results appear. By visual observation it is
immediately seen that too many blobs are filtered out. Even when θBFS is set to
150, the shuttle blob detection rate for the first video drops from 98.08 to 95.66.
The complex colour composition of shuttle blobs make blob filtering based on
color properties a very hard task.

(a) R (b) G (c) B

(d) H (e) S (f) V

(g) Y (h) Cb (i) Cr

Figure 3.10: Average color value histograms of manually segmented shuttles

38 Trajectory Extractor

(a) R (b) G (c) B

(d) H (e) S (f) V

(g) Y (h) Cb (i) Cr

Figure 3.11: Average color value histograms of manually segmented possible
non-shuttle blobs

3.4 Trajectory matching 39

3.3.3 Performance

This blob filtering is run with only the size constraint. The shuttle blob detection
rate does not drop for video 1 and video 2. The rate only drops 0.05 for the
third training video. Meanwhile, the average number of possible shuttle blobs
per frame is reduced from 94, 68 and 75 to 87, 63 and 63, respectively.

3.4 Trajectory matching

Recall what we have so far. A badminton match video sequence is read and feed
to a background subtraction algorithm. Consequently, the resulting foreground
mask is used for blob extraction. Thus, there is a decent detection of moving
blobs in a video sequence. With or without blob filtering, there are still multiple
blobs detected for each frame while the shuttle blob is the only blob of interest.
To tackle this problem, the possible shuttle blobs are connected through time in
order to construct blob trajectories. These carry more information than just a
single blob. Hence, it is easier to detect those blob trajectories that contain a
ground truth trajectories over multiple frames rather than finding the shuttle
blob in every frame.

3.4.1 Trajectory descriptor

A blob has centroid coordinates and an area of contour. So a blob B can be
represented as a tuple B ∈ (x, y, area). A blob trajectory is a chronological
list of blob centroids (see 2.1). To construct the blob trajectories, we want to
match every possible shuttle blob in every frame to a certain blob trajectory.
This is done by adding every possible shuttle blob to its closest blob trajectory.
To formally define the closest blob trajectory, it is necessary to have a distance
measure between a blob B and a blob trajectory. One could simply take the
latest blob Blast in the blob trajectory list and calculate the Euclidean distance
between this Blast and B. However, a better choice is to introduce an additional
structure associated with each blob trajectory and then calculate the distance
between a blob B and this associated structure (see [YRC04]). This structure
then abstracts some characteristics of the trajectory. Thus, blob trajectories are
not only characterized by their last added blob. By doing this, the construction
of blob trajectories is made more robust. Consider for example a blob trajectory
which contains mainly shuttle blobs. Since the shuttle blob extraction step (see
3.3) is not perfect, a non shuttle blob can be matched to this blob trajectory.

40 Trajectory Extractor

Here, the trajectory abstraction prevents the unwanted match to destroy the
general trend of the blob trajectory.

Define a trajectory descriptor T , associated with a blob trajectory, as a tuple
(x, y, area). A trajectory descriptor comprises characteristics of a blob trajectory
over time by forming a running average of the blobs contained in the blob
trajectory. The distance between a trajectory descriptor T and a blob B is given
by

D(T,B) = (1−ωTMDA)
√

(Tx −Bx)2 + (Ty −By)2+ωTMDA

√
(Tarea −Barea)2

(3.8)

The value of ωTMDA indicates the weight given to the area in the calculation
of the distance measure. Since the goal is to match possible shuttle blobs that
are on the same ground truth trajectory, the Euclidean distance is the most
important part in the total distance measure. So, ωTMDA will typically be lower
than 0.4.

The trajectory descriptor is updated in an online fashion:

T tx = Bt−1
x

T ty = Bt−1
y

T tarea = (1− αTMA) · T t−1
area + αTMA ·Bt−1

area

(3.9)

The learning rate αTMA denotes how fast the trajectory descriptor will update
its area attribute. The aim is to get a running average of the blob areas on
the trajectory to avoid big blobs being matches with small blobs and vice versa.
Therefore, a typical value for αTMA is 0.1.

3.4.2 Trajectory matching threshold

So for every possible shuttle blob, a distance to every blob trajectory can
be calculated. Next, every possible shuttle blob is added to its closest blob
trajectory. However, when a blob (B ∈ (x, y, area)) matches no blob trajectory
with a smaller distance than a certain threshold (θTMD), the blob is added to a
new blob trajectory.

3.4 Trajectory matching 41

A new trajectory descriptor is created for the trajectory:

Tx = Bx

Ty = By

Tarea = Barea

(3.10)

θTMD has a big impact on the behaviour of the algorithm. If the threshold is
too big, all blobs are connected to one trajectory. On the other hand, if the
threshold is to low, a new blob trajectory is started for every blob since no blob
is connected to a trajectory.

On the first sight, it might be a good idea to determine an image plane distance
upper bound between two shuttle observations based on model trajectories. This
upper bound would be a good value for θTMD since every two observations that
have a bigger distance can never belong to the same ground truth trajectory.
However, by calculating this theoretical value and running some tests, it is found
that this upper bound is too big to yield feasible results. To many blobs are
connected to the same blob trajectory. Thus, a trade-off between completeness
and practical use has to be found. The optimal value of θTMD is determined
by empirical testing. Note that θTMD depends on αTMA since the latter value
influences the calculated trajectory-blob distances.

To make θTMD independent of the video size and camera parameters, calculated
blob-trajectory distances are normalized. The normalization uses the court width
estimate as defined for the blob filtering.

3.4.3 Idle time

The trajectory matching step also has an idle time measurement to prevent
different blob trajectories being merged together. For each frame, the trajectory
idle time counter is increased when there is no blob added to the blob trajectory.
If a blob trajectory reaches an idle time of θTMIT , the blob trajectory is marked
as finished. θTMIT should be at least 3 so that shots, of which not all shuttle blobs
are extracted, can still be matched together. To extract shots that disappear
from the image plane, θTMIT should be even bigger. However, when θTMIT

becomes too big, distinct blob trajectories are matched together. So a plausible
value for θTMIT lies in the interval [5− 15].

42 Trajectory Extractor

3.4.4 Performance

The main goal of the trajectory extractor algorithm is to extract the blob trajec-
tories which contain a ground truth trajectory. The performance of the trajectory
extractor algorithm is defined as the number of ground truth trajectories that
are extracted, regardless of the number of false positives. False positive are blob
trajectories which do not contain parts of ground truth trajectories. Ground
truth trajectories can either be found or stay undiscovered. In the former case,
three situations need to be discriminated. Firstly, a ground truth trajectory
can be found as distinguishable trajectory. In other words, the ground truth
trajectory is contained in exactly one blob trajectory. Secondly, multiple ground
truth trajectories are found in one blob trajectory (= composed blob trajectory).
Lastly, one ground truth trajectory can be found fragmentary in multiple blob
trajectories. If a ground truth trajectory is found in more than three blob
trajectories, it is considered as not found. Figure 3.12 illustrates the three cases.
In all cases, the ground truth trajectories are extracted as blob trajectories and
can thus contain unwanted non shuttle blobs.

