
2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23–26, 2012, SANTANDER, SPAIN

PSEUDO INPUTS FOR PAIRWISE LEARNING WITH GAUSSIAN PROCESSES

Jens Brehm Nielsen, Bjørn Sand Jensen and Jan Larsen

DTU Informatics
Technical University of Denmark

Asmussens Alle B305, 2800 Kgs. Lyngby, Denmark
{jenb,bjje,jl}@imm.dtu.dk

ABSTRACT

We consider learning and prediction of pairwise comparisons
between instances. The problem is motivated from a per-
ceptual view point, where pairwise comparisons serve as an
effective and extensively used paradigm. A state-of-the-art
method for modeling pairwise data in high dimensional do-
mains is based on a classical pairwise probit likelihood im-
posed with a Gaussian process prior. While extremely flex-
ible, this non-parametric method struggles with an inconve-
nient O

(
n3
)

scaling in terms of the n input instances which
limits the method only to smaller problems. To overcome this,
we derive a specific sparse extension of the classical pairwise
likelihood using the pseudo-input formulation. The behavior
of the proposed extension is demonstrated on a toy example
and on two real-world data sets which outlines the potential
gain and pitfalls of the approach. Finally, we discuss the rela-
tion to other similar approximations that have been applied in
standard Gaussian process regression and classification prob-
lems such as FI(T)C and PI(T)C.

1. INTRODUCTION

The pairwise learning setting has several application areas
such as preference learning and ranking [1], metric learn-
ing [2] and general pairwise comparison paradigms. Pairwise
comparisons are naturally motivated from a perceptual point
of view, where human subjects make a sequence of pairwise
(subjective) preference decisions in relation to sound quality,
music taste, etc. The main advantage is that pairwise rela-
tions are relatively easy for subjects to convey consistently
since subjects do not need an internal reference.

The theory underlying pairwise comparisons was first
formulated in a principle manner in [3] stating The Law of
Comparative Judgments building on cognitive and perceptual
ideas. The basic idea is that a choice is determined by the
difference in the response from a latent stochastic process.
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The resulting likelihood function in its simplest form—which
is also by far the most common one—was first put into the
flexible framework of Gaussian processes priors in [4].

Gaussian process based models are flexible and thus de-
sirable for pairwise learning, but struggle with an inconve-
nientO

(
n3
)

scaling in terms of the number of input instances
n. This makes their use impractical for large-scale problems.
Several suggestions have been proposed to remedy this issue
for the standard Gaussian process regression case by using a
smaller set of inputs that is either a subset of the original input
set [5, 6] or a completely new set of pseudo inputs [7, 8, 9].
An unifying view of the latter family of models is given in
[10] and extended in [11] leading to the well-known FI(T)C
and PI(T)C approximations for standard regression and clas-
sification models.

In the standard case the explicit formulation of pseudo in-
puts can easily and without further considerations be turned
into a conditional Gaussian process prior with an easy to in-
vert covariance matrix. However, in the pairwise case the
likelihood function depends on two variables. Therefore, we
cannot immediately and without consideration use the stan-
dard approximations in the covariance as done in [12]. In-
stead, our quest to derive a sparse approximation for pairwise
problems starts from the original pseudo-input formulation
presented in [7]. Using this direct approach, our objective is
to extend the pairwise likelihood model to allow for explicit
sparsity in input space achieved by extending the model by a
set of pseudo inputs—or inducing points—of size l� n. Es-
sentially, the pseudo inputs are used to integrate out the two
original variables of the classical pairwise likelihood func-
tion. In effect the Gaussian process prior is now placed over
the function values of the pseudo inputs often resulting in a
considerably lower computational load. Posterior inference
relies on a Laplace approximation and the pseudo inputs can
be found by evidence optimization for example initialized by
k-means.

We give insight and intuition about the behavior and per-
formance of the sparse model compared with the standard
model by considering the Boston housing data set and a wine-
quality data set. Examination of the out-of-sample error rates
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is the basis for discussing the potential and limitations of the
sparse model.

2. MODEL & EXTENSIONS

In this section we describe the general setup and frame the
pairwise model in a Bayesian non-parametric setting. Each
input instance i is described by a feature vector x ∈ Rd

and X = {xi|i = 1, ..., n}. Next, we consider a data set
Y = {yk;uk, vk|k = 1, ...,m} of pairwise relations y ∈
{−1,+1} between the u’th and the v’th instance of X , hence
xuk

,xvk ∈ X 1 . The two opposite choices picking either the
u’th or the v’th instance are denoted by y = −1 and y = +1,
respectively.

