
Conditions for Procedural 3D
Shape Synthesis

Vaida Laganeckiene

Kongens Lyngby 2012

IMM-M.Sc.-2012-93

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2012-93

Summary (English)

The goal of the thesis is to expand and improve general procedural modelling tool
Generic Graph Grammar (G3). In particular the emphasis is laid on conditions
for selecting a set of primitives for which to apply certain rules. Better conditions
serve to improve expressibility of the grammar and enables the creation of more
interesting models.

The G3 framework is mostly improved in three aspects. Firstly, the merg-
ing of coinciding primitives is implemented. This additional feature allows to
avoid duplicate geometric information and helps to create topologically consis-
tent meshes, for which conditions are more easily applied. Secondly, intersection
tests are implemented with the possibility to cancel the procedural command,
if model intersects itself. It helps to create more realistic models without self-
intersection or can used as additional artistic option. Finally, implementation
of compound commands makes it possible to query primitives for conditions
within di�erent scopes and allows to de�ne more �exible rules.

Furthermore, several small improvements are made, such as the adjustments to
the user interface, which facilitate the practical use of the framework.

Several models created with improved G3 method are presented in the report.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with conditions for procedural 3D modelling and other improve-
ments to Generic Graph Grammar.

The thesis consists of several chapters. In the related work analysis, alternative
procedural modelling techniques are presented and Generic Graph Grammar
method is described. Method chapter describes three main issues solved during
this project � merging of coinciding primitives, model self intersection checking
and di�erent scopes for conditions enabled with compound commands. Im-
plementation chapter explains implementation issues, including algorithm for
deleting existing primitives, code design structure and user interface descrip-
tion. Result chapter presents some models created with this framework and the
�nal conclusion and future work chapter concludes the report.

Lyngby, 29-August-2012

Vaida Laganeckiene

iv

Acknowledgements

I would like to thank my supervisor Jakob Andreas Bærentzen for guidance,
useful ideas and suggestions, Asger Nyman Christiansen for help understanding
original framework and my husband Mindaugas Laganeckas for moral support
and patience.

vi

Contents

Summary (English) i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 What is procedural modelling? 1
1.2 The goal of the project . 3

2 Related Work 5
2.1 L-systems . 5
2.2 CGA shape grammar . 7
2.3 General procedural modelling . 8
2.4 Generic Graph Grammar . 8

2.4.1 Object representation . 9
2.4.2 Generations of the graph 9
2.4.3 Parameters . 9
2.4.4 Conditions . 10
2.4.5 Commands . 11
2.4.6 Rules . 13

3 Method 15
3.1 Merging of primitives . 15

3.1.1 Undesirable topological situations in the mesh 17
3.1.2 Merging algorithm . 18

3.2 Self-intersection checking . 20
3.2.1 Intersection of two line segments 23
3.2.2 Triangle and line segment intersection 24

viii CONTENTS

3.2.3 Intersection of two triangles 26
3.2.4 Triangulation of polygons 26

3.3 Compound commands . 27
3.3.1 Concept of compound command 28
3.3.2 Isolated conditions . 29
3.3.3 Primitives accessed by more than one compound command 30
3.3.4 Relative parameters . 31
3.3.5 Compound commands containing compound commands . 33

3.4 Other improvements of the framework 33

4 Implementation 37
4.1 Deletion of primitives . 38
4.2 Hierarchical class structure of commands 39
4.3 Description of user interface . 40

5 Results 43

6 Conclusion and future work 47

Bibliography 49

Chapter 1

Introduction

1.1 What is procedural modelling?

Entertainment industry, such as computer games and movie makers, requires
some economical solutions for producing 3D models. Even though computers
become more and more powerful, the work or the artists remains highly valuable
asset and should not be wasted. Imagine, for example, how much time it would
take for an artist to manually model a city with hundreds of houses or a forest
with all the plants (Figure 1.1). Therefore procedural modelling is increasingly
used, where large amount of content is required and precise control of the details
is not necessary.

In procedural modelling content is usually created using a set of rules, instead
of manually de�ning all details. Sometimes these rules are applied in slightly
random fashion, which allows to make many objects that are similar, yet not
exactly the same. This can be useful, for example, when creating many instances
of some plant species [PL96].

Procedural modelling allows to save space in computer memory. The 3D object
can be generated in runtime from the set of rules and rules usually take much
less space than precise de�nition of all geometric information. In addition, when
generating content in runtime, it is possible to alter it depending on the context.

2 Introduction

(a) Procedural Pompeii generated with
CityEngine

(b) Forest generated with SpeedTree in
game The Elder Scrolls IV Oblivion c©2012
Bethesda Softworks LLC

Figure 1.1: Complex scenes generated procedurally 1

For example, road net could be procedurally generated in runtime using terrain
as an input.

When procedurally generating content, it is easier to follow some domain speci�c
rules that may be important in speci�c situation. For example, plants will look
more realistic, if we model them according to biological rules. There can be rules
concerning number of branches, height of the plant with respect to age, factorial
pattern of the plant and similar. There could also be some architectural rules,
for example, that door should be at the ground level and facing the street and
windows should not intersect with the wall of another building.

Because of these domain speci�c details, most of the procedural methods are de-
signed for speci�c type of models, for example, plants, [PL96], terrain [SdKG+09]
or buildings [MWH+06]. However it is also important to have some general
method that could handle many types of models. This would allow to easier
combine di�erent types of models in one scene. In addition, it is faster to learn
how to use one framework, than separate one for each type of model. Besides,
there are models that can not be easily assigned to some broad category and it
can still be useful to model them procedurally.

1City picture is from http://www.esri.com/software/cityengine/casestudies, forest pic-
ture is from http://www.speedtree.com/gallery/

http://www.esri.com/software/cityengine/casestudies
http://www.speedtree.com/gallery/

1.2 The goal of the project 3

1.2 The goal of the project

This project is based on the work of A. N. Christiansen. He designed general
procedural method - Generic Graph Grammer(G3)[Chr11]. G3 is simple and
general method, which can be used to create various type of 3D models: both
skeletal structures and surfaces. This method uses the set of parametric rules,
which are applied to the primitives of the model - nodes, edges and faces. Which
primitives are selected for execution of the rule depends on conditions. The
method is described in more detail in section 2.4.

As it appears, G3 framework can be improved in several ways.

• G3 framework can produce meshes that contains several primitives with
the same geometrical information. By merging these coinciding primitives,
topological relations of the mesh can be greatly improved, which helps to
control the outcome of the rules (see section 3.1).

• G3 framework can produce self-intersecting meshes. Various intersection
tests can be performed before applying the rule. This improvement would
help to control more precisely the resulting mesh and to create wider
variety of models (see section 3.2).

• The conditions of G3 are quite rigid. More advanced conditions with
di�erent scope would allow to select primitives more easily. As a result,
more sophisticated models could be created.

• It is di�cult to de�ne parameters in such a way that the same rule could
be used for separate model parts with di�erent positions and orientation.
Both conditions and parameters can be improved with the use of com-
pound commands described in section 3.3.

The goal of this project is to overcome above mentioned drawbacks and to
improve expressive power of G3.

4 Introduction

Chapter 2

Related Work

Grammars used in procedural modelling are mostly applied in some speci�c
domain. Most fundamental grammar - L-systems - was designed by Lindenmayer
and applied in computer graphics by Prusinkiewicz [PL96]. L-systems are mostly
used for simulating a biological growth. For arti�cial human-made objects, such
as buildings, shape grammars are more suitable. Further L-systems and CGA
shape grammar will be described in more detail.