By visual observation, combinations of θTMD and ωTMDA are tested. Infeasible
combinations are quickly ruled out. It is found that θTMD = 0.08 and ωTMDA

= 0.2 is a good combination.

The trajectory extractor is run on the training videos (see 1.2.1.1) with αMOG

= 0.25, θBFS = 256 (implies blob size filtering only), θTMD = 0.08, θTMIT = 5,
αTMA = 0.1 and ωTMDA = 0.2.

ground truth trajectories video 1 video 2 video 3
not found 2 3 2
distinguishable 20 14 17
composed 11 8 0
fragmented 2 1 0
total 35 26 19
% distinguishable 0.57 0.54 0.89

The same test run on video 1 with θTMIT = 10 yields exactly the same results.
The exact choice of θTMIT is of little importance for the performance of the
trajectory matching if the value lies within plausible boundaries (see 3.4.3).
However, it is better to set θTMIT as low as possible to prevent non shuttle blobs
to get matched to blob trajectories with mainly shuttle blobs.

The not found ground truth trajectories are mostly ground truth trajectories
that incorporate a shot that crosses the net close to its center. The number of
detected non shuttle blobs is higher here than in other regions of the image plane.

3.4 Trajectory matching 43

Consequently, shuttle blobs get matched to different blob trajectories that are
still active in the area around the middle of the net. Other not found ground
truth trajectories either originate from insufficient previous steps (eg. shuttle
blobs not detected by the background subtraction algorithm) or from too big
distances between the shuttle blobs with respect to θTMD.

It is important to note that non shuttle blobs remain an issue since these
contaminate the extracted blob trajectories. Figure 3.13 shows such a problematic
case.

44 Trajectory Extractor

(a) A distinguishable trajectory. The blob trajectory (red) con-
tains a ground truth trajectory (green). Remark observation
number 11, which is a matched non shuttle blob.

(b) A composed trajectory. The blob trajectory (red) contains
two ground truth trajectories (green).

(c) A fragmented trajectory. One ground truth trajectory (green)
is contained in two blob trajectories (red and magenta).

Figure 3.12: Each image shows a blob trajectory as found after the trajectory
matching step. Red and magenta circles indicate the observed
shuttle blobs. Green circles denote the annotated ground truth
shuttle positions.

3.4 Trajectory matching 45

Figure 3.13: Red: constructed blob trajectory. Green: ground truth trajectory.

46 Trajectory Extractor

Chapter 4

Shuttlecock dynamics

The shuttlecock soars upward
In a parabola of whiteness,
Turns,
And sinks to a perfect arc.

(Amy Lowell)

In this chapter, a theoretical model of the shuttlecock flight is introduced. Such
a model gives us information of the shuttlecock position in function of the time.
These finding are extensively used in the subsequent chapter.

A lot of research has been done to describe the dynamics of a shuttlecock flight
[CR12], [CPC09], [Coo02], [TCQC12]. The most import observation of this
research is that a shuttle trajectory is not parabolic. It starts in a nearly-
parabolic manner but has a steep drop after a certain overturn point is reached.
This point is the terminal velocity and it occurs when the drag force rules out
the acceleration of the shuttle.

Most papers ([CR12], [Coo02], [TCQC12]) use environmental condition parame-
ters in the shuttlecock trajectory modelling. These parameters are not of interest
for this thesis. Since badminton games recorded under different environmental
conditions are considered, a more general model is needed. Chen et al. [CPC09]

48 Shuttlecock dynamics

model the shuttle trajectory by determining the terminal velocity in aerody-
namics. By observing the shuttlecock as a moving object in a plane normal to
the ground, they find equations that describe the vertical and horizontal dis-
placement of the of shuttlecock in function of the time. In the next paragraphs,
their method is described and extended to model the shuttle position in a three
dimensional space. As last, the model is projected using the pinhole camera
model (see 3.1).

4.1 2D model

Newton’s second law of motion yields following formula for a shuttle in motion:

−→
W +−→Fv +−→B = m.−→a (4.1)

With −→W = gravitational force, −→Fv = aerodynamic drag force (also known as the
air resistance force), −→B = buoyancy (air pressure acting up against the shuttle, a
negligible value in comparison to gravitational force and drag force), m = shuttle
mass and −→a = acceleration of the shuttle

The magnitude of the drag force can be written as

Fv = bvn (4.2)

Where b = a constant depending on air and shuttle properties, v = velocity of
the shuttle and n ∈ R

A vertically dropped shuttle has an increasing speed. However, according to the
formula above, this also leads to an increasing resistance force. Thus, there is
a point where the resistance force balances the shuttle weight and the shuttle
acceleration becomes zero. This is point is called the terminal velocity vT .
Afterwards, the shuttle continues to drop with zero acceleration. Combining
equation (4.1) and (4.2), neglecting buoyancy and setting a = dv/dt = 0, we get
following expression:

mg − bvnT = 0 (4.3)

From this follows the terminal velocity:

vT =
(mg
b

)1/n
(4.4)

4.1 2D model 49

By experimental measurements, it is known that 6.8m/s is a good estimate of
the terminal velocity ([CPC09], [CR12]).

The resistance force can be modelled proportional to the shuttle speed (n =
1 in equation (4.2)) or to the shuttle speed squared (n = 2 in equation (4.2)).
Experiments (see [CPC09]) have shown that the squared shuttle speed is the
best modelling choice.

Suppose a shuttle is hit with an initial velocity −→vi and an initial angle θi.
Then, the initial velocity can be decomposed into a horizontal component
vxi = vi cos (θi) and vertical component vyi = vi sin (θi).

The air resistance force could be modelled as a linear combination of the air
resistance force in the vertical and horizontal direction. However, this would
precludes analytical solutions to be found. Therefore, the vertical and horizontal
motion are considered separately: Fvy = bv2

y and Fvx = bv2
x.

