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Summary

This thesis deals with spatial indexing and models that are able to abstract the
variety of existing spatial index solutions. This research involves a thorough
presentation of existing dynamic spatial indexes based on R-trees, investigating
abstraction models and implementing such a model in MySQL.

To that end, the relevant theory is presented. A thorough study is performed on
the recent and seminal works on spatial index trees and we describe their basic
properties and the way search, deletion and insertion are performed on them.
During this effort, we encountered details that baffled us, did not make the
understanding the core concepts smooth or we thought that could be a source
of confusion. We took great care in explaining in depth these details so that the
current study can be a useful guide for a number of them.

A selection of these models were later implemented in MySQL. We investigated
the way spatial indexing is currently engineered in MySQL and we reveal how
search, deletion and insertion are performed. This paves the path to the un-
derstanding of our intervention and additions to MySQL’s codebase. All of the
code produced throughout this research was included in a patch against the
RDBMS MariaDB.
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Chapter 1

Introduction

This chapter highlights the background of the thesis and outlines its structure.
The chapter is organized as follows: in Section 1.1 we explain why there is a
great need for systems that can handle data, and more specifically spatial data,
efficiently. In Section 1.2 we continue by explaining why indexes are important
in data management. In Section 1.3 we define the goals of the thesis and specify
the outcome of our research. In Section 1.4 we present the main literature
sources. In Section 1.5 we dive into the major spatial indexing standards, their
adoption and different implementations. Finally, in Section 1.6 the organization
of the thesis is outlined.

1.1 Data, DBMS and GIS

The wide spread usage of computer devices has induced an explosive growth
of the amount of data produced and collected. It is not easy to measure the
total volume of data stored, however an International Data Corporation (IDC)
estimate puts the size of the “digital universe” at 0.18 zettabytes (1021 bytes
or 1 billion terrabytes) in 2006, and is forecasting a tenfold growth by 2011
to 1.8 zettabytes [22]. The data sources are countless including machine logs,
RFID readers, sensor networks, vehicle GPS traces, financial and commerce
transactions, photographs, medical and astronomical images, video and so on.
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A DataBase Management System (DBMS) is capable of storing and handling
these large data sets. According to [14, p. 5], a DBMS is “a computerized system
whose overall purpose is to store information and to allow users to retrieve and
update that information on demand”. Applications usually have quite common
needs when it comes to storing, retrieving and updating information such as:

• network connectivity;

• the ability to distribute data in many machines, in order to achieve high
read/write performance and replication/availability;

• the ability to accommodate a large number of users, that can read and
write at the same time; and

• intact recreation of the data even if something goes wrong.

A DBMS handles the basic needs of efficient storage and fast extraction of data,
as well as other common trivial and non-trivial tasks. In this way, a DBMS can
free an application from the low level details of storing, retrieving and updating
information [41, pp. 714–718].

In 1970, Codd presented his seminal work on the relational model [12] that tar-
geted a) data independence of the DBMS user or application from the changes
in data representation and b) data consistency. The relational model gained
wide acceptance in the 1980s and is currently dominating database manage-
ment systems [41, p. 715], with the Relational DataBase Management System
(RDBMS) being a very common choice to manage data. At the same time, it
became apparent that new applications, like multimedia, Computer-Aided De-
sign (CAD) and Computer-Aided Manufacturing (CAM), medical, geographical,
and unstructured data just to name a few, were not accommodated well by the
relational model [41, p. 1929], [42, p. 3].

Efforts to adapt the relation model to some of these challenges, led to an object–
oriented approach and the original implementation of PostgreSQL [112], one of
the first object–relational DBMS. Moreover, many highly distributed systems
like Casandra [39], Hadoop [117] and MongoDB [11] have emerged. These sys-
tems deviate from the relational model, by relaxing the data model or the in-
tegrity checking or the schema structure, in order to meet very specific needs
and handle semi or unstructured data. Over the years, many DBMSes have in-
corporated, in varying degrees, object–oriented features and functionality, and
it is likely that the differences between relational and other types of databases
will blur, as features from different models will be incorporated in others [117,
p. 6], [48].
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Table 1.1: List of Common GIS Analysis Operations [106, p. 3], [4].
Search Thematic search, search by region,

