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Abstract—We propose kernel Parallel Analysis (kPA) for
automatic kernel scale and model order selection in Gaussian
kernel principal component analysis (KPCA). Parallel analysis
is based on a permutation test for covariance and has previ-
ously been applied for model order selection in linear PCA, we
here augment the procedure to also tune the Gaussian kernel
scale of radial basis function based KPCA. We evaluate kPA
for denoising of simulated data and the U.S. postal data set
of handwritten digits. We find that KPA outperforms other
heuristics to choose the model order and kernel scale in terms
of signal-to-noise ratio of the denoised data.

Index Terms—Denoising, kernel principal component anal-
ysis, model selection, parallel analysis

I. INTRODUCTION

Kernel principal component analysis (KPCA) is of in-
creasing interest in signal processing, in particular for
non-linear signal denoising, see e.g., [1], [2]. While con-
ventional principal component analysis (PCA) denoises
signals by projecting onto a linear signal subspace, KPCA
denoises by projection onto more general non-linear signal
manifolds. A non-linear signal manifold is identified by first
mapping the input data to feature space using a non-linear
function. In feature space conventional PCA can be applied
to extract the main variation in the data by projecting the
data onto the subspace spanned by the eigenvectors of the ¢
largest eigenvalues. Finally, the denoised signal is obtained
by reconstructing the so-called pre-image in input space.

The representer theorem allows effective implementation
of the non-linear mapping through inner products repre-
sented by the kernel function [3]. Here we will consider
the widely used radial basis function aka Gaussian kernel
defined by the function k(z,y) = exp(—%). The
smoothing scale parameter o plays an important role to the
quality of the pre-image as do the number of principal com-
ponents retained g. Conventional linear PCA is obtained in
the limit o — oo.

A number of heuristics has been suggested to select the
scale. Teixeira et al. [1] consider denoising of handwritten
digits and they denoise each of the digits in the USPS
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data set [4] individually and set ¢ to the maximal distance
between each of the training points to the average of all
training points. Arias et al. [5] set o as the average distance
to the r,-th nearest neighbors, r, = {1,5}. Thorstensen et
al. [6] estimate o as the median of all mutual distances
between all training points. Kwok and Tsang [2] set o to
the mean of all mutual training distances. Likewise, for
PCA there exist several methods to estimate the number
of components g. The Guttman-Kaiser criterion [7] retains
all components with eigenvalues greater than the mean. The
so-called Scree criterion plots the eigenvalues in decreasing
order and finds the ‘elbow’ of the eigenvalues spectrum.
The lack of a likelihood function for KPCA prevents
the use of cross-validation approaches proposed in [8],
Alzate and Suykens [9] have proposed an alternative loss
function that promotes sparsity, and which also with manual
inspection of projection distributions allow model selection.
Parallel Analysis (PA) [10], [11], [12] is a resampling based
alternative for estimation of ¢ in PCA. PA compares the
eigenvalues with the distribution of eigenvalues obtained by
PCA on data sets distributed according to a null hypothesis
of zero covariance. The PA null distributed data sets are
obtained by permuting the measurements among the data
points within each feature dimension and ¢ is determined
as the set of original PCA eigenvalues greater than the
95th percentile of the corresponding null distribution of
eigenvalues.

In this communication we adapt PA to KPCA to select
the model order ¢ and furthermore extend it to automati-
cally select the smoothing scale parameter o for Gaussian
kernels. In particular we optimize o to maximize the accu-
mulated eigenvalue advantage of the leading ¢ components
compared with PA null data. To our knowledge this is the
first general and automatic scheme for tuning ¢ and o for
KPCA.

II. THEORY
A. Kernel PCA

Let X define the set of IV data points X = [z1, ..., xn]
in input space X. Let ¢ be a non-linear map from X to
feature space F. The kernel matrix K is constructed from
the inner products, i.e., K;; = k(x;, x;) = ¢(x;) ¢(x;).
The eigen decomposition of the centered kernel matrix is
found: K = HKH = UAU’, where H = I — %11/
is the centering matrix, I is the N x N identity matrix,
1=11,1,...,1) isa N x 1 vector, U = [aty, ..., aay] with
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a; = o1, ..., a;n]  is the matrix containing the eigenvec-
tors and A = diag(Ay, ..., Ay ) contains the corresponding
eigenvalues [13].

