
A Simulator for high level Petri
Nets: Model based design and

implementation

Mindaugas Laganeckas

Kongens Lyngby 2012
IMM-M.Sc.-2012-101



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc.: ISSN 0909-3192



Summary

In this master project, we designed and implemented a simulator for high level
Petri nets. The design and implementation of the simulator uses the state of
the art model based techniques in Software Engineering. The tool is built on
top of ePNK [12] - a model based graphical Petri Net editor. Our Simulator
conforms1 to both ISO/IEC 15909 standards [8] and [9]. Furthermore, in this
work, we present a powerful variable binding algorithm of our Simulator.

The Simulator comes with two extensions. The first one deals with a simulation
of complex physical systems. Simply by “playing the token-game” is difficult to
understand a behavior of such system. This concept was already presented in
[13] where PNVis - a 3D visualization of low level Petri Nets - was introduced.
In comparison to PNVis our extension of the Simulator supports high level
Petri Nets. Furthermore, this support comes ‘out of the box’ i.e. one does not
need to extend the existing high level Petri Net to make it work with the 3D
visualization engine2. In our project we provide a general framework with a set
of predefined functions3 to simulate physical systems.

The second extension is a contribution to the simulation of distributed systems
using Petri nets. More precisely, our extension deals with network algorithms.
Each network algorithm (Petri net model) operates on some network, where
entities are represented as nodes and communication channels - as edges. This

1Due to time constraints we have implemented only a part of data types and operations de-
fined in ISO/IEC 15909-2 [9]. However, it is easy to complete the implementation of ISO/IEC
15909-2 due to the openness of our framework.

23D visualization engine [24] was developed in a student project of a course Software
Engineering 2.

3As our working example we chose to simulate a train train traffic control system.



ii

kind of Petri net models4 are network structure independent, i.e. they does not
depend on the number of nodes in the network or on the way the nodes are
connected to each other. In our project we provide a general framework with a
set of predefined functions5 to simulate network algorithms.

4This type of Petri nets are called net schemes [14].
5The examples were taken from the literature [11], [15] and [21].



Preface

This thesis was prepared at Informatics and Mathematical Modelling, at the
Technical University of Denmark in partial fulfillment of the requirements for
acquiring the M.Sc. degree in engineering.

The main focus of the thesis is a simulator for high level Petri nets. A design and
implementation of the simulator uses the state of the art model based techniques
in Software Engineering.

The thesis was conducted under the supervision of Assoc. Prof. Ekkart Kindler.

Lyngby, August 2012

Mindaugas Laganeckas



iv



Acknowledgements

I thank my advisor Assoc. Prof. Ekkart Kindler for the continuous support
during my M.Sc. project, for his patience, great suggestions how to improve the
thesis and immense knowledge.

I dedicate my M.Sc. thesis to my beloved wife Vaida Laganeckienė.



vi



Glossary

In glossary we informally introduce the basic algebraic notations [23], multisets,
low and high level Petri nets. We later use these definitions to explain Petri
nets6.

Constant : denotes a fixed quantity that does not change, e.g. 1.

Variable : denotes a symbol that is assigned to a value, e.g. x, y, or z.

Coefficient : is a number that is placed in front of a variable, e.g. 5x.

Operator : is a symbol that represents an operation in infix notation or in
function application notation, e.g. +, -, /, *, f(), g(5).

Term : can be a constant, a variable with a coefficient, a legal combination of
variables, constants and operators, e.g. 5, 4 * x, x * y.

Closed (Ground) Term : a term without variables, e.g. 5.

Assignment : a value binding to a variable, e.g. x ← 5 or [ x ← 5, y ← 7, z
← 11 ].

Term Evaluation : computes an actual value of a term with the given variable
bindings. For example, true and true evaluates to true. Furthermore, if
we have an assignment x ← 7 and we need to evaluate a term x + 5 then
the term evaluates to 7 + 5 = 12.

6The reader can find the precise meaning of each definition regarding Petri nets presented
here in ISO/IEC 15909 [8].



viii Glossary

In high level Petri nets, a place marking is represented by a ground-term, which
must be a multiset over the place’s type. Furthermore, an arc inscription is also
represented as a multiset over the respective place’s type. Thus we would like
to explain some of multiset operations in a greater detail here7.

Multiset : a set where repetition of elements is allowed. For example, 2‘3 -
two instances of an item 3 and one instance of an item 4.

Multiplicity : a positive number (≥ 0) of occurrences of an element in the
multiset. 1‘4 ++ 2‘3 - a multiplicity of an item 3 is 2.

Multiset addition (++) : a sum of multisets is computed by summing up
the multiplicities which shares the same element. For example, if we have
a multiset 1‘5 and another multiset 2‘8, then their sum is 1‘5 ++ 2‘8
(elements 5 and 8 are different). On the other hand, if we have the third
term 3‘5, then the sum is 1‘5 ++ 2‘8 ++ 3‘5 = 4‘5 ++ 2‘8. A multiplicity
(1 ) of 1‘5 was added to a multiplicity (3 ) of 3‘5, since they both share
the same element 5.

Multiset comparison : if we have two multisets A and B, we say that A ≥
B if and only if ∀ bi ∈ B ⇒ bi ∈ A and a multiplicity each element bi ∈ B
is less or equal to a multiplicity of bi ∈ A. For example, 3‘5 ≥ 1‘5, since
3 ≥ 1. The same holds to 3‘5 ++ 1‘8 ≥ 1‘5. On the other hand, two
multisets 3‘5 and 1‘8 are incomparable, since an element 5 is not present
in the second multiset and an element 8 is not present in the first multiset.

Multiset subtraction (−−) : we can subtract two multisets A and B if and
only if A ≥ B. A difference of two multisets is computed by subtracting
multiplicities which shares the same element. For example, if we have a
multiset 4‘5 and another multiset 1‘5, then their difference is 4‘5 −− 1‘5
= 3‘5.

Next we present definitions for low level Petri nets which we use to explain them
in Chapter 3. Figure 1 a) shows an initial state of a low level Petri net. Figure
1 b) shows a state of the same low level Petri net after transition t1 has fired.

Place : a node of a graph represented in ellipse, e.g. p1, p2, p3 (see Figure 1
a)).

Transition : a node of a graph represented in rectangle, e.g. t1, t2 (see Figure
1 a)).

7All necessary definitions regarding Petri nets will be explained later in the glossary.



ix

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

a) b)

Figure 1: Low-level Petri net example

Arc : an arrow connecting a place to a transition or a transition to a place.

Input Place (of a transition) : places p1 and p3 are input places of a tran-
sition t2 (see Figure 1 a)).

Output Place (of a transition) : places p2 and p3 are output places of a
transition t1 (see Figure 1 a)).

Input Arc (of a transition) : an arc connecting input place with a transi-
tion.

Output Arc (of a transition) : an arc connecting output place with a tran-
sition.

Token : a black circle inside the place (see Figure 1 a)).

Marking of a place : a runtime number of tokens on a place.

Marking (of a net) : a set of runtime values of net places.

Initial Marking of a place : the initial number of tokens on a place.

Initial Marking (of the net) : a set of initial place markings.

Enabling (a transition) : a transition is enabled in a marking if each input
place has at least on black token on it (see Figure 1 a): transition t1 is
enabled).

Transition Occurrence (Transition Rule, Transition Firing Rule) : af-
ter firing a transition one black token is removed from each input place
and one black token is added to each output place of the fired transition
((see Figure 1 b)).



x Glossary

Finally we present definitions for high level Petri nets which we use to explain
them in Chapter 3. Figure 2 shows a Petri net which does prime factorization,
i.e. if we have a number 12 then its prime factors are: 2 * 2 * 3 = 12. Figure 3
depicts the same Petri net after a transition has been fired.

Figure 2: A high level Petri net example. A black text at the top left corner
is a place initial marking. A blue text at the top right corner of a place is
a runtime place marking (runtime value). In this example, a place runtime
marking is equal to its initial marking. A green overlay on a transition indicates
enabled transition. A pop up menu shows available firing modes for the selected
transition.

Figure 3: A high level Petri net example after a transition has occurred. A blue
text at the top right corner of a place is an runtime place marking (value).

Sort : is a name of a set. In the example given above we used built in sort
INT.

Arc Annotation (Inscription) : an expression on the arc which evaluates to
a multiset. Input arc inscription has the same type as an input place. The



xi

same holds for output arc inscription. Figure 2:

1. input arc inscription 1‘(x*y)

2. output arc inscription 1‘x ++ 1‘y

Transition Condition (Guard) : a boolean term on a transition. Figure 2:
x > 1 and y > 1.

Runtime Marking of a place : a multiset over place’s sort assigned to a
place during runtime. Figure 3: after the transition has fired, a new
marking of a place is 1‘4 ++ 2‘3.

Initial Marking of a place : a multiset over place’s sort assigned to a place
initially. Figure 2: an initial marking of a place is 1‘4 ++ 1‘9.

Transition (Firing) Mode : a set of variable assignments which results in an
enabled transition. Figure 2: a set of variable assignments: [[x ← 2, y ←
2], [x ← 3, y ← 3]].

Enabling (a transition) : Figure 2: a transition (colored in green) is en-
abled. It means that after making a variable assignment and evaluating
each input arc inscription for the transition the corresponding input place
marking was greater or equal to the arc evaluation and the transition
conditions was satisfied.

Transition Occurrence (Transition Rule, Transition Firing Rule) : first
of all a transition has to be enabled. Figure 2 depicts enabled transition
(in green). Figure 3 depicts a Petri net where the enabled transition was
fired with the firing mode [ x ← 3, y ← 3] :

1. For each input place of the transition the respective evaluated input
arc inscription value is subtracted from that place marking

2. For each output place of the transition the respective evaluated out-
put arc inscription value is added to that place marking



xii



Contents

Summary i

Preface iii

Acknowledgements v

Glossary vii

1 Introduction 1

2 Related work analysis 5

3 Informal introduction to Petri nets 9
3.1 Low level Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 High level Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Petri net features . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Simulation algorithm 15
4.1 Term evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Variable binding algorithm . . . . . . . . . . . . . . . . . . . . . 25
4.4 Transition occurrence . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Tool comparison 31
5.1 Simulator comparison to CPN Tools . . . . . . . . . . . . . . . . 31
5.2 A power of Simulator variable binding algorithm . . . . . . . . . 33

6 Basic technology 35
6.1 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xiv CONTENTS

6.2 EMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 GMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 ePNK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Simulator design 41
7.1 Runtime values and simulation states . . . . . . . . . . . . . . . . 41
7.2 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Simulator view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Simulator validation . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . 57
7.6 Firing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.7 Simulator extension points . . . . . . . . . . . . . . . . . . . . . . 63

8 Simulator evaluation 67
8.1 Train traffic control system . . . . . . . . . . . . . . . . . . . . . 67
8.2 Network algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Handbook 85
9.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Simulation view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 Network algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.4 Visual Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.5 Currently supported sorts and operations . . . . . . . . . . . . . 92

10 Future work 95

11 Conclusions 99



Chapter 1

Introduction

Petri Nets are a powerful mathematical and graphical notation for modeling,
analyzing and designing a wide range of discrete-event systems. Traditionally,
Petri Nets are distinguished into two major kinds: low level Petri Nets and
high level Petri Nets (HLPNs) also known as Colored Petri Nets (CPNs) [10].
There are many syntactical differences between the two types of nets [19], which
make HLPNs much more concise then low level Petri Nets. The main difference
between HLPNs and low level Petri nets is that HLPNs have colored tokens.
Each color of a token represents a different data object in a model. Whereas
in case of low level Petri Nets, all (black) tokens correspond to the same data
object.

The rich feature set of HLPNs helps Petri Net experts to model a wide variety
of complex systems. But this support during modeling comes at a cost: the
simulation of the HLPNs becomes more complicated than low level Petri nets.
Thus the computer tool support for the simulation of the HLPNs is necessary
here.

In this master project, we design and implement a simulator for high level Petri
Nets. The tool is built on top of ePNK [12] - a model based graphical Petri Net
editor providing functionality to create user defined Petri Net extensions. Our
Simulator is similar to one which is already available and well known on the
market - CPN tools [20]. However, the main difference between our tool and



2 Introduction

already existing tools is that our Simulator conforms to both ISO/IEC 15909
standards [8] and [9]. To our knowledge, currently there is no such HLPNs
simulator fully1 supporting both above mentioned standards.

Our solution can be split into three main parts - an algorithm to simulate high
level Petri nets, an architecture providing clear interfaces for future extensions
and an evaluation of our solution.

In this document we present our high level Petri net simulation algorithm. We
have already mentioned that our Simulator conforms to both ISO/IEC 15909
standards [8] and [9]. In addition, we present our new ideas for variable binding
algorithm. Briefly, high level Petri nets have arcs with their inscriptions. These
inscriptions can contain variables and be arbitrary complex. In order to find
out, if a transition is enabled in a given marking, we need to bind each variable
in each incoming arc inscription of the transition. But the binding is tricky
here - we need to “guess” a value for each variable so that each arc inscription
evaluates to concrete tokens presented on each respective place. The variable
binding algorithm is the core of our Simulator. We will present our simulation
algorithm in more details in Chapter 4.

We consider openness of our Simulator architecture as one of the main require-
ments. It has to be possible easily to add new operations or define new data
types. Moreover, the variable binding algorithm, which we have mentioned in
the previous paragraph, has to be open for extensions. We will dedicate Chapter
7 for the Simulator architecture.

The Simulator comes with two extensions. The first one deals with a simulation
of complex physical systems. The extension helps experts where “‘playing the
token-game’ is not enough for understanding the behavior of a complex system”.
This concept was already presented in [13], where PNVis - a 3D visualization of
low level Petri Nets - was introduced. In comparison to PNVis, our extension
of the Simulator supports high level Petri Nets. And what is most important,
this support comes ‘out of the box’ i.e. one does not need to extend the existing
high level Petri Net to make it work with the 3D visualization engine. For our
project we extended an already existing 3D visualization engine2 [24].

The second extension is a contribution to the simulation of distributed systems
using Petri nets. More precisely, our extension deals with network algorithms.
Each network algorithm (Petri net model) operates on some network, where

1Due to time constraints we have implemented only a part of data types and operations de-
fined in ISO/IEC 15909-2 [9]. However, it is easy to complete the implementation of ISO/IEC
15909-2 due to the openness of our framework.

23D visualization engine [24] was developed in a student project of a course Software
Engineering 2.



3

entities are represented as nodes and communication channels - as edges. This
kind of Petri net models are network structure independent, i.e. they does not
depend on the number of nodes in the network or on the way the nodes are
connected to each other. This type of Petri nets are called net schemes [14].
We will explain what the net schemes are and what the main difference between
ordinary Petri nets and net schemes is in Chapter 8.

We will explain each part of our project in more details in the following chapters.
But first of all let us compare our solution with best currently available HLPNs
simulators.



4 Introduction



Chapter 2

Related work analysis

In this chapter we will compare our Simulator with other currently available
tools ([1] and [2]). Apparently a significant part of the available tools are not
supported anymore. In order to narrow our search down even more, we applied
a set of criteria for the tools.

High level Petri nets First of all, a tool must support high level Petri nets.

Graphical editor A tool must have a graphical user interface to interact with
a user. For example, a user must have a possibility to create a new high level
Petri net model or edit an existing one.

Simulator Since our project is mainly about simulating high level Petri nets,
thus we expect a tool to have simulation capabilities. Moreover, we expect a tool
to support token animation on top of the Petri net model, which was opened in
a graphical editor window.

