
Feasibility study of the parareal
algorithm

Allan S. Nielsen

Kongens Lyngby 2012
IMM-MSc-2012-nr.134

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-MSc-2012-nr.134

Summary (English)

A general introduction to the topic of time-domain parallelism with motivation
is given in Chapter 1. The ’parareal’ algorithm itself along with pseudo-code for
a simple implementation and all the basic properties are presented in chapter 2.
Chapter 3 contains a comprehensive review of the research literature available
as well as current state-of-the-art implementations of parareal. Investigations
on the convergence rate of the algorithm applied to various types of differential
equations using various numerical schemes as operators in the algorithm is pre-
sented in Chapter 4, followed by an investigation in Chapter 5 on optimal coarse
propagator parameter choice when considering the distribution of parallel work.
In this context a heuristic for the optimal choice of coarse propagator accuracy
is proposed. In Chapter 6 the parareal algorithm is applied to a non-linear
free surface water wave model. The convergence rate is analysed in a Matlab
implementations of the algorithm, simulating the parallelism for a range of dif-
ferent wave types. As will be shown, the non-linearity of the wave and the water
depth influence the parallel efficiency that can be obtained using the parareal
algorithm. In Chapter 7 a large scale implementation of parareal is tested using
a fully distributed task scheduling model to distribute the work that is to be
computed concurrently on GPUs. The GPU implementation constitute a novel
contribution to the literature on parareal. The findings in the report are sum-
marized with a discussion on the feasibility and future outlook of the parareal
algorithm for the parallel solution of initial value problems.

ii

Summary (Danish)

En general introduktion til tids domæne parallisme samt grunde og motivation
for at indføre dette er givet i kapitel 1, mens basale egenskaber ved algorithm
præsenteres i kapitel 2. Kapitel 3 indeholder et omfattende litteraturstudie samt
oversigt over nuværende state-of-the-art forskning indenfor parareal algoritmen.
Undersøgelser af algoritmens konvergens rate for forskellige differential syste-
mer med anvendelser af en række numeriske operatorer præsenteres i kapitel 4
efterfulgt af en undersøgelse i kapitel 5 omkring optimal parameter valg af den
grove numeriske tids-integrator når der tages højde for distribution af parallelt
arbejde. I denne sammenhæng forslås en heuristik til optimal valg af præcision
af denne integrator. I kapitel 6 anvendes parareal algorithm til parallel accelera-
tion af en ikke-lineær fri overflade vandbølge model. Her undersøges konvergens
raten først grundigt ved hjælp af en rent sekventiel matlab implementering for
forskellige bølge typer da det viser sig at ikke-lineariteten af modellen samt vand-
dybden influere den opnåelige parallelle effektivitet. I kapitel 7 introduceres en
stor skala model af parareal ved anvendelse af en fuldt distribueret arbejds-
delings model og mange GPUer, hvilket udgør et nyt bidrag til litteraturen.
Afslutningsvis opsummeres rapportens konklusioner i kapitel 7.4 med en diskus-
sion af de anvendelsemæssige perspektiver af parareal til parallel acceleration af
løsningen af begyndelsesværdiproblemer.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in partial fulfilment of the
requirements for acquiring the Master of Science in Mathematical Modelling
and Computation.

The topic of the thesis is the parareal algorithm, a method for extracting par-
allelism in the solution of evolution problems. The potential for extracting
parallelism in an otherwise seemingly sequential integration makes the parareal
method interesting in the light of modern many-core architecture developments.
The idea and purpose of the thesis is to investigate the applicability and poten-
tial usefulness of the algorithm as much work at DTU Informatics is somehow
affiliated with the numerical solution of differential equations.

Lyngby, 5th of September 2012

Allan S. Nielsen

vi

Acknowledgements

I would like acknowledge my gratitude towards my thesis supervisor Allan P.
Engsig Karup for advice and guidance as well as many thorough discussions
throughout the project. I would also like to thank my external supervisor Jan
S. Hesthaven for supplying valuable literature contributions and feedback as well
as access to the Oscar cluster at Brown University for tests using many GPUs.

In addition i have had the pleasure to work with Stefan L. Glimberg and his
GPUlab library, supplying numerical solvers for the solution of the non-linear
free surface water wave model to be tested with parareal.

Throughout the project i have made use of various compute resources and Bernd
Dammann at IMM has been very kind to assist with questions arising in the
usage of these resources, including the IMM GPUlab workstations, the General
Access Central DTU HPC Cluster as well as the Oscar Compute Cluster at the
Center for Computation & Visualization at Brown University.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Motivation for parallelism in numerical algorithms 2
1.2 Parallelism in the time domain 4

2 The Parareal Method 7
2.1 The Algorithmic Idea . 7
2.2 An algebraic interpretation . 11
2.3 A Visual Presentation . 12
2.4 Complexity and parallel efficiency 15
2.5 Summary . 17

3 A Survey of Present Work 19
3.1 Stability and Convergence . 20
3.2 Strong and Weak Scaling . 27
3.3 Distribution of parallel work . 29
3.4 Stopping criteria . 34
3.5 Various ways to reduce the coarse propagation 38
3.6 Combination with Domain Decomposition 39
3.7 Problems on which Parareal has been applied 41
3.8 Ongoing challenges and further work 44

x CONTENTS

4 Experimental investigation of convergence and stability 47
4.1 Test Equation . 49
4.2 Bernoulli . 51
4.3 Linear ODE system . 53
4.4 Van der Pol Oscillator . 56
4.5 Two-dimensional diffusion . 58
4.6 Summary . 62

5 Efficiency and speed-up 63
5.1 The issue of optimal efficiency 64
5.2 Experimental investigations . 66
5.3 Summary . 75

6 Application to nonlinear free surface flows 77
6.1 Introducing the PDE system . 78
6.2 Weak and Strong Scaling . 81
6.3 Stability of long time integration 83
6.4 Convergence speed on parameter space 94
6.5 Summary . 100

7 A Large-Scale GPU Based Implementation 101
7.1 The fully distributed task scheduling model 102
7.2 Single node implementation . 104
7.3 Grid level implementation . 107
7.4 Summary . 108

Concluding remarks 109

Bibliography 111

Chapter 1

Introduction

In 2001, a new algorithm for the solution of evolution problems in parallel was
proposed by Lions, Maday and Turinici [41]. The algorithm was named parareal
on the prospects of being able to perform real time simulations by introducing
large-scale parallelism in the time domain.

In this introductory chapter, the motivation for increased parallelism in numer-
ical algorithms for the solution of ordinary and partial differential equations is
clarified with respect to current hardware trends and modern compute architec-
tures. As well as serving as a motivation, the chapter includes a short review
of previous attempts at introducing parallelism in the time domain such as the
time parallel multigrid methods and the waveform relaxation techniques. The
methods are briefly illustrated and discussed with respect to the parareal al-
gorithm proposed by Lion et. al. (2001) The current predictor-corrector form
of parareal algorithm was first proposed in 2002 by Baffico et. al. [4] and sev-
eral variants of the method has been proposed [23, 29]. The parareal algorithm
has received a lot of attention over the past few years, particularly from the
domain decomposition literature. In chapter 2, the algorithm is presented as
in [27] where it was shown that the parareal algorithm can be seen as either a
variant of the multiple shooting method, or a two level multigrid method with
aggressive time coarsening. The chapter also includes a simple implementation
example and an overview of essential algorithmic properties. Chapter 3 contains
an extensive survey of the present state of research as well as an overview of

2 Introduction

which problems the algorithm has been tested on.

In chapter 4 the implementation of the parareal algorithm applied to a range
of equations from ODE systems to PDEs are presented along with convergence
measurements and parallel speedup estimates. Chapter 5 extend the demon-
strations of chapter 4 with a theoretical analysis of convergence in conjunction
with an efficiency analysis, followed by a discussion on heuristics for optimal
parameter choice. The final two chapters of the report are on the application
of parareal to a fully nonlinear free surface wave model with the goal of us-
ing GPUs as workers in the algorithm. In chapter 6, stability and convergence
of parareal on the wave model for long time integration is investigated and in
addition, convergence speed over a wave parameter space is measured for var-
ious coarse propagators. In chapter 7 a CUDA/MPI/C++ implementation is
presented with the parallel work being distributed following a model proposed
by [2]. Results are discussed and compared with speedup obtained by classical
domain decomposition.

1.1 Motivation for parallelism in numerical al-
gorithms

As the usage of computer simulations within engineering and natural sciences
increase, so does the demand for computational throughput and speed from en-
gineers and scientists alike. In the context of numerical solvers to differential
equations, these are often formulated as sequential algorithms, but unfortu-
nately many problems faced in real-life are much to computationally expensive
to be computed on a single processor. An abundance of such problems exists,
e.g. weather forecasts, molecular dynamics, High energy and Quantum physics,
semiconductor modelling and so on. Such large-scale problems have long been
solved on large-scale clusters consisting of individual processors and as such,
parallelism as an approach of accelerating the simulation physical models is by
no means a new thing. Parallel numerical algorithms has been an area of re-
search for a long time, and in this context the first papers on the specific topic
of time-parallel time integrators where published as early as the nineteen six-
ties by J. Nievergelt [53] and Miranker Et. Al. [51] on parallel methods for the
integration of ordinary differential equations.

For the past many decades, improvements within manufacturing and processor
technologies has been the main driver of performance increases, allowing new
generations of microprocessors to shrink dimensions and thereby reduce power
consumption, add transistors and increase operating frequency. All of this to
add to the sequential throughput generated by general purpose CPUs. This

1.1 Motivation for parallelism in numerical algorithms 3

ride, however wonderful, is over. Since mid 2000s, chip manufactures have had
to seek out new ways of improving the performance of their hardware. While
the number of transistors that can be fitted on a chip continues to increase, the
ability to increase clock speed has hit a practical barrier often referred to as the
power wall. The exponential increase in power required to increase the clock
frequency has hit practical cost and design limits. [1]

The classic approach by chip-manufactures in the past has been to increase the
processor operating frequency whenever new fabrication technologies would al-
low to do so, while at the same time adding transistors for more cache, branch
prediction and control logic so to keep a single sequential thread running ever
faster. However, with fundamental physical laws limiting the practical scala-
bility of processor frequency, this approach is no longer viable. The ever in-
creasing amount of transistors per chip coming available with new fabrication
technologies is still projected to continue for another decade though, and the
new strategy by chip-manufactures, wanting to provide competitive silicon for
the end-users, has been to use the added transistors to supply more individual
compute cores to each processor die [11]. Thus, end-users can no longer rely
on their legacy code, per default, to run faster on new hardware generations.
As of now, with added compute comes the need for added parallelism, and this
forces much software to be changed, algorithms to be revised and new ones to
be developed [65].

It is hard to understate the disruptive change that has happened within high
performance computing for the last couple of years and the years to come - in
addition to the challenges presented above by not being able to scale the clock
frequency, HPC vendors and users have experienced other problems. The scale
out strategy of increasing performance by racking and stacking an ever increas-
ing amount of compute nodes has hit physical limitations of space("The wall
wall"), as well as cooling and electricity supply limitations. The industry re-
sponse to these challenges seem to converge towards what has become known as
heterogeneous computing. A general purpose processor will by default include
a wide range of functional units, to be able to respond to any computational
demand. This is what makes it a general purpose processor. Accelerators are
specialised to handle only specific functions or tasks, i.e. fewer transistors are
wasted during compute because only those functional units required by the com-
pute purpose are included. See [52] for a discussion of current hardware trends.
The trends in compute hardware towards more parallelism and heterogeneity,
unfortunately leads to an increase in the complexity of code and algorithms
which adds to the burden of the application developers forcing these to search
for new methods and opportunities to exploit these compute resources.

A now classical approach for the parallel solution of partial differential equa-
tions is the domain decomposition methods. Domain decomposition is used to

4 Introduction

solve boundary value problems, and therefore typically parallel in space. The
domain decomposition method adds parallelism to the problem by splitting the
dimension on which the boundary values are defined into a number of smaller
boundary value problems on sub-domains and iterating over these to coordinate
the solution between adjacent sub-domains. The problems on each sub-domain
is independent, and thus suitable for parallel computing. The efficiency of the
best domain decomposition algorithms based on an update of internal boundary
conditions is such that it leads to the expected convergence with a number of
iterations that is only slightly dependent on the number of sub-domains that
are involved and the solution of large scale problems over P processors using the
domain decomposition algorithms is often close to P times faster than a single
processor. The domain decomposition methods is also applicable on problems
with mixed boundary and initial conditions, say solving parallel in space with
boundary conditions while iterating sequentially forward in the time-domain
from an initial state.

Even though domain decomposition is very efficient, at present, many scientific
and industrial problems reach their speed-up limit for a limited number of pro-
cessors due to a degradation of the scalability when the number of processors
become large. For problems involving long time integration, a method to add
parallelism to the temporal direction is certainly of great interest. The issue
is even more critical for systems of ordinary differential equations where classi-
cal domain decomposition methods are not applicable [43]. Contrary to space
however, time is, by its very nature, sequential, and this precludes a straight-
forward implementation of a parallel approach. In the following section, various
approaches of introducing parallelism in the temporal domain is presented.

1.2 Parallelism in the time domain

In order to exploit the massive throughput capabilities of modern and emerg-
ing hardware architectures, increased parallelism in numericals algorithms are of
great importance. For the most part, time has long not been considered compet-
itive as a viable direction for parallelization in evolution problems. As detailed
in the previous section, modern compute processors as a simple rule of thumb is
now to be expected to contain more compute units rather than faster compute
units, compared to that of older generation hardware. This development have
lead to an increased focus on temporal parallelization in research. Parareal is
by no means the first algorithm to propose the solution of evolution problems in
a time-parallel fashion. Already in 1964, J. Nievergelt [53] proposed a parallel
time-integration scheme where the interval of integration is subdivided and a
number of different problems are solved on each interval concurrently followed

1.2 Parallelism in the time domain 5

by a parallel interpolation. The approach is now considered to be impractical,
but both [37] and [36] considered extensions of this approach trough the use of
parallel multiple shooting techniques, and as such, Nievergelt work eventually
evolved into the multiple shooting methods applied to the time domain

Since the paper by Nievergelt in 1964 there have been many contributions in
the literature dealing with parallelization of time dependent problems. For an
in-depth synthetic approach to previous attempts at time-domain parallism,
the book [12] by K. Burrage published in 1995 presents a, by that time, up-
to-date exposition of "state of the art" within numerical methods for solving
ordinary differential equations in a parallel computing environment. The various
techniques for solving evolution problems are by Burrage classified into three
categories, parallelism across the system, parallelism across the method and
parallelism across the time. Below they are here presented as in [43].

• Parallelism across the system. The methods in this category consists
those where the right hand side is partitioned over its various components
and the computations of the components spread across different proces-
sors. Parallelism across the system is the most common and efficient ap-
proach when the dimension of the system is large, such as in gravitational
or molecular simulations.

• Parallelism across the method As the name implies, this approach is
directly linked to the numerical scheme used to solve the equation, and as
such, the efficiency highly depends on the characteristics of the scheme.
Research in this direction has led to the design intrinsically new parallel
schemes. Runge-Kutta methods and partitioned Runge-Kutta methods
offer the possibility of parallelism across the method.

• Parallelism across the time. This approach consists in breaking up
the integration interval into sub-intervals, solving these concurrently over
each sub-interval. The obvious issue with this approach is to provide the
correct seed values at the beginning of each integration sub-interval. The
techniques in this category are mostly of the multishooting class methods,
stemming from the precursor work by A. Bellen et M. Zennaro [8] and [13]
on the parallelism across the steps, leading to the waveform relaxation
methods introduced by E. Lelarasmee, A. E. Ruehli and A. L. Sangiovanni-
Vincentelli [38] and the multigrid approaches introduced by W. Hackbush
[31].

The focus of this thesis is on the recently proposed parareal in time approach
that was first presented in [41] and enters into the third category mentioned
above. In [27] it was shown that the parareal scheme can be interpreted as

6 Introduction

a multishooting technique or as a two level multigrid in time approach. The
leading idea however came from techniques used in spacial domain decompo-
sition. Other attempts to parallelize in time such as the parallel runge-kutta
schemes [34,35] are very limited in the type of schemes to select from and they
have yet to prove effective for stiff problems. The waveform relaxation [59] is a
more general method which works on a wider-range of problems, but in general
the various approaches to time parallel time integration suffer from a number
of issues. Many are only applicable to certain classes of problems or suffer from
issues with non-linear equations, are limited to small-scale parallelism only, or
even limited to certain hardware architectures or numerical solvers. Classical
domain decomposition methods have proved very effective as a mean of intro-
ducing parallelism and as such, 3rd category time-parallelism has yet to find
broad usage. With projected trends in hardware development this may very
well change and in this context the parareal algorithm has shown a number of
promising results. In addition, the algorithm has several advantages over other
parallel-in-time algorithms as listed below

• Has already been tested successfully on a wide range of problems.

• Successfully applied on non-linear equations.

• Not limited to small-scale parallelism.

• Can be used in conjunction with any combination of integrators.

• Relatively easily implemented in it’s most basic form.

• Fault tolerant algorithm.

The parareal in time algorithm is still very much an active area of research with
many recent publications as challenges and unknowns still exists. A number of
these issues will be identified and discussed in the chapters 3 and 4. Due to
the paramount importance of finding new ways of extracting parallelism going
together with the ever increasing number of compute units present in the new
generations of compute architectures, algorithms such as parareal in time and
other time-parallel integrators have become an active research topic showing
promising applicability for large-scale computing and perhaps even amounting
to a small step towards the exascale computations challenge [58]. In the chapter
to follow the parareal algorithm is introduced.

Chapter 2

The Parareal Method

The parareal algorithm was first introduced in 2001 in a paper authored by J.-L.
Lions, Y. Maday and G. Turinici. In this chapter the currently used predictor-
corrector form first proposed in [4] is introduced to the reader. The predictor-
corrector formulation is completely equivalent to the one presented originally
in [41] when the algorithm is applied to linear differential equations, but the
approach presented in [4] has been shown to be better at handling nonlinear
equations than the original formulation. In the section to follow the algorithmic
idea is clarified along with the introduction of basic definitions and conventions
to be used throughout the report. An algebraic interpretation as presented
in [46] is given along with a visual presentation of the iterative solution procedure
for a simple ordinary differential equation. To round of the presentation, a walk-
trough of important properties of the algorithm that may otherwise not seem
obvious at a first encounter is given along with an introductory discussion on
computational complexity and parallel efficiency of the algorithm.

2.1 The Algorithmic Idea

It seems intuitive to consider time to be inherently sequential. And considering
the research that has gone into developing parallel time integrators, it must be

8 The Parareal Method

T0 T1 TN

Space

T ime

Figure 2.1: Visual presentation of time decomposition.

fair to state that it is indeed difficult to simulate the far future without knowing
the close future in great detail.

The leading idea for the parareal algorithm came from spacial domain decom-
position. The parareal in time approach proposes to break the global problem
of time evolution into a series of independent evolution problems on smaller
intervals. Initial states for these problems are needed, and supplied by a simple,
much less accurate, but fast sequential time integrator. The smaller indepen-
dent evolution problems can then be solved in parallel with the use of more
expensive and more accurate integrators.

The information generated during the concurrent solution of the independent
evolution problems with accurate propagators and inaccurate initial states is
then used in a predictor-corrector fashion in conjunction with a simple integrator
to propagate the solution faster, now using the information previously generated.
The strategy is to do a time decomposition in the spirit of domain decomposition.
We define the decomposition into N intervals as depicted in figure 2.2, that is

T0 < T1 < · · · < Tn = n∆T < Tn+1 < TN

Now, let us define the general problem on the above decomposed time domain,

∂u

dt
+Au = 0 (2.1a)

u(T0) = u0 , t ∈ [T0, TN] (2.1b)

where A is an operator from one Hilbert space to another. To solve the dif-
ferential problem 2.1 we define a numerical operator F∆T that operates on
some initial state u(Tn−1) = Un−1 and approximate the solution to 2.1 at time
Tn−1 +∆T , using some small time step δt� ∆T . The operator F will through-
out the report as of now be referred to as the fine propagator or fine integrator.
A numerical solution to 2.1 can be obtained by applying the fine propagator 2.2

2.1 The Algorithmic Idea 9

∆T

δT

δt

T0 T1 Tn Tn+1 TN

Figure 2.2: Decomposition of time into smaller domains.

sequentially for n = 1, 2, . . . , N .

Ûn = F∆T

(
Tn−1, Ûn−1

)
, Û0 = u0 (2.2)

In addition to the fine propagator, let us define a coarse propagator G·T . Again
G∆T operates on some initial state u(Tn−1) = Un−1 and propagate the solution
over a time ∆T , but now using a time-step δT . Typically δt < δT < ∆T .
For the parareal algorithm to be effective, the coarse propagator G∆T has to
be substantially faster to evaluate numerically than the fine propagator F∆T .
Many ways of constructing the coarse propagator G∆T has been proposed such
as using a different type numerical solver, simplified physics or simply longer
steps making the propagator less accurate but faster. Various types of coarse
propagators are presented in chapter 3. The coarse operator reads

Ũn = G∆T

(
Tn−1, Ũn−1

)
, Ũ0 = u0 (2.3)

A less accurate numerical solution to 2.1 can then be obtained by applying
the coarse operator 2.3 sequentially for n = 1, 2, . . . , N . The introduction of
the notation Û for a state returned by the fine propagator and the notation
Ũ for a state returned the coarse operator is adopted from [2] as it is very
useful in pseudo code descriptions of what data can be discarded and what is
needed for further iterations, the notation is used throughout the report. The
predictor-corrector form of the parareal algorithm, hereafter simply referred
to as parareal or PA is stated in 2.4. When the algorithm initiates, a strictly
sequential application of the coarse propagator G∆T for n = 1, 2, . . . N is applied
to provide initial states Ũ0

n . This purely sequential propagation is to provide
the first predictions, and we define this propagation as iteration k = 0. Now,
processors n = 1, 2, . . . N can solve Û0

n = F∆T

(
Ũ0
n−1

)
concurrently. Following

the concurrent solution of n = 1, 2, . . . N initial value problems, a sequential
coarse propagator will generate predictions to be corrected with the information
generated from the concurrent fine propagation, at each subinterval in time the
initial state for the fine propagation in the next iteration is computed. As such,
the PA algorithm reads

Ukn = G∆T

(
Ukn−1

)
+F∆T

(
Uk−1
n−1

)
−G∆T

(
Uk−1
n−1

)
, Uk0 = u0, n = 1, . . . , N (2.4)

10 The Parareal Method

where k = 1, 2, . . . kmax. The number of iterations k, is here defined as the
number of times the fine propagator F∆T is used to concurrently solve N initial
value problems, followed by sequential propagation G∆T

(
Ukn−1

)
corrected by

the last two terms in 2.4 The iterations are repeated until the solutions has
converged to the solution one would have obtained using the operator F∆T in a
strictly sequential fashion. In algorithm 1 pseudo code for the implementation
of parareal in its most simple form is presented as in [2]. The pseudo code

Algorithm 1 Pseudo code for a simple implementation of parareal

U0
0 ← Ũ0

0 ← y0

\\iteration 0
for n = 1 to N do
Ũ0
n ← G∆T

(
Ũ0
n−1

)
\\Initial prediction

U0
n ← Ũ0

n

end for
\\First parareal iteration
for k = 1 to Kmax do
U1

0 ← y0

for n = 1 to N do
Ûk−1
n ← F∆T

(
Ũk−1
n−1

)
\\Parallel step

end for
for n = 1 to N do
Ũkn ← G∆T

(
Ukn−1

)
\\Predict

Ukn ← Ũkn + Ûk−1
n + Ũk−1

n \\Correct
end for
if |Ukn − Uk−1

n | < ε∀n then
BREAK \\Terminate loop if converged

end if
end for

presented in algorithm 1 calls for a discussion of conventions. In some parts of
the literature, iterations are defined as the number of sequential propagations,
not the number of fine propagations. The difference is particularly important
to take note of when evaluating analytical convergence results as presented in
chapter 3. In addition to this difference, a number of variations on the parareal
algorithm in its basic form as presented in 1 can be found in the literature.
The code presented terminates when measuring convergence after using the fine
propagation information to generate a new solution to the problem 2.1. This is
favourable if one is only looking for the solution at the final time TN . However,
if an accurate solution is needed over the entire interior interval at the fine
time grid points, then one would need to do an additional fine propagation
after the final predictor-corrector to "update" the interior. If the later is the

2.2 An algebraic interpretation 11

case it would be favourable to define the loop in a different manner so that
the first fine propagation happen before the loop initiates and instead the loop
begins with the predictor-correction procedure 2.4 upon evaluating convergence
followed by the parallel fine propagation to update the interior [T0, TN]. This
fairly basic difference in conventions has lead to some confusion with regards to
the theoretical obtainable efficiency and speed-up of algorithm.

