### Meta-analysis techniques

Finn Årup Nielsen

CIMBI

Department of Informatics and Mathematical Modelling Technical University of Denmark

September 19, 2012



## Why meta-analysis?

"Why Most Published Research Findings Are False" (Ioannidis, 2005):

"There is increasing concern that in modern research, false findings may be the majority or even the vast majority of published research claims."

"The greater the flexibility in designs, definitions, outcomes, and analytical modes in a scientific field, the less likely the research findings are true."

Is the last quote especially true for neuroimaging?



# Why meta-analysis?

"The Difference Between 'Significant' and 'Not Significant' is not Itself Statistically Significant" (Gelman and Stern, 2006)

Two apparently conflicting studies—one significant, another not significant may not necessarily be conflicting. One may simply not have enough power.



### Information increase

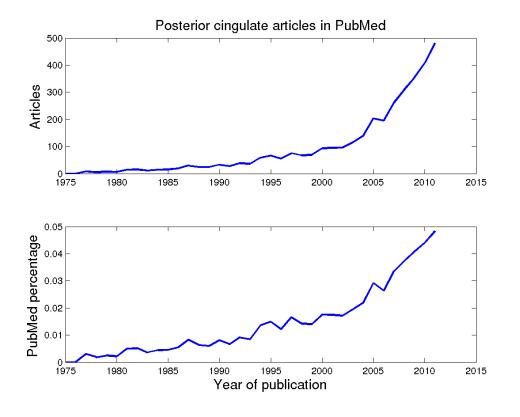


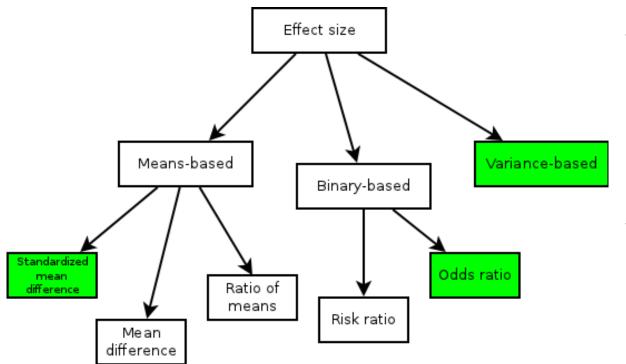

Figure 1: Increase in the number of articles in PubMed which are returned after searching on posterior cingulate and related brain areas.

There are too much data for one person to grasp

The results across experiments are too conflicting

Need for tools that collect data across studies, bring order to data, make search easy and automate analyses to bring out consensus results: **meta-analysis and meta-analytic databases** 




# Meta-analysis

The page-one definition (Hartung et al., 2008):

The statistical analysis of a large collection of analysis results from individual studies for the purpose of integrating the findings.



## **Effect sizes**



The *effect size* is the central measure in ordinary meta-analysis.

The mean effect size is (usually) independent of the number of subjects.

Effect sizes can be formed from other variables than those shown in the figure: correlation, proportions.



# Standardized mean difference (SMD)

For continuous data with (approximately) normal distribution. Example:

| Study               |    | Bipolars | 5   |    | Contro | S   |
|---------------------|----|----------|-----|----|--------|-----|
|                     | N  | Mean     | SD  | N  | Mean   | SD  |
| Strakowski SM, 1999 |    |          |     |    |        | ••• |
| Altshuler LL, 2000  | 24 | 3825.9   | 695 | 18 | 3375   | 639 |
|                     |    |          |     | -  |        |     |

Table 1: Data for meta-analysis with SMD. Amygdala volume from bipolar patients and controls.

Take the difference between the means of the two groups (experimentals e and controls c) and divide by the pooled standard deviation

$$g_{\rm smd} = rac{ar{x}_e - ar{x}_c}{s_{
m pooled}}$$

 $g_{smd}$  independent of unit of the original study, e.g., whether a brain volume was reported in qubic millimeters or qubic centimeters. it is also independent of the number of subjects ( $n_e$  in experimental group)



## SDM — details & inference

With, e.g.,  $s_e$  as the standard deviation for the experimental group:

$$s_{\text{pooled}} = \sqrt{\frac{(n_e - 1)s_e^2 + (n_c - 1)s_c^2}{n_e + n_c - 2}}$$
(1)  
$$d_{\text{smd}} = \mathsf{E}[g_{\text{smd}}] \approx \left(1 - \frac{3}{4(n_e + n_c) - 9}\right)g_{\text{smd}}$$
(2)  
$$\widehat{\mathsf{Var}}[g_{\text{smd}}] \approx \frac{1}{\tilde{n}} + \frac{g_{\text{smd}}}{2(n_e + n_c - 3.94)}$$
where  $\tilde{n} = \frac{n_e n_c}{n_e + n_c}$ . (3)

If the effect size is small  $(g_{smd} \rightarrow 0)$  and the two groups are of the same size  $(n_e = n_c)$  then the variance becomes proportional to the number of subjects in the groups

$$\widehat{\text{Var}}[g_{\text{smd}}] \approx 2/n_e = 2/n_c,$$
 (4)

i.e., the more subjects the better the effect size is determined.



## Odds ratio

For binary data we can construct a contingency table for the results:

|                 | "Success" | "Failure" | total |
|-----------------|-----------|-----------|-------|
| "Experimentals" | $n_{es}$  | $n_{ef}$  | $n_e$ |
| "Controls"      | $n_{cs}$  | $n_{cf}$  | $n_c$ |
| Total           | $n_s$     | $n_f$     | n     |

One effect size for binary data is the (natural) logarithm of the odds ratio (Hartung et al., 2008, p. 20)

$$d_{\rm Or} = \ln \left[ \frac{c(n_{es})/c(n_e - n_{es})}{c(n_{cs})/c(n_c - n_{cs})} \right], \qquad \text{where e.g., } c(x) = x + 0.$$

Addition of 0.5 to get around a problem if there is zero count in any of the cells (Hartung et al., 2008, p. 117)

An estimate of its variance as an estimator is

$$\widehat{\text{Var}}[d_{\text{or}}] = \frac{1}{c(n_{es})} + \frac{1}{c(n_{e} - n_{es})} + \frac{1}{c(n_{cs})} + \frac{1}{c(n_{c} - n_{cs})}.$$

5

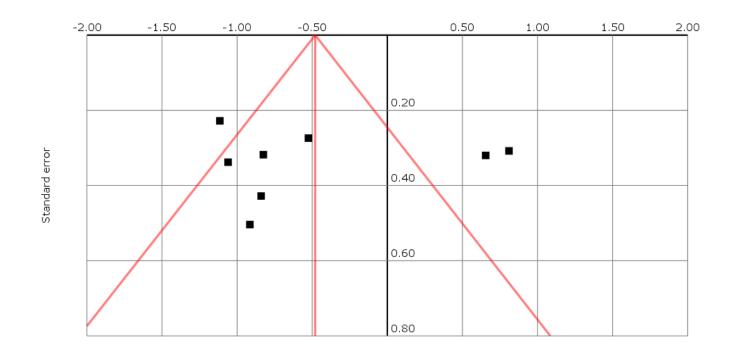


## Variance ratio

Example claim: Men have higher variation in intelligence than women.