2.1 L-systems

L-systems is string rewriting grammar. It consists of some alphabet of symbols
V , initial string of symbols ω and a set of productions P , which simultaneously
replace each symbol in the string with other strings in each derivation step.

Example of simple L-system:

ω : b

p1 : a→ ab

p2 : b→ a

6 Related Work

Result of it would be:

n = 0, b

n = 1, a

n = 2, ab

n = 3, aba

n = 4, abaab

n = 5, abaababa

n = 6, abaababaabaab

For being able to use L-systems for creation of 2D and 3D objects, turtle inter-
pretation is introduced. Alphabet for turtle interpretation consists of symbols F
and f. These symbols instruct LOGO-style turtle to go forward with and with-
out drawing the line. In addition, there are rotation symbols. In 2D rotation
symbols for turning left is + and for turning right is �. For example, quadratic
Koch curve in �gure 2.1 can be generated using this L-system:

ω : F

p : F → F − F + F + FF − F − F + F

Figure 2.1: Quadratic Koch curve from Wikipadia 1

In 3D orientation of the turtle is de�ned by three directions: heading H, left L
and up U, satisfying equation H × L = U . Rotation in 3D is de�ned as turn
� rotation around U, pitch � rotation around L and roll � rotation around H.
This concept of directions in 3D space is also used in the G3 framework.

1http://en.wikipedia.org/wiki/File:Quadratic_Koch.png

http://en.wikipedia.org/wiki/File:Quadratic_Koch.png

2.2 CGA shape grammar 7

There are several extensions of simple L-systems.

• Bracketed L-systems are introduced for representing branched structures.
They have additional symbols for pushing and popping the state of the
turtle to the stack and from it.

• Stochastic L-systems allow probabilistic choosing of productions.

• Context-sensitive L-systems take into consideration symbols going before
and after the symbol, for which production is applied.

• Parametric L-systems are used to implement more complex growth func-
tions. In this case, productions include logical and arithmetical expressions
with parameters.

L-systems are mostly used for modelling plants as they allow to model branching
patterns and factorial appearance of plants. However they were also successfully
applied in other areas, for example, in modelling road networks.

G3 framework also have some useful features similar to those of L-systems. It can
be used to make branched structures, where branch segments are represented
by edges. There is also possibility to apply commands with some probability.
Context sensitivity is emulated by the conditions. Commands are parametric,
however it is not possible to use logical and arithmetical expressions.

2.2 CGA shape grammar

Müller et al. 2006 [MWH+06] explains new shape grammar CGA shape for
modelling of buildings. Grammar allows to prioritise the rules so that �rstly
mass model is created, assembled from simple volumetric shapes, such as boxes
and cylinders, and later details to the building façade can be added. Rules
mostly consist of simple transformations of the scope of the model - translation,
rotation and scaling, in addition to subdivide and repeat rules. Subdivision is
based on the split grammar by Wonka et al. 2003 [WWSR03]. There is also
a rule that allows to split the model to the components of lesser dimensions.
This is useful for façade modelling. Furthermore, occlusion checking is imple-
mented, which allows to avoid positioning any components in the intersection of
the models. Another interesting feature of snapping makes it possible to snap
subdivision lines to some dominant lines of the model.

Grammar has readable rules, but still is mostly understood by people with
computer science background. It could be used to generate complex urban

8 Related Work

environments with a lot of details, using small set of rules. CGA shape grammar
is integrated in commercial tool CityEngine.

The behaviour of subdivision rules of CGA shape grammar is emulated by Split
Face command of G3 framework.

2.3 General procedural modelling

In addition to procedural techniques designed for speci�c domain, there were
several attempts to design general method, suitable for all kinds of models.

Havemann [Hav05] recommend to change modelling process of 3D shapes and
to use functions, more precisely Euler operations, instead of geometric primi-
tives. He developed Generative Modeling Language (GML), which can handle
Catmull/Clark subdivision surfaces, BRep meshes and Euler operations. Our
approach resembles his in such way that we also use commands similar to Euler
operations that create geometric primitives.

Krecklau et al. [KPK10] expended CGA shape [MWH+06] grammar with the
possibility of de�ning non-terminal classes for non-terminal symbols. This way
the user can create several dynamic modules, like windows, balconies or other
façade elements and combine them using some abstract façade templates. Flags
are introduced to support local changes of the scene. Authors claim their ap-
proach to be general and illustrate it with the cases of architectural modelling
and plant modelling.

Both of these approaches resulted in quite complex scripting languages, which
can be di�cult to learn for an artist. Whereas the approach described in the
next section seeks to be easily understandable and user-friendly.

2.4 Generic Graph Grammar

This thesis is further development of Generic Graph Grammar (G3), which is
the procedural method developed by A.N.Christiansen [Chr11]. It combines
the capabilities of L-systems and shape grammars and is able to produce both
organic models, represented by skeletal structures, and human made objects,
represented by surfaces.

Further the main features of G3 will be described.

2.4 Generic Graph Grammar 9

2.4.1 Object representation

Directed cyclic graph G is chosen for representation of the object. It is a set of
primitives. Primitives can be of three types.

Nodes A node n ∈ G has position p ∈ R3 and radius r ∈ R. In addition to
that it contains a list of neighbouring edges.

Directed edges A directed edge e ∈ G is represented by two nodes � pre-node
npre and post-node npost, e = (npre, npost). It also contains the list of the
neighbouring faces.

Faces A face f ∈ G is de�ned as the ordered set of nodes f = {n0, n1, . . . , nn},
where each two consecutive nodes are connected by an edge: e0 = (n0, n1), e1 =
(n1, n2), . . . , en = (nn−1, nn). A face not necessary has to be planar.

This representation is chosen, because edges nicely represent skeletal structures
and faces - surfaces.

2.4.2 Generations of the graph

Graph G is derived by consecutively applying commands to graph primitives.
Initial graph usually contains one node, G0 = {n0}. After an application of the
command the new generation of graph is created. All generations of the graph
are saved in the list, so after applying n commands we would have the list of
generations G0, G1, . . . , Gn. The approach of saving all generation was chosen,
because command should a�ect all primitives satisfying some conditions in the
same way, no matter in which order it is applied. A command could change
the topology of the graph, so if the conditions were checked and the command
was applied on the same object, the result of the command for some primitives
could make the condition invalid for some other primitives.

2.4.3 Parameters

All command have an input of the same variable parameters, that could be set
by the user.

Radius r de�nes the radius of the new node, after the command is applied.

10 Related Work

Directions H, L, U are used to de�ne a direction of newly created edge. This
idea is taken from 3D turtle representation of L-systems. H represents
heading of the turtle, L � direction to the left and U � direction up. They
are all unit length and perpendicular to each other: H = L × U . New
edge is created in the direction of heading H.

Length l de�nes the distance of the new node position p from some starting
position p0 in the direction H, p = p0 + l ·H.

Variations in radius σr, length σl and directions - roll σρ, pitch σφ, turn σθ
introduce random variation in all parameters. Variation is sampled from
random uniformly distributed variable U(−σ, σ).

Parameters can be de�ned in absolute or in relative manner. If the parameters
are chosen to be relative, they are de�ned as the portion of the parameters of
some preceding primitives. For example, radius r1 can be de�ned relative to
the radius r0 of the preceding node r1 = r · r0, while in absolute case it would
be r1 = r. In case when more than one node or one edge precedes new one,
parameters of preceding primitives are averaged. When direction are de�ned in
relative manner, directions of preceding primitives are used as the base vectors,
forming a coordinate system.