The vertical directional motion is now characterized by

mg − bv2
y = m

dvy
dt

(4.5)

Integrating the expression, the vertical velocity is given by

vy =
vyi − vT tan

(
gt
vT

)
1 + vyi

vT
tan

(
gt
vT

) (4.6)

At the shuttlecock’s highest point, vy = 0 and the flight time is expressed as
follows:

t = vT
g

tan−1
(
vyi
vT

)
(4.7)

At that moment, the height is

y = v2
T

g
ln

∣∣∣∣∣∣
sin
[
gt
vT

+ tan−1
(
vT
vyi

)]
sin
[
tan−1

(
vT
vyi

)]
∣∣∣∣∣∣ (4.8)

For the horizontal directional motion it holds that

−bv2
x = m

dvx
dt

(4.9)

50 Shuttlecock dynamics

From this, the horizontal velocity is found as

vx = vxiv
2
T

vxigt+ v2
T

(4.10)

and the horizontal distance as

x = vT
2

g
ln

(
vxigt+ v2

T

v2
T

)
(4.11)

4.2 3D model

To extend the above model to support a three dimensional space, the horizontal
displacement is decomposed into two components: x = cos (ϕi) · x2D and z =
sin (ϕi) · x2D with x2D being the x as defined in the 2D model. Furthermore,
initial position terms xi, yi, zi are added. This gives following model:

coord3DModel(t; params) = coord3DModel(t; {xi, yi, zi, vi, θi, ϕi}) = (x, y, z)
(4.12)

with
x = xi + cos (ϕi)

vT
2

g
ln

(
vi cos (θi)gt+ v2

T

v2
T

)

y = yi + v2
T

g
ln

∣∣∣∣∣∣
sin
[
gt
vT

+ tan−1
(

vT
vi sin (θi)

)]
sin
[
tan−1

(
vT

vi sin (θi)

)]
∣∣∣∣∣∣

z = zi + sin (ϕi)
vT

2

g
ln

(
vi cos (θi)gt+ v2

T

v2
T

)

The height is kept as the Y-coordinate to agree with the standard coordinate
system of the orthographic projection model which is right handed. The initial
angle ϕi is formally denoted as the angle between the x-axis and the initial
ground plane direction of the shuttle trajectory. θi is the angle between this
ground plane direction and the initial vertical direction. See figure 4.1 for a
graphical representation of these angles.

4.3 Projected model 51

Figure 4.1: Initial angles in the employed coordinate system

Every shuttle trajectory possibly played during a badminton match can now be
modelled. A trajectory is characterized by six initial parameters: three position
parameters xi, yi, zi, two direction parameters θi, ϕi and one velocity parameter
vi.

4.3 Projected model

The general mapping between model coordinates and image domain coordinates
is described by equation 3.2. The 3D model of the shuttlecock dynamics is
plugged in this equation:

uv
1

 =

susv
s

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 1



xi + cos (ϕi) vT

2

g ln
(
vi cos (θi)gt+v2

T

v2
T

)
yi + v2

T

g ln
∣∣∣∣ sin[gtvT +tan−1

(
vT

vi sin (θi)

)]
sin
[
tan−1

(
vT

vi sin (θi)

)] ∣∣∣∣
zi + sin (ϕi) vT

2

g ln
(
vi cos (θi)gt+v2

T

v2
T

)
1


(4.13)

52 Shuttlecock dynamics

4.4 Visualizations

Figure 4.2: Plots of the calculated 2D and 3D model initiated with xi = −2,
yi = 3, zi = −5,vi = 40m/s θi = 5◦, ϕi = 80◦. For the 2D model
plot, yi is added to the calculated y.

4.4 Visualizations 53

(a) Projected model on video 1

(b) Projected model on video 2

Figure 4.3: Image plane projection of the 3D model initiated with xi = −2,
yi = 3, zi = −5,vi = 40m/s θi = 5◦, ϕi = 80◦.

54 Shuttlecock dynamics

(a) 2D model

(b) 3D model

Figure 4.4: Plots of the calculated 2D and 3D model initiated with xi = 2,
yi = 1, zi = 1,vi = 30m/s θi = 40◦, ϕi = 270◦. For the 2D model
plot, yi is added to the calculated y.

4.4 Visualizations 55

(a) Projected model on video 3

(b) Projected model on video 6

Figure 4.5: Image plane projection of the 3D model initiated with xi = 2,
yi = 1, zi = 1,vi = 30m/s θi = 40◦, ϕi = 270◦.

56 Shuttlecock dynamics

Chapter 5

Trajectory classifier

5.1 False positive detection

In an ideal situation the model fitting step itself would eliminate outliers. After
all, blob trajectories that can not be matched to a model trajectory should not
contain a ground truth trajectory. However, the model fitting step still yields
false positives (a blob trajectory considered for further investigation that does
not contain a ground truth) and false negatives (a blob trajectory that is not
considered for further investigation that contains a ground truth trajectory).
See section 3.4.4 for a more detailed discussion. Also, the model fitting is time
intensive task, pre-filtering blob trajectories can have a positive influence on the
overall speed of the algorithm. Thus, research is carried out to find properties of
the blob trajectories that can foresee false positive detection in an earlier stage.

To ease the reading, blob trajectories that contain a ground truth trajectory are
further mentioned as observed trajectories. In this context, blobs are referred as
observations.

58 Trajectory classifier

5.1.1 Trajectory length boundaries

Blob trajectories are filtered based on length. The length boundaries are calcu-
lated on the run when all possible model trajectories are generated (see 5.3.1).
This is important since the model trajectory length boundaries are dependent on
the P matrix and can thus differ from video to video. The shortest and longest
model trajectories are used as boundaries. The shortest model trajectories are
only two observations long. By visual observation, one can determine that these
trajectories are infeasible to contain a ground truth trajectories. Therefore the
lower limit is increased by one. The upper limit is increased by 10 percent.
Observed blob trajectories can be longer than the theoretical trajectories due to
non shuttle blobs matched to the trajectory.

The above described reasoning breaks down because of cases where a huge
number of non shuttle blobs are matched to an observed trajectory. Such a
case can be seen in figure 3.13. So the implemented trajectory length filter only
exploits the lower bound.

5.1.2 Trajectory derivative properties

Ground truth trajectories have a characteristic course (see chapter 4). Some of
these properties can be expressed in terms of slopes. If a shuttlecock leaves the
racket with a positive angle (θi > 0 in shuttlecock model described in chapter 4),
then the shuttlecock trajectory has a close-to-constant positive slope in the first
part and an increasing negative slope in the second part. If a shuttlecock leaves
the racket with a negative angle (θi < 0), then the shuttlecock trajectory has an
increasing negative slope.

To interfere about these properties, a piecewise interpolation is made in the
model domain. Therefore, sequences of three image plane observations are placed
in a linear system (equation (5.2)) to calculate the 3D line that projects on these
three observations. The linear system follows from the projective transformation
of a 3D line (equation (5.1)). The idea for this 3D line construction originates
from [CTC+09] where a similar transformation is done for a general 3D parabolic
model.

uv
1

 =

susv
s

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 1



xt
yt
zt
1

 (5.1)

5.1 False positive detection 59


p11t1 − u1p31t1 p12t1 − u1p32t1 p13t1 − u1p33t1
p21t1 − v1p31t1 p22t1 − v1p32t1 p23t1 − v1p33t1
p11t2 − u2p31t2 p12t2 − u2p32t2 p13t2 − u2p33t2
p21t2 − v2p31t2 p22t2 − v2p32t2 p23t2 − v2p33t2
p11t3 − u3p31t3 p12t3 − u3p32t3 p13t3 − u3p33t3
p21t3 − v3p31t3 p22t3 − v3p32t3 p23t3 − v3p33t3


xy
z

 =


u1 − p14
v1 − p24
u2 − p14
v2 − p24
u3 − p14
v3 − p24


(5.2)

Solving the linear system (equation (5.2)), gives us the coordinates of the 3D
line. Next the derivative for observation i is defined as:

Di = −y√
x2 + y2

(5.3)

with x,y,z being the solution to equation 5.2 for observations i, i+ 1 and i+ 2.