We should test this

 $\sigma_{\rm men}^2 > \sigma_{\rm women}^2$ 

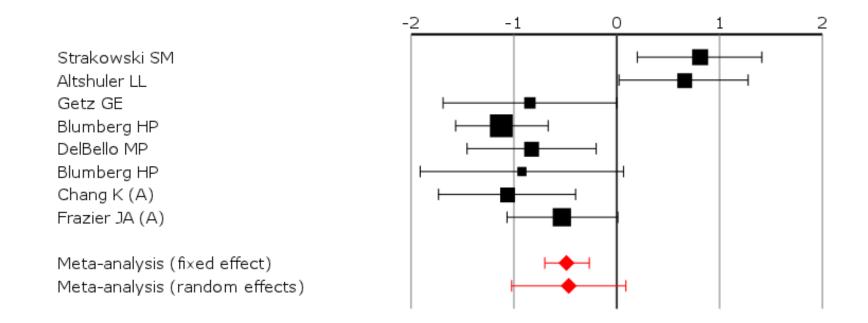

The logarithm of the ratio between the two variations (Invr) results in a good statistics (Shaffer, 1992)

$$d_{vr} = \ln\left(\frac{s_e^2}{s_c^2}\right) \tag{5}$$

This is better than the variance ratio  $s_e^2/s_c^2$  (or standard deviation difference  $s_e - s_c$ )



## Funnel plot with multiple studies




Scatter plot of the effect sizes and their standard errors (related to variance and sample size) for multiple studies.

May indicate publication bias, if researchers of small studies only publish if they see an effect then the funnel plot becomes asymmetric.



## Forrest plot with multiple studies



Forest plot shows the effect size for 8 different studies (Amygdala volume in bipolar disorder).

The squares are the 8 effect sizes  $(d_i)$  and the lines indicate 0.05-confidence interval:  $d_i \pm 1.96\sqrt{Var[d_i]}$ 

# Combining effect sizes across studies

Meta-analytic effect size: Inverse variance-weighting (in so-called fixed effect) for weighted averging of studies (Hartung et al., 2008, p. 36)

$$d_{\text{meta}} = \frac{\sum_{i} w_{i} d_{i}}{\sum_{i} w_{i}}$$
(6)

where  $d_i$  is the effect size for the *i*th study and the weight for the *i*th study is determined as the inverse variance

$$w_i = 1/\operatorname{Var}[d_i] \tag{7}$$

Variance:

$$\operatorname{Var}[d_{\mathrm{meta}}] \approx \frac{1}{\sum_{i} w_{i}}$$
 (8)

when the number of subject for study *i* increases  $(n_i \to \infty)$ , then the variance decreases (Var $[d_i] \to 0$ ), the weight increases  $(w_i \to \infty)$  and the meta-analytic variance decreases (Var $[d_{meta}] \to 0$ )





# Random effects analysis

"Random effects" in meta-analysis adds an extra parameter that models the variation between studies.

One approach is the so-called DerSimonian-Laird (Hartung et al., 2008, p. 108)



### Free tools for meta-analysis

R with meta package by Guido Schwarzer

RevMan and Archie of the Cochrane Library (Elamin et al., 2009)