Only two options for parameters � either being absolute or relative to preceding
primitive � are quite restrictive. In addition, there are no global parameters, so
that the whole model could be scaled or rotated easily. Parameters are improved
during this project with the help of compound commands (see section 3.3).

2.4.4 Conditions

A condition is Boolean statement, which tells, if the primitive has some property
or not. Conditions are checked before application of the command and if all
conditions de�ned by the user are satis�ed for some primitive, command is
applied to that primitive. Condition consists of three parts.

• The property of the primitive.

• The comparison operator (more, less, equal or not equal).

• The value de�ned by the user.

All the commands can be applied to only one type of the primitives � nodes,
edges or faces, so conditions are also divided into three sets: the properties that
could be checked for nodes, edges and faces.

2.4 Generic Graph Grammar 11

Node conditions include random value, age of the node, number of neigh-
bouring edges, number of faces, number of outgoing and incoming edges,
position.

Edge conditions include random value, age of the edge, number of neigh-
bouring edges, number of faces, number of outgoing and incoming edges,
position of its pre-node, direction.

Face conditions include random value, age of the face, number of nodes in
the face, number of edges, position of the �rst node.

Improvement of conditions is one of the main goals for this master thesis.

2.4.5 Commands

Commands transform one graph generation to another, by replacing one prim-
itive, satisfying the conditions, with the set of other connected primitives. All
commands create exactly one node and at least one edge, which position and
direction are de�ned by parameters. The command can change topological rela-
tions between primitives, but geometrical information remains the same for old
primitives.

Create edge Create face

Split edge Split face

Figure 2.2: Examples of four basic commands

There are four commands, that can be applied to primitives. Examples of their
usage can be seen in �gure 2.2. Further each of these commands is described in
more detail.

Create edge command is applied to node n0. It creates a new node n1 and a

12 Related Work

n0

f0 = {n0, n1, n2}

n1

n2 n3

f0 = {n0, n1, n3}

Figure 2.3: Create face command originally did not created consistently ori-
ented faces

new edge e1 = (n0, n1). Radius of new node and length and direction of
new edge are de�ned by parameters.

Split edge command is applied to edge e0 = (n0, n1). It creates a new node
n2 and a new edge e1 = (n0, n2). Radius of new node and length and
direction of new edge are de�ned by parameters. In addition old edge is
change to e0 = (n2, n1).

Create face command is applied to edge e0 = (n0, n1). It creates a new node
n2 and a new edge e1 = (n1, n2). Radius of new node and length and
direction of new edge are de�ned by parameters. In addition one more edge
is created e2 = (n2, n0) and a face is created f = {n0, n1, n2}. Notice that
in this way two faces created from the same edge will not be consistently
oriented, so one face will be oriented clockwise and one counter-clockwise
(�gure 2.3). This feature of an old framework was �xed so that newly
created face is either f = {n0, n1, n2} or f = {n1, n0, n2} depending on
the orientation of the neighbouring face.

Split face command is applied to face f0 = {n0, n1, . . . , nn}. It creates a
new node nn+1. Its position and radius are de�ned by parameters with
respect to the barycentre of the face b = 1

n+1

∑n
i=0 pi. This command

has secondary conditions for the nodes of the face. If node ni satis�es the
condition, then new edge ei = (ni, nn+1) is created. Furthermore a set of
new faces is created.

Original framework contained an additional command Grow face, which was
being applied to faces and increased the number of the vertices in the face.

2.4 Generic Graph Grammar 13

However this command was removed, because it gave the same results as Split
edge command (�gure 2.4). It is due to the fact that new node created with Split
edge command not necessary has to be somewhere inside the edge. Actually its
position is de�ned by parameters of length l and heading direction H of the
command.

Grow face

Split edge

Figure 2.4: Grow face command can be replaced by Split edge command

There exists one more procedure Edit node. It is used to edit geometric infor-
mation. It is similar to commands in its usage, however the main di�erence is
that it doesn't change topological information and it changes geometric infor-
mation, such as position and radius of nodes. For convenience it will also be
called command later in the document.

Edit node command is applied to node n0 with position p0 and radius r0. Its
position is changed to p1 = p0 + H · l and its radius is changed to r.
Heading H, length l and radius r are parameters of the command.

2.4.6 Rules

Rules were introduced to improve the ease of modelling and to avoid repetitive
tasks. A rule is just a sequence of commands with the given name, that could be
saved to a �le. So instead of applying commands one by one, the user can just
apply one rule. For example, we could make a sequence of commands that make
a window and de�ne it as a rule. Then we could apply this rule repeatedly with
slightly di�erent parameters for the same house or for di�erent kind of houses.
Rules can also consist of other rules, so for example, the rule for the house could
consist of the rules for the windows, door and other commands. However all
rules are just the lists of commands, so if the rule contains another rule, their
lists of commands are merged to form one bigger list.

Di�erent kind of hierarchical rules called compound commands were imple-

14 Related Work

mented in this project and are described in section 3.3. Compound commands
have some advantages against simple rules. Simple rules are very vulnerable to
the starting con�guration of the model, so some very unexpected results can
occur, if starting model is not exactly as it should be. Compound commands
are more isolated from the context. Besides, if a simple rule uses the same pa-
rameter in many commands and we want to change it, we would have to change
it in every one of them, while in compound command case, all parameters are
de�ned in relation to initial parameters, so it is enough to change only initial
parameter.

Chapter 3

Method

In this chapter the main techniques used to improve G3 framework will be
described. The original framework sometimes produced coinciding primitives.
Solution for this problem, which helps to improve topology of the model, is
presented in section 3.1. Another problem of model self-intersection is solved
in section 3.2. One approach of improving conditions and expressiveness of the
grammar is presented in section 3.3. Finally, some other improvement to G3

framework are listed in section 3.4.

3.1 Merging of primitives

During the modelling process with original framework, sometimes situations
arise, where not connected primitives stand in close or the same geometric po-
sitions.

Let's examine, for example, the process of creating a box depicted in �gure 3.1.
After we apply Split edge command to hypotenuses of the triangles, we create
one node with the position at the box corner and two edges. In this way we
form box sides. However commands are applied without looking at the context,
so new node and new edge are created, even though there already exist vertical

16 Method

Create face Split edge

two nodes

two edges

Figure 3.1: Coinciding primitives appears in the process of creating a box

Primitive Number without merging Number with merging
Nodes 12 8
Edges 16 12
Faces 5 5

Table 3.1: Number of primitives in the box with and without merging

edges and nodes at the corners of the box. Therefore we get duplicate edges
and nodes and the box sides are not connected.

Its is not e�cient to store duplicate primitives. As you can see in the table 3.1,
we get four too many nodes and four too many edges if we do not use merging
of the coinciding primitives. This di�erence can be much more noticeable for
bigger models.

Create faceSplit edge

without merging

with merging

Figure 3.2: Commands produce di�erent results, if applied with or without
merging

In addition, it could be very confusing for the user if he sees only one node,
when there in fact are two of them. The expected result of the modelling can
be di�erent from the actual one. One example is presented in �gure 3.2. You

3.1 Merging of primitives 17

can see that if the command Split edge is applied without merging, it creates
two faces that are not connected on the top and there are actually two edges
on the top of the model. So after we apply Create face command, it creates
two triangles. However if Split edge command is applied with merging, it glues
together two faces in the top. Consequent Create face command results in
only one triangle pointing upwards. So merging also allows to model some new
situations, that were not possible without merging, and as a result it increases
expressiveness of the grammar.

Split edge

Figure 3.3: Split edge together with merging results in deleted face

Moreover, it is much easier to apply conditions to topologically consistent mesh,
which results from merging. If all the parts of the model visually close to each
other are connected, you would never be confused with how many neighbouring
primitives speci�c primitive has.

