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ABSTRACT

We evaluate the infinite relational model (IRM) against two
simpler alternative nonparametric Bayesian models for iden-
tifying structures in multi subject brain networks. The mod-
els are evaluated for their ability to predict new data and in-
fer reproducible structures. Prediction and reproducibility are
measured within the data driven NPAIRS split-half frame-
work. Using synthetic data drawn from each of the gener-
ative models we show that the IRM model outperforms the
two competing models when data contain relational structure.
For data drawn from the other two simpler models the IRM
does not overfit and obtains comparable reproducibility and
predictability. For resting state functional magnetic resonance
imaging data from 30 healthy controls the IRM model is also
superior to the two simpler alternatives, suggesting that brain
networks indeed exhibit universal complex relational struc-
ture in the population.

Index Terms— Infinite Relational Model, Complex Net-
works, fMRI

1. INTRODUCTION

The brain is composed of about 1011 neurons connected by
more than 1014 synapses forming an almost unfathomable
complex network [1]. Neuroimaging, e.g., by functional mag-
netic resonance imaging (fMRI), has the potential to identify
structures in the brain network. fMRI allows one to measure
the blood oxygen level and thereby an indirect measure of the
neuronal activity in a relatively fine spatial resolution. As the
signal-to-noise ratio in fMRI is rather poor we are in many
cases forced to average within a population of subjects to ob-
tain reproducible results. This averaging further limits the
spatial resolution of our models as considerable individual
variability exist in both anatomy and function [2].

While the dominant paradigm in functional neuroimage
analysis has been to identify local components of the network
based on the functional segregation hypothesis, see e.g. [3],
there is a current move towards modeling more global proper-
ties of the brain network including both functional and struc-
tural aspects, for reviews see, e.g., [4, 5]. Functional brain
network models typically summarize temporal relations be-

tween regions of the brain whereas structural networks are
obtained by, e.g., using tractography methods to track the
white matter bundles connecting different brain regions. One
of the challenges in brain imaging is to understand how brain
modules identified under the functional segregation approach
work together to perform important information processing
tasks such as perception, cognition, and decision making. We
currently pursue a strategy which is designed to mediate be-
tween functional localization and global description [6]. The
main idea is to search for so-called ’communities’ of nodes
characterized as groups of nodes that share certain connectiv-
ity properties, see e.g. [7] for background and references on
community detection.

In neuroimaging models we typically face two equally im-
portant objectives, namely on one hand to identify predictive
models, i.e., models that generalize to new data, and on the
other hand that the structures we learn are trustworthy, e.g.,
being reproducible across different subject groups. The two
objectives are quantified in the so-called NPAIRS split-half
resampling framework [8]. This framework has been used for
evaluation of Bayesian models before, e.g., in [9] in which
generalizability and reproducibility of the parameter poste-
rior distribution were of interest, however, the framework has
not been used before for evaluation of community detection
models. Here we for the first time investigate the predictabil-
ity and reproducibility of three Bayesian nonparametric mod-
els which are able to infer community structure in complex
networks.

The models are the infinite relational model (IRM)
[10, 11], the infinite diagonal model (IDM), and the model
proposed by [12] which will be termed infinite Hofman-
Wiggins (IHW) model, the term infinite referring to the fact
the complexity in terms of the number of communities is for-
mally unlimited. The three models vary in expressiveness, the
IRM allows different link characteristics within and between
components and are thereby able to infer general relations
between communities, the IDM is parametrized with differ-
ent link probabilities within communities but have a single
common between community link probability, while the link
probabilities in IHW are described with only two parameters;
one within and one between component link probability.

As mentioned we are interested in detecting community



structure shared by a population of fMRI subjects. Thus while
we estimate the functional networks in each individual inde-
pendently, all three models represent all subjects by a com-
mon community structure and common link probabilities. An
additional benefit of this approach, compared to individual
models investigated [6] is that it become possible to compute
test likelihood for unseen data (subjects). Also, having com-
mon link probabilities the latent variables of the model do not
scale with the number of subjects, hence, allow for analysis
of a large number of subjects.

In conclusion: The main contributions of this paper are i)
a demonstration that a data driven predictability and repro-
ducibility framework for evaluation of neuroimaging models
can be adapted to Bayesian community detection and ii) use
of the framework to test whether the expressiveness of the full
IRM is needed to describe the functional networks of the rest-
ing state as measured by fMRI.