#### Open science meta-analysis

Brede Wiki & its meta-analysis service

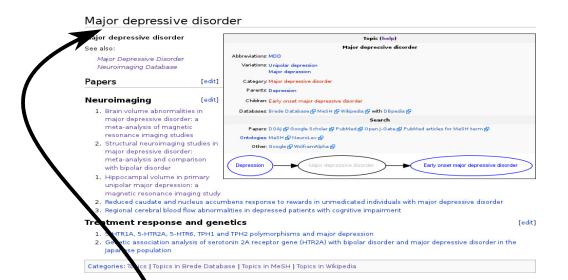
Brede Wiki for personality genetics

Online data and meta-analyses



### Brede Wiki with data

| 🧟 neuro.    | dt              | u.uk/\   | wiki/ividjo    | _Depress     | ive_Disorde     | _ineurol     | maging_D            | aududsē    | _Amygdau             | a,_total_· |            |            |                       |                   |               | C Natt           |          |         |              | (               |
|-------------|-----------------|----------|----------------|--------------|-----------------|--------------|---------------------|------------|----------------------|------------|------------|------------|-----------------------|-------------------|---------------|------------------|----------|---------|--------------|-----------------|
| P           | age             | discus   | sion           | edit his     | tory delet      | e mov        | e protect           | unv        | vatch                |            |            |            |                       |                   | A Frield      | sen mytalk my    | preteren | ces my  | watchlist my | / contributio   |
| М           | laior           | De       | nressi         | ve Dis       | order           | Neur         | nimagi              | na Da      | atabas               | e - Δ      | mvada      | la to      | otal - 9              | Statistics        |               |                  |          |         |              |                 |
| - //        |                 |          |                |              |                 |              |                     | ng Di      | acabas               |            | nygae      | na, c      |                       | statistics        |               |                  |          |         |              |                 |
| _           |                 |          |                | -            | ing Databas     |              |                     |            |                      |            |            |            |                       |                   |               |                  |          |         |              |                 |
| Má          | ajor Dep        | press    | ive Disor      | der Neuro    | imaging D       | atabase      | - Amygda            | ala, total | - Statistic          | s.csv      |            |            |                       |                   |               | ,                |          |         |              |                 |
|             | First           | Year     | Subgroup       | Number of    | Number of       | Patient      | Patient SD          | Control    | Control SD           | Patient    | % Female   | Age of     | Ham-D<br>rating scale | Antidepressants % | Mood          | Antipsychotics % | Drug     | Imaging | MRI Field    | Slice<br>Thickn |
| A           | uthor 🗵         | м        | M              | Patients 🗵   | Controls 🗵      | Mean 🗵       | M                   | Mean 🕅     | M                    | Age 🖂      | Patients 🗵 | Onset<br>M | rating scale          | м                 | stabilizers % | M                | Free %   | M       | Strength (T) | (mm)            |
| ortal She   | eline YI        | 1998     |                | 20           | 20              | 3374         | 582.4946352         | 3534       | 560.6719183          | 54         | 100.0      | -          | 5                     | 70.0              |               |                  |          | MRI     | 1.5          | 1.25            |
| s Bre       | emner JD        | 2000     |                | 16           | 16              | 1676         | 474                 | 1341       | 449                  | 43         | 37.5       |            |                       | 100.0             | 0.0           | 0.0              | 0.0      | MRI     | 1.5          | 3               |
| Fro         | odl T           | 2003     | first episode  | 30           | 30              | 3895         | 525.738338          | 3591       | 541.7137621          | 40.3       | 56.7       | 40         | 24.8                  |                   |               |                  | 12.3     | MRI     | 1.5          | 1.5             |
| Fro         | ul T            | 2003     | multiple       | 27           | 27              | 3542         | 458.2534233         | 3556       | 530.3728877          | 49.1       | 48.1       | 37.4       | 21.3                  |                   |               |                  | 12.3     | MRI     | 1.5          | 1.5             |
|             |                 |          | episode        | -            |                 |              |                     |            |                      |            |            |            |                       |                   |               |                  |          |         |              |                 |
|             | ietano SC       | 2004     |                | 31           | 31              | 3.87         |                     | 4.2        | 0.73054774           | 39.2       |            |            |                       |                   | 0.0           | 2053             | 100.0    | MRI     | 1.5          | 1.5             |
|             |                 | 2004     |                | 10           | 10              | 2865         | 531.5370166         |            | 536.2704542          |            | 100.0      |            |                       |                   | 0.0           |                  | 100.0    | MRI     | 1.5          | 1.5             |
|             | nge C           | 2004     |                | 17           | 17              | 2.55         | 0.49                | 2.26       | 0.33                 | 34         |            |            |                       | 100.0             |               |                  | 0.0      | MRI     | 1.5          | 1.3             |
| e Xia       | isso IM         | 2004     |                | 22           | 13              | 4477.23      |                     | 4629.23    | 84.87261137          | 39.5       | 45.5       |            | 21.45<br>16.55        |                   | 0.0           | 0.0              |          | MRI     | 1.5          | 1.2             |
| es          | lakoulis D      | 2005     |                | 20           | 87              | 4.62<br>3508 | 0.76<br>593.4409827 |            | 0.735<br>461.1333863 |            |            | 21.5       | 16.55                 | 0.0               | 0.0           | 0.0              | 100.0    | MRI     | 1.5          | 1.5             |
|             | niger G         | 2006     |                | 21           | 23              | 2.6          |                     | 2.3        | 0.379473319          | 22.6       |            |            | 23                    | 100.0             |               |                  | 0.0      | MRI     | 1.5          | 1.5             |
| L           |                 | 2006     |                | 19           | 23              | 3.02         | 0.426919196         |            |                      | 13         |            | 10.3       |                       | 47.4              |               |                  | 52.6     | MRI     | 1.5          | 1               |
|             | tkie IB (A)     | 2007     |                | 45           | 16              | 3.02         | 0.6                 | 3.4        | 0.5                  | 52         |            |            |                       | 64.4              |               |                  | 52.0     | MRI     | 15           | 1.5             |
|             | ann MA          | 2007     |                | 26           | 18              | 28943.6      | 3425.699339         | 0.1        | 0.0                  | 20.54      |            | 15.58      | 20.0                  | 04.4              |               |                  |          | MBI     | 1.5          | 1               |
|             | dreescu C       | 2008     |                | 71           | 32              | 0.22         | 0.04                | 0.26       | 0.04                 | 72.2       |            |            | 18.3                  | 16.9              |               | 1.4              |          | MRI     | 1.5          | 1.5             |
| Kel         |                 | 2008     |                | 23           | 11              | 4.85         | 0.939627586         |            | 0.854025761          | 36.5       |            |            |                       |                   | 17.4          |                  | 17.4     | MRI     | 3            | 1.5             |
| Kel         | ller j          | 2008     | no psychosis   | 19           | 11              | 5.38         | 0.977189848         | 5.2        | 0.854025761          | 36.6       | 63.2       | 27         | 23.7                  | 57.9              | 10.5          | 0.0              | 42.1     | MRI     | 3            | 1.5             |
| Ma          | acMaster<br>(B) | 2008     |                | 32           | 35              | 3.01         | 0.598347725         | 2.72       | 0.550236313          | 14.08      | 62.5       | 11.77      |                       | 0.0               | 0.0           | 0.0              | 100.0    | MRI     | 1.5          | 1.5             |
| Tan         | mburo RJ        | 2008     |                | 14           | 11              | 2728         | 692.0411837         | 3100       | 590.1908166          | 69.8       | 35.7       |            | 13.8                  |                   |               |                  |          | MRI     | 1.5          | 1.5             |
| Kro         | onenberg        | 2009     |                | 24           | 14              | 3.45         | 0.579120022         | 3.94       | 0.51232802           | 54.5       | 62.5       |            | 25.3                  | 0.0               | 0.0           | 0.0              |          | MRI     | 1.5          | 1.05            |
| Lor<br>(B)  | renzetti V<br>) | 2009     | depressed      | 29           | 15.5            | 3263.63      | 324.8962542         | 3206.12    | 289.1374099          | 35.52      | 75.9       | 21.07      |                       |                   |               |                  | 16.1     | MRI     | 1.5          | 1               |
| Lor<br>(B)  | renzetti∨<br>)  | 2009     | remitted       | 27           | 15.5            | 3309.7       | 368.1797727         | 3206.12    | 289.1374099          | 35.07      | 66.7       | 26.04      |                       |                   |               |                  | 16.1     | MRI     | 1.5          | 1               |
| var<br>Eijr | n<br>ndhoven P  | 2009     | depressed      | 20           | 10              | 4747         | 515.6240879         | 4375       | 766.5528031          | 34.1       | 65.0       | 34.1       | 21.08                 | 0.0               |               |                  |          | MRI     | 1.5          | 1               |
| var<br>Eijr | n<br>ndhoven P  | 2009     | remitted       | 20           | 10              | 4086         |                     | 4375       |                      |            |            | 33.4       |                       | 0.0               |               |                  |          | MRI     | 1.5          | 1               |
|             |                 | 2009     |                | 38           | 62              | 1.67         | 0.25                | 1.68       | 0.27                 | 66.11      | 81.6       | 37.76      |                       | 47.4              |               |                  |          | MRI     | 3            | 0.9             |
| Dov         | wnload data     | a as CS  | V 🚱   Edit dat | a as CSV 🛃 🛛 | deta-analysis 🗗 | 8            |                     |            |                      |            |            |            |                       |                   |               |                  |          |         |              |                 |
|             | ategory:        | الريام م | 00.051/        |              |                 |              |                     |            |                      |            |            |            |                       |                   |               |                  |          |         |              |                 |


Store numerical data on a spreadsheetlike page in a MediaWiki. Describe the data in structured format on the wiki.