(re)classification
Locational Analysis Buffer, corridor, overlay, Thiessen/Voronoi
Terrain Analysis Slope/aspect, catchment, drainage network,

viewshed
Flow Analysis Connectivity, shortest/longest path
Distribution Change direction, proximity, nearest neighbor
Spatial Analysis Pattern and indices of similarity, autocorrela-

tion, topology
Measurements Distance, perimeter, shape, adjacency, direction

One of the challenging areas in databases is geographical applications and spatial
data [2, 1], covering data managing for mapping and geographic services, spatial
planning in transportation, constructions and other similar areas, and location
based services for mobile devices. The special needs of spatial data have created
the need of Geographic Information Systems (GIS). According to [106, p. xxi]
“GIS is a computer system for assembling, storing, manipulating and displaying
data with respect to their locations”. Whereas RDBMSes are good in handling
alphanumeric data and answer related queries, for example “list the top ten
customers, in terms of sales, in the year 1998”, spatial queries like “list the top
ten customers, within a 5 km radius from branch X” require special abilities.
In table 1.1 we present a list of common spatial analysis operations. Usually,
a GIS can be built as a front-end of a spatially enabled DBMS, that has the
ability to handle spatial data and perform simple spatial analysis.

This introduction to RDBMS and other types of DBMSes emphasized their main
characteristics, the ability to store and extract large volumes of information well,
and handle common tasks for theses applications. Additionally, several spatial
services and GIS operations were described.

1.2 The compulsory need for indexes

Another issue, that arises when databases grow in volume, is the efficiency of
retrieving data. According to [41, pp. 1425], an index is “a set of data structures
that are constructed from a source document collection with the goal of allowing
an information retrieval system to provide timely, efficient response to search
queries”. The most common type of data structure, used for indexes, are trees
and hash structures [41, p. 1433].
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One of the most influential works on indexing trees is Comer’s B-tree publi-
cation [13], that presented the family of binary search trees. B-trees are now
a standard part of textbooks on databases and they have grown to a de facto
indexing solution for DBMSes and filesystems. Its most well known variant is
Knuth’s B+-tree [41, p. 1433, p. 3173].

In the same manner that RDBMSes cannot accommodate well some types of
applications, such as multimedia and spatial applications, B-trees don’t fit well
to certain types of data — their original design aimed alphanumeric data like in-
tegers, characters and strings. As a consequence, a number of B-tree variations,
targeting specific applications, has appeared in the literature [8].

One important family among the newly proposed indexes was the family of R-
trees by Guttman in 1984 [28]. It aimed at handling spatial data, including
both one-dimensional such as points, and two-dimensional such as polygons
and surfaces, three dimensional such as polygons, surfaces, volumes and higher
dimensional objects. In the same manner that B-trees became an industry
standard indexing solution, R-trees are now common in geographical, spatial,
temporal and moving objects applications and databases. R-trees are going to
be further analyzed in Chapter 2.

The way data is organized can be different depending on whether data change
often or rarely. The two main types of indexes are dynamic and static:

Static indexes are used in cases where changes occur rarely or at specific
time intervals, like it is strongly the case with census data and in some cases
in cartographic data. In these cases we are interested in optimizing factors
like maximum storage utilization, minimum storage overhead, minimization of
objects’ coverage (in order to improve retrieval performance), or a combination
of the above. Since data changes are rare, in the long term, it is efficient to
optimize these factors, even if the methods used to achieve this optimization
are costly. This is performed by methods known in the literature as packing
and bulk inserting [42, p. 35].

Dynamic indexes are used when objects are inserted in the index in a one–
by–one basis. Even if the factors, that interests us in static indexes, apply in this
case too, the methods used to achieve performance have to make compromises
between cost of tree changes and tree efficiency.

The need for efficient indexing created an explosion of indexing solutions, and
as others noticed “trees have grown anywhere” [104], fully justifying the title
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of Comer’s article “The Ubiquitous B-Tree”. Over time B-trees and R-trees
became standard indexing solutions and are used in a significant number of
applications.

