
FPGA Implementation of a Time
Predictable Memory Controller for a

Chip-Multiprocessor System

Edgar Lakis

Kongens Lyngby 2013

IMM-M.Sc.-2013-1



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-1



Abstract (English)

The use of modern conventional architectures in real-time systems (RTS) re-
quires complex analysis and su�ers from high resource over-allocation needed to
cover uncertainties stemming from employed speculative, average case optimiza-
tions. The design of time predictable RTS optimized architectures that allow
easy timing analysis and tight timing guaranties is an active research topic.

The goal of this thesis is to explore the options for a predictable SDRAM con-
troller for the T-CREST platform. The T-CREST project is an ongoing research
project supported by the European Union’s 7th Framework Programme, aiming
to develop a homogeneous time-predictable multi-processor platform. The vari-
able SDRAM access latencies pose some challenges for its e�ective use in RTS,
while the many-core T-CREST platform creates a new context for rethinking
the previous results and finding the new solutions for external memory access.

The simple working prototype of the single-port SDRAM controller is imple-
mented and integrated with the processor. Several options for multi-port arbi-
tration are considered, and proposal is made for arbitration and interconnect in
T-CREST project. We evaluate our controller and make a closer look at one
state of the art controller for RTS.
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Chapter 1

Introduction

A real-time system (RTS) must perform its operation within a predefined time.
For hard-RTS the delayed operation could cause serious consequences and must
be avoided at all cost. Such systems must be rigorously analyzed and proved to
always act on time.

To ensure the proper timing in all conditions, the timing analysis considers worst
possible case. If the worst case performance is satisfactory, the system will to
also operate properly under other conditions. Modern conventional architec-
tures have a number of speculative features employed to improve the average
performance. However the good average case performance have little advantage
for hard-RTS, because the worst case operation has to be assured. To over-
come the problems, predictable platforms are being designed. They improve
the analyzability and providing better worst case performance guaranties.

The Synchronous Dynamic Random Access Memory (SDRAM) is widely used
external memory because of its attractive combination of high capacity, low cost
and competitive performance. However variable SDRAM access latencies pose
some challenges for its e�ective use in RTS. The goal of this thesis is to explore
the options for predictable SDRAM controller for use in the T-CREST platform.
The T-CREST project is an ongoing research project supported by the European
Union’s 7th Framework Programme, aiming to develop a homogeneous time-
predictable multi-processor platform.
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Figure 1.1: The context of the memory controller for the Real-Time System

Figure 1.1 presents the context of RTS memory controller design. First of all the
knowledge of DRAM technology is needed because it is the source of the limita-
tions. Secondly, the controller should interact well with the analysis framework,
because it derives the performance guaranties for the whole system. Finally, the
good performance guaranties of a memory controller are only possible by tuning
it to the execution platform and programming model. Only by understanding
the interaction of these three domains of knowledge the e�cient controller is
possible.

The thesis is organized in two parts. The first part provides the background and
the context information for the work. Chapter 2 contains brief review of related
work. Chapter 3 provides information on the DRAM Technology. Chapter 4
covers the relevant RTS notions. Its section 4.5 describes the T-CREST platform
which is the context for the created controller.

Following chapters contain the main part of this work. Chapter 5 describes the
design of the single-port memory controller which can also be used as a back-
end for multi-port controller. Chapter 6 discusses the tradeo�s in multi-port
controller design. The single-port controller is evaluated in Chapter 7. We also
take a closer look at the state of the art multi-port controller. The thesis is
finished with the conclusions in Chapter 8.



Chapter 2

Related Work

In this chapter we survey related work. First, we present previous works with
the goal of creating SDRAM controller optimized for RTS. Next, we mention
two publications regarding the SDRAM refresh. Finally, we list some works on
memory access arbitration.

2.1 Controllers for Real-Time Systems

There are several previous works with the goal of creating SDRAM controller
optimized for RTS.

Akesson et al. proposed the predictable controller called Predator [AGR07].
The work was later presented in more details in his PhD thesis [Ake10]. To
have better data bus utilization, the large bank interleaved memory transfers
are used. The closed page policy is employed, i.e. the banks are automatically
precharged after each access. A number of interesting features were proposed.

The controller uses hybrid approach between the static SDRAM command
scheduling which is good for known timing guaranties and the dynamic com-
mand scheduling with allows better average case memory utilization. The ele-
mentary operation size is fixed and the sequence of correctly interleaved SDRAM
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commands to perform a read or write of elementary block are precomputed at
design. The sequences are composed automatically by the computer program,
which ensures that commands inside these patterns satisfy the SDRAM timing
requirements. Auxiliary patters are also created to satisfying the timing during
the changes in the transfer direction and to perform refresh.

The patterns and their compositions are analyzed at design time, to derive
worst case memory access time (WCMAT) for each memory operation. The
refresh is handled by including it in the WCMAT of each memory operation,
but accounting for refresh period for transfers of larger sizes. To allow a better
average case performance, the memory requests are translated dynamically into
sequences of static patterns which are executed by the configurable SDRAM
command generator. For hard-RT tasks all the responses are delayed to their
worst case latency to provide an isolation of requestors’ behavior.

The arbitration is performed at elementary block level, i.e. the larger transfers
are always cut into elementary blocks and arbitration is performed for each block
separately. Though any arbiter with bounded service time could be used by the
framework, the Credit-Controlled Static-Priority (CCSP) arbiter is suggested.
CCSP is a static priority arbiter augmented with rate regulators to limit re-
questors to their allocated bandwidth. The static priority makes decoupling of
bandwidth and latency possible, allowing to give some higher priority requestors
lower latency guaranties while leaving the bandwidth for other requestors. This
however comes with the cost of significant increase in latency for lower priority
requestors. We will look closer at the controller in this work. The arbitration
is discussed in Section 6.2.5, while the synthesis results are presented in Section
7.2.

Paolieri et al. described the Analyzable Memory Controller (AMC) [PQCV09]
which was part of MERASA project for predictable multi-core architectures.
The bank interleaved command sequences are used as in the Predator, but the
single set of sequences is created and analyzed manually whereas the Predator
performs this by a program to allow exploring the latency/e�ciency tradeo�s.

The fine grained Round-Robin (RR) arbitration is used for hard-RT tasks. They
get higher priority than non-HRT tasks, which are scheduled in-order. The
WCMAT is calculated by using the maximum possible time needed for a single
transfer multiplied by possible number of colliding requesters (i.e. one pending
non-HRT task and all other hard-RT tasks). Using the single maximum transfer
increases the WCMAT beyond the value which is possible in worst case. For
example, the worst case command is usually a Write invoked after Read. But it is
impossible to have N Write-after-Read switches in sequence of N transfers. The
improvements were proposed by the same authors in [PNC]. They accounted
for maximum possible switches and additionally allowed preempting the non-
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HRT transfer at the bank boundary, which allows saving few additional latency
cycles.

The measurement based worst-case execution time (WCET) estimates for the
tasks are used and refresh is handled by synchronising the start of the task with
the refresh operation, to have refresh interference incorporated into WCET.

Reineke et al. describe the SDRAM controller for ARM based precision timed
architecture (PTARM) processor [RLP+11]. The processor has four thread-
interleaved pipeline, and assign separate banks for each thread, thus allowing
use of banks without conflicts. Because such privatisation removes the concept
of shared memory, the sharing is done through on-chip memory.

The refresh is performed manually to allow performing refresh in di�erent banks
independently. Because of their tight integration with the interleaved pipeline,
they explore some properties of the architecture while issuing refresh. The
refresh is deferred to the end of the read operation where it does not incur ad-
ditional cost, because the pipeline can not utilize two consecutive read slots.
For larger memory transfers (DMA transfers to/from the scratchpad) they ac-
count for maximal possible interference from refresh. Which takes to account
how many periodic refresh operations are possible during the time needed to
perform the whole transfer.

2.2 SDRAM Refresh

Atanassov and Puschner [AP01] described a problem with refresh incorporation
into WCET of the task without considering each transfer. They showed, that
even though the WCET augmented with the possible refresh interference is safe,
the actual WCET path of the program might be di�erent. This does not seem to
be a problem in practice, if well behaved architecture without timing anomalies
is used. The adapted adjustment formula is presented in Section 6.3.3.

Bhat and Mueller describe an approach of grouping the refresh operations to-
gether and executing them in separate special task [BM11]. This helps eliminate
refresh interference uncertainty, because the refresh interference can be handled
by the schedulability analysis. And the refresh operation does not have to be
incorporated into WCMAT of each memory operation which is pessimistic. Un-
fortunately the authors did not mention that there are strong limitation on burst
refresh in memories of later generations of SDRAM (Section 3.6.3).
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2.3 Memory Arbitration for Real-Time Systems

Pitter has in part of his thesis performed some evaluation of arbitration schemes
for RTS chip multiprocessor [Pit09]. The static (fixed) priority and time division
multiplexing (TDM) arbitration were considered. The static priority without
rate limiting was used, so only one higher priority requester could be incorpo-
rated, because more requesters could block the lower priority tasks indefinitely.

Pu�tsch and Schoeberl [PS12] did some evaluation of TDM vs. RR arbitration
when evaluating scalability of time predictable chip multiprocessor. They used
a version of RR with one cycle empty slot per idle requester, because the RR
which could skip all the idle requesters is not scalable.

Shah et al made few recent publications suggesting some arbitration schemes for
shared resources in RTS and the SDRAM specifically. One proposal is Priority
Based Budget Scheduling (PBS) [SRK12a], which as a name implies is fixed
priority arbitration with rate limiting, similar to CCSP done in Predator. But
the rate limiting is performed per time frame, whereas CCSP does it gradually.
PBS grants each requester a memory access budget per certain time period, i.e.
at the end of the replenishment period the budget of each requester is renewed.

Two hybrid arbitration schemes were also proposed by same authors. Priority
Division, which is the TDM variation allowing to use idle slot a RR-like fashion
[SRK11]. Dynamic Priority Queue, which is a RR with a per-requester budget
limit for a replenishment period [SRK12b].



Chapter 3

DRAM Technology

This chapter provides the background on Dynamic Random Access Memory
(DRAM) which will be needed in further discussion. For more detailed coverage
of DRAM [JNW08] or [Wan05] can be consulted.

In this work, the focus is on Synchronous DRAM (SDRAM) which has been
the most prevalent volatile o�-chip memory for more than a decade. It is called
synchronous to distinguish it from the asynchronous DRAM interfaces that were
dominant at the time the standard was created. The standard is prepared
by JEDEC Solid State Technology Association and several generations of the
standards have evolved over the years. The following sections will describe the
general features of SDRAM and the first generation in particular. The relevant
changes of the later generations are mentioned in Section 3.5 section. Finally,
the refresh operation is discussed in more details because of its implications for
real-time system.

3.1 The Structure and Operation

The DRAM is called dynamic because the value of each bit is represented as
a charge of a small capacitor, which discharges due to leakage over time. The
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Figure 3.1: The example of four address dimensions of the SDRAM memory.
Left: The schematics of the SDRAM array with addressable row
and column; Upper Right: The SDRAM device with four banks;
Bottom Right: Two ranks each in individual module composed of
four devices operating on separate 16-bits of 64 bit data bus.

capacitors must to be refreshed periodically to preserve the valid value. In
addition to the capacitor, the bit cell contains a pass transistor which is enabled
when the value is read or written. The bits are not accessible individually,
instead they are organized in arrays of rows ◊ columns. Figure 3.1 shows
schematic drawing of 8192 ◊ 512 array. A row must be prepared before its
relevant bits can be read. This requires two steps:

precharge – the bit-lines (columns) are charged to midpoint voltage between
logical 0 and 1.1

activate – the transistors of the single row are enabled, thus connecting the
capacitors of the selected row to the bit-lines. The small charge of the
capacitor creates small voltage swing on the bit-line. The sense ampli-
fier recovers the value and drives the bit-line to ground or V DD voltage
depending on the original value of the capacitor.

1The sense amplifiers are di�erencial, i.e. they detect the di�erence between two signals
and need a reference voltage. To have more precise reference point for each column, the single
column (single bit) uses two bit-lines. Where the half of the transistors are connected to each
line. When the row is activated, the capasitor connects to one line, while the other acting as
a reference
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Both steps contribute significantly to the latency of the DRAM access, because
the bit-line runs over the thousands of rows and has huge capacitance. But
once the row has been activated its bits can be read/written with lower latency.
During write, the new value is overdriven onto the appropriate bit-line and ends
up in the capacitor.

Multiple arrays work in parallel with the same addresses to provide wider data
words. But because the speed of the array degrades with its size, modern
DRAM devices contain a third dimension called bank . The arrays of each bank
can be used independently to increase the throughput2. This is performed by
interleaving accesses to di�erent banks, so that the data from one bank can be
read/written while the other banks are busy while precharging or activating.
The banks are still controlled through the same bus and usually share some
hardware (Figure 3.1) so there are constraints on their usage.

Because the demand on the memory capacity is higher than what can fit on a
single chip, multiple devices are combined on a PCB (Printed Circuit Board)
module and operate side-by-side to provide wider data bus. The address space
can also be increased, by connecting multiple devices to the same data bus and
enabling single device by Chip Select signal depending on the address. This
forth dimension is called rank (Figure 3.1). The modules have metal contacts
on one edge and can be plugged into the special slots on the system mainboard.3
Number of module configurations are possible, so each module contains the small
non volatile memory which stores its timing parameters, which are read by the
controller during the initialisation. This allows the controller configuring itself
to satisfy the requirements of the module plugged into the system.

3.2 Signaling

The controller accesses the memory device through parallel buses, i.e. each
signal bit is send independently on the same clock cycle. Conceptually following
signal groups are used (with some modifications of later generations mentioned
in later sections):

• Clock and command group:

2The name bank, can sometimes also be used to denote other things (see the rank, below).
We use it only for independent portion of the SDRAM device, as used in the SDRAM device
specifications

3The ranks are sometimes confused with banks, because some use the name bank for the
socket in which the module is inserted
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– CLK, CKE and CS# (# denotes that signal is active low): clock,
clock enable and chip select.

– RAS#, CAS# and WE# : the encoded command. The signal names
are from the time of asynchronous DRAM, but SDRAM samples all
the signals at once and decodes them into appropriate command.

• Address group:
– BA<n> : bank address, determines which bank of the device should

perform the action.
– A<n> : row/column address. The address bus is multiplexed, i.e.

performs slightly di�erent function depending on the command send
through the control lines. The A10 is used to enable the auto-
precharge mode for the Read and Write commands (which don’t
need all the address bits to denote the column, because there are less
columns than rows). The same A10 pin is also used in Precharge com-
mand to specify that the operation should be applied on all banks.
The address pins are also used to specify the value for the Mode
Register Set command (see next section).

• Data group:
– DQ<n> : bidirectional data lines.
– DQM : data masking. Signal controls tristate output bu�er during

the Read and masks the input during the Write. The 16-bit wide
devices use two separate mask signals (UDQM and LDQM ) for in-
dependent control of the upper and the lower byte.

The data bus and the control/address bus are independent; this allows sending
commands to a di�erent bank during the longer data transfer cycles. As men-
tioned earlier, multiple devices can be used to provide wider data bus. In this
case the control and address lines are connected to every device and data bus
is sliced across devices. Alternatively multiple devices can be combined into a
larger address space, by also sharing the data group signals and enabling the
appropriate device with a chip select.

The is no handshaking/acknowledge signals in the interface, instead there are
implicit timing parameters of the memory chip which must be obeyed by a
controller to assure proper operation. The timing parameters are presented in
Section 3.4.

3.3 Commands

The SDRAM has a synchronous interface and is operated by a predefined set
of commands. Because only the bits of the active row are directly accessible,
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in general case the read/write operations involve a sequence of SDRAM com-
mands, also called transactions. In this section we will first look at the available
commands and put them in context by few examples of simple transactions.

Three command signals ( RAS#, CAS# and WE#) allow to represent 8 dif-
ferent commands. Additionally the value of clock enable signal (CKE) is used
to enter the power saving modes but it is not discussed here. We now list the
common commands (with their parameters specified in parenthesis) and the
associated timing requirements, which are covered in more details in Section
3.4:

• Precharge (bank/ALL): charges the bit-lines of the specified (or ALL)
banks to reference voltage, to enable data recovery by the sense ampli-
fiers during subsequent row activation. The precharge requires t

RP

time
before Activate command can be issued.

• Activate (bank,row): Activates the row of the specified bank. The data of
the activated row will be available for Read/Write after t

RCD

time, but
restoration of the values into the bit capacitors usually requires more time,
specified as t

RAS

. The bank can not be precharged before that.
• Read (optional auto-precharge): Requests to read a number of words from

the active row. The data can be sampled from the data bus in t
CAC

cycles. The length of the transfer is configured by Mode Register Set
command. The device will issue the Precharge command automatically
at earliest allowed time if auto-precharge was enabled for this Read com-
mand. In addition to t

RCD

mentioned in Activate command, there might
be constraint on minimal separation between the consecutive Read/Write
commands specified as t

CCD

.
• Write (optional auto-precharge): Requests to write a number of words into

the active row. For the SDR SDRAM (see Section 3.5.1) the data burst is
started together with the command, for later generations, the data must
be delayed. The burst length is also controlled through Mode Register Set
command, but can either be set to one or the value of the read size. The
notes regarding the t

CCD

, t
RCD

and auto-precharge of Read apply to
Write as well . With additional constraints (t

W T R

and t
W R

) required to
allow the last data word to be stored properly.

• Burst Stop: Allows to interrupt the current transfer. The command does
not have immediate e�ect and the transfer is interrupted after the t

CAC

cycles. The command is slightly redundant (and in fact has been removed
starting from DDR2 SDRAM), because the bursts can be interrupted by
the Read,Write or Precharge commands.

• Auto Refresh: Performs parallel Activate followed by Precharge for all
banks. The row address for the activation is supplied from the internal
counter which points to next row after each refresh. The time needed
to complete the refresh is specified as t

RF C

which might be larger than
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t
RAS

+ t
RP

required to do the same for single bank, because more current
is needed. The t

RF C

can also increase, because larger devices perform
refreshes of several consecutive rows for single command.

• Mode Register Set (reg,value): The command is used to set come config-
urable registers of the SDRAM device which alter its mode of operation.
The most common parameters are the t

CAC

cycles, burst sequence and
length. The later generations have larger configuration and also use the
command to perform some calibration. The command requires t

MRD

time
of subsequent inactivity.

87654321

D_2D_1DATA

ACTPREACT ReadCMD

CLK

Figure 3.2: SDRAM(SDR) command sequence for burst read of two words.
The closed page policy used, i.e. the bank is precharged after use.

987654321

D_2D_1DATA

ACTPREWriteACTCMD

CLK

Figure 3.3: SDRAM(SDR) command sequence for burst write of two words.

Because the single Read and Write commands can only perform a transfer with
the active row. In general case extra commands will need to be issued to perform
an read or write operation. The Figure 3.2 and Figure 3.3 show the transac-
tions for general two word transfer operations. In the examples the Precharge
command is issued explicitly to show its place in the transaction. The action
could also be scheduled for automatic execution by enabling the auto-precharge
during Read/Write command.

3.4 Timing Parameters

The timing parameters of the SDRAM device need to be obeyed by the con-
troller. Some parameters are the specification of the device behavior like t

CAC
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describes in which cycle after the Read command the result would be available on
the data bus, the others are requirements for the behavior of the controller. The
parameters can be divided into two groups. The first group are the usual sig-
nal integrity requirements which are present when interfacing any synchronous
component. Those are setup/hold requirements for the inputs with respect to
clock/strobe signals. The clock-to-output timing are provided for all the out-
puts and the timing of the tristate bu�ers are needed for bidirectional signals.
The other group are protocol level requirements which describe the separation
between commands/data on the SDRAM bus which is needed to avoid hazards
for shared hardware inside the memory device.