Data in the Brede Wiki primarily from large meta-analyses by Matthew Kempton, Institute of

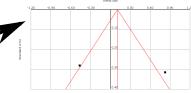
Psychiatry, and his coworkers (Kempton et al., 2008; Kempton et al., 2010; Kempton et al., 2011)



## Meta-analysis with the Brede Wiki



Meta-analyses


| Торіс                                           | Data | Raw data | Meta-analysis   |
|-------------------------------------------------|------|----------|-----------------|
| Amygdala — Major depressive disorder — MaND     | Data | CSV      | Meta-analysis 🗗 |
| Amygdala — Bipolar disorder — BiND              | Data | CSV      | Meta-analysis 🗗 |
| Amygdala — Obsessive-compulsive disorder — ObND | Data | CSV      | Meta-analysis 🗗 |

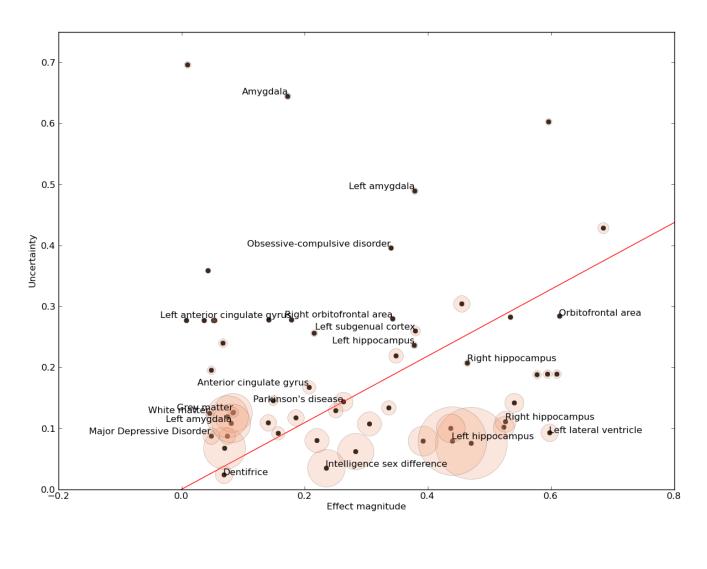


Szeszko Kiesn

[edit]






Obsessive-compulsive disorder Neuroimaging Database - Amygdala

| ObND fo       | or amy    | gdala    |                   |            |                            |                    |          |                       |                             |     |                         |                       |      | L                 |                            |                       |                                       |          |                                                                                                                                                          |
|---------------|-----------|----------|-------------------|------------|----------------------------|--------------------|----------|-----------------------|-----------------------------|-----|-------------------------|-----------------------|------|-------------------|----------------------------|-----------------------|---------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obses         | sive-c    | ompulsi  | ve disor          | der Neu    | ıroimagin                  | g Datab            | ase - An | nygdala.c             | sv                          |     |                         |                       |      |                   | •                          |                       |                                       |          |                                                                                                                                                          |
| Author<br>Iri | Year<br>I | Region   | Patient<br>mean 🖂 | Patient    | Number of<br>patients<br>I | Controls<br>mean 🖂 |          | Number of<br>controls | Patient<br>Y-BOCS<br>mean 🖂 |     | Controls<br>Y-BOCS-mean | Controls<br>Y-BOCS SD |      | Patient<br>SD age | Controls<br>mean age<br>II | Controls<br>SD age ⊨l | Notes 🖂                               | PMID 🖂   | Title 🖻                                                                                                                                                  |
| Szeszko       | 1999      | Amygdala | 3865              | 576        | 26                         | 4215               | 877      | 26                    | 22.4                        | 6.9 |                         |                       | 32.2 | 8                 | 29.8                       | 6.3                   |                                       |          | Orbital frontal and amygdala volume<br>reductions in obsessive-compulsive disorder                                                                       |
| Kwon          | 2003      | Amygdala | 1.50              | 0.3115     | 22                         | 1.25               | 0.2831   | 22                    |                             |     |                         |                       | 26.7 | 7.2               | 26.2                       | 6.1                   | Values<br>computed<br>from left/right | 12810792 | Similarity and disparity of obsessive-<br>compulsive disorder and schizophrenia in<br>MR volumetric abnormalities of the<br>hippocampus-amygdala complex |
| Download      | data as   | CSV      | it data as CI     | 5V 🗗   Met | a-analysis 🗗               |                    |          |                       |                             |     |                         |                       |      |                   |                            |                       |                                       |          |                                                                                                                                                          |

Finn Årup Nielsen



### Mass meta-analysis



With numerical data and information about it in the wiki it is possible to download and analyze all metaanalysis together.

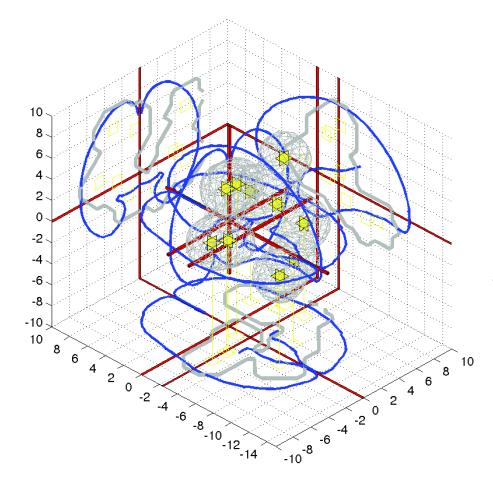
Here a L'Abbé-like plot of many of the meta-analyses in the Brede Wiki with effect magnitude on the x-axis and its uncertainty on the yaxis.



## Brede Wiki for personality genetics

| Effect | Std                                                                                  | P                                                                                                                                                                                                                                         | Studies                                                                                                                                                                                                                                                                                                                                                                                                                     | Subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Polymorphism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.854  | 0.223                                                                                | 0.00013                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TA repeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Harm avoidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1.102 | 0.289                                                                                | 0.00014                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HTR3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C178T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Harm avoidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.779 | 0.220                                                                                | 0.00039                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TA repeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Anxiety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.445 | 0.135                                                                                | 0.00098                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | тн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCAT repeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.401 | 0.123                                                                                | 0.00108                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exon 3 VNTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Positive emotions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.165  | 0.051                                                                                | 0.00118                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                          | 1747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uVNTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reward dependence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -0.393 | 0.123                                                                                | 0.00135                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exon 3 VNTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.355 | 0.427                                                                                | 0.00152                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HTR3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C178T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nonconformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.758 | 0.240                                                                                | 0.00161                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SLC6A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-HTTLPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.174 | 0.055                                                                                | 0.00163                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                          | 1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SLC6A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-HTTLPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Agreeableness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 0.854<br>-1.102<br>-0.779<br>-0.445<br>-0.401<br>0.165<br>-0.393<br>-1.355<br>-0.758 | 0.854       0.223         -1.102       0.289         -0.779       0.220         -0.445       0.135         -0.401       0.123         -0.165       0.051         -0.393       0.123         -1.355       0.427         -0.758       0.240 | 0.854         0.223         0.00013           -1.102         0.289         0.00014           -0.779         0.220         0.00039           -0.445         0.135         0.00098           -0.401         0.123         0.00118           -0.165         0.051         0.00118           -0.393         0.123         0.00135           -1.355         0.427         0.00152           -0.758         0.240         0.00161 | 0.854         0.223         0.00013         2           -1.102         0.289         0.00014         2           -0.779         0.220         0.00039         1           -0.445         0.135         0.00098         1           -0.445         0.123         0.00108         1           -0.401         0.123         0.00118         13           -0.165         0.051         0.00135         1           -0.393         0.123         0.00135         1           -1.355         0.427         0.00152         1           -0.758         0.240         0.00161         1 | 0.854         0.223         0.00013         2         107           -1.102         0.289         0.00014         2         245           -0.779         0.220         0.00039         1         90           -0.445         0.135         0.00098         1         247           -0.401         0.123         0.00108         1         315           0.165         0.051         0.00118         13         1747           -0.393         0.123         0.00135         1         315           -1.355         0.427         0.00152         1         315           -0.778         0.220         0.00135         1         247 | 0.854         0.223         0.00013         2         107         ESR1           -1.102         0.289         0.00014         2         245         HTR3A           -0.779         0.220         0.00039         1         90         ESR1           -0.445         0.135         0.00098         1         247         TH           -0.445         0.123         0.00108         1         315         DRD4           -0.401         0.123         0.00118         13         1747         MAOA           -0.393         0.123         0.00135         1         315         DRD4           -1.355         0.427         0.00152         1         315         DRD4           -0.758         0.240         0.00152         1         315         DRD4 | 0.854         0.223         0.00013         2         107         E SR1         TA repeat           -1.102         0.289         0.00014         2         245         HTR3A         C178T           -0.779         0.220         0.00039         1         90         E SR1         TA repeat           -0.779         0.220         0.00039         1         90         E SR1         TA repeat           -0.445         0.135         0.00098         1         247         TH         TCAT repeat           -0.445         0.132         0.00108         1         315         DRD4         Exon 3 VNTR           -0.401         0.123         0.00118         13         1747         MAOA         uVNTR           -0.393         0.123         0.00135         1         315         DRD4         Exon 3 VNTR           -1.355         0.427         0.00152         1         315         DRD4         Exon 3 VNTR           -1.355         0.427         0.00152         1         125         HTR3A         C178T           -0.758         0.240         0.00161         1         122         SLC6A4         5-HTTLPR |