For the reader who is not familiar with the term speed-up and efficiency in the
context of parallel computations, a simple definition is given. The speed-up is
the ratio between the wall-clock time of the serial and the parallel computation.
The efficiency is the ratio of the speed-up to the number of compute units used
in the acceleration.

Parareal is an iterative algorithm and therefore needs a stopping criteria, let
us for the moment just note that a sufficiently small value can be used as cri-
teria with respect to the norm of the difference between the solution after two
consecutive parareal iterations. A more involved discussion on this topic and
present results in literature is given in chapter 3 and in chapter 4 it will be
shown how it is possible to use such a simple stopping criteria, but at the same
time it is also likely to decrease the obtainable efficiency to a, for practical pur-
poses, unacceptable level. Before further discussions on parareal, an algebraic
interpretation of the algorithm is presented in the following section.

2.2 An algebraic interpretation

Given the decomposition into N time domains,

T0 < T1 < · · · < Tn = n∆T < Tn+1 < TN

the differential problem 2.1 can then be rewritten as N initial value problems
on the form

∂un
dt

+Aun = 0 (2.5a)

un(T+
n) = Un t ∈ [Tn, Tn+1] (2.5b)

for n = 0, . . . , N−1. The collection of solutions {u0, u1, . . . , uN−1} is connected
to the solution u of the original problem if and only if, for all n = 0, . . . , N − 1,
we have that Un = un−1 (Tn) with u−1 (T0) = u0. Recall our fine propaga-
tor F∆T (Un−1), using the propagator we can write the numerical solution of

12 The Parareal Method

problem 2.5 in a matrix form as

I 0 0 · · · 0
−F∆T I 0 . . . 0

0 −F∆T I 0
...

...
. 0

0 · · · 0 −F∆T I




U0

U1

U2

...
UN−1

 =


u0

0
0
...
0

 (2.6)

or with matrix notation as
MΛ = F (2.7)

where Λ = {U0, U1, . . . , UN−1}. The sequential nature of the scheme clearly
appears. A lower triangular system is solved by a standard inversion involv-
ing O (N) propagations. However, we are not interested in solving the ma-
trix problem 2.6 in a sequential fashion, but rather we are interested in some-
how introducing parallelism. Notice that the conditions Un = un−1 (Tn) for all
n = 0, . . . , N − 1 can be seen as a a cost functional to be minimized in some
norm

J (Λ) =
∑N−1
n=1 ‖un−1 (T−n)− Un‖

2

When the conditions on the time interval boundaries are completely satisfied, J
is zero. To introduce parallelism in the inversion of 2.6, we recall the definition
of the coarse operator G∆T and use it to define the matrix

M̃ =


I 0 0 · · · 0

−G∆T I 0 · · · 0
0 −G∆T I · · · · · ·
...

. 0
0 · · · 0 G∆T I


from which it is possible to deduce the following algebraic formulation of the
parareal in time algorithm as by [46]

Λk+1 = Λk + M̃−1Resk (2.8)

where the residual is defined by Resk = F −MΛk. To some extend M̃−1 can
then be considered as a pre-conditioner for 2.7, in the sense that the matrix
M̃−1M is close to identity.

2.3 A Visual Presentation

To ease the qualitative interpretation of the solution procedure, a visual pre-
sentation of the iterative approach is presented in this section. We define the

2.3 A Visual Presentation 13

ordinary differential equation initial value problem

∂y

dt
= sin (t) y (t) + t (2.9a)

y(0) = 1 , t ∈ [0, 14] (2.9b)

and in addition we define a time-domain grid as in 2.1. In order to apply the
parareal algorithm, we need to define a fine propagator F∆T . For this example
we will use a simple forward euler approach with a fine time-step δt. The method
reads

Yi+1 = (1 + δt sin (ti))Yi + tiδt (2.10)

To propagate a distance ∆T , we would need to do ∆T
δt steps of the above dis-

cretization, this constitutes the fine operator F∆T . Similarly we define the
coarse operator to also use the forward euler discretization 2.10, but now with
a time-step δT , and ∆T

δT steps to integrate a distance in time ∆T .

For the sole purpose of demonstration, the solution is implemented in Matlab
with simulated parallelism, using the most basic application approach as given
in algorithm 1. The solution time domain t ∈ [0, 14] is split into 14 intervals of
length ∆T = 1. The time-step of the coarse propagator is set at δT = ∆T = 1
and the time-step of the fine operator is chosen at δt = 0.02. Notice the ratio
between computations spend applying the coarse propagator to a state, and
applying the fine propagator. Both propagating the solution a time-interval
∆T = 1. In this case the ratio is R = 50 : 1. This ratio is of great interest in
estimating speedup of the method and throughout the report we refer to it as
simply R = 50, occasionally using r, with r = R−1.

In figure 2.3 the results of the first four iterations of the parareal algorithm
implemented as described above is visualised. For clarity, only the previous
iteration corrected predictions Uk−1 as well as the fine propagation F∆T

(
Uk−1

)
on the later and the new corrected prediction Uk is visualised. Figure 2.3a show
iteration 0, figure 2.3b iteration 1 and so forth. Notice how in iteration zero,
the algorithm is initialised and the corrected prediction U0 is simply the coarse
propagation applied to the initial condition and propagated trough the entire
domain.

14 The Parareal Method

0 6 12

0

160
Gu0

U0

Fu0

(a) Iteration 0

0 6 12

0

160
U0

F∆TU
0

U1

Fu0

(b) Iteration 1

0 6 12

0

160
U1
F∆TU

1

U2

Fu0

(c) Iteration 2

0 6 12

0

160
U2

F∆TU
2

U3

Fu0

(d) Iteration 3

Figure 2.3: Parareal iterations in the solution of the ordinary differential equa-
tion initial value problem 2.9

2.4 Complexity and parallel efficiency 15

The green line appearing in all figures is the solution obtained by applying the
fine solver in a purely sequential manner throughout the time domain. The
corrected predictions, and the fine propagations on these, are seen to converge
towards the fine propagator reference solution.

This is essential, and can be deducted from the algebraic presentation of parareal
in section 2.2. Parareal allows to iteratively converge towards the solution one
would have obtained using a purely sequential fine propagation over the entire
time-domain interval. The iterative method is actually more computational ex-
pensive than the pure sequential method, and therefore it has no interest in a
purely sequential implementation like other iterative methods. The advantage
of the iterative method is that some parts of the algorithm can be solved con-
currently, enabling potential speedup despite the increased computational load
by the addition of more compute units.

2.4 Complexity and parallel efficiency

In this section we depart on a basic analysis of the computational complexity of
the parareal algorithm. As mentioned previously, the iterative algorithm is not
useful as a tool to accelerate the sequential propagation trough fast convergence.
As will be shown, the computational complexity of the iterative approach is
strictly larger than that of a plain sequential approach using the fine propagator.
The advantage of the algorithm is that the parareal iterative approach allows
some parts of the computation to be performed in parallel.

In the analysis of the computational complexity, we first recognize that the com-
putational complexity of both the coarse and the fine propagator, regardless of
the type of discretization scheme used, involves a complexity that is propor-
tional to the number of time-steps being used. Let us define two scalar sizes CF
and CG as the computational cost of performing a single step within the fine and
coarse propagators. The computational complexity of a propagator integrating
over an interval 4T is then given by CF 4Tδt and CG 4TδT respectively. But how
does this relate to the total complexity of the pararela algorithm? Let us define
the number of iterations k as the basic algorithm presented in algorithm 1. If we
disregard the cost of correction (line 15), the total complexity with k iterations
can be written as

(k + 1)NCG ∆T
δT + kNCF ∆T

δt

But the second term can be distributed over N processors, so

(k + 1)NCG ∆T
δT + kCF ∆T

δt (2.11)

16 The Parareal Method

The above should be compared to the computational complexity of a purely
sequential propagation using the fine operator, which would lead to a computa-
tional complexity TN−T0

δt CF = N ∆T
δt CF . Assuming that communication between

compute units is instant, and therefore negligible. We can estimate the speed-
up, denoted ψ, as the ratio between the computational complexity of the purely
sequential solution using the fine operator only, and the complexity 2.11 of the
parareal algorithm. The estimated speed-up ψ then reads

ψ =
N ∆T

δt CF
(k+1)NCG ∆T

δT +kCF ∆T
δt

= N

(k+1)N
CG
CF

δt
δT +k

(2.12)

If we in addition assume that the time spend on coarse propagation is negligible
compared to time spend on the fine propagation, so that we are in the limit
CG
CF

δt
δT → 0, the above expression reduces to

ψ = N
k (2.13)

Under these ideal circumstances, with convergence in k = 1 iterations, one
would obtain perfect speed-up. Now what kind of assumptions did we make in
the above derivation? First of, it was assumed that the correction time could be
neglected. Second, we also assumed that communication time between compute
units was negligible. Third, we assumed the computational complexity of the
coarse propagator to be much smaller than that of the fine propagator. These
assumptions are important to keep in mind and, as will be shown, the later is
intimately coupled with the number of iterations needed for convergence. Using
a similar deduction, it is readily seen that the iterative method has no use in
sequential computation. Using a single compute unit, the estimated speed-up
would then be

ψN=1 = 1

(k+1)
CG
CF

δt
δT +k

which is strictly less than one, since k ≥ 1. From 2.13 we concluded that the
number of iterations to convergence k pose an upper bound 1

k on the efficiency.
The obvious next step is to investigate the convergence properties of the algo-
rithm. It is a straight forward exercise to prove by induction that Unn = Fn∆Tu0,
which means that the method is exact in a finite number of iterations. With
k = N we obtain the exact solution at the final time TN one would obtain by
using a fine propagation only. This would however not yield any speed-up since
we would then have the estimate

ψk=N = lim CF
CG

δt
δT→0

N

(k+1)N
CG
CF

δt
δT +N

= 1

But in practice it would lead to a slow down rather than a speed-up of the algo-
rithm due to the time spend on correction and coarse propagation. Fortunately,
the algorithm convergence much faster, and in chapter 3, a review of analytical

2.5 Summary 17

convergence results from the literature is presented. The iterations needed for
convergence is intermediately coupled with the ratio between the speed of the
coarse and the speed of the fine propagator CGCF

δt
δT . Using a fast and accurate

coarse propagator will lead to convergence in fewer iterations k, but at the same
time make CGCF

δt
δT larger, thereby degrading the speed-up as can be deduced from

2.12. The convergence speed is thus coupled to the assumption on the relation
between speed of coarse and speed of fine solver. The ratio CFCG

δt
δT can not be

made arbitrarily small since the relation is inversely proportional to the itera-
tions k needed for convergence. This poses a challenge in obtaining speed-up
and is a problem of trade-off between time spend on a fundamentally sequential
part of the algorithm and number of iterations to convergence. The problem
is of optimization type and a much more involved discussion on this topic is
presented in chapter 4 and 5.

2.5 Summary

In this chapter the parareal algorithm was introduced along with an algebraic
interpretation followed by a visual presentation of the method to give the reader
an intuitive feel of the iterative procedure. From a fairly simple analysis of
the computational complexity, it was proven that the upper bound on parallel
efficiency scales as 1/k. A number of fundamental results was presented in this
introductory chapter, and for the purpose of clarity, the most notable conclusions
are stated in bullet form below.

• The parareal algorithm is an iterative approach at speeding up the so-
lution of an otherwise strictly sequential propagation. The algorithm is
computationally more expensive and therefore has no value in a serial
computation.

• The algorithm convergence towards the solution one would have obtained
using the fine propagator F in a sequential propagation throughout the
time domain.

• Parareal is an iterative algorithm, so a stopping criteria is needed. It is
possible to use a sufficiently small value, such as the machine precision,
comparing it to the norm of the difference between two consecutive itera-
tions. This approach may lead to superfluous iterations as will be shown
in chapter 4, and other better methods exists.

• Like the iterative conjugated gradient method, parareal is exact at a max-
imum number of iterations, equal to the number of intervals N . However,

18 The Parareal Method

the upper bound on efficiency scales as 1
k , so convergence must be reached

in far fewer iteration.

• The coarse propagator G4T does not need to be of same type as the fine
propagator F4T . We are free to choose the coarse propagator in any way
we like. The choice of G4T will only effect the stability and convergence
rate of the algorithm, not the accuracy of the end result.

• The algorithm favours single step methods. During each iteration, N
individual initial value problems are solved. Due to the start-up issues of
multi step schemes, such solvers are less suitable in this context.

• The number of parareal iterations k should be small. Ideally k = 1, which
leads to potential perfect parallel efficiency.

• The choice of coarse operator G is critical in the effort to obtain high effi-
ciency. The coarse operator G should be close enough in terms of accuracy
to F so to allow convergence in few iterations, but still cheap enough so
that (k + 1)NCG ∆T

δT � kCF ∆T
δt . Throughout the report it will become

clear that balancing this trade-off is the biggest challenge in obtaining
speed-up using the parareal algorithm.

Chapter 3

A Survey of Present Work

The very first paper introducing the predictor-corrector form of the parareal
algorithm was proposed by Baffico et. al. [4] and published in 2002. During the
decade that has passed, much research have gone into establishing the properties
of the algorithm. In [27] it was shown that the parareal method is type of
multiple shooting method with a Jacobian matrix computed by finite difference
on a coarse mesh. In addition it was shown the method could also be rewritten as
a two-level multi-grid in time method of "full approximation storage type" with
an unusual smoother corresponding to a "single phase in a two-color" relaxation
scheme. The parareal algorithm is still very much an active field of research,
with many recent contributions [9, 18, 30, 33, 54, 56]. The challenges posed by
hardware trends towards increased parallelism and heterogeneity as introduced
in chapter 1 have sparked a recent rise in the search for algorithms to exploit the
new compute architectures. The parareal algorithm is a method of extracting
parallelism in the numerical solution of initial value differential equations, and
as such fits nicely into this overall trend.

During the course of the work going into the thesis at hand, much material on
the topic has been read and in this chapter highlights and notable results from
the literature is presented. Initially, results on the topic of convergence and
stability is covered. If a method is not convergent, it is not of much use and
therefore the most important results and theorems are presented. In addition,
the stability criteria on the choice of coarse propagator G as derived in [6] and [63]

20 A Survey of Present Work

is presented. From the theorem it can be shown that under certain conditions
the parareal algorithm may have stability issues.

A number of results from various papers on the scaling properties of the algo-
rithm is presented and two sections are included on the topic of parallel efficiency
of the algorithm. The first section involves a discussion on the choice of stopping
criteria while in the second section we show that much efficiency can be gained
by distributing the algorithm as information become available rather than tak-
ing a strictly sequential-parallel-sequential approach as presented in the basic
implementation in 1. The chapter ends with a discussion on potential gaps in the
theory, challenges that need to be addressed and perspectives for the parareal
algorithm.

3.1 Stability and Convergence

Most of the early work published on the parareal method is either on the topic of
stability and convergence, or on speed-up results of the application of parareal
to various problems. Much of the initial work on stability and convergence
analysis began as contributions to the 15th international conference on Domain
Decomposition Methods held in Berlin 2003, participants including C. Farhat, Y.
Maday, G. Bal, M. Gander among others. Here we present the most important
results on the topic available in the literature. For proofs and references, the
papers [6] [26] [63] [27] constitutes the bulk work on stability and convergence
analysis. In addition to these papers, the stability issues that may arise when
parareal is applied to hyperbolic problems is further analysed and various ways
of fixing these issues are proposed in the recent work [17] and [18]. A short
literature review on the topic of parareal on hyperbolic problems is given in
section 6.3 before investigating the stability of the non-linear wave model, a
hyperbolic type PDE, that is presented in the chapter 6.

In this section the most notable results on stability of the parareal algorithm
available in the literature are presented followed by a review of convergence
results. The theoretical work is typically performed on constant coefficient linear
ordinary differential equations.

Stability

The stability analysis is presented as in [44] followed by a review of the results
in [6]. The analysis to be presented is based on the application of parareal to a

3.1 Stability and Convergence 21

linear system of coupled ordinary differential equations with constant coefficient.
First, let us consider the linear system of M coupled equations

∂

∂t
ȳ = Aȳ, ȳ (0) = ȳ0, A ∈ RM×M (3.1)

If we assume that a spectral factorization is possible, we may write the coeffi-
cient matrix as A = VDV−1 with D being a diagonal matrix containing the
eigenvalues {λ1, . . . λM} and V a matrix containing the corresponding eigen-
vectors of A. The numerical approximation of the system (3.1) using a simple
forward euler can then be written as

ȳn = V (I + ∆TD)
n

V−1ȳ0

If |1 + ∆Tλi| = |R (zi)| ≤ 1, i = 1, . . . ,M with zi = λi∆T , then the numerical
scheme will be non increasing for any choice of n. A numerical scheme which
results in a non-increasing approximation for a given time-step is called stable.
As such, the stability analysis for the case of a simple scalar equation (3.2) is
easily extended to the stability of systems of linear coupled equations, and so
we move our attention to the scalar equation as as stated below

∂y

∂t
= λy, y (0) = y0, λ ∈ C (3.2)

The fundamental idea in the analysis is to first construct a stability function on
the form

Ukn = H (n, k,∆T, r (λδt) , R (λδT))U0
0 (3.3)

and then derive an upper bound to H expressed only by the stability functions
of the coarse and fine propagator r (λδt)

∆T
δt and R (λδT)

∆T
δT , the expression is

then again to be bounded by some constant for the parareal solution to be non
increasing for a fixed k. As a first step in constructing the stability function H,
we apply the predictor-correcter scheme (2.4) to the problem (3.2), essentially
replacing the operators with stability functions to arrive at

Ukn = R̄Ukn−1 + r̄Uk−1
n−1 − R̄U

k−1
n−1 (3.4)

Where we have adopted the short form notation R̄ = R (λδT)
∆T
δT and r̄ =

r (λδt)
∆T
δt for simplicity. The recursion is solved by writing the above expression

as Ukn = R̄Ukn−1 +
(
r̄ − R̄

)
Uk−1
n−1 from which the Pascal tree is recognised so that

(3.4) may be written as

Ukn =

(∑k
i=0

(
n
i

)(
r̄ − R̄

)i
R̄n−1

)
U0

0

22 A Survey of Present Work

Thus, stability function H for parareal applied to a linear autonomous equation
can be written as

H =
∑k
i=0

(
n
i

)(
r̄ − R̄

)i
R̄n−1 (3.5)

We wish to somehow find a criteria that will guarantee H to be bounded by a
constant so that the parareal solution is non increasing given a fixed iteration
number k. To derive such a bound based on the stability function of the coarse
and fine propagator, the absolute value of (3.5) is expanded using basic rules of
absolute value of complex numbers

|H| =

∣∣∣∣∣
k∑
i=0

(
n
i

)(
r̄ − R̄

)i
R̄n−1

∣∣∣∣∣
≤

k∑
i=0

(
n
i

) ∣∣(r̄ − R̄)∣∣i ∣∣R̄∣∣n−1

≤
n∑
i=0

(
n
i

) ∣∣(r̄ − R̄)∣∣i ∣∣R̄∣∣n−1

=
(∣∣r̄ − R̄∣∣+

∣∣R̄∣∣)n ≤ C
The extension of the above criteria to systems of the form (3.1) is straight
forward. Stability is achieved if there exists a constant C so that

sup
1≤n≤N

sup
1≤k≤N

|H (n, k,∆T, r (λjδt) , R (λjδT))| ≤ C, ∀λj , j = 1, . . . ,M. (3.6)

By (3.6), theorem 1 is proposed in [44]. The proof is omitted. The theorem
states that given that the the absolute value of both the coarse and fine operator
stability functions are less than or equal one, then there exists some constant
so that the parareal solution is bounded for a fixed number of iterations k,
as detailed in the proof omitted here, this bound can be written as UkN ≤
2k0k0N

k0
∣∣R̄∣∣N−k0

U0
0 for all k ≤ k0.

Theorem 1 Assume we want to solve the autonomous differential equation

∂y(t)
∂t = λy (t) , y (0) = y0, λ ∈ C

using the parareal algorithm. Then stability is guaranteed for a fixed
number of iterations as long as |r̄ (z)| ≤ 1 and

∣∣R̄ (z)
∣∣ ≤ 1.

The stability guaranteed by theorem 1, which is easily obtained, unfortunately
has been shown to not be sufficient and something stronger is needed. The be-
haviour that serves as the motivation to introduce another stability requirement

3.1 Stability and Convergence 23

can be seen in the figure (4.7), section 4.5. In these figures the error as a func-
tion of iteration of the parareal solution of the two-dimensional heat diffusion
equation discretized by the ADI method for both the coarse and fine solver is
presented. The error of the parareal solution is seen, for some discretizations,
to decay rapidly during the first few initial iterations, but unfortunately the
error is seen to then increase again for larger values of k before ultimately con-
verging towards the error of the fine propagator solution. Theorem 1 is valid
as the solution is bounded for all k and eventually converges, but it is certainly
not practical as the number of iterations for convergence makes the associated
computational cost degrade any hope of parallel speed-up.

To meet this issue, [44] introduce a strong stability definition saying that when
the parareal algorithm is stable for all possible number of time slots N and all
number of iterations 1 ≤ k ≤ N , we say that we have strong stability. When
(3.6) is bounded by 1, we are guaranteed this to be the case. For the case of
strong stability, we need to handle λ being complex or real separately.