Thereupon, the second derivative for observation i is calculated as follows:

D2
i = Di+1 −Di

fps
(5.4)

t1, t2 and t3 are set to 0, 1
fps and 2

fps , respectively. The abbreviation fps denotes
the frame per seconds of the considered video.

Figures 5.1 to 5.3 show some results of this method. It is seen that the second
derivative is centred around zero for shuttlecock observations.

To summarize the information of a second derivative plot, following measures
are defined: number of peaks (thresholding derivative values), number of flipped
peaks (thresholding the discrete convolution of the derivative values with a
vector [−1 1]) and peak percentage (number of peaks divided by number of
observations). These summary values are employed to extract blob trajectories
that contain a ground truth trajectory. However, tests show that these summary
values are insufficient for inlier extraction. This is caused by the fact that a
lot of observed trajectories are contaminated with non shuttle blob observation.
Moreover, the derivative calculation breaks down if the shuttlecock observations
are mixed with non shuttle blob observations. A possible solution is to extract
those observations which correspond with shuttlecock observation. Another
option is to build in this derivative check in the trajectory match. Due to time
constraints both of these suggestion could not be investigated. Nevertheless,
they are worth being investigated in further research.

60 Trajectory classifier

(a) Red: observed blob trajectory. Green: ground truth
trajectory.

(b) The derivative is negative and decreasing as the
shuttle drops.

(c) The second derivative values are close to zero.

Figure 5.1: Trajectory derivative properties

5.1 False positive detection 61

(a) Red: observed blob trajectory. Green: ground truth
trajectory. The blob trajectory contains non shuttle
blobs.

(b) The derivative is positive and decreases slowly when
the shuttle is going up. When the shuttle is dropping,
the derivative is negative and decreasing.

(c) The second derivative values for observations that are
part of the ground truth trajectory are centred around
zero.

Figure 5.2: Trajectory derivative properties

62 Trajectory classifier

(a) Red: observed blob trajectory. Green: ground truth
trajectory. The blob trajectory contains non shuttle
blobs.

(b) The derivative is negative and decreasing when the
shuttle drops.

(c) The second derivative values for observations that are
part of the ground truth trajectory are centred around
zero.

Figure 5.3: Trajectory derivative properties

5.2 Initial parameter estimation 63

5.2 Initial parameter estimation

An initial parameter estimation aids the consequent model fitting step in several
ways. Firstly, the estimation can speed up the model fitting by limiting the
search space. Secondly, initial parameters can prevent that the model fitting gets
stuck in local optima which are not of our interest. Prototypes of initial position
estimation and initial angle estimation are implemented, yet not extensively
tested. Therefore the description of these ideas are given in the future work
section (see 7.1). In the following paragraph, research towards an initial speed
estimate is described.

5.2.1 Initial speed estimation

Figure 5.4 shows the theoretical calculations of the relationship between the
3D speed and the image plane distance between the first two observations. To
get these plots, model trajectories are generated for a range of initial values.
Next, these model trajectories are projected on the image plane. Lastly, the
image plane distance is calculated as the Euclidean distance between the first
two projected image plane points.

A linear relationship is found between the model trajectory initial speed and
the image plane distance between the first two observations. However, the
linear relationship depends on the initial position that is used to calculate the
model trajectories. A good initial position and initial angles estimation are thus
needed to exploit the linear relationship between image plane distance of the
first observations and the initial velocity of the model trajectory. Moreover,
shuttlecocks at the beginning of a shot are hard to observe by the background
subtraction method (see 3.2.4). So even with a good initial position and initial
angles estimation it is difficult to estimate the initial velocity.

64 Trajectory classifier

(a) The image plane velocity is plotted for combinations of vi,
θi and ϕi.

(b) Initial velocity of a model trajectory in function of the image
plane velocity for θi = 5◦ and ϕi = 40◦.

(c) Initial velocity of a model trajectory in function of the image
plane velocity for θi = 35◦ and ϕi = 70◦.

Figure 5.4: Initial speed estimation

5.3 Model fitting 65

5.3 Model fitting

The shuttlecock model (chapter 4) is fitted to the blob trajectories. By means
of this, inferences of the blob trajectory are made (see 5.4) using the the best
matching model trajectory. If the model cannot be fitted with a certain accuracy,
the blob trajectory is considered as an outlier and not further considered. In
the other case, it is assumed that the blob trajectory contains a ground truth
trajectory (and is thus an observed trajectory). By finding the theoretical
fitting model parameters that correspond with an observed trajectory, real world
positional information can be deducted for a certain sequence of image plane
observations.

The mapping of the 3D shuttle model to the image plane domain is described
by the projected model (see 4.3). This is a nonlinear function with param-
eters xi, yi, zi, θi, ϕi and vi, dependent variables u, v (= image plane co-
ordinates) and independent variable t. A shorthand notation is introduced:
coordProjectedModel(t; params).

An observed trajectory consists of time chronological list of blob coordinates and
is thus referred as coordObserved(t). To fit the projected model to an observed
trajectory, one needs to minimize a norm between them. Formally:

argmin
params

∑
t

= ‖coordProjectedModel(t; params)− coordObserved(t)‖ (5.5)

This a nonlinear regression problem. Common strategies to solve such a prob-
lem use linearization or numerical methods. Linearization can for example be
done using the multivariate variant of Taylor’s theorem. If the 2-norm is used,
suitable numerical methods are the Gauss–Newton algorithm and the Leven-
berg–Marquardt algorithm (uses the GN algorithm). A more general numerical
approach is found in the Nelder–Mead method. Unfortunately, no time was left
during this research to investigate these methods.

5.3.1 Semi-exhaustive fitting

Since an exhaustive fitting is too time complex, a semi-exhaustive fitting is
employed to find the best matching model trajectory. More concrete, a sequence
of generated model trajectories is searched for the model trajectory that matches
best the observed trajectory. Once this best matching model trajectory is found,
one also knows the corresponding 3D model.