1.3 Thesis Specification

In this section we specify the goals and the scope of the thesis. In section 1.3.1
we discuss the reasons we use the RDBMS MySQL and in section 1.3.2 why we
decided to collaborate with “Monty Program AB”. In section 1.3.3 we present
the objectives of the research and finally in section 1.3.4 we summarize the thesis
specification.

1.3.1 The RDBMS MySQL

MySQL was first released in 1995. The company and the community around the
product grew a lot and in 2008 MySQL AB was acquired by Sun Microsystems
[68]. Finally, in 2009 Sun was acquired by Oracle [83].

MySQL is a proven database tool used in heavy-duty production envirnomnents.
16 out of the 20 most frequently visited web sites worldwide use it in larger or
smaller part of their infrstructure [82]. Users of MySQL include:

• web sites like Google [27], Facobook [17], Twitter [113], Yahoo [119], Flickr
[20] and Etsy [16];

• telecom companies like Virgin Mobile [69], Nokia [81] and Deutsche Telekom
[108]; and

• numerous prominent companies in a variety of sectors [67].

Moreover, it’s an open-source project. This means that:

• the software can be used without any cost for both academic and industrial
pusposes; and

• the code is available so the academic community can use this RDBMS
as an implementation sandbox, demonstration and benchmark tool for
research projects.
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Taking under consideration the above, we chose MySQL because it’s a proven
RDBMS and our small contibution could potentially benefit a large pool of
industry or academic users.

1.3.2 MariaDB and Monty Program AB

The original creator of MySQL Michael “Monty” Widenius left Sun Microsys-
tems in order to create his own company “Monty Program AB”. They forked
MySQL and created a new database product called MariaDB. “Monty Program
AB” turned into a center of engineering excellence for MariaDB, the Aria stor-
age engine, MySQL, and other associated technologies. Most of the company’s
developers are original core MySQL engineers, and most of the original core
MySQL engineers left Sun and later Oracle to join the new company [98].

MariaDB is backwards compatible with MySQL as far as SQL and features
are concerned. The application that runs on top of MySQL can keep working
with MariaDB without any modifications. Additionaly, the MariaDB server is
a binary replacement for the MySQL server. This means that all the software
that was compiled and configured to work with MySQL can keep working with
MariaDB without recompiling or reconfiguring [37].

Taking under consideration the above, we chose to work on the MariaDB RDBMS.
The research was performed with the collaboration of “Monty Program AB”,
since the company is considered home of world’s top MySQL expertise. This
research is co-supervised by Sergei Golubchik, one of the first ten employees of
the original MySQL company and an expert in the MySQL server code.

In the rest of the thesis when we refer to “MySQL” we refer to the MariaDB
codebase or the MariaDB server, because the two terms can be used interchange-
ably for the purpose of this research. When we refer explicitly to MariaDB we
do this to describe a specific version or feature that is available in MariaDB
only.

1.3.3 Objectives

The goal of our research is to improve the current spatial indexes available in
the RDBMS MySQL. As we will see in the following sections, even if MySQL
is a widely used and accepted RDBMS product, its spatial capabilities do not
match the capabilities of other DBMS products. There is an ongoing effort to
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improve the spatial side of MySQL, and this research is a small contribution to
this effort.

Our first objective is to improve the way indexing is currently implemented
in MySQL, by adding a data structure that abstracts indexing functionality.
The data structure we selected was the Generalized Search Tree (GiST) that
has already proved useful in PostgreSQL, an RDBMS product widely used for
GIS applications (see section 1.5.2.4). Despite their differences, different index
trees share similar functionality, and as a consequence, it is possible to create an
abstraction data structure that covers these similarities. The obvious benefits of
an abstraction level like this are the reduction of redundant code, and the ease to
implement new indexes and extend the features of the existing ones. However,
great care must be put in the performance overhead that, unavoidably, every
abstraction level creates. We are going to investigate the current structure of
MySQL’s internal and more specifically the indexing code, analyze its behavior,
and then implement the abstraction layer.