Theorem 2 Assume we want to solve the autonomous differential equation

∂y
∂t = λy, y (0) = y0, 0 > λ ∈ R

and that −1 ≤ r,R ≤ 1 where r = r (λδt) is the stability function for
the fine propagator F using time-step δt and R = R (λδT) is the stability
function for the coarse propagator G using time-step δT . We then have
strong stability as long as

r̄−1
2 ≤ R̄ ≤

r̄+1
2

where r̄ = r (λδt)
∆T
δt and R̄ = R (λδT)

∆T
δT .

the proof follows straight from (3.6) when assuming that both r and R are real.
It is not obvious which numerical solvers satisfy this stability condition. [44]
provide a corollary to ease the interpretation. Assume that z → −∞ and
that the fine propagator is infinitely close to the exact solution, meaning that
r̄ = 0, strong stability for the parareal algorithm is then guaranteed if R∞ =
limz→−∞ |R (z)| < 1

2 , which means that all L-stable schemes fulfils theorem
2. Theorem 2 is derived assuming λ to be real. How do we guarantee strong
stability for a constant coefficient ODE with imaginary eigenvalues? The first
step is to write the now complex stability functions of the propagators as

r̄ =exr̄eiθ

R̄ =exR̄ei(θ+ε)

24 A Survey of Present Work

where θ is the argument, and ε the phase difference between r̄ and R̄. Both xr̄
and xR̄ are non-positive as both G and F must be stable meaning that r̄ and R̄
lie on or inside the complex unit circle i.e., 0 ≤ exr̄ , exR̄ ≤ 1. In the analysis [44]
they initially consider the case of pure imaginary eigenvalues. In this review
however, we go straight to general case. The stability restriction (3.6) can then
be rewritten∣∣∣exr̄eiθ − exR̄ei(θ+ε)

∣∣∣+
∣∣∣exR̄ei(θ+ε)∣∣∣

=
∣∣exr̄ − exR̄eiε

∣∣+ exR̄

=

√
(exr̄ − exR̄ cos (ε))

2 − (iexR̄ sin (ε))
2

+ exR̄

=

√
e2xr̄ + e2xR̄ cos2 (ε)− 2exr̄exR̄ cos (ε) + e2xR̄ sin2 (ε) + exR̄

=
√

e2xr̄ + e2xR̄ − 2exr̄exR̄ cos (ε) + exR̄ ≤ 1

⇒ exR̄ ≤1

2

1− e2xr̄

1− exr̄ cos (ε)

again requiring the function to be bounded by 1. From the above derivation,
theorem 3 is stated.

Theorem 3 Assume we want to solve the autonomous differential equation
y′ = λy, where λ ∈ C and Re (λ) ≤ 0, using the parareal algorithm.
Assume that also both G and F are stable for the chosen scheme and
time-step. The parareal algorithm is then guaranteed to be stable if

exR̄ ≤ 1

2

1− e2xr̄

1− exr̄ cos (ε)
(3.7)

where r̄ = exr̄eiθ and R̄ = exR̄ei(θ+ε) are the values of the stability function
for G∆T and F∆T .

It is important to stress that the theorems 2 and 3 are sufficient but not necessary
for strong stability of the algorithm and particularly for smallerN and smallerK
the restriction will be less severe. In the analysis of the case of pure imaginary
eigenvalues using a symplectic solver for the fine propagator the criteria for
strong stability reduces to

√
1 + e2xR̄ − 2exR̄ cos (ε) + exR̄ ≤ 1 ⇒ cos (ε) ≤ 1.

Which is only true if ε = 2aπ, a ∈ Z. So if the coarse propagator G∆T is out of
phase with the fine propagator F∆T , then the predictor-corrector scheme can
not be guaranteed to be strongly stable.

No numerical schemes has been found that guarantees the parareal algorithm
to be stable for all possible eigenvalues and all possible number of subdomains

3.1 Stability and Convergence 25

and number of iterations in time. In the case of pure imaginary eigenvalues it is
particularly hard to guarantee strong stability which suggests that the numerical
solution of some hyperbolic problems, and convection-diffusion problems with
highly dominant convection may be unstable using the parareal algorithm.

The stability of the algorithm has been further studied by [6]. Here an ab-
stract result is presented for a general partial differential equation, showing
convergence of the algorithm provided that certain regularity conditions on the
solution and initial condition is satisfied. The analysis is extended in the sim-
plified case of linear partial differential equations with constant coefficients so
to establish a more refined estimates for the stability of the algorithm, showing
that the parareal algorithm is unconditionally stable for most discretizations of
parabolic equations, but no so for hyperbolic equations.

These results are consistent with many observations available in the literature
describing how instabilities can arise during long time integration of hyperbolic
systems [14, 23, 25, 49]. Progress has since been made on the identification of
these stability issues and in [18] the problem is identified as being deeply linked
to the regularity of the solution as indicated in [6]. As it turns out, the problem
is not really on the type or order of the equations, but on the regularity of the
solution including the regularity of the initial condition. These results allows a
better understanding of previous work, such as in [15] where stability problem
are observed for a second-order hyperbolic problems but not for the parabolic
and the first-order hyperbolic problem tested.

The instability that may arise when the plain parareal algorithm is applied to
hyperbolic problems, is a consequence of the algorithm not conserving invariants,
potentially leading to instabilities of the algorithm before convergence due to
the lack of regularity that the solution develops over time.

A natural approach at handling this issues would be to use sympletic or sym-
metric integrators as both fine and coarse propagators. Unfortunately this is
not viable as it can be shown that the parareal algorithm will not conserve these
geometric properties of the underlying propagators. Various methods of mak-
ing parareal conserve invariants have been proposed. In [24] and [15] a fairly
involved correction procedure re-utilizing previously computed information is
presented in order to improve the performance of the solution of a hyperbolic
problem. A simpler strategy based on a symmetrization of the parareal in time
algorithm has been proposed in [17]. The approach leading to a new multi-step
scheme is not sufficient though, as resonance are artificially introduced that
prevent the symmetric variant of behaving well.

In [18] a method based on a projecting of the solution during each iteration
over an energy manifold defined on the fly is shown to stabilize the parareal

26 A Survey of Present Work

method applied to a linear wave equation and the non linear Burgers equation.
However, results are ambiguous in the sense that even though the projection
may make the algorithm converge for all N and k, the number of iterations
needed for convergence in the examples are fairly high, and as pointed out in
the concluding remarks they are high enough to pose a challenge in terms of
attainable parallel efficiency.

Convergence

In the parareal method we introduce a fine operator F∆T and a coarse operator
G∆T so to construct an iterative algorithm that converge towards the solution
one would otherwise have obtained applying the fine propagator in a purely
sequential manner. It is naturally of great interest to determine the rate of
convergence. In the first publication on parareal [41], the accuracy of Ukn was
analysed for a fixed number of iterations as the interval length ∆T become small.
The analysis was performed on a scalar linear model problem (3.8), which leads
to the proposition 3.1.1.

∂u

∂t
= λu, u (0) = u0, t ∈ [0, T] λ ∈ C (3.8)

Proposition 3.1.1 Let ∆T = T/N, Tn = n4T for n = 0, 1, . . . , N so that
T0 = 0. Consider the initial value problem (3.8), with λ ∈ R. Let F∆TU

k
n

be the exact solution at Tn+1 of (3.8) with initial condition u (tn) = Ukn ,
and let G∆TU

k
n be the corresponding backward Euler approximation with

time-step ∆T . Then,

max1≤n≤N
∣∣u (tn)− Ukn

∣∣ ≤ Ck∆T k+1

The implication of the proposition is essential as for a fixed iteration step k, the
algorithm using the first order accurate backward euler method now behaves in
∆T like and O

(
∆T k+1

)
method! The proposition was later extended to higher

order and more general integration schemes in [6] [7], and in those papers it
was shown that parareal is a method of order O

(
∆Tm(k+1)

)
when a method

of order m is used as the coarse propagator G∆T combined with an exact, or
sufficiently accurate solver as the fine propagator F∆T .

The proposition 3.1.1 is only valid for fixed k as the constant Ck can be shown
to grow with k. In [27] the same scalar linear model was further analysed, now
instead assuming fixed ∆T and studying the algorithms behaviour as k becomes
large. The analysis leads to new convergence results in the form of a super-linear

3.2 Strong and Weak Scaling 27

error bound on bounded time intervals, and linear convergence for unbounded
time intervals. These results are then extended to model PDEs in the form of
the heat equation and the pure advection equation.

3.2 Strong and Weak Scaling

It is of interest to know how the performance of the parareal algorithm scales
with the number of compute units used to accelerate the computation of some
evolution problem. There are two basic ways to measure the parallel perfor-
mance of a given application, these are referred to as strong and weak scaling.
When strong scaling is of interest, we measure how the solution time for a fixed
problem scales with the number of compute units used. In the case of mea-
suring weak scaling, the problem size assigned to each compute unit is held
constant and additional units are used to solve a larger total problem. If the
compute wall-time stays constant as more work and compute units are added to
the computation, then we have obtained perfect weak scaling of the algorithm.

Typically it is harder to achieve good strong-scaling performance since the com-
munication overhead for most algorithms increase in proportion to the number
of compute units used. This is also the case for the classical spacial domain
decomposition methods. When using domain decomposition to accelerate the
solution of some partial differential equations, it is usually possible, in a purely
algorithmic sense, to obtain ideal speed-up independent of problem size. But
in a practical implementations, the communication time between compute units
will degrade obtained parallel speed-up and effect the scaling properties.

As the ratio between compute to communication is often the limiting factor in
parallel efficiency for this class of methods, the scaling properties are dependent
on the problem size and the number of compute units applied. For very small
problems or very many compute units, communication time degrade parallel
speed-up so that linear strong or weak scaling should not be expected. In the
limit of large problems, or very few compute units, one would on the other hand
expect to observe linear behaviour when measuring strong and weak scaling
for these methods. This is in the limits, actual measurements will usually be
somewhere in between.

So how does these general considerations relate to parareal? In parareal, each
compute unit will be solving an independent initial value problems over one of
the intervals in the time decomposition. Thus, the number of time intervals is
the maximum number of cores that can be used to accelerate the computation. If
we where to disregard communication time and correction time and in addition

28 A Survey of Present Work

neglect the time used by the sequential coarse propagation, the parallel efficiency
scales as 1/k as shown in chapter 2, since the entire problem will be solved k
times with the fine propagator. Potentially, the number of intervals used in
the scheme can effect the number of iterations needed for the algorithm to
convergence, and thereby effect the scalability.

In addition, there exists various methods of distributing parallel work, and the
number of intervals used will certainly effect the efficiency of the distribution.
Finally, as with other methods of introducing concurrency in computations, the
ratio between compute and communication will have an effect on the parallel
efficiency as discussed above. As many things contribute to the parallel efficiency
and all of them are expected to be dependent on the number of intervals, and
thus compute units, the scalability of the algorithm is not easily analysed.

Here we refer to a few results from the literature regarding the purely algorith-
mic scalability of the scheme, that is, how the number of iterations needed for
convergence scales with the number of intervals used, given that everything else
is fixed. How the choice of distribution model for the parallel work relate to the
parallel efficiency is covered in section 3.3

In [48] the scaling of the parareal algorithm applied to a two dimensional heat
diffusion equation was investigated. In the paper by Maday and Turinici they
obtained perfect scalability using a first order in time discretization and coupled
with classical domain decomposition, with a ratio r = δt/δT kept fixed and
each time step length was inversely proportional to the number of processors.
Essentially corresponding to weak scaling as the discretization becomes finer as
compute units are added.

In [2] the same problem was analysed in the context of demonstrating the effi-
ciency of a novel work distribution model. Here a second order accurate ADI
method was used as the coarse and fine propagator. In [2], the ratio r = δt/δT
is also kept fixed, but the number of fine and coarse time-steps per interval ∆T
decrease as the number of compute units increase as opposed to the investigation
in [48] where the number of coarse and fine-steps per interval did not change.
The results presented in [2] is thus of strong-scaling type since the problem is
held constant while more compute units are added. In [2] they found that, for
this particular problem, the number of iterations needed for convergence would
increase as more compute units where added.

In [2] the scalability of the algorithm was also tested with a fixed coarse to
fine propagator ratio r = δt/δT and a fixed interval length ∆T , so that the
number of compute units determine the time interval to be integrated. This is
comparable to weak scaling as the problem size per compute units is fixed. [2]
found perfect scalability in the tested time range.

3.3 Distribution of parallel work 29

Similar scalability test can be found in [9, 23, 28, 32, 54]. Typically the results
presented are not on the scalability of the convergence rate of the algorithm
specifically, but timings of actual implementation, including communication and
distribution. In the section to follow, the impact of efficient distribution of
parallel work is considered.

3.3 Distribution of parallel work

In the previous section we discussed how changing the number of intervals used
in the algorithm may change the number of iterations needed for convergence
and thereby affect the parallel efficiency of the scheme. As will be shown,
another potential mayor influence on the parallel efficiency is affiliated with
how the parallelism exposed by the parareal algorithm is exploited in an actual
implementation.

The parareal algorithm originally received a lot of interest because analysis on
the test problem shows that one can expect fast convergence of the algorithm
towards the sequential fine propagator solution with a scheme that allows to be
solved concurrently. Achieving good performance in practice has proved to be
challenging though, due to the fundamental trade-off between the reduction of
time required for an inherently sequential part of the algorithm and an increase
in the number of iterations needed for convergence [43]. This inherent limitation
in the algorithm has motived the search for alternative formulations such as the
one presented in [61] where they attempt to improve the algorithm using the
relationship between old and new simulations. The fundamental trade-off still
exists though, and the topic of this section is methods of minimising the loss
trough an effective distribution of parallel work.

This pseudo code for a simple implementation of the parareal algorithm as
presented 2.1 can be interpreted as in the schematics in figure 3.1. Initially, a
purely sequential coarse propagation is made throughout the problem in order
to generate the initial conditions for the N IVPs, we call this iteration zero.
Following iteration zero, the N IVPs can be solved in parallel and this followed
by a purely sequential predictor-corrector method then constitutes iteration 1
and so forth.

As apparent in figure 3.1, we have a purely sequential part of the algorithm,
and a part that can be solved in parallel. In the continuum of infinitely fine
discretizations we are able to apply infinitely many intervals ∆T (and thus
compute units). The purely sequential propagation however will take a fixed
amount of time T , not influenced by the number of intervals applied. This

30 A Survey of Present Work

leads us to Amdahl’s law. It seems that we have a program consisting of a
sequential and a parallel part, and this sets a natural limit to the speed-up that
can be obtained. Let us define TF as the computational time consumed by
one compute unit by applying the fine operator F∆T , in addition we define TG
as the computational time consumed by a single compute unit when applying
the coarse operator G∆T . Neglecting the time spend on correcting, and the
communication time between compute units, we can write the wall-time spend
by the parareal algorithm given convergence in k iterations with N compute
units as NTG + k (NTG + TF). The wall-time used applying the fine operator
in a purely sequential is NTF which leads us to the speed-up estimate

Ψsimple =
NTF

NTG + k (NTG + TF)
(3.9a)

=
TF

TG (k + 1) + k
N TF

(3.9b)

=
1

TG
TF

(k + 1) + k
N

(3.9c)

In the limit of infinitely many compute units, disregarding how the algorithm
scales with N , we are left with a speed-up estimate TF

TG
1

(k+1) . Thus, using such
a simple approach at distributing creates an upper bound on the attainable
speed-up given by the ratio between TF and TG. In correspondence with the
simple computational complexity analysis in section 2.4 we denote the ratio R
as R = TF

TG
with R−1 = r and note that these ratios are essential in that they

pose an upper bound on obtainable speed-up.

The figure 3.1 is drawn to scale using a ratio R = 6, with N = 6 intervals.
Notice how five of the compute units are sitting idle for more than half the
walltime. If the sequential part and the parallel part of the algorithm where
truly separated, there wouldn’t be much we could do about this except try to
maximize R, that is minimizing the time used by the coarse propagator. For-
tunately, interdependencies that allow for more efficient distribution of parallel
work exists.

First we need to realise that a given fine propagation F∆TU
k+1
i+1 can be started

as soon as the Uk+1
i+1 parareal solution has been calculated using the information

G∆TU
k+1
i , F∆TU

k
i and G∆TU

k
i . From this arise the possibility of scheduling

the work in a way so to minimize the idle time and thereby improve parallel
efficiency.

This opportunity for improving the performance of the algorithm has been rec-
ognized by quite a few authors and several ways of distributing the parallel
work has been proposed in the literature such as a pipelined model [50], task-
scheduling [2] and an event-driven distribution [9].

3.3 Distribution of parallel work 31

The details of the different approaches is left for the interested reader to inves-
tigate. Here we only briefly mention the task-scheduling approach as proposed
by [2]. Aubanel initially presents a manager-worker model where the manager is
in charge of the coarse propagation and the corrections while the fine propaga-
tion is left for worker compute units. As initial conditions at time decomposition
boundaries are ready they are shipped to workers that perform the fine prop-
agation and return the final state to the manager, the manager then handles
all corrections. The scheme is efficient at distributing the work but unfortu-
nately memory consumption on the manager scales linearly with the number
of intervals used as the manager needs to save the states of each interval. The
memory consumption on the manager compute unit may pose a challenge for
large problems using many compute units.

To counter this issue, [2] propose a fully distributed task scheduling model as
presented in figurer 3.2 and later implemented on a large scale in chapter 7.
Neglecting communication and correction time, the speed-up of this method
can be written as

Ψdist =
N

N TG
TF

+ k
(

1 + TG
TF

) (3.10)

Comparing this expression with (3.9) we notice something interesting. In the
limit of N going to infinity with everything else fixed, the speed-up of the dis-
tributed model is only limited by the relation between the speed of the coarse
and fine propagator. This means that with an effective distribution model we
gain the potential to counter the 1/k loss in efficiency if sufficiently many com-
pute units are available, to reach a maximum speed-up only bounded by the
coarse propagator speed relative to the fine propagator speed.

In the context of the previous section on the topic of scalability, how can we
expect the inclusion of distribution of parallel work to effect scalability? To
answer this question, consider the expressions for parallel speed-up (3.10) and
(3.9), estimating speed-up for different distribution models. Say we are given
some fixed ratio R and iteration to convergence k for some problem, and say that
we assume that increasing the number of intervals N will neither decrease or
increase iterations needed for convergence. Now, by removing N in the denomi-
nator of the expressions, we have expressions for parallel efficiency as a function
of number of intervals N given some fixed problem and discretization. We then
notice how parallel efficiency will decrease for increasing number of intervals
N in both the case of strong and weak scaling. Thus, from this fairly simple
analysis we can conclude that it is not possible in a practical implementation
of the parareal algorithm to obtain perfect linear scaling for all N in both the
weak and strong scaling case.

As documented in [2,9,50] the use of an effective distribution model is paramount

32 A Survey of Present Work

in obtaining good parallel speed-up for real problems. This is unfortunate, as
in the ideal world we would like the coarse propagator to simply be so fast
that we need not care about idle time of compute units. Unfortunately such a
"super fast coarse propagator" strategy is not viable as experience show that it
typically degrades the convergence rate to a level that makes the upper bound
on parallel efficiency unacceptable low.

One of the otherwise attractive features of parareal is that the very basic imple-
mentation as presented in the pseudo code in section 2.1 is simple to implement
and easily wrapped around previously existing problem discretization. With
the addition of effective parallel distribution models with elaborate methods of
scheduling work, the implementation complexity of parareal unfortunately in-
crease rapidly. The general structure of wrapping around existing propagators
still exists though.

3.3 Distribution of parallel work 33

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

Proc. 6

Time

Iter. k = 0 Iter. k = 1 Iter. k = 2

TGTGTGTGTGTG TF

TF

TF

TF

TF

TF

TGTGTGTGTGTG TF

TF

TF

TF

TF

TF

TGTGTGTG

Figure 3.1: The simplest possible implementation of the parareal algorithm
for the accelerated solution of an initial value problem. White
space indicate compute unit idle time, dark grey indicate coarse
propagation, light gray indicate fine propagation.

Time

Iter. k = 0 Iter. k = 1 Iter. k = 2 Iter. k = 3

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

Proc. 6

TG

TG

TG

TG

TG

TG

TF

TF

TF

TF

TF

TF

TG

TG

TG

TG

TG

TF

TF

TF

TF

TF

TG

TG

TG

TG

TF

TF

TF

TF

TG

TG

TG

Figure 3.2: A task-based fully distributed distribution model as proposed
by [2]. White space indicate compute unit idle time, dark grey
indicate coarse propagation, light gray indicate fine propagation.
This model does not rely on a manager to keep track of the compu-
tation as it involves, but rather need a rank zero machine which ini-
tialise the computation cascading down trough all available com-
pute units.

34 A Survey of Present Work

3.4 Stopping criteria

The parareal method is an iterative method and so a stopping criteria is needed.
It is a trivial task to show that the parareal algorithm converges to the accuracy
of the fine operator within at most k = N iterations, but clearly, iterating N
times is not desirable as this would lead to no speed-up at all as shown in chapter
2. In the previous chapter we showed how the upper bound on parallel efficiency
scales as 1/k, so ideally we would hope for convergence in k = 1 iterations as
this would lead to potential ideal speed-up. With the rapid decline of parallel
efficiency as a function of iterations needed for convergence k, it is imperative
that the iterative method stop as soon as convergence is reached.

But when are we satisfied with the parareal solution to the extend that it would
be appropriate to say that the algorithm has converged? The method converges
towards the solution one would otherwise have obtained applying the fine prop-
agator F∆T in a purely sequential fashion. The numerical fine propagator only
solution is also subject to an error with respect to the true solution of whatever
problem the algorithm is applied to, so in addition to the difference between
the parareal algorithm and the fine solution, we also have an error on the fine
solution itself. One could define the point at which the solution is converged in
various ways, but an obvious choice would be that when the difference between
the parareal solution and the fine solution is less than the difference between
the fine solution and the true solution, then the error on the parareal solution is
of the same order of magnitude as the error of the fine only solution, and then
we say that the algorithm has converged. See figure 2.3 for a schematic drawing
of the convergence procedure of parareal applied to an ODE IVP.

The challenge in determining when the algorithm has converged to acceptable
accuracy lies in the unfortunate fact that we do not know the error of the
parareal solution nor the error on the fine propagation only solution. For the
sole purpose of testing the properties of the algorithm, one could initiate the
test by first calculating the fine solution and a super fine solution, the later to
use as an analytical solution, to the problem and use these for reference and
comparison. However this has little practical relevance as why would anyone be
interested in accelerating the computation of something we already know the
solution of.

Various methods of a practical stopping criteria has been applied and proposed
in the literature. A simple, but blind criterion would be to stop the iterations
whenever a norm (any vector norm will do) of the difference between two con-
secutive parareal iterations falls below some prescribed threshold value. This
approach is an often used method of stopping the algorithm, as many papers
published on the parareal algorithm are with emphasis on identifying specific

3.4 Stopping criteria 35

properties of the algorithm rather than finding an optimal stopping criteria,
examples include [55] [20] [30] [54] among many others. But as mentioned, the
criteria is blind and one would need to do some tuning work in order to make
sure that enough iterations are performed so that convergence is achieved, but
at the same time that not to many iterations so the parallel efficiency is de-
graded beyond what is necessary. To be absolutely sure that convergence has
been achieved, one could use the machine precision as a threshold value. How-
ever, the machine precision is certainly a lot smaller than the difference between
the fine only and the true solution, and as such, one can be fairly sure that su-
perfluous iterations, not adding any accuracy will be made, thus decreasing the
parallel efficiency of the algorithm.