Conformance to ISO/IEC 15909 Currently, there are two ISO/IEC stan-
dards for Petri nets. The first one is ISO/IEC 15909-1 [8] and it deals with a



6 Related work analysis

mathematical definition of Petri nets, their graphical representation (Petri net
graphs) and a mapping between graphical representation and the mathemati-
cal model. The second one, ISO/IEC 15909-2 [9], defines a transfer format for
Petri nets so that different Petri net tools can use the same models. The format
is called Petri Net Markup Language (PNML). Furthermore, ISO/IEC 15909-2
defines a set of data types and operations which interpretation is fixed. A tool
conforming to both ISO/IEC 15909-1 and ISO/IEC 15909-2 needs to take into
account all above mentioned facts.

Handle PNML Currently, there are only few tools which completely conform
to ISO/IEC 15909-2 [9]. The reason behind being simple - the standard appeared
only in 2011 and many tools are older than 2011. To our knowledge, tools, which
fully conform to ISO/IEC15909-2 [9], can only work on a PNML document -
import it, export it or validate it. An example of such tool is PNML framework
[7]. The framework offers such functionality as to save Petri net into a PNML
file and load a Petri net from a file or validate it. Even though PNML framework
does support the standard, we do not consider it as our competitor since it is
meant to operate only on a file exchange format but not execute the model.

High level Petri net tool evaluation H. Störrle [22] presents an evaluation
of high level Petri net tools. The tools were compared in various settings, e.g.
easy installation, user friendliness, openness for extensions, simulation/anima-
tion and verification support etc. Finally, each tool was assigned a numerical
value - a score of a tool, which was a sum of partial evaluation scores. The
author of [22] did not consider ISO/IEC 15909, since it was not available at
that time. The author of [22] concluded that CPN tools [20] is the best tool
available on the market.

Next, we compare CPN tools [20] with our Simulator. First of all, CPN tools
supports high level Petri nets, has a graphical editor and a simulator equipped
with it. Moreover, CPN tools completely conforms to ISO/IEC 15909-1 [8].
Furthermore, CPN tools uses the CPN ML1 language to specify declarations
and net inscriptions2. CPN tools by using CPN ML efficiently solved variable
declared in arc inscriptions binding problem. However, we see this CPN tools
dependency on CPN ML rather limiting property. This solution appeared to
be tightly coupled to CPN tools, meaning, now it is difficult to change the core
of the variable binding algorithm. Our Simulator, which is completely open for
extensions, has a more powerful variable binding mechanism than CPN tools3.

1CPN ML is an extension of the functional programming language Standard ML [18].
2We will explain net inscriptions in Chapter 3.
3We will present the actual comparison of the tools in Chapter 5 after we introduce our



7

Modeling environments Another set of tools e.g. PEP [6] or CPN AMI
[16], are so called modeling environments. Mainly, their focus is on new tools
integration. Usually, they come with a simulator and a graphical editor as well.
Still, our Simulator uses more powerful variable binding mechanism than other
currently available simulators.

After doing a research on the tools currently available on the market, we consider
our Simulator as having features which were not introduced by other high level
Petri net simulators. To our opinion, the Simulator feature set which we present
in this document, e.g. openness for extensions and a powerful transition binding
algorithm, will be used by researchers and modelers.

simulation algorithm.



8 Related work analysis



Chapter 3

Informal introduction to Petri
nets

In this chapter we will briefly explain what Petri nets are and what they are good
for. The reader can find an explanation of each unknown notation presented in
this chapter in Glossary.

Before we start explaining what Petri nets are we would like to remind the
reader, that there are many types of Petri nets. In this chapter we will focus
only on low and high level Petri nets. We will give a working example of each
type of Petri net and explain its syntax and semantics. After presenting several
examples of Petri nets of different kinds we will sum up1 what common is among
various kinds of Petri nets.

First, we start by introducing low level Petri nets.

3.1 Low level Petri nets

In this section we will informally explain low level Petri nets by following the
example depicted in Figure 3.1. Figure 3.1 is split into 4 parts showing 4 different

1The formal presentation of Petri nets is followed by [5].



10 Informal introduction to Petri nets

states of the same Petri net. The Petri net given in example has three places
(depicted in ellipse) and two transitions (depicted in rectangle).

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

t1

t2

p2 p3

p1

a) b)

c) d)

Figure 3.1: Low-level Petri net example

a) The quarter a) of the figure shows the initial state of the Petri net. In
the initial state, the place p1 has initial marking - two black tokens. And only
transition t1 is enabled in the given marking. Simply speaking, for a transition
to be enabled in a given marking each input place must have at least one black
token inside. Since place p3 has no black tokens inside, the transition t2 is not
enabled. Once we find an enabled transition (in our case t1 ), it can be fired.

b) Figure 3.1 b) shows the same Petri net after transition t1 was fired. Tran-
sition firing is done simply by removing one black token from each input place
and adding one black token to each output place of the respective transition.



3.2 High level Petri nets 11

Thus now we have that places p1, p2, p3 have one token each. Blue color over-
lay indicates a fired transition. Now both transitions t1 and t2 are enabled and
we can choose to fire either t1 or t1.

c) Figure 3.1 c) shows the same Petri net after transition t2 was fired. Now
only transition t1 is enabled.

d) Figure 3.1 d) depicts the Petri net after t1 was fired. There are no more
enabled transitions anymore.

Next let us look at high level Petri nets.

3.2 High level Petri nets

In this section we will introduce high level Petri nets by using example depicted
in Figure 3.2. This Petri net does prime factorization, i.e. if we have a number
12 then its prime factors are: 2 * 2 * 3 = 12.

Figure 3.2: A high level Petri net example. A black text at the top left corner
is a place initial marking. A blue text at the top right corner of a place is
a runtime place marking (runtime value). In this example, a place runtime
marking is equal to its initial marking. A green overlay on a transition indicates
enabled transition. A pop up menu shows available firing modes for the selected
transition.

This time a Petri net has only one place and one transition. The place is at



12 Informal introduction to Petri nets

the same time input and output place of the transition. Moreover, the initial
marking of the place is a multiset over integers2 - 1‘4 ++ 1‘9. Furthermore, the
input and output arcs have the following inscriptions 1‘(x*y) and 1‘x ++ 1‘y
respectively. Finally, a transition has a guard x > 1 and y > 1 requiring that
both x and y are greater than 1.

In order to find out if the transition is enabled, we need to find such values for
x and y that 1‘4 ++ 1‘9 ≥ 1‘(x * y). In our case it is obvious, that the above
given inequality is satisfied when x * y = 4 or x * y = 9. If [ x ← 2, y ← 2],
then the equation x * y = 4 is satisfied. The same holds for x * y = 9 when [
x ← 3, y ← 3].

The transition is enabled, since we found variable bindings, which satisfies the
input arc inscription and transition condition. We fire the transition with the
second variable binding [ x ← 3, y ← 3]. After the transition fires, a value
retrieved from evaluating the input arc inscription is subtracted from the input
place marking, i.e. 1‘4 ++ 1‘9 – 1‘(3 * 3) = 1‘4. After subtracting, a value
retrieved from evaluating the output arc inscription is added to the output place
marking, i.e. 1‘4 ++ 1‘3 ++ 1‘3 = 1‘4 ++ 2‘3.

Figure 3.3 shows the same Petri net after the transition has occurred. We can
see that the transition is still enabled but this time only one variable binding is
possible [ x ← 2, y ← 2].

Figure 3.3: A high level Petri net example after a transition has occurred

21‘4 ++ 1‘9 denotes a multiset with two elements 4 and 9. Each element is repeated once
in the multiset, i.e. a multiplicity of each element is 1.



3.3 Petri net features 13

3.3 Petri net features

After presenting two kinds of Petri nets - low and high level - we can see that
both of them share some common features. J. Desel and G. Juhás [5] presents
what are well known common features among various kinds of Petri nets. To
sum up our short introduction to Petri nets let us briefly review each such
features separately in a context of low and high Petri nets3.

An informal definition of the Petri net formalism: Petri nets are a graphical
and mathematical notion for modeling distributed systems and analyzing their
properties [10].

Petri nets graphical notion First of all, Petri nets have a well established
graphical notion. This graphical notation is also called a Petri net graph. Fig-
ures 3.1 and 3.2 depicts low and high level Petri nets respectively. Both kinds
of Petri nets have places, transitions and arcs in common.

Petri nets mathematical notion Petri nets have a precise mathematical
notion. The reader can find a presentation of high level Petri nets mathematical
notion in [14].

Occurrence rule Simply speaking, an occurrence rule defines when a transi-
tion is enabled and what happens after an enabled transition is fired. We have
explained occurrence rule in a context of low and high Petri nets in the previous
sections. Here we present the occurrence rule in a context of high level Petri
nets. Let us say that M denotes a marking of a Petri net.

Analysis methods A Petri net formalism is equipped with many analysis
methods. In this paragraph we will discuss two most popular methods for
analyzing Petri nets - verification and simulation.

Verification is a formal method to check if the property of interest always holds
true. Usually, in verification one constructs a reachability graph from the Petri
net and then performs further investigation on it. For larger Petri nets verifica-
tion often suffers from the state space explosion.

3We will focus more on high level Petri nets since low level Petri nets is only a subset of
high level Petri nets.



14 Informal introduction to Petri nets

In Petri nets, a simulation is a process of choosing a transition among enabled
transitions in a given marking and firing it with the particular firing mode. It
is up to the Petri net expert which enabled transitions will be chosen to fire
during the simulation. In comparison with the verification, during the simula-
tion usually only a part of the possible runs are explored. Thus the simulation
is similar to program testing - an expert can check particular system properties
but cannot prove the correctness of the system (unless all possible runs are ex-
amined). Performing the simulation manually (with a pencil and a paper) is an
error prone process. Thus a computer tool support is necessary to speed up the
process.

Next we discuss our high level Petri net simulation algorithm.



Chapter 4

Simulation algorithm

The Petri net depicted in Figure 4.1 models a naive packet transmission protocol
over some network1. The model assumes that neither packets nor acknowledg-
ments are lost during the transmission. Initially, there are only 3 packets to send
“COL”, “ORED” and “PNET” (see Packets to send). The order of the packets
traveling through network is important2 and managed by a holder of the next
package number - Next send. The result of the transmission is accumulated in
Received packets.

Initial marking In order to simulate the given Petri net first of all, we have
to find out which places have initial marking. In our case, the places Packets
to send, Next send and Received packets have the initial marking accordingly
1‘(1,“COL”) ++ 1‘(2, “ORED”) ++ 1‘(3,“PNET”), 1‘1 and 1‘ “”.

Enabled transitions The next step is to find all enabled transitions by com-
puting the variable bindings. It is easy to see that only all input places for Send
packet has an initial marking. Thus, we can bind (n,d) to (1,“COL”), or to
(2,“ORED”), or to (3,“PNET”) from Packets to send. Since, n can be bound

1The example was adapted from [10]
2Each packet is pair of a sequence number and a payload - INTxDATA.



16 Simulation algorithm

Figure 4.1: Simple transmission protocol

only to 1 from Next send marking, transition Send packet is enabled with the
respective variable binding: n=1 and d=“COL”.

Transition occurrence Finally, we can choose one transition among all en-
abled (in our example we have only one enabled transition Send packet) and
fire it. We have discussed transition firing in the previous chapter. Figure 4.2
displays the same Petri net after the first transition has been fired.

If we tried to complete the simulation of the given Petri net, we would need to
compute the enabled transitions 15 times and accordingly update place mark-
ings. Obviously, a simulation of more advanced Petri nets is an error-prone
process therefore we have devised an algorithm to perform above listed tasks
automatically.

Next we will discuss the major parts of our simulation algorithm.



4.1 Term evaluation 17

Figure 4.2: Simple transmission protocol after firing first enabled transition

4.1 Term evaluation

Probably, the easiest part of the simulation algorithm is term evaluation. By
applying an evaluation on a term we compute the actual value of it. In order to
perform an evaluation, our simulation algorithm needs to know the given data
types and operations.

Runtime marking First, our simulation algorithm (Simulator) starts by con-
verting initial place marking to its runtime marking. For example, let us say we
have a place, which initial marking is concatstring3(”A”,”B”). Our simulation
algorithm cannot do anything with this term - first, it needs to compute the
actual value of it. For that, our Simulator needs to know a data type called
STRING and how to perform a concatenation of two strings.

Arc inscription and transition condition Once the Simulator finishes
evaluating initial marking of each place, it starts checking each transition if
it is enabled. For a transition to be enabled, its condition needs to be satisfied.

3An operation concatstring takes two strings as input arguments and concatenates them,
i.e. concatstring(”A”,”B”) evaluates to “AB”.



18 Simulation algorithm

Furthermore, each input arc inscription value needs to be less or equal to the
respective place runtime value. Important thing to notice here, an evaluation of
arc inscriptions and transition conditions is slightly different from initial place
marking evaluation. In contrast to initial marking, variables are allowed in arc
inscriptions and transition conditions. Accordingly, we replace each variable
with the respective value and then perform evaluation in a usual manner. Thus,
in our example set we will mainly focus on the initial place marking evaluation.

Figure 4.3: The major cases for term evaluation

Technical examples The Figure 4.3 depicts a technical example of a Petri
net where different terms occur.

First of all, an evaluation can be very simple as shown for a place called simple.
Here the initial marking is 1‘1 and the runtime value is 1‘1 4.

4For primitive data type terms such as numbers or strings we will use the same represen-
tation as for the respective values. For example, we will represent a term 1 in the same way
as its value 1.



4.1 Term evaluation 19

A little bit more complex example is given in arithmetic expression. In order
to evaluate 5 + 8 we need to convert 8 and 5 to values in the same way as in
the previous example. Then we can apply a number addition operation on the
computed values.

Our Simulator is not limited only to built in operations. If needed, a user
can define new operations which is a composition of built in operations or any
arbitrary operation. In the third example (see user defined operation), first, we
need to evaluate the user defined operations sum() and g() and only than we
can compute the final runtime value.

The fourth example deals with user defined sorts (see allAgents). Here the initial
place marking is all elements of a multiset over AGENT s. The operator all5

has to know what AGENT is and what a complete set of AGENTs is.

Finally, we consider an example advanced a little bit more interesting than
the previous ones. Here we have a place which type is a multiset over a
multiset of products. Initially, we have the following marking 1‘(2‘(1,1) ++
1‘(sum(0,1),g())) ++ 1‘(3‘(3/3,3%2)) which value after evaluation is 2‘(3‘(1,1)).

The test case advanced is also an example of transition condition and arc in-
scription evaluation. The idea here is very simple, we replace variables with
actual bound values and then compute the result. Thus, if we have 1‘(x‘(y,1)),
where x ← 3 and y ← 1, then the actual value is 1‘(3‘(1,1)). The same holds
for evaluating the transition condition.

Evaluation algorithm Term evaluation algorithm is recursive and it uses a
bottom-up approach to perform the evaluation. A term syntax tree is given as
an input to the algorithm and it outputs a computed value. Figure 4.4 displays
the main idea of the algorithm. Let us say we have to evaluate an arithmetic
expression 3 + 4 / x, where x ← 2. An abstract syntax tree of this expression is
shown in Figure 4.4. Our algorithm starts with the root term (+). Since before
applying the addition operator, the algorithm needs to know its arguments, it
goes down in the tree until it reaches the leaves. When it evaluates the leaves,
the algorithm starts to go up and applies the division and addition operators
on the evaluated values (see Figure 4.4).

Our previous example was simple in terms that we needed to evaluate only
simple data types. Figure 4.5 shows an example where an input term is a

5The operator all returns a multiset of all elements over the given sort. For example, if
we have a set of agents A, B, C, then all:AGENT would return 1‘A ++ 1‘B ++ 1‘C. Here
AGENT is a basis set of a multiset.