The use of single bidirectional data bus requires extra delay when the direction
of the transfer is changed. The extra separation might also be required when
getting data from the di�erent ranks [JNW08]. The sharing of the I/O and
control hardware by the banks requires delays between the commands even if
they are directed to di�erent banks.

3.4.1 Parameter List

This section has a brief description of common SDRAM timing parameters. The
memory device specification usually specify these parameters in nanoseconds,
but the synchronous memory controller issues the commands on clock edge, so
the parameters need to be rounded to full clock cycles.

t
RSC

: Register Set Command – the time needed to complete the Mode Reg-
ister Set command delay.

t
RP

: Row Precharge time – delay between Precharge and Activate com-
mand to the same bank.

t
RRD

: Row-to-Row Delay – delay between Activate commands to di�erent
banks.

t
RCD

: Row-to-Column Delay – delay between Activate and Read or Write
command to the same bank (i.e. activated row).

t
CCD

: Column-to-Column Delay – delay between two consecutive Read or
Write commands.

t
CAC

: CAS Latency – delay between Read command and output of first data
word. For synchronous DRAM this value is always rounded to clock cycles,
sometimes it is also denoted CL.

t
RAS

: Row Access Strobe – delay between Activate and Precharge command
to the same (bank). The delay is needed for sense amplifiers to charge the
capacitors discharged during the activation. Care must be taken for this to
hold also then the command is issued implicitly through auto precharge,
i.e. the short read/write burst might need to be delayed after the activa-
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tion.
t
RC

: Row Cycle – delay between successive Activate and/or Auto Refresh
commands.

t
RF C

: Refresh Cycle – time needed for Auto Refresh command. All banks
must be idle and not used during t

RF C

(see: Section 3.6.2).
t
P QL

: Last Output Data to Precharge – usually negative parameter spec-
ifying by how many cycles the Precharge can overlap with the ongoing
read burst transfer. The later generations instead use t

RT P

: Read-to-
Precharge parameter for separation of Precharge after Read.

t
DP L

: Input Data to Precharge delay – time from last data written on the
bus to when Precharge can be issued. The alternative name t

W R

: Write
Recovery is used by later generations.

t
W T R

: Write-to-Read – minimum separation for Read after the Write com-
mand introduced in later generations.

t
W L

: Write Latency – rounded to cycles separation between the Write com-
mand and first data word introduced in DDR2. The DDR uses *t

DQSS

parameter in ns and write latency of one cycle.
t
F AW

: Four Activate Window period – this is constraint of 8 bank devices,
which allows only 4 banks to be activated in the rolling t

F AW

window. The
8 bank devices are possible for DDR2 and mandatory for later generations.

3.4.2 Parameter Relations

D_nD_iD_1DATA

ACTReadACTCMD

CLK

Di-1 Dn-1







  

PRE

Figure 3.4: SDRAM(SDR) read transaction timing parameter relation. The
Precharge command is marked gray, because it can be omitted if
the auto-precharge was enabled during the Read command.

To summarize the timing parameters of the memory operations we show them
in context of simple read (Figure 3.4) and write (Figure 3.5) bursts. The first
SDRAM generation is used to make the examples simple. The closed page pol-
icy is used in the examples, i.e. the row is precharged after the Read/Write
command to have lower latency for next access (assuming that they are ran-
dom). The don’t care parts of the command and/or data buses can be used by
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D_nD_1DATA

ACTWriteACTCMD

CLK

Dn-1











PRE

Figure 3.5: SDRAM(SDR) write transaction timing parameter relation. The
Precharge command is marked gray, because it can be omitted if
the auto-precharge was enabled during the Write command.

operations to other banks, if they satisfy the bus turn-around requirements for
data direction change and the t

CCD

, t
RRD

and t
W T R

constraints.

Few observations can be made here. The short burst of just one or two words will
result in very low data bus utilization, because the length of whole transaction
is limited by the t

RAS

and t
RC

(can not be shorter). For read transaction the
Precharge command can be started while the rest of the data is received. While
the write transaction requires additional delay (t

DP L

) between the last data
cycle and the Precharge because new values must propagate into the capacitors.

13121110987654321

D4_2D4_1D3_2D3_1D2_2D2_1D1_2D1_1DATA

Read4Read3ACT4Read2ACT3Read1ACT2ACT1CMD

D_8D_7D_6D_5D_4D_3D_2D_1DATA

ReadACTCMD

CLK

Figure 3.6: SDRAM(SDR) Long burst to the single bank (top) vs. short
bursts interleaved across 4 banks (bottom).

The Figure 3.6 demonstrates the two possible ways of implementing longer trans-
fers inside the controller. The first one is single read of 8 words from the same
bank. The second uses four short bursts of 2 words interleaved onto four banks.
The first is more energy e�cient and in this example have one cycle shorter
latency, but the second allows to use full memory bandwidth for back-to-back
read or write operations. This is because the first approach uses the bank until
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the end of the whole transfer in cycle 12. The subsequent read request for other
row of the same bank would require at least t

RCD

+ t
CAC

cycles until the new
data appears on the bus, and even more if bank precharge can not be fully
overlapped with the data transfer (t

P QL

). In the interleaved approach the first
bank becomes available already in 8’th cycle, and can begin operation for the
new read request while the data from other banks is transmitted. The examples
of how the consecutive transactions are overlapped is presented in Section 5.3.3

3.5 SDRAM Device Standards

This section covers some of the features of di�erent standards that might have
e�ect on memory controllers. The main focus is on JEDEC SDRAM/DDR
standards because of their wide use. We also limit ourselves to memory device
standards. The memory module standards describe how devices are arranged
into modules and how they should be wired, and though this degrades the
timing, it does not change the principles of the operation.4

3.5.1 SDRAM: Synchronous Dynamic Random-Access Mem-
ory

This is the first SDRAM standard and is now referred as Single Data Rate
(SDR) to distinguish it from later Double Data Rate (DDR) standards. Single
command and/or data word is transferred in one clock cycle. Unfortunately the
standards document does not seem to be publicly accessible, so a datasheets of
specific chips were used when preparing this section.

The memory device might have 2 or 4 banks. The first devices were supporting
the clock frequencies of 66 to 100 MHz but more recent 64 Mb chips can be
operated at 200 MHz (while the 512 Mb parts support 133 MHz) [MT12]. Each
frequency has a fixed range of supported t

CAC

, and the controller picks one by
configuring the device.

The number of word transfers used in single Read/Write operation is also run-
time configurable, and can be 1, 2, 4, 8 or (optionally) whole row. The length of
write burst can be either set to 1 or the length of the read burst. The longer burst
can also be terminated by new Read, Write, Precharge or (optionally) explicit
Burst Stop command. Precharge command only has a terminating e�ect if it is

4We do not consider the fully bu�ered modules or similiar bu�ers on board because they
use di�erent interface
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issued to the bank that is currently performing read/write to allow concurrent
control of the banks.

Two possible orderings of words inside the non burst-length aligned accesses are
possible. In the Sequential ordering the addressed word is followed by those
with subsequent addresses, until they wrap around on the alignment boundary
(i.e. the last word before the boundary is followed by the words from the
start of the addressed block). The Interleaved order is provided for simpler
implementation of the caches. The address of the current word is calculated as
initial_address ü words_transmitted.5

3.5.2 DDR SDRAM: Double Data Rate SDRAM

The next generation of the SDRAM doubled the possible bandwidth by trans-
mitting two data items in one clock cycles. For this reason the second and the
next generations are called Double Data Rate (DDR). The standard specifica-
tion is freely available on JEDEC web site [JES08].

87654321

D_3D_2D_2D1DATA

DATA Strobe

PREWriteACTCMD

CLK

Figure 3.7: DDR example: Write transaction of 4 words

The doubling of the bandwidth was possible because the whole row of data is
available after the activation. The I/O interface fetches twice the data from the
memory core and transfers it in two half cycles. Because the possible window for
stable data values was halved, the new bidirectional signal was introduced into
the data bus. The new Data Strobe (DQS) signal is used for source synchronous
transmission, i.e. acts as a clock which is sent together with the data. This way
the jitter and the skew between the data and the “clock” is reduced. The data is
center aligned to DQS during writes and is edge aligned during reads. A Delay
Locked Loop is used on DDR chip to align the data/strobe with the original
interface clock. The interface clock used for command and address bus became
di�erential to reduce the jitter. The recent devices use the same frequencies
(133 MHz to 200 MHz) as the SDR devices, but provide the double bandwidth
and larger capacities [MT12].

5ü symbol denotes xor (exclusive or) operation. The words_transmitted counts number
of the words transmitted so far in the current burst
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Because of the double prefetch performed from internal DRAM array, the single
word read/writes are only possible by masking out the unused word in the pair.
That is the supported burst lengths are 2, 4 or 8 words (the full row bursts were
removed from the specification). According the specification, the DDR devices
always contain four banks.

As for the timing parameters changes, the separation of the write command
and write data is introduced. There are also requirements for the strobe signal
relation to the data. The Figure 3.7 shows this on example write transaction
with burst length of four. The data strobe signal must be low for some time
before the data (preamble) and after the data (postamble).

3.5.3 DDR2

As the name implies the DDR2 [JES09] is successor to DDR standard which
further doubled the bandwidth, by doubling the prefetch. The DDR2 internally
fetches 4 words at a time from the memory core and than sends it at the faster
rate. The data bus remained double rate, but the frequency of interface clock
was doubled. Naturally the change eliminated the bursts of two words. Also
the Burst Stop command was removed.

The introduced option for di�erential Data Strobe allows increasing the possi-
ble interface frequencies up to 533 MHz at the expense of longer t

CAC

. The
controller must dynamically control the On Die Termination parameters on the
memory devices if multiple ranks are used. The device capacities increased by
option of having 8 independent banks per device, but there is a limit on how
densely in time the banks can be activated. The requirement is captured in
t
F AW

parameter which specifies the time window in which no more than 4 ac-
tivates can be issued, i.e. the minimum separation between the ith and the
(i + 4)th activate.

The DDR2 introduced Posted CAS also known as Additive latency, which sim-
plifies the controller, by allowing it to reduce command bus conflicts. When the
additive latency is enabled, the Read/Write command can be issued in the next
cycle after the respective Activate command. The hardware on the memory de-
vice would then internally delay the command for configured number of cycles
to ensure that the t

RCD

is satisfied.
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3.5.4 DDR3

The DDR3 [JES12a] allows double memory throughput by doubling the internal
DRAM core prefetch and the interface frequency. The burst length becomes
fixed at 8 words, with the option to discard the half of it. The chopping of
bursts to 4 words still requires the four cycles of separation between consecutive
commands (equal to 8 transfers on the data bus). The separation is only reduced
for write command after read.

The interface frequency is increased to up to 1066 MHz. With the increase of
device capacity the 8 banks per device becomes a requirement. With the same
limitation of bank activation frequency as for 8-bank DDR2 memories (t

F AW

time for four activates), but with more acute e�ect. For high capacity devices
the t

F AW

(in cycles) is higher than 4*8, so it is not possible to fully utilize the
data bus for random reads/writes.6

To allow such a high frequencies on the data bus, the fly-by connection of the
clock/command/address signals to the modules is used. In previous generations,
the clock/command/address lines to di�erent chips on the module where delay
matched to have low skew between di�erent chips. In DDR3 they reach the
chips in series, creating the skew between the data bits connected to di�erent
modules. The controller must deskew the signals by introducing additional delay
on fast paths. The delay calibration is performed during the initialization and
must also be performed during the runtime to accommodate the changes caused
by temperature changes.

3.5.5 DDR4

The DDR4 [JES12b] is the latest generation of the DDR standard family publicly
released on September 2012.

The DDR4 architecture uses an 8-n prefetching as the previous DDR3 genera-
tion, supporting the same burst length of 8 and burst chop of 4. The number of
possible banks is increased to up to 16. But their concurrent use is constrained.
The concept of bank groups is introduced with bigger timing constraints for the
commands to the same bank group.

6The random reads/writes implemented by interleved access to consecutive banks. The
back-to-back operations to the same opened row can of course have a valid data on the bus
each cycle.
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3.5.6 Wide IO SDR

Wide IO Single Data Rate (WIDE IO SDR) is JEDEC standard [JES11b] for
future embedded systems. It targets the systems where one or more memory dies
are stacked over the system die (including processors, caches, memory controller
etc.) and connected by Through Silicon Vias (TSV). The 3D stacking loosens
the I/O limit because dimensions of each I/O bump becomes smaller. This
enables to switch from trend of increasing frequency as seen in evolution of
DDR standards into increasing the parallelism. The memory chips are accessible
through 4 independent interfaces with 128-bit wide data buses operating in SDR
mode at 200 or 266 MHz.

3.5.7 Other Synchronous DRAM Interfaces

In addition to mentioned DDR generation family, the JEDEC defines the two
related interfaces: Low Power Double Data Rate (LPDDR) and Graphics Dou-
ble Data Rate (GDDR). The standards are based on their DDR counterparts,
but the former has interface optimized for higher throughput and the former,
as the name implies, for reducing power consumption.

Few non JEDEC interfaces are/were popular. The Reduced Latency Dynamic
Random Access Memory (RLDRAM) is proprietary interface providing low read
latency. The devices have 8 or 16 banks and additionally allow to trade-o� the
capacity for speed by enabling multi-bank write mode during which the same
data is storred into 2 or 4 banks at the same time, allowing the duplicated data
to be read from di�erent banks without t

RC

penalty. The row organization as
well as Activates/Precharges are not visible to the user. The memory is accessed
through simple Read/Write command.

Few other proprietary interface generations were designed by Rambus. The
DRAM is accessed through narrower partly serialized interface where the com-
mands and data is transmitted as a packets over several cycles. The serialisation
of the interface can also be seen in some server computing where large address
spaces are needed. Such systems would use hierarchy of memory controllers
where custom narrow interface is used for inter controller communication and
the standard JEDEC compliant interface is used to communicate with standard
JEDEC modules [CBRJ12].
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3.6 DRAM Refresh

The refresh of the capacitor charge is essential for correct operation of the
DRAM. This section describes refresh operation, its requirements and refresh
related limitations across SDRAM generations.

3.6.1 Di�erent Ways of Performing Refresh

There is some flexibility in performing refresh. The methods of invoking a
refresh are listed first, followed by the possible ways of organizing them in time.

Self Refresh This is autonomous refresh mode which can be performed by the
SDRAM chip during longer inactivity periods. The chip has to be brought
to this special power saving mode. Because it takes relatively long time
to return to normal operation, such method is not relevant for further
discussion.

Auto Refresh 7 The refresh is triggered by issuing dedicated refresh command.
The command does not specify the address of the row; instead the row is
pointed by the internal counter inside the chip. The same row is updated
in all the banks in parallel, and the counter is incremented to point to the
row for the next refresh operation.

Refresh by Activate The charge is restored by the sense amplifiers during
the row activation. So activating a row has a side e�ect of refreshing
(irrespective of presence of following Read/Write to this row). Activation
is performed for a row of a single bank, so all the banks have to be refreshed
separately. Additionally controller/software needs to keep track of the row
counters.

Each row need to be refreshed within certain time period, and there are two
strategies regarding the refresh of di�erent rows:

Distributed Refresh This is the usual way. The refresh action are spread out
evenly in time. For example, if DRAM contains 8192 rows, issuing Auto
Refresh every 7810 ns assures that each row meets requirement of 64 ms
refresh period (7810 ◊ 8192 ¥ 63.98 ◊ 106 ns).

Burst Refresh Refresh actions occur in bursts. There is a longer period with-
out refresh followed by several refresh operations invoked one after an-
other.

7Also known as CBR (CAS Before RAS) from the times of non-synchronous DRAM inter-
face
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3.6.2 Refresh Timing

Even though retention times of di�erent DRAM cells might di�er by the or-
ders of magnitude, the specification requires the same refresh period for all the
rows, which is usually 64 ms. The di�erent ways to exploit this fact have been
proposed in the literature, but the subject is out of the scope of this work.

Table 3.1: The t
RC

and t
RF C

parameter values (in nanoseconds) from JEDEC
specifications for some memory generations.

tRC 64Mb 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb
DDR 55-70 70-80 70-80 120-130
DDR2 55-65 75 105 127.5 195 327.5
DDR3 43.3-52.5 90 110 160 260 350

The SDR SDRAM describes refresh requirement in terms of retention time
t
REF

for each cell (which is the same as each row). The specifications of sub-
sequent generations use t

REF I

parameter, which is longest period between two
consecutive refreshes operations. For simple memories which perform a refresh
of single row during one operation the relation between the two parameters is
t
REF I

= t
REF

/N
rows

. But bigger devices of later generations refresh multiple
rows during the single Auto Refresh operation, hence the t

REF I

parameter is
given in the specifications. While the time needed by the Auto Refresh opera-
tion is given in t

RF C

parameter. It is usually slightly greater than Row Cycle
time (t

RC

) for very small devices, but can be several times greater for the larger
devices (see Table 3.1). The large t

RF C

might constraint the memory scheduling
scheme as discussed in Section 6.3.3.

The retention time is temperature dependent, because the leakage currents are
larger in warmer chip. The specifications usually require doubling the refresh
rate if the temperature is higher than 85¶C. This slightly reduces the memory
throughput, but does not complicate the controller design.

3.6.3 Burst Refresh Support in SDRAM Generations

The first generation SDRAM (Single Data Rate) devices usually allow perform-
ing the Refresh command bursts of arbitrary length. Thus refresh actions for
all the rows can be grouped together and invoked at convenient time to avoid
refresh interference with normal operation.
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The later, Double Data Rate generations only allow limited flexibility. The
maximum of 8 Auto Refresh operations can be postponed or pulled (issued in
advance), but not both. In another words, the maximum of 9 ◊ t

REF I

interval
between surrounding Auto Refresh commands is allowed. The limiting of refresh
burst length is caused by the power requirements for the refresh operation.
That increased with higher device densities of later generations. The reason
for having maximum interval without refresh is less clear. The requirements is
stated without any comments in DDR specification [JES08]. The specification of
later generations state it more explicitly, but also without clarifications [JES09]
[JES12a] [JES12b].

The limitation of DDRx memories does not a�ect bursts of refresh performed
by Activate. But such refresh incurs larger overhead, because each bank has to
be refreshed separately. The overhead is even larger for devices with more than
4 banks because only 4 activates can be performed in t

F AW

time window.

The LPDDR (Low Power DDR) specification [JES10] has the same constraint
as DDRx generations. The later LPDDR2 [JES11a] and LPDDR3 [JES12c]
introduce per bank refresh command REFpb, which allows to refresh banks
individually without requiring 9 ◊ t

REF I

rule. But the new per bank refresh
command is still subject to t

F AW

constraint of 4 activates. In other words, the
new commands do not introduce much flexibility, because it is equivalent to
performing refresh by Activate. The only advantage is that the row counters
are kept in SDRAM device.
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Chapter 4

Real-Time Systems

This chapter provides some background on Real Time Systems (RTS). The
chapter starts with the overview which contains the definition of RTS. In the
second section we will introduce the model of task’s computation and an ex-
ample, which will be used to visualize some of the problems in RTS. Next we
present the steps of the timing analysis. We discuss the requirements for a RTS
platform and touch upon some of the inherent obstacles in achieving e�ciency.
Finally we make few notes about the T-CREST platform for real-time systems.