Given two latent function values fk = [f(xuk
), f(xvk)]

>,
the observations are modeled by a pairwise likelihood func-
tion p (yk|fk,θL) with parameter(s) θL. The function f is an
latent function, which in a Thurstonian context [13], models
the mean absolute response from the internal cognitive pro-
cess when the subject is exposed to an input instance. The
function parametrization admits that we directly place a zero-
mean Gaussian process [14] prior on f allowing for a flexible
predictive model for the pairwise responses. Formally, we
write f(xi) ∼ GP (0, kθGP (xi, ·)) , where k(·, ·) denotes a
covariance function, or kernel, with parameter(s) θGP , which
generally speaking restricts the smoothness of the function.
The fundamental consequence of a Gaussian process is that
the joint distribution of a finite set of function values f =
[f(x1), f(x2), f(x3), ..., f(xn)]> has a multivariate Gaus-
sian distribution defined by p (f |X ,θGP) = N (0,KXX ),
where the elements of the covariance matrix are given as
[KXX ]i,j = kθGP (xi,xj). Given a standard Bayesian frame-
work and assuming i.i.d. comparisons we now obtain the
posterior over the function values

p (f |X ,Y,θ) ∝ p (f |X ,θGP)
∏m

k=1
p (yk|fk,θL)

with θ = {θL,θGP}. The main computational issue in the
Gaussian process framework is to calculate/approximate the
posterior posing a O

(
n3
)

scaling challenge due to the inver-
sion of the kernel matrix.

2.1. Standard Pairwise Likelihood Function

The pairwise likelihood function described in a general pair-
wise context by [13] and used with Gaussian processes by e.g.
[4] and [15] is given by

p (yk|fk,θL) = Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
, (1)

where Φ(·) defines a cumulative Gaussian (with zero mean
and unity variance) and θL = {σ}. The use of a Gaussian

1We will without loss of generality assume that the set Y involves all n
inputs instances in X .

process prior in connection with this likelihood function was
first proposed in [4].

2.2. Sparse Pairwise Likelihood Function

To obtain sparsity in input space, we generally follow the
ideas in [7]. Hence, given a set of pseudo inputs X̄, their func-
tional values f̄ must originate from the same Gaussian process
that was used for f . Therefore, we can directly place a Gaus-
sian process prior over f̄ , i.e., p

(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
,

where the matrix KX̄X̄ is the covariance matrix of the l
pseudo inputs collected in the matrix X̄ = [x̄1, ..., x̄l].

The overall idea of the pseudo-input formalism is now to
refine the likelihood function from Eq. (1) such that the real f
values that enter directly in the original, non-sparse likelihood
function (through fk), exist only in the form of predictions
from the pseudo inputs f̄(X̄). Given the listed assumptions,
we formally have that f and f̄ are jointly Gaussian, hence[

fk

f̄

]
= N

([
0

0

]
,

[
Kxkxk

KX̄xk

>

KX̄xk
KX̄X̄

])
, (2)

where we define the following matrices and vectors

Kxkxk
=

[
k(xuk

,xuk
) k(xuk

,xvk)
k(xvk ,xuk

) k(xvk ,xvk)

]
(3)

KX̄xk
= [kuk

,kvk ] (4)

with [kuk
]i = k(x̄i,xuk

) and [kvk ]i = k(x̄i,xvk). From
Eq. (2) it is trivial to find the conditional distribution of fk
given f̄ , hence the sparse likelihood function can be derived
in terms of f̄ by integrating over fk, thus

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

=

∫
p (yk|fk,θL) p

(
fk |̄f , X̄

)
dfk

=

∫
Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
N (fk|µk,Σk) dfk

= Φ

(
yk
µuk
− µvk

σ∗k

)
where µk = [µuk

, µvk
]>, µuk

= k>uk
K−1

X̄X̄
f̄ , µvk =

k>vkK−1
X̄X̄

f̄ and

Σk =

[
σukuk

σukvk

σvkuk
σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 +σukuk
+σvkvk−σukvk−σvkuk

,
which all together results in the pseudo-input likelihood

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

= Φ (zk) , (5)

with zk = yk
(
kT
uk
− kT

vk

)
K−1

X̄X̄
f̄/σ∗k.