2. METHODS

Data in this paper consists of N undirected graphs, one per
subject, defined on a common set of nodes and described by
individual adjacency matrices A(n) for subject n. A(n)

i,j = 1 if
nodes i and j have similar hemodynamic responses and zero
otherwise.

2.1. Models

Formally we write the three generative models as:

Z|α ∼ CRP(α)

ρa,b|β+,β− ∼ Beta(β+
a,b, β

−
a,b)

A
(n)
i,j |Z,ρ ∼ Bernoulli(zirρz

>
jr ).

Z is the [J ×D] binary matrix indicating group membership
for each node and have a prior distribution given by the Chi-
nese Restaurant Process (CRP) with the hyperprior parameter
α. zir is the ith row vector of Z. ρ is a symmetric matrix
indicating the probability of links between each pair of com-
ponents. Here ρ is shared across graphs. The ρ structure
define the difference between the models compared in this
paper, which will be described below. The link probabilities
have a prior given by the Beta function with the two hyper-
prior parameters β+

a,b and β−a,b giving the pseudocount of links
and nonlinks between components a and b respectively. The
adjacency matrix A(n) for graph n has the prior given by a
Bernoulli trial biased by the link probability of links between
the components in which the two nodes participate. Three
different structures for the link probability matrix are con-
sidered. The full IRM model having a full upper triangular
matrix, the infinite diagonal model (IDM) having unique ele-
ments in the diagonal and identical off-diagonal elements, and
the model proposed in [12] having two parameters describing

the within and between component link probabilities, respec-
tively.

ρIRM =


ρ11 ρ12 . . . ρ1m
ρ21 ρ22 . . . ρ2m

...
...

. . .
...

ρm1 ρm2 . . . ρmm

 (1)

ρIDM =


ρ1 ρ0 . . . ρ0
ρ0 ρ2 . . . ρ0
...

...
. . .

...
ρ0 ρ0 . . . ρm

 (2)

ρIHW =


ρc ρ0 . . . ρ0
ρ0 ρc . . . ρ0
...

...
. . .

...
ρ0 ρ0 . . . ρc

 (3)

The joint likelihood over graphs can be written as

P (A(1), ...,A(N)|Z,ρ)

=
∏
n

∏
j>i

(zirρz
>
jr )A

(n)
i,j (1− zirρz

>
jr )

(
1−A(n)

i,j

)
=
∏
j≥i

(zirρz
>
jr )

(∑
n A

(n)
i,j

)
(1− zirρz

>
jr )

(
N−

∑
n A

(n)
i,j

)
(4)

We note that the joint likelihood can be written efficiently us-
ing the aggregate adjacency matrix, Atot =

∑
nA

(n).

2.1.1. IRM Model Inference

In this section we derive the posterior likelihood of a node’s
assignment given the assignments of the remaining nodes, for
the IRM model, which is needed in the model inference. For
the two other models please refer to [7]. By integrating out ρ
from eq (4) the posterior can be written as

P (Atot|Z,β+,β−)

=

∫
P (Atot|Z,ρ)P (ρ|β+,β−)dρ

=
∏
a≥b

Beta(M+
a,b + β+

a,b,M
−
a,b + β−a,b)

Beta(β+
a,b, β

−
a,b)

,

where M+
a,b is the total number of links and M+

a,b is the total
number of non-links between the groups a and b across all
graphs. Using Bayes’ theorem the posterior likelihood can be
found as

P (Z|A(1), ...,A(N),β+,β−, α) ∝
P (Atot|Z,β+,β−)P (Z|α) =∏
a≥b

Beta(M+
a,b + β+

a,b,M
−
a,b + β−a,b)

Beta(β+
a,b, β

−
a,b)

×

[
αD

Γ(α)

Γ(J + α)

∏
a

Γ(na)

]
,



where na is the number of nodes assigned to component a.
The posterior likelihood for a node’s assignment given the
assignment of the remaining nodes is given by

P (Zi,a = 1|Z\zir ,A(1), ...,A(N)) ∝
ma

∏
b

Beta(M+
a,b+β

+
a,b,M

−
a,b+β

−
a,b)

Beta(β+
a,b,β

−
a,b)

if ma > 0

α
∏
b

Beta(M+
a,b+β

−
a,b,M

−
a,b+β

−
a,b)

Beta(β+
a,b,β

−
a,b)

otherwise.
(5)

ma =
∑
j 6=i Z(j, a) is the size of the ath functional group

disregarding the assignment of the ith node. This posterior
likelihood can be evaluated efficiently since we only need
M+ and M− and further to evaluate the Beta function for
entries affected by the considered assignment change.