Another similar criterion based on the value of the maximum jump between
the new prediction and the fine propagation of old parareal solution proposed
in [64], this approach however is also blind in the sense that it would require
tuning efforts before really being applicable to a given problem.

Despite the importance of a good stopping criteria for the parareal algorithm,
the literature on the topic is surprisingly scarce. In [39] a more generally ap-
plicable stopping criteria is proposed. In the paper a method to determine
convergence based on information from the fine propagation is presented and
the method is tested using both the classical parareal as well as parareal in con-
junction with time-adaptive integrators on a non-linear problem. The criteria
used to determine convergence is stated in proposition 3.4.1

Proposition 3.4.1 Let J kn = F∆T

(
Ukn−1

)
− Ukn denote the jump, i.e., the

difference between the solution provided by the fine integrator at Tn of
the k − th iteration and the parareal solution at same time and iteration.
The parareal algorithm reaches the maximum accuracy that the fine grid
solver can provide if the total error at iteration k

ekn = U (Tn)− Ukn

has the same behaviour as the global error of the fine integrator for the
subinterval [Tn−1, Tn], i.e., ekn is O (∆T p), where ∆t is the time step of the
fine integrator. This happens when∥∥J kn ∥∥ ≤ θ · ∥∥EkF,n∥∥ , θ ≤ 1

where by EkF,n we denote the global error of the fine integrator on the
current subinterval [Tn−1, Tn].

36 A Survey of Present Work

γkn

Ekn

J kn

Tn−2 Tn−1 Tn

ϕ∆TU
k
n−1

F∆TU
k
n−1

ϕn−2
∆T u

0

ϕn−1
∆T u

0

ϕn∆Tu
0

Fn−2
∆T u0

Fn−1
∆T u0

Fn∆Tu0

Uk+1
n−2

Uk+1
n−1

Uk+1
n

Ukn−2

Ukn−1

Ukn

Figure 3.3: Schematics of the iterative solution by parareal. The exact prop-
agator ϕ4T is introduced as it is used in the proof of proposition
3.4.1. Applying the operator to the initial condition u0 yields
ϕn4Tu

0 = u (Tn). Make sure to distinguish between the dual use
of n as both index and exponent.

3.4 Stopping criteria 37

The proof of proposition 3.4.1, involves the definition as visualized in the schemat-
ics in figure 3.3, we have that

ekn =γkn + Ekn + J kn (3.11a)

γkn =u (Tn)− ϕ4T
(
Ukn−1

)
(3.11b)

EkF,n =ϕ4T
(
Ukn−1

)
−F4TUkn−1 (3.11c)

J kn =F4TUkn−1 − Ukn (3.11d)

The first step of the proof involves a Taylor expansion around Ukn−1 of the
function ϕ4T (U), the result is used to generate an upper bound on the error
as defined in (3.11a), which is then further expanded using basic operator norm
definitions. The final step in the proof is recognizing that when convergence is
reached (k = N), we have that J kn ≈ 0, which when combined with the error
bound leads to the statement in proposition 3.4.1.

To apply the stopping method it is necessary to use a numerical integrator
with an embedded error estimator so to estimate

∥∥EkF,n∥∥. The requirement
makes Runge-Kutta integrators an obvious choice as there is plenty of high-
order embedded methods to choose from here. The method is tested on the
viscous burgers equation, using an SDIRK integrator, and was shown to be
effective. It is important to note that the condition

∥∥J kn ∥∥ ≤ ∥∥EkF,n∥∥ is sufficient,
but not necessary, for converge and as such, the estimate is conservative in
that convergence can happen before the criteria is met. The factor 0 < θ ≤
1 is included as a parameter to manually tune the criteria and make it less
conservative if needed.

One unfortunate detail of the convergence criteria in proposition 3.4.1 is that
the fine propagation on the parareal solution of the current iteration is needed
to evaluate the criteria. We define iterations as in the pseudo code presented in
section 2.1, so that k is the number of times that the fine propagator is applied
in parallel over N intervals. This is an issue as the next iteration is needed
to evaluate if the current iteration has converged, so even under ideal circum-
stances, proposition 3.4.1 only catch convergence one iteration after convergence
has occurred.

For practical purposes, using the mentioned criteria to establish convergence
in k iterations, means that k + 1 iterations are to be performed. Since the
upper bound on efficiency scales as 1/k, this would likely effect the result of the
optimization problem of the accuracy choice of the coarse integrator G.

In the case that one is interested in the solution over the entire time domain
at the fine discretization level, the added iteration is not an issue as an addi-
tional parallel fine integration is needed to propagate information from the final

38 A Survey of Present Work

parareal solution over the span of the interior time domain.

The limited literature on the topic of an effective convergence criteria for the
parareal algorithm is a challenge in terms of practical usability. It would be ideal
to somehow establish a relation that guarantees convergence based on the jump
between the coarse and fine propagation of the previous iteration with respect
to the parareal solution of the current iteration, again one could assume the
usage of an embedded error estimator on the integrators. Such a result would
be a nice contribution to the literature on the parareal algorithm.

3.5 Various ways to reduce the coarse propaga-
tion

The key element in the parareal algorithm is the coarse propagator G, it is this
operator along with the predictor-corrector iterative method that constitutes
the parareal scheme to accelerate, by the addition of multiple compute units,
the otherwise sequential propagation of F .

A natural straight forward way of constructing the coarse operator is to use the
same numerical method on the same equation as the fine propagator F , but
simply take longer time steps so to be able to integrate an interval ∆T faster.
This approach was taking in the introductory example in section 2.3 where a
simple nonlinear ordinary differential equation was solved.

Are we allowed to be more creative in the construction of the coarse operator?
Yes, yes we are! The only requirement by the fundamental analysis in 3.1 is that
the operator must at least be stable if we are to hope for the parareal solution
to be strongly stable. This opens up for a vast span of potential combinations
and approaches at constructing the coarse propagator. A popular method in
the literature is to reduce the physics of the problem, i.e. removing physical
effects from the discretization that in any case is under-sampled by longer time-
steps, thus reducing the computational load of the coarse propagator without
diminishing its accuracy and thereby the rate of convergence.

The first such example of using simplified physics on the coarse propagator was
with application to molecular dynamics simulation in [4] and a similar method
was also used on [42] on another ode system simulating chemical reactions involv-
ing many scales in time, showing the method to be fairly robust. The method
of reduced physics has also been applied to time dependent partial differential
equations [24].

3.6 Combination with Domain Decomposition 39

Another approach at constructing the coarse operator G for the parareal solu-
tion of partial differential equations is to use a coarse spacial discretization for
the coarse operator. This has been done in [25] among others. Naturally one
need to be aware that an operator to move from one space to another is needed.
There are several good reasons to take such an approach. Often when integrat-
ing partial differential equations, we have a CFL(Courant-Friedrichs-Lewy) like
restriction for stability which limit the time-step length of the coarse propaga-
tor. This limitation is typical when explicit schemes are used. If possible we
would like to keep the coarse propagator explicit as implicit methods tends to
be more computational expensive and we are in the search of minimizing the
computational load of the coarse propagator. In addition to circumventing any
CFL conditions, reducing both the spacial and temporal resolution for the coarse
operator may potentially be a better trade-off in terms of speed/accuracy than
reducing the temporal resolution alone. The take home message of this section
is that a lot of creativity can be applied in constructing the coarse propagator
as the parareal scheme itself does not pose limitations on the coarse operator
other than it to be stable.

3.6 Combination with Domain Decomposition

A now classical approach for the solution of partial differential equations on a
large scale is the application of domain decomposition methods. Domain de-
composition is a class of methods to solve boundary value problems by splitting
it into smaller boundary value problems on subdomains and iterating to coor-
dinate the solution between adjacent subdomains. By applying some domain
decomposition method to the boundary value problem in space, it is possible
to accelerate the solution of evolution problems by increasing the speed of each
integration step, the time-steps still being performed in a purely sequential man-
ner.

The domain decomposition methods has been widely adopted as they have many
benefits. Typically the methods lead to perfect speed-up given sufficiently fast
communication and they also work well for the purpose of distributing large
problems so to split memory consumption among different nodes.

The often encountered issue that arises when applying domain decomposition on
a large scale is a degradation of performance when the number of subdomains to
be computed concurrently increase. Eventually the spacial subdomains become
very small and the compute units end up spending the majority of time to solve
on communicating rather than computing. It is well known that communication
speed pose an upper limit to the speed-up this class of algorithms can provide for

40 A Survey of Present Work

a fixed problem size. With modern hardware architectures expected to include
an ever increasing number of cores, this pose an issue for the sole use of domain
decomposition.

Domain decomposition works well as long as the subdomains are sufficiently
large so that the compute time of individual domains is large enough that com-
munication time is negligible. When this is the case, linear weak and strong
scaling is possible which is a very attractive feature of domain decomposition.
But what are we to do when subdomains reach a size where adding more com-
pute units degrade parallel efficiency to a level so that adding more compute
units does not accelerate the application? Here enters parareal, as mentioned
elsewhere in this chapter the parareal algortihm can be wrapped around almost
any stable type of coarse and fine numerical propagator, including discretiza-
tions which are already accelerated trough parallelism in other ways! Thus,
instead of adding more cores to spacial domain decomposition, with increas-
ingly diminishing returns, we could use additional compute units to introduce
parallelism in the temporal direction by the parareal method. This combination
was first proposed by Maday and Turinici in 2005 [48] providing a proof-of-
concept implementation of a space-time parallel iterative method for solving
the heat diffusion equation using both overlapping and non-overlapping domain
decomposition methods.

Despite this possible combination being a central feature that is often men-
tion as the motivation for parareal, surprisingly few practical studies exists in
the literature. In a recent contribution [16], the parareal method is coupled
with spacial domain decomposition into a space-time parallel scheme, applied
to three-dimensional incompressible Navier-Stokes equation. The parallelization
allows to employ additional cores to further speed up simulations after spatial
parallelization has saturated. Numerical experiments performed on Cray XE6
simulate a driven cavity flow with and without obstacles using distributed mem-
ory parallelisation in both space and time. The application was tested with 2048
cores in total, showing that the space-time parallel methods can provide speed-
up beyond the saturation of the spacial domain decomposition.

The most recent contribution on the topic of space-time parallel solvers is to
appear on the SC12 conference, introducing a massively space-time parallel N-
body solver [60]. In the contribution, temporal parallelism is applied on top
of a PEPC (Pretty Efficient Parallel Coulomb) existing hybrid MPI/Pthreads
spatial decomposition. For the time decomposition the PFASST method [50] is
applied. PFASST is based on a combination of the iterations of the parareal
algorithm with the sweeps of a spectral defered correction scheme. Results are
presented from runs on up to 262,144 cores on the IBM Blue Gene/P installation
JUGENE, demonstrating that the space-time parallel code provides speed-up
beyond the saturation of the purely space-parallel approach.

3.7 Problems on which Parareal has been applied 41

3.7 Problems on which Parareal has been applied

It has been roughly a decade since the parareal algorithm in the currently used
form of a predictor-corrector method was proposed in [4]. The method has
been tested on a wide range of problems, but have still yet to become widely
adopted. The latter probably due to other more commonly used methods still
being sufficient for the parallelism in today’s hardware for most uses. In this
section, a non exhaustive list of problems on which parareal has been tested are
presented as available in the literature.

Linear and non-linear parabolic problems. Parabolic problems are highly
interesting as they cover a large class of problems in science and engineer-
ing. A comprehensive set of tests of parareal applied to both linear and
nonlinear parabolic equations can be found in [62]. Early work. The
parareal algorithm looks particularly promising for this kind of problems
given that the stability requirement, proposition 3.4.1 is fulfilled conver-
gence is fast.

Non-differential equation: The American Put. The pricing of an Ameri-
can option has been solved using the parareal algorithm in [7]. Equations
of this type are of interest as they are frequently used in the financial
world. The equation that was solved reads

min
(
∂tu− ∂2

xxu, u− g (x)
)

= 0, u (t = 0) = g (x) = max (ex − 1, 0)
(3.12)

In [7] they managed to obtain a speed-up of 6.25 using 50 time decompo-
sitions)(compute units). The results are by simulated parallelism though,
calculated assuming negligible communication and correction time.

Molecular dynamics. One of the first examples of parareal applied to a real
world problem was the solution of a molecular dynamics problem in [4]
where the coarse propagator as implemented and tested using both a
coarse time-step and a simplified physics model. The results looked promis-
ing. Again all solutions are simulated parallelism. The work on parareal
for molecular dynamics simulations has later been extended in [3] where a
new sympletic parareal variant is proposed and tested on a three-dimensional
atomic lattices. The tests show attractive speed-up for lattices of more
than 20,000 atoms given a proper choice of coarse propagator

Optimal control for Partial differential equations. The parareal algorithm
was reinterpreted as a preconditioning procedure in [47] in order to extend
the parallel methodology of the parareal algorithm to the problem of op-
timal control. The algorithm was applied to a test equation in optimal

42 A Survey of Present Work

control. The results are surprisingly good, with the algorithm itself show-
ing superlinear speed-up. This is certainly not expected of parareal, but
no explanation for the surprising result is provided in [47], though the
author note that for more complex problems the super-linear speed-up is
unlikely.

Stochastic ODEs and filtering problems. In [5] the parareal algorithm is
tested on a stochastic ODE with filtering problems. The results are posi-
tive. But as noted by the author; when only statistical averages are needed,
it is likely to be more efficient to simply generate more realisations rather
than accelerate the generation of each realisation. The generation of in-
dependent realisations of the SDE is embarrassingly parallel and thus not
subject to the same speed-up degration when adding more compute units
as say domain decomposition for the solution of PDEs. For applications
where only a single realization of the random process is of interest, such
as in a filtering problems, parareal shows promising results.

Reservoir simulations. The properties of the parareal algorithm applied to
reservoir simulations was investigated in [28] where parareal was applied
to an in-house reservoir simulator Athena, simulating fluid flow in porous
media. The implementation is one of the first demonstrations of obtaining
speed-up for a practical simulation using the parareal algorithm.

Fluid, structure and fluid-structure computations. In [23] a comprehen-
sive study of the parareal algorithm with application to a coupled fluid-
structure model is presented. In this study all speed-up results are based
on real parallel implementations. The scheme applied to the the prob-
lems is a slightly alternative algorithm that can be shown to be equivalent
to the predictor-corrector form [23] for autonomous differential equations.
The schemes are believed to be the same for all types of problems.

In the case of unsteady flow, a speed-up of 8.2 using 20 processors is
achieved, corresponding to an efficiency of 41%. As noted this is not com-
petitive compared to the speed-up possible with parallel methods in space.
But potentially in competitive as an addition when speed-up by domain
decomposition diminishes when split into many sub-domains. Whereas the
algorithm behaved nicely in the case of unsteady flow, the structural dy-
namics problems experienced difficulties, see section 3.1 for a discussion on
stability. Not surprisingly, the result is the same as for the fluid-structure
model. If instabilities occur in the structure part of the computation, it
pollutes the solution of the fluid problem part.

The work on parareal for fluid-structure problems has later been extended
in [24] where a time-parallel framework for linear structural dynamics
problems (PITA) was presented. In PITA a projection in each step of
the parareal solution is introduced in order to avoid artificial resonance

3.7 Problems on which Parareal has been applied 43

and numerical instabilities when parareal is applied to the afore men-
tioned structural dynamics problems. The viability of the framework was
demonstrated on complex strucutral dynamics problems from the aircraft
industry. In [15] the work was extended to non-linear structural dynamics
problems.

Navier-Stokes equation. The parareal algorithm with application to the Navier-
stokes equation was investigated in [25]. For small Reynolds numbers the
algorithm works well, but for large numbers it fails as the stability con-
ditions discussed in 3.1 are violated. In [64] the parareal algorithm was
applied to the unsteady incompressible Navier-Stokes equation showing
that although the proposed methodologies are designed for a massive num-
ber of processors, significant speed-up can be obtained using a very small
number of processors.

Plasma modelling. The parareal algorithm has been applied to the simula-
tion of a fully-developed plasma turbulence model successfully in [55]. The
results is far from trivial, and even unexpected since the exponential di-
vergence of Lagrangian trajectories as well as the extreme sensitivity to
initial conditions characteristic of turbelence set these type of simulations
apart from the much simpler syystems to which the parareal algorithm
has otherwise been applied to showed fast convergence. Speedup scales
quite different to what is typical for spatial parallelization.

Acoustic-advection equation. The applicability of the parareal integration
scheme for the solution of a linear, two-dimensional hyperbolic acoustic-
advection system has been investigated by [54]. The paper adepts the
modified parareal from [24] and employs it for the solution of a hyperbolic
flow problem. It is demonstrated that the modified parareal is stable and
can produce reasonable accurate solutions while allowing for a noticeable
speed-up.

In [49] the application of parareal to a general acoustic wave propagation
is investigated using a spatial discretization based on a spectral element
approximation which allows flexible and accurate wave simulations in com-
plex geological media. Initially a 1D acoustic wave equation in an homo-
geneous medium is tested to investigate convergence and stability. Tests
confirm the stability issues as outlined by [23] and [6]. [49] notes that the
stability issues are mitigated when using a time-discontinuous Galerkin
discretization of the coarse propagator.

Quantum control. In [47] the theoretical modifications required to apply the
parareal algorithm to quantum control are presented including preliminary
results illustrating the feasibility of the approach and potential for large
speed-up. Actual implementation speed-ups for quantum control problems
are presented in [45].

44 A Survey of Present Work

3.8 Ongoing challenges and further work

In this chapter the vast amount of research that has gone into the parareal al-
gorithm during the past decade has been coarsely sketched with the purpose
of giving the reader an overview of the field. Despite the vast amount of pub-
lished literature on the topic of the parareal-in-time algorithm, there are still
many unanswered questions. Here we summarize a few important messages and
discuss potential needs and missing contributions in the literature.

The stability of the parareal algorithm for linear autonomous differential equa-
tions has been thoroughly investigated, and expressions have been derived that
guarantee stability of the parareal algorithm for all number of intervals N and
all number of iterations k ≤ N when fulfilled. The stability for non-autonomous
differential equations and for a general non-linear differentiation equation is still
to be investigated. It is believed that doing so will require a much more involved
analysis than what was presented in section 3.1. The stability analysis of the
autonomous differential equations using different spatial discretizations for the
operators G and F is also unexplored.

Given that we are certain that the algorithm is strongly stable on some problem,
our next point of interest is in obtaining the largest possible speed-up given
some number of compute units. Each iteration in the parareal scheme adds
more computational work and by this degrade the parallel efficiency that can be
obtained, it would be nice to see more research on the topic of effective stopping
criteria’s, with the only major result being that presented in [39].

The most important aspect in obtaining a high parallel efficiency is to choose
a well balanced coarse propagator that provides sufficient accuracy to rapidly
converge on all time sub-domains, but at the same time fast enough to minimize
the time spent in this purely sequential propagation and the efficiency loss by
compute units being idle waiting for compute work. Given the importance of
the choice of coarse propagator, surprisingly few investigations on the optimal
choice of coarse propagator exists. There are many papers available proposing
different creative ways of constructing the coarse propagator, but not many
studies exists on how to find the right trade-off between accuracy and speed of
the coarse operator. Investigations on this topic is made in chapter 4 and 5.

The parareal algorithm has yet to find wide adaptation as a method of ex-
tracting parallelism in the solution of differential equations. This is likely do
to the fact that other methods at accelerating the solution of differential equa-
tions trough parallelism has been shown to be very effective. For the parareal
method, obtaining 50% parallel efficiency is great, typically in the range of
30-40% is observed when things work well on large scale problems. An ap-

3.8 Ongoing challenges and further work 45

proach where parallel efficiency of 100% is possible is the widely used spacial
domain decomposition class of methods. An often mentioned motivation for
the parareal algorithm is how adding an ever increasing amount of cores to a
fixed problem (Strong scaling) typically diminishes speed-up returns when the
spacial sub-domains become smaller as the assigned compute units spend more
time communicating than computing. The potential opening for parareal is
that when adding more compute units to a fixed problem, eventually, it may be
more effective to begin decomposing the time direction than making the spacial
sub-domains ever smaller. The good thing with parareal is that it allows to be
wrapped around existing parallelism, including domain decomposition as docu-
mented in [48]. In 7 we apply parareal to a nonlinear free-surface water wave
model investigation speedup and scalability for both the parareal method and
spacial domain decomposition.

Despite this seemingly valid motivation, actual demonstrations of this combi-
nation being done is not often seen, with only two very recent publications on
the subject [16, 60]. The lack of adoption may be in part due to other paral-
lel methods still being sufficient at large and because adding another layer of
parallelism increase implementation complexity, making developers reluctant to
take such an approach.

The issue of communication being a show-stopper for parallelism is likely to
increase in the future. For many years the amount of compute work that the
CPUs could create have been growing much faster than the speed of communica-
tion, both on a node level(RAM speed and latency) and on a grid level(Network
speed and latency). These developments may lead to the time-decomposition
parallelism eventually becoming more widely used, in this context the parareal
algorithm represents an exciting new way of using the ever increasing number
of cores available in today’s and tomorrows supercomputer platforms.

46 A Survey of Present Work

Chapter 4

Experimental investigation
of convergence and stability

In chapter 2 figure 2.3 the solution procedure of the parareal algorithm applied
to a simple ordinary differential equation was visualised. We noticed how con-
vergence looks to happen in some 3-4 iterations, if need be one could measure
this using a criteria as discussed in section 3.4. We would like to somehow qual-
itatively establish how the convergence rate depends on algorithm parameters
such as the number of intervals N and the speed and accuracy of the coarse
propagator G∆T of the application of parareal to various differential equations.
As mentioned in the summary of chapter 3, such discussion and observations
are quite limited in published literature on parareal.

In the investigations to follow we measure the error of the parareal solution as
a function of iterations count for various algorithm parameter combinations on
four different types of initial value problems. As an initial problem we choose
the Bernoulli equation using the forward euler method for both the coarse and
the fine propagator. The problem is simple and with known analytical solution
and as such there is nothing that would indicate irregular behaviour as long as
the stability constraints on both the coarse and fine time-step are upheld. Next,
we investigate the application of parareal to a linear system of ODEs with pure
imaginary eigenvalues. For a system of pure imaginary eigenvalues, stability
can not be guaranteed for all discretizations even when both the coarse and the

48 Experimental investigation of convergence and stability

fine propagators are stable. See section 3.1 for a discussion on topic of parareal
applied to hyperbolic problems in the literature. Finally we test parareal ap-
plied to a Stiff ODE system using an adaptive-in-time propagator followed by
an investigation on parareal to a parabolic partial differential equations. The
problems investigated are itemized below. All tests are implemented in Matlab.
The numerical solvers used as propagators have been implemented using various
finite difference discretions and schemes such as backwards euler, Runge-Kutta
with adaptive timestep, Crank-Nicolson and ADI.