One of the problems with merging is that in the original framework you could
always know how many new primitives are produced after applying of the com-
mand. For example, Create Edge command always produced one new node and
one new edge. With merging it is not always the case. Create edge could pro-
duce one new edge, but new node would be merged with existing one. It could
even happen that primitives need to be deleted. As the example in �gure 3.3
demonstrates, Split edge command applied to the bottom edge creates a new
node which is merged with the top node of the triangle and the old face has to
be deleted. Deletion of the primitives was not possible in the original framework
so it had to be implemented. It is described in the section 4.1.

Further, undesirable situations that could arise in the process of merging are
described in the section 3.1.1 and main algorithm of merging is described in
section 3.1.2.

3.1.1 Undesirable topological situations in the mesh

Below is the list of the situations that are not tolerated and have to be �xed:

18 Method

1. Two nodes have the same positions. Solution - one node is deleted,
neighbouring edges are assigned to the other node.

2. Edge has the same begin and end node. Solution - edge is deleted. Care
should be taken for what happens with neighbouring faces.

3. Two edges have the same end nodes. Solution - one edge is deleted,
neighbouring faces are assigned to the other edge.

4. The face has only two nodes. Solution - face is deleted.

5. The face has the same node more than once. Solution - if nodes are
consecutive, only one node of those left, otherwise face is split.

6. The face has edge connected sub-cycles. Solution - the face is split.

7. Two faces have the same indices. Solution - delete one face.

Applying the rules of the grammar without merging can only produce the �rst
situation. Merging actually means avoiding the �rst problem. However merging
the two nodes can produce all the other situations.

3.1.2 Merging algorithm

Merging algorithm consists of three parts.

• Merging of nodes �xes undesirable situation 1.

• Correcting of edges �x situations 2 � 4.

• Correcting of faces �x situations 5 � 7.

3.1.2.1 Merging of nodes

For �nding out coinciding or very close node position, k -d tree is used [Ben75].
I have used k -d tree implementation that is part of DTU framework [GEL].

After application of each command, positions of the nodes of the new generation
are inserted into k -d tree. Afterwards for each new node nnew (or for each old
node with the changed position in the Edit node case) k -d tree is searched in
the very small distance from the position of nnew. If some ni node is found,
then nodes nnew and ni are merged. New radius is calculated as r = rnew+ri

2

3.1 Merging of primitives 19

and new position is calculated as p = pnew+pi
2 . These radius and position are

assigned to node ni and node nnew is deleted.

f1

f2

ninnew

e1 e2

ei

(a)

f1

ni

nnew

(b)

fi

ni

nnew

ei

(c)

ni

nnew

f2
ei

f1

(d)

Figure 3.4: Various situations, where merging is performed. (a) edge ei and
face f2 are deleted, edges e1 and e2 are merged together. (b) face
f1 is split into two. (c) after nodes nnew and ni are merged, face
fi contains two sub-loops, that have common edge ei, therefore
face fi is split into two. (d) face f2 is deleted and face f1 is split
into two.

3.1.2.2 Correcting of edges

After nodes nnew and ni have been merged, it is checked, if there exists an edge
ei = (nnew, ni) connecting nodes nnew and ni. If so, it has to be deleted, so
that we would avoid situation 2 of edge having the same begin and end nodes.
Then we need to check edge ei neighbouring faces. If a neighbouring face has
more than three vertices, such as f1 in �gure 3.4(a), one of its vertex is removed.
However if the face has three vertices, such as f2 in �gure 3.4(a), it has to be

20 Method

deleted, otherwise it would contain only two vertices and the situation 4 would
appear.

All neighbouring edges of nodes nnew and ni hava to be checked if there exists
such a pair of edges that share an end node, such as edges e1 and e2 in �gure
3.4(a). If such edges exist they have to be merged, otherwise situation 3 would
appear.

Edges e1 and e2 are merged in such way. Firstly, all the faces of e1 are assigned
to e2. Then average left direction L = L1+L2

2 and up direction U = U1+U2

2
are calculated and, if necessary, �xed to be perpendicular. Finally, edge e1 is
deleted.

As the last step of correcting of edges, all neighbouring edges of node nnew are
assigned to node ni.

3.1.2.3 Correcting of faces

Firstly, in all a�ected faces index of node nnew is replaced by index of node ni.

Then all these faces are checked, if they contain double indices, as would hap-
pen in situation depicted in �gure 3.4(b). Let's say, that we �nd a face f =
{n0, . . . , ni1 , ni, ni+1, . . . , nj−1, nj , nj+1, . . . , nn}, where ni = nj . Then we split
these indices into two sets and form two new faces: f1 = {nj , nj+1, . . . , nn, n0, . . . , ni−1, ni}
and f2 = {ni, ni+1, . . . , nj−1, nj}. However new face is formed only if the set of
indices has more than two indices.

Next, all a�ected faces are checked for sub-loops, as we want to �x situation 6.
For each inside edge found, such as ei in �gure 3.4(c) and ei in �gure 3.4(d),
face is split into two. Additionally all triangular faces that already exist as the
part of some face, such as the face f2 in �gure 3.4(d) is part of the face f1, are
deleted. In this way we avoid situation 7.

3.2 Self-intersection checking

One of the �aws of the original framework was that there was no way to pre-
vent self-intersection of the model. This could result in unrealistic models, for
example, plants with intersecting leaves and branches (see �gure 3.5).

3.2 Self-intersection checking 21

Figure 3.5: A model of the branch with intersecting leaves

In addition to allowing to model more realistic objects, intersection testing could
also be used as an artistic tool. It would be as additional option to create
more interesting models. For example, with the use of intersection testing we
can create the tree in the box model in �gure 3.6. The branches of the tree
are modelled using Create edge command. This command is only applied, if
newly created edge would not intersect with anything including the sides of the
box. The box and the tree depicted in �gure 3.6 is one connected model, so
for practical usage of this tree the sides of the box would need to be removed
manually.

(a) (b)

Figure 3.6: Tree in the box model. Intersection testing enforce the tree to stay
within the box

Intersection testing is implemented similarly to conditions. The main di�erence

22 Method

is that we need to know the result of command in beforehand, for judging
if command should be applied or not, which is not the case with conditions.
As with the conditions, user can choose, if he want to perform intersection
testing or not. Actually user has three options: to perform intersection testing,
merging algorithm or none of these. Intersection testing and merging can not
be performed in the same time, because coinciding vertices are also treated as
case of intersection.

(a) (b)

(c) (d)

Figure 3.7: Model of �ags with intersection testing (a), (c) and without (b),
(d)

One limitation of intersection testing is that it can only be applied to one com-
mand. If the newly created primitives resulting from the command would in-
tersect with any existing primitives, the command is not applied. Currently it
is not possible to discard the whole rule, so if intersection occurs for some com-
mand in the middle of the rule, result of earlier commands would still remain.

3.2 Self-intersection checking 23

You can compare the model of the �ags with intersection testing and without in
�gure 3.7. The poles of the �ags are modelled with Create edge command and
afterwards Create face is applied to create triangles with random orientation.
Intersection testing is performed for Create face command, so triangles that
would intersect with other �ags are not created. However poles of the �ags are
still present, as they were created before intersection testing.

The result of command can be new nodes, edges and faces. Nodes can not exist
without edges connecting them, therefore three cases of intersection can occur:
intersection between edges, intersection between edge and face and intersection
between faces. Edges are represented as line segments, while faces are repre-
sented as triangles or polygons, that can be triangulated. These three cases and
triangulation algorithm are described below.