2.2. NPAIRS Evaluation Criteria

The models’ predictability is evaluated using test log likeli-
hood. The data is randomly split in 2 equally sized sets (S1
and S2) and inference is made separately on each set. The
node assignment and link probabilities from the MAP solu-
tion are used to calculate the test log likelihood of the other
(unseen) split. The average test log likelihood of the two splits
is used as the predictability measure. The log likelihood of set
S2 for the model inferred using S1 is given as

logL(Z,ρ|AS2,(1), ...,AS2,(N)) =

1

N

N∑
n=1

∑
j>i

[
A

S2,(n)
i,j log(zirρz

>
jr )+

(1−AS2,(n)
i,j ) log(1− zirρz

>
jr )
]

Likewise, the reproducibility of the identified community
structures is measured by the mutual information (MI) be-
tween the node assignments Z(S1) and Z(S2) of the MAP so-
lution for each split,

MI(Z(S1),Z(S2)) =

D1∑
i=1

D2∑
j=1

p(z
(S1)
ir

, z
(S2)
jr

) log

(
p(z

(S1)
ir

, z
(S2)
jr

)

p(z
(S1)
ir

)p(z
(S2)
jr

)

)
.

3. EXPERIMENTS AND RESULTS

In this section we present results for two different dataset. The
first data set is synthetic data generated from each of the three
different models. The second dataset is a dataset of resting
state fMRI data from 30 healthy controls.

Model inference is based on a Gibbs sampling scheme
in combination with split-merge Metropolis-Hastings updates
[6, 10, 13]. Each node is initially assigned to one of 50 groups
at random. The algorithm runs for 500 iterations, where at

each iteration a Gibbs sampling scan is followed by a Split-
Merge step. In the model inference α = log(J) and β+ =
β− = 1.

3.1. Synthetic Data

Data from each of the three different generative models, IRM,
IDM, and IHW, were generated. Assignments for J = 100
nodes was drawn from the CRP with α = 5. Then the link
probabilities between components was drawn from the Beta
function using

β+
a,b =

{
2 if a=b
1 otherwise and β−a,b =

{
3 if a=b
5 otherwise.

constrained according to equations (1-3) for the three models.
Then, using the component assignments and link probabili-
ties 20 different adjacency matrices (graphs) per dataset was
drawn using the Bernoulli function. For testing the models’
predictability and reproducibility 500 different half-splits per
dataset was generated. For each split each of the models was
inferred and the predictability and reproducibility was evalu-
ated as described in section 2.2.

Reproducibility-predictability plots are shown in Fig. 1
and the histogram of the number of estimated components are
shown in Fig. 2. From Fig. 1 it is evident that for the IRM
data with complex relations the IRM is superior in estimat-
ing the complex component relations as seen by having better
reproducibility and predictability. The two other models pro-
duce comparable results with the IDM model having slightly
better reproducibility. The IRM model is close in estimating
the true number of components while the two other models
underestimates the number of component with a factor 2.

For the IDM generated data the IDM model has better
predictability and reproducibility than the IRM model, while
the IHW model obtains slightly better reproducibility than
the IDM model but with worse predictability. The better re-
producibility of the IHW model should be seen in the light
of overestimated number of components which increases the
mutual information if the assignments of the between splits
agree. The IRM underestimate the true number of compo-
nents, which also cause the lower reproducibility.

For the IHW generated data all three models have com-
parable results with the IHW model having slightly better re-
producibility than the IDM which is turn is slightly better than
the IRM model. The IDM and IHW estimates the true num-
ber of components well, while the IRM model underestimates
the true number of components.