66 Trajectory classifier

5.3.1.1 Trajectory database

A trajectory database is built up by calculating the model trajectories for every
combination of certain parameter values. Table 5.3.1.1 lists the sets of parameter
values from which the combinations are made. xi and zi are chosen so that every
couple of these corresponds with the center of a zone (see 1.2.2). The values
for yi comprise feasible heights. vi and θi are limited to physically possible
values (see [CPC09]). Lastly, ϕi ranges over angles between 30◦ and 330◦. The
database has 68040 model trajectories.

parameter value set
xi {1.295, 0,−1.295}
yi {1, 2, 3}
zi {−5.6,−3.4,−1.1, 1.1, 3.4, 5.6}
vi {5, 10, 15, 20, 25, 30, 50, 70, 90}
θi {−30,−20,−10, 0, 5, 10, 20, 40, 60, 80}
ϕi {30, 45, 60, 90, 120, 135, 150, 210, 225, 240, 270, 300, 315, 330}

5.3.1.2 Best match

The best matching model trajectory is found with equation 5.5 using a 2-norm.
The Euclidean norm is a natural choice since image plane distances are envisaged.
So, for every model trajectory from the trajectory database, the matching
error with an observed trajectory is calculated as the sum of squared residuals.
Consequently, the model trajectory with the lowest matching errors becomes the
best matching model trajectory.

As pointed out earlier (see 3.2.4), shuttlecocks at the beginning of a shot are
hard to observe by the background subtraction method. So observed trajectories
might not have all the positions of the shuttlecock at the beginning of a shot.
Therefore the matching error calculation is also extended with a time shift in
the projected model:

argmin
params,∆t

∑
t

= ‖coordProjectedModel(t+∆t; params)−coordObserved(t)‖ (5.6)

where ∆t ∈ [0..3].

Another problem is that observed trajectories possibly contain non shuttle blobs.
Especially at the beginning and the end of the observed trajectory, lots of non

5.3 Model fitting 67

shuttle blobs can be contained. To make the semi-exhaustive fitting robust
against these false positives, the matching error calculation could incorporate
a local matching error and ignore observed coordinates at the beginning and
the end of an observed trajectory if the local error exceeds a certain thresholds.
This idea however belongs to future research.

5.3.1.3 Outlier deletion

Ideally, if the matching error exceeds a certain threshold, θME , the considered
blob trajectory can be assumed to be an outlier. However, tests show that the
semi-exhaustive model fitting as described above does not perform good enough
for this assumption to hold.

5.3.1.4 Performance

The model cannot be fitted satisfactorily to observed trajectories that are either
composed, fragmented or contaminated with a lot of non shuttle blobs (see 3.4.4).
If the model fitting is performed to a more or less distinguishable trajectory, the
fitted model does not always agree with the shot that is observed. Figure 5.5 to
5.8 show some fitted model trajectories.

68 Trajectory classifier

Figure 5.5: Red: observed trajectory. Green: ground truth trajectory. The
best matching model trajectory with parameters xi = 1.295, yi = 2,
zi = 5.6,vi = 5m/s θi = 20◦ and ϕi = 300◦ is given in white.

Figure 5.6: Red: observed trajectory. Green: ground truth trajectory. The
best matching model trajectory with parameters xi = −1.295,
yi = 2, zi = 1.1,vi = 10m/s θi = 60◦ and ϕi = 315◦ is given in
white.

5.3 Model fitting 69

Figure 5.7: Red: observed trajectory. Green: ground truth trajectory. The
best matching model trajectory with parameters xi = 1.295, yi = 1,
zi = 3.4,vi = 15m/s θi = 20◦ and ϕi = 240◦ is given in white.

Figure 5.8: Red: observed trajectory. Green: ground truth trajectory. The
best matching model trajectory with parameters xi = 1.295, yi = 1,
zi = −5.6,vi = 10m/s θi = 80◦ and ϕi = 45◦ is given in white.

70 Trajectory classifier

5.4 Classification

5.4.1 Zones

The classification step outputs an ordered list of start and end positions of
the shots played during a badminton rally. As introduced in section 1.2.2, the
start and end positions are denoted by a zone number. The zones are formally
characterized by their center coordinates zoneCenterx and zoneCenterz in the
real world model coordinate system (see 3.3). Zones at the farthest court side are
depicted as the blue zones (see also figure 1.2) and are given in table 5.4.1. The
red zones (closest court side) are found in table 5.4.1. These center coordinates
are calculated using the official badminton court dimensions (see figure 3.2).

zoneNumber zoneCenterx zoneCenterz
1 -1.295 1.1
2 0 1.1
3 1.295 1.1
4 -1.295 3.4
5 0 3.4
6 1.295 3.4
7 -1.295 5.6
8 0 5.6
9 1.295 5.6

zoneNumber zoneCenterx zoneCenterz
1 1.295 -1.1
2 0 -1.1
3 -1.295 -1.1
4 1.295 -3.4
5 0 -3.4
6 -1.295 -3.4
7 1.295 -5.6
8 0 -5.6
9 -1.295 -5.6

5.4.2 Zone number deduction

Consider an observed trajectory coordObserved(t) of length lenObserved and its
best matching model trajectory coordBestMatch(t) of length lenBestMatch. The
orthogonal projections on the court plane of the 3D coordinates of the latter

5.4 Classification 71

model are named by orthoBestMatch(t). Then a shot’s start position is deducted
as follows:

argmin
zoneNumber

‖zoneCenter − orthoBestMatch(0)‖2 (5.7)

with blue zones if ϕi > 180 for the best matching model trajectory and red zones
else.

A shot’s end position is deducted as follows:

argmin
zoneNumber

∣∣∣∣∣∣∣∣zoneCenter − orthoBestMatch

(
min (lenObserved, lenBestMatch)

fps

)∣∣∣∣∣∣∣∣
2

(5.8)
with red zones if ϕi > 180 for the best matching model trajectory and blue zones
else.

5.4.3 Performance

Recall the cases presented in the model fitting step (figures 5.5 to 5.8). For the
first example (figure 5.5), both the correct start and end position are deducted.
For the second and third example (figures 5.6 and 5.6), only start and end
position are correctly found, respectively. The last case (figure 5.8) does not
give any correct positional information. However, the zone number deduction
runs correctly with respect to the considered model trajectory (see table 5.4.3).
Thus, wrongly estimated start or end positions originate from the insufficient
model fitting. For the forth example (figure 5.8), the ground plane direction of
the best matching model trajectory lies in the wrong semicircle (ϕi < 180 while
it should be ϕi > 180). Thus, evaluating the zone number deduction in this case
is irrelevant.

example zoneNumber start zoneNumber end
1 (figure 5.5) 9 1
2 (figure 5.6) 1 1
3 (figure 5.7) 6 3
4 (figure 5.8) 7 3

72 Trajectory classifier

Chapter 6

Results

Intermediate results on the training videos are described throughout the previ-
ous chapters. This chapter concentrates on the performance of the trajectory
extractor and trajectory classifier on the test videos. These videos are not used
for training purposes during the development phase of the algorithm. Details of
the test video material are found in section 1.2.1.1.