The kth orthonormal eigenvector of the covariance ma-
trix in the feature space can be shown to be

1 -
= \/T—kq’aka (1)

where @(x) = p(x) — @ is the centered map with ¢ =

N = ~ - -
N 2ic1 (i) and @ = [p(x1),p(@2), ..., p(an)]. The
projection [j, of the pattern x onto the kth component is
then
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while the projection Pyp(x) of ¢(x) onto the subspace
spanned by the first ¢ eigenvectors can be found as

q
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B. The pre-image problem

For denoising we are interested in projecting P,p(x)
back to input space to recover the denoised pattern z — the
so-called pre-image. An exact pre-image of P,p(x) may
not exist but a least squares estimate z can be obtained by
minimizing
lo(2) = Pyp(@)||* = llo(2)||* — 2Pyp(x) ¢(2) + const.

“)
In this work we will use the original iterative fixed point
algorithm proposed by Mika, Scholkopf et al. [3]
St i exp(— |z — @il /207

Zt41 = = )
SN A exp(—||ze — x| |2/202)

. . N
with v; = >°7_, Brag; and 5; = v; + %(1 — ijl ¥;)-

C. Kernel Parallel Analysis

We extend the idea of Parallel Analysis (PA) to KPCA
including choice of smoothing scale o for the Gaussian
kernel, and we refer to the proposed method as kernel
Parallel Analysis (kPA).

In feature space the eigenvalue \; for component ¢ of
the PCA is compared with the distribution of eigenvalues
of null data sets obtained by permuting the data in input
space p times. For component ¢ the reference threshold T;

is set to the value of the 95th percentile in the component’s
distribution of eigenvalues. The number of components ¢ to
retain is chosen such that the original data eigenvalues are
larger than threshold for all retained components. Note, that
both the original data eigenvalues, the reference thresholds,
and the number of components g will depend upon the
Gaussian scale o,

= . 6
W)= 5 oy’ ©

A conservative estimate of the signal energy can be
obtained as the cumulated difference between the original
data eigenvalues and reference threshold levels,

q(o)

E(0) = Xi(0) = Ti(0). (7)
i=1

The proposed method chooses the kernel scale o to maxi-
mize E(o). The energy is an estimate of the variance of the
retained components in kernel space when accounting for
the variance of null data. Thus, maximizing the energy in
kernel space will maximize the variance of the true signal.

By column-wise permuting the data between samples for
a given input dimension we assure that the null-data is
drawn from a distribution which has the same marginal
distributions as the original data. Furthermore the input di-
mensions of the null distribution are statistical independent,
i.e. the joint probability density function is fully factorized.
This means that all manifold structures in input space are
destroyed. Note this is a stronger condition than necessary
in PA which only requires a null distribution with no
covariance. Hence, the corresponding null distribution in
feature space is that of a kernel mapped fully factorized
distribution in input space with the correct input space
marginals. The kernel spectrum of permuted data represents
this “null” information. The distribution of the null kernel
spectrum, as estimated by repeated permutation, allows us
to determine when structure is present - identified in kPA
as eigenvalue magnitudes rejected in the distribution of the
null spectrum (p < 0.05).

Pseudocode for the kPA algorithm is shown in Algo-
rithm 1. The algorithm starts by making p permutations
of the data matrix X. Then the energy is estimated for a
number N, of different scales o and the scale oxpa with
maximal energy is chosen with the corresponding number
of components ¢(okpa ).

The algorithm calculates the eigenvalues of p kernel
matrices. This is repeated for the number of scale values
investigated N,. The calculation of the data point distance
matrix used for the kernel matrix generation can be calcu-
lated prior to the iteration over scale values and thus reduces
the computations needed. The computational complexity of
the eigenvalue calculation is in general O(N?), where N
is the number of data points, though there exist iterative
methods for finding the first few eigenvalues of large
symmetric matrices which are faster [14]. Thus the worst-
case time complexity of the kPA algorithm is O(pN,N?).



Algorithm 1 Kernel Parallel Analysis
1: Make p permuted replicas of the data matrix by per-
muting elements in the columns of X independently:
XU ¢+ permute(X),j = 1,...,p _
2: Calculate and center the kernel matrix K°"# corre-
sponding to the original data matrix X °"'8:
K™ = HK*"¢H
3: For each permuted dataset calculate and center the
kernel matrix K™
perm perm -
Kj —HKj H j=1,..,p
4: for 0 = Ogtart — Tena dO
5:  Calculate eigenvalues of kernel matrix:
Ni(o) < eigval(K™® o).
6: For the jth permutation calculate eigenvalue for
component ¢ in kernel srgace
)’i = {15

Nij(0) elgval(K
{1,...,p}.