4.1 Overview

The RTS are systems in which computing the right output is not enough. The
timing of the result is an integral part of the correctness. Often the exact timed
behavior is not required, but rather guaranties of producing the output before
the deadline.1

To implement and verify the system it is decomposed into individual periodic
activities. For example, a control system would need to periodically sample

1when the exact time of action is needed, the response can be delayed until the right time
comes if is computed too early
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the values of the sensors, update its model of the environment and control the
actuators. The computation needed to perform each activity is called a task.
The task is invoked periodically and each such instance of the task must respond
before the deadline. The tasks within RTS can be distinguished into classes by
the implications of missing the deadlines [But11]:

Hard deadline. Missing a single deadline might cause significant damage and
must be avoided. The damage could for example be economical, ecological
and even loss of live. The worst case performance guaranties are ultimate
requirement and the average case performance is irrelevant. The examples
of such system could be heart pacemaker, tra�c light control, nuclear
power plant control etc.

Soft deadline. Missing a deadline is not critical, but late response leads to
performance degradation of the system. The statistical timing guaranties
can be used and average case performance might be of larger importance
than in hard-RTS. The example of activity with Soft RT requirement is
handling of the user interface, like displaying message on the screen or the
keyboard input.

Firm deadline. Similar to Soft RT, some deadlines can be missed, but the
late result has no value, i.e. can be discarded. While in the Soft RT it is
important to provide the result even if it is a little bit late. In Firm RTS it
might be beneficial to early drop the delayed activity in favor of meeting
the future deadlines. The usual example of Firm RTS are multimedia
applications where dropping the frame is less critical than processing it
with a long delay.

[But11] expressed the di�erences between the RT and non-RT activities graph-
ically (Figure 4.1). For non-RT task the usefulness of the computation result
does not depend on time. For RT tasks the deadlines are usually specified in
such way, that results produced any time before the deadline is equally good,
and the di�erence is in outcome of the late result. For hard RT task, the value
is minus infinity as it causes severe damage. The delayed result of firm RT task
does not cause any damage, but has no value either, while it decreases over time
for soft RT task. The main focus of further work is optimizations for hard RT
tasks, though we try to have in mind the existence of other tasks in a system.

4.2 Modeling the Task

As mentioned previously, RTS applications are usually modeled as a set/graph
of tasks. The task is single thread of computation with deadline requirement.
We constraint ourselves to a simple task model from [BW01]:
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Figure 4.1: The usefulness of the computation result over time in di�erent
systems. The image from [But11]

• The tasks are periodic, with known periods, and the deadline is equal to
the period.

• The tasks are completely independent. There are no critical sections; the
inter-task communication is performed on task boundaries. That is, all
the inputs are assumed to be ready at the time of task instance release
and all the outputs are assumed to be produced at the end of the task’s
computation.

• All tasks have a fixed worst-case execution time (WCET). We will talk
about it in following subsections.

• The overhead of context switch is assumed to be zero.

The elimination of these constraints is possible, but we want to limit our dis-
cussion to simple case. Actually, the zero cost context switch is possible if fine
grained memory access scheduling is used and dedicated processor core per task
is available as described in Chapter 4.5

Let us now look closer at the task level, and show one way of abstracting its
behavior. The following listing shows hypothetical task described as C function.
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The scA(), scB() etc, denote some straight line code. There is a conditional
branching and a loop whose body execution is limited to 3 iterations:

int task(int in1, int in2) {
scA();
if (in1) {

scB();
for (int k=1; k <= in2 && k <= 3; k++) {

scC();
}

} else {
scD();

}
scE();

}





 





  













Figure 4.2: The possible distinct execution paths of the example program

The example demonstrates three sources of uncertainty which have to be dealt
with to provide guaranty of meeting the deadlines: input, hardware state, analy-
sis approximations. The branch taken and the number of loop iterations depends
on the value of the input parameters in1 and in2. This creates four possible
execution scenarios, called execution paths. The paths are shown graphically
in Figure 4.2. Each path would probably have di�erent execution times, that
is the execution time is input dependent. We now look at the scE() fragment.
Even though it is executed at the end of every path, its execution time might
actually vary. This is because the fragments executed before the scE() are dif-
ferent in each path, and might leave the hardware (for example the caches) in
di�erent state. To deal with it, the analysis is forced to either analyze each path
individually or to use approximation of hardware state which is common to all
the predecessors. The former option makes analysis di�cult because there are
potentially exponentially many paths. The latter option reduces the accuracy of
the execution time estimate. Finally, because the task’s code is executed peri-
odically, the hardware state at the beginning of the tasks execution depends on
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the state left by the previous instance and would also need to be approximated
anyway.

4.3 Timing Correctness Verification

Proving the timing correctness of RTS traditionally consists of two steps. First,
the task level analysis obtains upper bound on Worst Case Execution Time
(WCET) for each task. Once the WCET bounds for each task are known, the
schedulability analysis can be performed to find out if all the tasks in the system
will meet their deadlines with the given task scheduling policy.

4.3.1 WCET Analysis

  







   
  

  
   

  
  

Figure 4.3: The histogram of possible execution times for some program. The
lower histogram shows those executions which were observed dur-
ing measurement which are only a subset of all possible executions
(the dark histogram). The image from [WEE+08].

The WCET analysis must derive the upper bound guaranties on execution time
for each task. [WEE+08] visualized the problem of WCET estimation graph-
ically (Figure 4.3). The measurements are not safe, and the results of safe
analysis are not tight. Ideally one would want to know exact WCET, but this is
not possible through measurement because it is intractable to exhaustively ex-
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plore exponential combination of inputs and hardware state of the computation.
Therefore the execution time must be analyzed by using safe approximations,
which leads to guaranteed but not tight WCET bound. [WEE+08] can be con-
sulted for further information about the methods of the timing analysis.

We would like to point out, that it is in general unfeasible to know precise local
time at the analysis point. This is because, as mentioned in the example in
Section 4.2 the time to execute the predecessors of the current point can vary
even on single execution path. Knowing the time could help the analysis to
obtain more accurate bound on memory accesses for those arbitration schemes
where the guaranties are di�erent depending on time. For example in TDM
arbitration, the response time depends on the current o�set to the slot (see
Figure 6.2) . The other example could be the schemes with replenishment period
(DPQ described in Section 6.2.3 and PBS from Section 6.2.5). The time can
be synchronized by introducing conditional delays in the code, but the waiting
penalty should be smaller than the precision gain. The relative notion of time
could be available in simple straight line of code, though this is also subject to
accuracy of cache analysis at the point.

4.3.2 Schedulability Analysis

When multiple tasks are run on the system, they will usually interfere.
They will compete for shared resources at the hardware level (processors,
buses/interconnect and memories) and possibly perform some additional syn-
chronization in software. The interference is usually variable because the in-
stances of di�erent tasks have di�erent periods. Some scheduling policy is em-
ployed to limit this variability by constraining the execution order of the tasks.
The schedulability analysis is then able to verify if all the deadlines will be
met, assuming the WCET bounds for each task instance and known maximum
interference allowed by scheduling policy.

The schedulability analysis for uni-processors is a mature research area and
has well established results. The detailed coverage of analysis methods is out
of scope of this work. It can be mentioned that the methods depend on em-
ployed scheduling technique.2 For example, for the o�ine static execution order
scheduling, the schedule is fixed upfront during the design time, so schedula-
bility can be checked by simple simulation of the schedule. For static priority
schedulers (for example with rate monotonic (RM) priority assignment), the
schedulability can be checked by calculating the worst case interference of all
the tasks (which happens when all tasks are released at the same time, so only

2The following examples assume simple task model, Section 4.2
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this particular case need to be analyzed). For some dynamic scheduling poli-
cies, like earliest deadline first (EDF) the question can be e�ciently answered
by checking utilization bound, i.e. the sum of CPU time required by all the
tasks. The scheduling for uniprocessor is nicely covered in [But11]. [CDKM02]
in addition touches some issues of scheduling on multiprocessors and distributed
computing.

The schedulability on multiprocessors is trickier, because some anomalies emerge
and the results of uni-processor scheduling are in general no longer valid. Two
main scheduling classes are used: Global Scheduling and Partitioned scheduling.
Global scheduler uses a single queue for all the ready tasks and assigns them
to available processors. This means that tasks might need to migrate to other
processor after preemption. The main problem of global scheduling is that the
single ready queue might not scale well and the overhead of migration might be
very large. In partitioned scheduling each processor gets a fixed subset of the
tasks which will be scheduled locally (i.e. migration is not allowed). Addition-
ally, because the tasks are fixed to processor, the uni-processor schedulability
results can be used. Unfortunately, finding the optimal partitioning of the tasks
between processors is NP-Hard problem. Also the over-allocation of the pro-
cessors is potentially larger than in case of global scheduling, because a ready
task can not be migrated from the busy processor to the one which is idle. The
multiprocessor schedulability results are especially sensitive to assumptions of
the system model, like task deadline equal to the period, no critical sections etc.
An in depth survey of the problems and results is covered in [DB11].

We would like to finish the overview of timing verification with the observation
that on the multiprocessors there is some flexibility of handling the task inter-
ference caused by access to shared hardware like an external memory. In the
uni-processors the cost of access to memory is traditionally incorporated into
WCET, but it might be beneficial to analyze it at the level of schedulability on
multiprocessing systems. We discussed in more details further on the example
of handling the SDRAM refresh.

4.4 Platform Requirements

The ultimate requirement for the RTS platform3 is to provide guaranties that
tasks will meet their deadlines. That is, the derived WCET bound for each
individual task will not be exceeded and that tasks will be properly scheduled
in any combination of their interference. This leads to slightly di�erent notion

3here platform is used in broad sense, combining the hardware and all the tools, including
those performing timing analysis.
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of performance, than understood by conventional computing. Next we look at
the source of RT ine�ciency and at proposals to deal with it. Finally we look
at some additional requirements, which are not strictly necessary, but allow
simplification in the analysis.

4.4.1 Performance

Intuitively, fast computer has short response time (low latency) and/or is able
to complete a lot of work in short time (high throughput). In conventional com-
puting both metrics are optimized for average case. The users prefer computer
which seemed to be two times faster most of the time, even it would occasionally
freeze for some time. Similarly, in throughput oriented computing it is preferred
to complete 2 times more jobs per minute, even if some individual jobs would
take 10 times longer to complete. Such reasoning is not applicable to RTS,
because it is not acceptable to miss even a single hard deadline.

Figure 4.4: One conventional and two time-predictable architectures with dif-
ferent best-case, average-case and worst-case execution times and
the WCET bounds. [Sch09c]

From the perspective of a single hard-RT task, the performance has two aspects:
low WCET and, more importantly, its bound. The concept is visualized on Fig-
ure 4.4 reprinted from [Sch09c]. Even though conventional (COST – Component
Of The Self) processor has the best average case performance, it is not a good
platform for hard RTS as its guaranteed performance is worst. More interest-
ingly, even though the exact WCET of conventional processor is lower than of
the TP processor A, the latter is preferred because it has better guaranteed
performance (lower bound on WCET).

Naturally, it is easier to guaranty that the tasks will meet the deadlines if it
has lower WCET bound. But the RTS is rarely composed of a single task.
The tasks would interfere at di�erent levels causing their response time to be
larger than the WCET when run in isolation. So, it is not only the latency of
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individual task, but rather collective behavior is important. That is, it is valid
and preferable to prolong the response of some task (provided that it is still
within the deadline) if this helps to meet the collective deadlines of the system.

4.4.2 Timing Predictability

In previous section we have shown that in hard RTS only the guaranteed worst
case performance is valuable. We now look at the source of execution time
discrepancy. There are several related, but slightly di�erent notions allowing to
reason about the execution time variations [PKP09]. We look at some of them
here having in mind the RT platform in general and RT memory controller
specifically.

By definition of the adjective predictable, the future behavior of the predictable
system can be estimated. Intuitively this is a very nice property for RTS, but it
is too abstract. [Sch12] contains a survey of quantifiable definitions for timing
predictability and comes to conclusion that they are still not very useful in prac-
tice. The overviewed definitions try to measure the predictability by quotients of
BCET, WCET and/or their bounds. This is problematic because exact WCET
are not known. So instead of looking for definition of predictability which could
be used to measure our memory controller. We now consider predictability as
qualitative property. We first consider the sources of unpredictability, and next
look at some of the proposed predictability related architecture properties.

As it was demonstrated on the simple task example in Section 4.2 the variability
in execution time has two main causes: input dependence and unknown hardware
state. The initial input a�ects the control flow of the program.4 The input de-
termines which conditional branch is taken and how many iterations of the loops
are executed. The unknown hardware state, for example content of the caches
can be caused by the interference of the tasks, as well as the di�erent paths of
the same task. Both factors get amplified during the WCET analysis, because
unknowns input/state have to be mapped to known safe approximations.

Reducing the uncertainties as well as allowing tighter approximations during
analysis is an active research area. [TW04] look at the threats to predictabil-
ity at di�erent levels of the developed RTS: hardware architecture, software
development for single task, task level interaction and distributed operation.
[WGR+09] cover hardware architecture features in more details. [GRW11] con-
tain survey of research e�orts dealing with sources of uncertainties.

4This happens not only directly but more through intermediate values.
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It is worth mentioning one common property of modern conventional architec-
tures that is quite hostile for RTS, namely Timing Anomaly. Timing anomaly
is a contra-intuitive situation where seemingly favorable change in conditions
causes negative overall e�ect. [Gra69] showed an example of multiprocessor
job-set which would experience the longer completion time if an extra processor
is added or the execution time of each job is shortened. [RWT+06] review the
timing anomalies in the context of RTS, provides the abstract definition and rec-
ognizes three classes of anomalies: Scheduling Timing Anomalies, Speculation
Timing Anomalies and Cache Timing Anomalies. [CHO12] propose alternative
definition and compare it against other definitions on a few examples. Some
examples of scheduling anomalies can be found in [But11].

If architecture is prone to timing anomalies, it is not safe to assume that local
worst-case will lead to global worst-case. This makes the WCET analysis more
complex and/or more lose WCET bounds by preventing the state space simpli-
fications [WEE+08]. The platform free from timing anomalies, not only leads
to better analyzability, but can also simplify some of the hardware components
as argued in the next section.

We now return out attention into two recently mentioned sources of execu-
tion time uncertainty, and look at the proposed strategies of their elimination.
One proposed way of removing input uncertainty is single-path paradigm. The
program is transformed into version where both alternatives of the branch are
conditionally “executed”.5 Similarly the body of the loops are run for maxi-
mum number of iterations, with appropriate predicates to disable the e�ect of
the unneeded iterations. The motivation and further pointers can be found in
[PKP09]. The single-path programs however introduce a penalty of WCET in-
crease caused by serialization of all the alternatives.6 The input dependence
can also be abolished through balancing all the execution paths by padding the
faster paths with delays. The simple extensions to the architecture have been
proposed to achieve this with little overhead [IE06]. This involves software vis-
ible hardware counters and the deadline instruction to stall the processor until
the counter expiration.

To eliminate the e�ects of hardware uncertainty, the notion of Timing Repeata-
bility has been proposed. Timing repeatable architecture ensures the determin-
istic execution time for given input, i.e. both the output and the time when
they are provided are always the same. [EKL+09] argues that repeatability is
more important than predictability. Clearly, it is easier to analyze programs
executed on a repeatable platform, but there are more advantages. Repeatabil-
ity allows making assertions about timing correctness of a program by testing.

5Instructions traverse through the pipeline, but the state update is predicated and will
occur only for instructions from the correct branch

6Instructions from all branches have to be fetched and pass through the pipeline
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Contrary, on non-repeatable hardware, observing correct timing during testing
does not guaranty that the correct behavior would occur when the program is
run another time (even with the same input).

In general, the timing repeatable architecture allows the variability to be present
across executions with di�erent inputs. But if input uncertainties are also elim-
inated as discussed previously the Stable Execution Time is achieved. That is
there is no variability between the best-case and worst-case execution time.

4.4.3 Timing Composability and Temporal Isolation

In a complex RTS the Timing Composability property becomes important. That
is the timing guaranties of a task should hold irrespective of the behavior of the
other tasks. This allows easier integration and certification, because execution
times of the tasks can be analyzed independently. There are some variations in
the definition of composability. [Ake10] uses stronger definition where tasks are
completely isolated, i.e. the task would have exactly same timing behavior irre-
spective of other tasks. We think that weaker property is still useful assuming
that the system does not experience timing anomalies. That is the exact behav-
ior of the task might be a�ected by the behavior of the other tasks, but timing
guaranties would still hold even during changes of other tasks. Whereas for the
stronger property, a name Temporary Isolation is more appropriate [BLL+11].

Though not strictly necessary for composability, the temporary isolation would
have advantage of fault isolation. For example, if some requestor would violate
its timing specification and start requesting more memory than promised, the
rest of the system should function properly, if possible.

4.5 T-CREST Platform

This section will introduce the T-CREST platform and highlight its main fea-
tures having the implications to memory controller design. The platform is still
in research process, and might undergo changes. The main features are:

• A homogeneous many core system with at least 32 processor cores envi-
sioned to allow a dedicated core per thread/task. The Patmos processor
core is described in [SSP+11] and more technical details in [?].

• Each core has a number of dedicated on-chip memories: data cache, stack
cache, method cache, scratchpad (SPM) and a inter-core communication
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memory. The part of the stack cache might need to be stored into external
memory on function calls if the new frame can not fit into he cache. The
external memory access will also be required if the last in-cache frame
is popped during the function return. The method cache is used as a
replacement for the instruction cache and has an advantage of more precise
state during the WCET analysis. On a miss, the method cache fetches the
whole function body7 from the external memory. Finally the scratchpad
(SPM) allocation is guided at the compile-time by the analysis algorithm
which generates the code for explicit management of SPM content by
processor. The granularity of external memory accesses will depend on
the SPM allocation algorithm.

• The cores can transfers the data between their local communication memo-
ries. The transfers are performed by statically scheduled network-on-chip.
The schedule is configurable, allowing to setup the communication chan-
nels according the latency and bandwidth requirements.

Most of the time larger memory transfers would be performed, but the memory
should also support the single word (byte) reads and writes for uncached memory
access and if fine grained scratchpad allocation is used.

7Alternatively, for larger functions, known part of it.



Chapter 5
Single-Port Controller

Implementation

This chapter explains the design and implementation of the single-port SDR
(Single Data Rate) SDRAM controller which was made during the project. We
start by looking at the general responsibility of memory controllers, and their
usual organization. Next we briefly state our reasons for targeting the older
generation of SDRAM and provide some analysis of the SDRAM interface. The
rest of the chapter provides some information on design, implementation, inte-
gration and testing. The controller evaluation is presented in separate chapter
(Section 7.1).

5.1 Responsibility and Organization of a Mem-
ory Controller

A controller is usually organized as the Single-port Controller which can be
used by single requestor only and the separate interconnect and arbitration
layer which allows the controller to be shared across multiple requestors (Figure
5.1). In this chapter we focus on single-port controller and discuss the multi-
port design tradeo�s in the next chapter. It is convenient to maintain the
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Figure 5.1: Controller Organization

same single-port controller interface for the multi-port controller to make the
arbitration transparent, but it might be beneficial to optimize the multi-port
interface. The single-port controller translates requestors’ (processors’ or DMA
controllers’) memory accesses into legal sequences of SDRAM commands. The
linear memory addresses provided to the controller are translated into tuple of
rank/bank/row/column addresses. The controller must also keep track of the
state of the SDRAM banks and ensure that all the SDRAM timing constraints
are obeyed. Usually, the controller is also responsible for issuing SDRAM refresh
operations.

