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Abstract. In this paper we investigate how the Infinite Relational Model
can be used to infer functional groupings of the human striatum using
resting state fMRI data from 30 healthy subjects. The Infinite Rela-
tional Model is a non-parametric Bayesian method for infering commu-
nity structure in complex networks. We visualize the solution found by
performing evidence accumulation clustering on the maximum a poste-
rior solutions found in 100 runs of the sampling scheme. The striatal
groupings found are symmetric between hemispheres indicating that the
model is able to group voxels across hemispheres, which are involved
in the same neural computations. The reproducibility of the groupings
found are assessed by calculating mutual information between half splits
of the subject sample for various hyperparameter values. Finally, the
model’s ability to predict unobserved links is assessed by randomly treat-
ing links and non-links in the graphs as missing. We find that the model
is performing well above chance for all subjects.

Keywords: complex network, graph theory, infinite relational model,
basal ganglia, striatum

1 Introduction

Recently, graph theoretical network modeling has gained a lot of attention in neu-
roimaging, for reviews see, e.g, [3, 15]. Both functional networks (using modalities
such as fMRI, EEG, and MEG) and anatomical brain networks (using DWI) have
been analyzed using complex network methods. These studies cover both studies
of the healthy brain as well as a wide range of neuropsychiatric and neurologic
disorders [16]. In this work we use the Infinite Relational Model (IRM) [8, 17]
to infer functional groupings of the human striatum. The IRM model is a non-
parametric Bayesian network model, which assigns nodes into non-overlapping
groups. The probability of a link between two nodes is determined by the groups
the nodes are assigned to. During inference the number of groups and the group
assignments are inferred, while the group link probabilities can be integrated out
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of the model and are therefore not determined during inference. These proba-
bilities are easily calculated afterwards given the group assignments. The IRM
allows analysis of multi-graph networks and thus provides a natural framework
for analyzing multiple subjects at once as demonstrated in [13].

The basal ganglia (BG) process information from the cerebral cortex in seg-
regated parallel cortico-BG-thalamocortical loops [1]. The BG are involved in
the adaptation of complex goal related behaviors [4, 6] and play a key role in
the pathophysiology of many neurological (e.g., Parkinsons disease) and psychi-
atric (e.g., schizophrenia) disorders [11, 14]. The caudate nucleus and putamen
(i.e., dorsal striatum) are the main input structures of the BG receiving topo-
graphically organized inputs from the cortex. Striatal sub-territory receives spe-
cific cortical inputs via corticostriatal feed-forward projections originating from
largely segregated cortical input zones [6, 12]. The BG anatomy and function is
largely symmetric between the two hemispheres.

2 Methods

2.1 Data

Resting state functional magnetic resonance imaging (rs-fMRI) data from N =
30 healthy controls was recorded for 20 min (482 volumes) per subject. The first
two volumes were discarded to account for T1 equilibrium effects, the remaining
480 volumes were realigned to the time-series mean and spatially normalized to
the MNI template using SPM. Nuisance effects related to residual movement or
physiological effects were removed using a linear filter comprised of 24 motion
related and a total of 64 physiological effects including cardiac, respiratory, res-
piration volume over time, and time series from left and right hemispheres CSF
and white matter voxels. An anatomical mask consisting of the caudate nucleus
and putamen, which was made in WFU PickAtlas [10] using the Talairach Dae-
mon atlas [9], was used to extract the time series of the J = 825 voxels from all
subjects.

The network graph representing functional connectivity in subject n is rep-
resented by the [J × J ] adjacency matrix A(n). Each graph is then composed
of J nodes and A(n)(i, j) is 1 if a link is present between voxels i and j and 0
elsewhere. A(n) was obtained for each subject by first calculating the upper tri-
angular part of the Pearson correlation matrix and then thresholding the matrix
to include the highest 5000 positive correlations.