The second objective is to improve the available spatial indexing capabilities of
MySQL. In order to achieve this goal, we investigate the recent bibliography
on spatial indexes to gain a broad perspective of the subject and select the
most promising options. We then implement the R∗-tree in MySQL, using the
abstracted data structure (GiST) we have already created.

The research is using a wide range of solutions published in the relevant liter-
ature either recently (only last year) or dating more than 15 years ago. Some
of these solutions are implemented either only for experimental purposes or in
widely used RDBMSes. The originality of our research lies in:

• bringing together all these different abstraction and spatial solutions, un-
der one RDBMS that didn’t have this functionality before; and

• trying to push the limits of the GiST data type to investigate the va-
riety of index tree solutions and the extensibility of query types it can
accommodate.

1.3.4 Specification Summary

To summarize, this research covers:

• the recent bibliography concerning spatial indexes for low dimensions and
more specifically dynamic spatial indexes,
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• the recent bibliography concerning ways to abstract implementations of
tree indexes, and

• an investigation of the way currently MySQL implements and uses indexes
internally.

Moreover, the outcome of this research is:

• a data structure that abstracts index trees; and

• improved dynamic spatial index trees for low dimensions, based on the
abstract data structure.

The above mentioned implementations come in the form of a patch against
the latest MariaDB development release, and we make sure that it conforms
to general good coding practices as well as the MySQL and MariaDB coding
standards. The code we delivered can be compiled with both the MySQL and
the MariaDB without any issues.

1.4 Main Research Sources

As we have already described in the research area specification (Section 1.3), we
investigated literature related to spatial indexes and more specifically R-trees.
This bibliography covers a great number of books, conferences and journals, and
for this reason we needed some main sources to guide us through the material.
These were:

• Database Management Systems [99], a book that covers the fundamentals
of database systems in great detail;

• Spatial Databases: A Tour [106], a book that is considered a standard
textbook in spatial data and spatial applications;

• R-Trees: Theory and Applications [42], an extensive survey of R-tree–
related issues; and

• Encyclopedia of Database Systems [41], a comprehensive reference to about
1,400 entries, covering key concepts and terms in the broad field of data-
base systems.
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The above mentioned books include a large number of references, a lot of which
we further investigated.

Apart from these main sources, we also researched a number of conference pro-
ceeding, journals and books for interesting and more recent material.

1.5 Standards for GIS

This section investigates the technical standards concerning GIS and RDBM-
Ses. A big part of our research focuses on GIS systems, so in Section 1.5.1
we investigate the available standards from the Open Geospatial Consortium
(OGC), in order to be aware of the widely used practices in this field. Then,
in Section 1.5.2, we present how some well-known RDBMSes including MySQL
conform to these standards.

Technical standardization is a process that creates a common base for the devel-
opment of products and services. Well known organizations offering standards
include the International Organization for Standardization (ISO), the world’s
largest developer and publisher of International Standards for various techni-
cal areas [32] and the World Wide Web Consortium (W3C), that defines Web
technologies [116]. The success of both of these organizations, is based on the
participation of a large number of members, from a variety of countries, cov-
ering the academic and industrial sectors and bridging the public and private
sectors [114, 115, 34, 35].

Widespread adoption of standards is important for business, academia, govern-
ments and end–users, enabling the development of interoperable processes and
solutions. Suppliers can develop and offer products and services meeting speci-
fications that have wide international acceptance in their sectors as well as per-
form transactions in the domestic and global marketplace more easily. Finally,
end–users have a broad choice of offers that meet well defined criteria [71, 33].

1.5.1 OGC Standards

The Open Geospatial Consortium (OGC) is a standardization organization fo-
cusing on interoperable solutions for GIS technologies and GIS web services.
According to [73], “OGC is an international industry consortium of 406 compa-
nies, government agencies and universities participating in a consensus process
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to develop publicly available interface standards”. OGC has compiled a number
of standards including:

• Simple Features SQL [78, 79]: This standard is approved as an ISO stan-
dard (the ISO 19125 [78, p. 6], [79, p. viii], [107, p. 1133]) and it evolves as
a collaboration and between OGC and ISO [80]. It consists of two parts,
under the general title “Geographic information – Simple feature access”:

– Part 1 “Common architecture” [78]: The purpose of this part is
strictly to define an architecture for simple geometry. Any imple-
mentation details such as ways to define data types and functions,
and physical storage in the database are not part of the standard.