5.2 Motivation for Choosing the SDR Genera-
tion

Even though the SDR is currently quite old generation of SDRAM it is still used
on some embedded platforms [BM11]. The interfacing is simple, allowing imple-
mentation not needing too much focus on the peculiarities of the signal integrity
and write/read leveling needed in latest generations of SDRAM. Finally, the last
reason for targeting SDR SDRAM generation was the use of the Terasic DE2-70
FPGA board, which is quite widespread in education. It is also currently used
for development of the Patmos processor for the T-CREST project.
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5.3 Analysis

5.3.1 Timing Parameters of SDRAM on DE2-70 Board

The Terasic DE2-70 board used during the project features two IS42S16160B-
7TLI SDRAM chips [IS407]. They are organized as 16-bit words in 4 banks
of 8192 rows by 512 columns. The chips are speed grade 7, so according the
specification they can run up to 143 MHz (with CL=3) or 100 MHz with CL=2.
The general timing parameters of the SDRAM were explained in the Timing
parameters section of the 3 chapter. The values in the Table 5.1 lists SDRAM
parameters for the IS42S16160B chip used during project. While the Table 5.2
list the parameters relevant for signal integrity.

Table 5.1: Relevant SDRAM(SDR) timing parameters

7 ns clk 8 ns clk 10 ns clk Min Max
(cycles) (cycles) (cycles) (ns) (ns)

Clock Frequency (MHz) 143 125 100
tCAC CAS Latency 3 3 2
tRRD Row to Row Delay 2 2 2 14
tRCD Row to Column Delay 3 3 2 20
tRAS Row Access Strobe 7 6 5 45 120K
tRC Row Cycle 10 9 7 67.5
tRP Row Precharge 3 3 2 20
tCCD Column Command Delay Time 1 1 1
tDPL Input Data to Precharge 2 2 2 14
tDAL Input Data to Activate 5 5(4) 4 35
tRBD Burst Stop to High Impedance tCAC tCAC tCAC
tWBD Burst Stop to Input in Invalid 0 0 0
tPQL Last Output to Auto-Precharge 1-tCAC 1-tCAC 1-tCAC
tQMD DQM to Output 2 2 2
tDMD DQM to Input 0 0 0
tMRD Mode Register Program Time 3(2) 2 2 15
tREF Refresh Cycle (8192 rows) 64M

5.3.2 Separation between Transactions

We now find the minimum number of cycles needed between two operations can
be issued. We first look at the operations with random address, and later at the
operations with known banks, which will be used in next section to find some
e�cient command sequences for interleaved transactions.
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Table 5.2: Timing requirements for valid signaling in ns

Symbol Parameter Min Max
tAC2 Access Time from CLK (CL=2) 6.5
tAC3 Access Time from CLK (CL=3) 5.4
tOH2 Output Data Hold Time (CL=2) 2.7
tOH3 Output Data Hold Time (CL=3) 3
tHZ CLK to High Impedance Time 2.7 5.4
tLZ CLK to Low Impedance Time 0 0
tSU Input Setup Time(1) 2
tH Input Hold Time(1) 1

For random addresses the worst case is when consecutive accesses happen to
the di�erent rows of the same bank. Because we are interested in optimizing
worst case performance, we use the closed page policy, because it assures smaller
worst case latency. The read transaction would require: row activation, CAS
latency, burst transfer cycles and precharge. In this case the precharge can be
overlapped with last few data transfers cycles, the t

P QL

term in future equation
accounts for this. The +1 is added, because t

P QL

contains the first cycle of the
Precharge (see Section 3.4.2) The max is used to satisfy the t

RAS

for smaller
burst lengths (BL), and the whole sum must always be at least t

RC

:1

Cycles
RandomRead

= max(t
RC

, max(t
RCD

+t
CAC

+BL≠(t
P QL

+1), t
RAS

)+t
RP

)

The Write transaction would require: Precharge, Activate, Burst transfer, Write
recovery cycles. The write recovery cycles are t

DP L

≠ 1, because t
DP L

contains
the cycle of the Precharge operation (see Section 3.4.2). Again, the whole sum
must be at least t

RC

.

Cycles
RandomW rite

= max(t
RC

, max(t
RCD

+ BL + (t
DP L

≠ 1), t
RAS

) + t
RP

)

The separation of operations to di�erent banks is a�ected by the length of the
burst and two timing parameters: the separation between Activates (t

RRD

) and
the Read/Write commands (t

CCD

). For SDR the smallest meaningful burst
length for interleaving is 2, because each operation requires at least two com-
mand bus cycles (Activate and Read/Write). Because the t

CCD

and t
RRD

are
usually not greater than 2 clock cycles, the separation becomes BL. This means
that two consecutive memory operations of the same kind (Read or Write), can
result in uninterrupted transfer on the data bus. It is only left to look at sep-
aration between operations of di�erent direction. The Read after Write is con-
strained by t

RT W

, but for SDR memories this is always one clock cycle (that is
commands can be issued in consecutive cycles). Because the write data transfer

1All the timing parameters used here are rounded to full clock clycles.
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starts during the same cycle as write command, the minimal separation between
the commands is BL as in previous case, but this creates t

CAC

idle cycles on
the data bus. That is the Read command is issued in the next cycle after last
data written, but read data comes only few cycles later. The Write after Read
needs an extra t

CAC

+ 1 cycles between command separation. The t
CAC

are
needed to let the read data to finish, and 1 extra idle cycle, which is needed to
allow the tristate bu�ers of the SDRAM to enter become high impedance before
the controller starts driving the data onto the bus. In principle this gap could
potentially be optimized away, because SDRAM does not require the full cycle
to enter high-impedance (Section 5.3.1), but this would require ensuring that
the FPGA starts driving the data bus later.

Table 5.3: Minimal separation between SDRAM(SDR) transactions. The
subscriptn≠1 denotes previous operation, and bn≠1 the bank it used.
BL denotes Burst Length, all other timing parameters are repre-
sented as number of full cycles.

Readn≠1(bn≠1) Writen≠1(bn≠1)
Read

n

(b
n

!=bn≠1) BL BL
Write

n

(b
n

!=bn≠1) BL+tCAC+1 BL
Read

n

(b
n

=bn≠1) max(tRC,tRCD+tCAC+ max(tRC,tRCD+
Write

n

(b
n

=bn≠1) +(BL-(tPQL+1)+tRP)) +BL+(tDPL-1)+tRP)

Table 5.4: The maximum percentage of data transfer cycles for random oper-
ations. The bottom part of the table contains numbers for inter-
leaved transactions from next section. The timing parameters are
for 100 MHz operation of SDR memory on DE2-70 board. With
the higher frequencies, more cycles will be needed and e�ciency
will be lower.

BL CyclesRead CyclesWrite BwRead BwWrite
1 7 7 14.28% 14.28%
2 7 7 28.57% 28.57%
4 8 9 50% 44.44%
8 12 13 66.66% 61.53%

2*2 8 8 50% 50%
2*4 8+3 8+3 72.72% 72.72%

2*4+2*4 8+3+8
2

8+3+8
2 84.21% 84.21%

The separation requirements are summarized in Table 5.3. The worst case frac-
tion of maximum bandwidth for di�erent burst lengths is presented in Table
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5.4. The top part of the table lists the numbers for the simple transactions.
The data is calculated according the presented formulas. For slotted schemes
like TDM (Section 6.2.2), the cycles of the longer write transaction will have to
be reserved, so both direction would have the same percentage from Bw

W rite

column. The estimates in the table do not account for cycles wasted for re-
fresh and will be even lower. The bottom of the table contains 3 examples of
interleaved transactions, which we describe in the next section.

5.3.3 Interleaved Transactions

A0 A1 R0 R1 A0 A1 R0 R1
I0 I0 I1 I1 I0 I0 I1 I1

A0 A1 W0 W1 A0 A1 W0 W1
O0 O0 O1 O1 O0 O0 O1 O1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Cycle:

Cmd:
Data:

Cmd:
Data:

Figure 5.2: Four word operations interleaved over two banks. The top part
shows back to back read operations, while the bottom part shows
writes. The change of the read/write direction does not incur
additional separation, because in both cases the new activate can
be issued in cycle 8. There will also be required separation on the
data bus, because the read finishes transfer in cycle 9, while the
write starts it in cycle 11.

As it was shown in the end of Section 3.4.2, splitting longer access into sev-
eral smaller transactions interleaved across several banks has the advantage of
shorter cycle between unrelated operations. The same timing parameters as
in the previous section are assumed. The minimal separations for both di�er-
ent and the same banks from the Table 5.3 can be used to find the command
sequences for e�cient interleaved transactions. We present three manually com-
posed sequences for operations of 4 and 8 words. The interleaving for longer
operations can be created in the same fashion. Some conventions are used in
the following figures. A < i >, R < i > and W < i > denote the activate, read
and write command to bank i, while I < i > and O < i > show the data input
and output from the bank i. The commands of two consecutive transactions are
color coded, because they interleave in the third example (Figure 5.4).

Figure 5.2 shows operations of 4 words with separation between operations of
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A0 R0 A1 R1 A0 R0 A1 R1
I0 I0 I0 I0 I1 I1 I1 I1 I0 I0 I0 I0 I1 I1 I1 I1

A0 W0 A1 W1 A0 W0 A1 W1
O0 O0 O0 O0 O1 O1 O1 O1 O0 O0 O0 O0 O1 O1 O1 O1

A0 R0 A1 R1 A0 W0 A1 W1
I0 I0 I0 I0 I1 I1 I1 I1 O0 O0 O0 O0 O1 O1 O1 O1

A0 W0 A1 W1 A0 R0 A1 R1
O0 O0 O0 O0 O1 O1 O1 O1 I0 I0 I0 I0 I1 I1 I1 I1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 5.3: Eight word operations interleaved over two banks. First two rows
show back to back reads and writes, the next rows shows that
happens on the switch.

8 cycles. The Read/Write commands are used with auto-precharge to save
the command bus from explicit precharge. The advantage of this approach
over the non-interleaved transaction from the previous section, is 1 cycle saved
for Write operation, making the slot shorter. Though the bandwidth gain is
not impressive, the overall WCMAT would be reduced from N ú 9 to N ú 8
cycles, which might be noticeable for larger number of requesters. To get better
bandwidth, the operation size has to be increased.

Figure 5.3 shows example of 8 word operation which can be repeated every 8
cycles. It can also be interleaved over the four banks almost exactly the same
way (Figure 5.4), but it results in an additional latency of one clock cycle.
The sequences are optimal with respect to e�ciency, because the data bus can
potentially be used in each cycle, except for Read/Write switches, resulting in
3 unused cycles for Read-Write-Read sequence. The length of the slot can be
created to accommodate the longest separation between Activates of subsequent
operations. In this example it would be 11 cycles needed for Read if it is followed
by Write, and would allow to guaranty 8

11 = 72.72% of bandwidth (minus some
used by refresh). But the extra 3 cycles would only be needed in every second
slot (for alternating operations), this would require extra logic in the controller
and possibly the arbitration/interconnect, but bandwidth guaranty could be
raised to 8+8

8+3+8 = 84.21%. The WCMAT would also be reduced from N ú 11 to
N ú 9.5 cycles.
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Figure 5.4: Eight word operations interleaved over four banks.

5.3.4 Performing Refresh

The issues of performing DRAM refresh in analyzable way were presented in
Section 6.3.3. The SDR SDRAM memory targeted by the controller supports
all the available options.

The dedicated Auto-Precharge command needs the same amount of time as
regular pair of Activate and Precharge (t

RC

), so it does not impact the slot size
for simple transactions. While for interleaved transactions the refresh should
be performed manually by Activates interleaved in a same way. That is the
refresh of the first bank can be overlapped with the previous transfer from the
last bank etc. In case of interleaved burst of length two (for example Figure
5.4), the Precharge commands won’t fit in to the transaction sequence. The
write operation sequence with disabled data mask signal can be used to perform
refresh in such case.

5.3.5 SDRAM Initialization

The controller has to perform the SDRAM initialization sequence:

1. Wait for power-up and CLK stable.
2. No operation for 200us.
3. Precharge all banks.
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4. The sequence of 8 Auto-Refreshes cycles, with the usual timing require-
ments.

5. Configure the device by programming the Mode Registers.

In case of SDR SDRAM, the initialization sequence is simple and requires some
additional states in the controller’s state machine. Though some controllers
delegate this responsibility to software.

5.4 Design

Even though interleaved transaction have potential to utilize the data bus better,
to start with, we have decided to build controller using simple, non-interleaved
transactions. The simple transaction controller issues the same sequence of
commands for di�erent configurations. This way it can be made configurable,
where the target frequency and burst length are specified as generic parameters
and all the waiting cycles are calculated automatically by the synthesis software.

Controller can later be extended to use the bank interleaving. This would po-
tentially require few di�erent controllers as the command sequences for each
configuration could be di�erent. As it can be seen from presented examples
of interleaved operations, the command patterns can be very regular, so the
implementation would be simple.

The controller needs to perform predefined sequence of actions for each oper-
ation, and this can be controlled by a state machine. First the initialization
sequence has to be performed, after which the controller waits for memory ac-
cess requests. The mealy type state machine is chosen to save one clock cycle
of latency on the requester’s interface. The mealy type does not introduce any
bad e�ects on the SDRAM interface, because the output signals are registered
in IO cells, to have good clock-to-output timing.

It is decide to use non-proprietary interface standard to allow the reuse of the
controller. The Open Core Protocol (OCP) interface is chosen. The out of band
signals defined in the OCP protocol are used for manual triggering of refresh (if
the option of automatic refresh is disabled).

5.5 Implementation

The implementation has following features:
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• Simple RTL state-machine in one entity. The result is comprehensible and
easily maintainable code which is synthesized into reasonable implemen-
tation by standard vendor tool chain (see Section 7.1)

• The code is meant to be portable so vendor specific components/design
patterns are tried to be avoided. The only vendor specific component is the
PLL/DCM or similar which is necessary for higher operation frequencies,
but it is instantiated externally to the controller. Also the use of IO-Block
registers has to be specified in vendor specific way. For Altera the signal
attributes are used, but .qsf can also be used. For Xilinx, this can be
specified on per signal basis in constraint file.

• All the possible parameters are configurable through generics:
– The signal widths for both requester’s interface (address/data) and

SDRAM interface (chip-selects/banks/address);
– Address mapping from linear address of the requester to rank,bank,row

and column;
– Burst size (only the elementary sizes directly supported by the

SDRAM specification);
– Frequency, access latency, refresh period and other timing parameters

from chips specification. Timing parameters are specified using the
VHDL time constants and are translated into required number of
clock cycles according the specified clock period automatically.

• Uses registers in IO-Blocks for better setup times and clock to output
delay.

• Uses wait states and binary counters to insure timing between SDRAM
bus commands. These counters were su�cient for the needed wait ranges.

Timing analysis reported maximum frequency is above 200 MHz (the highest
speed of modern SDR chip), while memory used on DE2-70 can only support
143 MHz. The critical path goes through shared 15-bit counter used to wait for
200µs during the SDRAM initialization and for measuring the period between
refresh need to be invoked. The path can be optimized in few ways if needed.
First of all, both counting and a check for the counter expiration is performed
in the same cycle, this can be split into two cycles by introducing a register for
counter expiration signal. The carry chain can also be broken the same way,
because the exact value of the counter is not needed, rather than its expiration
condition.

The 3 ns skew is introduced between the SDRAM clock and the clock used for
the controllers state-machine, to adjust the clock edge with the data for the same
setup/hold slack for both read and write operations as described in [Alt09].
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5.6 Integration

This section describes the controllers integration with two processors for RTS.

5.6.1 Integration with the Patmos Processor

This section describes the controllers integration with the Patmos processor
(Section 4.5). At the time of writing the Patmos was still being developed. The
support for caches was not yet finished and the processors pipeline used simpli-
fied access to local memories without stalling. The integration was performed
through simple I/O controlled DMA (Direct Memory Access) like device. The
device can be asked to perform external memory transfers with its local bu�er.
The single cycle access is provided to the bu�er which does not require stalling
the processor. Instead the processor polls the device status to find out if the
memory transfer has been completed. Some more details on the device can be
found in Section D.3.

5.6.2 Integration with the JOP Processor

JOP [Sch09a] is time-predictable processor for RTS implemented in Java. Even
though the JOP wasn’t the main target of this work, the initial integration was
performed, because it is envisioned to also use the controller in the JOP based
systems.

The JOP processor accesses the memory and I/O devices through SimpCon
[Sch09b] interface. The interface is optimized for processor’s pipeline. The
processors drives the output signals for one clock cycle and waits until slave
completes the transaction. The interface allows the slave to perform the early
completion acknowledgements, by providing the master a hint on how many
wait cycles are needed before the data is ready. 2-bit rdy_cnt signal is used
for this purpose, where the value 3 has a special meaning of unknown number
of cycles. The slave is required to keep the values of the input data and the
acknowledgement after the transaction is complete.

A small VHDL entity was created to adapt the controller to SimpCon inter-
face. Non-optimized adaptation is used, without early acknowledgement and
controller configured to burst length of 1. When the transaction is issued the
adapter sets the SimpCon rdy_cnt signal register to 3 (busy with unknown
completion time). The command, address and wrdata signals are also registered
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to keep them stable as required by the controller. When the controller acknowl-
edges the data, the rdy_cnt register is reset to 0 (ready, i.e. zero wait cycles
left), and register the input data for the read operation.

The first deficiency can easily be solved, because controllers keeps track of when
the data will be available, and this information can be used for rdy_cnt. Solving
the second deficiency requires modification of the controller and/or extensions
to SimpCon interface. The SimpCon supports pipelined transactions, and could
be used for SDRAM if some signals are added to denote when the transaction
corresponding to the same burst are finished. The controller could than use this
information to start the bank precharge. In addition the controller would need
to be modified to support pipelined transactions.

5.7 Testing

Two testing methods are employed: VHDL testbench for controller simulation
and a test programs for checking the controller operation in the on FPGA sys-
tem.

5.7.1 VHDL Testbench

The testbench (TB) for RTL level simulation of the controller was used to test
its behavior in isolation. The TB was also useful for locating the source of flaws,
because the complete observability of the controller’s state is available during
the simulation.

The initial TB source was reused from the one created for the patmos integration
with TU/e memory controller (Appendix D). The approach has an advantage
that the controller is tested at the processors interface, but complicated the TB
unnecessary. The TB created from scratch operating at controllers interface
could be a cleaner alternative.

The TB performs writes and reads with di�erent addressees and check that the
read data matches the one written to that location. The mismatched entries are
reported. There are also flags controlling the verbosity level, to control the re-
porting of the transactions on both the controller and processor interfaces. The
reporting allows to run the TB in batch mode, for simple check of correctness
without the need to examine the signal waves.
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The TB does not try to test all the configurations supported by the controller,
because there are many. Instead, one configuration is tested, which is selected by
specifying the configuration constants. The Refresh period was configured to a
small value to check the Refresh logic interference with the regular transactions.
While the controller’s conformance with the SDRAM timing constraints is ver-
ified by the SDRAM simulation model. The initial use of the model introduced
some simulation mismatch. The reason was the clock gating performed inside
the model, which resulted in delta cycles discrepancy between the controllers
clock and the internal clock of the SDRAM model. The problem was resolved
by introducing a small propagation delay for signals on SDRAM interface. This
way the data sampled by both clocks was corresponding to the same logical
clock cycle, and behavior was equivalent to synthesized implementation.

5.7.2 In System Tests

The FPGA synthesized version is tested in test programs executed by Patmos
processor (Section 4.5). This way controller is tested together with the integra-
tion logic. A simple controllers test was also performed on the JOP processor.