20 Simulation algorithm

+

3 /

x4

4 2

3

/

2

+

5

Figure 4.4: Evaluating simple data types

Nof

1 Nof

x Tuple

y 1

MSValue

MSValue1

Product3

1 1

Figure 4.5: Evaluating collections. Nof stands for NumberOf operator and
MSValue - for multiset value



4.2 Equalization 21

multiset 1‘(x‘(y,1)), having only one element - x‘(y,1) - another multiset. The
latter multiset also has only one element - (y,1) - a tuple of two elements. Here
the variables x and y have the following binding: x ← 3 and y ← 1. In this
example, a tuple was evaluated to a product and a NumberOf 6 - to a multiset.
A green ellipse denotes a multiset element and its multiplicity.

4.2 Equalization

Generally speaking, with equalization we try to compare a term and a value.
Our equalization is similar to term unification [3], which tries to answer if two ex-
pressions can be syntactically equal. With equalization we do not limit ourselves
only to syntactical equality. For our equalization algorithm two input arguments
are needed - a term and a value. Then we try to match each sub-expression
presented in a term with the respective sub-value. By applying equalization we
bind variables presented in arc inscriptions to values if our algorithm terminates
successfully.

Trivial cases Let us start with few trivial cases. For example, let us say we
have a term 1‘x and a value 1‘1. It is easy to see that if we evaluate term 1‘x
with x ← 1, the value is equal to 1‘1. Let us take another example, where an
element of a multiset is pair of two integers: a term - 1‘(x, 5) and a value - 1‘(2,
5). Again, it is obvious that if we evaluate 1‘(x, 5) with x ← 2, we get a value
1‘(2, 5). Both given cases are similar to what unification does.

Collection of elements We have already showed an example where we com-
pared a tuple with a product. Since a tuple is an ordered list, thus we could
directly compare it with a product. A special case is a multiset, since elements
in a multiset has no order. In this case our algorithm compares each multiset
element in a term with each multiset element in a runtime value.

Several input arcs of a transition In case a transition has several input
arcs, we apply the equalization algorithm on each input arc inscription and its
corresponding place marking. If we get that a variable x can be bound to some
set of values, e.g. [5, 8, 11] from one arc inscription and to another set of values
e.g. [5, 7, 11] from another arc inscription, we intersect both sets of possible
values coming from different arcs, i.e. x ∈ [5, 8, 11] ∩ [5, 7, 11] = [5, 11].

6NumberOf operator takes two arguments - an element and its multiplicity.



22 Simulation algorithm

A multiplicity of an element Now let us consider a case, where a variable
represents a multiplicity of an element in a multiset. For example, we have a
term x‘1 and a value 3‘1. In this case, we want to find all values for x, where 0
< x ≤ 3. When 0 < x ≤ 3, the respective arc inscription value will be less or
equal to a place runtime value. In this case, x can be bound to x ← 1 or x ← 2
or x ← 3. On the other hand, if we have a term 1‘(x‘5) and a value 1‘(2‘5), than
x can be bound only to 2. In this case, an inner multiset x‘5 is an element of
the top level multiset and the algorithm checks if two inner elements are equal.

Nof

1 Nof

x Tuple

y 1

MSValue

MSValue2

Product3

1 1

Figure 4.6: Recursive equalization algorithm. Example: abstract syntax tree on
the left and actual values on the right. Nof stands for NumberOf operator and
MSValue - for multiset value

Equalization algorithm Now let us present our equalization algorithm. Fig-
ure 4.6 depicts an abstract syntax tree of 1‘(x‘(y,1)) on the left and the structure
of the value 2‘(3‘(1,1)) on the right. The multiset 2‘(3‘(1,1)) has only one ele-
ment 3‘(1,1) which multiplicity is 2. In the same way, the inner multiset 3‘(1,1)
has only one element (1,1) which multiplicity is 3. We apply our equalization
algorithm recursively on the corresponding parts of the input structures. In Fig-
ure 4.6 gray rectangle denotes the level of recursion starting from top and going
down. In the first level we check if the number of elements in arc inscription is
less or equal to a number of element in the runtime value, i.e. if 2 ≥ 1. Since the
element NumberOf is a structure itself we go to the second recursion level and



4.2 Equalization 23

here we meet x on the left and 3 on the right. Here we make an assignment, i.e.
x ← 3 and record it. In the last recursion level we compare each tuple element
with the corresponding product element. Here we make the last assignment, i.e.
y ← 1. Since, there is nothing more to compare, we return.

Now let us consider a Petri net depicted in Figure 4.7. This Petri net illustrates a
case where a multiset has several elements, e.g. 1‘4 and 2‘6 and term inscription
has several elements as well - 1‘(m * 2) and 1‘(n + 5). In these cases we split
top level multiset by its elements and arc inscription by its top level multiset
elements and apply the equalization algorithm on each such pair separately, i.e.
(1‘(m * 2), 1‘4), (1‘(m * 2), 2‘6), (1‘(n + 5), 1‘4), (1‘(n + 5), 2‘6).

Figure 4.7: Equalization with complex runtime values and arc inscriptions

Table 4.1 shows the actual assignments made based on the example given in
Figure 4.7.

No. Arc inscription Value Match
1 1‘(m * 2) 1‘4 and 2‘6 m * 2 ← 4 or m * 2 ← 6
2 1‘(n + 5) 1‘4 and 2‘6 n + 5 ← 4 or n + 5 ← 6

3 (k + 1)‘(m + n * 2) 1‘4 and 2‘5
(k + 1 ← 1 or k + 1 ← 2) and
(m + n * 2 ← 4 or m + n * 2 ← 5)

Table 4.1: The actual assignments made based on the example given in Figure
4.7.

Let us continue with the rest of special cases.



24 Simulation algorithm

User defined operations In some cases we cannot compare a term to a
value due to a lack of information. For example, if a term contains a user
defined operation, we skip the whole term. On one hand, user defined operation
can be an arbitrary one - meaning we do not know a structure of it. On the
other hand, if a user defined operation is a composition of built in operations,
it can be too complex to use in equalization, for example, due to recursiveness.

Multiset subtraction Another example of a special case is a multiset sub-
traction operator −−. If we have the following top level multiset in an arc
inscription 1‘x −− 1‘y, where x and y can be anything, we skip the term 1‘y in
our equalization algorithm. Figure 4.8 shows an example of a multiset subtrac-
tion. Let us say, we do equalization in a usual manner. From the arc arc1 we
have x = ∈ [-1, 1, 10] and y ∈ [-1, 1, 10] and from the arc arc2 we have y ∈
[2]. Since bindings for y comes from two different arc inscriptions we intersect
possible value sets: y ∈ [-1, 1, 10] ∩ [2] = []. Empty value set for y simply
means that the transition is not enabled. On the other hand, if we skip 1‘y in
arc1 inscription, we have x ∈ [-1, 1, 10] and y ∈ [2]. And when evaluating the
inscription of arc1, we get that 1‘2 compensates 1‘y, where y ← 2.

Figure 4.8: Term subtraction in an arc inscription

Extension of term equalization algorithm Each time our algorithm does
not know how to decompose a complex expression, the whole expression is as-
signed to the respective (sub) value. Let us consider a simple example, where a
term is 1‘(x + y * 1) and a value is 1‘8. Figure 4.9 a) shows a syntax tree of
the term 1‘(x + y * 1). Since, we do not know how to compare x + y * 1 and



4.3 Variable binding algorithm 25

8, we assign x + y * 1 ← 8. Now let us consider another example, where a term
is 1‘(x + 4 * 1) and a value 1‘8 (see Figure 4.9 b)). Again, we do not know
how to compare x + 4 * 1 and 8, thus we assign x + 4 * 1 ← 8. The latter
example is interesting in a sense that we can compute 4 * 1 and do the following
assignment: x + 4 ← 8 or even more x ← 4. It is important to understand that
in this part of the algorithm we only compare a term and a value. If we cannot
directly resolve a variable, we leave it for further processing.

+

x *

1y

8 +

x *

14

8a) b)

Figure 4.9: Equalization algorithm

In this way we can compare any arbitrarily complex term in arc inscription with
the place runtime value.

Equalization properties First of all, the equalization algorithm does not
resolve variables. It is a special case, when a value can be bound to a variable
directly. Equalization is more general than that - it can bind a value to the whole
(sub) term7. Secondly, equalization performs exhaustive search, i.e. for each
(sub) term it binds all possible values. The second property comes naturally
from a way the equalization works: it compares each (sub) term with each
respective (sub) value.

4.3 Variable binding algorithm

In this section we will discuss how to resolve unresolved variables and check if
a variable binding is legal.

7Equalization binds a term to a value iff a term contains at least one variable.



26 Simulation algorithm

During equalization we only assigned sub-expressions of terms to sub-values.
The next step is to find out whether these assignments can be resolved to legal
variable bindings.

Resolving variables As we have previously seen the assignments can be of
several types. For example, a trivial assignment is when a variable is directly
bound to a value, e.g. x ← 5. A general case is when a term is bound to a value,
e.g. x + 5 ← 8. Since number addition is a reversible operation, we can resolve
x = 3. Our algorithm can automatically deal with terms having only reversible
operations and only one unknown variable.

Figure 4.10 a) shows an example of our algorithm to resolve an unknown variable
in a term, which is composed only of reversible operations. Here we have x + 4
* 2 ← 20. The idea of the algorithm is simple: first we start by evaluating each
sub-term of the root term. In our case - x and 4 * 2. Since, a term can contain
only one unknown variable at most, the algorithm will fail to evaluate only one
sub-term at most. Next step is to resolve the variable in the sub-term. The
algorithm starts from the root term and goes down into the sub-term syntax
tree, which has the unknown variable. Each time the algorithm comes to an
operation, it uses its revere operation to compute the partial solution. In our
example, to resolve x, the algorithm needs to compute 20 - 8.

Figure 4.10 b) depicts another example: 12 + x * 2 ← 20. The algorithm
evaluates 12, but fails to evaluate x * 2. Next it goes down the sub-term (starting
from the root term) and applies reversible operations: 20 - 12 = 8 and 8 / 2 =
4.

+

x *

4 2
4 2

*

20

8-

12

+

12 *

x 2
4 2

/

20

8-

12

a) b)

Figure 4.10: An algorithm to resolve variables



4.3 Variable binding algorithm 27

Limitations Terms participating in the assignments can be arbitrary com-
plex. For example, the equation x % 5 = 3 cannot be solved immediately since
modulo operation is irreversible. Another case is when a term contains more
than one unknown variable e.g. the equation x * y = 1800 can be solved only
when either x or y is known. When the algorithm cannot resolve variables, it
asks a user to provide a sufficient part of the solution.

Term priority assignment Now we know how to resolve variables, when
there is only one variable in a term. But terms can be arbitrary complex: there
can be more than one variable in a term, different terms can share part of the
variables (dependent terms). We need to arrange terms (give them priorities)
in such a way that our algorithm to resolve variables is be applicable.

The main idea of our term arrangement (priority assignment) algorithm is that
a term priority depends on a number of unresolved variables a term has. The
highest priority is assigned to a term having least number of unresolved variables.

Figure 4.11: Variable dependency example

Figure 4.11 depicts a variable dependency example. Obviously, we have to start
by resolving x - 1 = 1 and y + 1 = 2 since expressions x - 1 and y + 1 do not
depend on any other variable except x and y respectively. Once we know the
bindings for x and y, we can proceed with m + x + y = 9. Finally, when we
know the assignment of m we can find a binding for n from m + n + 1 = 10.



28 Simulation algorithm

No. Expression Assignment Number of unresolved variables
1 x-1 [1] 1
2 y+1 [2] 1
3 m+x+y [9] 3
4 m+n+1 [10] 2

(a) Initial set of terms

No. Expression Assignment Number of unresolved variables
1 y+1 [2] 1
2 m+x+y [9] 2
3 m+n+1 [10] 2

(b) A set of terms after resolving x

No. Expression Assignment Number of unresolved variables
1 m+x+y [9] 1
2 m+n+1 [10] 2

(c) A set of terms after resolving y

No. Expression Assignment Number of unresolved variables
1 m+n+1 [10] 1

(d) A set of terms after resolving m

Table 4.2: A stepwise explanation of dependency algorithm based on the Petri
net depicted in Figure 4.11



4.3 Variable binding algorithm 29

Table 4.2 shows stepwise explanation of dependency algorithm based on the
Petri net depicted in Figure 4.11. Here we have a triple: an expression, a set
of possible values for the expression and a number of unresolved variables in
the expression. The idea of the algorithm is to maintain an updated list of
expressions and a number of unresolved variables in the them. Table 4.2 (a)
shows the initial expression list. Then we can choose an expression among all
available which is least dependent, i.e. the number of unresolved variables is
least. So in the given example in the beginning we have two expressions x - 1
and y + 1 which have the same least number of unresolved variables. We can
choose any of them, let us say x - 1. After resolving x, we remove x - 1 from
our list since the number of unresolved variables for this expression is 0 now.
Also, we update each expression’s number of unresolved variables where x was
present. Table 4.2 (b) shows the term list after first iteration. We repeat the
same procedure until the list of expressions is empty.

Figure 4.12: Priority assignment algorithm

Special case of expression priority assignment In some cases a variable
can be bound to a value from different arc inscriptions, e.g. x + 5 ← 8 from
one arc inscription and x - 2 ← 1 (see Figure 4.12 b)). In this case, the order in
which a variable is resolved, is not important. Figure 4.12 a) shows an example
where the order is important. Here we have two assignments: x % 8 ← 2 and x
+ 3 ← 5. Since, modulo operation is irreversible, we start from examining the
assignment x + 3 ← 5. We get the binding x ← 2, which is a legal binding for
x % 8 ← 2 as well. Our priority assignment algorithm among all terms having
the same number of unresolved variables chooses one which has only reversible
operations (if there is one).

A combination of all possible bindings When all variable bindings are
known we compute a combination of all possible bindings. Let us consider an
example shown in Figure 4.13. Here are the following bindings: x ← 2 or x ←



30 Simulation algorithm

3 or x ← 10 and y ← 7 or y ← 5. A combination of all these bindings is [[x ←
2, y ← 5], [x ← 2, y ← 7], [x ← 3, y ← 5], [x ← 3, y ← 7]].

Figure 4.13: An example of combining all possible bindings and checking if the
combinations were legal

Validity of variable bindings Next, we have to check if a set of variable
bindings is legal in terms of arc inscription, i.e. after evaluating terms with the
given binding in an arc inscription we must get a value which is less or equal
to the respective place runtime value. Furthermore, variable bindings have to
satisfy transition condition. In the previous paragraph we listed all possible
combinations of variable bindings for the Petri net depicted in Figure 4.13. It is
easy to see, that not all assignments are legal. In the Petri net, we have an arc
inscription x + y and a corresponding place runtime value 8. It means that a
sum of x and y mast be equal to 8. There is only one assignment, which satisfies
this condition: [x ← 3, y ← 5].

4.4 Transition occurrence

Transition occurrence Finally, when a set of enabled transitions is known,
our Simulator lets a user to decide which transition to fire with a chosen firing
mode. When a transition fires, we subtract the input arc inscription value
from input place runtime value and we add the output arc inscription value to
the respective output runtime value. Figure 4.1 depicts initial marking of the
Petri net and Figure 4.2 shows the marking of the same Petri net after the first
transition (Send packet) was fired.



Chapter 5

Tool comparison

In the previous chapter we discussed our simulation algorithm. In Chapter 2 we
claimed that our Simulator has more powerful variable binding than any other
currently available tool. In this chapter we compare our Simulator with CPN
Tools [20]1. We consider CPN Tools as currently the best available tool2.

5.1 Simulator comparison to CPN Tools

In order to compare our Simulator with CPN Tools, we use two test cases. The
first one deals with an arithmetical expression in an arc inscription and the
second one - a variable represents a multiplicity of an element in a top level
multiset3.