• Bernoulli equation, first order non-linear ODE using forward euler

• Linear system of ODEs with pure imaginary eigenvalues using backwards
euler

• The Van der Pol oscillator, second order stiff ODE system using time
adaptive ESDIRK2

• Diffusion equation with forcing term, parabolic second order PDE using
Crank-Nicolson and ADI

Before embarking on the quest to qualitatively establish how the convergence
rate depends on algorithm parameters we apply parareal to the test equation
so to present the very basic convergence properties of the algorithm as this
understanding is essential in the analysis of the results to follow. This chapter
also serves as a precursor to the work presented in chapter 5 where we discuss
and investigate how the parameter choice influence on convergence rate relate
to the efficiency and speed-up of practical implementations with a given model
of distribution of parallel work.

4.1 Test Equation 49

4.1 Test Equation

We apply parareal to the test equation 4.1 using the forward euler as both
coarse and fine propagator. The test equation is coined so as it is often used
in numerical stability analysis and thus it is a straight forward choice of IVP
problem to present basic convergence properties of algorithm.

∂y (t)

∂t
= λy (t) , y (0) = 1 (4.1)

using λ = −1 and solving on the interval t ∈ [0, 1]. We define parareal iterations
as in the pseudo code in section 2.1. The convergence properties are independent
of how the parallel work is being distributed. In this report and throughout, we
define the number of parareal iterations as the number of times that theN initial
value problems are solved in parallel using the fine propagator. Iteration zero is
the prediction based on the initial coarse propagation with no fine propagations
or correction.

In figure 4.1 the convergence rate of parareal on 4.1 is presented. The algorithm
is applied using N = 10 intervals and a fine operator time-step dt = 10−4 and
three different values of dT given by dT = R · dt with R = [50, 250, 1000].
In figure 4.1a the error is measured with respect to the solution one would
obtain using the fine propagator sequentially throughout the integration, and in
figure 4.1b the error is measured with respect to the analytical solution of 4.1.
As expected, the algorithm converge towards the fine solution, only limited by
machine precision. Observe that the norm of the difference between the parareal
solution and the fine solution convergence towards machine precision within in
5-7 iterations, while the parareal solution obtain the same order of accuracy as
the fine solution with respect to the analytical solution in only 1-3 iterations.
From this basic example it is clear that using the machine precision as stopping
criteria on the norm of difference between two consecutive iterations would lead
to many superfluous iterations as hinted in section 3.4.

Now let us instead fix the time-step length of fine propagator while varying the
step-length of coarse step. Again we use N = 10 predictor/corrector intervals.
The coarse propagator time-step is fixed at dT = 2.5 · 10−2 and the time-step of
the coarse propagator is set to dt = dT/R with R = [50, 250, 1000]. Results are
presented in figure 4.1. Notice how the convergence rate is now constant while
the final accuracy differs as expected. Thus, the fine propagator determines the
accuracy of the final solution while the coarse propagator determines the rate
of convergence. Note that changing the accuracy of the fine propagator can still
change the number of iterations needed for convergence.

50 Experimental investigation of convergence and stability

0 410−5

10−2

Iteration k

∥ ∥ ∥Uk N
−
u

(T
N

)∥ ∥ ∥ ∞

50
250
1000

(a)

0 710−18

10−2

Iteration k

∥ ∥ ∥Uk N
−
F
n ∆
T
u

0
∥ ∥ ∥ ∞

50
250
1000

(b)

Figure 4.1: Error of the parareal solution after k iterations for fixed fine time-
step length δt = 10−4. a) Measured with respect to the solution
of the pure fine operator FN∆Tu0 and b) measured with respect to
the analytical solution

0 410−6

10−2

Iteration k

∥ ∥ ∥Uk N
−
u

(T
N

)∥ ∥ ∥ ∞

50
250
1000

(a)

0 710−18

10−2

Iteration k

∥ ∥ ∥Uk N
−
F
n ∆
T
u

0
∥ ∥ ∥ ∞

50
250
1000

(b)

Figure 4.2: Error of the parareal solution after k iterations for fixed coarse
time-step length δT = 2.5 · 10−2. a) Measured with respect to the
solution of the pure fine operator FN∆Tu0 and b) measured with
respect to the analytical solution

4.2 Bernoulli 51

4.2 Bernoulli

Now we apply the parareal algorithm to the Bernoulli differential equation 4.2.
Bernoulli equations is a class of differential equations arising naturally upon
examining the motion of a body subject to a resistance F = c1v+ c2v

α where v
is the velocity of the body. The equations are special because they are non-linear
equations with known analytical solutions.

∂y (t)

∂t
= 2

y (t)

t
− t2y (t)

2
, y

(
1

2

)
=

40

33
(4.2)

with analytical solution y (t) = 5t2

t5+1 . We descritize the equation using a simple
forward euler approach for both the coarse and the fine propagator. The equa-
tion is solved on the interval t ∈ [0.5, 5.5] and the error is measured at T = 5.5
using the infinity norm. For the fine propagator a time-step of δt = 5 · 10−4

is used. In the figure 4.3 the error of the parareal solution as a function of
iteration is presented using a time-step δT = R · δt, R = {10, 50, 250} for the
coarse propagator in figures , and respectively.

As observed when applying parareal to the test equation, the convergence rate
depends on the ratio R since R = δt/δT and δT is inversely proportional to
the accuracy of the coarse propagator. Large R leads to slow convergence,
but large R also indicates an inexpensive coarse solver which as we will see in
chapter 5 greatly influence the attainable efficiency of the method in practical
implementation when taking into account the distribution of parallel work.

Another interesting observation that can be made from figure 4.3 is how the
rate of convergence for small R is largely unaffected by the number of intervals.
In figure 4.3a convergence is reached in 1 iteration for all number of intervals
tested, but for large R, figure 4.3c, the convergence rate is seen to decrease
slightly with N . The convergence plots are in essence showing strong scaling
for coarse propagators of different accuracy as we perform the test on a fixed
problem. From the results we notice that when the number of iterations needed
for convergence is small, the number of time decomposition intervals N does
not change the convergence rate. But when the number of iterations needed for
convergence is large, increasing the number of time intervals leads to a slower
convergence rate.

In context of the scaling discussions in section 3.2, we can in a purely algorithmic
sense expect to achieve linear strong scaling with accurate propagators while less
accurate(but fast) propagators will not have this property. This may work to
explain some different results found in the literature on the topic such as in [48]
and [2] where parareal has been applied to the same diffusion problem.

52 Experimental investigation of convergence and stability

0 1 2 3 4
10−6

10−3

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(a)

0 1 2 3 4
10−6

10−3

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(b)

0 1 2 3 4
10−6

10−3

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(c)

Figure 4.3: Convergence rate plots of the parareal solution of eq. 4.2. A
forward euler method has been used for both the coarse and fine
discretizations with a fine operator time-step of δt = 5 · 10−4.

4.3 Linear ODE system 53

4.3 Linear ODE system

In this section we examine the convergence properties of parareal on a linear
system of ordinary differential equations with pure imaginary eigenvalues. As
a consequence of the stability issues as described in 3.1 may arise for problems
with pure imaginary eigenvalues. Matrices that satisfy the relation AT = −A
are called skew symmetric and have pure imaginary eigenvalues. We choose
such a skew symmetric form for the coefficient matrix with randomly choosing
coefficients for a system on the form


∂
∂ty1 (t)
∂
∂ty2 (t)
∂
∂ty3 (t)
∂
∂ty4 (t)

 =


0 2 1 −4
−2 0 7 −5
−1 −7 0 3
4 5 −3 0



y1 (t)
y2 (t)
y3 (t)
y4 (t)

 (4.3)

Computing the eigenvalues one arrives at λ̄ = (10.0570i,−10.0570i, 1.6904i, 1.6904i).
To solve the system we apply a backwards euler method for both the coarse and
fine propagator. The system is solved on the interval t ∈ [0, 10], using the initial
condition ȳ (t) = [1, 1, 1, 1] and a fine propagator time-step δt = 10−4. The
convergence rate for various coarse to fine propagator ratios R = 50, 500, 1000 is
presented in figure 4.4 for the number of time decompositions N = 10, 50, 100.

Many interesting things are to be noted in these figures. Let us try and relate the
results to the stability criteria for a general linear system of ordinary differential
equations with complex eigenvalues. According to theorem 3 in section 3.1, we
can guarantee that the parareal algorithm converges for all iterations k if the
relationship 3.7 is fulfilled for all eigenvalues of the coefficient matrix.

In order to compare the validity of the theorem, we build a little Matlab script
to calculate the left and right hand side for all the eigenvalues in the matrix for
each value of ∆T using the stability function of the backwards euler and some
neat Matlab commands. The values are listed in table 4.1.

In the case presented in figure 4.4a with R = 50, the stability criteria 3.7 is
fulfilled for all the eigenvalues, and we notice from the figure that the parareal
solution converge for all values of N and k. Albeit, the convergence rate is
nothing to brag about, but convergence in 7 iterations with 100 compute units
still allows for a potential speed-up of up to 100/7 ≈ 14.3, disregarding commu-
nication and distribution of parallel work.

When a ratio of R = 1000 is used, the criteria 3.7 is strongly violated for all

54 Experimental investigation of convergence and stability

eigenvalues and we notice how the convergence rate presented in figure 4.4c
depicts this. The error increases rapidly before only eventually converging in
k = N iterations.

A "middleroad" was also tested, using a coarse to fine propagator ratio of
R = 500, the relation 3.7 is still violated for all eigenvalues, but less so than for
R = 1000. Again we notice that the algorithm does not converge for all iter-
ations k. Only after some 12-20 iterations does the parareal solution begin to
converge upon the fine propagator solution, completely not viable in a parallel
implementation.

Upon these investigations we can conclude that theorem 3 presented in section
3.1 and proposed in [63] seems to do a good job in terms of predicting whether
or not some coarse fine operator combination will converge for all k.

∆T = 0.005R = 50 ∆T = 0.05R = 500 ∆T = 0.1R = 1000
LHS RHS LHS RHS LHS RHS

λ1 0.9905 0.7768 0.1050 0.0190 0.0304 0.0032
λ2 0.9905 0.7768 0.1050 0.0190 0.0304 0.0032
λ3 0.9999 0.9929 0.9313 0.9467 0.8686 0.5328
λ4 0.9999 0.9929 0.9313 0.9467 0.8686 0.5328

Table 4.1: The left and righ hand side of the relation 3.7 on 4.3 calculated on
the discretizations as described in 4.3 using the stability function
of the backwards euler method.

4.3 Linear ODE system 55

0 1 2 3 4 5 6 7 8 9 10
10−2

10−1

100

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

25
50
100

(a)

0 5 10 15 20 25 30 35 40
10−2

10−1

100

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

25
50
100

(b)

0 10 20 30 40 50 60 70 80 90 100
10−2

109

1020

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

25
50
100

(c)

Figure 4.4: Converge rate of parareal applied to the system 4.3 for various
discretizations.

56 Experimental investigation of convergence and stability

4.4 Van der Pol Oscillator

We now consider the Van Der Pol Oscillator, a non-conservative oscillator with
non-linear damping that reads

∂2

∂t2
y (t)− µ

(
1− y (t)

2
) ∂

∂t
y (t) + y (t) = 0 (4.4)

To solve the second order ODE it is restated as a system of two coupled first
order ordinary differential equations. With y1 (t) = y (t), we write 4.4 on the
form

∂

∂t
y1 (t) = y2 (t)

∂

∂t
y2 (t) = µ

(
1− y1 (t)

2
)
y2 (t)− y1 (t)

It can be shown that with µ = 100 the problem becomes very stiff and in
order to use an explicit method one would need to choose a time-step that is
small relative to the time-scale of the rapid transient, which might be much to
small for practical purposes. Instead it is usually preferable to apply an implicit
method and for the same reasons it is useful to implement a dynamical way of
controlling the step size for each iteration in the solution. The reason being that
for a large period of time, the solution is only slowly varying, and long-time-
steps are sufficient, while during other periods of time the solution varies rapidly
and much smaller time-steps are needed to resolve the problem sufficiently. As
a numerical propagator we choose the ESDIRK23 method combined with an
asymptotic step-size controller. ESDIRK23 is a diagonally implicit Runga-Kutta
integrator of second order accuracy with an embedded error estimator of third
order accuracy. The embedded estimate given at each time-step is used to
control the time-step length and derived error. That is, instead of specifying a
time-step length for our operator, we specify some acceptable relative tolerance,
and it is the job of the step-size controller to make sure that the error stays
within the acceptable limit.

The convergence results of parareal applied to 4.4 using the ESDIRK23 method
with an embedded error controller as both coarse and fine operator are presented
in figure 4.5. A fine operator tolerance of δttol = 10−9 is used with the coarse
operator tolerances δTtol = [10−3, 10−4, 10−5]. Measuring the actual coarse
to fine operator speed relationship we obtain roughly R ≈ {51, 30, 16}. It is
clear from 4.4 that for a coarse operator tolerance of δTtol = 10−5 the parareal
solution converges after only one iteration. This certainly allows for a descent
speed-up despite a low coarse to fine relationship of R ≈ 16 as the effect of the
slow operator can be partially hidden by using an efficient way of distributing
parallel work as described in 3.3.

4.4 Van der Pol Oscillator 57

0 1 2 3 4 5 6 7 8 9 10
10−8

101

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(a)

0 1 2 3 4 5 6 7 8 9 10
10−8

101

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(b)

0 1 2 3 4 5 6 7 8 9 10
10−8

101

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(c)

Figure 4.5: Visualization of the convergence rate of parareal applied the Van
der Pol oscillator 4.4 using the ESDIRK23 method with asymp-
totic step-size control as both coarse and fine propagator. (a)
R ≈ 52 (b) R ≈ 29 (c) R ≈ 17.

58 Experimental investigation of convergence and stability

4.5 Two-dimensional diffusion

In this section the convergence properties of the parareal method applied to
the heat diffusion equation are investigated. The heat-diffusion equation is a
classical example of a parabolic partial differential equation. The equation to be
solved is the same as the one investigated in [48] in the context of spacial domain
decomposition coupling and in [2] so to test various task-allocation algorithms
aimed at improving the efficiency of the parareal algorithm. Using the same
equation enables us to compare convergence results. The two dimensional heat
diffusion equation with a forcing term reads

∂u (x, y, t)

∂t
= ∇2u (x, y, t) + 50 sin (2π (x+ t)) cos (2π (y + t)) (4.5)

with u (x, y, 0) = 0 and homogeneous Dirichlet boundary conditions. The equa-
tion is solved on the interval t = [0, 1] and in the spacial domain x, y = [0, 1].
For a proper comparison the same numerical solver, the alternating direction
implicit [19], as applied in [2] is used for both the coarse and fine propagator.
The alternating direction implicit method is a modification of the locally-one-
dimensional method (LOD).

The straight forward classical approach of solving a multidimensional diffusion
equation is by applying a 5-point Laplacian in space and discretize in time using
the trapezoidal method so to obtain the two-dimensional version of the Crank-
Nicolson method. The method is second order accurate and unconditionally
stable for any time-step. However, the implicit method requires the solution
of system of equations of which the matrix is very large and very sparse and
with a structures that makes it unsuitable for direct methods such as Gaussian
elimination. An alternative approach is the LOD method as mentioned. The
essential idea is to replace the fully coupled single time-step with a sequence of
steps each of which is coupled in one only space direction resulting in a set of
tridiagonal systems which can be solved with less computational effort.

The later is achieved by first applying Crank-Nicolson in the x-direction only
solving over one time-step and then apply Crank-Nicolsion in the y-direction to
the intermediate result. Physically this corresponds to modelling the diffusion
in the x and y-directions over time as decoupled processes. Apart from some
issues at boundaries that needs to be handled this works out nicely.

The alternating direction implicit method is a modification of the LOD method
in which the two steps each involve discretization in only one spatial direction at
the advanced time level, giving decoupled tridiagonal systems again, but coupled
with discretization in the opposite direction at the old time level. The method

4.5 Two-dimensional diffusion 59

of this form is

U∗ij = Unij +
k

2

(
D2
yU

n
ij +D2

xU
∗
ij

)
+
k

2
f

(
xij , yij ,

tn+1 − tn
2

)
Un+1
ij = U∗ij +

k

2

(
D2
xU
∗
ij +D2

yU
n+1
ij

)
+
k

2
f

(
xij , yij ,

tn+1 − tn
2

)

with

D2
xUi,j =

1

h2
(Ui−1,j − 2Ui,j + Ui+1,j)

D2
yUi,j =

1

h2
(Ui,j−1 − 2Ui,j + Ui,j+1)

so to arrive at the matrices

(
I − k

2
D2
x

)
U∗ =

(
I +

k

2
D2
y

)
Un +

k

2
f

(
X,Y,

tn+1 − tn
2

)
(
I − k

2
D2
y

)
Un+1 =

(
I +

k

2
D2
x

)
U∗ +

k

2
f

(
X,Y,

tn+1 − tn
2

)

With f (x, y) referring to the forcing term. In matrix form this again gives
decoupled tridiagonal systems to solve in each step. Numerically there is a
great advantage in decoupling the dimensions when possible by the physical
process that is being modelled. By decoupled the space dimensions one obtain
a sequence of tridiagonal systems to solve instead of a single large sparse matrix
with a complicated structure. In the figures 4.6a and 4.6b the convergence and
time to compute per iteration for the classical Crank-Nicholson approach and
for the ADI approach is given.

The parareal algorithm is implemented using the ADI discretization method for
both the coarse and fine propagator. A fine time-step length of δt = 10−4 is
used with coarse to fine propagator ratios R = 25, 50, 100. The convergence
rate measurements are presented in figure 4.7. Notice how instabilities arise
for some combinations of R and N , a bit surprising as we are dealing with a
parabolic equation. Though it is important to note that there is no guarantee
that the methods converge for all N and k simply because it is of parabolic type.
The behaviour is quite remarkable, as we either observe divergence or very fast
convergence, seemingly not much in between. The results does confirm the
deductions from the analysis of parareal on linear constant coefficient problems
3.1, that the stability issues typically arise for large N and k.

60 Experimental investigation of convergence and stability

10−2 10−1
10−4

10−3

10−2

10−1

100

Slope = 2.01

Slope = 1.99

Time-domain resolution

E
rr
or

at
T

=
1

Crank-Nicolson
AD-Implicit

(a)

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

Slope = 1.19

Slope = 1

Spacial-domain gridpoints

C
om

pu
te
-w

al
lt
im

e
pe

r
ti
m
es
te
p
[s
]

Crank-Nicolson
AD-Implicit

(b)

Figure 4.6: Convergence and error measurements by the integration of 4.5 on
the domain x ∈ [0, 1], y ∈ [0, 1] and t ∈ [0, 1] using the ADI and
the Crank-Nicholson method.

4.5 Two-dimensional diffusion 61

0 1 2 3
10−3

100

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(a)

0 5 10 15
10−3

100

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(b)

0 5 10 15 20
10−3

105

Iteration k

∥ ∥ Uk N
−
u
(T
N
)∥ ∥ ∞

5
10
20
40

(c)

Figure 4.7: Visualization of the convergence rate of parareal applied to the
two dimensional diffusion equation with forcing term 4.5 using the
ADI method.

62 Experimental investigation of convergence and stability

4.6 Summary

In this chapter we investigated the convergence properties of the parareal al-
gorithm applied to a range of different problems with various coarse and fine
numerical propagators. The parareal solution was shown to always converge
given a sufficiently accurate coarse propagator.

By the tests performed a number of observations are worth noticing. First, it
appears that the parareal algorithm in a purely algorithmic sense exhibits close
to linear strong scaling when a sufficiently accurate coarse propagator is applied
so that convergence happens in few iterations. Typically one or maybe two. In
the case of choosing a faster but less accurate solver resulting in more itera-
tions needed for convergence, the number of iterations needed for convergence
was typically observed to increase as more time sub-domains was added to the
problem.

It was also shown, not surprisingly, that increasing the accuracy of the coarse
propagator leads to faster convergence. As discussed in chapter 3, section 3.3,
one would expect the algorithm to converge faster when using a more accurate
coarse solver, since more time is then spend propagating information forward.
On the other hand, spending more time computing a fairly accurate coarse
solver diminish the parallel efficiency since the coarse solver is used in a strictly
sequential fashion.

In section 2.4 the parallel speed-up was estimated to be N/k (efficiency 1/k),
assuming negligible communication and correction time as well as an infinitely
fast coarse propagator. From the observations made in this chapter we can
already conclude that in particular, the later assumption may not be viable to
archive for a coarse propagates that are to be sufficiently accurate so that the
algorithm converges in sufficiently few iterations. Instead we may just note that
1/k constitutes and upper bound to the parallel efficiency that can be obtained.

The reasons for investigating the influence of time-subdomains and coarse prop-
agator accuracy to that of the convergence rate is that all these factors are
interconnected in determining the parallel efficiency that can be obtained and
this will be the topic of the chapter to follow.

Chapter 5

Efficiency and speed-up

When using the parareal method to expose parallelism in the numerical inte-
gration of an IVP there is an inherent trade-of between the computational time
spend on the coarse solver and the number of iterations needed for convergence
as documented in chapter 4.

A natural question that arises in this context is how the choice of coarse propa-
gator, given a number of time-subdomains, influence the speed-up and parallel
efficiency of the algorithm. When implementing the algorithm, a developer will
need to make a choice in terms of the accuracy of the coarse propagator, but it
is not clear from the literature available what to consider when making such a
choice. This is the topic of the chapter, and as will be documented, the question
is not easily answered.

64 Efficiency and speed-up

5.1 The issue of optimal efficiency

In chapter 4 the parareal algorithm was observed to obtain linear strong scaling
for small k, and in section 2.4, an upper bound on parallel efficiency 1/k was
derived. For this reason, an obvious approach at choosing the coarse propagator
would be to find a sufficiently accurate operator G∆T that makes the algorithm
converge in a single iteration. By doing so we have maximised the upper bound
on parallel efficiency and in a purely algorithmic sense, we can also expect almost
linear strong scaling.

Indeed such a strategy of rephrasing the parareal iterative algorithm into a
purely hierarchical one has already been proposed in [5]. But is this strategy
always an optimal strategy? How much of a degradation in parallel efficiency
will the speed, or lack thereof, of the coarse propagator induce?

We have already qualitatively established how the purely algorithmic behaviour
of the parameters involved influence each other, but to address the posed ques-
tion we also need to take into account the influence of the distribution of parallel
work.

A few different models for the distribution exists as discussed in 3.3. The task-
scheduling models proposed by [2] are heavily loops dependent which allows for
the prediction of parallel speed-up given R, K and N are known while assuming
negligible communication and correction time. In [2] a manager-worker based
model and a fully distributed model where presented, which both was shown to
minimize the idle time of compute units efficiently.

In the figures 5.1a and 5.1b, the parallel efficiency as a function of coarse to fine
propagator speed R and number of time decomposition N is plotted for a fixed
iteration to convergence count K as predicted when using a fully distributed
task scheduling model. In the figurers 5.2a and 5.2b the parallel efficiency has
been estimated using the manager/worker task scheduling model, again given a
fixed number of iterations to convergence K.