5.7.2.1 Patmos Test Programs

The synthesized version of the controller was tested on the FPGA configured
with a system composed of Patmos processor, memory controller accessible
through I/O controlled DMA-like device (Section 5.6.1) and an UART for com-
munication with the PC over RS-323 cable. The test programs were written in
C programming language. At the time of writing only C programs with lim-
ited features could be executed successfully by the available infrastructure. In
required some trial and error e�ort and examination of the compiler generated
intermediate code before two simple test programs were made.

The first program (test_sdram.c Appendix A) uses only small part of the mem-
ory. The test consists of few steps. First the memory mapping of the I/O device
is checked. Next some strings are written to the memory, read back for com-
parison and are output to serial terminal for examination. The second program
(test_sdram_full.c) tests the whole addressable memory range. Distinct val-
ues are written into each memory location. Before the read-out and comparison
is performed, the program waits for any input from the serial terminal. This is
used to check if the SDRAM is refreshed to preserve the correct values. Program
report the error when it occurs as well as the number of all errors discovered at
the end.
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5.7.2.2 JOP Hello World Test

The simple test was used to check the JOP integration (Section 5.6.2). The JOP
system with SDRAM as the only external memory was configured on FPGA.
Than the “Hello World” program was transmitted to the FPGA over the RS-
323 cable. The bootloader received the program into the external memory and
executed it from there.



Chapter 6

Multi-Port Controller Design

This chapter discusses the real-time memory controller for multiprocessors con-
tains a discussion of the problem domain and an overview of the possible so-
lutions and their tradeo�s. We start by looking at the controllers e�ciency
requirements and extend the task model from Section 4.2 which would allow to
compare the e�ciency of the memory controller arbitration schemes. Next we
consider di�erent arbitration schemes and see their possibilities and weaknesses.
Then we look at the tradeo�s stemming from SDRAM interface properties.

6.1 Controller’s E�ciency

It has been suggested in the Chapter 4 that the resource over-allocation is un-
avoidable in hard-RTS. This is because additional resources must be reserved to
cover all the uncertainties in worst case. The e�cient memory controller mini-
mizes the over-allocation by limiting the uncertainties. Unfortunately it is not
only intractable to completely eliminate over-allocation, but it is also impossible
to create a memory controller which will be optimal in general. The platform
can only be optimized for particular class of use cases. We will try to point some
abstract properties of the applications that might a�ect the e�ciency of partic-
ular controller organization. Next we will extend the task model to demonstrate
some examples of performance variations for each arbitration scheme.
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6.1.1 Modeling Memory Requirements of a Task

   

    




Figure 6.1: The single instance of the task viewed as a sequence of computa-
tions and memory accesses. Top: the task execution if the memory
would always be granted. Bottom: the task got blocked for some
time on each memory access.

In Section 4.2 we presented the view of a task consisting of many possible
execution paths. From the perspective of the controller it is useful to have a
more detailed view of a single path. The execution time can be divided into
computation and memory access parts. Figure 6.1 shows a single instance of the
task from its release to the deadline. The top part shows the optimistic execution
where every memory access is performed immediately by the controller. One
can also see that there is some slack between the completion of the task and
its deadline. This slack is a “safety bu�er” which must be reserved to cope
with blocking uncertainties. The bottom part of the figure shows more realistic
execution where the task experienced blocking on each memory request, and
hence its completion (execution time) was delayed. To meet the deadline the
sum of all the blocking should be within the available slack.

Because we are interested in the memory controller’s point of view, the notion
of the computation should be interpreted as any activity not requiring access to
external memory. In addition to regular computation with processor registers
this could include on-chip memory access (cache-hit, scratchpad read/write) or
just a busy waiting. The important part is that the bounds of the duration
of each computation fragment can be calculated by WCET analysis. If the
predictable architecture is used the WCET of the single task instance is the
sum of WCET of computation fragments and WC memory access times. Here,
memory access time is a sum of fixed time needed for a transfer and a varying
blocking caused by waiting for access to shared resource.

The example leads to two metrics of the controller’s e�ciency. From the per-
spective of the single task the controller should minimize the memory access
time, i.e. have low bounds on blocking times. But from a global perspective of
the system the memory bandwidth over-allocation should be minimized (obvi-
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ously with the condition that deadlines are still met, i.e. the sum of blocking
time is less than the execution time slack). This is because on a multiprocessor
computations can happen in parallel, while memory access parts are serialized
by the single memory. That is with su�cient number of cores the performance
of the system will be limited by the available bandwidth. Both metrics are
important for e�ciency of the RTS, and we will try to estimate them when
comparing di�erent memory access scheduling schemes.

6.1.2 Notation

We would like to present the notation used for calculation of processor blocking
time and memory bandwidth over-allocation in following sections. We will not
try to rigorously calculate precise quantities, instead we make few simplifications
which will allow us to make simple and intuitive estimates. We assume the slot-
ted access to the memory, where fixed number of words can be read(written)
from(to) the memory. We neglect the time needed to propagate the memory
request from the processor to the memory controller, and to transmit the data
back. We also assume the computation time to be represented in integer num-
ber of slots. The simplifications allow to have common unit of measurement
for computation and blocking times as well as for memory demand and over-
allocation:

• M: the total number of memory transfer slots needed by the task in some
interval of interest (for example the period of a single task or hyper-period
of all the tasks). That is, the M is cumulative memory bandwidth in this
interval. If the precise number is not known, the worst case upper bound
is assumed.

• Mwaste: the memory bandwidth over-allocation, i.e., a number of slots
allocated for the task that are never used. The slots that are allocated for
worst case demand, but are not used for some inputs are not considered
wasted here, because they are necessary for worst case behavior.

• C: the total on chip computation time excluding the external memory
operations.

• B: the total time blocked on memory access.
• T: task’s period time, i.e. separation between two instances of the task.
• D: task’s deadline time, relative to the task release time. In simple task

model this is equal to T .
• N: number of requesters.
• k, n: number of task allocated and the total number of slots in TDM

allocation period.
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6.2 Memory Access Scheduling

We have made some reasoning about the tasks demand of the memory, now we
will overview what options are available for sharing the memory among multiple
tasks. We introduce the di�erent schemes by presenting some general scheduler
properties. And later we go through the mentioned schemes and look at how
each can be used in RTS.

6.2.1 General Scheduling Classification

Scheduling is about organizing in time the access to some shared resource. Some-
times the term access arbitration is also used for this purpose, though the ar-
bitration is more a local low-level decision of who will use the resource now.
While the scheduling is a higher level idea of how the resource should be shared.
[Ern04] uses following classification of the schedulers :

Static execution order scheduling is compile-time precomputed schedule.
Each computation, memory access or communication gets assigned fixed
time interval. The global state of the system is modeled during schedul-
ing and the resource contention is avoided. This approach is similar to
for example train schedules, where each train is assigned fixed location
for each time. The periodic tasks are handled by creating the schedule
for a hyper-period (least common multiple of all the periods), which is
then repeated all over again. The created schedule is fully determinis-
tic, so interference uncertainty is fully eliminated, but creation of optimal
schedules is an NP-hard problem, and it is thus only possible for small
systems with small hyper-period. If it is possible, then because the dedi-
cated processors are available per task, only the memory access needs to
be scheduled and it can be implemented as a TDM based schedule with
arbitrary allocation described in Section 6.2.2, though the period would
probably be significantly larger.

Time-driven scheduling divides the time into slots and assigns them to re-
questers independent of the global state of the system. Two subclasses
can further be distinguished:
Fixed time slot assignment to requestors. It is decided upfront at

which relative time the requester will be allowed to use the resource.
The di�erence from the static execution order scheduling is that the
full system state is not modeled, and it is only the slot assignment
that is deterministic. This covers di�erent variations of time division
multiplexing (TDM). Each requestor periodically gets an exclusive
access to the resource. The main advantage of TDM is that re-
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questers are isolated, i.e. the same service is provided independent of
the activity of other sequesters. The drawback is that because time
slots are exclusive, the idle slot can not be used by other requestor.

Dynamic time slot assignment does not fix the assignment upfront.
Instead it will depend on the runtime behavior of requesters. For
example round-robin (RR) grants access to next interested requestor
in cycling order. This way requestor can not predict its slot location,
as slots can be shrinked or omitted depending on access pattern of
other requesters.

Priority driven scheduling distinguishes requestors according to importance,
i.e. higher priority requestors are serviced before the other. Again, there
are two subclasses:
Static priority assignment associates fixed priorities to requestors,

which do not change during the whole system use.
Dynamic priority assignment will change the requestors’ priorities ac-

cording some rules.

We further mention two other properties often used when describing schedulers:

work-conserving scheduler will always grant access to the shared resource if
at least one requestor is interested. Or analogously, the requestor can only
be blocked if some other requestor is using the resource. It might seem
counteractive at first, but a non-work-conserving scheduler can provide
better latency guaranties in some context (Section 6.2.4).

preemptive scheduler can stop currently serviced requestor in favor of later
arrived more urgent request. Early generations of SDRAM actually sup-
port interrupting the currently active burst transfer, but this does not
provide much benefit if small transfers are used. The e�ect of preemption
for larger block transfers can be achieved by always performing it as a
sequence of smaller transfers and doing fine grained arbitration.

6.2.2 TDM: Time Division Multiplexing

The main advantages and disadvantages of TDM stem from its static nature.
The static, up-front fixed knowledge could allow the analysis to make tighter
bounds and allow the hardware to be optimized. On the other hand this does
not allow adapting to runtime conditions.

Because of its static allocation the TDM is not work conserving, so precious
memory bandwidth is wasted even when there are requesters waiting for it.
However compared to work conserving Round Robin discussed in next section,
the TDM allows to predictably overlap the computation with the memory access
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waiting, so if the computation is shorter than the separation between allocated
slots, the waste is eliminated and the lower latency is provided. For system with
many requesters, the period between the allocated slots will be large, usually
there might be enough time to complete the computation. Finally, it is simple to
incorporate best e�ort requestors in the idle slots. So if the system contains some
non-RT tasks they can consume the potentially wasted bandwidth. Moreover,
as we show later, the amount of bandwidth over-allocated by hard-RT task (i.e.
left to other) can be calculated, so soft-RT can also be supported to some extent.

The TDM is easy to analyze. The requesters are isolated, so timing repeata-
bility and composability can be maintained. The isolation allows making the
whole analysis at the intra-task level (i.e. WCET analysis) without the loss
of precision. Moreover the worst case memory access time (WCMAT) can be
precise if the time o�set in the allocation table is known at the WCET analysis
point. For allocations with the regular period the memory request has a side
e�ect of synchronizing to the slot table. For example for multiple read requests
with known length of the intermediate computation, only the first request would
need to assume the WCMAT, while for subsequent requests the exact latency
is known.

The memory bandwidth over-allocation for one tasks instance is approximately
equal to:

M
waste

= T
k

n
≠ M (6.1)

Here the T k

n

and M are respectively the total allocated and the sum of used
memory bandwidth during the one task’s activation period T (T is equal to
the task’s deadline in the simple task model). k/n represents the fraction of
allocated bandwidth, where n is number of slots in the slot allocation period, and
k is number of slots allocated to the task. The CPU over-allocation, i.e. the time
wasted while being blocked on memory requests, depends on the distribution of
the memory requests. For the regular allocations with equal separation between
slots the CPU blocking in worst case is equal to

B
max

= M
n

k
(6.2)

Here n

k

is worst case latency for one request and should be updated appropri-
ately for the arbitrary slot allocation. The worst case occurs if the memory is
requested in one big chunk, or all the requests happens to arrive one cycle too
late and need to wait a whole period until the next slot. For the exact esti-
mate the computation cycles that are overlapped with memory blocking must
be subtracted from the worst case blocking (i.e. in worst case no computation
is overlapped).

Few interesting observation can follow from the interdependence of the equations
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6.1 and 6.2. The tasks period is usually specified by the application domain, and
is fixed. So the only way to reduce the bandwidth waste is to reduce the number
of allocated slots k (eq.6.1). But this has an e�ect of increasing the B

max

and
can only be performed until the blocking is smaller than the slack separating
the WCET and the deadline. So it is essential for the WCET analysis to find as
much guaranteed overlapping as possible, because the pessimism of eq.6.2 leads
to unacceptably high over-allocation:

Mpessim.anal.

waste

Ø (C + M) k

n
(6.3)

Side note: Derivation of eq.6.3. Tasks computation time is M + C + B (a
sum of memory use, computation and blocking). Because the deadline must
be met, the T Æ M + C + B and because it also has to be met in worst case,
the T Æ M + C + B

max

. If the inequality is substituted into equation 6.1 and
simplified, one would get that M

waste

Ø (C + M) k

n

.

The inequality 6.3 quantifies the minimum bandwidth over-allocation with un-
known and hence pessimistic blocking (eq.6.2), but optimal task period/deadline.
That is the case when no extra slack is left for task completion and in worst
case the task finishes just before the deadline. For the tasks with extra slack
the waste increases as seen in eq.6.1. The equation 6.1 also shows that the over-
allocation increases for tasks whose deadline is smaller than the period. This
can be very bad for tasks with tight deadline and a large period. This is because
the allocation is made for the whole period, while it has to be high to provide
guaranties in short deadline time.

The inequality 6.3 can be interpreted in following way. To provide M “units” of
memory, M k

n

are wasted because of slack needed to cover blocking uncertain-
ties, while C k

n

are wasted because no computation is overlapped with blocking.
For small memory transfers, at least some overlapping is likely to be present in
a task, and the change in the slot allocation would change the amount of over-
lapping if it is bad. But for transfers requiring multiple slots, the overlapping
is zero (i.e. max blocking) for non-first fragment. So each transfer of multiple
slots unavoidably contributes to over-allocation.

We now calculate an optimistic lower bound on memory over-allocation. The
best case is when there is no blocking and the computation is totally overlapping
with the waiting for the slot. That is the task is a sequence of n

k

≠ 1 slots of
computation followed by single slot of memory transfer. This leads to the obser-
vation that in the best case only C

overlapped

= M
count

( n

k

≠ 1) part of computa-
tion can be performed without the over-allocation, the rest (C ≠ M

count

( n

k

≠ 1))
will lead to unused memory slots. The M

count

denotes the number of separate
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memory transfers, which is the same as number of first slots.

Mopt.anal.

waste

Ø (C ≠ M
count

(n

k
≠ 1) + M ≠ M

count

) k

n

Mopt.anal.
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count

n

k
+ M) k

n
(6.4)

The plain TDM has very simple and e�cient hardware implementation, but
has limited application for tasks with di�erent memory demands, because the
resource is shared equally. Fortunately the flexibility can be easily added by
more elaborate slot allocation, i.e. mapping of the time to owner of the slot.
The plain TDM is a multiplexer controlled by the modulus-N counter (where
N is number of requestors). Arbitrary allocation can be obtained, by insert-
ing some logic or memory between the counter and the multiplexer to map the
time to slot owner Maybe drawing would make it obvious to everybody}. The
translation can also be performed through a table to create arbitrary slot allo-
cations. Finding the optimal allocation for larger task sets is computationally
intractable for the same reason as in the static execution order scheduling. But
suboptimal allocation does not violate safety, so heuristics can be used to find
one in reasonable time.

6.2.3 RR: Round Robin

The RR is work conserving so it allows better utilization of the memory band-
width. The utilization is improved because the idle slots are consumed by wait-
ing requesters, and also because there is no fragmentation created by the slots.
That is the TDM can only service requests at slot boundary (for fine grained
TDM), while RR can start serving requests at any time.

The RR also provides fair sharing of resource most of the time. Requesters get
equal share under full load. For random request arriving patterns, the requesters
would get a statistically equal share in the long run. If some requesters are
active while the other are idle, the RR allows the active ones to consume all the
unused time more or less fair. The fairness of the RR depends on the request
arriving pattern, and exact fairness is possible only if all requests are pending,
because idle requesters are skipped. Such a behavior improves the average case
performance because the scheduler adapts to current demand. More demanding
requesters have better chances to get bandwidth from those not needing it. But
the average case performance is of little use for hard-RT system as reasoned in
Section 4.4.1.
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Figure 6.2: The worst case response comparison of TDM and RR arbitration
schemes. The time 0 corresponds to requestor’s slot in TDM. The
slot period T is equal to slot length * N (number of requestors).
Response is time of waiting to be served and the memory latency
l. The RR response graph is a straight line here just as a simpli-
fication to show that it is “linearly increasing”, in reality it would
be the step function with small step of scheduling granularity (for
example of one cycle).

The RR is used in RTS because it has bounded response time. Under full load
(worst case) its behavior is considered equivalent to TDM. Though under full
load, the WCMAT is the same for both TDM and RR, the reference point is
di�erent most of the time. For the RR the WCMAT is guaranteed from the
time the arbiter sees the request, while for the TDM the biggest WCMAT is
only possible at point when request just missed its slot. In other words, timing
guaranties provided by RR are always as bad or even worse than TDM (Figure
6.2). The pessimism of RR could theoretically be reduced if the number of
total competing requesters at current WCET analysis point can be bounded.
Though, if such information would be available, the TDM could also exploit it
through configuration of the slot allocation.

Naturally the maximum blocking for RR will be equal to the one derived for
TDM in eq.6.2, though for RR this can not be reduced by the analysis only if
the number of requesters is reduced:

B
max

= M
N

1 (6.5)

More surprisingly, the better bus utilization of RR does not allow it to reduce
the memory bandwidth over-allocation (eq.6.1):

M
waste

= T
1
N

≠ M (6.6)
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This is because the controller must cover the worst case when all the requesters
are busy at the same time. The formulas are exactly the same, with only
cosmetic di�erence in bandwidth share. The RR provides guarantees of equal
memory share, hence 1

N

factor is used. While the TDM allows some flexibility
in sharing the memory in some other proportions k

n

.

Finally, the hardware implementation of RR is more complex than of TDM.1
Incorporating the best e�ort tra�c in bandwidth “unused” by hart-RT tasks is
not as simple. It is usually done by allowing some number of non-hard RT tasks
to get access to the memory after full round of hart-RT tasks.

An RR based scheme called Dynamic Priority Queue (DPQ) [SRK12b] was
proposed to allow not equal sharing of the bandwidth among the requesters.
Each requester gets assigned budged in replenishment period and requesters are
served RR until they have a budget left. To benefit from the replenishment
period, the WCET analysis must know to which period the current request
belongs, and how many requests were made in this round already.

Even though we have shown that RR does not provide advantages over the
TDM for hard-RTS. Its average case performance is usually slightly better, so it
could be used with advantage for non-RT tasks. [PS12] made some benchmark
comparison of TDM vs. RR on predictable chip multiprocessor. They used a
simplified version of RR with one cycle empty slot per idle requester. The system
with simplified RR achieved about 10% higher speed-up than TDM based for
some of the benchmarks on 8 cores.

6.2.4 Hybrid TDM-RR

[SRK11] describes a hybrid TDM-RR arbiter which they call Priority Division
(PD). The implementation details are not presented, but straightforward imple-
mentation would use Programmable Priority Encoder, like the RR. While the
RR changes the priority after some requester has been served, the PD changes
the priorities relative to the time (like the TDM) independently of who was
served last. This way each requester gets a time where it has highest priority,
just like in TDM, but if the highest priority requester is idle the next interested
requester is granted access.