2.3. Inference & Predictions

The likelihood functions described in Section 2.1 and 2.2 lead
to intractable posteriors and call for approximation techniques
or sampling methods. Our goal in this initial study is to ex-
amine the sparse model and its properties—not to provide
the optimal approximation—hence, we only explore infer-
ence based on the Laplace approximation.

2.3.1. Posterior Approximation

Inference using the Laplace approximation has also been
applied in [16] for the standard model. The general solu-
tion to the approximation problem can be found by maxi-
mizing the unnormalized log-posterior ψ

(
f̄ |Y,X , X̄,θ

)
=

log p
(
Y|f̄ ,X , X̄,θ

)
− 1

2 f̄TK−1
X̄X̄

f̄ − 1
2 log |KX̄X̄| − l

2 log 2π

with regards to f̄ . For the maximization we use a damped
Newton method in which the damped step (with adaptive
damping factor λ) can be calculated without inversion of the
Hessian

f̄new =
(
K−1

X̄X̄
+ W − λI

)−1[
(W − λI) f̄ +∇ log p(Y|f̄ ,X , X̄,θ)

]
. (6)

Using the notation∇∇i,j = ∂2

∂f(xi)∂f(xj) we apply the defini-
tion Wi,j = −

∑
k∇∇i,j log p(yk|xuk

,xvk , X̄, f̄ ,θ). When
converged, the resulting approximation can be shown to be
p
(
f̄ |Y,X , X̄,θ

)
≈ N

(
f̄ |̂f ,

(
W + K−1

X̄X̄

)−1
)

. The damped
Newton step requires the Jacobian and Hessian of the new
pseudo-input log-likelihood from Eq. (5), which require the
following two derivatives

∂

∂ f̄
p (yk|...) = yk

N (zk)

σ∗kΦ (zk)
K−1

X̄X̄
(kuk

− kvk) (7)

∂2

∂ f̄ f̄>
p (yk|...) = −y2

k

N (zk)

(σ∗k)2Φ (zk)

[
zk +

N (zk)

Φ (zk)

]
·K−1

X̄X̄
(kuk

− kvk) (kuk
− kvk)

>
K−1

X̄X̄
. (8)

2.3.2. Evidence / Hyperparameter Optimization

So far we have simply considered the hyperparameters
θ = {θL,θGP} and pseudo inputs X̄ as fixed parame-
ters, but their values have a crucial influence on the model
performance. Here, we resort to point estimates and find
(possible locally) optimal values by iterating between the
Laplace approximation with fixed hyperparameters, i.e., find-
ing p

(
f̄ |Y,X , X̄,θ

)
, followed by an evidence maximization

step in which (θ, X̄) = arg max(θ,X̄)p
(
Y|θ, X̄

)
. The log-

evidence log p(Y|θ, X̄) has to be approximated in our case,
which in terms of the existing Laplace approximation yields

log p
(
Y|θ, X̄

)
≈ log q

(
Y|X̄,θ

)
= log p(Y|̂f , X̄,X ,θ)

− 1

2
f̂TK−1

X̄X̄
f̂ − 1

2
log |I + KX̄X̄W| . (9)

We further allow for fixed hyperpriors on the individual hy-
perparameters serving as regularization, which results in a
procedure referenced to as MAP-II which provides more
robust estimation. Consequently, the MAP-II is given by
log qMAP-II

(
Y|X̄,θ

)
= log q

(
Y|X̄,θ

)
+ log p

(
θ, X̄|ξ

)
,

where ξ is a set of fixed parameters in the hyperprior.
The optimization requires the derivatives of the evidence

approximation. These turn out to be rather tedious and in-
volved, and we refer to the appendix for details. The pseudo-
input model poses a number of difficulties since X̄ are also to
be considered hyperparameters. Typically, this will—as noted
by [7] and [17]—lead to a large number of local maxima pro-
viding potentially suboptimal solutions. It is not our aim to
resolve nor document this issue, and we will take a prag-
matic view and simply accept evidence optimization methods
as is. Like [17] we recommend starting out with a fixed set
of pseudo inputs initialized by a standard unsupervised clus-
tering, such as k-means with restarts, followed by evidence
optimization.