7. For component 7 set the threshold 7; to the 95th
percentile of eigenvalues of null data:
T; + 95th percentile of \; . (o).
Use eq. (6) to estimate ¢(o).

. Use eq. (7) to estimate E(o).

10: end for

11: Select the scale oxpa which maximizes E.

12: Set the number of components to g(oyxpa ).

SN} o=

III. EXPERIMENTS

We use two data sets for illustration. In both data sets
we create noisy data from a set of clean patterns which
allows us to measure the quality of the denoising procedure.
This experimental design is adapted from the original kernel
PCA paper [3]. The average signal-to-noise ratio (SNR)
over data points was calculated and used as performance
metric, where SNR is defined as

SNR(dB) = 101log;, <UST’ 8)

res

where S is the noise free data and o2, is the variance of
the residual noise after de-noising.

We used p = 49 in the experiments for this paper, which
we found resulted in satisfactory results. While increasing
p sometimes give more accurate tests this comes with

increased computational times.

S

A. Semi-circles simulation

An artificial data set was constructed as two equally
populated non-intersecting semi-circles placed initially in
a 2-dimensional space (N = 500). The two dimensions
were both rotated to occupy 25 dimensions generating
a d = 50 dimensional data set. White Gaussian noise
(0noise = 0.5) was added in all 50 dimensions and kPA was
used to estimate ¢ and o before denoising. Fig. 1 shows the
eigenvalues of the first 10 eigenvectors for the data and the
reference threshold level 7" for null data using 0 = 4.5 and

= 49. The shaded area between the two curves where
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Fig. 1. Simulated data ‘semi-circles’ (N = 500,d = 50). The

eigenvalues of the empirical data and the null hypothesis 95% percentile
reference level. The cumulated eigenvalue difference - ‘the signal energy’
E - is the gray area between the two curves. In kPA this area is maximized
by tuning the scale of the Gaussian kernel.

(a)

scale-o

Fig. 2. Simulated data ‘semi-circles’ (N = 500,d = 50). Panel (a)
shows E(o) vs. kernel scale o. Panel (b) shows the corresponding model
order g chosen by kPA.

Ai > T; was next optimized over the single parameter
o. Fig. 2 (a) shows the cumulative eigenvalue difference
E(0) as a function of the scale value o € [2.5,6.5]. The
maximum of E(o) is attained at o = 4.5. Fig. 2 (b) shows
the number of components ¢(o) as function of the scale,
g = 3 components is retained for the optimal o.

To illustrate the simulation data set we use linear PCA on
the noise free data in input space and project the data onto
the two first components obtained on noise-free data. Fig.
3 presents the projected data before noise was added, after
noise was added, and after denoising using the optimized
parameters found by kPA.

To test kPA more extensively, conditions
varied. The number of data points was varied
as N = {250,500,750} with noise levels
Onoise = {0.50,0.75,1.00}. In all cases data was
distributed equally between the two semi-circles. kPA

were
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Fig. 3. Simulated data ‘semi-circles’ (N = 500,d = 50). Data in the
three panels are all projections on the two first principal components from
linear PCA on the noise free in input space. Panel (a) shows the projections
of the noise free data set onto the two first principal components; (b) PC
projections of data with Gaussian white noise added (opoise = 0.5); (¢)
PC projections of the denoised data using kernel PCA with ¢ = 4.5 and
q = 3 as determined by kPA.
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Fig. 4. Simulated data ‘semi-circles’. The SNR (dB) landscape as
function of scale parameter ¢ and the number of components g. Here
N = 500, d = 50, and op0ise = 0.5. The kPA solution is indicated by
the asterisk at (¢, o) = (3,4.5) and the SNR-optimal solution is indicated
with boxes.

was used to estimate ¢ and ¢ and the data was denoised.
Table I shows the estimated ¢ and o along with SNR
mean and standard deviations for 100 repetitions of
kPA along with the SNR-optimal combination of the
parameters (q,o0) found by exhaustive grid search. For
all the nine combinations of sample size and noise level
the kPA estimated parameters remain constant across the
100 repetitions of the experiment. Likewise, for equal
noise level the kPA estimated parameters remain constant
across the sample size. Different SNR-optimal parameter
combinations were found in the 100 repetitions. For
Onoise = {0.50,1.00} the kPA solution is included in the
range of SRN-optimal solutions. For oyoise = 0.75 the
scale takes an intermediate value of the two optima, which
causes the SNR to drop significantly compared to the
SNR-optimal solution.