Actually, the scheme has one peculiarity which actually makes the WCMAT a
little bit worse than TDM. It is also an example, when work conserving scheduler

1Though the simplifications are possible. For example computation can be performed in
multiple cycles, alternatively the single cycle empty slot per requester [PS12].
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can provide lower worst-case guaranties, than the same non-work conserving.
The problem is caused by the fact that transaction takes several clock cycles. If
a request arrives late in a slot, the conserving scheduler would grant the access.
This would block the next request for some time, even if it arrives on time in
its own slot. The increase in WCMAT is however at most the length of the slot
minus one. Also, because the priority update logic is independent from served
requests, the delay can not increase more during the next requests. The e�ect
can also be avoided by allowing the requests to only occur at the slot boundary.

The scheme provides all the guaranties, configuration and analysis possibilities
of TDM. That is the worst case blocking and bandwidth estimates are the same.
Also the same configuration is possible through non equal slot allocation. On
the other hand the hardware implementation is more costly. The average case
behavior is a little bit di�erent from RR (if the highest priority requests are
idle). In principle the sharing among the active requesters is less fair. This is
because in RR the same requester can get the access two times in a row only if
it is the only requester, while in PD, it can get it as long as there are no higher
priority requesters.

The scheme provides good hard-RT guaranties and better average case perfor-
mance than TDM, thus allowing to combine the hart-RT and other tasks in one
scheduler. Thought having the separate TDM based arbitration for hart-RT
task and a RR based arbiter scheduled in idle slots would allow more control
and fairness for non-hard-RT tasks.

6.2.5 Static Priority

The plain static priority (SP) results in very pessimistic response time for lower
priority tasks. This is because WCET analysis need to assume that each single
request is blocked by the sum of all the transfers from higher priority tasks,
to make this bounded, some rate limiting mechanism is introduced, to prevent
the higher priority requester from local burst requests exceeding its allocated
bandwidth.

The examples of such arbiters are Credit Controlled Static Priority (CCSP)
[Ake10] and Priority Based Budget Scheduler (PBS) [SRK12a]. The PBS per-
forms bandwidth accounting in framed fashion, where the budget for all re-
questers is reset periodically. In PBS the WCMAT depends on both the time
o�set in the replenishment period for each memory access and how much band-
width was used since the beginning of the period. This makes it hard to benefit
from the PBS in the WCET analysis, because if such information is not known
a pessimistic estimate need to be used. The CCSP fills the budget gradually
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by a small fraction so WCMAT is constant if requester does not request more
bandwidth than it is allocated.

Under full load (or for longer transfers), all the requesters get their allocated
share of the bandwidth, just like it is in TDM. The di�erence is in the order in
which the requesters get their share in the specified time interval. The schemes
described here would first serve all the higher priority requesters and low priority
requesters would get served at the end of the period. In TDM they would be
interleaved. The di�erence might be an advantage or disadvantage depending
on what is needed in the application. The TDM fixes the relation between
latency and bandwidth, so it is not possible to e�ciently provide low latency for
requesters with modest bandwidth requirements. While in SP the lower priority
requesters will su�er high latency B

max

, because they are moved to the end of
the period in worst case.

The worst case blocking grows very fast and becomes very bad for systems with
many requesters. Also the SP would perform badly for fair bandwidth sharing
among requesters with equal demands, because in such case the priorities unnec-
essarily create low latency for some of the requesters (the one which happened
to be lower priority). To reduce the pessimism the distribution of the memory
accesses in time for the current task needs to be known. This is for example
available when estimating the time to complete a long transfer. This is also
available when computation is decoupled from memory access, by introducing
some bu�ers like in data-flow computation. For the conditions of the second ex-
ample the TDM would behave as good, because bu�er makes the computation
time dependent on guaranteed bandwidth not guaranteed latency.

Even more pessimism could be removed at the level of schedulability analysis,
because this allows using global knowledge about the behavior of the other tasks.
By considering that the sum of all blocking experienced by the task could not
be greater than the possible memory used by all the higher priority tasks. This
however requires the precise model of the tasks memory access in time. Because
it is intractable to analyze all the paths, and there is still some variability even
in single path (Section 4.2). Probably the WCET of the task could be split
into portions where each portion would have may/must properties similar to
the cache analysis in WCET. The question has to be answered is if the gain is
larger than the pessimism introduced by the approximation.

6.2.6 Dynamic Priority

Intuitively, the best memory access scheduling would be performed by the dy-
namic priority scheme, where the most critical request is serviced first. The
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Figure 6.3: Top: single instance of two tasks. Each task will follow single
execution path during one instance. Middle: the memory access
scheduled according the least laxity first dynamic priority. Bot-
tom: optimal schedule for the same instances.

question is which metric to use to decide whose request is most critical. It
seams that the good candidate for estimating what is most critical could be the
time slack left for each requester (also known as laxity), but the least laxity first
(LLF) scheduling is not optimal as shown in Figure 6.3.

The figure shows some instance (invocation) of two tasks. Both the inputs
and the hardware state are fixed for single invocation, and will result in single
execution path followed by the task. We now describe the LLF scheduled access
(middle part of Figure 6.3). Initially both task want access the memory. The
first task has slack of 4 units and the second has 8 units, so the first task will
be granted access and the second will be blocked. In slot 5 the first task starts
computation and the second gets the memory. During the next 3 slots both
tasks will perform the computation, and the memory will be idle. At slot 9
the first task uses the memory while the other finishes computation. The tasks
start to interfere again at slot 10. Because they both have the same remaining
slack, they will be granted memory access in turns. The example illustrates two
ine�ciencies of LLF scheduling (both tasks finish earlier in the optimal schedule
on the bottom of the figure). The first ine�ciency can be seen in slots 6 to 8,
where the memory is idle for 3 slots. The idle slots could possibly be used by
memory access of some task, which will have to done in future instead. This
ine�ciency is fundamental to any greedy scheduling algorithm based on single
local decision, because the local optimum decision does not necessarily lead to
global optimal solution. The other ine�ciency manifests itself in slots 10 to 15.
Starting from slot 10, both tasks want to access the memory again. The task1
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needs 3 more memory access slots, while the task2 4 more. If the task1 would
be granted all the required slots without interruption, than the task2 would be
blocked by 3 slots and the task1 would be blocked by 4 slots if all is granted
to task2. While when the accesses are interleaved like in the example on the
Figure, both tasks experience blocking of 3 slots.

However the main problem in using dynamic scheduling here is its analyzability.
The analysis at WCET level is not possible, because the worst case blocking
depend on the state of all other tasks. Proving that tasks set can meet the
deadlines at schedulability level is not trivial either. First of all it involves
the same task memory access modeling tradeo�s as mentioned in the previous
section. Moreover because of dynamic nature of the scheduler it will be hard to
find worst case task interference, while the utilization based schedulability tests
needs to be extended. For processor utilization tests, the worst case blocking
time has to be taken into account. For memory utilization tests, the worst case
memory idle time has to be bounded.

6.3 SDRAM Interface Tradeo�s

In this section we look at the limitation caused by SDRAM interface and options
to overcome them.

6.3.1 Access Granularity Tradeo�

The full utilization of the memory bandwidth is only possible by doing large
consecutive transfers in the same direction. Thus small accesses lead to wasted
memory bandwidth. The Table 5.4 lists how maximum guaranteed bandwidth
for random access depends on the size of the transfer for one particular SDR
SDRAM memory. For the single-word random access it is as low as 14%, while
for 8-word pipelined transfers it is 84.2%. The later generations tend to require
larger transfers for the same utilization of the previous generation, because
the data rate is doubled with each generation while the timing parameters in
nanoseconds do not improve that much. Also the 8 bank devices of DDR2
and DDR3 generations prevent e�cient bank interleaving with small transfers
by allowing only four activates in t

F AW

time window. The minimum e�cient
transfers are also larger when the memory modules are used. For example the
standard memory modules for PC are 64-bit wide, so 8-word transfer is actually
64 bytes long.
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On the other hand most of the data of fetched big chunks must actually be
needed most of the time. For example increasing the burst length of the
pipelined transaction from 4 to 8 words increases possible data bus utilization
from 50% to 84.2% (Table 5.4), but if half of fetched 8 words are not needed
most of the time, the utilization would actually be close to 84.2

2 %. We will
now propose the optimization for interleaved transactions which could provide
chances for increasing the usage of all data of big operations.

The addresses for interleaved transactions of one memory operation must not
correspond to consecutive single block. They can actually be random if they
all use di�erent banks. The fact could be exploited by the scratchpad alloca-
tion algorithm, because the addresses of managed external memory locations
are known. The optimization could also be useful for data caches, because the
write-through caches are preferred for RTS, as read miss in write-back cache
has a longer worst case latency because the line might need to be written to the
memory. So if WCET analysis can know that two addresses are from indepen-
dent banks, they both can be packed into single slot. Implementation wise the
packing would be performed by a write bu�er.

The other option is bank privatization similar to one employed in [RLP+11].
Each bank would be assigned to a set of processors. And accesses to banks would
be interleaved in the TDM schedule. The processors would than use message
passing through NoC to share the data. Alternatively, the TDM allocation
can be performed on per bank basis with interleaving allowing to decide which
processor need to access each bank in each cycle.

6.3.2 SDRAM Data Rate

The FPGA fabric can not run at frequencies of latest SDRAM generations.
The access is performed by using wider data words which are serialized onto the
SDRAM data bus. Interconnecting such a wide signals might be problematic for
many ports as mentioned in conclusions to Section 7.2.2. Also a caches would
need to support wide single cycle transfers, or bu�er would be needed per each
requester port to perform the adaptation. Alternatively the requesters can be
partitioned and few bu�ers used close to controller as suggested in Section 6.4.

6.3.3 Handling Refresh

The DRAM refresh is required for correct storage of the values, but the oper-
ation interferes with regular read/write operations. Even though the refresh is
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required to be invoked relatively infrequently, it can contribute significantly to
over-allocation if not handled properly. This section discusses possible options
and limitation of dealing with the SDRAM refresh in timing analyzable way.
The technical background needed for this discussion is provided in 3.6 section.

There are three options:

1. Refresh operations can be grouped together and analyzed at Schedulability
Analysis level [BM11]. This option is only e�ective for SDR generation of
SDRAM, because later generations allow to group only 8 refresh operations
(Section 3.6.3)

2. They can be invoked individually at a known time, for example in a dedi-
cated TDM slot. One should have in mind the possible t

RF C

> t
RC

which
would eliminate this option for some memories because it would increase
the slot size unnecessary, as mentioned in Section 3.6.2.

3. Or can even run as higher priority periodic operation, which is invoked by
the controller and increases WCET of all the tasks appropriately.

Table 6.1: The slots available for memory transfers between the two consecu-
tive reserved refresh slots. This assumes that refresh uses the same
slot size as regular operations. The blank fields are for slot size not
supported by this frequency.

Slot Size: 7 8 9 10 11 12
50 MHz clk: 54 47 42 38 34 31
100 MHz clk: 110 96 85 77 70 64
125 MHz clk: 107 96 87 80
143 MHz clk: 110 100 92

For option 3. (and 2. with regular schedule) the refresh interference can be
pessimistically incorporated into each request. But for architectures where the n
cycles delay of certain instruction must contribute n to total execution time, the
refresh interference can be applied to whole task’s execution time by following
recursion [AP01]:

WCET ref

i

= WCET ref

i≠1 + Á
WCET ref

i≠1
t
REF I

Ë · t
RF C

where WCET ref

0 = WCET . The formula has to be applied recursively, un-
til it stabilizes, because the WCET increased by refresh interference can cause
additional interference with the new refresh operations. The formula is ap-
proximation because it expects that each refresh will coincide with the memory
operation and not some computation. But, the pessimism is smaller than the
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one obtained by considering that refresh interferes with each memory operation
(if the memory is accessed more frequently than t

REF I

which is usually the case.
For example the SDRAM memory used in the project needs refresh to be is-
sued 8192 times in 64 ms window. This translates to number of cycles available
for operation between each refresh presented in the Table 6.1. The cycles are
truncated to integer number of full slots for di�erent slot size and clock periods.

It seems that 3. option and the refresh interference incorporated by adjusting
WCET calculated without refresh is most simple and e�cient option if the
architecture is nice enough to allow this option. The small drawback, that the
estimated WCET will be safe, but the path hawing this execution might get
changed as demonstrated in [AP01] does not seem to cause any problems.

Finally, for interleaved transactions it might be beneficial to perform refresh
manually, thus allowing refreshes to be overlapped with the transfers.

6.4 Implications of Hardware Implementation

The hardware cost/speed implications might favor arbitration scheme which is
not so e�cient “in theory” as other. The T-CREST has a goal to have many
processor cores, so scalability might be an issue. Appendix B contains synthesis
results of some hardware primitives. From the results it seams that arbitration is
speed limited, while the interconnect is area limited, fortunately both limitations
can be overcome by constraining the architecture a little bit.









Figure 6.4: Components of memory access time.

The total memory access time can be partitioned into few components as visual-
ized on Figure 6.4. First, some time needed to propagate the memory request to
the controller. This takes some fixed minimum latency and additional variable
blocking time (marked by gray rectangle on the figure), which is caused by the
interference from other tasks or employed scheduling scheme. Next the request
is services by the controller. It takes some time until the response data is avail-
able in the controller, and additional time to fully propagate the last bit of the
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data to the requester. The major contribution to the WCMAT is worst case
blocking time, because there are many requesters in the system. The figure hints
the memory access pipelining, then the larger latencies of request&arbitration
or the response phases do not a�ect the length of the service slot. This means
that in principle the slow arbiters can be used without degrading the system’s
throughput. This also allows to create more complex, combined arbitration
schemes, for example the hard-RT tasks can be scheduled by the TDM, and
non-RT and soft-RT by RR but only allowed to use the slot if it is idle.






















Figure 6.5: Serialization of the interconnect.

The size of the data interconnect can be optimized for the price of reduced
flexibility. Because the memory controller can only serve single requester at the
time, most of the links are idle. So if the bu�ers are used near the controller,
the data from/to requestors can be serialized during the multiple cycles. The
Figure 6.5 shows the conceptual diagram of such architecture. Few multiple
narrow interconnects operate in parallel, filling the bu�er in multiple cycles.
The wide data from the bu�er is than used in single cycle by the controller.
Such partitioning of the requesters removes some flexibility, for example the two
requesters from the same group can not be scheduled one after another without
increasing the bu�er sizes. Thought for example regular TDM is constrained
by design already and will fit such a interconnect naturally, and even narrower
link could be used for transfers to the bu�ers. The optimisation is optional
for SDRAM interfaces with narrow words, while might be necessary for wide
modules and high data rate SDRAM.
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6.5 Discussion

It has been shown that for hard-RTS, the round robin (RR) does not have
advantages over time division multiplexing (TDM). This is because better av-
erage case performance does not improve the WCET. The memory bandwidth
over-allocation is also not reduces by better average memory utilization. Fur-
thermore for TDM, the WCET analysis can derive tighter bounds by exploiting
the accesses with known time separation.

The static priority (SP) schemes are not scalable, because the least priority
requester will su�er latency proportional to total bandwidth allocation of other
requesters.

We propose to use TDM based memory access arbitration. The TDM has
number of advantages:

• The interconnect can be optimized.
• For regular arbitration just a modulus counter is required. The config-

urable slot allocation is also possible. The mapping of time to slots can
be performed through a allocation table. Because the table is always read
sequentially it can be stored in external memory, and only a small cache
used on-chip. The cache can be loaded periodically in a dedicated slot.
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Chapter 7

Controller Evaluation

In this chapter we look at the synthesis results of the controllers. In the first
part we compare implementation of our controller described in Chapter 5 with
some general purpose SDR SDRAM controllers. Next we look at the memory
controller for RTS from Technical University of Eindhoven.

7.1 Comparison with Other SDR SDRAM Con-
trollers

We will compare the FPGA synthesis results of our controller with 3 other
designs. We first describe each design in short and provide the results at the
end of the section.

7.1.1 Altera SDR SDRAM Reference Design

The design is described in [Alt02]. The controller is coded structurally without
explicit state machine. Instead the state is distributed into number of internal
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control signals and counters which control the multiplexers driving SDRAM sig-
nals. The controller is pipelined introducing 4 cycles of additional data latency.
The pipeline does not seam to allow multiple outstanding commands to di�erent
banks, i.e. the new command is accepted after the previous one is completed
(except for Precharge used to interrupt the ongoing full-page Read/Write burst).

The controller provides low-level interface to the SDRAM. Requestor must
initialize the SDRAM and must keep track of data latency cycles (i.e. con-
troller does not acknowledge the valid data). The Read/Write requests to the
controller are translated into pairs of Activate and Read/Write (with auto-
Precharge) SDRAM commands. The requests corresponding to Precharge, Re-
fresh and ModeRegisterSet commands are also available and are used to control
the SDRAM initialization sequence. Two more requests are used for runtime
configuration of controller’s parameters.

7.1.2 Xilinx SDRAM Reference Design

The design is described in [Xil00]. The design is almost 14 years old, and one can
see that the synthesis tools had di�erent capabilities and the di�erent hardware
description style was used. The controller is coded structurally at a very low-
level. The finite state machine (FSM) uses manually specified one-hot encoding
for the state register. The Xilinx SRL16 primitives (lookup table used as shift
register) are manually instantiated. Each counter is described in a separate
entity and the design consists of 9 entities in total. The design provides the
requester the same functionality as the Altera design, albeit through slightly
di�erent interface. The controller is run-time configurable and the requester
must initialize both the controller and the SDRAM. The requests are handled
as single burst transaction with auto-Precharge. The requester must count the
cycles to know when the valid data should be sampled after read. But the write
data is accepted right away and is delayed internally.

The controller uses double frequency clock for SDRAM interface, and commu-
nicates the data to/from requester on both edges of the slower clock. The con-
troller seams to be designed to be used from the external chip, because a single
32-bit inout signal is used for address, datain, dataout and part of the com-
mand encoding. The controller introduces 8 SDRAM cycles (4 system cycles)
of additional data latency during read.
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7.1.3 JOP SDRAM Controller

JOP controller [Gra12] was made to enable JOP processor [Sch09a] the access to
SDRAM chip on the Altera DE2 board and has hardcoded its timing parameters.
Di�erently to two previously presented designs, the controller performs SDRAM
initialization automatically. The controller provides 32-bit SimpCon [Sch09b]
interface, but internally uses 16-bit wide SDRAM chip, so some extra bu�ers
and logic is used for this purpose. The two FSM are used, the one handles
the SDRAM command sequence, while the other interacts with the SimpCon
and assembles/splits the two half-words. The SDRAM address multiplexing is
performed in a separate process.

7.1.4 SDR Controllers Synthesis Results

The same synthesis tools setup was used as described in Appendix B, but we
limited ourselves to looking at Altera synthesis results for Cyclone II target as it
is the FPGA on which the controller is used. The exception was Xilinx reference
design, which uses Xilinx specific primitives (LUT shift registers). The Spartan
3 FPGA was used for comparison to have architecture similar to the one for
which design was optimized (i.e. the Spartan 2). Our design was re-synthesized
for the same target to aid comparison. The default tool settings were used,
though for Xilinx synthesis the register packing into IOB was disabled to leave
the flip-flops in slices.