2.3.3. Predictions

The main task is to infer the latent function values f̄ with the
end objective to make predictions of the observable variable
y for a pair of test inputs xr ∈ Xt and xs ∈ Xt denoted xt =
[xr,xs]

T . We consider the joint distribution between f̄ ∼
p
(
f̄ |Y,θ

)
and the test variables ft = [f (xr) , f (xs)]

T . With
the posterior of f̄ approximated with the Gaussian from the
Laplace approximation, the predictive distribution p (ft|Y,θ)
will also be Gaussian given by N (ft|µ∗,K∗) with µ∗ =
[µ∗r , µ

∗
s]T = ktKX̄X̄

−1f̄ and

K∗ =

[
σ∗rr σ∗rs
σ∗sr σ∗ss

]
= Kt − kT

t (I + WKX̄X̄) kt,

where kt is the kernel between the test points and the
pseudo inputs. With p (ft|Y,θ), the prediction distribu-
tion of the observed variable is given as p (yt|Y,θ) =∫
p (yt|ft,θL) p (ft|Y,θ) dft. The integral can be calculated

in closed form as P (xr � xs|Y,θ) = Φ ((µ∗r − µ∗s) /σ∗)

with (σ∗)
2

= 2σ2 + σ∗rr + σ∗ss − σ∗rs − σ∗sr.

3. SIMULATIONS & EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the pseudo-
input method on a toy example and provide predictive perfor-
mance on two real-world data sets: Boston housing and wine
quality. The main objective is not to achieve the overall best
performance, but to compare the standard (GP) and the sparse
(SPGP) formulations.

3.1. Toy Example

To illustrate the basics of the SPGP model, we draw a deter-
ministic function freal (see Fig. 1(a)) from a zero-mean Gaus-
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(a) Toy: d = 1, n = 31, m = 465, l = 9
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(b) Toy: d = 1, n = 31, m = 465
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(c) Boston Housing: d = 10, n = 506, m = 127765
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(d) Wine Quality: d = 11, n = 600, m = 179700

Fig. 1. In general, blue graphs indicate the full model (GP) and red indicate the sparse model (SPGP). In Fig. (a) thick graphs
indicate means and thin graphs indicate one standard deviation. The black graph indicates the real (deterministic) function used
to generate the full pairwise data set between the instances marked with black crosses in the bottom. The two other colors sketch
the predictive distribution of the GP and SPGP models using the (pseudo) inputs at the locations marked with the corresponding
color in the bottom. Fig. (b)-(d) display the performance of the sparse model (SPGP) evaluated on the toy example and on
the two real-world data sets as a function of the number of pseudo inputs for the sparse model (red). The performance of the
standard model is included as a baseline. The solid and dashed red graphs show the average test error rate for the optimized
and non-optimized SPGP model, respectively. The two rows of markers indicate whether the optimized (triangle) and non-
optimized (diamond) SPGP models are significant different from the GP model using the McNemar test. The markers are solid
if the null hypothesis that they are equal can be rejected at the 5% significance level.

sian process with a squared exponential covariance function.
This function is then used to generate a pairwise data set con-
sisting of all possible pairwise comparisons using the func-
tion values at equidistantly distributed locations marked with
black crosses in Fig. 1(a). To model this data, we consider the
two models: The GP model (Sec. 2.1) and the SPGP model
with optimized pseudo inputs (Sec. 2.2). The l = 9 pseudo
inputs are initialized equidistantly in the input interval, the

length scale of the covariance function θGP = {σ`} and the
likelihood parameter θL = {σ} are learned by evidence opti-
mization whereas σf = 1 of the covariance function is fixed.
The results are presented in Fig. 1(a).

We notice that the SPGP model is capable of modeling the
mean and thereby the actual pairwise relationships, whereas
the predictive variance differs significantly from the GP vari-
ance. This is a characteristic and expected artifact also seen



in connection with the pseudo-input models for standard clas-
sification and regression.

3.2. Real World Examples

We compare the performance of the SPGP model to the GP
model on two different real-world data sets.

The first data set is the well-known Boston housing2

where we have constructed a full pairwise version by using
allm = 127765 pairwise combinations of the n = 506 inputs
base on the house price. For each input we use all available
features except RAD, CHAS and NOX, thus d = 10.

The second data set is a subset of the wine quality3 which
is based on user ratings of wines. The subset is based on
n = 600 instances of wines described by d = 11 features.
We construct the set of unique pairwise comparisons from the
ratings resulting in m = 179700 comparisons.