3.2.1 Intersection of two line segments

Intersection of two line segments is implemented as described in [AMHH08]
section 16.16.2. Lines are represented as rays:

r1(s) = o1 + sdir1 (3.1)

r2(t) = o2 + tdir2 (3.2)

There o1 and o2 are end points of the line segments, dir1 and dir2 are directional
vectors of the lines and s and t are parameters. The intersection point of these
lines can be found using formulas:

s = det(o2−o1,dir2,dir1×dir2)
||dir1×dir2||2 (3.3)

t = det(o2−o1,dir1,dir1×dir2)
||dir1×dir2||2 (3.4)

Then there can be three cases:

1. Lines are parallel, if ||dir1 × dir2|| = 0. In this case line segments do
not intersect, unless they belong to the same line, than line segments are
checked for overlapping.

2. Lines do not share a plane. Then calculated s and t can be used to �nd
closest points between these lines.

3. Lines intersect. Then the calculated s and t are checked against zero and
the lengths of the line segments.

24 Method

Edges that do not have any neighbouring faces are usually used to represent
skeleton structures. They are actually only center lines of cylinders with thick-
ness de�ned by the radii of the end nodes. Therefore we have to take into
consideration this thickness h.

Then in the case 1, distance between parallel lines is calculated d = ||o1 − o2 −
(o1 − o2) · dir1||. If this distance is bigger than h, then edges do not intersect.
Otherwise both line segments are projected on the same line. If they overlap,
they intersect, otherwise they do not intersect.

In the case 2, distance between the closest points on the lines is calculated. If
it's bigger than h, edges do not intersect. Otherwise it is treated the same as
case 3. Parameters s and t are checked against −h and l + h, where l is the
length of the edge. If they both correspond to the points inside edges extended
by thickness h, they intersect, otherwise they do not intersect.

3.2.2 Triangle and line segment intersection

Algorithm for triangle and line segment intersection is described in [AMHH08]
section 16.8.1.

Each point on the triangle f(u, v) can be expresses as the weighted average of
triangle vertices p0, p1 and p2:

f(u, v) = (1− u− v)p0 + up1 + vp2 (3.5)

Barycentric coordinates u, v, and w = 1− u− v should all be between 0 and 1,
for the point f(u, v) to be inside the triangle. You can see the various examples
of barycentric coordinates in �gure 3.8.

The line that we are checking intersection with is de�ned as a ray r(t) = o+tdir,
so for �nding intersection point we need to solve equation

r(t) = f(u, v) (3.6)

o+ tdir = (1− u− v)p0 + up1 + vp2 (3.7)

Solution to this equation can be found using formulas:

t =
det(s, e1, e2)

det(−dir, e1, e2)
(3.8)

u =
det(−dir, s, e2)
det(−dir, e1, e2)

(3.9)

v =
det(−dir, e1, s)
det(−dir, e1, e2)

(3.10)

3.2 Self-intersection checking 25

(1,0,0)

(0,1,0)

(0,0,1)

(1/2,1/2,0)

(0,1/2,1/2)

(1/2,0,1/2)

(1/3,1/3,1/3)

(1/4,1/4,1/2)

(1/4,1/2,1/4)
(1/2,1/4,1/4)

Figure 3.8: Barycentric coordinates of various points in the triangle

There e1 = p1 − p0, e2 = p2 − p0 and s = o− p0.

Barycentric coordinates u and v are checked to be inside of the triangle, so they
should be positive and their sum should be less than one. Also parameter t,
de�ning line segment, should be positive and smaller than the length of the line
segment, for the intersection to appear.

If line r(t) is parallel to triangle plane, so det(−dir, e1, e2) = 0, then the distance
d between the line and the plane is calculated. If d 6= 0, then line segment and
triangle do not intersect. Otherwise, line segment belongs to triangle plane. In
this case, the triangle vertices are checked, in which side of the line segment
they are. If they all are on the same side, then line segment and triangle do
not intersect. Otherwise, two ending points of the line segment are checked, in
which side of each triangle edges they are. If in any case they both are on the
opposite side as the remaining triangle vertex, then line segment and triangle
do not intersect, otherwise they intersect.

26 Method

3.2.3 Intersection of two triangles

Simple algorithm for intersection of two triangles is implemented. Each edge of
both triangles is checked for intersection with the other triangle. If in any case
intersection occurs, then triangles intersect, otherwise, they do not intersect.

3.2.4 Triangulation of polygons

The faces in Generic Graph Grammar are presented as ordered list of vertices,
therefore they doesn't have to be �at nor convex and can have any number of
vertices. This can cause some problems when checking intersection. As you can
see in �gure 3.9, the same face can be divided into two triangles in two di�erent
ways.

Figure 3.9: The same face de�ned by the cycle of edges is displayed in two
ways.

For the result of intersection to be de�ned without ambiguities, triangulation of
the polygons was implemented. The algorithm is simple and consists of these
steps:

1. Select two non-neighbouring vertices of the polygon.

2. Check if diagonal de�ned by these two vertices intersect with any of the
edges of the polygon. If so, select other two vertices and repeat from step
2.

3. Check if diagonal is completely inside or outside of the polygon. For
this crossing test described in [AMHH08] section 16.9.1 is used. However
crossing test works only in two dimensions. Therefore the axes aligned
bounding box of the polygon is calculated and the dimension of smallest
extent is dropped. If the center of the diagonal found to be inside the poly-
gon, the polygon is divided into two using this diagonal and algorithm is
applied recursively until only triangles are left. In the case of the diagonal

3.3 Compound commands 27

being outside, other two vertices are selected and algorithm is repeated
from step 2.

The result of triangulation algorithm can be seen in �gure 3.10

(a) (b)

Figure 3.10: Triangulated non-convex polygon

Triangulation result could be improved by selecting pairs of vertices not ran-
domly, but according to the distance between them, so that shorter diagonals
are checked �rstly. However this would require to calculate distances between
vertices ant to sort them according to this distance, therefore it would slow
down the algorithm. For intersection testing speed is more important than con-
�guration of the triangles, so simpler approach was chosen. However even faster
algorithms exist, that can, for example, be found in [AMHH08].

3.3 Compound commands

The main weakness of original framework is conditions. It is di�cult to de�ne
precisely, which primitives to select. The conditions are mostly of two kinds -
checking geometrical and topological information.

The problem of geometric conditions is that it is not invariant to the scale or
translation. So for example, if we select nodes that has x coordinate less than
one and then apply the same condition for smaller model, di�erent nodes will be
selected. The same would happen if we want to make the model in a di�erent

28 Method

place. So we could not make two identical models standing side by side, using
just geometric information.

Figure 3.11: Command Split face applied for faces that have 8 neighbouring
faces. Conditioned faces are coloured grey. It is di�cult to �nd
the condition that would select second and �fth face in the middle
row.

Topological conditions have another problem, sometimes they are too general
and correspond to very common situation. In addition, they can query only local
topological properties of the model. These limitations make it hard to select
just the primitives you want and nothing else. For example, in �gure 3.11, Split
face command is applied with condition of a face having eight neighbouring
faces. You can see that in this case we get four conditioned faces, for which the
command is applied. However it would be di�cult to split only the second and
the �fth face in the middle row, because all four faces have the same topological
information.

Conditions can be improved by limiting them to some part of the model that
interests us. In this way no unexpected primitives would be selected from some
other part of the model. For this reason, compound commands were imple-
mented. They actually have even more advantages than just improved condi-
tions. For example, they can be used instead of rules, but more �exibly, because
the user can de�ne initial parameters and conditions.