Table 7.1: Synthesis results for evaluated SDR controllers. The columns show:
clock frequency in MHz, the overall number of Logic-Cells/Slices,
the number of Look-Up-Tables and the number of Flip-Flops

Design Fmax LC LUT FF
(MHz)

Altera 392.77 309 107 284
JOP 207.30 592 457 355
JOPOptimized 249.38 308 174 238
Our 221.39 194 126 129
OurSimpCon 222.42 272 119 211
OurOptimized 349.41 200 127 131
Xilinx Spartan 3 Fmax Slices LUT FF
XilinxS3 116.20 229 165 293
OurS3 117.79 114 147 130
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The synthesis results for three designs mentioned in previous sections and our
design from Chapter 5 a presented in Table 7.1. Vertically the table is split in
two parts. The first part shows the numbers for Altera Cyclone II target, the
second part list numbers for Xilinx Spartan 3. The table has two entries for the
JOP design. The numbers for the original design (JOP) were suspiciously large,
and we were able to fix the problem by constraining the ranges of the counters
(JOPOptimized). The original design used full range integer types, resulting in
the inferring of 32-bit counters. For the purpose of the JOP comparison we have
also included the numbers (OurSimpCon) of our design adapted for the use in JOP
system (described in Section 5.6.2) Finally the line OurOptimized represents the
design after splitting the increment and comparison logic of the refresh counter
into separate cycles (by registering the done flag). The initialization counter
was also separated and made free running. The optimization is not necessary
for our application, because the unoptimized device can run above the required
speed. Nevertheless, the high frequency of Altera design, stimulated us to see
how big the speed gain of optimisation will be.

The comparison shows that the performance of our simple behavioral controller
description is reasonable, and also that some speed gains are possible by simple
optimization of critical path (see OurOptimized vs. Our). We would like to make
some comments to the obtained results:

• Altera design is clearly optimized for speed, so the high frequency is not
surprising. The design is pipelined and the control logic is distributed
always depending on just few bits. The critical path is on some wide
multiplexer used to initialize a delay counter according the configuration
register.

• The higher FF count of Altera design comes from pipelining, especially of
the 32-bit wide data signal. All the input/outputs are also additionally
latched, whereas Our design expects the requesters to hold the address and
data stable. The Xilinx design uses many FF to register the input and
additional to store it in few places, because the address/configuration/data
all use single bus.

• Even though the maximum clock frequency in Xilinx and Our designs are
almost the same, the Xilinx controller supports higher SDRAM frequen-
cies, because the SDRAM interface is operated with double frequency. The
same trick could probably be applied to speed up Our design if needed,
thought the frequency might decrease because of possible introduction of
critical path at the shorter period paths.
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7.2 A Look at TU/e DDR3 Controller

In this section we make a closer look at predictable controller for DDR3 SDRAM
from Technical University of Eindhoven. The TU/e controller is used here be-
cause its source code was provided for the early integration of controller with
the Patmos processor which was performed by the author of this thesis. The
report of the integration work is included in the Appendix D. We first present
the TU/e controller in more details. Next we discuss the synthesis results.

7.2.1 The TU/e controller

The controller is based on work published in [Ake10] and was introduced in
Section 2.1. The controller allows using any arbiter with bounded response
time, and the Round Robind is used in this particular implementation.

  

  

  

  


















Figure 7.1: High level view of the controller.

The organization of the controller is shown on Figure 7.1. There are two main
parts, the front-end allowing multiple requestors to use a single-port controller
and the back-end which is the controller itself.

Front-end performs certain request transformation and bu�ering on each re-
quester port, before the arbitration and multiplexing is performed. The atomizer
breaks the long requests into requests of elementary size. The width converter
adapts between 32-bit data word of the user interface and 128-bit data inter-
face of the low-level DDR3 controller. This 4◊ deserialization/serialization is
needed, because the DDR3 SDRAM interface runs at twice the frequency of the
controller and transfers two words per cycle. The delay block delays the read
data until the worst case latency. The delay makes the response time repeatable



Page%contains%confidential%material%and%has%been%removed.%



Page%contains%confidential%material%and%has%been%removed.%



Page%contains%confidential%material%and%has%been%removed.%



Chapter 8

Conclusions

This chapter summarizes the thesis and suggests possible improvements to the
subject.

8.1 Contributions and Findings

There are two main contributions of this work:

• The open source SDR SDRAM controller has been created. Its initial
integration into two RTS platforms (T-CREST and JOP) was performed
and tested.

• The di�erent options of memory access scheduling for the T-CREST plat-
form have been investigated. The analysis included estimates of their
RTS e�ciency and the hardware implementation feasibility. The analysis
conclusions are presented in Section 6.5

Some of the most interesting observations made:

• For hard-RTS, the round robin (RR) does not have advantages over time
division
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multiplexing (TDM), whereas WCET bounds can be made tighter with TDM.

• The static priority (SP) arbiters like CCSP and PBS are not scalable for
WCET analysis because the least priority requester will su�er from latency
proportional to the total bandwidth allocation of other requesters.

• The memory access timing analysis performed at WCET level su�ers from
fundamental limitations in reducing memory bandwidth over-allocation.
The local worst case required bandwidth has to be allocated for the whole
task’s execution period.

8.2 Suggestions for Future Work

During the project, many questions arose which could not be answered because
of a limited time frame. Some suggestions for future work are:

• Look at the programming models. The way the external memory is used
should be re-thought in the context of available inter-core communication
and on chip memories. This might lead to some programming model
specific optimizations in the access arbitration to external memory.

• Further explore the possibilities of performing memory access analysis at
the schedulability level. The precision and feasibility of the approach will
depend on task’s memory demand modeling.

• The hard-RTS are by definition safety critical and might benefit from
error correcting code (ECC) memories. The ECC codes are stored for
whole memory word width, so writing a smaller portion requires reading
the word, updating a part, recalculating the ECC and storing a word to
memory. Some of the decisions in controller design could be a�ected by
this constraint.



Appendix A

Source Code Access

The source code created during the Thesis project is accessible online through
T-CREST git repositories:1

Controller’s repository (git clone git://github.com/t-crest/sdram.git):
vhdl/sdr_dram.vhd - The controller’s source
vhdl/sdr_dram_opt.vhd - The optimized version mentioned in Section 7.1.4
vhdl/sc_sdram_wrapper.vhd - The SimpCon wrapper (Section 5.7.2.2)
simulation/sdr_sdram_dma_controller_tb.vhd - The test bench
simulation/vsim_sdr_sdram - Makefile, simulation scripts and settings

The integration with the Patmos (git clone git://github.com/t-crest/patmos.git):
Patmos integration with our controller (Terasic/Altera DE2-70)
quartus/altde2-70_sdram - The project directory
vhdl/top/patmos_de2-70sdram.vhd - Top entity
vhdl/io/patmos_io_sdram.vhd - I/O port mapping
vhdl/core/patmos_sdram.vhd - Patmos Core
ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a - The I/O device con-
necting the processor and memory controller

1We use a convention in this chapter, that the hyperlink would invoke the on-line version,
while the command is printed for fetching the file locally

https://github.com/t-crest/sdram
https://github.com/t-crest/sdram/blob/master/vhdl/sdr_dram.vhd
https://github.com/t-crest/sdram/blob/master/vhdl/sdr_dram_opt.vhd
https://github.com/t-crest/sdram/blob/master/vhdl/sc_sdram_wrapper.vhd
https://github.com/t-crest/sdram/blob/master/simulation/sdr_sdram_dma_controller_tb.vhd
https://github.com/t-crest/sdram/blob/master/simulation/vsim_sdr_sdram
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos/tree/master/quartus/altde2-70_sdram
https://github.com/t-crest/patmos/tree/master/vhdl/top/patmos_de2-70sdram.vhd
https://github.com/t-crest/patmos/tree/master/vhdl/io/patmos_io_sdram.vhd
https://github.com/t-crest/patmos/tree/master/vhdl/core/patmos_sdram.vhd
https://github.com/t-crest/patmos/tree/master/ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a
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c/test_sdram.c - Integration test program
c/test_sdram_full.c - Integration test program
Patmos integration with TU/e DDR3 controller (Xilinx ML605)
ise/ml605_edk - The main dir, with the project and make file
ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a - The I/O device con-
necting the processor and memory controller
ise/ml605_edk/pcores/patmos_sdram_v1_00_a - The Xilinx Platform Studio
component for the Patmos processor
asm/test_sdram.s - Integration test program
asm/test_sdram2.s - Integration test program
asm/test_sdram3.s - Integration test program
ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a - The I/O device con-
necting the processor and memory controller

https://github.com/t-crest/patmos/blob/master/c/test_sdram.c
https://github.com/t-crest/patmos/blob/master/c/test_sdram_full.c
https://github.com/t-crest/patmos/tree/master/ise/ml605_edk
https://github.com/t-crest/patmos/tree/master/ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a
https://github.com/t-crest/patmos/tree/master/ise/ml605_edk/pcores/patmos_sdram_v1_00_a
https://github.com/t-crest/patmos/blob/master/asm/test_sdram.s
https://github.com/t-crest/patmos/blob/master/asm/test_sdram2.s
https://github.com/t-crest/patmos/blob/master/asm/test_sdram3.s
https://github.com/t-crest/patmos/tree/master/ise/ml605_edk/pcores/dma_controller_dtl_v1_00_a


Appendix B
Scalability of Primitives for

Arbitration and Interconnect

This Appendix provides results of hardware cost and speed estimates for some
primitives what would be needed to implement the interconnect and arbitration
for multi-port controller.

The primitives examined were: static and programmable priority arbiters; multi-
plexers; binary encoder and decoder. The size parameterized hardware descrip-
tions were used to obtain synthesis figures for several size points. Most examples
were adapted from [Alt11] and [Chu06] with minor modifications. The ripple
implementation of programmable priority arbiter was coded from scratch. The
circuits are purely combinatorial, but to derive the propagation delay for the
Alter tools the wrappers were created to register the inputs and outputs. The
circuit sizes are reported for the version without those extra registers.

All the circuits were synthesized for both Xilinx Virtex 6 and Altera Cyclone II
FPGAs by using the standard FPGA vendor toolchains (Xilinx ISE version 14.2
and Altera Quartus version 12.0) with the default options. These particular FP-
GAs were chosen because they were used during the project, this also allowed to
test both tool vendors, as well as two di�erent FPGA architectures. The Virtex
6 is a high-end chip using architecture optimized for high performance. The
logic fabric features the 6-input lookup tables (LUT), dedicated multiplexers,
dedicated xor gate and carry chains for fast adders [Xil12]. The Cyclone II has
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less aggressive architecture optimized for lower cost. The logic is mapped into
4-input LUTs and carry chains for ripple adders are available [Alt07].

The default settings where used to instruct the tool in deriving results with
balanced size and speed optimizations. The tool does not do aggressive speed
optimizations which could increase the area enormously. The synthesis with area
optimization option produced similar results, except for ripple implementation
of programmable priority arbiter with broken combinatorial path (pp_ripple_r)
on Xilinx. The numbers for this design are included in the table separately.

The names used in the tables:

• decoder: binary decoder [Chu06];
• encoder: binary encoder [Chu06];
• mux: 1-bit wide multiplexer (described behaviorally);
• sp_1hot_adder: 1-hot encoded static priority arbiter, implemented by a

bit scan through carry chain [Alt11];
• sp_chu: binary encoded static priority arbiter [Chu06];
• pp_1hot_adder: 1-hot encoded programmable priority arbiter, imple-

mented in long carry chain [Alt11];
• pp_double_sp: binary encoded programmable priority arbiter imple-

mented by combining the two masked static priority arbiters [Chu06];
• pp_ripple: 1-hot encoded programmable priority arbiter implemented by

propagating the priority from programmed input through all unused lower
priority inputs. Contains a well behaving combinatorial loop.

• pp_ripple_r: pp_ripple with the combinatorial loop broken by a flip flop.
Because of this needs two cycles to output the result.

Table B.1: Look-up tables usage for di�erent size of primitives (CycloneII).

Primitive 8 16 32 64 128
decoder 8 20 40 98 145
encoder 3 10 18 43 90
mux 5 10 21 42 85
sp_1hot_adder 15 31 63 127 255
sp_chu 5 14 33 105 272
pp_1hot_adder 24 48 96 192 384
pp_double_sp 5 72 159 359 838
pp_ripple 19 39 77 156 310
pp_ripple_r 17 38 74 156 308
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Table B.2: The length of critical path (in ns) for di�erent size of primitives
(CycloneII).

Primitive 8 16 32 64 128
decoder 1.105 1.776 2.027 2.336 2.226
encoder 1.065 1.746 2.085 2.479 3.357
mux 2.000 2.537 3.432 3.957 4.721
sp_1hot_adder 2.375 3.063 4.363 7.040 12.104
sp_chu 1.876 2.348 3.110 4.951 7.046
pp_1hot_adder 3.194 4.750 7.258 12.677 23.310
pp_double_sp 1.647 4.949 5.762 7.203 11.257
pp_ripple 6.061 10.586 21.053 51.308 7.275
pp_ripple_r 3.219 4.486 8.762 17.584 36.337

Table B.3: Look-up tables usage for di�erent size of primitives (Virtex6).

Primitive 8 16 32 64 128
decoder 4 8 32 34 132
encoder 3 6 15 36 77
mux 2 4 10 21 42
sp_1hot_adder 5 24 48 96 192
sp_chu 4 9 44 103 201
pp_1hot_adder 24 48 96 192 384
pp_double_sp 4 12 155 328 686
pp_ripple 8 16 32 64 128
pp_ripple_r 14 29 60 116 227
pp_ripple_r(area.opt) 7 15 31 63 127
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Table B.4: The length of critical path (in ns) for di�erent size of primitives
(Virtex6).

Primitive 8 16 32 64 128
decoder 1.157 1.346 1.404 2.015 2.044
encoder 1.111 1.553 2.117 2.105 1.957
mux 1.505 1.694 2.251 2.761 3.064
sp_1hot_adder 1.759 2.183 2.495 3.119 4.367
sp_chu 1.619 2.563 6.410 10.989 13.264
pp_1hot_adder 2.339 2.577 3.201 4.523 6.945
pp_double_sp 1.619 2.543 12.067 15.498 20.734
pp_ripple 3.963 6.615 11.919 22.527 43.743
pp_ripple_r 3.682 5.405 7.341 8.876 10.242
pp_ripple_r(area.opt) 2.972 5.394 9.386 17.370 33.338
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Appendix D

Patmos and TU/e SDRAM
Controller Integration Report

This appendix includes the report of the integration work performed by the
author during the thesis project. It describes the early integration of patmos
processor with draft version of memory controller delivered by TU/e university.

The integration sub-project involved many small thing. First the Xilinx ML605
FPGA board supported by the provided SDRAM controller had to be setup on
the Linux server, which demanded a little bit of intervention into the Xilinx
toolchain install process, which did not work out of the box. Next the Patmos
processor had to be tested on the Xilinx FPGA (the processor was developed
on an Altera FPGA board). Minor modifications to the code were made, to
allow inferring of correct primitives by the toolchain of both vendors. An EDK
component was made for Patmos, because SDRAM controller test system was
provided as EDK project. The I/O based interface to the SDRAM was devel-
oped to allow seamless integration with the current state of Patmos pipeline.
The integration was tested in hardware with assembler based test programs.
Finally the report describing the integration work was written, and follows in
this Appendix.
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D.1 Overview

The current version of controller has following properties:

• controller interfaces the DDR3 memory on Xilinx ML605 FPGA develop-
ment board;

• only access of multiple of 64 byte blocks are supported;
• 4 processor ports with proprietary DTL interface are supported;
• the controller can not run reliably at full speed of 200 MHz because of the

slight timing violation.

The current version of the Patmos does not contain caches yet so it was decided
to test the integration by using simple processor controlled I/O device. The
device provides single cycle memory mapped interface. The processor issues
the memory operations and pools the device if completion status is needed.
The device translates processor’s memory requests into DTL transactions and
provides them to the controller. The setup is shown on Figure D.1.

Figure D.1: Overview of the integration

D.2 Controller DTL Interface

DTL interface consists of three logical signal groups:

• command group. Used to issue the read/write command. This also
specifies the operation address and size.

• read group. Receive the requested data.
• write group. Transmit the requested data.
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Each group has a valid / accept signal pair for the handshake. The transfer hap-
pens in the cycle when both signals are high. The read and write group use the
last signal to signal the end of transmission. VHDL signals for reference:

D.3 I/O Device Interface

The single cycle interface1 is provided to the Patmos. So the processor can
interact with the device without a stall. The following I/O registers of the
device are visible to processor:

• data bu�er: The data input/output happen through a bu�er in the
device. The bu�er is 64 bytes, because it is a size of single memory transfer
supported by current controller.

• address: Defines the address for the controller’s memory operation.
• command: A read/write of 64-byte memory block is initiated.
• status: Processor pols the status to find out if block read/write operation

has been completed.

D.3.1 Address Mapping

The register of I/O device are mapped to Patmos address space starting at
0xf0000300 base address. The register addresses are word aligned, i.e. two
least significant bits are not used. Here’s the table of o�sets from the base
address:

O�set (binary) Description
0000000-0111100 16 words of data bu�er
1000000 address to load/store the block in memory
1000100 command (during write):

LOAD_BLOCK = 0; STORE_BLOCK = 1
status (during read):
READY = 0; BUSY = 1

1currently the interface is combinatorial, i.e. the responce is provided in the same cycle.
But this can of course be pipelined if needed.
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D.3.2 I/O Device Implementation

D.3.2.1 State Machine

Simple Moore style state machine is used to control the interaction. Following
states are present:

• ready: The device is not engaged in any transactions with memory con-
troller. Data bu�er and address register is accessible for processor. The
processor can also initiate a block load/store command.

• read_cmd: The device issues the DTL read request.
• read_data: The device receives a word. The counter is used in this state

to address the data bu�er.
• write_cmd: The device issues the DTL write request. This can be

merged with write_data state to start the transfer one cycle earlier.
• write_data: The device transmits a word. The counter is used as in the

read_data state.

D.3.2.2 Data Bu�er

The single port asynchronous memory is used. The port is connected to patmos
interface in ready state and to DTL controller interface otherwise (the counter
of transferred words managed by state machine is used as an address).

D.3.2.3 Device Status

The state determines the status of the device when queried by processor. If the
device is not in ready state, the issued block load/store operation has not been
completed yet and processor has to wait.

D.4 Testing

D.4.1 Simulation

First the VHDL code of the I/O device was tested by performing ModelSim sim-
ulation. The testbench emulating both the processor requests and memory with
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DTL interface was created. The same testbench was used in both behavioral
and post-translate code of the device.

D.4.2 Pre-Integration Experiments

The provided controller test project was using two leds to output its status. The
one led was showing SDRAM initialization completion and the other one was
asserted when the tra�c generator has successfully completed the test. Before
the integration was started, the provided test project was extended with the
uart transmitter and small logic to display the status of the leds on the serial
terminal. This was done to test the integration of custom component into the
XPS project and to use the board remotely.

D.4.3 Assembly Tests of The Whole Integration

Once the integration was performed and bit file successfully generated, the as-
sembly programs were written to test the SDRAM access from patmos:

• asm/test_SDRAM.s: Tests the data bu�er of the I/O device without ac-
cessing the SDRAM. 16 ASCII characters are written to the bu�er. Next
they are read back and output onto the serial terminal.

• asm/test_SDRAM2.s: Test the SDRAM by using only the first word of the
data bu�er. First word of each SDRAM block is written with di�erent
value. The values are read back and checked afterwards. The discovered
errors are reported immediately by outputting ‘E’ character. At the end
of the test ‘OK’ is printed (or ‘##’ if errors were detected).

• asm/test_SDRAM3.s: This is test analogous to test2, but all the words of
the SDRAM are written and checked.

All the tests wait for character input before get started. This is used to wait
for completion of the memory initialization. The address range for test 2 and 3
is configurable through register r10. The tests are also described in source file
comments.

D.4.4 On Chip Signal Analysis With ChipScope

It was initially not possible to get positive results from running assembly tests.
ChipScope was used to inspect the I/O device signals at both patmos and con-
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troller interfaces. Inspection showed that I/O device was receiving the requests
from the patmos, and correct transactions were performed with the controller.
As a result the assembly programs were reviewed to find and fix errors.