First, let us start from a simple example. Figure 5.1 shows a Petri net in CPN
Tools editor. Here a place p1 has initial marking 5‘2, an input arc inscription is
1‘x. Currently, a runtime marking of p1 is 4‘2, since a transition t1 has already

1We use CPN Tools 3.2.2 in our evaluation.
2As discussed in Chapter 2.
3We have discussed both cases when presenting our simulation algorithm in the previous

chapter.



32 Tool comparison

fired once. An output arc inscription is 2‘x and a runtime marking of p2 is 2‘2.

Figure 5.1: CPN Tools: simple Petri net example

Now, let us replace the input arc inscription 1‘x with an arithmetical expression
- 1‘(x + 1) in the same example. Figure 5.2 shows that now CPN Tools fails to
bind variable x.

Figure 5.2: CPN Tools: an arithmetical expression in an input arc inscription

If we replace the input arc inscription 1‘x with - y‘x in the first example, we get
that CPN Tools again fails to bind a variable y (see Figure 5.3).



5.2 A power of Simulator variable binding algorithm 33

Figure 5.3: CPN Tools: a multiplicity of a multiset element is represented as a
variable

5.2 A power of Simulator variable binding algo-
rithm

In this section we give a technical example of a Petri net, which summarizes the
power of our variable binding algorithm.

Figure 5.4 shows a technical example of a Petri net. Here the Petri net has four
input places p1, p2, p3, p4. Three of them - p1, p2, p4 - has a sort, which is a
multiset over integers and p3 - a multiset over a multiset of a pair of integers.

A blue box at the top right corner shows user defined variables and operations.
Here variables y, z represents positive integers and x - a pair of two integers.

As a first step, for each place we evaluate its initial marking to a runtime
marking as described in Section 4.1 (see blue text at the top right corner of each
place). Then we perform equalization on the respective input arc inscriptions
and runtime values as described in Section 4.2. Then, we apply our variable
binding algorithm as described in Section 4.3. Finally, we get the following
binding: [x ← (8, 2), y ← 1, z ← 2].

In comparison to CPN Tools4, it is easy to see that our algorithm can easily
deal with arithmetical expressions presented in an input arc inscription, e.g. 8
- 1 -2 * z + 2. Furthermore, these arithmetical expressions can represent a
multiplicity of a top level multiset element, e.g. ((y + 1) * (z + 1) + 2 * 1)‘5.

Based on the technical examples, which we presented in this chapter, we can see

4See examples given in the previous section.



34 Tool comparison

Figure 5.4: Petri net technical example

that our Simulator has a more powerful variable binding algorithm than CPN
Tools, which we consider as the best currently available tool.



Chapter 6

Basic technology

In this chapter we give a short overview of the technology we use in our project.
As we have already mentioned, our Simulator is build on top of a graphical Petri
net editor ePNK. ePNK was developed using Eclipse and is made as a plug-in
for it. Our Simulator is another Eclipse plug-in which contributes to ePNK via
its extension point. We use the Eclipse Modeling Framework (EMF) to model
one of our target domains and the Graphical Modeling Framework to generate
a graphical editor for the domain.

We will shortly discuss each tool in following sections.

6.1 Eclipse

Eclipse [4] is a multi-language integrated development environment (IDE). It
has a very powerful plug-in mechanism where new features can be integrated
very easily. Each plug-in may provide extension points - a convenient way to
contribute to the plug-in. In this project, our Simulator contributes to ePNK
application menu. The Simulator itself provides extension points for future
extensions.

Next we briefly introduce the Eclipse Modeling Framework.



36 Basic technology

6.2 EMF

Eclipse modeling framework (EMF) [17] is a modeling environment with code
generation support for building domain specific applications. From a model,
EMF provides tools to generate JAVA code automatically and equip it with the
basic tree editor.

Next we will show an example of how to make a network editor1 using EMF
and GMF. First of all, what we want is a graphical editor to model networks.
The editor has to support network nodes and directed and undirected edges.
Moreover, based on a node property set we want to assign it to one or sev-
eral categories. Figure 6.1 shows an EMF model of our above listed domain
requirements.

Figure 6.1: Domain model: each network node and edge is a type of NetworkOb-
ject. Moreover, each node belongs to at least to one category and each category
can have unlimited number of nodes.

Based on this model, EMF can automatically generate a tree editor for our
network entities (see Figure 6.2). Obviously, in this way it is hard to see the
actual structure of a network.

1We will need this network editor later in our project.



6.3 GMF 37

Figure 6.2: Network tree editor

In next section we will briefly explain how to generate a graphical editor for our
network entities.

6.3 GMF

In the previous section we defined requirements for our graphical network editor.
We made a model for it based on the requirements and we ended up having a
tree editor which was not exactly what we expected.

Figure 6.3: Network graphical editor

In this section we present a graphical editor for network entities, which was gen-
erated from the domain model presented in the previous section using GMF (see
Figure 6.3). A menu on the left shows what can be created (nodes, categories
and edges). The main canvas shows an example of a network with three nodes
A, B and C and two categories RootNodes and InnerNodes. A color-coding here
is very simple: all nodes sharing the same color with a category belong to that
category.



38 Basic technology

Figure 6.4: Category property menu

Figure 6.4 shows a category property menu. For example, a category InnerNodes
has to two nodes B and C assigned to it. This is done by adding the respective
nodes from the list on the left to a list on the right for the category InnerNodes.

6.4 ePNK

ePNK [12] is a model based graphical Petri net editor. In our project we use
ePNK 0.9.3.

Global application registry mechanism First of all, ePNK has a global
application2 registry mechanism. Each application can register itself to the
registry and provide a list of its available actions. Figure 6.5 shows a transition
context application3. Here the ePNK application view is numbered with 1
(each application which registers to the global application registry appears in
this view). 2 denotes application specific actions. Our Simulator is one of ePNK
applications.

Pop up menu extension point A nice feature of ePNK is that it has a
unified way for applications to contribute to the Petri net editor. Any applica-
tion, which contributes to the ePNK pop up menu extension point, will show

2An ePNK application is any program, which uses ePNK API to perform its task(s) and
it has registered itself to the global ePNK application registry mechanism. By using ePNK
API, an application can access a user created Petri net model and the graphical editor so that
it can interact with a user.

3A transition context application simply decorates in red input/output arcs and places of
a transition.



6.4 ePNK 39

Figure 6.5: ePNK application example

up in the ePNK application pop up menu. Figure 6.6 shows several applications
registered to the ePNK pop up menu including the Simulator.

Figure 6.6: ePNK pop up menu for applications

Object annotation mechanism A Petri net in Figure 6.5 is covered with
a red overlay (3 ). This is configured via ePNK object annotation mechanism.
Generally speaking, ePNK object annotation mechanism lets an application to
contribute to a Petri net decoration process. Each time an application needs
to decorate a Petri net, it has to annotate the relevant parts of it, e.g. an arc
or a transition etc. In our project we have extended ePNK object annotation
mechanism so that we can decorate enabled or selected to fire transitions, display



40 Basic technology

place runtime marking etc. We will give more details on the architecture of our
object annotation mechanism extension in Section 7.5.



Chapter 7

Simulator design

In this chapter we discuss the overall design of our Simulator. We start with a
design of runtime values and simulation states. Then we proceed with a design
of the simulation algorithm, which we have already discussed in Chapter 4.
Later on we show a design of the simulation view and validation mechanism.
Finally, we discuss a design of the graphical user interface.

7.1 Runtime values and simulation states

In Chapter 4 we explained that each place initial marking is evaluated to a
runtime value. Furthermore, each time we want to check, if a transition is
enabled in a given marking, we need to evaluate arc inscriptions and transition
conditions with the given variable binding. Thus, in this section we discuss the
design of these runtime values.

Moreover, a set of all place runtime markings of a Petri net defines a state of
that Petri net. We want to record each such state during the simulation, so
that a modeler can go through the state list and choose, where to start the
simulation again. Thus, in the second part of this section we discuss the design
of the simulation states.



42 Simulator design

7.1.1 Runtime values

The Simulator operates only on runtime values, i.e. those which are computed
from the respective terms. A key interface of the runtime values is IValue
(see Figure 7.1) - each runtime value implements this interface. Another com-
mon property among runtime values is that each runtime value has a sort
(org.pnml.tools.epnk.pntypes.hlpngs.datatypes.terms.Sort).

AbstractValue

IntValue

org.pnml.tools.epnk.pntypes.hlpngs.datatypes.terms.SortIValue

BooleanValue

+ Boolean getValue() 

+ void setValue(Boolean ) 

DotValue

NumberValue

+ int getN() 

+ void setN(int ) 

StringValue

+ String getData() 

+ void setData(String ) 

NatValue

PosValue

sort

Figure 7.1: Runtime values: simple data types

All supported runtime values can be distinguished into two kinds - simple and
collection type. Figure 7.1 shows all currently supported simple data types, such
as strings, dots, booleans and numbers (positive, natural and integer type).

Figure 7.2 depicts all currently supported collection data types. Currently, we
support lists, products (tuples) and multisets. A multiset class has a separate
interface IMSValue. A reason behind is simple - multiset is a foundational data
structure for storing place markings and arc inscriptions. Thus we wanted to
make it easier replaceable by other multiset implementations. Further, we have
a factory RuntimeValueFactory to create new instances of the IMSValue type
application-wide.



7.1 Runtime values and simulation states 43

IMSValue

+ Collection<Entry<IValue, Integer>> entrySet() 

+ int size() 

+ boolean contains(IValue ) 

+ Integer get(IValue ) 

+ void put(IValue , Integer ) 

+ void remove(IValue ) 

+ void putAll(Collection<Entry<IValue, Integer>> ) 

+ void clear() 

AbstractValue

RuntimeValueFactory

+ IMSValue createMSValue() 

IValue

ListValue

+ List<IValue> getElements() 

+ void setElements(List<IValue> ) 

MSValue

+ Collection<Entry<IValue, Integer>> entrySet() 

+ int size() 

+ boolean contains(IValue ) 

+ Integer get(IValue ) 

+ void put(IValue , Integer ) 

+ void remove(IValue ) 

+ void putAll(Collection<Entry<IValue, Integer>> ) 

+ void clear() 

ProductValue

+ List<IValue> getComponents() 

+ void setComponents(List<IValue> ) 

<<List>>

<<Map>>

<<List>>

elements

values

components

<<create>>

Figure 7.2: Runtime values: collections

Here MSValue provides basic functionality for multisets: to clear a container,
to add a new element and its multiplicity to a container, to remove an element
from a container, to get a multiplicity of an element, to get a number of elements
in a container and to get all elements and their multiplicities from a container.

We plan to improve our design of runtime values, so that only RuntimeValue-
Factory can create new instances of them application-wide. Currently, a new
instance of a runtime value (except for MSValue) can be created by calling a
corresponding constructor.

Next we will explain simulation state architecture.



44 Simulator design

7.1.2 Simulation states

A simulation state is a collection of all place runtime values at a given state
of the Petri net. Figure 7.3 shows a design of simulation states. IRuntimeS-
tate provides a basic functionality of a simulation state - a mapping between
places and their runtime values. Since each time we compute a new simula-
tion state we also compute the enabled transitions and their respective firing
modes, thus this information for efficiency reasons is also preserved in a run-
time state. IRuntimeStateContainer provides a basic functionality to work with
states: add, remove the current state, get next/previous state with respect to
the current one. Currently, we designed IRuntimeStateContainer as a list -
RuntimeStateList, where one can check, if there is at least one more state in the
list and get the next state if there is. Furthermore, in our current design, each
state RuntimeState has a reference to the previous state and the next one, i.e.
RuntimeState is designed as a double-linked list. The RuntimeStateManager
takes a full control of interaction with runtime states: creates new states or
updates old ones.

IRuntimeState

+ Map<IDWrapper, IMSValue> getValues() 

+ Map<IDWrapper, List<FiringMode>> getModes() 

IRuntimeStateContainer

+ boolean add(IRuntimeState ) 

+ IRuntimeState relativeNext() 

+ IRuntimeState relativePrevious() 

RuntimeStateManager

+ void updateState(IRuntimeState ) 

+ IRuntimeState createNextState(IRuntimeState , FiringMode ) 

+ IRuntimeState createInitialState(List<org.pnml.tools.epnk.pnmlcoremodel.Transition> ) 

+ boolean addState(IRuntimeState ) 

RuntimeState

+ Map<IDWrapper, IMSValue> getValues() 

+ Map<IDWrapper, List<FiringMode>> getModes() 

RuntimeStateList

+ boolean add(IRuntimeState ) 

+ IRuntimeState relativeNext() 

+ IRuntimeState relativePrevious() 

+ boolean hasNext() 

+ IRuntimeState next() 

+ void remove() 

stateContainer

prevState

rootState

current

nextState

Figure 7.3: Simulation states

As we have mentioned previously, our state list is designed as a double-linked
list. This enables us to easily deal with situations where a user wants to start a
simulation in the middle of a state list. Let us say we have a situation depicted
in Figure 7.4: here we have a list of states, where the current state is pointed by
an arrow. Let us say a user wants to start a simulation from the selected state.



7.2 Simulation algorithm 45

Figure 7.4: A simulation double-linked state list. An arrow points to the current
state. States, which are on the right of a vertical line, will be removed from the
state list before proceeding further.

Before proceeding further, the states, which are on the right of the current state
(separated by a vertical line), will be removed from the state list.

7.2 Simulation algorithm

In this section we explain a design of the simulation algorithm (see Chapter
4). First, we describe a design of term evaluation and equalization. Then we
will introduce our system where each term handler1 can be efficiently found for
each registered term. Finally, we will show a design of the transition occurrence
algorithm.

We will start by explaining a design of the equalization algorithm (see Section
4.2).

7.2.1 Equalization

The heart of our equalization mechanism is an interface IComparable (see Figure
7.5). It has a method boolean compare(Term, IValue, Map) with three input
parameters: a term which comes from an arc inscription, a value which comes
from the place runtime value and map2.

1A term handler is an instance of a class which evaluates the term, resolves variables in
the term or compares the term with a runtime value.

2We use a usual map (key-value pairs) to preserve a relationship between terms and values
as described in Section 4.2



46 Simulator design

IComparable

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

DatatypesComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

VariableComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

UserOperatorComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

TermComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

defaultComparator

<<map>>

handlers

ComparisonManager

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

Figure 7.5: Simple data type comparators

Let us take an example, similar to ones presented in Section 4.2: here we have
an arc inscription 1‘(x + 1) and a value 1‘1. A class responsible for addition
comparison would record x + 1 as a key and [1] as a value in the relationship
map. Here 1 is put into a set since the expression x + 1 can be assigned to
more than one value.

Figure 7.5 shows simple data type comparators such as for integers or strings.
The comparators were grouped by the package they belong to. Thus Datatype-
sComparator contains simple data type comparators such as for strings, booleans
and integers.

The comparators - UserOperatorComparator, VariableComparator and Term-
Comparator - handles cases when a comparison is not trivial. For example, one
needs to perform a comparison on a user defined operator and runtime value
(UserOperatorComparator). Another case is when a variable needs to be com-
pared to a runtime value (VariableComparator). TermComparator handles all
cases when it is not defined how to compare a term to a value, e.g. x + 1 and
1. We have already discussed all these cases in Section 4.2.

A special comparator ComparisonManager has a reference to all available com-
parators. If a method compare() is called of the ComparisonManager, then it
redirects the call to the responsible comparator. Furthermore, the Comparison-



7.2 Simulation algorithm 47

Manager has a default comparator to handle unexpected cases (as discussed in
Section 4.2). Currently, the default comparator is the TermComparator.

comparisonManagercomparisonManagercomparisonManager
IComparable

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

ListComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

MultisetComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

TupleComparator

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

Figure 7.6: Collection type comparators

Some data types are collections of other data types. The Figure 7.6 depicts
currently supported collection data type comparators. Each collection data type
comparator has a reference to a global set of comparators (comparisonManager)
so that each term in a collection can be compared to a runtime value.