3.3.1 Concept of compound command

Compound command is a command and like simple command it replaces one
primitive with the set of connected primitives. Compound command, the same
as simple commands, have parameters and conditions. Also, as the name sug-
gests, compound command is compounded of the list of other commands.

3.3 Compound commands 29

Parameters describe the reference point for contained commands. All the pa-
rameters of contained commands would be relative to these initial parameters.
This way we can have some part of object rotated in space just by changing
initial parameters of compound command.

Conditions are used to select initial primitive. This initial primitive, which
could be node, edge or face, de�nes the scope of conditions for the contained
commands.

Commands, contained within compound command, could be either simple com-
mands or also compound commands.

Main features of compound commands will be described in more detail in fol-
lowing sections.

3.3.2 Isolated conditions

The most useful feature of the compound command is that it has limited scope
for applying conditions. Scope is limited to the set of primitives that compound
command creates, including initial primitive it was applied to. If initial prim-
itives has sub-primitives, they are also included to the scope set. So if initial
primitive is face, its border edges and corner nodes are included and if initial
set is edge, its ending nodes are included. After applying each new command
contained within compound command, scope set is increased by newly created
primitives. The topological relations are queried only within this scope.

(a) (b)

Figure 3.12: Compound command is applied to two faces in �gure (a). Com-
pound command splits faces into nine smaller faces and then split
the face that has eight neighbours. Result is in (b).

This feature allows to solve the problem illustrated in �gure 3.11. The desired
result can be acquired using compound commands and it is shown in �gure

30 Method

3.12(b). Compound command is applied to each of two squares in 3.12(a). So
the big square is initial primitive of the compound command and it de�nes the
scope of it. Compound command divides big square into nine small ones. After-
wards compound command splits faces that have eight neighbours. Only second
and �fth faces in the middle row are split, because in the scope of compound
command third and fourth faces have only �ve neighbouring faces.

Conditions isolated to the scope of the compound command allow to apply the
compound command the same way, no matter what is the context of initial
primitive. So if you create the compound command on the isolated face, the
same topological conditions will be valid if you apply it to the face surrounded
by other faces.

There is one problem that has to be addressed with this approach. It is described
in the following section.

3.3.3 Primitives accessed by more than one compound

command

It could happen that the same primitive belongs to two scope sets, for example
in the �gure 3.12(a) edge in the middle belongs both to the set of the left square
and the right square. It has to be split twice, but it could actually be split
four times, twice when applying the compound command to the left square and
twice, when applying it to the right square, even though it is not desired.

This problem is solved by checking if the command already been applied to some
primitive and it is not repeated, when applying compound command for di�erent
primitive set. However even though command is not repeated the second time
for the shared primitive, newly created primitives resulting from that command
are inserted into both scope sets. So nodes created after splitting the edge are
inserted both to the set of the left square and to the set of the right square.

However this would not produce the correct result, if two compound commands
were supposed to split shared edge with di�erent parameters, because newly
created nodes had di�erent positions. Nevertheless, it is di�cult to de�ne what
would be the correct result in this case. Therefore this case is treated the same
way as the one with the same parameters and more correct solution could be
one of future improvements.

3.3 Compound commands 31

(a) Data

Scope Parameter value
Initial primitive Edge length lini = 3
Compound command Ccc Length lcc = 5
· · ·
Preceding primitive Edge length lpre = 0.5
Contained command Ci Length li = 2
· · ·

(b) Calculation

Ccc mode Ci mode Calculation
Absolute Absolute l = lcc · li = 5 · 2 = 10
Absolute Relative l = lpre · li = 0.5 · 2 = 1
Relative Absolute l = lini · lcc · li = 3 · 5 · 2 = 30
Relative Relative l = lpre · li = 0.5 · 2 = 1

Table 3.2: Example of calculating length parameter

3.3.4 Relative parameters

All the parameters of commands contained within compound command are de-
�ned in relative mode � either relative to some preceding primitive or relative
to initial parameters of compound command. Relative relation means that all
scalar parameters, such as radius of the node or length of the edge are de�ned
as the proportion of the corresponding parameters. Direction parameters in
relative mode are de�ned using relative directions as base vectors.

Initial parameters of compound command itself can be de�ned in an absolute
manner or in relation with the parameters of initial primitive.

Example of calculation of length parameter is presented in table 3.2. You can see
that if contained command is in relative mode, its parameter is multiplied by the
length of respective preceding primitive. Otherwise, its parameter is multiplied
by the parameter of compound command, which is one again multiplied by the
length of initial primitive, if compound command is in relative mode.

The e�ect of relative primitives can be illustrated with simple compound com-
mand of primitive wind mill, that you can see in the Figure 3.13(a).

It is very easy to scale and rotate the result of compound command by using
parameters of compound command. For example in Figure 3.13(b) you can
see the same compound command, but its length parameter is set to two and

32 Method

(a) (b)

Figure 3.13: (a) Compound command of primitive wind mill (b) Compound
command of the same mill with twice as big length parameter
and di�erent direction parameters

(a) (b)

Figure 3.14: Compound command from Figure 3.13(a) is applied to the model
on the left, consisting of one big and four small squares. Result
is on the right.

3.4 Other improvements of the framework 33

direction parameters are changed. The resulting model is scaled by two and
rotated, even though initial face remains the same.

By changing initial face we can also change the resulting model, but only if
compound command is set to be relative to this initial primitive. This is illus-
trated in �gure 3.14. You can see that bigger square result in bigger mill than
those resulting from smaller squares. You will also notice that even though the
compound command is de�ned using quad as initial primitive, it could easily be
applied to face with �ve vertices as well.

3.3.5 Compound commands containing compound com-

mands

As it was mentioned before, compound commands can contain both simple com-
mands and other compound commands. This presents us with two challenges �
how to de�ne parameters and the scope of conditions.

The problem with parameters is solved by simply applying the calculation il-
lustrated in table 3.2 at each level of compound commands. So parameters of
higher level of commands are multiplied by parameters of lower level of com-
mands, unless lower level command is in relative mode, then its parameters are
multiplied by parameters of preceding or initial primitive.

The problem with scope is solved by de�ning the scope set of lower level com-
mand to be the subset of scope set of higher level command. For being able to
query these sets easily, they all are stored in stack data structure, so that the
lowest level compound command set is on top and highest on the bottom of the
stack. So the scope set of primitives is pushed to the stack when new compound
command is started being executed and is popped from the stack, when it is
�nished.

3.4 Other improvements of the framework

Several other improvements to the framework were implemented. They are
described below.

New conditions Firstly the set of conditions was incremented. Two geo-
metrical conditions we added � length of the edge and the area of the face.

34 Method

The area of the face was calculated by �rstly triangulating the face and then
adding together areas of triangles. Also one additional topological condition of
the number of neighbouring faces for faces was added. It is used for example in
�gure 3.11. In addition, condition that query positions is checked for all vertices
in the face and both nodes of the edge, not just the �rst vertex in the face and
preceding node of the edge. This is changed, because it is not easy to tell, which
of the nodes is the �rst one or the preceding one, just by looking at the model.

Improved user interface Main improvement of user interface was the ability
to de�ne parameters precisely, by inserting values to text �elds instead of setting
them with mouse. It is described in more detail in section 4.3.