2.2 The Infinite Relational Model

Following the notation in [13] the IRM generative model can be written as:

Z|α ∼ CRP(α)

ρ(n)|β ∼ Beta(β, β)

A(n)(i, j)|Z,ρ(n) ∼ Bernoulli(zirρ
(n)z>jr ).
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As such, the probability of a link between two voxels is determined by the groups
in which the voxels are members of. ρ(n) is the subject specific group link prob-
ability matrix and defines the probability of links between groups. Z is a [J×D]
binary matrix indicating group membership for each voxel and is shared across
all subjects. We use symmetric Beta functions with hyperparameter β as priors
for the group link probabilities and the Chinese Restaurant Process (CRP) is
used as prior for the voxel group assignments. By integrating ρ out the posterior
can be written as:

P (A(n)|Z, β) =

∫
P (A(n)|Z,ρ(n))P (ρ(n)|β)dρ(n)

=
∏
a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)
,

where M
(n)
+ (a, b) = (1 − 1

2δa,b)z
>
a (A(n) + A(n)>)zb is the number of links and

M
(n)
− (a, b) = (1 − 1

2δa,b)z
>
a (ee> − I)zb −M

(n)
+ (a, b) is the number of non-links

between group a and b. e is a vector of length J with ones in all entries. The sub-
jects’ adjacency matrices are assumed independent thus their joint distribution
is:

P (A(1), ...,A(N)|Z, β) =
∏
n

∏
a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)
.

Using Bayes’ theorem the posterior likelihood can be found as:

P (Z|A(1), ...,A(N), β, α) ∝ P (A(n)|Z, β, )P (Z|α) =[∏
n

∏
a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)

][
αD

Γ (α)

Γ (J + α)

∏
a

Γ (na)

]
.

For model inference we use a Gibbs sampling scheme in combination with split-
merge sampling [7, 8, 13], requiring the posterior likelihood for a node’s assign-
ment given the assignment of the remaining nodes:

P (Z(i, a) = 1|Z\zir ,A(1), ...,A(N))

∝

ma

∏
n

∏
b

Beta(M
(n)
+

(a,b)+β,M
(n)
− (a,b)+β)

Beta(β,β) if ma > 0

α
∏
n

∏
b

Beta(M
(n)
+

(a,b)+β,M
(n)
− (a,b)+β)

Beta(β,β) otherwise.

ma =
∑
j 6=i Z(j, a) is the size of the ath functional group disregarding the as-

signment of the ith node. This posterior likelihood can be evaluated efficiently

since we only need to compute M
(n)
+ and M

(n)
− and evaluate the Beta function

for entries affected by the considered assignment change.



4

3 Results and discussion

3.1 Group membership visualization

The Gibbs samling result in a posterior distribution of group assignments which
makes visualization hard. Thus, here we use the Evidence Accumulation Clus-
tering (EAC) framework [5] to summarize and visualize the MAP solutions
from r = 100 runs, each ran for 1000 iterations and with α and β fixed to
1. From the MAP solutions we generated the voxel by voxel co-occurrence ma-
trix C = 1

r

∑r
i=1(Z(i)Z(i)> − I) where C(i, j) is the empirical probability that

voxels i and j were observed in the same group. Using C agglomerative hier-
archical clustering based on average linkage was performed. We compare the
clustering found by IRM with a simpler approach where the mean adjacency
matrix S = 1

N

∑N
n=1 A(n) was used for agglomerative hierarchical clustering in

place of C.

The median number of groups found in the 100 runs was 16 (range 14-18). The
average normalized mutual information (NMI) between each pair of the MAP
solutions was 0.78 (std=0.04) and all pairs were highly significant (p < 0.001,
as tested using permutation testing) indicating that the groupings found by
IRM are stable across runs. The cophenetic correlation can be used to assess
the dispersion of the co-occurrence matrix C and is therefore also a measure of
the stability of IRM solutions across random initializations[2]. The cophenetic
correlation was 0.98.

The left part of Fig. 1 shows the grouping found by EAC of the IRM MAP
solutions. The voxel groups are rendered on the anatomical mask used (gray:
putamen; purple: caudate nucleus) and shown next to the dendrogram. The
groups are symmetric between hemispheres, i.e. same sub-territory in left and
right striatum are grouped together, suggesting that the IRM is able to group
voxels in bilateral hemispheres which are involved in the same neural computa-
tions. Using the hierarchical clustering one can assess relations between groups.
Again, the model is able to extract meaningful anatomical information, since
here the green part of the tree defines the putamen, the red part defines the
ventral part of caudate head/tail, while the blue part defines the dorsal part of
caudate head/tail.