Meta-analysis across traits and polymorphisms


Large-scale data mining across all recorded personality traits and genetic polymorphisms and present the result on the wiki.

Order meta-analytic results, e.g., with respect to *P*-value



## Neuroimaging meta-analysis

Image-based meta-analysis if you got the summary images (Salimi-Khorshidi et al., 2009).



Coordinate-based meta-analysis if you got the stereotaxic coordinates (Fox et al., 1997; Nielsen and Hansen, 2002; Turkeltaub et al., 2001).

Convolve a smooth kernel on its stereotaxic coordinate

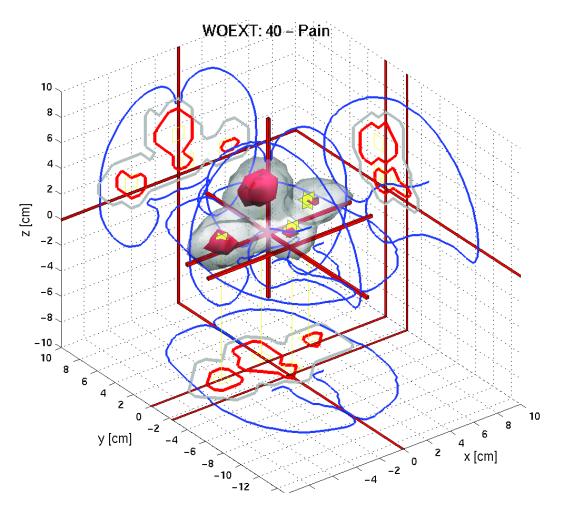
Tools: BrainMap's GingerALE, Brede Toolbox



## BrainMap

| le Ed | it Exp   | ort Tools     | Window F        | elp     |       |                                                                                                 |                                                        |                           |
|-------|----------|---------------|-----------------|---------|-------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|
| earch | Sea      | ch Results    | Workspac        | P       | 10    |                                                                                                 |                                                        |                           |
| apers | 51 su    | bjects, 4 of  | 28 experime     | nts, 3  | 0 of  | 56 conditions, 51 of 346 locations                                                              |                                                        |                           |
|       |          | 1st Auth      | Journal         | Pa      | Exp   | <ol> <li>Experiments</li> </ol>                                                                 | Behavioral Domain                                      | Citation                  |
| 902   | 1993     | Corbetta      | Journal of      | 2       |       | 1. DVF/LD - FPT                                                                                 | Perception Vision, Cogni                               | Submitter                 |
|       |          |               |                 |         |       | <ol><li>LVF/RD – FPT</li></ol>                                                                  | Perception Vision, Cogni                               | Prose Description         |
|       |          |               |                 |         |       | 3. LPASS - FPT                                                                                  | Perception Vision, Cogni                               | Subjects                  |
|       |          |               |                 |         | P.    | 4. RVF/LD - FPT                                                                                 | Perception Vision, Cogni                               | Conditions                |
|       |          |               |                 |         |       | 5. RVF/RD - FPT                                                                                 | Perception Vision, Cogni                               | Brain Template            |
|       |          |               |                 |         |       | 6. RPASS - FPT                                                                                  | Perception Vision, Cogni                               | Experiments               |
|       |          |               |                 |         |       | 7. DVF/LD - LCD                                                                                 | Perception Vision, Cogni                               | Results Synopsis          |
|       |          |               |                 |         |       | 8. LVF/RD - RCD                                                                                 | Perception Vision                                      |                           |
|       |          |               |                 |         |       | 9. RVF/LD - LCD                                                                                 | Perception Vision, Cogni                               |                           |
|       |          |               |                 |         |       | 10. RVF/RD - RCD                                                                                | Perception.Vision,Cogni                                |                           |
|       | -        |               |                 |         |       | 11. LCD - FPT                                                                                   | Perception.Vision,Cogni                                |                           |
|       | 100*     | A sum in      | d'aleman.       |         |       | 12. RCD - FPT                                                                                   | Perception.Vision,Cogni                                |                           |
| 100   | 1995     | Martin        | Science         | 1       |       | 1. Color Word Generation - Object .                                                             | Cognition.Language.Se                                  |                           |
|       |          |               |                 | +++     |       | 2. Action Word Generation - Objec.                                                              | Cognition.Language.Se                                  |                           |
|       |          |               |                 |         |       | 3. Color Word Generation > Action .                                                             | Cognition.Language.Se                                  |                           |
| 701   | 1005     | Ghatan        | Neuroimage      | -       | P     | 4. Action Word Generation > Color .                                                             | Cognition. Language. Se                                |                           |
| /01   | 1992     | Gradan        | neuromage       | 1       |       | <ol> <li>Perceptual Maze vs. Rest, Increa.</li> <li>Perceptual Maze vs. Rest, Decre.</li> </ol> | Cognition. Reasoning, Act<br>Cognition. Reasoning, Act |                           |
|       | -        |               |                 |         | - P   | <ol> <li>Perceptual Plaze Vs. Rest, Decre.</li> <li>Notor Control vs. Rest, Increase</li> </ol> | Action Execution                                       |                           |
|       | -        |               |                 |         | 12    | 4. Motor Control vs. Rest, Increase                                                             | Action Execution                                       |                           |
|       | -        |               |                 | 18      | 12    | 5. Perceptual Maze vs. Motor Contr.                                                             | Cognition. Reasoning, Act                              |                           |
|       | -        |               |                 | - 8     | 12    | <ol> <li>Ferceptual Naze vs. Motor Contr.</li> </ol>                                            | Cognition.Reasoning.Act                                |                           |
| 189   | 1006     | Kassiyn       | Neuroreport     | 1       | 12    | <ol> <li>Negative Imagery - Neutral Ima</li> </ol>                                              | Emotion                                                |                           |
| 3.0.2 | 1990     | 100331911     | rae a or epoint | -8-     | 12    | 2. Negative Perception – Neutral P                                                              | Emation                                                |                           |
|       | -        |               |                 | 18      |       | <ol> <li>Neutral Imagery - Neutral Perce.</li> </ol>                                            | Perception.Vision.Shape                                |                           |
|       | -        |               |                 | 18      | - 6   | <ol> <li>Neutral Perception – Neutral Im</li> </ol>                                             | Perception Vision Shape                                |                           |
|       | -        |               |                 | 18      | 12    | 5. Negative Imagery - Negative Per-                                                             |                                                        |                           |
|       | -        |               |                 | 18      | 12    | 6. Negative Perception - Negative L.                                                            | Emotion, Perception, Visi                              |                           |
|       |          |               |                 |         |       | To the game reception - net game c                                                              | permanent, exception of the                            | -                         |
|       |          |               |                 |         |       |                                                                                                 |                                                        |                           |
| ner t | 15090    | 226           |                 |         |       |                                                                                                 |                                                        |                           |
|       |          |               |                 |         |       |                                                                                                 |                                                        |                           |
| •     | Citati   | on            |                 |         |       |                                                                                                 |                                                        |                           |
|       |          | ID: 50902     |                 |         |       |                                                                                                 |                                                        |                           |
|       | Title: J | A PET study   | y of visuosp    | atial a | atter | ation                                                                                           |                                                        |                           |
|       |          |               |                 |         |       | rnan G L. Petersen S E                                                                          |                                                        |                           |
|       | fourn    | al: fournal ( | of Neurosci     | ence -  |       |                                                                                                 |                                                        |                           |
|       | Volun    |               |                 |         |       |                                                                                                 |                                                        |                           |
|       |          | 1202-122      | 26              |         |       |                                                                                                 |                                                        |                           |
|       |          | Mar 1993      |                 |         |       |                                                                                                 |                                                        |                           |
|       |          |               |                 |         |       |                                                                                                 |                                                        |                           |
|       |          | se Number     | 6441008         |         |       |                                                                                                 |                                                        |                           |
|       |          | ed URL:       |                 |         |       |                                                                                                 |                                                        |                           |
|       |          |               |                 |         |       | query.fcgi7cmd=Retrieve&db=Pu                                                                   |                                                        |                           |
|       |          |               |                 |         | ui, p | ositron emission tomography (pe                                                                 | et), visual information pr                             | ocessing, frontal cortex, |
|       | pariet   | al cortex, u  | nilateral neg   | tiect   |       |                                                                                                 |                                                        |                           |
| _     |          |               |                 |         |       |                                                                                                 |                                                        |                           |