The figures 5.2a and 5.2 depicts the impact of the distribution model on the par-
allel efficiency obtained by a practical implementation. We notice particularly
how

• Parallel efficiency decrease with increasing K

• Parallel efficiency decrease with increasing N

• Parallel efficiency increase with increasing R

5.1 The issue of optimal efficiency 65

Also, from the investigations in chapter 4, we know that from a purely algo-
rithmic point of view, K increase with increasing N if K is big, and that K
decrease with increasing R. In the evaluation of parallel efficiency, a multitude
of opposing factors exists, and it is not clear which factors are dominant and
when, as it is likely both problem and discretization dependent. It might be
possible though to make some general qualitative remarks on the behaviour.
Such potential knowledge may be valuable when choosing a coarse propagator
for some system in the quest to obtain the highest possible speed-up.

21
25

29

21

25

29
0%

50%

100%

NR

E
ffi
ci
en

cy

(a)

21
25

29

21

25

29
0%

5%

10%

NR

E
ffi
ci
en

cy

(b)

Figure 5.1: Predicted parallel efficiency as a function of R and N , using the
fully distributed task scheduling model with fixed (a) K = 1 and
(b) K = 10

21
25

29

21

25

29
0%

50%

100%

NR

E
ffi
ci
en

cy

(a)

21
25

29

21

25

29
0%

5%

10%

NR

E
ffi
ci
en

cy

(b)

Figure 5.2: Predicted parallel efficiency as a function of R and N , using the
manager-worker task scheduling model with fixed (a) K = 1 and
(b) K = 10

66 Efficiency and speed-up

We have established that the number of iterations needed for convergence K
decrease with decreasing R. Also, from the figures 5.1 and 5.2 it is clear that
the distribution of parallel work become more efficient with increasing R. With
these opposing factors, among others, in the estimation of parallel efficiency,
we expect that there for a given problem with a given coarse and fine solver
exists a combination of parameters yielding the the highest possible parallel
efficiency for that given problem. In this chapter we investigate this matter
experimentally by implementing the parareal method on the range of problems
presented in 4 using various solvers. The purpose, apart from proof-of-concept
on various equations, is to quantify the range in parallel efficiency between
an optimal choice of parameters and a poor choice. That is, how much of a
penalty in parallel efficiency can be expected by making a less than optimal
choice. The later enabling us to determine how much effort and concern should
go into tuning the coarse propagator accuracy/speed trade-off and in addition
potentially make some general observations that can serve as heuristics in tuning
the trade-off between accuracy and speed.

5.2 Experimental investigations

To be able to make such generalizations as discussed in the previous section, we
measure the number of iterations needed for the parareal solution to converge
for each problem and discretization over a space of coarse to fine ratio’s R given
a fixed fine operator, and number of time sub-domains N . For each point in the
space we have all the information needed to predict the parallel efficiency and
speed-up given some distribution model only assuming negligible communication
and correction time. In the previous chapter we visualized the convergence
process of the parareal algorithm. In order to determine if convergence has
happened, we need some stopping criteria as discussed in 3.4. The topic of the
chapter is on optimal coarse operator choice and not optimal stopping criteria,
therefore we pretend to have a perfect stopping criteria available. When the
error at a given time-subdomain interval boundary is less than 1.1 times the
error of the fine propagator solution at that same interval boundary, we are
satisfied with the accuracy of the parareal solution and accept the parareal
solution as converged. Throughout the rest of this report, chapter 6 and 7, we
use the same criteria in determining convergence. The results of this brute force
investigation are presented in the figures 5.3, 5.4, 5.5 and 5.6 for the parallel
efficiency using a fully distributed and a manager-worker distribution model.
In 5.7, 5.8, 5.9 and 5.10 the respective speed-up estimates are given. In all
figures the highest parallel efficiency and speed-up obtaining for a given number
of time-decompositions (compute units) are marked with a blue dots.

5.2 Experimental investigations 67

10

20

40

80

50 100 200 400 800

0%

50%

100%

N

R

E
ffi
ci
en
cy

(a)

15

30

60

8 16 32 64 128 256

0%

20%

40%

N

R

E
ffi
ci
en
cy

(b)

Figure 5.3: Predicted parallel efficiency using a fully distributed task schedul-
ing model for (a) Bernoulli equation with forward euler (b) Linear
ODE system with purely imaginary eigenvalues using backwards
euler.

68 Efficiency and speed-up

10

20

40

5 · 10−6

5 · 10−5

5 · 10−4

0%

20%

40%

N

dT tol

E
ffi
ci
en
cy

(a)

15

30

60
8

16
32

64

0%

50%

100%

N

R

E
ffi
ci
en
cy

(b)

Figure 5.4: Predicted parallel efficiency using a fully distributed task schedul-
ing model for (a) Van Der Pol oscillator with ESDIRK23 and
asymptotic step-size control (b) Two dimensional diffusion equa-
tion with forcing term using a alternating direction implicit
scheme.

5.2 Experimental investigations 69

10

20

40

80

50 100 200 400 800

0%

50%

100%

N

R

E
ffi
ci
en
cy

(a)

15

30

60

8 16 32 64 128 256

0%

20%

40%

N

R

E
ffi
ci
en
cy

(b)

Figure 5.5: Predicted parallel efficiency using a manager-worker based task
scheduling model for (a) Bernoulli equation with forward euler
(b) Linear ODE system with purely imaginary eigenvalues using
backwards euler.

70 Efficiency and speed-up

10

20

40

5 · 10−6

5 · 10−5

5 · 10−4

0%

20%

40%

N

dT tol

E
ffi
ci
en
cy

(a)

15

30

60
8

16
32

64

0%

50%

100%

N

R

E
ffi
ci
en
cy

(b)

Figure 5.6: Predicted parallel efficiency using a manager-worker based task
scheduling model for (a) Van Der Pol oscillator with ESDIRK23
and asymptotic step-size control (b) Two dimensional diffusion
equation with forcing term using a alternating direction implicit
scheme.

5.2 Experimental investigations 71

10
20

40
80 50

100
200

400
800

0

20

40

N
R

Sp
ee
du

p

(a)

15

30

60
8

16
32

64
128

256

0

3

6

N
R

Sp
ee
du

p

(b)

Figure 5.7: Predicted parallel speed-up using a fully distributed task schedul-
ing model for (a) Bernoulli equation with forward euler (b) Linear
ODE system with purely imaginary eigenvalues using backwards
euler.

72 Efficiency and speed-up

10

20

40
5 · 10−6

5 · 10−5

5 · 10−4

0

2

4

N

dT tol

Sp
ee
du

p

(a)

15

30

60 8
16

32
64

0

10

20

N R

Sp
ee
du

p

(b)

Figure 5.8: Predicted parallel speed-up using a fully distributed task schedul-
ing model for (a) Van Der Pol oscillator with ESDIRK23 and
asymptotic step-size control (b) Two dimensional diffusion equa-
tion with forcing term using a alternating direction implicit
scheme.

5.2 Experimental investigations 73

10
20

40
80 50

100
200

400
800

0

20

40

N
R

Sp
ee
du

p

(a)

15

30

60
8

16
32

64
128

256

0

5

10

N
R

Sp
ee
du

p

(b)

Figure 5.9: Predicted parallel speed-up using a manager-worker based task
scheduling model for (a) Bernoulli equation with forward euler
(b) Linear ODE system with purely imaginary eigenvalues using
backwards euler.

74 Efficiency and speed-up

10

20

40
5 · 10−6

5 · 10−5

5 · 10−4

0

2

4

N
R

Sp
ee
du

p

(a)

15

30

60 8
16

32
64

0

10

20

N R

Sp
ee
du

p

(b)

Figure 5.10: Predicted parallel speed-up using a manager-worker based task
scheduling model for (a) Van Der Pol oscillator with ESDIRK23
and asymptotic step-size control (b) Two dimensional diffusion
equation with forcing term using a alternating direction implicit
scheme.

5.3 Summary 75

5.3 Summary

From the extensive survey presented in 5.2 many observations regarding the
properties of the parareal algorithm can be made. In all figures the largest ob-
tained parallel efficiency or speed-up for a given number of time-decompositions
are marked with a blue dot as it is the behaviour of this optimum which is of
interest. In this section we summarize and interpret on the results.

The results of the analysis on the Bernoulli equation are presented in figure 5.3a
and 5.7a. For small N , choosing a small R so that the algorithm converges in a
single iteration leads to the largest speed-up. We can interpret this as the dom-
inant loss in parallel efficiency being the added computational work increasing
with K. In the case of large N , the influence of the distribution of parallel work
appear. For a large number of time-subdomains, it is seen to be more impor-
tant to have a fast coarse propagator so that the idle time of compute units
waiting for each other is minimized. As such, the optimum parallel efficiency is
obtained for a larger R. Finally, we notice that given negligible communication
and correction time, it should be possible to obtain a speed-up of almost 40
times, using 80 cores which is fairly impressive.

In the case of parareal applied to a system of linear ordinary differential equa-
tions with purely imaginary eigenvalues, we can make many of the same ob-
servations as with the application of parareal to the Bernoulli equation. One
mayor difference though is how the efficiency decrease rapidly with increasing N
due to a rapid increase in iterations needed by the algorithm to convergence for
fixed R. In figure 5.7b the fully distributed task scheduling model has been used
to predict speed-up, notice how efficiency degrade at a paste equivalent to the
addition of new cores so that it is not really possible to accelerate the solution
further by adding more time-decompositions. Using a manager-worker distribu-
tion model figure 5.9b improves the speed-up slightly, obtaining a speed-up of
8-9 using 60 compute units.

In figures 5.4a and 5.8a the results of the application of parareal to the Van der
Pol oscillator with an ESDIRK23 scheme used as coarse and fine propagator
with asymptotic stepsize controllers are presented. The predicted efficiency and
speed-up does not follow the same smooth behaviour as previous investigations.
This is not entirely unexpected as in the figure 4.5 the convergence was not
particularly smooth either. Also, it seems to not be possible to do large scale
acceleration. This is believed to be due to the discretization, as N becomes large
the time sub-domains become smaller creating an upper limit to the time-step
length and thereby limiting the effectiveness of the stepsize controller, so that
the total number of used time-steps increased which adds to the computational
burden of the parallel implementation and thereby degrade parallel efficiency.

76 Efficiency and speed-up

Speed-up of around 4 seems viable.

The results of the application of parareal to the two dimensional diffusion equa-
tion 4.5 are presented in figure 5.4b and 5.8b. Surprisingly, we notice that as N
increase, there is a tendency for small R to lead to optimal parallel efficiency!
From the convergence investigations in section 4.5 we noted that for this dis-
cretization on the problem it appears that the algorithm either converges very
fast or tend to diverge. Particularly for large k and N combined, the divergent
behaviour is noticed. This suggest that a hierarchical structure may be appro-
priate for this particular equation and solver and we will simply have to accept
the slow coarse propagator limitations on parallel efficiency. Despite these limi-
tations, a fairly high speed-up is obtained of up to 15 using 30+ compute units.

The overall trend observed is that when a small number of compute units are
applied for the acceleration of some fixed problem it is advisable to use an
accurate coarse operator that converge very fast as the K times increase in
computational workload will be the dominant factor in degradation of parallel
efficiency. In the case of applying a large number of compute units to accelerate
some fixed problem, it seems that the dominant loss in parallel efficiency will
be in the distribution of parallel work. With a large number of compute units,
much time is spend waiting for information to become available and as such,
a fast coarse propagator is needed to minimize compute unit idle time and we
must accept the increase in computational workload arising with the increasing
number of iterations needed for convergence. These considerations seem to
hold unless the combination of large K and N lead to a divergent behaviour
of the solution, as was the case of the diffusion equation 4.5 with the ADI
discretization. If this is the case, it might be better to implement parareal as a
hierarchical structure as previously discussed.

Chapter 6

Application to nonlinear
free surface flows

In chapter 4 and 5 the properties of the parareal algorithm on a range of simple
differential equations was investigated. Due to the inherent challenging nature of
extracting parallelism in the time domain and the derived added computational
cost and communication by parareal, the algorithm is from a practical viewpoint
only really interesting for larger compute intensive problems.

One such area of large-scale computing involves modelling of water waves in
conjunction with ocean and coastal engineering. Such wave-models are of inter-
est by engineers for predictive purposes in estimating flow kinematic and loads
in designing offshore structures.

Recent development in the application of finite different methods to full poten-
tial flow theory has allowed for the efficient solution of nonlinear free surface
waves that models the dispersive properties of water propagation at intermedi-
ate and deep waters well [21]. In [22] implementation on GPU hardware was
demonstrated, showing speedup of an order of magnitude compared to that of
otherwise efficient Fortran90 CPU single core code.

The purpose of this chapter and the following is to extend this work further
by applying parareal as a wrap around so to enable the acceleration of the
solution using multiple GPUs. In this chapter we first present the differen-

78 Application to nonlinear free surface flows

tial equation to be solved, as well as a brief overview on the finite difference
based solver to be used. This presentation is followed by an investigation on
the behaviour of the parareal algorithm to the full potential flow model where
scalability, stability as well as convergence properties over the equation parame-
ter space are measured in a Matlab implementation with simulated parallelism.
For this purpose, Matlab code to initialize problem, generate analytical solution
and integration in time of the wave model has been supplied by advisor Al-
lan P. Engsig-Karup. In chapter 7 we build on the knowledge gained here and
implement a full Cpp/CUDA/MPI model of parareal using GPUs as workers,
measuring efficiency and speedup, comparing the results to that of of a classical
domain decomposition approach.

6.1 Introducing the PDE system

The PDE system introduced below models free-surface potential flows above
an uneven ocean bed. The model is derived assuming incompressible, inviscid
and irrotational flow. We define the equations in a Cartesian coordinate system
(x, y, z) = (x, z) with the xy-plane located at the still water level, see figure 6.1
In addition we define the still water depth −h (x), as well as the wave perturba-
tion (the free surface) µ (x, t) and the potential φ (x, z, t) of which the gradient
(u, v, ω) = (∇, ∂z)φ is the fluid velocity defined on the entire domain of the
fluid. ∇ = (∂x, ∂y) is the horizontal gradient operator. With these definitions
the model takes on the form of two coupled partial differential equations

∂tη =−∇η · ∇φ̃+ ω̃ (1 +∇η · ∇η) (6.1a)

∂tφ̃ =− gη − 1

2

(
∇φ̃ · ∇φ̃− ω̃2 (1 +∇η · ∇η)

)
(6.1b)

Where g is the gravitation constant 9.82m/s2,φ̃ = φ (x, η, t) and ω̃ = ∂zφ|z=η.
In order to integrate the equation so to find η (x, t) and φ (x, η, t) , we need to
find ω̃. But how so? In doing so we need to solve the Laplace problem so to
find the potential in the entire domain. With kinematic boundary conditions at
the vertical sides and at the bottom, the Laplace problem can be written as

φ = φ̃, z = η,

4φ+ ∂zzφ = 0, − h ≤ z < η

n · (∇, ∂z)φ = 0, (x, z) ∈ ∂Ω

with n = (nx, ny, nz) being the outward pointing normal vector to the domain
boundary surfaces, ∂Ω. As defined above, the boundary conditions in the prob-
lem are moving and thus time-dependent, by employing a transform of η (x, t)

6.1 Introducing the PDE system 79

in the vertical coordinate as proposed in [40] the problem can be transformed
into one with a fixed domain, see figure 6.2 The vertical transform is defined as

σ =
z + h (x)

η (x, t) + h (x)
, 0 ≤ σ ≤ 1 (6.2)

With the above transform, the Laplace problem takes on the form

Φ =φ̃ (6.3a)

∇2Φ +∇2σ (∂σΦ) + 2∇σ · ∇σ (∂σΦ) +
(
∇σ · ∇σ + (∂zσ)

2
)
∂σσΦ =0 (6.3b)

n · (∇, ∂zσ∂σ)φ =0 (6.3c)

With 6.3a for σ = 1, 6.3b for 0 ≤ σ < 1 and 6.3c for (x, σ) ∈ ∂Ω. Furthermore,
when Φ is known, the vertical velocity can be determined from

ω = ∂zφ = ∂zσ∂σΦ (6.4)

All numerical tests throughout this chapter and the following are based on the
solution of two dimensional waves. We expect the results to be qualitatively
similar to what would be obtained solving three dimensional waves. The dis-
cretization approach is based on a flexible-order finite difference method which
have been demonstrated to be robust, efficient, and accurate, enabling numerical
solution of a broad range of important applications. A complete analysis and ex-
perimental validation can be found in [21] and [10]. For the discretization a free
surface grid consisting of Nx points are defined along the horizontal axis where
the surface variables φ̃ and η are to be computed. In addition to the horizontal
points Nx, Nz points are defined in the vertical direction below each horizontal
point at the free surface, so to solve the transformed Laplace problem 6.3. The
Nz points can be arbitrarily spaced, however for all investigations in this report
we use a uniform grid. Choosing nearby points in the x-direction allows finite
difference schemes for the one-dimensional first and second derivatives in (x, σ)
to be developed for each of the x and σ positions on the grid. The resulting
discrete Laplace problem is a linear system of equations AΦ = b where A of
rank n = Nx ·Nz. A is in general a large sparse non-symmetric matrix and Φ
a vector of values for the unknown scalar velocity potential to be found while
b is a vector accounting for in-homogenous boundary conditions. For the time-
integration of the free-surface conditions in 6.1, an explicit four-stage fourth
order Runge-Kutta (ERK4) is used as the fine propegator. The ERK4 and sev-
eral other integrators are tested in section 6.3 for their applicability as a coarse
propagator for the parareal algorithm. An important property of the nonlinear
pde system 6.1 introduced is that under certain ideal circumstances with fixed
constant water depth it is possible to construct an analytical solution to the
equations. In constructing an analytical solution to the equations a number of
parameters are needed. Aside from physical constants such as the gravitation

80 Application to nonlinear free surface flows

constant, the code requires a parameter k · h > 0, where k = 2 · π/L is the wave
number, L being the wave length, multiplied with the still-water level depth h.
The quantity typically characterize the dispersion properties of the problem. In
addition to k · h, a dimensionless parameter H/L is needed. H/L is expressed
as the relationship between wave hight measured from wavetop to wavebottom
and wavelength L. H/L is passed as a dimensionless parameter between 0 and
100% of the limit of wave breaking (H/L)max. As such H/L can also be seen as
a measure of the amount of energy present in the wave. Small H/L means that
surface elevation is negligible, corresponding to linear waves, so the parameter
is also a measure of how non-linear the problem is.

Figure 6.1: Definitions for the derivation of 6.1. The xy-plane is located at
still water level and the water depth is defined as −h (x) with
the free surface perturbation given by η (x, t) and the potential
φ (x, z, t). Figure by Stefan L. Glimberg

z

x
0

-h(x)

x

1

0

L

0 L

(x,z,t)

z(x, ,t)

η(x,t)

o
(xi,zj)

o
(xi, j)

j

i
i

j

Figure 6.2: A visual presentation of the transform of η (x, t) in the vertical
coordinate by 6.2. Figure by Stefan L. Glimberg

6.2 Weak and Strong Scaling 81

6.2 Weak and Strong Scaling

One of the often mentioned advantages of the parareal algorithm over other
methods of extracting parallelism in the time domain, such as for example par-
allel Runge-Kutta integrators, is that there is no natural upper bound to the
number of independent compute units that can be applied to the algorithm aside
from the fineness of integration. However, since the efficiency and therefore
speed-up scales inversely with the number of iterations needed to convergence,
it is of great interest to know how the iteration count scales both weakly and
strongly with the number of predictor-corrector intervals that can be indepen-
dently scheduled to different compute units. In chapter 4 the convergence of
a range of differential differential problems was visualized and it was deducted
that for K = 1 and potentially K = 2 it is possible to observe linear strong and
weak scaling of the algorithm. Here a few similar tests are performed on the
nonlinear wave model.

Figures 6.3a and 6.3b show weak scaling results of a matlab implementation
with simulated parallelism. The results are for intermediate depth and deep
water respectively. The time per predictor-corrector interval in the parareal
algorithm is kept constant at 1/16 wave periods, and the number of iterations
to convergence are measured integrating over 2,4,8,...,128 intervals. Thus, the
longest integration consists of eight wave periods using 128 predictor-corrector
intervals which means that up to 128 compute units could be added in the ac-
celeration of the parallel part of the parareal algorithm. A spacial discretization
of Nx = Nz = 25 is used with a finestep calculated from a courant number 0.25.
In the integration, RK4 is used as both the coarse and the fine propagator, with
R = 8 : 1 being the ratio between the time of the fine propagator to the time of
the coarse propagator to integrate over given a fixed interval.

Empirical strong-scaling results are presented in figures 6.4a and 6.4b for inter-
mediate and deep waters respectively. The total integration time is now fixed
at 8 wave periods, and instead the time per predictor/corrector interval various
with the number of predictor/corrector intervals assigned. The iterations to
convergence is again measured for 2,4,8,...128 intervals.

We notice that for the given choice of coarse propagator accuracy we obtain
what looks to be linear strong and weak scaling in a purely algorithmic sense
for the deep water wave. For the intermediate depth water wave, the number of
iterations needed for convergence of the algorithm increase with the number of
intervals regardless of whether the time-interval that is integrated is scaled with
the number of intervals or kept fixed. Despite the lack of scaling in the case of
intermediate depth water, the number of iterations needed for convergence seem
to only grow slowly with the number of intervals. In the worst case observed,

82 Application to nonlinear free surface flows

the number of iterations to convergence go from 2 to 6 when moving from 2 to
128 intervals with a fixed integration time.

2 4 8 16 32 64 128
0

2

4

6

Time subdomains

It
er
at
io
ns

k

k ·H = π
2 ,

H
L = 40%H

L |max

(a)

2 4 8 16 32 64 128
0

2

4

6

Time subdomains

It
er
at
io
ns

k

k ·H = 2π, HL = 40%H
L |max

(b)

Figure 6.3: Weak scaling. Fixed timestep length ∆T , integration time T
increase with the number of time subdomains N

2 4 8 16 32 64 128
0

2

4

6

Time subdomains

It
er
at
io
ns

k

k ·H = π
2 ,

H
L = 40%H

L |max

(a)

2 4 8 16 32 64 128
0

2

4

6

Time subdomains

It
er
at
io
ns

k

k ·H = 2π, HL = 40%H
L |max

(b)

Figure 6.4: Strong scaling. Fixed total integration time T , timestep length
∆T decrease with number of time subdomains N

6.3 Stability of long time integration 83

6.3 Stability of long time integration

The PDE system 6.1 presented is of hyperbolic nature. This is a course of
concern regarding the use of the Parareal method to solve the equation. Nu-
merous studies have shown that instabilities may arise in the numerical solution
of hyperbolic equations accelerated by parareal [14] [23] [25] [49].

From a theoretical viewpoint the issue has also received a fair amounts of atten-
tion. In [63] stability conditions for parareal applied to the solution of a system
of linear coupled ordinary differential equations was derived and it was showed
that for systems with pure imaginary eigenvalues or complex eigenvalues, where
the imaginary part much larger than real part, it is difficult to guarantee stabil-
ity of the algorithm for all number of intervals and all iterations, suggesting that
hyperbolic and convection diffusion problems with highly dominant convection
will experience instabilities. In addition, in [6] it was shown that for linear par-
tial differential equations with constant coefficient, parareal is unconditionally
stable for most discritizations of parabolic equations but not so for hyperbolic
equations.