Fig. 4 shows the SNR-surface when varying ¢ and o
for (N, opnoise) = (500,0.5). The solution found by kPA
(g,0) = (3,4.5) is indicated with an asterisk while the
SNR-optimal solutions are indicated with boxes.

B. USPS handwritten digits

kPA was next applied to the USPS database of hand-
written digits, often used to illustrate kernel PCA [4], [3].
Images were normalized to the range [-1;1] and various
number of data points N = {100, 200, 300,400} were used
equally distributed among the ten digits. Gaussian noise
with opeise = {0.75,1.00,1.25} was added. We used kPA
to determine ¢ and ¢ and used these parameters to denoise
the data and calculate the SNR of the denoised images.
Fig. 5 presents the results (mean and standard deviation of
100 repetitions) in terms of the SNR for the kPA solution
and the best solution found in exhaustive grid search. The
kPA solution is seen to be robust to the number of data
points and the noise level used. Table II reports the ¢ and
o values observed in the 100 repetitions under the varying



TABLE I
SIMULATED DATA ‘SEMI-CIRCLES’. THE ESTIMATED KPCA

DIMENSION ¢, THE SCALE o, AND MEAN AND STANDARD DEVIATION
OF SNR (dB) ESTIMATED WITH KPA VS. SNR-OPTIMAL PARAMETERS
FOUND BY EXHAUSTIVE GRID SEARCH. THE TEST WAS CARRIED OUT

WITH DIFFERENT COMBINATIONS OF DATA SAMPLE SIZE

N = {250,500, 750} AND NOISE STANDARD DEVIATION
Onoise = {0.50,0.75,1.00}. WE REPORT THE PARAMETERS FOUND IN

100 REPETITIONS.

kPA SNR-optimal

SNR SNR

N  Onoise | ¢ O (dB) q o (dB)
250 0.50 3 45 12.35 2 9.0 12.50
+0.28 3 4.0,45,50  +027

0.75 265 8.96 2 8.0, 8.5,9.0 9.15

+0.37 3 3.5 +0.37

1.00 2 80 6.44 1,2 70,75,8.0 6.66

+0.31 8.5, 9.0 +0.28

500 0.50 345 13.75 2 9.0 13.77
+0.23 3 4.0,45,50 022

4 3.0

0.75 2 65 10.19 2 8.5,9.0 10.52
+0.23 3 3.5, 4.0 +0.23

1.00 2 80 7.89 2 7.0, 7.5, 8.0 7.89
+0.25 8.5, 9.0 +0.25

750 0.50 345 14.42 3 45,5.0,55 14.46
+0.18 4 3.0 +0.18

0.75 2 65 10.71 2 9.0 11.17
+0.20 3 3.5, 4.0 +0.22

1.00 2 80 8.60 2 7.5, 8.0 8.61

+0.21 8.5, 9.0 +0.21

conditions. For both kPA and SNR-optimal solution the
chosen scale value remain constant across N but increases
with increasing opeise- KPA chooses larger scales for all
scenarios than the SNR-optimal scale. Both the kPA and
SNR-optimal ¢ are increasing with N and decreasing with
Onoise- KPA’S subspace dimensions ¢ are generally, but
not uniformly, smaller than the SNR-optimal solution. The
possible tendency to underfit the signal subspace dimension
was also noted in [12].

Next, the kPA scale estimate o was compared with
five other heuristics to set the scale: (1) maximal distance
between each training point to average of all training points
[1], (2) median distance between training points [6], (3)
mean distance between training points [2], (4) average
distance to the nearest neighbor [5], (5) average distance
to the nearest 5 neighbors [5]. For this test the noise
level was set to oyi5¢ = 1.00 and the number of compo-
nents was fixed to the ¢ chosen by kPA. Fig. 6 presents
the mean and standard deviation of 100 repetitions for
N = {100, 200, 300,400} and shows that kPA outperforms
the other methods for all sample sizes investigated, with
extremely significant p-values.

The computational complexities for the methods used
here is: (1) O(N), (2-5) O(N?), (6) O(N,pk*N).
The mean computational times txps for the kPA

method in this experiment were {N,typa} =
{100,9.7s; 200,27.2s; 300,51.9s; 400,92.1s}, with
N, = 3,p = 50,k = 30. For methods (1-5) the

computational times were t < 0.1s for all N. The
experiments were done on a Intel(R) Core(TM) i7 CPU,
2.67GHz system. So, the improved performance of kPA
comes with an increased computational time also. This is
due to the fact that kPA is based on permutation tests in

—P;PA
6.5} - - -=SNR-optimal

SNR (dB)
N
(4]

100 200 300 400
Number of datapoints

Fig. 5. Mean and standard deviations of SNR (dB) in 100 repetitions of
the denoised USPS digits obtained from exhaustive search (SNR-ptimal)
and by kPA for three different noise levels.

kernel space while the other methods work on distances in
input space.