One of the first and most comprehensive databases (Fox et al., 1994; Fox and Lancaster, 2002)


Presently 85007 locations from 2238 papers (2012 September)

Graphical Internet-based interface in Java, *sleuth*, with search facilities, e.g., on author, 3D coordinate, an others and *GingerALE* meta-analysis

Finn Årup Nielsen



### Example on meta-analysis



Coordinate-based meta-analysis with the Brede Toolbox on pain studies

Volume threshold at statistical values determined by resampling statistics (Nielsen, 2005).

Red areas are the most significant areas: Anterior cingulate, anterior insula, thalamus. In agreement with "human" reviewer (Ingvar, 1999).



## Semantic MediaWiki for databasing papers

| -> 🏠 📀                           | wikilit. <b>referata.com</b> /wiki/Scope,_completeness,_and_accura                                                                                                                                              | acy of dr 🗇 🕑 🔡 DuckDuckGo 🛛 🔍 💷 🕷                                                                                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                                                 | is Admin links My preferences My watchlist My contributions Log out                                                                                                      |
|                                  | Page Discussion Read Edit with form Edit View                                                                                                                                                                   | history 🔻 🛛 Go Search                                                                                                                                                    |
| WikiLit<br>dia Literature Review | Scope, completeness, and accuracy                                                                                                                                                                               | of drug information in Wikipedia                                                                                                                                         |
|                                  | Scope, completeness, and accuracy of drug information in                                                                                                                                                        | Publication (help)                                                                                                                                                       |
| vigation                         | <b>Wikipedia</b> is a publication by Kevin A. Clauson, Hyla H. Polen,<br>Maged N. Kamel Boulos, Joan H. Dzenowagis.                                                                                             | Scope, completeness, and accuracy of drug information in Wikipedia<br>Authors: Kevin A. Clauson, Hyla H. Polen, Maged N. Kamel<br>Boulos, Joan H. Dzenowagis (edit item) |
| in page<br>cent changes          | Contents [hide]                                                                                                                                                                                                 | Citation: The Annals of Pharmacotherapy 42 (12):<br>1814-1821. 2008 December.                                                                                            |
| owse data<br>tegory Tree         | 1 Abstract<br>2 Conclusion<br>3 Comments                                                                                                                                                                        | Publication type: Journal article<br>Peer-reviewed: Yes                                                                                                                  |
| d data                           | 4 Further notes                                                                                                                                                                                                 | Database(s):<br>DOI: Define <i>doi</i> .                                                                                                                                 |
| d publication<br>d researcher    | Abstract [edit]                                                                                                                                                                                                 | Google Scholar citations: 9070997552253130666 සි<br>Link(s): http://www.ncbi.nlm.nih.gov/pubmed(19017825 සි                                                              |
| tegories                         | BACKGROUND: With the advent of Web 2.0 technologies, user-edited<br>online resources such as Wikipedia are increasingly tapped for                                                                              | Search<br>Article: Google Scholar 댨 BASE 중 PubMed 중                                                                                                                      |
| searchers<br>blications          | information. However, there is little research on the quality of health<br>information found in Wikipedia. OBJECTIVE: To compare the scope,<br>completeness, and accuracy of drug information in Wikipedia with | Other scholarly wikis: AcaWki ৫ Brede Wki ৫ Wiki Papers 윤<br>Web search: Bing 윤 Google 윤 Yahoo! 윤 — Google PDF 윤<br>Other                                                |
| untries<br>ars                   | that of a free, online, traditionally edited database (Medscape Drug                                                                                                                                            | Other:<br>Services                                                                                                                                                       |
| ai 5                             | Reference [MDR]). METHODS: Wikipedia and MDR were assessed on                                                                                                                                                   | Format: BibTeX r                                                                                                                                                         |
| lp                               | 8 categories of drug information. Questions were constructed and<br>answers were verified with authoritative resources. Wikipedia and                                                                           | Extract                                                                                                                                                                  |
|                                  | MDR were evaluated according to scope (breadth of coverage) and                                                                                                                                                 | Research details                                                                                                                                                         |
| lp<br>ferata help                | completeness. Accuracy was tracked by factual errors and errors of<br>omission. Descriptive statistics were used to summarize the                                                                               | Topics: Comprehensiveness, Currency, Reliability, Health<br>information source [edit item]                                                                               |
| ta export                        | components. Fisher's exact test was used to compare scope and                                                                                                                                                   | Domains: Health, Information systems [edit item]                                                                                                                         |
|                                  | paired Student's t-test was used to compare current results in<br>Wikipedia with entries 90 days prior to the current access. RESULTS:                                                                          | Research questions: "To compare the scope, completeness, and                                                                                                             |
| F XML                            | Wikipedia was able to answer significantly fewer drug information                                                                                                                                               | accuracy of drug information in Wikipedia with that<br>of a free, online, traditionally edited database                                                                  |
| F                                | questions (40.0%) compared with MDR (82.5%; p < 0.001). Wikipedia                                                                                                                                               | (Medscape Drug Reference [MDR]). [edit item]                                                                                                                             |
| lbox                             | performed poorly regarding information on dosing, with a score of                                                                                                                                               | Theory type: Analysis [edit item]                                                                                                                                        |
|                                  | 0% versus the MDR score of 90.0%. Answers found in Wikipedia                                                                                                                                                    | Wikipedia coverage: Main topic [edit item]                                                                                                                               |
| at links here                    | were 76.0% complete, while MDR provided answers that were 95.5%                                                                                                                                                 | Theories: "Undetermined" [edit item]                                                                                                                                     |