Due to the potential convergence and stability issues of the parareal method
applied to hyperbolic problems, we test and measure convergence of the parareal
algorithm applied to the problem 6.1 under long time integration for various
parameter combinations so to establish whether to expect the parareal algorithm
to be stable and whether to expect good convergence properties for the fully
nonlinear wave problem.

As in the previous section we implement the algorithm using an explicit four
stage fourth order runge-kutta method as both the fine and the coarse propa-
gator and simply using a longer timestep for the coarse propagator. In each of
the figures 6.5, 6.6 and 6.7 six different combinations of wave parameters are
used, H

L = {10%, 40%, 70%} HL |max, with
H
L |max being the ratio at which the

wave brakes, and kh = {π/4, 2π}, which corresponds to shallow/intermediate
and deep water respectively. In each figure a different coarse to fine timestep
ratio is used. The ratios r = {4, 8, 12}, may seem fairly low, but they are chosen
as a consequence of the investigations in chapter 4 that pointed to the highest
speed-up being obtained with fast convergence in few iterations. The apparent
reason for the later being that the upper bound of the numerical efficiency scales
as 1/k, so it seem to often be better to use a fairly accurate solver so to con-
verge in as few iterations as possible, ideally during the first corrector-predictor
update.

In all figures, the algorithm is used to integrate a single wave resolved with
Nx × Nz = 65 × 65 points over 100 waves periods, each predictor-corrector

84 Application to nonlinear free surface flows

interval being the length of 1 wave period. Thus, in essence the measurements
can also be interpreted as a larger test of the weak scaling properties of the
parareal algorithm, as the number of cores that can be assigned to compute
increase with the number of wave-periods to be integrated.

In figures 6.5 to 6.7, the dashed black bold line indicates the error measured using
a purely sequential fine propagator. The blue solid line is the error of the initial
coarse prediction, iteration zero. The lines that follows, i.e., green, red, cyan,
magenta, yellow and grey are depicting iteration 1,2,...,6 respectively. Doing
only six iterations seems to be sufficient to uncover the qualitative behaviour
under various parameter combinations.

The use of 65 points of resolution in the z direction is more than needed for
practical purposes, particularly for shallow and intermediate depth water it is
possible to use fare fewer points with a limited impact on accuracy. However,
in order to make sure that errors are completely dominated by the difference
in timestep length only, we rule out other factors such as the Nz resolution
dependency that should otherwise be tuned and minimized as much as possible.

6.3 Stability of long time integration 85

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods
∥ ∥ Uk n

−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 10%

(b)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.5: Long time integration using RK4 as G∆T with R = 4

86 Application to nonlinear free surface flows

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 10%

(b)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.6: Long time integration using RK4 as G∆T with R = 8

6.3 Stability of long time integration 87

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods
∥ ∥ Uk n

−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(b)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.7: Long time integration using RK4 as G∆T with R = 12

88 Application to nonlinear free surface flows

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 10%

(b)

100 101 102
10−6

10−1

Wave periods

E
rr
or

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.8: Long time integration using RK4 as G∆T with R = 16 and
Savitzky-Golay filter applied.

6.3 Stability of long time integration 89

With a fine, and thus slow, coarse propagator we observe instant convergence
by the first iteration to 100 wave periods for all parameter combinations in
figure 6.5. Besides the fast convergence properties, it is also worth noticing
how the purely sequential fine propagator becomes unstable after around 30-40
wave periods and the error increases rapidly for large H

L waves in figure 6.5e
and 6.5f. Further investigations into this by visualising the wave profile leads to
the conclusion that high frequency modes rise and these eventually break down
information in the wave profile.

Despite good convergence results, the fine to coarse propagator time consump-
tion is R = 4, which is fairly slow and likely to lead to low efficiency as compute
units will be waiting for one another throughout large parts of the algorithm,
and as such may not be of much interest.

In figure 6.6 results are presented using a faster coarse solver with ratio R = 8.
This has a number of implications to the convergence speed of the algorithm.
Only the deep water wave with small wave amplitudes converge instantly over
the entire 100 wave period integration. It also becomes clear that the algorithm
converge faster on deep water than on shallow/intermediate depth water and in
addition increasing energy and wave amplitude seems to degrade the speed of
convergence

A particularly interesting thing to note here is what happens in figure 6.6e.
As previously noted the purely sequential solver develop instabilities due to
the introduction of high frequency modes when integrating high energy waves.
What is striking here is how the parareal algorithm actually works to stabilize
the solution, and eventually make it converge in less than 6 iterations without
the introduction of an otherwise necessary filtering in each integration step!
Fairly impressive. The same is not observed when integrating deep water waves
with the parareal algorithm shown in figure 6.6f, here the parareal algorithm
solution also develop high frequency modes that destabilize the solution.

The results for fine to coarse ratio R = 12 presented in figure 6.7 generally yield
the same overall observations as what can be made from figure 6.6 for R = 8.
As expected slower convergence is happening, but that is expected, given a less
accurate coarse propagator. The most important thing to note here is that
in the figures 6.7c, 6.7e and 6.7f we notice beginning instabilities arising where
progressive iterations actually deteriorate the solution as found in paper, similar
to what was demonstrated in [18] on applying parareal to a linear wave problem
and the viscous burgers problems. However, we take note that for sufficiently
accurate solver the algorithm will converge however slowly. A coarse to fine
time ratio of R = 12 is still a lot less than what we would really like to wish
for, but decreasing the accuracy of the coarse operator further seems to make
the algorithm diverge. For the sake of experiments, we try with ratio R = 16

90 Application to nonlinear free surface flows

while also applying a Savitzky-Golay [57] smoothing filter after each iteration
to try and filter out high frequencies that are introduced in the solution, error
measurements are presented in figure 6.8. In the figures 6.8e and 6.8e the very
first iteration is not stable for the choice of coarse operator and so the parareal
algorithm never initializes. The filter is seen to help in the sense that the fine
solution is now stable for all parameter choices throughout the integration of
100 waves, but the filter does not seem to improve the convergence properties
of the parareal scheme.

Comparing the convergence results to that of the simple equations investigated
in chapter 4, it seems that the problem 6.1 requires a very accurate coarse solver
in order to converge. With such a "slow" fast solver, it is imperative that the
parallel code is scheduled efficiently to avoid idle cores as much as possible. It is
worth investigating ways of increasing the speed of the coarse solver as the speed
of the coarse solver may prove to be the biggest challenge in obtaining a decent
acceleration of the integration. A possible route to a faster coarse integrator
could be to choose a different integrator more suitable when only low accuracy
is needed.

In the four stage fourth order explicit Runge-Kutta method used as both the
coarse and fine solver in all previous test, the Laplace problem, which is expen-
sive to solve, is evaluated once at every stage. Replacing the ERK4 integrator
with a three stage third order Runge-Kutta means only 3/4 as much work per
timestep as the ERK4 solver and may prove to be more effective numerically for
low accuracy solutions. The impact being that a ratio of say R = 12 between
timesteps would actually correspond to a ratio of R = 16. The figures 6.9 and
6.10 contain convergence results of long time integration using an ERK3 integra-
tor for the coarse propagation and an ERK4 integrator for the fine propagation.
Unfortunately it seems that the gain in fine to coarse ratio using fewer stages in
each integration step are offset by a need for finer timesteps of the coarse solver
to obtain the same convergence rate, roughly cancelling out any speed benefits
of the coarse propagator.

6.3 Stability of long time integration 91

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods
∥ ∥ Uk n

−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 10%

(b)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.9: Long time integration using RK3 as G∆T with R = 6(8)

92 Application to nonlinear free surface flows

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 10%

(a)

100 101 102
10−7

10−2

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 10%

(b)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(c)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(d)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 70%

(e)

100 101 102
10−5

100

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 70%

(f)

Figure 6.10: Long time integration using RK3 as G∆T with R = 12(16)

6.3 Stability of long time integration 93

In the hunt for a faster coarse integrator, a few experiment where performed
using a coarse spacial grid as discussed in section 3.5, the idea is here to have to
coarse solver simply solve on a coarse spacial grid and then use some operator
to interpolate from one space to another. Unfortunately the usage of a coarse
grid did not work out well. The algorithm showed divergent behaviour for all
discretizations, it seems that the information lost in the interpolation in general
made the algorithm diverge before converging in k = N iterations.

As a final attempt at accelerating the coarse propagator we experiment with a
combined explicit implicit propagator Runge Kutta propagator. A commonly
used second order accurate 3-stage diagonally implicit Runga Kutta method is
implemented with a slight modification, in each stage the Laplace problem to
get ω̃ is evaluated explicitly followed by an implicit integration of 6.1. Long
time integration results for this approach are presented in 6.11 for R = 6(8)
and in 6.12 for R = 12(16). If we compare the resulting long time integration
presented in figure 6.12b and 6.12a for R = 12(16) with the results using RK4 as
coarse propagator for R = 16 presented in the figures 6.8c and 6.8d we see vast
improvements as the parareal solution now converges in each step in the case of
shallow/intermediate depth water. For R = 6(8) the application of a modified
DIRK method as a coarse propagator leads to a slower convergence rate than
the equivalent implementation using the RK4 method as a coarse propagator.

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(a)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(b)

Figure 6.11: Long time integration using modified DIRK2 as G∆T with R =
6(8)

94 Application to nonlinear free surface flows

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = π
4
, H
L max

= 40%

(a)

100 101 102
10−6

10−1

Wave periods

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

k ·H = 2π, H
L max

= 40%

(b)

Figure 6.12: Long time integration using modified DIRK2 as G∆T with R =
12(16)

6.4 Convergence speed on parameter space

In building an initial condition for the numerical solution of the system 6.1 of
two coupled partial differential, a number of wave parameters arise. From the
long-time integration tests in previous sections it became clear that the rate
of convergence is heavily dependent on these physical parameters such as water
depth and energy in wave. In this section we measure the number of iteration re-
quired for convergence over a parameter space spanned by h = {0.1, 0.2, ..., 1},
in a 1m long tub with 1m long waves so that kh = {0.2π, 0.4π, ..., 2π} and
H
L = {10%, 20%, .., 80%}HL max as fast convergence is paramount in obtaining
speedup. The number of iterations to convergence is independent of how the
parallel work is being scheduled, and all tests are thus carried out in a Matlab
implementation with simulated parallelism. The convergence criteria is kept
strict at 1.1 times the error of the reference solution using a purely sequential
fine integrator only. See figure 6.13, strictly sequential fine error as a function
of parameter space, used as convergence criteria. This is of course for practi-
cal applications not a viable way of determining convergence, and a number of
practical methods have been proposed such as [39] which could be implemented
using a Runge-Kutta method with embedded error estimation method. How-
ever, for simplicity we focus only on whether or not convergence has happened,
and not on the various approaches of determining so.

6.4 Convergence speed on parameter space 95

For each integration in the parameter space, a single wave resolved by {Nx, Nz} =
{49, 49} is integrated over two wave periods. Again we use a large Nz to make
sure that the error is completely dominated by the time resolution under all
circumstances. The finestep is calculated from a Courant number of 0.25. The
same integrator is used for both the coarse and fine propagator so that the
coarse timestep is simply R times bigger than the fine step. The integration
over the parameter space is done for six different combinations of R = {4, 8, 12}
and N = {4, 16} with N being the number of time subdomains. The results of
these measurements are presented in figure 6.14. As was indicated in section 6.3
figure 6.5 for long time integrations, a fine to coarse time ratio of R = 4 yields
instant converge over the entire parameter space as depicted in figure 6.14a and
6.14b. Again we notice how increasing the timestep length of the coarse solver
decrease the speed of convergence. Also, it is quite obvious that the parareal al-
gorithm shows slower convergence for shallow water and large amplitude waves
and as such, parareal may not be suitable for the acceleration of the solution
of such systems. It is not obvious what choice of fine to coarse timestep solver
ratio leads to the largest speedup. The question is a matter of trade-off between
fast convergence using an expensive coarse solver, or slower convergence using a
faster but less accurate solver. A slow coarse solver will lead to compute units
spending a lot of time waiting for each other leading to low efficiency, on the
other hand with fast solvers but many iteration to convergence, more compute
work needs to be done since the entire problem is to be solved k times. To
evaluate, or

0.1

1

10

80
10−8

10−4

100

k ·H
H
L max

∥ ∥ Uk n
−
u
(T
n
)∥ ∥ ∞

Figure 6.13: The error at the final timestep of the integration of a single wave
over two wave periods using an ERK4 integrator in a strictly
sequential fashion.

96 Application to nonlinear free surface flows

0.1

110%

80%
1

2

3

4

k ·H H
L max

K

N = 4, R = 4

(a)

0.1

110%

80%

2

4

6

8

k ·H H
L max

K

N = 16, R = 4

(b)

0.1

110%

80%
1

2

3

4

k ·H H
L max

K

N = 4, R = 8

(c)

0.1

110%

80%

2

4

6

8

k ·H H
L max

K

N = 16, R = 8

(d)

0.1

110%

80%
1

2

3

4

k ·H H
L max

K

N = 4, R = 12

(e)

0.1

110%

80%

4

8

12

16

k ·H H
L max

K

N = 16, R = 12

(f)

Figure 6.14: Iterations K to convergence.

6.4 Convergence speed on parameter space 97

estimate, which ratio R is better for a given parameter combination, we need to
establish how to distribute the compute work in the algorithm. The approach
taken by E. Eubanel [2] of splitting work into interdependent tasks is clear
in style of implementation and results show great improvements over a simple
strictly sequential-parallel style implementation. More importantly it conforms
well with the work that will be presented in chapter 7 where a Cpp/CUDA/MPI
based implementation using GPUs as workers is developed and tested. With
multiple levels of parallelism on a heterogeneous hardware setup, the algorith-
mic complexity increases rapidly and data locality becomes non-triviel and as
such for implementation purposes the task-dependent approach is estimated to
be a good choice as it is less implementation heavy than say an event based
method of but delivers similarly high efficiency. The actual implementation of
the algorithm is discussed further in chapter 7. Having decided on an approach
to distribute work in the parareal algorithm, it is possible to estimate the speed-
up. Aubanel presents two task-scheduling based approaches of distributing the
work, a manager/worker and a fully distributed algorithm. Aubanel also derives
expressions for the speed-up as a function of fine to coarse time ratio R = r−1

and iterations to convergence k under the assumption of instant communica-
tion and neglecting the correction time, as mentioned in section 3.3, these tests
showed that the expressions given below are fairly accurate.

ψMW (k=1) =
N

(2N − 1) r + 1
(6.5a)

ψMW (k>1) =
N

2 (N − 1) r + k
(6.5b)

and

ψFD =
N

Nr + k (1 + r)
(6.6)

Applying these expressions to the measurements 6.14, one can calculate the
expected speed-up assuming negligible correction and communication time. In
figure 6.15 the speedup was estimated based on the simplest possible distribution
model as presented in figurer 3.1, while in 6.16 it was estimated using the fully
distributed model. From the measurements it is clear that due to a fairly slow
coarse propagator being needed for convergence of the parareal algorithm on
the fully nonlinear wave problem 6.1 a highly efficient method of distributing
work is necessary to obtain reasonable speed-up. For this reason the more
involved fully distributed model proposed by [2] will be used in chapter 7 for
the implementation using GPUs as worker units. The implementation of GPUs
as worker units in the parareal algorithm has to the knowledge of the author
been proposed, but not attempted, before and as such, the results constitutes a
novel contribution to the available literature.

98 Application to nonlinear free surface flows

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 4

(a)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 4

(b)

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 8

(c)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 8

(d)

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 12

(e)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 12

(f)

Figure 6.15: Estimated speedup based on measurements 6.14 given simplest
possible distribution model

6.4 Convergence speed on parameter space 99

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 4

(a)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 4

(b)

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 8

(c)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 8

(d)

0.1

1 10%

80%

0

2

4

k ·H H
L max

Sp
ee
d-
up

N = 4, R = 12

(e)

0.1

1 10%

80%

0

4

8

k ·H H
L max

Sp
ee
d-
up

N = 16, R = 12

(f)

Figure 6.16: Estimated speedup based on measurements 6.14 given fully dis-
tributed task scheduling model

100 Application to nonlinear free surface flows

6.5 Summary

In the beginning of this chapter a fully non-linar wave model was presented
together with a finite difference based solver. The properties of the parareal
algorithm applied to this problem was investigated in terms of stability, conver-
gence and estimated speed-up. Clearly the parameters H/L and kh influence
the effectiveness of the added parallelism by the parareal method. The efficiency
can be seen to range from zero to more than fifty percent for deep water waves at
moderate wave amplitude. The algorithm show neither weak nor strong scaling
properties on the problem 6.1 however the convergence speed degrades fairly
slow with the amount of predictor-corrector intervals added so this should not
be an issue in terms of obtaining speedup with 10s or even 100s of compute
units.

Despite the hyperbolic nature of the non-linear wave model, it was shown that
with a sufficiently accurate coarse solver the parareal algorithm will converge
on the problem. Though, when using a fine to coarse time ratio of R = 12 : 1
and R = 16 : 1 instabilities such as those presented in [18] and [15] among
others would appear. Due to the nature of the problem, a fairly accurate, and
thus slow, coarse propagator is needed. This is an issue in terms of the overall
speed-up that can be attained and with the use of such a "slow" fast coarse
propagator it is strictly necessary to apply an effective method of distributing
the parallel compute work in order to obtain speed-up. Fortunately it is here
possible to build upon previous work such as that presented in [2].

The issue of slow convergence indicate that the algorithm is less suitable for
this particular problem, which is not entirely unexpected given its hyperbolic
nature. But as will be shown later, the finite difference based solver for the
wave-problem has another property that has a positive implication on the ap-
plication of parareal. In the parareal algorithm, the solution state needs to be
communicated between consecutive time intervals and for this particular prob-
lem the state takes up very little space compared the time to integrate a small
interval. Perfectly suited for the parareal algorithm and as will be demonstrated
in the chapter to follow it is possible to obtain speedup with parareal on the
fully nonlinear wave model.

Chapter 7

A Large-Scale GPU Based
Implementation

Using the massively parallel GPUs to accelerate the solution of the nonlinear
free-surface water wave model 6.1 has been shown to speed-up the time to
solution by an order of magnitude [22]. This is impressive, let us now see if we
can obtain further acceleration of the solution by the application of the parareal
scheme to the two dimensional problem.

In the previous chapter we investigated the algorithmic properties of parareal
applied to 6.1, using the numerical scheme presented in chapter 6. With a
thorough knowledge of the convergence rate to be expected and it’s relation
to wave parameters, we move on to implement the parareal algorithm using
GPUs as worker compute units. The parallel work is scheduled using the fully
distributed wave model as proposed by [2] and presented in section 3.3.

In this chapter the Cpp-MPI-CUDA implementation is presented along with
measured speed-up results. Initial tests are conducted on a node level measuring
speed-up using 2 and 4 GPUs. The results are compared to what is obtainable
using a spacial domain decomposition approach also on node level. In the quest
to accelerate the solution further, the method is implemented on a grid level and
tested on the Brown University Oscar GPU cluster using up to 16 GPUs. The
chapter ends with a discussions on the strength and weaknesses of parareal with

102 A Large-Scale GPU Based Implementation

respect to spacial domain decomposition, included discussions on the prospect
of combining the algorithms in different hardware layers so to exploit different
properties of each algorithm by the introduction of a third layer of parallelism.

7.1 The fully distributed task scheduling model

The fully distributed task scheduling model was first introduced in the literature
review section 3.2 and a schematical description of the distribution of work can
be found in figure 3.2.

The implementation of parareal on top of the parallelism in the GPU based
solver is build using components available in the GPUlab library by Stefan L.
Glimberg, Phd student at DTU Informatics. The implementation to be tested
is thus build using C++ and MPI for the distribution of parallel work and
CUDA for the GPU based solver. Upon starting the program, an MPI process
is initialised for each GPU available on a given node. Each MPI thread has it’s
own unique id,MPI_rank, which is used in identification when communication
between ranks are needed. The id’s are enumerated as 0, 1, .., N−1. MPI_rank
zero is the initiating worker unit that performs the first coarse propagation from
the initial state. Upon finishing, id zero sends the resulting state to id one, and
from here on the computation cascades down trough all iterations and intervals.
The pseudo code for the implementation is stated in algorithm 2.

As we are dealing with a heterogeneous CPU-GPU system, on top of which
we impose an additional layer of parallelism, data locality becomes non-trivial.
The implementation is made so that all communication happens trough MPI
send and receive calls in which CUDA transfer calls between device and host
are wrapped. When GPUs on a grid need to communicate a solution state, the
commutation route is GPU->CPU->CPU->GPU. This is a lot of data transfer,
and it is a fair concern that it may degrade performance. The communication
time could potentially be reduced by employing CUDA GPUdirect as available
in CUDA 5.0 in the communication between GPUs, but as will be shown, the
amount of data that needs to be communicated is sufficiently small compared
to the integration time that even for smaller problems the communication time
is effectively hidden by the computational work.

7.1 The fully distributed task scheduling model 103

Algorithm 2 Fully distributed parareal implementation
convergeNext← FALSE
if id = 0 then
Ũ0

0 ← y0

Ũ0
1 ← G∆T Ũ

0
0

send Ũ0
1 to GPU id 1

Û0
1 ← F∆T Ũ

0
0

U1
1 ← Û0

1

send converge and U1
1 to GPU id 1

exit \\GPU id = 0 finished.
else
receive Ũ0

id from GPU id− 1

Ũ0
id+1 ← G∆T Ũ

0
id

if id! = N − 1 then
send Ũ0

id+1 to GPU id+ 1
end if

end if
U0
id ← Ũ0

id

for k = 1 to Kmax do
Ûk−1
id+1 ← F∆TU

k−1
id

if convergeNext then
converge← TRUE
Ukid+1 ← Ûk−1

id+1

send converge and Ukid+1 to GPU id+ 1
exit \\GPU id finished.

end if
receive converge and Ukid from GPU id− 1

Ũkid+1 ← G∆TU
k
id

Ukid+1 ← Ũkid+1 + Ûk−1
id+1 + Ũk−1

id+1

if converge & |Ukid+1 −F
id+1
∆T y0| > ε then

converge← FALSE
convergeNext← TRUE \\Converges in next iteration

end if
if id! = N − 1 then
send converge and Ukid+1 to GPU id+ 1

end if
if converge then
exit \\GPU id finished.

end if
end for

104 A Large-Scale GPU Based Implementation

7.2 Single node implementation

In this section we present results of wall-time measurements of the implementa-
tion of the parareal scheme using GPUs as workers as explained in the previous
section. As communication and correction time may degrade performance, par-
ticularly for smaller problems, the wall-time of the computation is measured
as a function of problem size. To test the implementation, a deep water wave
k · H = 2π with small amplitude H

L = 10%H
L |max is generated. By the inves-

tigations made in chapter 6, we expect the parareal solution to converge in a
single iteration on this problem with a timestep R = 8 longer than the fine
timestep using RK4 as both coarse and fine propagator. Each wave is 1 meter
in length and resolved using Nx = Nz = 33 points, and the problem consists
of solving the wave model over one wave period in time. The problem size is
then increased by simply adding more of the same waves, increasing the spacial
dimension, while still only integrating one wave period forward in time. The
time-steps of the fine propagator is calculated using a courant number of 0.25
for a total of 128 fine propagator time-steps in the integration of a wave-period.