In the following subsection we will show a design of our term evaluation mech-
anism.

7.2.2 Evaluators

In this subsection we will show a design of our term evaluation algorithm as
described in Section 4.1. First of all, in our design, each term evaluator must
know what it can evaluate and what it cannot evaluate. For this purpose, we
have an interface IValidator at the top of our hierarchy. The interface IValida-
tor has only one method - String validate(Object), where Object can be either
sort or term, and return an error message (string), if there is one or null other-
wise. Then in our evaluator hierarchy we have two interfaces - ISortEvaluator
and IEvaluator - for sort and term evaluation respectively. Furthermore, some
expressions can be composed of reversible operators thus we have an interface,
covering them too - IReversibleOperation.



48 Simulator design

We will explain each interface in more details in the following subsections.

IValidator

+ String validate(Object ) 

IEvaluator

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

ISortEvaluator

+ IValue evaluate(Sort ) 

IReversibleOperation

+ Term getRootTerm() 

+ void setRootTerm(Term ) 

+ IValue reverseAll(IValue , IValue , Boolean ) 

Figure 7.7: Evaluation interfaces

7.2.2.1 Sort evaluators

In Section 4.1 we gave an example with an operator all. Here we had a user
defined sort AGENT and the initial marking of a place was all:AGENT (see
Figure 4.3). Just to remind, the operator all returns a multiset of all elements
over the given sort. Thus, in our example, the operator all has to know what
AGENT is and what a complete set of AGENTs is.

In our design, the interface ISortEvaluator takes care of these situations. Based
on our example, it is a responsibility of a class implementing ISortEvaluator to
know what AGENT is and what a complete set of agents is.

Currently, only a multiset evaluator uses sort evaluators (to evaluate the opera-
tor all) (see Figure 7.8). To deal with situations, when there are more than one
sort registered with the operator all, e.g. all:a, all:b and all:c, where a, b, c can
be any sort, we have SortEvaluationManager. SortEvaluationManager redirects



7.2 Simulation algorithm 49

ISortEvaluator

+ IValue evaluate(Sort ) 

SortEvaluationManager

+ IValue evaluate(Sort ) 

+ String validate(Object ) 

MultisetsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

sortEvaluator

Figure 7.8: Sort evaluators

evaluation calls to the corresponding sort evaluators. SortEvaluationManager
implements ISortEvaluator, thus it can be treated in the same way as any other
sort evaluator.

Next we will explain term evaluators.

7.2.2.2 Term evaluators

In this subsection we explain a design of term evaluation algorithm as described
in Section 4.1. The key interface for the term evaluation is IEvaluator. It has
only one method IValue evaluate(Term, EvalautionManager, Map) returning
the actual value of the input term IValue. The input parameter EvaluationMan-
ager has access to all term evaluators in a case the input term is a collection
of terms. The other input parameter Map contains all variable bindings. Let
us say, we need to evaluate a term x + 5. In order to do that we have to know
what the value of the variable x is.

The Figure 7.9 shows all currently supported terms evaluators. The evalua-
tors for particular operators were grouped into classes by their corresponding
packages. For example, StringsEval contains all currently supported string op-
erations defined in the org.pnml.tools.epnk.pntypes.hlpngs.datatypes.strings.

The UserOperatorEval is the class where all user defined evaluators are actually
plugged in - it has a reference to a list of all arbitrary evaluators arbitraryOpera-
torEvaluators. This is all done automatically during the launch of the Simulator.
We will explain, how a user can plug in new sort and term evaluators in Section



50 Simulator design

<<map>>

<<List>>

arbitraryOperatorEvaluators

sortEvaluator

handlers

IEvaluator

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

BooleansEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

DotsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

ListsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

TermsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

VariableEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

UserOperatorEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

MultisetsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

IntegersEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

ISortEvaluator

+ IValue evaluate(Sort ) 

EvaluationManager

+ String validate(Object ) 

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

StringsEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

Figure 7.9: Term evaluators

7.7.

Finally, a special evaluator is EvaluationManager, which has an access to all cur-
rently registered evaluators. Since the EvaluationManager implements IEvalua-
tor, it can be treated as any other evaluator. Except, when a method evaluate()
is called, the EvaluationManager redirects it to the corresponding evaluator.



7.2 Simulation algorithm 51

Next we will explain reversible operation evaluation.

7.2.2.3 Reversible operations

In this subsection we will explain reversible operation evaluation. Some opera-
tions are special comparing to others that they can be reversed. Let us say, we
have an equation 5 = x + 3. Since a number addition is a reversible operation
we can easily find a binding for a variable x ← 2.

AbstractIntegerOperation

+ IValue reverse(IValue , IValue , Boolean ) 

+ IValue evaluate(IValue , IValue , Operator ) 

AdditionEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

MultiplicationEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

SubtractionEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

DivisionEval

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

+ String validate(Object ) 

IReversibleOperation

+ IValue reverse(IValue , IValue , Boolean ) 

<<map>>
handlers

ReversibleOperationManager

+ boolean resolve(IValue , Term , Map<TermWrapper, TermAssignment> ) 

+ boolean resolveAll(Collection<IValue> , Term , Map<TermWrapper, TermAssignment> ) 

Figure 7.10: All currently supported reversible operations

The key interface here is IReversibleOperation (see Figure 7.10). It has only
one method - IValue reverse(IValue, IValue, Boolean). This method deals with
binary operations, where one sub term is unknown. The first argument for the



52 Simulator design

operation is a result of an expression. The second argument is a value of the
known argument. Finally, since not all reversible operations are commutative,
there is a boolean variable indicating which argument in an expression is missing.
Let us say, we have two expressions 6 = x / 3 and 6 = 18 / x. In both cases
the first argument for the operation is 6, the second is 3 and 18 respectively.
Based on the third input parameter (true or false), the reverse operation knows
how to compute the result: 6 * 3 and 18 / 6 respectively.

But usually, what we have is a term with some unresolved variables, a collection
of all possible values, which a term was assigned to during the equalization, and
a set of variables, which are already bound (as discussed in Section 4.3). In
this case we use ReversibleOperationManager, which provides necessary meth-
ods for resolving variables - resolve() and resolveAll(). Both methods return a
boolean value indicating whether it succeeded to resolve all variables. As in-
put arguments, they take a (collection of) value (s), which a term was assigned
to during the equalization, a term with unresolved variables and all currently
bound variables. It is a responsibility of the ReversibleOperationManager to
apply necessary reversible operations in order to resolve variables in a term.

We showed that our system system is composed of a set of comparators and
evaluators - these are our system resources. Next what we need is mechanism
to manage all these resources in an efficient manner which is our next topic.

7.2.3 Resource management mechanism

In this subsection we will discuss our system resource management mechanism.
Our system resources are all available comparators and evaluators to our Sim-
ulator.

Figure 7.11 shows all resource managers, currently available to our Simula-
tor: ComparisonManager, SortEvaluationManager, EvaluationManager and Re-
versibleOperationManager.

The key interface here is IManager, which provides a functionality to regis-
ter/unregister a resource, test if a resource was already registered and efficient
look up for a resource. The IManager is a generic interface, where K is a re-
spective handler, e.g. IEvaluator, ISortEvaluator etc. and T is a constraint on
a lookup. Figure 7.11 shows the actual bindings to T and K in each case.

Previously we have mentioned that some resources are grouped into one class
based on the terms belonging to the same package and some resources has a
one-to-one relationship with a term. It is a resource manager responsibility to



7.2 Simulation algorithm 53

EvaluationManager

+ String validate(Object ) 

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

AbstractManager

+ void register(Object , K ) 

+ void unregister(Object ) 

+ boolean contains(Class<? extends T> ) 

+ K getHandler(Class<? extends T> ) 

K, T

<K->IEvaluator, T->Term>

<<bind>>

IManager

+ void register(Object , K ) 

+ void unregister(Object ) 

+ boolean contains(Class<? extends T> ) 

+ K getHandler(Class<? extends T> ) 

ComparisonManager

+ boolean compare(Term , IValue , Map<TermWrapper, TermAssignment> ) 

SortEvaluationManager

+ IValue evaluate(Sort ) 

+ String validate(Object ) 

K, T

<K->K, T->T>

<<bind>>

<<bind>>

<K->IComparable, T->Term>

<K->ISortEvaluator, T->Sort>

<<bind>>

ReversibleOperationManager

+ boolean resolve(IValue , Term , Map<TermWrapper, TermAssignment> ) 

+ boolean resolveAll(Collection<IValue> , Term , Map<TermWrapper, TermAssignment> ) 

<K->IReversibleOperation, T->Term>

<<bind>>

evaluationManager

Figure 7.11: Evaluation manager

find a resource no matter how it was actually designed (as a separate class or a
part of a larger class).

7.2.4 Transition occurrence

In this subsection we explain a design of our transition firing algorithm.



54 Simulator design

As it was described in Chapter 4, the simulation algorithm starts by checking
each transition if it is enabled. Figure 7.12 depicts the basic infrastructure to
check if a transition is enabled. The TransitionManager examines the transi-
tion. First of all, it uses ArcHandlers to perform the equalization algorithm on
the respective arc inscription and runtime value. VariableResolver binds all un-
known variables to values. VariableDependencyManager helps VariableResolver
to prioritize the expression, which needs to be resolved.

ArcInscriptionHandler

+ Map<TermWrapper, TermAssignment> match(IMSValue ) 

org.pnml.tools.epnk.pntypes.hlpngs.datatypes.concretesyntax.HLPNGParser

serializer.Serializer

dependencyManager

parser

unparser

variableResolver

arcHandlers

<<map>>

VariableDependencyManager

+ boolean hasNext() 

+ Pair<Set<TermWrapper>, TermAssignment> next() 

+ Set<TermWrapper> getVars(TermWrapper ) 

+ boolean isReversible(TermWrapper ) 

VariableResolver

+ Map<TermWrapper, TermAssignment> solve() 

TransitionManager

+ List<FiringMode> checkTransition(Transition , Map<IDWrapper, IMSValue> ) 

Figure 7.12: Transition occurrence

As we described in Section 4.3, when the variable binding algorithm cannot re-
solve variables, it asks a user to provide a sufficient part of the solution. Since it
is the VariableResolver responsibility to bind all variables, in such cases it asks a
user to provide the necessary part of the solution. VariableResolver uses serial-
izer.Serializer to convert a term, which it cannot deal with, to a string represen-
tation and org.pnml.tools.epnk.pntypes.hlpngs.datatypes.concretesyntax.HLPNGParser
to parse a user provided solution. ePNK provides access to both classes.



7.3 Simulator view 55

7.3 Simulator view

In this section we discuss a view which, we created to record simulation progress.
The simulation view is depicted on the left of Figure 7.18.

ISimulationViewController

+ void resetRecords(final IRuntimeStateContainer ) 

+ void record(final IRuntimeState ) 

+ void clear() 

+ void setCurrent() 

+ Action[] getActions() 

+ void shutDown() 

+ void highlightLine(int ) 

ISimulator

+ void auto() 

+ void stop() 

+ void next() 

+ void init() 

+ void reset() 

+ void previous() 

+ void show(IRuntimeState ) 

+ void fire(FiringMode , boolean ) 

+ void updateTransitionBinding(IRuntimeState ) 

+ void setSimulationPause(long ) 

view

simulator

viewController

currentController

SimulationView

+ void createPartControl(Composite ) 

+ void setFocus() 

+ void record(ISimulationViewController , TableRecord ) 

+ void resetRecords(ISimulationViewController , List<TableRecord> ) 

+ void clear(ISimulationViewController ) 

+ void reset(ISimulationViewController ) 

+ TableViewer getViewer() 

SimulationViewController

+ void resetRecords(final IRuntimeStateContainer ) 

+ void record(final IRuntimeState ) 

+ void clear() 

+ void setCurrent() 

+ void highlightLine(int ) 

+ Action[] getActions() 

+ void shutDown() 

ViewPart ISelectionChangedListener

Figure 7.13: Simulation view design

Figure 7.13 shows a design of the simulation view. Tthe view is global to all
simulators - it was created via Eclipse view creation mechanism and is accessed
as one of Eclipse resources. The simulation view follows Model-View-Controller
design pattern. This means that ISimulator plays Model role in this design,
SimulationView represents View part and SimulationViewController takes care
of all communication between ISimulator and SimulationView. Here the ISim-
ulationViewController provides basic functionality to ISimulator to record a
simulation state, to clear all states from the view or to reset all states. Simu-
lationView always works with only one controller at a time - currentController.
When a new controller registers as the current controller, the view updates the
list of states respectively.

In our design, each controller can plug in individual set of actions to the view by
implementing Action[] getActions() of ISimulationViewController. In this way,
different simulators, having different view controllers, can have individual set of
actions in the view.



56 Simulator design

7.4 Simulator validation

When a user defines his own data type or an operation3 due to e.g. a spelling
mistake it will not be recognized by our Simulator. In order to avoid such failures
during runtime we provide a validation mechanism which comes together with
the Simulator, meaning the validation mechanism will check for consistency
between the Simulator and the Petri net before the simulation automatically.

Figure 7.14: A Petri net with a user defined operation TEST OP

In order to illustrate the validation mechanism, let us consider an example de-
picted in Figure 7.14. Let us say, that a user defined a new operation TEST OP
which input argument is an integer and returns a multiset over integers. Now
let us consider, that a user forgot to plug in this operation to our Simulator.
The validation mechanism will find the mistake and will report about it to the
user when the simulation starts (see Figure 7.15).

Figure 7.15: Validation error message

In this way we validate built in and user defined sorts and operations.

Our validation mechanism is a part of Eclipse validation mechanism (see Fig-
ure 7.16). Here our EvaluationValidator inherits from AbstractModelConstraint.
Furthermore, EvaluationValidator uses EvaluationManager to access all evalua-
tors and to check if a particular operation or sort is supported by the Simulator.

3We will explain, how a user can plug in new data types or operations in Section 7.7



7.5 Graphical user interface 57

EvaluationValidator

+ IStatus validate(IValidationContext ) 

AbstractModelConstraint

evaluationManager
EvaluationManager

+ String validate(Object ) 

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

Figure 7.16: A design of the validation mechanism

7.5 Graphical user interface

In this section we discuss a design of our Simulator graphical user interface. Our
Simulator is a part of ePNK applications which we have discussed in Section
6.4. Thus in the next subsections we will discuss how our Simulator via an API
of ePNK contributes to the ePNK applications.

7.5.1 Simulator actions

As discussed in Section 6.4, each ePNK application can have its own set of
actions. To do that, it simply needs to override a method Action[] getActions
provided by org.pnml.tools.epnk.applications.Application. Our Simulator cur-
rently provides seven actions as discussed in Section 9.1.

7.5.2 Annotations

In Section 6.4, we showed an example of a transition context application which
decorates in red color input and output arcs and places of the transition. To do
that, the application used ePNK annotation mechanism which lets applications
to contribute to the Petri net decoration process.

The Simulator shows the current place marking and all enabled transitions. For
this purpose, we extended ePNK object annotations with place and transition
markings (see Figure 7.17). NetMarking manager is responsible to create anno-
tations for all places which have runtime marking and all enabled transitions.

