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ABSTRACT

Based on the established methods kernel canonical correla-
tion analysis and multivariate alteration detection we intro-
duce a kernel version of multivariate alteration detection. A
case study with SPOT HRV data shows that the kMAD vari-
ates focus on extreme change observations.

1. INTRODUCTION

Based on a kernel extension of Hotelling’s original, linear
canonical correlation analysis (CCA) [1, 2, 3] and multivari-
ate alteration detection (MAD) [4, 5, 6, 7], a kernel version of
the MAD transformation termed kMAD is introduced here.
Previously kernel versions of principal component analysis
(PCA) [8], maximum autocorrelation factor (MAF) and min-
imum noise fraction (MNF) analyses [9, 10, 11] were de-
scribed. The kMAD method is based on kCCA. In this con-
text the following issues are important

• the choice of parameter(s) in the applied kernel,

• the choice of regularization parameters – the inherent
Q-mode formulation of kCCA and kMAD makes reg-
ularization a must and not an option (as it is with, say,
linear CCA, kPCA and kMNF),

• choice of the number of canonical variates (CVs) or
MAD variates (MADs) with relevant change informa-
tion,

• whether we should focus on CVs (or MADs) associated
with high or low canonical correlations, ρ, and

• the pixels used in the so-called training data (to comply
with the idea in the iMAD method these should be the
no-change pixels).

Some of these issues are left for further work.
kCCA is based on Q-mode formulation of CCA which

means that in principle we have as many CVs as we have
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training samples, i.e., potentially thousands. Therefore we
use scrambling and scree plots [12] to determine the number
of change relevant kCVs (or kMADs).

In linear MAD we argue that the change relevant MADs
are the ones associated with low canonical correlations, ρ.
This is because these MAD variates contain maximum vari-
ance (variance is the traditionally used measure of high dy-
namics, in this case change). Here, with the potentially very
large number of MAD variates, we argue that the change rel-
evant kMADs are associated with high ρ.

Good general references to kernel methods are [13, 14,
15], the latter with a remote sensing focus.

2. THE KERNEL CCA TRANSFORMATION

Regularization in CCA was first suggested in [16]. In a regu-
larized version of kernel CCA we solve the eigensystem
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are kernelized, centered versions of the data, c and d are the
eigenvectors sought, R is the eigenvalue, and ρ is the canon-
ical correlation. λx and λy are the regularization parameters
the choice of which is an issue. Normally we would choose
(positive) λx = λy and either simply stipulate a (small) value,
choose a value that makes the terms in the right-hand-side
matrix elements approximately equal, or we would set up a
cross-validation scheme to choose a value that is optimal in
some sense.
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2.1. Implementation Issues

The above symmetric general eigenvalue problem is 2n by 2n
and we may re-write to two coupled n by n equations

KxKyd = R[(1− λx)K
2
x + λxKx]c (2)

KyKxc = R[(1− λy)K
2
y + λyKy]d (3)

(which shows that R = cTKxKyd = dTKyKxc).
Equations 2 and 3 may be written
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where − denotes the inverse or if needed the Moore-Penrose
inverse and KyKx = KT

y K
T
x = (KxKy)

T . As shown in
the appendix of [10] which concentrates on the case where
the right-hand-side is not full rank we may solve one of these
two n by n symmetric generalized eigenvalue problems for
example Equation 4 to obtain eigenvectors c and eigenvalues
R2 and the other by insertion into Equation 3 to obtain eigen-
vectors d.

The training data used when the number of observations is
high may either be selected subjectively, by iteratively trying
to home in on no-change observations (much like the iMAD
method), by random selection or by replacing actual observa-
tions with a high number of cluster centers from a k-means
analysis, [17]. Here we simply use a random sample.

3. THE KERNEL MAD TRANSFORMATION

The MAD variates are the differences between correspond-
ing pairs of canonical variates, [4, 5, 6, 7]. In linear MAD
we argue that the change relevant MADs are the ones asso-
ciated with low canonical correlations, ρ. This is because
these MAD variates contain maximum variance. Here, with
a potentially very large number of kMAD variates, we argue
that the change relevant kMADs are associated with high ρ.
This is based on a combination of the observation that intu-
itively differences between very similar variates are interest-
ing for change detection and experiments which show that
very high order MAD variates appear very noisy and without
information. To determine the number of kMADs with rel-
evant change information we use scrambling, [12] pp. 537–
538. A so-called scree plot of ρ with and without scrambling
will give a good indication of the desired number of kMADs
associated with high values of ρ to choose, see the next sec-
tion.

3.1. Choice of kernel and regularization parameters

The kernel width σ can be chosen simply as the mean or the
median of distances between observations in the original fea-

ture space, here we use the mean. As mentioned in the in-
troduction regularization is here a must. The regularization
parameters are chosen as small positive numbers, here we use
λx = λy = 10−6.

Alternatively, the parameters may be found by cross-
validation.

4. CASE STUDY

In this case 1,000 training samples and a Gaussian kernel with
scale parameter equal to the mean distance between the ob-
servations in the relevant feature space are used. To establish
which number of high canonical correlation associated kCVs
to retain and to find the standard deviations in the scree plots
below we use 100 randomly generated sets of training obser-
vations for time point two, all to go with the same randomly
generated set of training observations for time point one.

The data used here are SPOT HRV data from 5 February
1987 and 27 January 1989 covering large pineapple fields (to
the north and east, in bright red), small scale coffe planta-
tions (to the north and west, in darker red), and the town of
Thika (to the south) in the Kiambu district north of Nairobi
in Kenya, see Figure 1. The images are 512 rows by 512
columns, 20.0 m pixels, and three spectral bands.

The scree plot in Figure 2 shows that with the 1,000 train-
ing samples chosen for the analysis we may expect relevant
change signal in the first approximately 70 kMADs.

Figure 3 shows the three iMADs and the first three
kMADs as RGB. All change variates are stretched between
mean minus and mean plus six standard deviations of the
variables in question. This leaves no-change regions in gray
and change areas in saturated colours (including black and
white, if present). We see that 1) the iMADs show change in
water regions, in Thika town, and in the large pineapple fields
where some fields go from bare soil to healthy pineapple and
vice versa, that 2) the kMADs focus on the extreme change
observations here associated primarily with water and the
town, and that 3) the kernel variates show a much better dis-
crimination between change and no-change compared with
the linear variates.

Compared with iMAD analysis, kMAD analysis gives a
strong discrimination between change and no-change regions
with a conspicuously better suppression of the no-change
background.
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(a) 5 February 1987.

(b) 27 January 1989.

Fig. 1. SPOT HRV bands 3, 2 and 1 as RGB.
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Fig. 2. Scree plot of canonical correlations for SPOT HRV
data from Thika, Kenya. Scrambled data are shown in the
error bar curve (the error bars show the standard deviation
for the 100 outcomes of the 1,000 randomly selected training
pixels for the second time point).
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(a) iMAD.

(b) kMAD.

Fig. 3. Change variables iMADs and kMADs 1, 2 and 3 as
RGB. All variables are stretched over 12 standard deviations.
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