| lated changes<br>load file       | complete; overall, Wikipedia answers were less complete than those<br>in Medscape (p < 0.001). No factual errors were found in Wikipedia,                                                                       | Research design: Statistical analysis [edit item]                                                                                                                        |
| ecial pages                      | whereas 4 answers in Medscape conflicted with the answer key;                                                                                                                                                   | Collected datatype: Wikipedia pages (edit item)                                                                                                                          |
| ntable version                   | errors of omission were higher in Wikipedia (n = 48) than in MDR (n                                                                                                                                             | Collected data time dimension: Cross-sectional [edit item]                                                                                                               |
| rmanent link                     | = 14). There was a marked improvement in Wikipedia over time, as                                                                                                                                                | Unit of analysis: Website [edit item]                                                                                                                                    |
| owse properties                  | current entries were superior to those 90 days prior (p =                                                                                                                                                       | Wikipedia data extraction: Live Wikipedia [edit item]                                                                                                                    |
| load multiple files              | 0.024).CONCLUSIONS: Wikipedia has a more narrow scope, is less                                                                                                                                                  | Wikipedia page type: Article (edit item)                                                                                                                                 |
|                                  | complete, and has more errors of omission than the comparator<br>database. Wikipedia may be a useful point of engagement for                                                                                    | Wikipedia language: English [edit.item]                                                                                                                                  |

The Semantic MediaWiki allows you to construct a database on the Web without having to setup a standard database management system :-)

Semantic MediaWiki has a flexible schema: You can add fields after you have setup "table", e.g., add a "is peer reviewed" field or "imaging modality" field. :-)

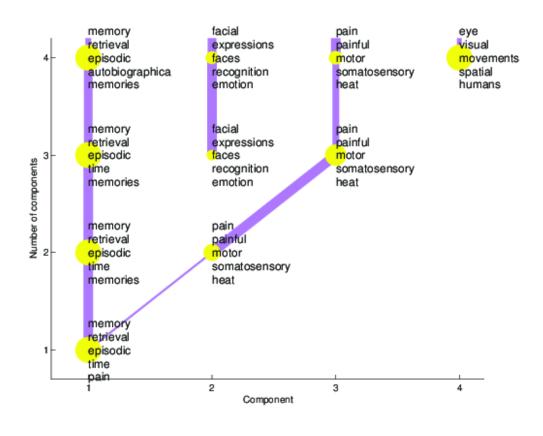
A full setup of a Semantic Media-Wiki with forms and templates requires mastering of the somewhat obscure MediaWiki template language :-(



## Semantic MediaWiki

| ⊨ 🛶 📥 💽                                                            | wikilit.referata.com/w/index.php?title=Scope, completeness, and accuracy 🗇 😴 门 📴 DuckDuckGo 🛛 🔍 👜 🗸                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | A Frielsen My talk Site settings Admin links My preferences My watchlist My contributions Log out                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | Page Discussion Read Edit with form Edit View history T Go Search                                                                                                                                                                                                                                                                                                                                                                         |
| WikiLit<br>ipedia Literature Reviev                                | Edit Publication: Scope, completeness, and accuracy of drug information in Wikipedia                                                                                                                                                                                                                                                                                                                                                      |
| Navigation                                                         | Basic properties         Identifiers         Topics         Domains         Research details         Additional info         [edit]                                                                                                                                                                                                                                                                                                       |
| Main page<br>Recent changes<br>Browse data                         | This tab specifies various details of the publication that are of interest to researchers of Wikipedia. Brief descriptions are given below each item,<br>but for more details and for specific examples for any item, click on the item label (e.g. "Research questions").                                                                                                                                                                |
| Category Tree                                                      | Research To compare the scope, completeness, and accuracy of drug information in Wikipedia with that of a free, online, traditionally<br>questions edited database (Medscape Drug Reference (MDR)).                                                                                                                                                                                                                                       |
| Add data                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Add publication<br>Add researcher                                  | Research questions that the authors of the article have explicitly posed. Very often, this field consists of direct quotations from the article.                                                                                                                                                                                                                                                                                          |
| Categories                                                         | Theory type 🗹 Analysis 🔲 Design and action 💭 Explanation 💭 Prediction 💭 N/A                                                                                                                                                                                                                                                                                                                                                               |
| Researchers<br>Publications<br>Countries<br>Years                  | Analysis: — obsign and action — Exploration — resection — NA<br>Analysis: What, does not include causal relationship, description, exploration: Explanation: Why, where, when theory-building, theory-testing.<br>Prediction: What is and what will be, theory-building, theory-testing. Design and action: How to do something, problem solving, innovation-building,<br>innovation-testing. Multiple values are OK.                     |
| Help                                                               | Wikipedia Main topic                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Help<br>Referata help                                              | coverage<br>in what serse is the study "about Wkipedia"? If this study is not about Wikipedia, it should not be included in this review! The options are<br>Main topic! Wkipedia is the primary focus of the study. Case: Wkipedia is one case among others in the study. Same data: The study uses data<br>from Wkipedia wikhout explicitly focusing on Wkipedia is affort the study is about Wikipedia is none other significant sense. |
| Data export                                                        | Theories Undetermined                                                                                                                                                                                                                                                                                                                                                                                                                     |
| View XML<br>RDF                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Toolbox                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| What links here<br>Related changes<br>Upload file<br>Special pages | Various theoretical bases, frameworks and perspectives that the study draws upon or builds.         Research       Action research       Case study       Conceptual       Content analysis       Discourse analysis       Econometrics and time         design       series       Ethnography       Experiment       Grounded theory       Hermeneutics       Historical analysis       Literature review                                |
| Browse properties                                                  | ante antical modeling in Meta-analysis in Phenomenology in Semiotics in Society analysis in<br>Txpoloxytaxonomy in Other                                                                                                                                                                                                                                                                                                                  |

Our Semantic MediaWiki instance http://wikilit.referata.com/ setup for a systematic review


Semantic MediaWiki allows you to define forms for input: text and categorical.