Both place and transition markings are equipped with information necessary
for visualization. For example, a place marking knows a place and its current
runtime value, i.e. its marking. On the other hand, a transition marking knows



58 Simulator design

NetMarkingManager

+ NetMarking createNetMarking(IRuntimeState ) 

TransitionMarking

- boolean fired

AbstractMarking

PlaceMarking

ObjectAnnotation

IMSValue

+ Collection<Entry<IValue, Integer>> entrySet() 

+ int size() 

+ boolean contains(IValue ) 

+ Integer get(IValue ) 

+ void put(IValue , Integer ) 

+ void remove(IValue ) 

+ void putAll(Collection<Entry<IValue, Integer>> ) 

+ void clear() 

markings

msValue

<<instantiate>>

modes

NetMarking

FiringMode

- Map<VariableWrapper, IValue> bindings

<<List>>

<<List>>

NetAnnotationImpl

Figure 7.17: An extension of ePNK object annotation mechanism

a transition, its firing modes4 and if it was selected to fire.

7.5.3 Decorations

As we have discussed previously our Simulator uses two types of annotations -
one for places and another one for transitions. Later a presentation manager (see
Subsection 7.5.4) uses these annotations (markings) to decorate the respective
graphical element (place or transition) in the editor. In this subsection, we
discuss, what possible decorations are and their design.

Place decorations Figure 7.18 shows a fragment of a Petri net model during
the simulation. For some places in the figure there is a text in blue color attached
to the top right corner. This is an example of a place decoration. Figure 7.19
shows a design of the decoration: first of all we create a layer to place a label.
Since we want a text to appear at the top right corner of the place, we instantiate
TopRightLabel class.

4A firing mode is a collection of variable bindings.



7.5 Graphical user interface 59

Figure 7.18: Place/transition decorations

TopRightLabel

+ Rectangle getBounds() 

LabelLayer

+ Rectangle getBounds() 

Label

Layer

txtLabel

Figure 7.19: Place decorations

Transition decorations Figure 7.18 also shows several transitions - three in
green and one in blue. Green transitions are “ready to fire” and a blue transition
is one which was “selected to fire”. Furthermore, each transition has an action
provider attached and each time a transition is selected a pop up menu shows
up with the respective firing modes.

Figure 7.20 shows a design of the transition overlay. Here TransitionOverlay in-
herits from AbstractRectangleOverlay. Furthermore, AbstractRectangleOverlay
implements IActionProvider interface. This enables AbstractRectangleOverlay
to react to user selections with a list of preconfigured actions (firing modes) and



60 Simulator design

AbstractRectangleOverlay

+ Rectangle getBounds() 

+ void request() 

IAction

+ String getName() TransitionOverlay

+ List<IAction> getActions() 

+ void executeAction(IAction ) 

IState

+ void handle() 

RectangleFigure

IStateContext

+ void request() 

IActionProvider

+ void executeAction(IAction ) 

actions

state

<<list>>

Figure 7.20: Transition decorations

execute an action (fire a transition) once an action is selected from the menu.

Moreover, AbstractRectangleOverlay implements IStateContext5 which enables
an overlay to have several states. Figure 7.21 shows that each enabled transition
can be in one of the two states: either ready to fire (TransitionReadyState or
simply green) or selected to fire (TransitionSelectedState - blue). Both states
simply changes the background color of the AbstractRectangleOverlay - to green
and blue respectively.

7.5.4 Presentation manager

As we have discussed previously our Simulator uses two types of annotations
- one for places and another one for transitions. Furthermore, each type of
annotation can have several decorations. A presentation manager task is using
these annotations to actually decorate the respective graphical element (place
or transition) in the editor. Thus, in this section we explain how we relate an
annotation with a corresponding decoration.

5Here with IStateContext and IState we followed State design pattern.



7.5 Graphical user interface 61

IState

+ void handle() 

TransitionReadyState

+ void handle() 

currentState

overlay

overlay

AbstractRectangleOverlay

+ Rectangle getBounds() 

+ void request() 

TransitionSelectedState

+ void handle() 

Figure 7.21: Transition states

:IPresentationManager:DiagramAnnotationsManager

decoration

handle(annotation, graphicalEditPart)

loop

Figure 7.22: Decoration process



62 Simulator design

Each time DiagramAnnotationManager needs to update graphical elements in
the editor (see Figure 7.22), it notifies the IPresentationManager. The process
is repeated for each graphical element in the editor which has an annotation
attached. IPresentationManager sends back a corresponding decoration of the
graphical element.

7.5.5 Animations

As we have mentioned previously the Simulator can run in a completely auto-
matic mode. During animation, the Simulator updates the place markings and
a set of enabled transitions. For this purpose, we extended Eclipse UIJob class
(see Figure 7.23) with our PeriodicalWorkerJob. PeriodicalWorkerJob period-
ically invokes a method void work() of the IWorker. This process stops when
IWorker reports that a task has been completed.

IWorker

+ void work() 

+ long getSimulationPause() 

+ boolean isCompleted() 

worker
PeriodicalWorkerJob

+ IStatus runInUIThread(IProgressMonitor ) 

UIJob

Figure 7.23: Periodical jobs

7.6 Firing strategy

When the Petri net expert simulates the net manually, he can choose which
transition to fire among all enabled transitions. Moreover, it is up to the expert
to choose the firing mode once the enabled transition was set. On the other
hand, our Simulator can run in a completely automatic mode. But for this,
it needs to know the preferences among enabled transitions and among firing
modes once the enabled transition is known. For this purpose, we have designed
a way for the users to plug-in their own algorithms for transition firing strategy.

Figure 7.24 shows an interface IFiringStrategy for the firing strategy. Currently
we have implemented a default firing strategy which simply chooses randomly
what to fire.



7.7 Simulator extension points 63

IFiringStrategy

+ FiringMode fire(IRuntimeState ) 

RandomFiringStrategy

+ FiringMode fire(IRuntimeState ) 

Figure 7.24: Firing strategy

7.7 Simulator extension points

In this section we briefly show what extension points our Simulator has and how
a new project, contributing to the Simulator, can be quickly started.

New Eclipse plug-in project First of all one needs to create a new Eclipse
plug-in project (see Figure 7.25a).

Dependencies After creating a project one needs to manage the dependen-
cies. For a new simple Simulator extension only two projects are mandatory:
org.pnml.tools.epnk.applications.hlpng.simulator and
org.pnml.tools.epnk.pntypes.hlpngs.datatypes (see Figure 7.26).

Extension points After managing dependencies it is time to actually con-
tribute to the Simulator. The Simulator has two extension points: one for a
firing rule and another one to plug-in new data types and operations (see Fig-
ure 7.25b).

Now for each extension point we want to extend we have to implement the re-
quired interfaces: IFiringStrategy and IUserExtensions. Here IUserExtensions
inherits from already discussed interfaces IEvaluator and ISortEvaluator (see
Figure 7.27). Since these two interfaces are used in different context here6,

6Comparing to usual term evaluation as discussed in Section 4.1.



64 Simulator design

(a) New project wizard (b) Extension points

Figure 7.25: Extending the Simulator by plugging in new extensions

Figure 7.26: Project dependencies

we provide a code snippet for a method evaluate() from IEvaluator (see Fig-
ure 7.28). In similar way, a method evaluate() from ISortEvaluator can be
implemented. The idea, of the implementation depicted in Figure 7.28, is al-
ways to redirect the call to the responsible evaluator (here handlers is a map7

String↔IEvaluator). We will show an example of a design of a user extension
in Chapter 8.

7A usual key↔value hash map.



7.7 Simulator extension points 65

IUserExtensions

IEvaluator

+ IValue evaluate(Term , EvaluationManager , Map<TermWrapper, IValue> ) 

ISortEvaluator

+ IValue evaluate(Sort ) 

Figure 7.27: IUserExtensions interface

Figure 7.28: The method IValue evaluate(Term term, EvaluationManager eval-
uationManager, Map<TermWrapper, IValue> assignments) implementation

Figure 7.29 shows a code snippet for a firing strategy implementation. In this
example, the firing strategy always chooses the first enabled transition among
all enabled and the first firing mode of the available modes for that transition.

Figure 7.29: Firing mode implementation: among all enabled transitions choose
the first one and return its first firing mode in the list

Now next time Eclipse will start with this plug-in, the Simulator registers and



66 Simulator design

uses it automatically. For example, all user defined operation calls will be redi-
rected to this extension (if there are any). The same goes for a firing strategy.
We have already mentioned that a firing strategy is more an application depen-
dent, thus if a new strategy is implemented, the Simulator will start using it
immediately.

Currently, we do not provide a way for a user to choose, which user extensions
(including firing strategies) has to be loaded, when the application starts (we
load all of them). We plan to support this functionality later in the future.



Chapter 8

Simulator evaluation

In this chapter we evaluate our Simulator in two different real case scenarios.
One of them is modeling complex physical systems. Here simply by “playing
the token-game” is difficult to understand a behavior of such system. In this
evaluation we chose to model and simulate a train traffic control system. But
actually it can be anything - car traffic control system, some manufacturing
processes etc. The second evaluation is a contribution to the simulation of
distributed systems using Petri nets. We designed and implemented a general
framework to simulate network algorithms - high level Petri net models which
are also known as high-level Petri net schemes [11].

8.1 Train traffic control system

Motivation When modeling a physical system with Petri nets, an expert
has to address several fundamental differences between a model and the real
world. For example, in a Petri net model, tokens from one place to another
moves instantly, but physical objects have natural limitations - they cannot
move faster than the speed of light. Furthermore, it is challenging to show how
two solid objects are arranged in space just by using tokens (when two solid
objects cannot occupy the same space at the same time). In this evaluation,
we designed and implemented a general 3D visualization framework to help



68 Simulator evaluation

Petri net experts to model complex physical systems. This concept was already
presented in [13] where PNVis - a 3D visualization of low level Petri Nets - was
introduced. In this work we present a 3D visualization of high level Petri Nets.
We will explain our implementation in the next paragraphs.

Description This Simulator extension deals a 3D visualization of physical
systems. As a study case, we chose to model and simulate a train traffic control
system (TTCS). For our project we extended an already existing 3D visualiza-
tion [24] engine. Figures 8.1 shows an example of the train traffic with two
trains - red and blue - in it. The blue one is faster than the red one. Further-
more, there are three traffic lights. The traffic lights which are in the center
of Figure 8.1a are synchronous traffic lights, i.e. if one of them is switched to
green the other one is automatically updated to red and vice versus. The traffic
light which is at the bottom of Figure 8.1a is completely independent from any
other traffic light in the model.

(a) Train traffic system (b) Colliding trains

Figure 8.1: 3D visualization of the train traffic control system

Communication with 3D engine M. Valvik et al. [24] explains how the
Simulator and the 3D engine communicates. Furthermore, it also describes a
protocol to start, stop and reset the animation. In our project we followed
already defined protocol for communication: during initialization we provide
textures and models for the 3D world. In addition, we set the train track path
geometry. Finally, we evaluate a Petri net initial marking and relate each tokens
in the Petri net model with a 3D object in a scene, meaning that each token



8.1 Train traffic control system 69

has a corresponding 3D model and vice versus. The relationship between the
tokens and 3D models is 1:1.

Token states As we have mentioned in the previous paragraph, each token in
our model is associated with an object in a 3D scene. Thus on one hand, each
time a transition fires, a corresponding token is moved from one place to another
place instantly. On the other hand, it takes some time for e.g. a train to move
from one physical location to another. And only when a train completes the
animation, a corresponding token can be used in transition occurrence again.
During Petri net model simulation, when a transition fires, we do three things:
we move a token from one place to another, we start a corresponding animation
and we mark the token as running. When a token is in a running state, it cannot
participate in the transition occurrence rule. Only when the corresponding
animation finishes, we update the token state to ready. Only when a token is in
a ready state, it can participate in the transition occurrence rule.

Controls Figure 8.2 shows all primitives which we have declared to control
our train traffic system.

Figure 8.2: Train traffic model declarations



70 Simulator evaluation

Data structures First of all, an ID is an ID of a 3D model. We use this
ID to refer to 3D models in a scene from our Petri net model. Secondly, a
location has two meanings. On one hand, it is an ID of a path segment1 (in our
case, a train track segment). On the other hand, it is an ID of point in a 3D
scene. We refer to it, when we want to display a static object in some certain
point in a scene. Furthermore, we defined a speed of a train, which is always
a natural number (>0). Moreover, a dynamic model is a tuple of a model ID,
its location and its current speed. We use this data structure for commands,
handling dynamic objects. For example, to move certain 3D objects (trains)
to the certain direction with a given speed. A static model is a tuple only of
a model ID and its location. Again, we use this data structure for commands,
handling static models. For example, to display a traffic light in a given point.

Operations Next we explain each operation we devised to control our train
traffic model.

APPEAR POINT - a static model is an input argument and returns a multiset
with the same input argument, e.g. if an input is (id, location), then returns
1‘(id, location). This function displays static models (traffic lights) on the given
locations.

TRIGGER - a model ID (usually of a traffic light) is an input argument and
returns empty multiset (usually operation TRIGGER is used together with other
operation such as APPEAR POINT ). This function starts an animation on
a model, meaning the animation is finished only when a user clicks on the
corresponding 3D object in a scene. In our Petri net model, if TRIGGER is
called on some 3D model, it means that a corresponding token enters the running
state. Only when a user clicks on a 3D model, the animation finishes, i.e. the
token enters the ready state.

MOVE - a dynamic model is an input argument and returns a multiset with
the same element (the same as APPEAR POINT ). This function is responsible
of the actual movement of the dynamic objects (trains). An animation starts at
the beginning of the “location” and finishes only when a dynamic object reaches
the end of the “location”. In our Petri net model, if MOVE is called on some
3D model, it means that a corresponding token enters the running state. Only
when a3D model reaches the end of the “location”, the animation finishes, i.e.
the token enters the ready state.

READY - a model ID is an input argument and returns if the model has finished

1A geometry of a path is composed of several segments and we refer to these segments
from our Petri net model, when we want e.g. a train to move to a certain direction.



8.1 Train traffic control system 71

its animation. Simply speaking, READY can always tell if a corresponding
token of a 3D model is either in ready or running state. Only if a token is in
the ready state, it can participate in the transition occurrence rule.

Helper functions We have also defined few helper functions. As it was
mentioned before usually, an operation TRIGGER comes after operation AP-
PEAR POINT, thus we grouped both operations in one function called show().
The other functions are useful in simply preventing from writing string con-
stants everywhere in our model. They all do simple string concatenation. gSig
and rSig stands for green and red signal respectively. sLoc stands for static item
location and track - for train track ID.

Models We split our train traffic control Petri net model into pages (modules)
so that each page (module) can be easily reused in other Petri net models.

Simple traffic light Let us start from the simplest of our sub-models - simple
traffic light Petri net model (see Figure 8.3). A box at the top left corner of
the image shows sub-model local variables. Initially, the traffic light is green - a
place has initial marking 1‘(greenSignal2, signalPoint1). When a user clicks on
the traffic light in the 3D scene, it becomes red and waits for another user click.
Here a transition fires when a token of a corresponding 3D model (greenSignal2
or redSignal2 ), is in a ready state.

Figure 8.3: Simple train traffic light Petri net model

Synchronous traffic lights The second Petri net page (module) deals with
the synchronous traffic lights (see Figure 8.4). Initially, a traffic light on the left
is red and one on the right is green (see the respective initial markings as in the



72 Simulator evaluation

previous example). A cyan box at the top left corner shows local variables for
this model. When a user clicks on one of the synchronous traffic lights in the
3D scene, both lights get updated, e.g. if the target light was green it becomes
red and the other one - green.

Initially, both tokens2 1‘(“redSignal3”, “signalPoint3”) and 1‘(“greenSignal1”,
“signalPoint2”) are in the running state. Now let us say, a user clicks on a
3D model of 1‘(“redSignal3”, “signalPoint3”). Thus 1‘(“redSignal3”, “signal-
Point3”) enters the ready state and the transition at the top becomes enabled
and fires. Now both places have the following marking: textit1‘(“greenSignal3”,
“signalPoint3”) and 1‘(“redSignal1”, “signalPoint2”), meaning, that the corre-
sponding models in 3D scene were updated from red to green and vice versus.