3.2. Resting state fMRI data

Resting state functional magnetic resonance imaging (rs-
fMRI) data from N = 30 healthy controls was recorded for
20 min (482 volumes) per subject. The first two volumes
were discarded to account for T1 equilibrium effects, the re-
maining 480 volumes were realigned to the time-series mean



Fig. 1. Predictability (test log likelihood) as function of reproducibility (mutual information) for data generated with the IRM,
IDM, and IHW models respectively. Solid lines indicate the log likelihood for the true model (which generated the data). Dotted
lines indicate log likelihood for a random model in which all elements in the ρ matrix are identical. For the IRM generated data
the IRM model is superior compared to the two other models in both the predictability and reproducibility measures with the
two other models having comparable results. For the IDM generated data the IDM is slightly better better than the IRM model
and has a better predictability than the IHW, though with the IHW reproducing slightly better. For the IHW generated data all
models are almost comparable though with slightly better results in favor of the simpler models.

Fig. 2. Histogram of number of components estimated using the three models. Data was generated using either the IRM,
IDM, or IHW generative model. For the IRM generated data the IRM model is close in estimating the true number of com-
ponents (indicated with the vertical dotted line) while the two other models underestimate the number of components. For the
IDM generated data the IDM model closely finds the right number of components while the IRM model underestimate and
IHW overestimate the number of components. For the IHW generated data both the IDM and IHW finds the true number of
components while the IRM underestimate.

and spatially normalized to the MNI template using SPM.
Nuisance effects related to residual movement or physiologi-
cal effects were removed using a linear filter comprised of 24
motion related and a total of 64 physiological effects includ-
ing cardiac, respiratory, respiration volume over time, and
time series from left and right hemispheres CSF and white
matter voxels.

The mean signal in each of the 116 regions covered in the
AAL database [14] was extracted and the [116×116] correla-
tion matrix was created for each subject. These matrices were
thresholded to include the top 1000 links and thereby formed
the adjacency matrices. 200 different half-splits were gener-

ated and the reproducibility and predictability were calculated
between the half-splits for each of the three models.

For visualization of the estimated communities a co-
occurrence matrix of the count of each pair of nodes were in
the same community were made. Based on this co-occurrence
matrix we performed agglomerative hierarchical clustering
using average linkage. This clustering was thresholded to
include the number of communities corresponding to the me-
dian number found across the 400 half-splits. Fig. 3 shows the
reproducibility-predictability plot and Fig. 4 plots the number
of components estimated using each of the three models. The
more complex IRM model interestingly yields better repro-



Fig. 5. Resting state fMRI data. Community structure for each of the three models. Top row IRM model, middle row IDM
model, bottom row IHW model. For each model the consensus of 400 runs are plotted at three different planes in the 3
dimensional stereotaxic MNI space (X: left to right; Y: posterior to anterior; Z: ventral to dorsal).

ducibility and predictability compared with the other models.
The IDM and IHW models yields comparable predictability
but the IHW shows better reproducibility. Fig. 5 shows the
layout of the identified communities in the stereotaxic MNI
space in coronal, sagittal, and axial planes respectively. Lines
connecting nodes in a community are shown with the same
color. For all three models the communities are highly sym-
metric across hemispheres. The two simpler models IDM
and IHW produce a huge cluster in the occipital and parietal
lobes, while especially the IHW produces a large number of
small communities. The huge component is segregated in
several components with the IRM model, made possible by
the more expressive parametrization.

4. DISCUSSION AND CONCLUSION

We used the NPAIRS framework for quantification of the pre-
dictability and reproducibility of three models for structural

inference in complex brain networks. For synthetic data gen-
erated from each of the models we show that the IRM model
identifies a general relational structure when such exist in net-
work data. The two simpler models fail in both predicting
unseen data and reproduce across datasets. When data is gen-
erated using the simpler models the IRM still produce compa-
rable predictability and reproducibility results and thus does
not seem to produce severe overfits.

Based on resting state fMRI data from 30 subjects ex-
tracted in 116 brain regions covering the whole brain we show
that the IRM model is superior in terms of both predictability
and reproducibility compared with the less expressive mod-
els. Visual inspection of the inferred communities indeed
indicates that the richer representation of the IRM produces
a more detailed yet reproducible connectivity pattern in the
resting human brain.



Fig. 3. Reproducibility-predictability plot of the fMRI
dataset. Dotted line indicates log likelihood for a random
model in which all elements in the ρ matrix are identical.

Fig. 4. Number of components estimated using the IRM,
IDM, and IHW models for the 400 half-splits of the data.
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