6.1 Algorithm parameters summary

parameter range explanation section
αMOG (0− 1] learning rate for the background subtraction 3.2.2
θBFS [0..256] saturation threshold for the blob filtering 3.3.2
θTMD R trajectory matching distance threshold 3.4
θTMIT N∗ trajectory matching idle time threshold 3.4
αTMA (0− 1] learning rate for trajectory descriptor area 3.4
ωTMDA [0− 1] weight of area in blob-trajectory distance calculation 3.4
θME R classification matching error threshold 5.3.1

74 Results

6.2 Trajectory extractor

The trajectory extractor is run on the test videos with αMOG = 0.25, θBFS =
256 (implies blob size filtering only), θTMD = 0.08, θTMIT = 5, αTMA = 0.1
and ωTMDA = 0.2.

ground truth trajectories video 4 video 5 video 6
not found 2 4 1
distinguishable 14 17 8
composed 0 8 8
fragmented 1 6 0
total 17 35 17
% distinguishable 0.82 0.48 0.47

6.3 Trajectory classifier

Since the false positive detection and initial parameters estimation are not
developed far enough, the trajectory classifier is tested on the observed trajectories
that where found by manual observation. So the test results give the performance
of the model fitting step combined with the classification step.

video 4 video 5 video 6
start zone correct 1 1 2
end zone correct 3 0 2
total zones 17·2 35·2 17·2
% correct 0.12 0.01 0.12

In general, the classifier does not perform satisfactorily. The performance on
video 5 is very bad. The combination of the video resolution, camera position
and lighting conditions make a difficult case from video 5.

Chapter 7

Conclusion

This thesis proposes a general outline for an algorithm to solve the badminton
shot classification problem in compressed videos with a baseline angled camera.
The proposed algorithm is new since previous research either uses different types
of video material or does not focus on the shot classification problem. For the
trajectory extractor subalgorithm, an existing background subtraction algorithm
and an existing component-labeling algorithm are used in combination with
general camera geometry theory. Also the trajectory matching idea is found in
previous research. The trajectory extractor mainly introduces new ideas while
the exploited physics based shuttle model is deduced from other research.

The total algorithm is a compound of several steps which interplay with each
other. For example, a better blob filtering will serve the trajectory matching step.
Vice versa, a better trajectory matching step lowers the need for a good blob
filtering step. The same holds for the relationship between the inlier detection
step and the model fitting. The former aids the latter but a better latter reduces
the contributions of the former. Accordingly, it is of importance to consider the
algorithm as a whole even when just improving single parts.

The general performance of the algorithm is inadequate. Nevertheless, several sub
steps show promising performances and the chosen building blocks are justifiable.
Moreover, the comprehensive identification of problems paves the way for future
research.

76 Conclusion

In general, two big shortcomings can be distinguished. Firstly, the observed
trajectories contain too many non shuttles blobs. Secondly, the accuracy of
the model fitting is insufficient. As stated above, a certain problem can be
addressed in different steps. To solve the first shortcoming one can improve
the blob filtering, trajectory matching or the inlier detection. To deal with the
second problem, the model fitting step itself can be ameliorated or the initial
parameter estimation is improved to serve the model fitting.

7.1 Future work

The extensiveness of this section demonstrates the complexity of the problem
and the steps that can be taken to refine or extend the proposed method.

7.1.1 Algorithm improvements

For the shuttle blob extraction (see 3.3):

• Try the ball tracking algorithm presented by Kopf et al. [KGFH11].

• Build appearance models to improve the shuttle blob extraction.

For the trajectory matching (see 3.4):

• Close blob trajectories that exceed a certain length as done for inactive
trajectories. This prevents that infeasible long blob trajectories are con-
structed. However, it might be difficult choose an appropriate threshold.

• Make θTMD adaptive so that it is bigger for the first blobs that are matched
to a trajectory. By doing this, one does not loose fast moving shuttle blobs
that are located at the beginning of shot .

• A trajectory descriptor only characterizes a blob trajectory by an area
and centroid coordinates. Future improvements may include color or
structure information about the blobs on the trajectory. For example:
mean luminance or the percentage of black pixels in the blob mask.

• Incorporate trajectory derivative properties (see 5.1.2) so that blobs are only
matched to a blob trajectory if certain derivative properties are preserved.

7.1 Future work 77

For the false positive detection (see 5.1)

• Investigate the trajectory derivative properties further (see 5.1.2).

• Given an initial parameter estimate, create a system of non-linear equations
by plugging in an observed trajectory in the projected model (equation
4.13). However, leave the terminal velocity (vT) as a parameter and use a
numerical method to solve the system. Now, the calculated value of the
calculated terminal velocity can be used for inlier detection since it is know
that the terminal velocity for a shuttlecock flight lies around 6.8 m/s.

For the initial parameter estimation (see 5.2):

• Use the players’ feet for an initial position estimation. Since the feet are
on the ground court plane, the exact position of the feet on the plane
can be calculated using a homography. To estimate the height, one can
use the property that an image plane point backprojects to a 3D ray
(X(λ) = P+x+λC with X the 3D points, x the 2D points, P+ the pseudo-
inverse of P and C the camera center). So a 3D ray can be calculated
from the first image plane observation. Next, one loops through several
heights and checks if the 3D point constructed from this height and the
court plane positional estimate lies on the calculated 3D ray.

• Try to use the 3D line estimation described in section 5.1.2 to estimate the
initial angles of the best fitting model trajectory. The spherical coordinates
of the line passing through the first three observations of a blob trajectory
can be used for this purpose.

For the model fitting (see 5.3):

• Make the semi-exhaustive model fitting (see 5.3.1) faster by organizing
the trajectories in a tree structure which can be searched more efficiently.
If the database search is faster, more trajectories can be added to the
database, which will serve the performance of the model fitting.

• If an initial parameters estimation is found, only search in local neighbour-
hood of these parameters during the semi-exhaustive model fitting (see
5.3.1).

• To make the semi-exhaustive fitting robust against non shuttle blobs in
the observed trajectories, the matching error calculation could incorporate

78 Conclusion

a local matching error and ignore observed coordinates at the beginning
and the end of an observed trajectory if the local error exceeds a certain
thresholds.

• Use a non linear optimization algorithm or method to employ the model fit-
ting. For example: the Gauss–Newton algorithm, the Levenberg–Marquardt
algorithm or the Nelder-Mead method.

For the classification (see 5.4):

• There is an inherent redundancy in the shot annotations. Namely, it is
known that the start position of shot i is the same as the end position
of shot i− 1. This information can be used to improve the classification.
For instance: if the deducted start position of shot i differs from the end
position of shot i − 1 and there is a high certainty about the deduction
made for shot i − 1, than the start position of shot i is set to the end
position of shot i− 1.