D.5 Notes About The Tools

D.5.1 ssh: Remote Use of the Board

Most of the work was performed remotely through text terminal over ssh.
screen program was used to allow multiple terminals on single connection. Port
forwarding was used to access the licenses for Xilinx software and ChipScope
server. Following ~/.ssh/config file was used to specify a shortcut host imm
with all the needed settings:

HOST imm
Hostname sshlogin.imm.dtu.dk
User s081553
ForwardX11 yes
Compression yes
LocalForward 2100 eda1:2100
LocalForward 2101 eda1:2101
LocalForward 8080 socwiki:80
LocalForward 50000 procell:50000
LocalForward 50001 procell:50001

D.5.1.1 remote configuration through cse_server

The cse_server can be started on the remote computer with FPGA board
connected. The iMPACT/ChipScope GUI can be run locally with remote cable
selected.2 The ssh port forwarding was used as mentioned earlier, because the
remote computer is behind the firewall.

D.5.1.2 batch configuration of the FPGA

The FPGA configuring by batch mode iMPACT (console) was used when the
.bit file was already on the server. This was for example handy when only

2http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/pim_p_
remote_configuration.htm

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/pim_p_remote_configuration.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/pim_p_remote_configuration.htm
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assembly code was changed. The following wrapper script was created for con-
venience3:

#!/bin/bash

#Get the full path to bit file argument
case "$1" in

/*.bit) BITFILE="$1";;
*.bit) BITFILE="$PWD/$1";;
*)

echo " Usage: $0 BITFILE"
echo "Programs the file specified as argument into the ML605 using

the impact in batch mode"
exit 1

;;
esac

# setup the impact
#source /opt/Xilinx/14.2/LabTools/settings64.sh /opt/Xilinx/14.2/LabTools/
export PATH=/opt/Xilinx/14.2/LabTools/LabTools/bin/lin64:$PATH
LD_LIBRARY_PATH=/opt/Xilinx/14.2/LabTools/LabTools/lib/lin64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

# setup the temporary dir
TMPDIR=‘mktemp -d‘
trap ’rm -rf "$TMPDIR"’ EXIT
IMPACT_SCRIPT=$TMPDIR/program.cmd
cd $TMPDIR

#create the impact script with given .bit file path
cat > "$IMPACT_SCRIPT" <<EndOfTemplateFile
setMode -bs
setCable -p auto
setcablespeed -speed 12000000
identify
assignFile -p 2 -file "$BITFILE"
program -p 2
quit
EndOfTemplateFile

# start the impact
impact -batch "$IMPACT_SCRIPT"

D.5.2 xps: Xilinx Platform Studio

After failures to use controller from ISE, it was decided to convert patmos to
XPS component. Because more integration work would have to be done in

3This is hardcoded for this board, because it assumes that FPGA is at position 2 in JTAG
chain
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future, it was experimented with doing so without a XPS GUI.4 This turned
out to be possible and quite well functioning GUI-less flow was discovered.

Following EDK documentation was relevant:

• EDK Concepts, Tools, and Techniques: introductory document, but not
very useful as it focuses on GUI method, which happened to work very
badly with given example project.

• Embedded System Tools Reference Manual: contains description of com-
mand line (no GUI) invocation of XPS and synthesis tool (platgen).

• Platform Specification Format Reference Manual: contains description of
file format, which is valuable reference when manual modifications of the
file are performed.

In general, the content of the files is intuitive and copy-paste, learn by example
approach of creating component can be used. There is however one tricky
moment with version number, which will result in “cannot find MPD for the
core in any of the repositories” error. The cause of the error is hard to spot
because files seam to be there. There are two distinct version kinds, and both
has to match for component to be discovered (see next sections):

• MHS (specification) version: 2.1.0 in provided project
• component version: this is arbitrary user defined number with format

N.NN.L, for example 1.00.a.

D.5.2.1 Component description

Custom components are looked up from pcores subdirectory of the project.
The component’s directory has following directory structure:

pcores/dma_controller_dtl_v1_00_a
data

dma_controller_dtl_v2_1_0.mpd
dma_controller_dtl_v2_1_0.pao

hdl
vhdl

dma_controller_dtl.a.vhd
dma_controller_dtl.e.vhd

4The peripheral creation wizard method was used before to connect the I/O device to
XPS project. This method did not look to be promissing as it required significant amount of
clicking and respecifying signals. Also it was impossible to make connection between some of
the ports because the GUI would filter the signals according the classess, so it was not possible
to even make connections present in the original project.

http://www.xilinx.com/support/documentation/dt_edk_edk13-1.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/est_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/psf_rm.pdf
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dma_controller_dtl.p.vhd
Notice the two distinct version kinds (component/mhs) mentioned before:

• <COMPONENT>v<COMP_VERSION>/data/<COMPONENT>v<MHS_VERSION>.mpd file
describes the interface of the component.

• <COMPONENT>v<COMP_VERSION>/data/<COMPONENT>v<MHS_VERSION>.pao file
describes library name and sources constituting the component.

• <COMPONENT>v<COMP_VERSION>/hdl/vhdl/ directory contains the sources.
The pao file contains specifies source paths relative to this directory.

The provided project had a convention of having separate entity, architecture
and package files (the .e.vhd, .a.vhd and .p.vhd su�xes in previous listing).
However this turned out not to be required by the XPS. This was also a little bit
confusing, because the (default) values for generic parameters where specified
in multiple places: mhs (top level), mpd, .e.vhd and .p.vhd files.
The content of mpd file is intuitive. Here’s example line from pao file:
lib dma_controller_dtl_v1_00_a dma_controller_dtl.a.vhd

• The library name (second word on the line; dma_controller_dtl_v1_00_a
in this example) in pao file should match the components directory name.

• The one of the specified sources should contain the top level entity for the
component. It should have the same name as the component (without
version number; dma_controller_dtl in this example).

D.5.2.2 Top level (*.mhs file)

The mhs file is a top level, it describes external ports (should be matched with
the ucf file), component instantiations and their interconnection (port mapping).
The format of the file is intuitive. Here’s some abridged example (# starts
comment, ... is used to denote omission):
...
# This version should be used in the MPD and PAO file names:
PARAMETER VERSION = 2.1.0
...
# Example of external ports: PORT <UCF_NAME> = <INTERNAL_WIRE_NAME>, ...
PORT fpga_0_rst_1_sys_rst_pin = sys_rst_s, DIR = I, SIGIS = RST, RST_POLARITY = 1
...
PORT txd = txd, DIR = O
PORT rxd = rxd, DIR = I
...
# Example of component instantiation:
BEGIN dma_controller_dtl
# Unique instance name:
PARAMETER INSTANCE = dma_controller_dtl_0
# This version should be used in components directory name:
PARAMETER HW_VER = 1.00.a # dma_controller_dtl_v1_00_a in this example
...
# Values for generic parameters if default values from MPD file need to be
# overridden
PARAMETER DMA_ADDR_WIDTH = 4
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PARAMETER DMA_DATA_WIDTH = 32
...
# This is special multi-signal wire (equivalent of record in VHDL), has to
# be defined in MPD file
BUS_INTERFACE DTL_OUT = dma_controller_dtl_0_DTL_OUT
# Regular signal port mapping: PORT <SIGNAL_NAME> = <INTERNAL_WIRE_NAME>
PORT mtl_clk = raptor_0_Clk_200 MHz_bufg_o
PORT mtl_rst_n = nRst_Res
PORT dma_addr_special_i = dma_addr_special_i
...

END

...

The internal wires are not declared, arbitrary name can be used in PORT lines, the
ports which use the same name of the wire get connected. The BUS_INTERFACE
signals does not need to be specially coded in VHDL, they are just defined in
MPD file as a set of regular signals.

Signal transformations
• Concatenation of wires is the only transformation allowed in PORT map-

ping, for example:
PORT three_bit_port = one_bit_wire & two_bit_wire

• The opposite operation (bit slice) of the wires is not allowed and special
util_bus_split XPS component need to be used for this.

• The special util_vector_logic XPS component need to be used to per-
form boolean functions on the signals (for example invert).

D.5.2.3 XPS project file, makefile creation and download of propri-
etary controller code

The system.xmp is a plain text project file. When it is opened with xps GUI,
the top-level .mhs file and used cores are verified. Finally the system.make and
system_incl.make files are created together with some additional directories
for settings and compilation results. The -nw option of xps for starting without
the GUI is used to perform these operation automatically.
The wrapper Makefile is created to automate the whole process:

#default target, this shows help from system.make
all:

%: system.make force
make -f system.make $@

force: ;

system.make: pcores_proprietary
@echo Creating Makefile from XPS project...
# this open the project and creates the makefile
echo exit | xps -nw system.xmp
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pcores_proprietary:
@echo Downloading SDRAM controller XPS cores...
scp -r tipca.imm.dtu.dk:/home/edgarlakis/TUE_memctrl/pcores $@

program: bits
program_ML605 implementation/system.bit

The rules in this Makefile will automatically launch the project to create the
XPS project build makefiles and use them to build requested target. The
pcores_propritary: target additionally downloads the proprietary code for
memory controller which can not be published on the git.

D.5.3 data2mem: Initialize the Patmos Instruction Mem-
ory in bit File

The synthesis of whole system take some time. Because boot loader is not
available yet, the data2mem 5 tool was used to replace the patmos code in
final bit file. This works with block ram memories only, so initially the code
in vhdl/generated/patmos_rom.vhd was modified to use recommended code
for block ram inferring. Later, as size of patmos instruction memory grew, the
block ram was inferred from unmodified code.6
In addition to .bit file the data2mem needs a file describing the memory content
and placement of the block ram on the FPGA. They are described in next
subsections. Then correct input is ready, the patmos instruction memory can be
initialized to content of instruction.mem file with following command:

data2mem -bm patmos.bmm -bd instruction.mem -bt original.bit -o b updated.bit

D.5.3.1 Block RAM placement (.bmm file)

The following .bmm content was used:

ADDRESS_SPACE fet_rom_evn RAMB36 [0x00000000:0x000011FF]
BUS_BLOCK

patmos_top_0/patmos_top_0/fet_rom_evn/Mram_data_mem1 [35:0] PLACED = X0Y21;
END_BUS_BLOCK;

END_ADDRESS_SPACE;

The word after PLACED = identifies the block ram on a device to which the in-
struction memory is placed, because PAR uses heuristic algorithms this changes
for each synthesis and must be updated.7

5http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/data2mem.
pdf

6Patmos uses dual (even/odd) memory for instruction loading, but in current version the
odd part was optimized away so only single block ram is used for instruction memory.

7bitgen can update the file automatically if .bmm file is given to ngdbuild, but XPS does
not know about our interest of this memory and creates empty .bmm file each time.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/data2mem.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/data2mem.pdf
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The placement of the instance can be discovered by loading post routed design
with PlanAhead/FPGAEditor, alternatively .ncd file can be converted to text
representation with the xdl tool from which the needed information can be
found without clicking the GUI. Following command sequence was used after
bit file generation:
cd ise/ml605_edk
xdl -ncd2xdl implementation/system
grep ’inst.*fet_rom’ system.xdl

D.5.3.2 Memory content (.mem file)

The initialization content is described in plain text file, like this:
@0
0 00000000
0 000A000F

The line with @0 defines the o�set, next comes the data. All the numbers
are hexadecimals. The block ram used is actually 36 bits wide and the first
hexadecimal character in each line is used to initialize 4 bits unused by patmos.
All the spaces separating the data are actually ignored by data2mem and were
used for readability.
The patmos assembler was used to get the binary code, which was later con-
verted to .mem file by small C program:
./bin/paasm asm/test.s - | bin2mem > instructions.mem

Here’s the C source of bin2mem.c for reference:
#include <stdio.h>
#include <stdint.h>
#include <byteswap.h>

int main(int argc, char *argv[]) {
int i;
int cnt = 0;
int32_t val;

printf("@0\n");
while ((i=read(0, &val, sizeof(val))) > 0)
{

printf("0 %08X ", __bswap_32(val));
if (++cnt % 8 == 0)

printf("\n");
}

return 0;
}

The bytes are swapped because the program was run on little endian (intel)
processor and .mem file expects most significant bits first.
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D.5.4 Assembly Labels
The tools for programming patmos are in early stage and are not particularly
user friendly. Writing larger assembly program is error prone. The labels for
branch instructions are not supported, so branch o�sets need to be updated
each time instructions are added/removed before the branch target. Small perl
script was written to help mitigate the problem.
First version of the script would add/udate the comment containing the instruc-
tion number, so that o�sets for the target could be seen in source code. Next the
code was improved to also add the automatically resolved labels. The example
fragment of assembly source produced by the script:

addi r0 = r0, 0; # first instruction not executed #0
addi r12 = r0, 0; # r12==error count #1
addi r5 = r0, 15; #2
sli r5 = r5, 28; # r5==uart base #3
addi r6 = r5, 768;# r6==SDRAM base #4

# wait_start: # Output ’?’ and wait for any key press
addi r1 = r0, 63; # ’?’ #5
swl [r5 + 1] = r1; #6

#poll_stdin:
lwl r1 = [r5 + 0]; #7
addi r2 = r0, 2; #8
and r1 = r2, r1; #9
cmpneq p1 = r1, r2; #10
(p1) bc 7; #l:poll_stdin #11

addi r0 = r0 , 0; #12
addi r0 = r0 , 0; #13

The comments with the numbers at the end of the lines count the instruc-
tions. The commented at the start of the lines are the labels (#wait_start:
and #poll_stdin:). The comment #l:poll_stdin after branch instruction
at line #11 denotes that target of the branch should be the instruction after
#poll_stdin:. This is correctly resolved as 7 by the script.
The source code of the script for reference:8

#!/usr/bin/perl -T
#Insert the line number comments in patmos code
# also resolve the labels

my $ic = 0; #instruction count
my %labels = ();

while(<>) {
$line = $_;
if ($line =~ /^#?\s*(\w+):/) {

#label or label comment

8only backward labels are resolved because script uses single pass through standard input,
but this was enough for such temporary tool
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$labels{$1} = $ic
}
if ($line =~ /^\s*(\(\w+\))?\s*(bc)\s+(\d+)\s*;\s*#\s*l:(\w+|\+\d+)/) {

# branch with label
my ($pred, $instr, $target, $label) = ($1, $2, $3, $4);
my $new_label;
if ($label =~ /\+(\d+)/) { # relative branch

$new_label = $ic+1+$1;
} else {

$new_label = $labels{$label};
}
#print "#$pred,$instr,$target,$label,$new_label\n";
if (!defined $new_label) {

$new_label = "$target.Unkown"
}
$line =~ s/(\s)$target(\s*;)/\1$new_label\2/;

}
if ($line !~ /^\s*(\w+[:])?\s*(#|$)/) {

# line containing the instruction (non-empty, non-comment line)
$line =~ s/(\s*# ?[0-9]+\s*)?\n//;
printf "%-60s\t#%d\n", $line, $ic++;

} else {
# leave other lines unchanged
print $line;

}
}

D.5.5 ChipScope

ChipScope was used to diagnose the problems of I/O device by probing the
signals while the design was running on the FPGA.
Before ChipScope analyzer GUI can be used, two ChipScope cores ICON (In-
tegrated Controller) and ILA (Integrated Logic Analyzer) must be included in
the design.9 There are several ways to put them into the design, the PlanAhead
tool was used to connect ChipScope cores to Post-PlaceAndRoute design.10

The board was used remotely on relatively slow Internet connection, ChipScope
server feature was very handy. It allowed to run ChipScope GUI on local ma-
chine and communicate with the cse_server running remotely. The ChipScope
built-in wave browser seemed to be not very usable, so the data was exported
in .vcd format and inspected from GTKWave.

9http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/chipscope_
pro_sw_cores_ug029.pdf

10http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_
Tutorial_Debugging_w_ChipScope.pdf

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_Tutorial_Debugging_w_ChipScope.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_Tutorial_Debugging_w_ChipScope.pdf
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D.6 Encountered Problems and Conclusions
D.6.1 XPS Project Integration with ISE
D.6.1.1 Import Generated VHDL Files in ISE Project

• The “Netgen” was failing to find child components. This was confusing
error as the correct hierarchy was shown in ISE, but synthesis of child files
was never tried to be performed because of “blackbox“ attributes.

• The compilation would proceed after attributes were removed, but it would
fail because standard XPS components are not available in ISE. They
where also not available from core-generator. It is probable that they
could be specified as some switch to one of the tools. Though XPS uses
di�erent synthesis tool (platgen) so this might also be impossible.

D.6.1.2 Use XPS Project as Component (black-box) in ISE Project

• This approach was documented and should work. However the method
was failing because XPS had put the IOB at the port signals. Older
version of XPS would have a setting where one could select this behavior,
I assumed that newer version of the tool was doing this automatically.
The solution was to modify the EDK project file manually. The bit file
was generated as a result, but it was not working11.

D.6.2 Clock Frequency and Failing Timing Constraints
Failing timing constraints were observed during test with provided tra�c gen-
erator test project. The issue was discussed with Martin and it was agreed on
reducing the clock frequency, but it was forgotten to do so in final integration.
Quite some time was waisted on trying to run examples on overclocked patmos,
because some code would actually run correctly.
The issue was remembered and clock frequency reduction test was first per-
formed on provided controller example with tra�c generator. Next it was repli-
cated on patmos integration. All the generated clocks were slowed down twice
to preserve clock relation in current code and avoid new clock-domain crossing.
The fix made patmos run much better.

D.6.2.1 Errors in the Assembly and Conditional-Store Bug

Because current version of the patmos did not support call/return, the assembly
test code happened to grow very fast. It became hard to know that was wrong
and to spot mistakes. Reduction of the code to some minimal interaction with
the SDRAM happened not to help, because of the encountered patmos bug. The

11it might be just clock frequency, so if this method of integration is preferred the issue can
be revised
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predicated (conditional) store instruction would always be executed. Unluckily
this instruction was used to report errors over serial terminal, so it seamed that
the simplest tests of SDRAM were failing.

D.6.3 Conclusions
The integration work was successful with following useful results:

• the integration was performed and tested;
• learned new tools (XPS, data2mem, PlanAhead, ChipScope, GTKWave);
• patmos bug discovered.

Unfortunately 1/3 of time (if not more) was spend debugging. Ideally part of this
time waste could be avoided. Looking retrospectively, doing things di�erently
from technical point of view could help slightly:

• Could probably ask Sahar or Martin about the patmos toolchain to ex-
ploit it better. For example C compiler or maybe simulator to debug the
SDRAM test programs.

• The larger fifo bu�er in the serial code could be used for the test. This
way the serial status polling code could be removed from test programs
making them shorter and containing only SDRAM test relevant code.

Maybe these and even more improvement ideas could come during the project
(and not after it) if it would be possible to deal with following non-technical
issues:

• The task was estimated overoptimistically, for example lengthy assembly
programs should not be expected to work on processor/tools out-of-the
box in such early stage of development.

• It is very easy to spend lots of time looking for the problem because of
limited observability. Might be that the overtime was indirectly negatively
contributing to overall time.

D.7 Appendix: Source Code Location
The project of the integration and source of assembly programs is in patmos git
repository and can be retrieved with following command:
git clone git://github.com/t-crest/patmos.git
After fetching the source, invoke make without arguments in ise/ml605_edk
directory to get more instructions. The default make rule will guide you for
rest of the steps. This would require access rights to proprietary code of TU/e
memory controller.
Some notes on using the board were put into the SoCwiki of IMM institute at
DTU:
http://socwiki/doku.php?id=xilinx_ml605

http://socwiki/doku.php?id=xilinx_ml605
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