The right part of Fig. 1 show the voxel groups and dendrogram found by av-
erage linkage clustering of S. Besides cluster 10, which is a large cluster of both
right and left caudate nucleus, the clustering of S does not show the symmetry
of the IRM grouping but here the groups are in general lateralized to either left
or right striatum and are in general groups of nearby voxels. The green part
of the dendrogram defines right posterior putamen, blue is bilateral caudate
nucleus and anterior putamen, while red reflects posterior putamen. The cophe-
netic correlation of the hierarchical clustering based on S was 0.67 indicating
the dendrogram is representing less of the information in the data compared to
the dendrogram of the IRM model.
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3.2 Varying hyperparameters

To test the reproducibility of groupings found for various choices of hyperpa-
rameters we split the subject sample in half and ran the IRM on each subsample
and calculated the mutual information (MI) and normalized mutual information
(NMI) between the MAP solutions found from each subsample. This was re-
peated for 10 different splits for each hyperparameters value. Fig. 2(a) show the
mean (std) log likelihood, MI, NMI and number of groups found when varying
log10(α) from −15 to 15 keeping β = 1. Likewise, Fig. 2(b) shows the same when
varying log10(β) from −6 to 2 keeping α = 1. The IRM is seen to be very robust
for the choice of α, which controls the prior belief on the group distributions,
where both the MI and NMI remain constant over the wide α-range investigated.
The choice of β, which controls the prior belief on group link probabilities, have
a stronger influence of the MI and NMI. Here, NMI and log likelihood peaks at
β = 0.1. At β = 100 perfect repetition is found between the two splits (NMI=1)
although only 2 groups are found, so the information maintained in this grouping
is low as reflected by the low MI.

3.3 Link prediction

To evaluate the model’s ability to predict unobserved links we treated at ran-
dom 2.5% of the links and an equivalent number of non-links in each adjacency
matrix as missing. The area under the curve (AUC) of the receiver-operator
characteristics was used as performance measure to evaluate how well the model
was able to predict these unobserved links. Fig. 3 shows the mean (std) AUC for
each of the 30 subjects of 100 model runs. Across subjects the mean (std) AUC
was found to be 0.83 (0.06) which is well above chance for all subjects.

4 Conclusion

In this work we used the Infinite Relational Model to infer functional groupings
in the human striatum. We show that the groups found are symmetric between
hemispheres indicating that the IRM is able to find groups of voxels which are
involved in the same neural computations. We evaluate the model’s reproducibil-
ity by splitting the subject sample in half and compute mutual information and
normalized mutual information between splits when varying the hyperparame-
ters of the model. We show that the solutions are very robust to the choice of α,
which controls the grouping distribution, while the solutions are more sensitive
to the choice of β, which controls the prior belief in group link probabilities.
Further, we show that the model is able to predict missing links in the graph
well above chance.
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Fig. 1. Left; agglomerative hierarchical clustering of the co-occurence matrix C of the
MAP solutions found from 100 starts of the IRM inference. Right; for comparison a
simpler approach where the average adjacency matrix S was used for agglomerative
hierarchical clustering in place of C.



8

(a) Varying α (b) Varying β

Fig. 2. Log likelihood (top panel), mutual information (MI) and normalized mutual
information (NMI) (middle panel) and number of groups (lower panel) between the
MAP solutions found by randomly splitting the subjects in two half. Mean and standard
deviations are shown for 10 splits for each α (a) and β (b). The IRM is seen to be very
robust to the choice of α where both the MI and NMI remain constant over the wide
α-range investigated. The choice of β have a stronger influence of the MI and NMI.
Here, NMI and log likelihood peaks at β = 0.1. At β = 100 perfect repetition is found
between the two splits (NMI=1) although here the number of groups found is 2, so the
information maintained in this grouping is low as reflected by the low MI.

Fig. 3. The area under the curve (AUC) of the receiver-operator characteristics for the
link prediction for each of the 30 subjects. The mean (std) across subjects were 0.83
(0.06).