7.1.2 Algorithm extensions

• Implement playing frame detection. One idea is to look at the ratio of
court-coloured pixels to the number of pixels in a frame. (references:
[KGFH11], [CTC+09], [ET03] and [YKWO10])

• From a badminton tactical view, it would be logical to add a speed element
to the output tuples (see 1.2.2). It is sufficient to introduce a relative speed
estimate in three categories. One for shuttle with a ’normal’ speed and
one for respectively shuttles that are significantly faster and slower than
average.

• Extract other features than just the shuttle position. For example: the
position of the racket can give information about the shuttle height. If the
shuttle is hit on a high point (yi > 1), then is the racket head is positioned
above the racket shaft. However, it might be difficult to extract the racket
in the compressed input videos.

• The strictly divided zones could be replaced by a more dynamic approach.
Zones could be made flexible within some boundaries. Next, the found
start and end points are clustered into nine zones on each side of the
court. The classification step now uses the cluster centres to perform zone
deduction (see 5.4.2). By doing so, the classification of shuttles with start
or end position close to a zone boundary would better follow the human
intuitive annotation.

7.1 Future work 79

• Preprocessing the videos before the analysis starts. For example: more
contrast can be added so that shuttle extraction becomes easier.

• Leave the trajectory matching step (see 3.4) out and fit models on the raw
blob positions rather than on constructed blob trajectories.

80 Conclusion

Appendix A

Install OpenCV on Windows

Following instructions are made for OpenCV 2.4.2 and Visual Studio 2010.

• Download the pre-compiled binaries for Visual Studio 2010 at http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.2/.

• Extract the binaries to C:\opencv\.

• Add two values to the Windows’ system path variable. (Control Panel →
System → Advanced system properties → Environment Variables)

C:\opencv\build\x86\vc10\bin;
C:\opencv\build\common\tbb\ia32\vc10;

• Restart computer.

• Open Visual Studio 2010. Create an empty ’Win 32 Console Application’
in C++.

• Create a new property sheet using the Property Manager. (Right click on
’Debug | Win 32’ node and select ’Add New Project Property’)

• Edit the property sheet by double clicking on it. Click on ’VC++ directories’
and add C:\opencv\build\include to ’Include Directories’.

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.2/
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.2/

82 Install OpenCV on Windows

• Add these paths to the ’Library Directories’:

C:\opencv\build\x86\vc10\lib
C:\opencv\build\x86\vc10\bin

• Add C:\opencv\modules\core to the ’Source Directories’.

• Select ’Configuration Properties → Linker → Input’ and add some ’Addi-
tional Dependencies’. Choose the libraries you want to use. For example:

opencv_core242d.lib
opencv_imgproc242d.lib
opencv_highgui242d.lib
opencv_ml242d.lib
opencv_video242d.lib
opencv_features2d242d.lib
opencv_calib3d242d.lib
opencv_objdetect242d.lib
opencv_contrib242d.lib
opencv_legacy242d.lib
opencv_flann242d.lib

• Go to the project properties. (Project → Properties → Configuration
Properties → Debugging → Environment). Switch ’Merge Environment’
to ’Yes’ and Add

PATH=%PATH%;C:\opencv\build\x86\vc10\bin=

This example should run if the installation was successful:

1#include <opencv2/ core / core . hpp>
2#include <opencv2/ h ighgu i / h ighgu i . hpp>
3
4int main () {
5// show an image f o r 10 seconds
6cv : : Mat image = cv : : imread ("Nyhavn.png") ;
7cv : : namedWindow ("MyImageWindow") ;
8cv : : imshow ("MyImageWindow" , image) ;
9cv : : waitKey (10000) ;
10return 0 ;
11}

Bibliography

[CCL04] Fu Chang, Chun-jen Chen, and Chi-jen Lu. A linear-time component-
labeling algorithm using contour tracing technique. In Computer
Vision and Image Understanding, pages 206–220, 2004.

[CCL07] Hua-Tsung Chen, Hsuan-Shen Chen, and Suh-Yin Lee. Physics-
Based Ball Tracking in Volleyball Videos with its Applications to
Set Type Recognition and Action Detection. In Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, volume 1, pages I–1097–I–1100. IEEE, April 2007.

[cita] Official Bidding Document Badminton Europe Events 2014-
2018. http://badmintoneurope.com/Clubs/CommonDrive/
Components/GetWWWFile.aspx?fileID=14064.

[citb] Round-up: Badminton tournament serves up a
treat. http://www.london2012.com/news/articles/
round-badminton-tournament-serves-treat.html.

[cit12] Spilleregler for badminton. http://www.badminton.dk/Clubs/
CommonDrive/Components/GetWWWFile.aspx?fileID=14117, De-
cember 2012.

[Coo02] A. Cooke. Computer simulation of shuttlecock trajectories. Sports
Engineering, 5(2):93–105, May 2002.

[CPC09] Lung-Ming Chen, Yi-Hsiang Pan, and Yung-Jen Chen. A study of
shuttlecock’s trajectory in badminton. Journal of Sports Science
and Medicine, 8:657–662, 2009.

http://badmintoneurope.com/Clubs/CommonDrive/Components/GetWWWFile.aspx?fileID=14064
http://badmintoneurope.com/Clubs/CommonDrive/Components/GetWWWFile.aspx?fileID=14064
http://www.london2012.com/news/articles/round-badminton-tournament-serves-treat.htm
http://www.london2012.com/news/articles/round-badminton-tournament-serves-treat.htm
http://www.badminton.dk/Clubs/CommonDrive/Components/GetWWWFile.aspx?fileID=14117
http://www.badminton.dk/Clubs/CommonDrive/Components/GetWWWFile.aspx?fileID=14117

84 BIBLIOGRAPHY

[CR12] ChakMan Chan and JennStroud Rossmann. Badminton shuttle-
cock aerodynamics: synthesizing experiment and theory. Sports
Engineering, 15(2):61–71, February 2012.

[CTC+09] Hua T. Chen, Ming C. Tien, Yi W. Chen, Wen J. Tsai, and Suh Y.
Lee. Physics-based ball tracking and 3D trajectory reconstruction
with applications to shooting location estimation in basketball video.
J. Vis. Comun. Image Represent., 20(3):204–216, April 2009.

[CW07] Bingqi Chen and Zhiqiang Wang. A statistical method for analysis
of technical data of a badminton match based on 2-D seriate images.
Tsinghua Science and Technology, 12(5):594–601, October 2007.

[ET03] A. Ekin and A. M. Tekalp. Robust dominant color region detection
and color-based applications for sports video. In Image Processing,
2003. ICIP 2003. Proceedings. 2003 International Conference on,
volume 1, pages I–21–4 vol.1. IEEE, 2003.

[FHD05] Dirk Farin, Jungong Han, and Peter H. N. De. Fast camera-
calibration for the analysis of sports sequences. In In Proceedings
IEEE International Conference on Multimedia and Expo (ICME,
pages 482–485, 2005.