The GPU based propagator used to integrate each time sub-domain uses an
iterative method to solve the Laplace problem, and as such we need to specify
a convergence tolerance. This tolerance needs to be different for the coarse and
fine propagator implementations as the Laplace problem in the coarse propa-
gator does not need to be solved to same accuracy. The tolerances needed are
estimated, and actual coarse to fine time ratio spend on integrating an interval
∆T might be slightly different than R = 8.

The compute walltime measured as a function of problem size is presented in
figure 7.2 for the parareal scheme and in figure 7.1 using spacial domain de-
composition as implemented in the GPUlab library by Stefan L. Glimberg. The
application was tested on a node consisting of an Intel Xeon E5620 @ 2.4Ghz
with 12GB ram and 2x NVIDIA Geforce GTX 590 graphics cards, each GTX590
holds two Fermi generation GPUs with 1.5GB of dedicated memory.

In figure 7.3 the speedup, as calculated from the data presented in figures 7.2
and 7.1, is presented. It is observed that the parallel speed-up obtained corre-
sponds nicely with what can be predicted assuming negligible communication
and correction time. Spacial Domain decomposition as expected works very
well for large problem sizes, going towards perfect linear scalability. The classic
domain decomposition method is also observed to be much more sensitive to
communication issues than the parareal algorithm. For smaller problem sizes
the parareal algorithm is observed to be much faster as the parallel efficiency of
the spacial domain decomposition method decrease rapidly as a consequence of
smaller spacial domains leading to an increase in the communication to compu-

7.2 Single node implementation 105

tation ratio.

106 A Large-Scale GPU Based Implementation

25 27 29 211 213 215

8

32

128

512

2048

Waves

So
lu
ti
on

ti
m
e
[s
]

PA accelerated integration of a single wave period

Sequential, 1 GPU
PA 2GPUs FD
PA 2GPUs Pr
PA 4GPUs FD
PA 4GPUs Pr

Figure 7.1: The solution wallclock time measured as a function of problem
size given parallel acceleration using the parareal scheme.

25 27 29 211 213 215

8

32

128

512

2048

Waves

So
lu
ti
on

ti
m
e
[s
]

DD accelerated integration of a single wave period

Sequential, 1 GPU
DD 2GPUs
DD 4GPUs

Figure 7.2: The solution wallclock time measured as a function of problem size
given parallel acceleration using spacial domain decomposition.

7.3 Grid level implementation 107

29 211 213 215
0

1

2

3

4

Waves

Sp
ee
d-
up

Speedup comparison of DD and PA

PA 2GPUs
PA 4GPUs
DD 2GPUs
DD 4GPUs

Figure 7.3: Speedup as computed by the results presented in figures 7.1 and
7.2. Notice how the parareal scheme is much less sensitive to
the size of the problem solved, also notice how spacial domain
decomposition allows for linear speed-up under ideal conditions.

7.3 Grid level implementation

In the previous section we obtained a speed-up of more than 2 using 4 GPUs on a
single node. This is very nice, but we would like to see if it is possible to do even
better. For the purpose of investigating so, the application was tested on the
Oscar GPU cluster at Brown University. The GPU cluster consists of 44 nodes,
each with two NVIDIA Tesla M2050 GPUs for a total of 88 GPUs available
on the cluster. The walltime and speed-up measurements on the same problem
as tested in previous section, integrating over one wave period in time, can be
found in table 7.1. Notice how for an increasing amount of cores, we experience
diminishing returns as the added acceleration upon adding more GPUs decrease
rapidly. This effect can be attributed to the fairly slow coarse propagator, being
only roughly 8 times faster than fine propagator. As additional GPUs are added,
the GPUs spend an increasing amount of time waiting for one another. This
effect is also apparent in the speed-up estimate 6.6. Letting N go to infinity with
fixed k and r, the speed-up is seen to be limited only by the speed of the coarse
propagator. When adding more GPUs this limit is approached asymptotically.

108 A Large-Scale GPU Based Implementation

Speedup Walltime GPUs
- 26.96s 1
2.4 11.06s 4
3.6 7.45s 8
4.2 6.45s 16

(a)

Speedup Walltime GPUs
- 106.7s 1
2.4 43.72s 4
3.6 29.59s 8
4.2 25.31s 16

(b)

Table 7.1: Walltime measurements on the integration of a single wave period
for a problem size (a) 128 waves and (b) 1024 waves.

7.4 Summary

In this chapter a proof of concept acceleration of the fully non-linear free surface
water wave model 6.1 using the parareal scheme with GPUs as compute units
was presented. It was shown to be possible to obtain more than 50% parallel
efficiency when using a small amount of GPUs. In addition, we noticed how
large scale speedup is limited by the speed of the coarse propagator relative to
the fine propagator.

The results was compared to speedup measurements of the acceleration using
domain decomposition to distribute the computation onto more GPUs. In the
comparison between the two approaches it is of particular interest how the
parareal scheme seem to be much less influenced by communication than the
spacial domain decomposition approach. The parareal algorithm is not able to
obtain as high speedup as domain decomposition under ideal conditions though,
and this even though wave parameters for which optimal performance of the
parareal algorithm could be expected was chosen.

Concluding remarks

The parareal algorithm has been presented along with everything that a devel-
oper will need to know in order to build an efficient parareal implementation to
accelerate the solution of some evolution problem. A thorough literature review
has been presented along with a large amount of information and references to
theoretical and experimental results with the parareal algorithm as available in
the literature.

In chapter 4 and 5 the convergence properties of the algorithm with application
to a number of different initial value problems was presented and from the
analysis, a heuristic for optimal coarse propagator accuracy choice was proposed.
The investigations indicate that the best strategy when seeking to accelerate
the solution of some IVP with a small number of compute units is to choose a
sufficiently accurate propagator, that converge fast, as the added compute work,
increasing with a factor k, is dominant in the degradation of parallel efficiency.
In the case that acceleration is sought using many compute units, it is advisable
to choose a computational fast but less accurate propagator, as the dominant
loss in parallel efficiency will be on the idle time of compute units waiting to
receive the initial conditions needed. These heuristics seemed consistent given
that no stability issues for the choice of k and N are present. In case of the
latter, it may be better to employ a simple hierarchical algorithm making sure
to choose a sufficiently accurate coarse propagator so to converge in a single
iteration.

In terms of applicability of parareal, there are a few issues that requires to
be addressed. It is hard to predict beforehand how much of a computational
speed-up can be obtained by applying the parareal algorithm to some problem.

110 A Large-Scale GPU Based Implementation

In addition, the effectiveness of the algorithm also depends a great deal on
finding a coarse propagator satisfying the accuracy needed for convergence, at
the cheapest possible computational expense. Having to find an appropriate
operator type and experiment to find the best accuracy for optimal parallel
efficiency makes the procedure of obtaining parallel speed-up more involved than
otherwise expected. A positive note on the parareal scheme though, is how it
is easily wrapped around any other propagator used, and it should be possible
to build parareal library allowing for fast parallelization of any given operator
combination without having to deal with the implementation of complicated
distribution models as these are universal for any combination of propagators.

An often mentioned motivation for parareal is how it is possible to combine the
method with the successful spacial domain decomposition methods. When to
many compute units are added to a spacial domain, the subdomain eventually
become very small and communication time reduce parallel efficiency to a point
where no additional speed-up is obtained as observed in chapter 7. The propo-
sition is then to use added compute unit beyond the points of saturation to
parallelize in time rather than to parallelize further in space.

But this is not necessarily the only argument for the application of parareal.
Parareal and spacial domain decomposition was shown to have very different
properties in terms of communication and latency sensitivity. Modern large
scale compute grids tend to be multi-layered with each layer having different
properties in terms of memory access, speed and latency. It seems reasonable
that this multi-layered structure should be reflected in the algorithms applied
to such machines. The parareal method in this context looks favourable for
grid implementation as it is much less sensitive to latency and communication
speed, while spacial domain decomposition may be an excellent choice on a
nodal level as these methods can achieve linear speed-up given the availability
of sufficiently fast low latency communication. With regards to the nonlinear
free-surface water wave model presented in chapter 6, there is a potential for
additional speed-up by employing two separate layers of parallelism on top of
the parallelism already found in the GPU based propagator. Such investigations
are left for future work.

As a closing remark, we highlight how the parareal method may prove to be
a small but significant contribution in the challenges of extracting parallelism
in the solution of differential equations so to exploit the compute capabilities
of modern many core hardware architectures at extreme scale. A multitude
of papers have been published on parareal during the last decade, with recent
publications investigating practical results of large scale implementations, com-
bining parareal and spacial domain decomposition, this may be a hint that the
algorithm is maturing to a level at which it will be more widely adopted.

Bibliography

[1] K. Asanovi, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams,
and K. Yelick, The landscape of parallel computing research: A view
from berkeley, Technical Report EECS-2006-183, University of California
Berkeley, 2006.

[2] E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Com-
puting, 37 (2010), pp. 172–182.

[3] C. Audouze, M. Massot, and S. Volz, Sympletic multi-time step
parareal algorithms applied to molecular dynamics. Not formally published,
2009.

[4] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah,
Parallel in time molecular dynamics simulations, Physical Review E., 66
(2002).

[5] G. Bal, Parallelization in time of (stochastic) ordinary differential equa-
tions. Not formally published, 2002.

[6] , On the convergence and the stability of the parareal algorithm to solve
partial differential equations, in Domain Decomposition Methods in Science
and Engineering, R. Kornhuber, R. H. W. Hoppe, D. E. Keyes, J. Periaux,
O. Pironneau, and J. Xu, eds., vol. 40, SIAM, Springer-Verlag Berlin, 2004,
pp. 425–432.

[7] G. Bal and Y. Maday, A "parareal" time discretization for non-linear
pde’s with application to the pricing of an american put, in Recent de-
velopment in domain Decomposition Methods, L. Pavarino and A. Toelli,

112 BIBLIOGRAPHY

eds., vol. 23 of Lecture Notes in Computational Science and Engineering,
Springer-Verlag Berlin, 2002, pp. 189–202.

[8] A. Bellen and M. Zennaro, Parallel algorithms for initial value prob-
lems for nonlinear vector difference and differential equations, Journal of
computing and applied mathematics, 25 (1989), pp. 341–350.

[9] L. A. Berry, W. Elwasif, J. M. Reynolds-Barredo, D. Samaddar,
R. Sanchez, and D. E. Newman, Event-based parareal: A data-flow
based implementation of parareal, Journal of Computational Physics, 231
(2012), pp. 5945–5954.

[10] H. B. Bingham and H. Zhang, On the accuracy of finite-difference solu-
tions for nonlinear water waves., Journal of Engineering Mathematics, 58
(2007), pp. 211–228.

[11] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and
O. O. Storaasli, State-of-the-art in heterogeneous computing, Scientific
Programming, 18 (2010), pp. 1–33.

[12] K. Burrage, Parallel and sequential methods for ordinary differential
equations, The Clarendon Press Oxford University Press, Burlington, MA,
USA, 1995.

[13] P. Chartier and B. Philippe, A parallel shooting technique for solving
dissipative odes, Computing, 51 (1993), pp. 209–236.

[14] F. Chouly and M. A. Fernandez, An enhanced parareal algorithm
for partitioned parabolic- hyperbolic coupling, AIP Conference Proceedings,
1168 (2009), pp. 1517–1520.

[15] J. Cortial and C. Farhat, A time-parallel implicit method for acceler-
ating the solution of non-linear structural dynamics problems, Journal for
Numerical Methods in Engineering, 77 (2009), pp. 451–470.

[16] R. Croce, D. Ruprecht, and R. Krause, Parallel-in-space-and-time
simulation of the three-dimensional, unsteady navier-stokes equations for
incompressible flow, preprint, ICS, 03 2012.

[17] X. Dai, C. L. Bris, F. Legoll, and Y. Maday, Parareal algorithms for
hamiltonian systems. Submitted to Mathematical Modelling and Numerical
Analysis Nov, 2010.

[18] X. Dai and Y. Maday, Stable pararael in time method for first and second
order hyperbolic system. Submitted Jan, 2012.

[19] J. Douglas and H. H. Rachford, On the numerical solution of heat
conduction problems in two and three space variables, Transactions of the
american mathematical society, (1956), pp. 421–439.

BIBLIOGRAPHY 113

[20] W. R. Elwasif, S. S. Foley, D. E. Bernholdt, and L. A. Berry,
A dependency-driven formulation of parareal: Parallel-in-time solution of
pdes as many-task application, (2011), pp. 15–24.

[21] A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg, An efficient
flexible-order model for 3d nonlinear water waves, Journal of Computa-
tional Physics, 228 (2009), pp. 2100–2118.

[22] A. P. Engsig-Karup, M. G. Madsen, and S. L. Glimberg, A
massively parallel gpu-acceleratedmodel for analysis of fully nonlinear free
surface waves, International Journal for Numerical Methods in Fluids,
10.1002/fld.2675 (2011).

[23] C. Farhat and M. Chandersris, Time-decomposed parallel time-
integrators: theory and feasibility studies for fluid, structure, and fluid-
structure applications, International Journal for Numerical Methods in En-
gineering, 58 (2003).

[24] C. Farhat, J. Cortial, C. Dstillung, and H. Bavestrello, Time-
parallel implicit integrators for the near-real-time prediction of linear struc-
tural dynamics responses, Int. Journal for Numerical Methods in Engineer-
ing, 67 (2006), pp. 697–724.

[25] P. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit
approximation of the navier stokes equations, in 15th International Con-
ference on Domain Decomposition Methods in Science and Engineering,
R. Kornhub, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund, and J. Xu,
eds., vol. 40, SIAM, Springer-Verlag Berlin, 2004, pp. 433–440.

[26] M. Gander and S. Vanderwalle, On the superlinear and linear con-
vergence of the parareal algorithm, in 16th International Conference on Do-
main Decomposition Methods in Science and Engineering, vol. 55, Springer
Berlin, 2007, pp. 291–298.

[27] M. Gander and S. Vandewalle, Analysis of the parareal time-parallel
time-integration method, SIAM Journal of scientific computing, 29 (2007),
pp. 556–578.

[28] I. Garrido, G. Fladmark, and M. Epedal, Parallelization in time for
reservoir simulation. Not formally published, 2003.

[29] I. Garrido, B. Lee, G. E. Fladmark, and M. E. Espedal, Convergent
iterative schemes for time parallelization, Mathematics of computation, 75
(2006), pp. 1403–1428.

[30] J. Geiser and S. Guttel, Coupling methods for heat transfer and heat
flow: Operator splitting and the parareal algorithm, Journal of mathemati-
cal analysis and applications, 388 (2012), pp. 873–887.

114 BIBLIOGRAPHY

[31] W. Hackbusch, Parabolic multigrid methods, Computing methods in ap-
plied sciences and engineering, VI (1984), pp. 189–197.

[32] C. Harden, Realtime computing with the parareal algorithm, master thesis,
Florida State University, College of Arts and Sciences, School of Computa-
tional Science, 2008.

[33] L.-P. He and M. He, Parareal in time simulation of morphological trans-
formation in cubic alloys with spatially dependent composition, Communi-
cations in Computational Physics, 11 (2012), pp. 1697–1717.

[34] K. R. Jackson, A survey of parallel numerical methods for initial value
problems for ordinary differential equations, IEE Transactions on Magnet-
ics, 25 (1991), pp. 3792–3797.

[35] K. R. Jackson and S. N. rsett, The potential for parallelism in runge-
kutta methods. part 1: Rk formulas in standard form, SIAM Journal of
Numerical Analysis, 32 (1995), pp. 49–82.

[36] B. Khalaf and D. Hutchinson, Parallel algorithms for initial value
problems: parallel shooting, Parallel Computing, 18 (1992), pp. 661–673.

[37] M. Kiehl, Parallel multiple shooting for the solution of initial value prob-
lems, Parallel Computing, 20 (1994), pp. 275–295.

[38] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli,
The waveform relaxation method for time-domain analysis of large scale
integrated circuits, IEEE Trans. on CAD of IC and Syst., 1 (1982), pp. 131–
145.

[39] B. Lepsa and A. Sandu, An efficient error control mechanism for the
adaptive ’parareal’ time discretization algorithm, in Proceedings of the 2010
Spring Simulation Multiconference, R. McGraw and E. Imsand, eds., no. 87,
Society for Computer Simulation International, 2010.

[40] B. Li and C. A. Fleming, A three dimensional multigrid model for fully
nonlinear water waves, Coastal Engineering, 30 (1997), pp. 235–258.

[41] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’edp par un
schéma en temps pararéel, C.R. Acad Sci. Paris Sér. I math, 332 (2001),
pp. 661–668.

[42] Y. Maday, Parareal in time algorithm for kinetic systems based on model
reduction, in High-Dimensional Partial Differential Equations in Science
and Engineering, A. Bandrauk, M. Delfour, and C. LeBris, eds., vol. 41 of
CRM Proceedings & Lecture Notes, American Mathematical Society, 2007,
pp. 183–194.

BIBLIOGRAPHY 115

[43] Y. Maday, The parareal in time algorithm, Technical Report R08030, Uni-
versite Pierré et Marie Curie, 2008.

[44] Y. Maday, E. R. nquist, and G. A. Staff, The parareal-in-time algo-
rithm: Basics, stability and more, (2006).

[45] Y. Maday, J. Salomon, and G. Turinici, Monotonic parareal control
for quantum systems, SIAM JOURNAL ON NUMERICAL ANALYSIS, 45
(2007), pp. 2468–2482.

[46] Y. Maday and G. Turinici, A parareal in time procedure for the control
of partial differential equations, C. R. Math. Acad. Sci. Paris, 335 (2002),
pp. 387–392.

[47] , Parallel in time algorithms for quantum control: Parareal time
discretization scheme, International Journal of Quantum Chemistry, 93
(2003), pp. 223–228.

[48] , The parareal in time iterative solver: A further direction to parallel
implementation, in 15th International Conference on Domain Decomposi-
tion Methods in Science and Engineering, R. Kornhub, R. Hoppe, J. Peri-
aux, O. Pironneau, O. Widlund, and J. Xu, eds., vol. 40 of Lecture Notes
in Computational Science and Engineering, Springer-Verlag Berlin, 2004,
pp. 441–448.

[49] D. Mercerat, L. Guillot, and J. P. Vilotte, Application of the
parareal algorithm for acoustic wave propagation, AIP Conference Proceed-
ings, 1168 (2009), pp. 1521–1524.

[50] M. Minion, A hybrid parareal spectral deferred corrections method, Com-
munications in Applied Mathematics and Computational Science, 5 (2010),
pp. 265–301.

[51] W. L. Miranker and W. Liniger, Parallel methods for the numerical
integrating of ordinary differential equations, Mathematics of Computation,
21 (1967), pp. 303–320.

[52] A. S. Nielsen, A. P. Engsig-Karup, and B. Dammann, Parallel pro-
gramming using opencl on modern architectures, Technical Report IMM-
2012-05, Technical University of Denmark, 2012.

[53] J. Nievergelt, Parallel methods for integrating ordinary differential equa-
tions, Communications of the ACM, 7 (1964), pp. 731–733.

[54] D. Ruprecht and R. krause, Explicit parallel-in-time integration of lin-
ear acoustic-advection system, Computers & Fluid, 59 (2012), pp. 72–83.

116 BIBLIOGRAPHY

[55] D. Samaddar, D. E. Newman, and R. Sanchez, Parallelization in
time of numerical simulations of fully-developed plasma turbulence using
the parareal algorithm, Journal of Computational Physics, 229 (2010),
pp. 6558–6573.

[56] H. Samuel, Time domain parallelization for computational geodynamics,
Geochemistry Geophysics Geosystems, 13 (2012), pp. 1–16.

[57] A. Savitzky and M. J. E. Golay, smoothing and differentiation of
data by simplified least squares procedures, Analytical Chemistry, 36 (1964),
pp. 1627–1639.

[58] J. Shalf, S. Dosanjh, and J. Morrison, Exascale computing technology
challenges, in Lecture Notes in Computer Science, J. Palma, M. Dayde,
O. Marques, and J. Lopez, eds., vol. 6449, 9th International Conference on
High Performance Computing for Computational Science, Springer, 2011,
pp. 1–25.

[59] J. Simoens and S. Vandewalle, Waveform relaxation with fast di-
rect method as preconditioner, SIAM Journal on Scientific Computing, 21
(2000), pp. 1755–1773.

[60] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion,
M. Winkel, and P. Gibbon, A massively space-time parallel n-body
solver, tech. report, 2012.

[61] A. Srinivasan and N. Chandra, Latency tolerance through paralleliza-
tion of time in scientific applications, Parallel Computing, 31 (2005),
pp. 777–796.

[62] G. Staff, Convergence and stability of the parareal algorithm: A numerical
and theoretical investigation, master thesis, Norwegian University of Science
and Technology, Department of Mathematical Science, 2003.

[63] G. Staff and E. M. R. nquist, Stability of the parareal algorithm, in
Lect. Notes in Comput. Sci. Eng., R. Kornhub, R. Hoppe, J. Periaux,
O. Pironneau, O. Widlund, and J. Xu, eds., vol. 40 of Lecture Notes
in Computational Science and Engineering, Springer-Verlag Berlin, 2005,
pp. 449–456.

[64] J. Trindade and J. Pereira, Parallel-in-time simulation of two-
dimensional, unsteady, incompressible laminar flows, Numerical Heat
Transfer Part B-Fundamentals, 50 (2006), pp. 25–40.

[65] A. E. S. V. Sarkar, W. Harrod, Software challenges at extreme
scale, Communications in Applied Mathematics and Computational Sci-
ence, (2010), pp. 60–65.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation for parallelism in numerical algorithms
	1.2 Parallelism in the time domain

	2 The Parareal Method
	2.1 The Algorithmic Idea
	2.2 An algebraic interpretation
	2.3 A Visual Presentation
	2.4 Complexity and parallel efficiency
	2.5 Summary

	3 A Survey of Present Work
	3.1 Stability and Convergence
	3.2 Strong and Weak Scaling
	3.3 Distribution of parallel work
	3.4 Stopping criteria
	3.5 Various ways to reduce the coarse propagation
	3.6 Combination with Domain Decomposition
	3.7 Problems on which Parareal has been applied
	3.8 Ongoing challenges and further work

	4 Experimental investigation of convergence and stability
	4.1 Test Equation
	4.2 Bernoulli
	4.3 Linear ODE system
	4.4 Van der Pol Oscillator
	4.5 Two-dimensional diffusion
	4.6 Summary

	5 Efficiency and speed-up
	5.1 The issue of optimal efficiency
	5.2 Experimental investigations
	5.3 Summary

	6 Application to nonlinear free surface flows
	6.1 Introducing the PDE system
	6.2 Weak and Strong Scaling
	6.3 Stability of long time integration
	6.4 Convergence speed on parameter space
	6.5 Summary

	7 A Large-Scale GPU Based Implementation
	7.1 The fully distributed task scheduling model
	7.2 Single node implementation
	7.3 Grid level implementation
	7.4 Summary

	Concluding remarks
	Bibliography