We use a squared exponential covariance function for both
data sets which (based on initial experimentation) is initial-
ized with σf = 1 and σ` = 1. The covariance parameter
σf is fixed, whereas the likelihood parameter initialized as
θL = {σ = 1} and θGP = {σ`} are learned by MAP-II
optimization using a uniform hyperprior and a half-student-
t hyperprior with scale 6 and 4 degrees of freedom, respec-
tively. Pseudo inputs are initialized with k-means (selecting
the solution with minimum total squared distance out of five
random initializations). We compare two SPGP models: one
where the pseudo inputs are kept fixed following the k-means
initialization (this model is identified with the No-Opt tag)
and one where they are further fitted using MAP-II with a
uniform hyperprior. With both data sets we use 20-fold cross
validation on instances, such that a minimum of two instances
are held out for testing and a randomly selected quarter of all
remaining pairwise comparisons between training instances
are used for training. Consequently, predictions are only per-
formed on comparisons between instances that do not appear
in the training data and the setting is thus a true predictive
ranking scenario. In Fig. 1(c)-(d) we report the average error
rate on the test set as a function of the number of pseudo in-
puts for the two SPGP models. The GP model is included as
a baseline.

4. DISCUSSION

In the toy example (Fig. 1(a)) we see that the mean is well
modeled by both the GP model and the SPGP model with
l = 9 pseudo inputs, suggesting that the SPGP model per-
forms nearly as good as the GP model. The main difference
between the two models seems to be the predictive variance
which differs significantly, yet this is an expected property of
the sparse model. A way to improve the estimation of the pre-

2archive.ics.uci.edu/ml/datasets/Housing
3archive.ics.uci.edu/ml/datasets/Wine+Quality

dictive variance is by allowing the input instances and pseudo
inputs to have different length scales [8][17].

Focusing on the predictive mean performance of the opti-
mized SPGP model on the two real-world data sets (Fig. 1(c)-
(d)), we see that a SPGP model with few pseudo inputs (as
low as 1-5) performs only slightly worse than or equal to
the GP model. This indicates that the two real-world prob-
lems do not constitute very complex pairwise problems. The
performance is, however, highly dependent on the optimiza-
tion of the locations of the pseudo inputs, seen since the non-
optimized SPGP model requires more pseudo inputs due to
the fixed locations. This illustrates the importance and power
of the optimization.

By further adding pseudo inputs we can obtain better per-
formance than the GP model. We believe that two effects
come into play. The first effect is that the constraints in-
duced in the SPGP model provide better regularization com-
pared to the full Gaussian process prior meaning that it gen-
eralizes better. The second effect stems from the fact that
the arbitrary placement of the pseudo inputs provides added
flexibility, which effectively renders it more adequate for cap-
turing the important regions of the underlying function when
these locations are optimized appropriately. We speculate that
the observed behavior is a combination of the two effects of
course dependent on the application.

A further aspect to be investigated is the capability of the
SPGP model to capture and approximate higher order mo-
ments of the predictive distribution. In line with previous
work on the topic and with the variances observed in the toy
example, we have observed fluctuating behavior of the pre-
dictive likelihoods as a function of l for the SPGP models in
the two real-world examples. Whether the behavior is due to
the pairwise setting, specific application or a general property
of the pseudo-input formulation is an open question.

In the current sparse formulation the original function
values are dependent in pairs given the exact comparisons,
whereas in FI(T)C all the original function values are inde-
pendent given the pseudo inputs. We plan to investigate if
this difference have any practical importance and to compare
the current approximation to other traditional approaches—in
particular the PI(T)C approximation.

5. CONCLUSION

In this paper we have derived a sparse version of the pairwise
likelihood model using the pseudo-input formulation. We ap-
plied the Laplace approximation for both posterior and evi-
dence approximation. We observe competitive predictive per-
formance with the sparse model using only few pseudo inputs
on a toy example and on two real-world data sets. A notice-
able observation is the fact that we by adding more pseudo
inputs are able to obtain better performance than the full GP
model in the studied applications.



6. REFERENCES

[1] J. Fürnkranz and E. Hüllermeier, Preference Learning,
Springer, 1st edition, 2011.

[2] B. McFee and G. Lanckriet, “Metric Learning to Rank,”
ICML 2010 - Proceedings, 27th International Confer-
ence on Machine Learning, pp. 775–782, 2010.

[3] L. L. Thurstone, “A Law of Comparative Judgement,”
Psychological Review, vol. 34, 1927.