[FKE+04] Dirk Farin, Susanne Krabbe, Wolfgang Effelsberg, Peter H. N.
de With, and Peter H. N. De. Robust Camera Calibration for
Sport Videos using Court Models. 2004.

[Hea96] Michael T. Heath. Scientific Computing: An Introductory Survey.
McGraw-Hill Higher Education, 2nd edition, 1996.

[HFdW08] Jungong Han, D. Farin, and P. de With. Broadcast Court-Net Sports
Video Analysis Using Fast 3-D Camera Modeling. Circuits and
Systems for Video Technology, IEEE Transactions on, 18(11):1628–
1638, November 2008.

[Hib] James Hibberd. FIFA: 700 mil worldwide watch World Cup fi-
nal. http://www.hollywoodreporter.com/blogs/live-feed/fifa-700-
mil-worldwide-watch-53991.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, New York, NY,
USA, 2 edition, 2003.

[KB01] P. Kaewtrakulpong and R. Bowden. An Improved Adaptive Back-
ground Mixture Model for Realtime Tracking with Shadow Detection.
2001.

BIBLIOGRAPHY 85

[KGFH11] S. Kopf, B. Guthier, D. Farin, and Jungong Han. Analysis and
retargeting of ball sports video. In Applications of Computer Vision
(WACV), 2011 IEEE Workshop on, pages 9–14. IEEE, January 2011.

[Kov] Peter Kovesi. Decomposition of a camera projection matrix.
http://www.csse.uwa.edu.au/~{}pk/Research/MatlabFns/
Projective/decomposecamera.m.

[KSH98] Taeone Kim, Yongduek Seo, and Ki-sang Hong. Physics-based 3D
Position Analysis of a Soccer Ball from Monocular Image Sequences.
In Proc. ICCV, pages 721–726, 1998.

[LD03] Ze-Nian Li and Mark S. Drew. Fundamentals of Multimedia. Prentice
Hall, 1 edition, November 2003.

[N]́ Cristóbal Carnero Li Nán. cvBlob. http://cvblob.googlecode.com.

[Nie10] M. Nieto. Detection and tracking of vanishing points in dynamic
environments. PhD thesis, Universidad Politécnica de Madrid, 2010.

[SG99] Stauffer and Grimson. Adaptive background mixture models for
real-time tracking. IEEE Conference on Computer Vision & Pattern
Recognition (CVPR), 2:246–252 Vol. 2, 1999.

[SK04] H. Shum and Taku Komura. A spatiotemporal approach to extract
the 3D trajectory of the baseball from a single view video sequence.
In Multimedia and Expo, 2004. ICME '04. 2004 IEEE In-
ternational Conference on, volume 3, pages 1583–1586 Vol.3. IEEE,
June 2004.

[Sla] Greg Slabaugh. Computing Euler angles from a rotation
matrix. https://truesculpt.googlecode.com/hg-history/
38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_
matrix_to_euler.pdf.

[TCQC12] Baptiste D. Texier, Caroline Cohen, David Quéré, and Christophe
Claneta. Shuttlecock dynamics. Procedia Engineering, 34:176–181,
January 2012.

[Wil08] Barry D. Wilson. Development in video technology for coaching.
Sports Technol., 1(1):34–40, 2008.

[YKWO10] F. Yoshikawa, T. Kobayashi, K. Watanabe, and N. Otsu. Auto-
mated Service Scene Detection for Badminton Game Analysis Using
CHLAC and MRA. World Academy of Science, Engineering and
Technology, (38):935–938, February 2010.

http://www.csse.uwa.edu.au/~{}pk/Research/MatlabFns/Projective/decomposecamera.m
http://www.csse.uwa.edu.au/~{}pk/Research/MatlabFns/Projective/decomposecamera.m
https://truesculpt.googlecode.com/hg-history/38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_matrix_to_euler.pdf
https://truesculpt.googlecode.com/hg-history/38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_matrix_to_euler.pdf
https://truesculpt.googlecode.com/hg-history/38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_matrix_to_euler.pdf

86 BIBLIOGRAPHY

[YRC04] Haoran Yi, Deepu Rajan, and Liang T. Chia. Automatic extraction
of motion trajectories in compressed sports videos. In Proceedings
of the 12th annual ACM international conference on Multimedia,
MULTIMEDIA ’04, pages 312–315, New York, NY, USA, 2004.
ACM.

[YXL+03] Xinguo Yu, Changsheng Xu, Hon W. Leong, Qi Tian, Qing Tang,
and Kong W. Wan. Trajectory-based ball detection and tracking
with applications to semantic analysis of broadcast soccer video.
In Proceedings of the eleventh ACM international conference on
Multimedia, MULTIMEDIA ’03, pages 11–20, New York, NY, USA,
2003. ACM.

[ZHX+07] Guangyu Zhu, Qingming Huang, Changsheng Xu, Liyuan Xing, Wen
Gao, and Hongxun Yao. Human Behavior Analysis for Highlight
Ranking in Broadcast Racket Sports Video. Multimedia, IEEE
Transactions on, 9(6):1167–1182, October 2007.

	Summary (English)
	Summary (Danish)
	Summary (Dutch)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Related work
	1.2 Research overview and goals
	1.2.1 Input material
	1.2.2 Output format

	1.3 The worldwide sport of badminton

	2 Method
	2.1 Terminology

	3 Trajectory Extractor
	3.1 Camera calibration
	3.1.1 Investigation of test video camera matrices
	3.1.2 Manual selection of calibration points
	3.1.3 Automatic calibration point selection

	3.2 Background subtraction
	3.2.1 Basic methods
	3.2.2 Mixture of Gaussians method
	3.2.3 Implementation
	3.2.4 Performance

	3.3 Shuttle blob extraction
	3.3.1 Blob extraction
	3.3.2 Blob filtering
	3.3.3 Performance

	3.4 Trajectory matching
	3.4.1 Trajectory descriptor
	3.4.2 Trajectory matching threshold
	3.4.3 Idle time
	3.4.4 Performance

	4 Shuttlecock dynamics
	4.1 2D model
	4.2 3D model
	4.3 Projected model
	4.4 Visualizations

	5 Trajectory classifier
	5.1 False positive detection
	5.1.1 Trajectory length boundaries
	5.1.2 Trajectory derivative properties

	5.2 Initial parameter estimation
	5.2.1 Initial speed estimation

	5.3 Model fitting
	5.3.1 Semi-exhaustive fitting

	5.4 Classification
	5.4.1 Zones
	5.4.2 Zone number deduction
	5.4.3 Performance

	6 Results
	6.1 Algorithm parameters summary
	6.2 Trajectory extractor
	6.3 Trajectory classifier

	7 Conclusion
	7.1 Future work
	7.1.1 Algorithm improvements
	7.1.2 Algorithm extensions

	A Install OpenCV on Windows
	Bibliography