Figure 8.4: Synchronous train traffic lights Petri net model

Train traffic control Finally, Figure 8.5 shows the main model of the train
traffic control system. As usually, a cyan box at the top left corner depicts
all local variables used in the model. A green box START indicates a starting

2See Figure 8.4: from the place on the left to the place on the right after evaluating the
initial marking.



8.1 Train traffic control system 73

place. Here are two tokens-trains - fast and slow referring to fast and slow trains
in the 3D scene. Places framed in a dashed line indicates that they are using
reference places from other models.

A place at the bottom left corner and framed in a dashed line indicates a ref-
erence place and in this way the TTCS Petri net model reuses simple traffic
light model. A transition associated with this place can fire only when there is
a token on the respective place.

Two reference places on the right side of the model refers to the places from
the synchronous traffic light model. An associated transition can fire only when
there is a greenSignal* token on the respective place.

Figure 8.5: Train traffic control Petri net model

The actual train traffic control mechanism is simple: a train moves from one
train track segment to another (a corresponding token from one place to an-
other). As usually, when a train moves, a corresponding token is in the running
state and when the animation finishes, the token enters the ready state. In our
model, as in a real life, if a link between two train track segments is controlled
by a traffic light, a train can proceed, if the respective traffic light is green. It is
the outgoing arc inscription of the respective transition, which controls where a
train has to go next.

Contribution Our main contribution in this Simulator extension is that a 3D
visualization engine communicates with a high level Petri net. Both [13] and
[24] describes a solution where a visualization is connected to a low level Petri



74 Simulator evaluation

net. Secondly, both [13] and [24] had to extend low level Petri nets by adding
new syntactical features for a communication to work with the visualization. In
our approach, we use only high level Petri net syntax to communicate with a 3D
visualization engine. For example, different token type reflects different physical
object type, e.g. trains or traffic lights. Moreover, the operation READY at
any point in time can tell if a token’s animation is finished. Finally, we issue
a command to the 3D engine only when necessary requirements (incoming arc
inscriptions and transition conditions) are satisfied. We call the corresponding
commands to control a simulation of the physical world on the outgoing arc
inscriptions.

Configuration model As we have mentioned previously, the Visual Simula-
tor needs some configuration in order to run. For example, 3D models, scene
textures, path geometry. For this purpose, we have created a model for the
Visual Simulator configuration (see Figure 8.6). Here VisualSimulatorConfig
refers Geometry and Shapes model from [24].

Figure 8.6: A configuration model. VisualSimulatorConfig refers Geometry and
Shapes model from [24]

Design of Visual Simulator Figure 8.7 depicts a design of the Visual Simu-
lator. The main class here is VisualSimulator - the Visual Simulator. By extend-
ing HLSimulator (the Simulator), the VisualSimulator inherits high level Petri
net simulation functionality. Furthermore, VisualSimulator has an access to
dk.dtu.imm.se2.group6.interfaces.IAnimator - an interface, providing the main
3D visualization functionality. In order to communicate to
dk.dtu.imm.se2.group6.interfaces.IAnimator, the Visual Simulator implements
dk.dtu.imm.se2.group6.interfaces.ISimulator3. The Visual Simulator, by imple-
menting IVisualSimulator acts as a global token state registry. By calling regis-

3The reader can find mode about dk.dtu.imm.se2.group6.interfaces.ISimulator and
dk.dtu.imm.se2.group6.interfaces.IAnimator in [24]



8.1 Train traffic control system 75

terAnimation() for a 3D model, one sets the corresponding token in a running
state. Furthermore, isReady(), can tell, if a token, associated with a 3D model,
is ready to participate in the occurrence rule. Finally, the Visual Simulator
provides functionality to start/stop/reset the animation.

Each operation, which we defined to control train traffic previously e.g. READY,
is implemented as a separate class here. They all extend a general operation
- AbstractFunction. ExtensionManager implements IUserExtensions interface
(see Section 7.7). By implementing the IUserExtensions interface, Extension-
Manager actually contributes to the Simulator. Each time, the Simulator asks
ExtensionManager to evaluate a term, ExtensionManager redirects the call to
the respective operation implementation, e.g. MOVE() to MOVE. Each op-
eration implementation has a reference to IVisualSimulator, so that they can
register 3D models, which animation has started. In our case, only MOVE and
TRIGGER informs the Visual Simulator about the started animations.

When the dk.dtu.imm.se2.group6.interfaces.IAnimator reports about finished
animation, VisualSimulator updates the corresponding token state to ready.

ExtensionManager

+ IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

+ String validate(Object term) 

+ IValue evaluate(Sort sort) 

AbstractFunction

+ IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

+ IValue execute(List<IValue> values) 

+ String validate(Object term) 

dk.dtu.imm.se2.group6.interfaces.IAnimator

IUserExtensions

APPEAR_POINT

+ IValue execute(List<IValue> values) 

MOVE

+ IValue execute(List<IValue> values) 

READY

+ IValue execute(List<IValue> values) 

TRIGGER

+ IValue execute(List<IValue> values) 

IVisualSimulator

+ void registerAnimation(int id) 

+ boolean isReady(int id) 

IEvaluator

VisualSimulator

+ void start(IAnimator animator) 

+ void reset(IAnimator animator) 

+ void stop(IAnimator animator) 

+ void registerAnimation(int id) 

+ boolean isReady(int id) 

HLSimulator

extensionManager

visualSimulator

animEngine

opHandlers

dk.dtu.imm.se2.group6.interfaces.ISimulator

Figure 8.7: A design of the Visual Simulator



76 Simulator evaluation

8.2 Network algorithms

The second extension is a contribution to the simulation of distributed systems
using Petri nets. More precisely, our extension deals with network algorithms.
Each network algorithm (Petri net model) operates on some network, where
entities are represented as nodes and communication channels - as edges. A
nice feature of this kind of Petri net models is that they are network structure
independent, i.e. they does not depend on the number of nodes in the network
or on the way the nodes are connected to each other. This type of Petri nets are
called net schemes [14]. Figure 8.8 shows the main idea behind network schemes
- each Petri net scheme is equipped with the individual set of concrete settings
(or in our case - a concrete network structure). This set of settings may vary.

In our extension we deal with three network algorithms - minimal distance [14],
echo [15] and consensus [21] algorithm. First of all, we modeled and generated a
graphical editor to draw a network of entities (see Chapter 6). Then the network
model produced using the editor is used as an input to our Simulator extension.

uses
Petri net

(Petri net 
scheme)

A set of 
input

settings 

Figure 8.8: A configuration of network algorithms

Next we will discuss three network algorithms. We will show the correspond-
ing Petri net (algorithm) and a concrete network structure associated with the
algorithm.

8.2.1 Minimal distance algorithm

Minimal distance algorithm [11] works on a network of agents where each agent
can be either a root agent or an inner agent. The algorithm finds a minimal
distance for each node to the root node.

Figure 8.9 shows a network of two different kinds of nodes - R (root) and I
(inner) nodes. A directed edge reflects the direction of the communication -



8.2 Network algorithms 77

from a source to a destination. On this network the minimal distance algorithm
gets executed.

Figure 8.9: An input to minimal distance algorithm

Figure 8.10 shows the minimal distance algorithm 4 initially. Category names
R and I, which are used in a network model, later are referred back again in
the Petri net model. R() is the set of root nodes and I() is the set of inner
nodes (which is a difference between a set of all network nodes and a set of root
nodes). MESSAGE is a pair of a network agent and its distance to the closest
root node. N(agent, n) is a set of messages, where all agents are distant from
an agent by n units. For example, N(B, 1) = [], since the node B does not
have any outgoing edges (see Figure 8.9). And N(A, 1) = [(C, 1), (D, 1)], since
there are two nodes C and D distant from the node A by one unit (see Figure
8.9).

Figure 8.10: Minimal distance algorithm initially. The agents (network nodes)
are represented as strings here. For example, the agent (node) A is presented
as “A” in the Petri net during runtime.

4The model was adapted from [11].



78 Simulator evaluation

Figure 8.11 shows the minimal distance of each node to the closest root node.

Figure 8.11: Minimal distance algorithm: all distance have been found

In this example, we have chosen a network depicted in Figure 8.9 to execute our
Petri net model on. In fact, it can be any network with an arbitrary number of
nodes connected in various ways, on which we can execute the minimal distance
algorithm. How to set the network model for the network algorithms, we have
discussed in Chapter 9.

8.2.2 Echo algorithm

The echo algorithm [15] operates on a network of agents. The set of agents
is split into two parts so called initiators and others. At some point initiator
makes a decision but before proceeding it needs to inform all other sites about
its plans. Only when the initiator is sure that each other agent on the network
has received and accepted its message, it can proceed.

Figure 8.12 shows a network of agents of two kinds - initiators (F) and others
(A, B, C, D, E). An undirected edge connecting two network nodes indicates
that they can communicate to each other in both directions. On this network
the echo algorithm is executed.

Figure 8.13 shows the echo algorithm 5 initially with the given network of nodes
as an input. Here again category names Initiators and Others, which are used
in a network model, later are referred back again in the Petri net model. A
function Initiators() denotes a set of initiators and a function Others() denotes
the rest of the network nodes. A pair (x, y) denotes an envelope, where x is a

5The model was adapted from [15].



8.2 Network algorithms 79

Figure 8.12: An input to echo algorithm

receiver and y is a sender. S(agent) is a set of all possible messages where agent
is a sender. For example, S(F)=[(C, F), (A, F)]. R(agent) is a set of all possible
messages where agent is a receiver. For example, R(F)=[(F, C), (F, A)].

Figure 8.13: Echo algorithm initially

Figure 8.14 shows a situation where all other agents have received and accepted
initiator’s request. Now the initiator F can enter the state terminated.



80 Simulator evaluation

Figure 8.14: Echo algorithm: all other agents have received and accepted the
initiator’s request

8.2.3 Consensus algorithm

The consensus algorithm [21] takes place when a group of sites or agents form-
ing some kind of network wants to reach an agreement on something. In this
network the only one available communication with other sites is a broadcast
of the proposal to the other parties. Each site can spontaneously broadcast
its proposal. Once a site receives a proposal, it can accept it, or broadcast a
new proposal. The consensus may never be reached, but if all sites agree on a
proposal - the agreement is stable.

Figure 8.15 shows a network of three sites A, B, C which wants to reach an
agreement. The network of nodes is fully connected.

Figure 8.16 depicts the initial state of the Petri net model6 for the above given
three sites. Here a pair (x, y) again denotes an envelope, where x is a receiver
and y is a sender. U() (again the corresponding category has the same name in
the network model (see Figure 8.15)) is a set of all sites and M() is a complete
set of messages among the sites. We have already introduced the functions S()
and R() in the previous section. Initially, each pending site can either become
an agreed site or initiate a request.

6The model was adapted from [21].



8.2 Network algorithms 81

Figure 8.15: An input to consensus algorithm

Figure 8.16: Consensus algorithm initially

Figure 8.17 shows a situation where all three sites have reached a consensus and
this agreement is stable, i.e. none of the transitions are enabled.

8.2.4 Contribution

By given three examples above we have introduced our general framework for
network algorithms. Next we will summarize the features of our framework for



82 Simulator evaluation

Figure 8.17: Consensus algorithm when the consensus was reached

network entities.

Arbitrary network First of all, each network algorithm can be executed on
any network of entities. This is configured when the Network Simulator starts
(see Chapter 9).

Category naming convention A set of nodes, belonging to some category
Category, can be accessed in a Petri net model by using a function called Cate-
gory().

Predefined function set Our framework has a predefined function set, which
can be used by any other network algorithm. These functions are already intro-
duced S(agent), R(agent) and M(). Any other function, e.g. N() from minimal
distance example, can be easily plugged in.

All these features of our framework enables easy simulation of any network
algorithm.



8.2 Network algorithms 83

8.2.5 Design of network algorithms

In this subsection we will discuss a design of our network algorithms extension
(see Figure 8.18).

First of all, each operation represented in the previous subsections is imple-
mented in a separate class, e.g. M:MS(MESSAGE) from the consensus algo-
rithm is implemented in MFunction class. Secondly, InputFunction is responsi-
ble to gather all network nodes belonging to the category defined by a function
in a Petri net model. For example, if we have an operation R() in a Petri net
model, then it is InputFunction task to find all nodes belonging to that category
R. Since InputFunction implements ISortEvaluator, thus it can find all nodes in
the network based on their sort. Furthermore, all these “functions” have an ac-
cess to the Network (see Chapter 6) and are managed by NetworkExtensionMan-
ager. NetworkExtensionManager implements IUserExtensions interface which
is provided by one of the Simulator extension points (see Section 7.7). Each
time the Simulator asks NetworkExtensionManager to evaluate something, this
call is redirected to the responsible function, e.g. MFunction. The same holds
for validation.

NetworkExtensionManager

void register(String name, IEvaluator eval) 

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

String validate(Object obj) 

IValue evaluate(Sort sort) 

Network

NFunction

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

String validate(Object term) 

InputFunction

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

IValue evaluate(Sort sort) 

String validate(Object term) 

IUserExtensions

IEvaluator

ISortEvaluator

handlerMap

network

<<map>>

SFunction

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

String validate(Object term) 

RFunction

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

String validate(Object term) 

MFunction

IValue evaluate(Term term, EvaluationManager evaluationManager, Map<TermWrapper, IValue> assignments) 

String validate(Object term) 

AbstractFunction

void setRuntimeValueFactory(RuntimeValueFactory runtimeValueFactory) 

void setGraph(Integer[] graph) 

void setNodeIdMap(Map<Integer, NodeWrapper> nodeIdMap) 

Figure 8.18: A design of network algorithms extension



84 Simulator evaluation



Chapter 9

Handbook

In this chapter we give a short tutorial on how to use the Simulator and its
extensions.

9.1 Simulator

Start the Simulator First of all, in order to start the Simulator, one needs
to open the Petri net model, which he or she wants to simulate. Then right click
on the HLPN {network name}, choose ePNK and then Start Simulator App1

(see Figure 9.1).

Activate the application The second step is to make the application ac-
tive. By selecting the application in the ePNK application view, one activates
it (see Figure 9.2). Only when the application is activated, one can see the
corresponding decorations on the Petri net graph and the application controls.

1In the same way the Network Simulator and the Visual Simulator can be started.



86 Handbook

Figure 9.1: Start the Simulator

Figure 9.2: Select the application in the ePNK application view

Simulator controls After selecting the application in the ePNK application
view, one can see its controls. The Simulator has the following available actions2

(see Figure 9.3):

1. Previous - selects the previous state of the simulation in the state list.

2. Run - automatic simulation mode. It also has a pop up menu attached
where a user can configure a pause length between two simulation runs.

3. Stop - stops the automatic simulation mode.

4. Next - selects the next state of the simulation in the state list.

2The icons for the Simulator actions were take from http://eclipse-icons.i24.cc/.

http://eclipse-icons.i24.cc/


9.2 Simulation view 87

5. Reset - resets the application.

6. Delete - closes down the application and removes it from the application
view and application registry.

Figure 9.3: Simulator controls. Starting from left to right: Previous, Run,
simulation pause length (pop up menu), Stop, Next, Reset, Delete

Providing partial solution In Chapter 4 we have mentioned that when the
Simulator cannot resolve the variables, it asks for a partial solution. Let us say,
we have a term x * y - z + 5 ← [4, 9], where z ← 5. Figure 9.4 shows a dialog to
provide sufficient part of the solution. The variable bindings can be separated
by semicolons. Here we assigned x ← 2 and x ← 3.