[4] W. Chu and Z. Ghahramani, “Preference Learning with
Gaussian Processes,” Proceedings of the 22nd Inter-
national Conference on Machine Learning (ICML), pp.
137–144, 2005.

[5] N. Lawrence, M. Seeger, and R. Herbrich, “Fast Sparse
Gaussian Process Methods: The Informative Vector
Machine,” in Neural Information Processing Systems
(NIPS), 2002, p. 8.

[6] L. Csato, Gaussian Processes - Iterative Sparse Approx-
imations, Ph.D. thesis, Aston University, 2002.

[7] E. Snelson and Z. Ghahramani, “Sparse Gaussian Pro-
cesses using Pseudo-Inputs,” Advances in neural infor-
mation processing, 2006.

[8] C. Walder, K. I. Kim, and B. Schölkopf, “Sparse Multi-
scale Gaussian Process Regression,” in Proceedings of
the 25th international conference on Machine Learning,
2008, pp. 1112–1119.

[9] M. Lazaro-Gredilla and A. Figueiras-Vidal, “Inter-
Domain Gaussian Processes for Sparse Inference using
Inducing Features,” in Advances in Neural Information
Processing Systems 22, pp. 1087–1095. 2009.

[10] J. Quiñonero-Candela and C.E. Rasmussen, “A Unify-
ing View of Sparse Approximate Gaussian Process Re-
gression,” The Journal of Machine Learning Research,
vol. 6, pp. 1939–1959, 2005.

[11] E. Snelson and Z. Ghahramani, “Local and Global
Sparse Gaussian Process Approximations,” in Eleventh
International Conference on Artificial Intelligence and
Statistics, AISTATS, 2007, pp. 524–531.

[12] J. Guiver and E. Snelson, “Learning to Rank with Soft-
rank and Gaussian Processes,” Annual ACM Conference
on Research and Development in Information Retrieval,
pp. 259–266, 2008.

[13] R. D. Bock and J. V. Jones, “The Measurement and
Prediction of Judgment and Choice,” 1968.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[15] E. Bonilla, S. Guo, and S. Sanner, “Gaussian Process
Preference Elicitation,” in Advances in Neural Informa-
tion Processing Systems 23.

[16] W. Chu and Z. Ghahramani, “Extensions of Gaussian
Processes for Ranking: Semi-Supervised and Active
Learning,” in Workshop Learning to Rank at Advances
in Neural Information Processing Systems 18, 2005.

[17] Y. Qi, A. Abdel-Gawad, and T. Minka, “Sparse-

Posterior Gaussian Processes for General Likelihoods,”
in Proceedings of the Twenty-Sixth Conference Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-10), 2010.

7. APPENDIX - EVIDENCE DERIVATIVES

The derivatives of Eq. (9) are slightly different compared
to the standard classification case [14, Sec 5.5.1] due to the
pseudo-input model because the covariance parameters enter
into the likelihood, and the fact that the covariance function
also depends on X̄. We outline the derivations by noting that
the Eq. (9) depends both explicitly and implicitly (due to the
solution of f̂ ) on the parameters θ. We do not differentiate be-
tween likelihood and covariance parameters and X̄. Here, we
simply denote a parameter by θj . We can split the derivatives
into an explicit and implicit part

∂ log q (Y|...)
∂θi

=
∂ log q (Y|...)

∂θ

∣∣∣∣
explicit

+
∑
j

∂ log q (Y|...)
∂fj

∂fj

∂θi
.

Referring to the explicit term we obtain the following terms
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Referring to the implicit term we have (without any assump-
tions regarding the type of parameter)
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is found by exploiting that f̂ = Kθ∇ log p
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)
at

the current solution leading to the following result
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
We may exploit that the inverse of the common factor

(I + KθWθ) can be computed using the Cholesky decompo-
sition which enters robustly into the individual expressions for
added numerical stability. The expression above is a general
result and valid for both likelihood parameters, covariance
parameters and pseudo inputs. In addition, the derivatives
of the likelihood, Jacobian, Hessian and covariance function
are required. One should be aware that some of the deriva-
tives are zero depending on the actual parameter type (e.g.
∂Kθ/∂θL). The gradients are based on the current Laplace
approximation. Even though we take into account implicit
dependencies, there is in general no guarantee for strictly
monotonic behavior, thus a robust optimization method is re-
quired. In practice we have found the BFGS implementation
in the immoptibox4 robust.

4www2.imm.dtu.dk/%7Ehbn/immoptibox/