A simple geometry object model and its classes, which correspond
to data types, are defined with Unified Modeling Language (UML).
The classes include Point, Curve, Surface and GeometryCollection for
collections of them (MultiPoint, MultiLineString and MultiPolygon).
Moreover, the classes are defined with a number of member functions
for:

∗ description of the geometric properties of objects, like whether
an object is three-dimensional,

∗ testing spatial relations between geometric objects, like intersec-
tion of objects, and

∗ spatial analysis such as distance of objects;

– Part 2 “SQL option” [79]: This part defines an SQL schema that is
used for the management of feature tables, Geometry, and Spatial
Reference System information. The purpose of this schema is similar
to the role of INFORMATION SCHEMA, that contains information
about the objects defined in a database [95, 50].

The SQL implementation provides two architectures: one based on
primitive data types, for systems that don’t have implemented Geom-
etry types, and another based on Geometry types, for systems that
have implemented Geometry types. If a database system has imple-
mented Geometry types, then feature tables and Geometry informa-
tion will be available through INFORMATION SCHEMA, whereas
Spatial Reference System and coordinate dimension are not part of
INFORMATION SCHEMA and cannot be referenced through it.

• KML (formerly Keyhole Markup Language) [76]: Google submitted KML
to OGC, so that the OGC consensus handles it evolution, with the goal
to become an international standard language for expressing geographic
annotation and visualization for web-based and mobile maps (2D) and
earth browsers (3D). Under the guidance and the open processes of OGC,
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KML has evolved to an important format for the interchange of spatial
data [3, p. 144], [89, p. 148].

1.5.2 Industrial Support

A key factor for the success of a standard, both from the industry and the
end–user point of view, is its wide adoption. We are going to investigate the
adoption of OGC’s standards for some of the most well known DB products
such as Oracle, MS SQL Server, PostgreSQL and MySQL.

OGC defines two levels of compliance “Implements” and “Compliance” [74]:

Implements This level signifies that the developer of a product has obtained
a copy of an OGC standard and has made an attempt to follow its instructions
regarding interface or schema syntax and behaviors.

Compliance OGC provides a formal process to test compliance of products
with OGC standards. Compliance Testing determines that a specific product
implementation complies with all mandatory elements, described in a particular
OGC standard, and that these elements operate as described in the standard.

The standard we are interested in is “Simple Features - SQL - Types and Func-
tions v.1.1” that is covered by “Implements” or “Compliance”, or unofficially
by many database products [75]. We list some of these products alphabetically.

1.5.2.1 MS SQL Server

SQL server is a commercial RDBMS from Microsoft and its latest version added
significant spatial support. SQL Server 2008 supports data types and functions
according to the OGC standards, even if the product hasn’t received a compli-
ance label [53, 51]. It integrates well with other Microsoft products for example
with “Visual Earth” [49] for visualization, that is now under the “Bing” product
suite [52].
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1.5.2.2 MySQL and MariaDB

MySQL is published under dual licence, commercial and GNU GPL, and it is
considered the most popular open source RDBMS. It supports spatial extensions
for the major storage engines such as MyISAM, InnoDB, NDB, and ARCHIVE. The
support is not mentioned in any of the OGC product lists. All spatial data
types are implemented according to the OGC standard [57]. All the functions
are also available, but most of the functions and more importantly, the functions
that test spatial relationships between geometries, deviate significantly from
the OGC standard. The only, but major difference, is that they operate on
Minimum Bounding Rectangles of the geometries, instead of the actual object
geometries. The current implementation leaves a lot to be desired and there is
an ongoing effort to improve the implementation [56].

MySQL and MariaDB do share the same codebase and are compatible. However,
MariaDB offers some advanced features that MySQL doesn’t. In contrast with
MySQL, MariaDB has support for spatial functions, that operate on the actual
geometries and not the MBRs of the geometries.