Semantic queries can be made so you can get the inputted data in comma-separated values suitable for further numerical processing

...and you can filter with the queries, e.g., peer-reviewed publications if that category is setup



### Automated literature reviews with text mining




Download papers, extract words and represent them in a bag-of-words matrix, perform topic mining with an unsupervized multivariate analysis method, e.g., non-negative matrix factorization, to find themes (Nielsen et al., 2005).

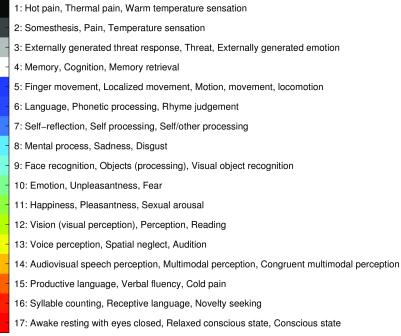

For a recent example with NeuroSynth see (Poldrack et al., 2012)

Figure 2: Some of the topics found in a corpus on posterior cingulate neuroimaging.



### **Combining ontologies and coordinates**





Combining the cognitive ontology in Brede with the coordinate-based meta-analysis to constructed a functional atlas



## What can you do?

Report the summary statistics: mean, standard deviation and number of subjects.

Report summary statistics for all groups

Open Science



### References

Elamin, M. B., Flynn, D. N., Bassler, D., Briel, M., Alonso-Coello, P., Karanicolas, P. J., Guyatt, G. H., Malaga, G., Furukawa, T. A., Kunz, R., Schunemann, H., Murad, M. H., Barbui, C., Cipriani, A., and Montori, V. M. (2009). Choice of data extraction tools for systematic reviews depends on resources and review complexity. *Journal of Clinical Epidemiology*, 62(5):506–510. PMID: 19348977. DOI: 10.1016/j.jclinepi.2008.10.016.

Fox, P. T. and Lancaster, J. L. (2002). Mapping context and content: the BrainMap model. *Nature Reviews Neuroscience*, 3(4):319–321. Link. *Describes the philosophy behind the (new) BrainMap func-tional brain imaging database with "BrainMap Experiment Coding Scheme" and tables of activation foci. Furthermore discusses financial issues and quality control of data.* 

Fox, P. T., Lancaster, J. L., Parsons, L. M., Xiong, J.-H., and Zamarripa, F. (1997). Functional volumes modeling: Theory and preliminary assessment. *Human Brain Mapping*, 5(4):306–311. Link.

Fox, P. T., Mikiten, S., Davis, G., and Lancaster, J. L. (1994). BrainMap: A database of human function brain mapping. In Thatcher, R. W., Hallett, M., Zeffiro, T., John, E. R., and Huerta, M., editors, *Functional Neuroimaging: Technical Foundations*, chapter 9, pages 95–105. Academic Press, San Diego, California. ISBN 0126858454.

Gelman, A. and Stern, H. (2006). The difference between "significant" and "not significant" is not itself statistically significant. *The American Statistician*, 60(4):1–4. DOI: 10.1198/00313006X152649.

Hartung, J., Knapp, G., and Sinha, B. K. (2008). *Statistical Meta-Analysis with Applications*. Wiley Series in Probability and Statistics. Wiley, Hoboken, New Jersey.

Ingvar, M. (1999). Pain and functional imaging. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 354(1387):1347–1358. PMID: 10466155.

Ioannidis, J. P. A. (2005). Why most published research findings are false. *PLoS Medicine*, 2(8):e124. DOI: 10.1371/journal.pmed.0020124.



Kempton, M. J., Geddes, J. R., Ettinger, U., Williams, S. C. R., and Grasby, P. M. (2008). Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. *Archives of General Psychiatry*, 65(9):1017–1032. DOI: 10.1001/archpsyc.65.9.1017. Link.

Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., and Williams, S. C. R. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. *Archives of General Psychiatry*, 68(7):675–690. PMID: 21727252. DOI: 10.1001/archgenpsychiatry.2011.60.

Kempton, M. J., Stahl, D., Williams, S. C. R., and DeLisi, L. E. (2010). Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. *Schizophrenia Research*, 120(1–3):54–52. PMID: 20537866. DOI: 10.1016/j.schres.2010.03.036.

Nielsen, F. Å. (2005). Mass meta-analysis in Talairach space. In Saul, L. K., Weiss, Y., and Bottou, L., editors, *Advances in Neural Information Processing Systems* 17, pages 985–992, Cambridge, MA. MIT Press. Link.

Nielsen, F. Å., Balslev, D., and Hansen, L. K. (2005). Mining the posterior cingulate: Segregation between memory and pain component. *NeuroImage*, 27(3):520–532. DOI: 10.1016/j.neuroimage.2005.04.034. *Text mining of PubMed abstracts for detection of topics in neuroimaging studies mentioning posterior cingulate. Subsequent analysis of the spatial distribution of the Talairach coordinates in the clustered papers.* 

Nielsen, F. Å. and Hansen, L. K. (2002). Modeling of activation data in the BrainMap<sup>TM</sup> database: Detection of outliers. *Human Brain Mapping*, 15(3):146–156. DOI: 10.1002/hbm.10012. Link. CiteSeer: http://citeseer.ist.psu.edu/nielsen02modeling.html.

Poldrack, R. A., Mumford, J. A., Schonberg, T., Kalar, D., Barman, B., and Yarkoni, T. (2012). Discovering relations between mind, brain, and mental disorders using topic mapping. *PLoS Computational Biology*. Link.

Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., and Nichols, T. E. (2009). Metaanalysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. *NeuroImage*, 45:810–823. DOI: 10.1016/j.neuroimage.2008.12.039.

Shaffer, J. P. (1992). Caution on the use of variance ratios: a comment. *Review of Educational Research*, 62(4):429–432. DOI: 10.3102/00346543062004429.

Turkeltaub, P., Eden, G. F., Jones, K. M., and Zeffiro, T. A. (2001). A novel meta-analysis technique applied to single word reading. *NeuroImage*, 13(6 (part 2)):S272. Link.