Finally, we compare methods to choose the number
of components g. We compare the kPA solution to the
Scree criterion and the Guttman-Kaiser criterion. The Scree
criterion was implemented as the first point where the dif-
ference between two consecutive eigenvalues in the sorted
eigenspectrum was less than 5% of the largest consecutive
difference. The Guttman-Kaiser method estimated ¢ as
the number of eigenvalues greater than the mean. Fig. 7
plots means and standard deviations of 100 repetitions.
kPA significantly outperforms both the Scree and Guttman-
Kaiser criteria. In all cases the differences between kPA and
the other methods are extremely significant.

TABLE 11
THE USPS DATASET. DENOISING WITH DIFFERENT COMBINATIONS OF
NUMBER OF DATA POINTS N = {100, 200, 300,400} AND ADDITIVE
NOISE STD. Opoise = {0.757 1.00, 1.25}. THIS TABLE PRESENTS THE
OBSERVED ¢ AND ¢ IN 100 REPETITIONS OF THE EXPERIMENT USING
KPA. IN COMPARISON THE SNR-OPTIMAL SOLUTIONS OBTAINED
FROM EXHAUSTIVE GRID SEARCH ARE SHOWN.

kPA SNR-optimal

N Onoise q g q g
100 0.75 9-14 15-16 | 16-21 9-11
1.00 8-14 19 9-14 10-11
1.25 6-13  21-23 4-10 11-13
200 0.75 14-18 16 27-32  9-10
1.00 12-17 19 1520 10-11
1.25 9-17  22-23 7-13 11-12

300 0.75 16-20 16 34-42 9
1.00 14-19 19 18-26  9-10
1.25 11-19  22-23 9-16 10-13

400 0.75 18-22 16 40-46 9
1.00 15-20 19 21-28  9-10
1.25 1420  22-23 | 11-18 10-12

IV. CONCLUSION

We propose kPA, a generalization of PA to KPCA. kPA
completes the widely used Gaussian KPCA as an algorithm,



[$]

) S
4.8(/ (2

) 1 i
46| ()

=)
e k3 f

100 200 300
Number of datapoints

400

Fig. 6. Mean and standard deviations of SNR (dB) in 100 repetitions
of the denoised USPS digits obtained by choosing scale according to the
six methods: (1) maximal distance between each training point to average
of all training points, (2) median distance between training points, (3)
mean distance between training points, (4) average distance to the nearest
neighbor, (5) average distance to the nearest 5 neighbors, (6) kPA. Here
Onoise = 1, results were similar at other noise-levels. For all data cases
kPA significantly outperforms the other 5 competing methods.
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Fig. 7. The USPS dataset. SNR (dB) for the input images and the

denoised images using the Guttman-Kaiser criterion, the Scree criterion
and kPA for choosing the number ¢ of components to retain. The scale o
was chosen by kPA. Here op0ise = 1, results were similar at other noise-
levels. kPA is better than the Scree and clearly superior to the Guttman-
Kaiser criterion.

as it both solves the subspace dimensionality problem and
tunes the smoothing scale parameter. The method optimizes
the energy function, which is the accumulated eigenvalue
advantage of the leading ¢ components compared with
null data. The energy is only a function of the Gaussian
kernel smoothing scale, thus the optimization is one di-
mensional. We used two datasets to extensively test the
proposed method, namely the artificial semi-circles data
and the USPS dataset of handwritten digits. For the semi-
circles data the kPA obtained parameters were shown to be
constant across 100 repetitions of the same noise-level and
number of data points. Except for oy,ise = 0.75 the chosen
parameters are in the range of SNR-optimal solutions. For

Onoise = 0.75 the kKPA solution takes an intermediate value
for the scale parameter. For the USPS dataset we show that
the SNR obtained using the kPA solution is robust to the
sample size and noise level compared with the SNR-optimal
solution. When compared with other heuristics to chose the
scale we show that kPA significantly outperform all other
methods. Also, when compared to other methods to select
the subspace dimensionality the kPA parameter estimates
result in significantly higher SNR on the denoised data.

Since kPA is based on permutation tests of the eigen-
spectra in kernel space the computational time is larger than
the other methods used for comparison in this paper. Future
work will focus on improving the computational complexity
and test kPA with other noise sources.
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