1.5.2.3 Oracle

Oracle is an advanced and popular commercial RDBMS and offers the exten-
sion “Oracle Spatial” which offers spatial data types and functions [85, 84].
Not only this extension has a “Compliance” label from OGC, but Oracle is a
member of OGC’s Technical Committee [77]. Additionally, Oracle offers further
spatial abilities like raster and geo-referenced raster data models, topological
data model, medical imaging Digital Imaging and Communications in Medicine
(DICOM) data model, and routing solutions.

1.5.2.4 PostgreSQL

PostgreSQL is published under a licence that is similar to the BSD or MIT
licenses and is considered the most advanced open source RDBMS. It supports
data types for basic geometries [93]. Additionally, PostGIS an extension, pub-
lished under the GNU GPL licence and developed by Refractions Research,
“spatially enables” the PostgreSQL server, allowing it to be used as a back-end
spatial database for geographic information systems [92]. PostGIS complies with
the data types and functions defined by the OGC standard. It is a leading open-
source choice in GIS applications, and among its users there are projects like
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the EU Joint Research Centre [90] or the French National Geographic Institute
(IGN) [91].

Moreover, PostgreSQL plays an central role in the Open Street Maps (OSM)
infrastructure [86]. The OSM project has gained a lot of attention for online
map solutions. In 2010, one of the most established online map provider, Google,
announced that the Google Maps API will no longer be free of charge and that
limits will be introduced [26]. This sudden cost increase caused a shift of users
and companies to OSM data and related components, including companies like
Apple [87] and Flickr [19].

1.6 Outline of the Thesis

The chapters of this thesis are organized in the following way:

• Chapter 2: An introduction to R-trees and GiST. The indexes are pre-
sented in a detailed way and for each index their properties, and the way
search, insertion and deletion are performed, are discussed.

• Chapter 3: A number of major R-tree variants are presented. The dif-
ferences with the original R-tree are discussed and all the details of the
original papers are analyzed.

• Chapter 4: The discussion about indexes is continued and the MySQL
RDBMS is presented in depth. The design of the MySQL the server and
the MyISAM storage engine are introduced. Then the current implemen-
tation of R∗-tree indexes is described in detail.

• Chapter 5: The focus is then switched to our own implementation of GiST
in MySQL and the design and the challenges of the implementation are
discussed.

• Chapter 6: This chapter concludes the research by evaluation the project,
and suggesting some future improvements.
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Chapter 2

Preliminaries on R-trees and
GiSTs

In this chapter we present background specifically for R-trees and Generalized
Search Tree (GiST). The chapter is organized as follows: in Section 2.1 we
present the basic properties of Guttman’s original R-tree and in Section 2.2
GiSTs are introduced. Finally, in Section 2.3 we summarize the chapter.

2.1 The Original R-tree

The original Guttman’s R-tree is described in many textbooks on databases
including [106, 99, 121, 24]. However, since the R-tree is central to our research,
in this section we are going to briefly recall its basic properties as they are
described in [28], [42, pp. 7–12], and [41, pp. 2453–2459].

Guttman proposed the original R-tree in order to solve an organization problem
regarding rectangular objects in Very-Large-Scale Integration (VLSI) circuit
design. R-trees are hierarchical data structures based on B+-trees. They are
used for the dynamic organization of a set of d–dimensional geometric objects.
The property of the objects that is used for the organization is their Minimum
Bounding Rectangle. Each node of the R-tree corresponds to the MBR that
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A
B

C

D

Figure 2.1: The MBRs (dashed rectangles) of the 2–dimensional objects B, C
and D intersect with the MBR of object A, whereas the objects themselves do
not. Map data from [110].

encloses all its children. Each leaf node, points to one of the objects of the tree.

The R-tree indexing mechanism is used to determine geometric relationships
between objects. However, many geometry relationships, such as intersection of
complex polygons, can be very demanding computationally, whereas the inter-
section of rectangles is not a demanding computation. For this reason, R-trees
cluster the indexed objects based on the objects’ MBRs. It must be noted that
MBRs bounding different nodes may overlap, whereas the objects themselves
might not overlap. This means that the representation of objects through their
MBRs, might result in false positives during search. In order to resolve false
positives, the actual geometries of the objects must be examined. Figure 2.1
illustrates such a case where the MBRs of objects B, C and D intersect with
the MBR of object A, whereas the objects themselves don’t. Therefore, it must
be understood that R-trees play the role of a filtering mechanism that reduces
the cost of direct examination of geometries.