Figure 9.4: A dialog to input a sufficient part of the solution

9.2 Simulation view

The Simulator has a view, where each Petri net simulation state is recorded.
Figure 9.5 shows the simulation view with two columns - one for transition



88 Handbook

name and the other one for firing mode. A red button at the top right corner
of the view resets the application (and the view). Each time the Simulator fires
a transition, this action is recorded to the view. After simulation is done, an
expert can go via this list and select any record in a list - this will be reflected in
the editor (updates runtime marking and shows all enabled transitions). Also
one of the transitions will always be colored in blue. It denotes a transition which
was selected to fire in this state. Furthermore, the simulation view is application
dependent, i.e. when a user selects another application in the application view,
the state list will reflect the selected application.

As we have mentioned previously, the Simulator has two controls for going for-
ward and backward in the simulation state list (Previous and Next). Each time
a user presses Previous or Next in the Simulator control menu, the correspond-
ing state is reflected in the Petri net and in the view (see Figure 9.5 where the
current state is denoted in light gray in the view).

Figure 9.5: Simulation view

The view can be found in Eclipse: Window → Show view → Other →
HLPNG Simulator Category → Simulation V iew.



9.3 Network algorithms 89

9.3 Network algorithms

The Network Simulator can be started in the same way as the Simulator but
choosing Start Network Simulator App instead (see Figure 9.1). The main dif-
ference between the Network Simulator and the Simulator is that the Network
Simulator needs a network instance on which to simulate the Petri net. The de-
fault behavior of the Network Simulator is that it looks for the network model
with the same name as the Petri net model. If it cannot find the corresponding
network model, then it asks a user to provide one (see Figure 9.6).

Figure 9.6: A dialog for choosing a network to simulate on

The rest of the functionality the Network Simulator inherits from the Simulator
(actions, interaction with the simulation view etc.).

9.4 Visual Simulator

Start the Visual Simulator The Visual Simulator can be started in the
same way as the Simulator but choosing Start Visual Simulator App instead
(see Figure 9.1). The main difference between the Visual Simulator and the
Simulator is that the Visual Simulator needs a configuration file which maps
the necessary resources, e.g. appearance etc. The default behavior of the Visual
Simulator is that it looks for the configuration file with the same name as the
Petri net model. If it cannot find the corresponding configuration file, then it
asks a user to provide one (see Figure 9.7).

Configuration Some configuration is needed for the 3D extension of our Sim-
ulator to run. First of all, the Visual Simulator needs a model of a train traffic



90 Handbook

Figure 9.7: A dialog for choosing 3D visualization setting set

layout, so the 3D engine could generate a scene. Secondly, it needs appearance
settings (the models for the trains, images for the train tracts etc.).

Figure 9.8 shows a tree editor, where one can set concrete parameters for the
simulation. These parameters are a geometry of the train track layout and a
path to 3D models and textures. How to create a geometry for the train track
layout and appearances is discussed in [24].

Figure 9.8: Configuration tree editor. One can set geometry and appearance
settings for the visualization here.

Figure 9.9 shows a train track and traffic light signal model3.

Visual Simulator controls The Visual Simulator has the following available
actions (see Figure 9.10):

1. Run - run the animation/simulation.

3The model was adapted from [24].



9.4 Visual Simulator 91

Figure 9.9: Train track model with 5 train track segments and 3 positions for
traffic lights (signalPoint[1-3]).

2. Stop - stops the animation/simulation.

3. Reset - resets the application.

4. Delete - closes down the application and removes it from the application
view and application registry.

Figure 9.10: Visual Simulator controls. Starting from left to right: Run, Stop,
Reset, Delete

Feature set First of all, our Petri net editor is always in sync with the 3D
engine, i.e. place markings reflect the current state of the train traffic. Fur-
thermore, we record each simulation state in a simulation state list. Thus at
any time, an expert can select any state from the state list and the 3D engine
will immediately reflect the updated place marking (providing a snapshot of
the system). If a modeler presses run button, the simulation starts from the
state selected in the state list. While a simulation is in a “snapshot” mode, a
modeler can change the traffic light settings (from green to red and vice ver-
sus). In this way, a modeler can actually impact the simulation by choosing to
branch the simulation from any already recorded simulation state. Figure 9.11



92 Handbook

shows a train traffic control in action: a Petri net model, 3D visualization and
a simulation view with currently recorded states.

Figure 9.11: Train traffic control in action

9.5 Currently supported sorts and operations

Finally, we list all currently supported sorts and operations.

Sorts Currently, we support the following sorts:

1. boolean

2. dot

3. multiset

4. number (positive, natural and integer)

5. list



9.5 Currently supported sorts and operations 93

6. product (tuple)

7. string

Operations Currently, we support the following operations:

1. boolean: logical Or, logical And, Equality, Inequality4;

2. multiset: NumberOf, Add, Subtract, All, Empty ;

3. number: LessThan, GreaterThan, Modulo, Addition, Subtraction, Multi-
plication, Division;

4. list: MakeList, MemberAtIndex, Sublist, Length, Append, Concatenation,
EmptyList)

5. string: Concatenation.

Currently, due to time constraints, we do not support all sorts and operations
defined in ISO/IEC 15909-2. Instead, we conducted an experiment during which
we have implemented list sort and all its operations. It took us 1.5 h to imple-
ment and test the solution.

4Equality and Inequality are general operations, which can be applied on any data type
and returns a boolean value.



94 Handbook



Chapter 10

Future work

In this chapter we discuss the future work of our project. We have not yet
implemented all these features mainly due to time constraints. But we think an
end user would benefit having them.

ISO/IEC 15909-2 In this project we designed and implemented a general
framework to plug-in new data types and operations for our Simulator. Due to
time constraints we have implemented only a part of data types and operations
defined in ISO/IEC 15909-2. In Section 9.5 we listed all currently fully or partly
supported sort and operations. Furthermore, we showed that to implement a
list data type and all its operations we needed 1.5 hour. Currently, we do not
support CyclicEnumerations, FiniteEnumerations, FiniteIntRanges, Partitions
and some other operations for other data. We think that in one week the
implementation of the whole standard can be completed.

User extension management In Section 7.7 we discussed extension points
of our Simulator. We have already mentioned that currently we do not provide
a way for a user to choose, which user extensions (including firing strategies) has
to be loaded, when the Simulator starts (we load all of them). It is important
to control, which extensions will be loaded, in cases when the same user defined
operation name is used in different extensions. Furthermore, only one firing



96 Future work

strategy can be used by a simulator at a time. We think a solution here is
simple - before the Simulator starts, show all available extensions in a dialog to
a user and let him select the relevant ones. It would take one day to implement
this feature.

Solution space ranges Currently, when the Simulator does not know how to
bind variables, it asks a user to provide a sufficient part of the solution manually
as we discussed in Section 4.3. Let us say we have an equation x + y = 20. Now
if the Simulator knows that x ≥ 0 and y ≥ 0, then it can compute the bindings
for x and y by checking all possible values of x (or y, since we can bind the
second variable automatically if we know a value of the first variable), where,
in this case, 0 ≤ x ≤ 20. We expect to use this information only in some cases.
For example, when x + y = 20.000.000, then it is still better to ask a user for
a partial solution. To implement this feature, it would take a day or two.

User provided partial solutions Currently, when the Simulator does not
know how to bind variables, it asks a user to provide a sufficient part of the
solution manually as discussed in Sections 4.3 and 9.1. The problem is that it
does not indicate graphically the transition, for which the variable binding fails
- a dialog suddenly pops up asking for a partial solution. We think, it would
be a better approach to indicate such a transition first (let us say, by a gray
overlay) and if a user chooses to fire it (clicks with a mouse), then ask for a
partial solution during the variable binding. To implement it, it would take a
day or two.

Simulation We would like to improve the automatic simulation by making
it similar to a programming language debugger. For example, sometimes it is
useful to have a support for simulation termination conditions. Let us say, when
a certain condition is met, we want to pause or terminate the simulation. Thus,
a user can define, what are the interesting situations during simulation (condi-
tions), and the simulation will pause (terminate), when something interesting
happens. For this feature, more conceptual work needs to be done on the con-
ditions (what they have in common, what are possible attributes etc.). Once
this set is defined, the implementation of the feature would take a day or two.

Save/load simulation states Currently, there is no way to save simulation
states to a file or to load them from a file. Sometimes it is useful, to have these
states saved somewhere, so that they can be used in further analysis applying
other tools. This can be done in a day.



97

Simulation state graph Currently, states during simulation are recorded to
a list. Another structure, which can be used here, is a graph (tree), where a
new direction during the simulation can be easily associated with a new path
in a graph. Furthermore, a complete state space of a model, represented as a
graph, can be used in analysis of a model.

System of linear equations Currently, our variable binding algorithm can
automatically solve a system of linear equations, which is already in a triangular
form1. Currently, our algorithm cannot automatically solve this equation:

{
x + y = 8

x− y = 2
(10.1)

We would like to improve our variable binding algorithm so that it can combine
the current algorithm with, for example, an algorithm for general system of
linear equations, e.g. Gaussian elimination. Equation 10.2 shows an example of
a system of equations, which we would like to tackle automatically. Here first
two equations are linear, an by adding them together we can get a value for x
← 10, then from the last equation we can bind y ← 3, and finally, z ← 7.


x + y + z = 20

x− y − z = 10

x ∗ y = 30

(10.2)

This feature requires more conceptual and development work than other fea-
tures. We think it can be a part of a bachelor or master project.

1Actually, our algorithm can deal with even more complicated situations e.g. x * y = 21.
But to solve it automatically, the algorithm needs to know either x or y.



98 Future work



Chapter 11

Conclusions

In this master project, we designed and implemented a simulator for high level
Petri nets. A design and implementation of the simulator uses the state of the
art model based techniques in Software Engineering. In addition, we presented
new ideas for variable binding algorithm and tested it with challenging technical
examples and examples from literature.

We considered openness of our Simulator architecture as one of the main re-
quirements for its design. We evaluated this property of the Simulator with two
extensions - general frameworks with a set of predefined functions to simulate
physical systems and network algorithms. In both cases, the Simulator design
showed a high degree of flexibility and extensibility.

Finally, we learned that model based techniques are important part of Software
Engineering. These techniques sped up our project development significantly
since we could transform all our design decisions automatically to a code. Fur-
thermore, since model driven engineering is equipped with other tool support
besides code generation, this was beneficial later in our project (for example
building a graphical editor for a network entities).

We conclude that our framework can be used by Petri net modeler community.
Furthermore, model based software engineering eased our work.



100 Conclusions



Bibliography

[1] http://www.informatik.uni-hamburg.de/TGI/PetriNets/. [Online; ac-
cessed 8-August-2012].

[2] http://www.pnml.org/. [Online; accessed 8-August-2012].

[3] Franz Baader and Wayne Snyder. Unification theory, 2001.

[4] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-
Ins. Addison-Wesley Professional, 2004.

[5] Jörg Desel, Gabriel Juhás, and Katholische Universität Eichstätt. What is
a Petri net? Informal answers for the informed reader. In Unifying Petri
Nets, LNCS 2128, pages 1–27. Springer, 2001.

[6] Bernd Grahlmann and Eike Best. PEP - more than a Petri net tool. In
TACAS’96, pages 397–401, 1996.

[7] L. M. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PNML framework: an
extendable reference implementation of the Petri net markup language. In
Proceedings of the 31st international conference on Applications and Theory
of Petri Nets, PETRI NETS’10, pages 318–327, Berlin, Heidelberg, 2010.
Springer-Verlag.

[8] ISO/IEC. Software and system engineering - High-level Petri nets - Part
1: Concepts, definitions and graphical notation. 15909(1), 2004.

[9] ISO/IEC. Systems and software engineering - High-level Petri nets - Part
2: Transfer format. 15909(2), 2011.

[10] K. Jensen and L. M. Kristensen. Coloured Petri Nets. Springer, 2009.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.pnml.org/


102 BIBLIOGRAPHY

[11] E. Kindler and L. Petrucci. A framework for the definition of variants of
high-level Petri nets. Proceedings of the Tenth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and CPN Tools (CPN ’09), 2009.

[12] Ekkart Kindler. ePNK: A generic PNML tool - Users’ and Developers’
Guide : version 0.9.1. IMM-Technical Report, 3, 2011.

[13] Ekkart Kindler and Csaba Páles. 3D-Visualization of Petri Net Models:
Concept and realization. In In Proc. of ICATPN 2004, volume 3099 of
LNCS, pages 464–473. Springer-Verlag, 2004.

[14] Ekkart Kindler and Wolfgang Reisig. Algebraic system nets for modelling
distributed algorithms. Petri Net Newsletter, 51:51–16, 1996.

[15] Ekkart Kindler, Wolfgang Reisig, Hagen Völzer, and Rolf Walter. Petri net
based verification of distributed algorithms: An example. Formal Aspects
of Computing, 9, 1996.

[16] Fabrice Kordon and Emmanuel Paviot-adet. Using cpn-ami to validate a
safe channel protocol, 1999.

[17] Dave Steinberg; Frank Budinsky; Marcelo Paternostro; Ed Merks. EMF:
Eclipse Modeling Framework, Second Edition. Addison-Wesley Profes-
sional, 2008.

[18] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, USA, 1997.

[19] Vasilis Gerogiannis;Achilles Kameas;Panagiotis Pintelas. Comparative
study and categorization of high-level Petri nets. Systems and Soft-
ware(JSS), 43:133–160, 1998.

[20] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Ja-
cob Frank, Martin Stig Stissing, Michael Westergaard, Søren Christensen,
and Kurt Jensen. CPN Tools for editing, simulating, and analysing coloured
Petri nets. In Applications and Theory of Petri Nets 2003: 24th Interna-
tional Conference, ICATPN 2003, pages 450–462. Springer Verlag, 2003.

[21] W. Reisig. Elements of Distributed Algorithms. Springer, 1998.

[22] H. Störrle. An Evaluation of High-end Tools for Petri-nets. Bericht //
Institut für Informatik, Ludwig-Maximilians-Universität München. Univ.,
Inst. für Informatik, 1998.

[23] J. K. Truss. Discrete Mathematics for Computer Scientists. Addison-
Wesley, 1991.



BIBLIOGRAPHY 103

[24] Morten Valvik, Du Nguyen, Félix Manuel Rubio Gallego-Preciados, Jesper
Jepsen, Mindaugas Laganeckas, Radu Calin Gatej, Johannes Rasmussen,
Magnus Felix Tryggvason, and Christian Ejdal Sjøgreen. Petri Net 3D
Visualizer. Student report, 2011.


	Summary
	Preface
	Acknowledgements
	Glossary
	1 Introduction
	2 Related work analysis
	3 Informal introduction to Petri nets
	3.1 Low level Petri nets
	3.2 High level Petri nets
	3.3 Petri net features

	4 Simulation algorithm
	4.1 Term evaluation
	4.2 Equalization
	4.3 Variable binding algorithm
	4.4 Transition occurrence

	5 Tool comparison
	5.1 Simulator comparison to CPN Tools
	5.2 A power of Simulator variable binding algorithm

	6 Basic technology
	6.1 Eclipse
	6.2 EMF
	6.3 GMF
	6.4 ePNK

	7 Simulator design
	7.1 Runtime values and simulation states
	7.2 Simulation algorithm
	7.3 Simulator view
	7.4 Simulator validation
	7.5 Graphical user interface
	7.6 Firing strategy
	7.7 Simulator extension points

	8 Simulator evaluation
	8.1 Train traffic control system
	8.2 Network algorithms

	9 Handbook
	9.1 Simulator
	9.2 Simulation view
	9.3 Network algorithms
	9.4 Visual Simulator
	9.5 Currently supported sorts and operations

	10 Future work
	11 Conclusions