Improved shading The shading of the models was improved by de�ning
normals. Normal at each vertex pi of the face was de�ned as cross-product of
directions de�ned by the previous vertex and next vertex:

n =
(pi+1 − pi)× (pi−1 − pi)
||(pi+1 − pi)× (pi−1 − pi)||

(3.11)

It was possible to de�ne normals consistently oriented, because faces were made
to be consistently oriented, as described in section 2.4.5 and illustrated in �gure
2.3. In addition, it is now possible to invert all normals, as this can result in
better shading. You can see di�erences in shading, depending whether normals
are de�ned or not in �gure 3.15.

(a) (b) (c)

Figure 3.15: Shading depending on the de�ned normals. (a) no normals de-
�ned, (b) normals more or less facing opposite direction to the
screen, (c) inverted normals of (b).

Relative directions Relative directions were de�ned in di�erent way. In
original framework each of the directions H, U , L were rotated by the angle

3.4 Other improvements of the framework 35

between directions of relative primitive Hr, Ur, Lr and respectively x-axis, y-
axis and z-axis. However this method wasn't transparent so it was changed to
the method, where Hr, Ur, Lr were used as base vectors:

Hnew = H[0] ·Hr +H[1] · Ur +H[2] · Lr (3.12)

Unew = U [0] ·Hr + U [1] · Ur + U [2] · Lr (3.13)

Lnew = L[0] ·Hr + L[1] · Ur + L[2] · Lr (3.14)

Here H, U , L are parameters of the command and Hnew, Unew, Lnew are calcu-
lated directions used for de�ning position of the new node and direction of the
new edge. [i] is the ith coordinate of the 3D vector.

Split face command Split face command was changed in the case, when
there were only two conditioned nodes. Before no matter how many nodes were
conditioned, new node was inserted in the barycentre of the face. Now, in the
case of two conditioned nodes, the face is split into two faces and the conditioned
nodes are connected by a new edge, but no new nodes are created, because it is
not necessary for splitting the face. If needed, new node can be inserted with
subsequent Split edge command.

(a) (b)

Figure 3.16: Result of the Split face command with two conditioned nodes:
(a) � before, (b) � now.

Changes in design Several changes to the design of the code were made,
mostly in the class hierarchy of the commands, which made it easier to include
new commands. It is described in more detail in section 4.2.

36 Method

Chapter 4

Implementation

G3 framework was implemented in C++ language. Additionally, these libraries
were used:

OpenGL was used for visualization of the model

Glui was used to make user interface

TinyXML was used for reading and writing to the xml �les.

GEL was used for operations with 3D vectors and quaternions. In addition
implementation of k -d tree from this library was used.

As was mentioned before, this project is extension of the framework developed
by A.N.Christiansen [Chr11].

Further several implementation issues will be described. The method for delet-
ing of primitives, which is necessary for merging algorithm, is speci�ed in section
4.1. Hierarchical class structure of commands is presented in section 4.2. Fi-
nally, the user interface is described in section 4.3.

38 Implementation

4.1 Deletion of primitives

n0 n1
del

n2
del

n3 n4
delnodes

deleted nodes

n0 n1
del

n2 n3 n4
delnodes

deleted nodes

delete node n1

insert new node

n0 n1 n2
del

n3 n4
delnodes

deleted nodes 2 4

2 4 1

4 1

Figure 4.1: Example of deleting a node and inserting a new node. Deleted
nodes are marked del and coloured in pink.

All the primitives of the model are saved in three lists � one for nodes, one for
edges and one for faces. Additional topological information, such as neighbour-
ing edges for each node, is saved as the list of indices. Therefore deleting of
the primitives is not so trivial to implement, because deleting of one primitive
would change the indices of all succeeding primitives in the list.

This problem was solved by keeping deleted primitives in the list, with the
boolean �ag that it is deleted. Additionally, the indices of deleted primitives
were recycled for newly created primitives. For being able to search easier for
unused indices, additional lists for indices of deleted primitives were created.

The example of deleting a node and inserting a new one is presented in �gure
4.1. As you can see, after deleting the node n1, it is still kept in the list of
nodes, but it is marked as deleted and is not used anywhere in modelling. Also
its index is appended to the end of deleted node list. When new node is created,
its index is taken form the start of the deleted node list and this new node is
stored in place of the deleted node n2.

4.2 Hierarchical class structure of commands 39

4.2 Hierarchical class structure of commands

Class structure of the code was changed to allow easier extension of the frame-
work with new commands. Current class hierarchy of commands presented in
�gure 4.2. Firstly, new class for each of the �ve simple commands was cre-
ated. They all expend expends class Command. Class Rule also expends class
Command. In addition to that it also contains a list of commands. One ad-
ditional class for compound commands was added. Class CompoundCommand
has both features of Command and features of Rule, because it also has list
of commands and we should be able to write it to �le. For this reason, class
CompoundCommand expands class Rule.

Figure 4.2: Class hierarchy of commands

All of the commands has virtual function execute. The function execute of
compound command calls functions execute of all contained commands one by
one. This architecture allows easier implementation of compound command

40 Implementation

composed of other compound commands. Moreover, it is possible to add new
types of commands without too many changes in the framework.

4.3 Description of user interface

Firstly the components of the main window, presented in �gure 4.3, will be
explained. They are marked with red rectangles and numbers in the corner.

5

4

3

2 6

7

1

Figure 4.3: Screen-shot of user interface

1. This is the OpenGL part of the window, where the model is visualized.
Yellow, magenta and cyan lines represent main coordinate system. Nodes
are visualized as spheres with corresponding radii, edges � as either line
segments or cylinders and faces � as polygons. This window was already
implemented.

4.3 Description of user interface 41

2. In this part of the window, we select which rules or commands to apply.
Applied rules and commands are presented in two lists. This was already
implemented.

3. This part of the window is for creating new compound commands. For
starting a new compound command, you should enter its name, descrip-
tion, select the type of initial primitive � node, edge or face and press
Start command button. Then all the traditionally applied commands or
rules would be the part of this new compound command and appear in
the list on the right, until you press button End command. This is my
contribution.

4. Here you can load and save rules to and from xml �les. This was already
implemented.

5. Here you can set values for all parameters, by typing numbers to text �elds.
The same text �elds are used to show values of parameters of the current
command. You can choose relative mode for command with check-box
Relative. This is my contribution.

6. This is the part of the window related with conditions. You select one
of the conditions in the list and which value you want it to be compared
to, then it appears in either conditions list or secondary conditions list.
Secondary conditions are for selecting secondary primitives. For example,
in the Split face case, we select primary conditions for faces and secondary
conditions for nodes in the selected faces. This part was already imple-
mented.

7. This is where you can select one of three options: check for intersection,
merge primitives or do nothing. This option can be set for each command
separately. This is my contribution.

Further I will explain some keyboard short-cuts, that can be used. Some func-
tions already existed, some were implemented by me.

Already implemented functions:

'esc' exits the program.

'p' prints all the nodes, edges and faces to the command line.

'1' toggles drawing of nodes

'2' toggles drawing of edges

'3' toggles drawing of cycles

42 Implementation

'4' toggles drawing of orientation of each node

'8' toggles drawing of edges as cylinders

'9' toggles lighting on and o�

'0' toggles drawing of axes of main coordinate system

'e' exports model to obj �le

'w' exports model to txt �le

'r' resets command to default parameters.

'z' undoes last command.

'x' undoes commands until selected command.

'c' undoes all commands

'<' go up applied commands list

'>' go down applied commands list

' ' apply selected command

Additionally I implemented:

't' triangulate all faces. This function is just for visualization, faces of the
model used for conditions remain the same.

'n' inverts normals of the model.

's' saves current view.

'l' loads saved view.

Chapter 5

Results

In this chapter several models made with improved Generic Graph Grammar
framework are displayed. All the renderings are done with Blender. Di�erent
materials are also selected with Blender, G3 is only responsible for the geometry
of the models.

Figure 5.1: The model of a house

The model of the house in �gure 5.1 is made using compound command for
creating windows. Using compound commands, windows can easily be made

44 Results

equally spaced, no matter what are the orientation and position of the walls.
Another compound command was used for door.

Figure 5.2: The model of a cupboard

For the cupboard model in �gure 5.2 the compound command for drawers was
used. As you can see the same compound command can be applied to narrow
faces to get drawers and to wider faces to get the doors for the sections of the
cupboard.

Figure 5.3: The model of a sofa

You can see sofa model with maple leaf pattern in �gure 5.3. Compound com-
mand allows to position maple leaves at the surface of the sofa with any orien-
tation.

Merging was used for the �rst three the models to make topologically consis-
tent models, to avoid duplicate primitives and to allow topological queries for
conditions with predictable results.

45

(a) (b)

Figure 5.4: Tree in the box model.

Model displayed in �gure 5.4 illustrates the use of intersection testing for artistic
purposes. This model is made using almost the same rule as previously described
model in �gure 3.6. This model is not rendered with Blender, because the only
faces that it has belong to restricting box. This model has skeleton structure,
which needs to be further processed to get 3D model that could be rendered,
therefore it is visualized as the screen-shot of the program.

Some statistics, concerning the production of the models is listed in table 5.1. As

House Cupboard Sofa Tree
Number of nodes 494 206 6824 6285
Number of edges 1088 417 10447 6292
Number of faces 596 213 3619 9
Generation time 0.31 s 0.16 s 50.22 s 6.14 s
Number of commands 53 61 90 42
Size of the model 29 KB 12 KB 366 KB 346 KB
Size of rule �le 76 KB 69 KB 122 KB 58 KB

Table 5.1: Statistics of four models

you can see, generation time is quite small for smaller models, but it can increase
up to one minute, when the number of polygons exceeds several thousands. This
increase of time is mostly because conditions are check quite slowly within such
a big set of primitives.

Also you can notice that for the smaller models it is more e�cient to store

46 Results

geometric representation of models, while for bigger models rule �les take much
less space than model �les. First three models are saved in obj format and tree
in a box model is simple text �le with positions and radii of the nodes and
indices of edges. These model �les are compact, while rules are saved in xml �le
format, which is quite wordy. If more compressed �le format would be chosen
for rules, the saving of space could be noticed even in the smaller models.

All the timing were measured on the computer with 64-bit Windows 7 operating
system, Intel(R) Core(TM)2 Duo CPU processor and 4 GB RAM.

Chapter 6

Conclusion and future work

The general procedural modelling tool Generic Graph Grammar was extended
with three main features. Merging of coinciding primitives enabled us to cre-
ate topologically consistent models, without any excess of duplicate primitives,
which not only resulted in reliable application of conditions, but also helped to
create di�erent models. Intersection testing between di�erent primitives helped
to avoid unrealistic self-intersecting models, in the same time being interesting
modelling option in itself. Compound commands allowed us to limit the checking
of conditions within some scope and additionally, served as the rules that could
be �exible positioned and oriented. Their usefulness in creating various patterns
is illustrated with the models presented in results chapter. Furthermore, several
small improvements were made to facilitate the usage of G3, including adjust-
ments to commands, addition of new conditions and improved user interface.

However, there are still areas where the framework could be improved. Firstly,
intersecting testing can be accelerated with faster intersection testing algorithms
and using bounding volume hierarchy. In addition, the result of intersection
test could have an e�ect to the whole rule not just one command. Further, the
main limit of compound commands is that conditions are always used in abso-
lute manner, so compound commands are not entirely invariant to scaling and
translation. Implementation of relative conditions would be a great improve-
ment. Finally, the whole framework could be improved with the use of user
de�ned parameters and possibility to have arithmetic and logical expressions

48 Conclusion and future work

with them.

Bibliography

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Natty Ho�man. Real-
Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA,
USA, 2008.

[BE92] Marshall Bern and David Eppstein. Mesh Generation and Optimal
Triangulation. In F. K. Hwang and D. Z. Du, editors, Computing
in Euclidean Geometry. World Scienti�c, March 1992.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509�517, September
1975.

[Chr11] Asger Nyman Christiansen. Generic graph grammer: A simple
graph grammer for generic procedural modelling. In Computer &
Graphics, 2011.

[dBSvKO08] Mark de Berg, Otfried Schwarzkopf, Mark van Kreveld, and Mark
Overmars. Computational Geometry Algorithms and Applications.
Springer-Verlag, Berlin Heidelberg, third edition edition, 2008.

[FYK10] David Fletcher, Yong Yue, and Majid Al Kader. Challenges and
perspectives of procedural modelling and e�ects. In 2010 14th
International Conference Information Visualisation, 2010.

[GEL] Geometry and linear algebra framework. http://www2.imm.dtu.
dk/projects/GEL/.

[Hav05] Sven Havemann. Generative Mesh Modeling. PhD thesis, Institute
of Computer Graphics, Braunschweig Technical University, 2005.

http://www2.imm.dtu.dk/projects/GEL/
http://www2.imm.dtu.dk/projects/GEL/

50 BIBLIOGRAPHY

[KM] George Kelly and Hugh Mccabe. Itb journal a survey of procedural
techniques for city generation.

[KPK10] Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized use of
non-terminal symbols for procedural modeling. Comput. Graph.
Forum, 29(8):2291�2303, 2010.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and
Luc Van Gool. Procedural modeling of buildings. ACM Trans.
Graph., 25:614�623, July 2006.

[PL96] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc., New
York, NY, USA, 1996.

[SdKG+09] Ruben M. Smelik, Klaas Jan de Kraker, Saskia A. Groenewegen,
Tim Tutenel, and Rafael Bidarra. A survey of procedural methods
for terrain modelling. In Proceedings of the CASAWorkshop on 3D
Advanced Media In Gaming And Simulation (3AMIGAS), 2009.

[TMW02] Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. A
multiresolution mesh generation approach for procedural de�ni-
tion of complex geometry. Shape Modeling and Applications, In-
ternational Conference on, 0:35, 2002.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, andWilliam Rib-
arsky. Instant architecture. ACM Trans. Graph., 22(3):669�677,
July 2003.

	Summary (English)
	Preface
	Acknowledgements
	1 Introduction
	1.1 What is procedural modelling?
	1.2 The goal of the project

	2 Related Work
	2.1 L-systems
	2.2 CGA shape grammar
	2.3 General procedural modelling
	2.4 Generic Graph Grammar
	2.4.1 Object representation
	2.4.2 Generations of the graph
	2.4.3 Parameters
	2.4.4 Conditions
	2.4.5 Commands
	2.4.6 Rules

	3 Method
	3.1 Merging of primitives
	3.1.1 Undesirable topological situations in the mesh
	3.1.2 Merging algorithm

	3.2 Self-intersection checking
	3.2.1 Intersection of two line segments
	3.2.2 Triangle and line segment intersection
	3.2.3 Intersection of two triangles
	3.2.4 Triangulation of polygons

	3.3 Compound commands
	3.3.1 Concept of compound command
	3.3.2 Isolated conditions
	3.3.3 Primitives accessed by more than one compound command
	3.3.4 Relative parameters
	3.3.5 Compound commands containing compound commands

	3.4 Other improvements of the framework

	4 Implementation
	4.1 Deletion of primitives
	4.2 Hierarchical class structure of commands
	4.3 Description of user interface

	5 Results
	6 Conclusion and future work
	Bibliography