The rest of the section is organized as follows: in Section 2.1.1, we present
the basic properties of the original R-tree. Then, we investigate the details of
search in Section 2.1.2, insertion in Section 2.1.3, different splitting methods in
Section 2.1.4, and deletion in Section 2.1.5.

2.1.1 Basic Properties

Let M be the maximum number of entries that fit in one node, and let m ≤ M
2

be a parameter specifying the minimum number of entries in a node. An R-tree
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(m,M) satisfies the following properties:

1. Every leaf node contains between m and M entries, unless it is the root.

2. Each entry of a leaf node is of the form (mbr, id), where mbr is the MBR
that contains the object and id the object’s identifier.

3. Every internal node contains between m and M children, unless it is the
root.

4. Each entry of a internal node is of the form (mbr, ptr), where ptr is a
pointer to a child of the node and mbr is the MBR that contains all the
MBRs, that are contained in this child.

5. The root node has at least two children, unless it is a leaf.

6. All leaf nodes appear on the same level.

The height of a tree is the number of levels within the tree. Let an R-tree
containing N entries. Its maximum height is hmax = dlogm Ne [106, p 101].

The maximum number of nodes is

hmax∑
i=0

⌈
N

mi

⌉
[42, p 9]

Let an example 2–dimensional R-tree with (m = 2,M = 3), that indexes 17
objects and has three levels. In Figure 2.2 we show the tree structure of the R-
tree and in Figure 2.3 we show the spatial representation of the leaf and internal
nodes’ MBRs. Level three contains the leaf nodes, which hold the identifiers of
the indexed objects (numbers 0–16). At the leaf level, 9 leafs are required to store
17 objects if only 2 of the 3 entries are occupied in each leaf node. The MBRs of
the indexed objects are represented by the black rectangles 0–16 in Figure 2.3.
Levels one and two contain the internal nodes, which hold pointers to children
nodes. The MBRs, A1–A3 and B1–B7, of the children nodes are represented by
the dashed rectangles in Figure 2.3. In the spatial representation of Figure 2.3,
in levels one and two we also represent the MBRs of the leaf nodes, with light
gray rectangles, which are obviously not part of these levels. We represent them
in order to help the reader relate the internal nodes MBRs with the indexed
objects.

2.1.2 Search

The search algorithm descents the tree from the root towards the leaf nodes in
a manner similar to a B-tree. However, more than one subtree under one node
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Figure 2.2: Tree structure of the example 2–dimensional R-tree (Section 2.1.1).
The spatial representation of the leaf and internal nodes’ MBRs are shown in
Figure 2.3.

might need to be visited and this consists a problem in the efficiency of the
algorithm.

Given an R-tree with root node T and a rectangle S we can form the following
query: find all index entries whose MBRs intersect with the search rectangle S.
The answer of the query is a set A of objects. This query is called range query
and the procedure RangedSearch, that processes range queries, is described
in Algorithm 2.1.1. The algorithm is called recursively and the initial Node
argument is the root node T . All the entries of a node are checked and if an
entry’s MBR intersects with the search rectangle S, then the algorithm is called
on the subtree. As the algorithm descents the tree, if a leaf node is reached all
the entries of the leaf node are checked. If an leaf node entry’s MBR intersects
with S, then the entry is added in the answer set A. For an entry E of a node
its MBR of is denoted as E.mbr and the pointer to a child is denoted as E.ptr.

2.1.3 Insertion

Insertions in R-trees are handled like insertions in B+-trees. The algorithm
descents the tree from the root, in order to locate the appropriate leaf to ac-
commodate the new entry. The new entry is added to the leaf node, and if the
node overflows it is split. All the nodes within the path from the root to that
leaf are updated recursively.

The method Insert handles the insertion and is described in Algorithm 2.1.2.
The way a leaf node is found for the new entry (line 1) is handled by ChooseLeaf

and is described in Algorithm 2.1.3. The overflown nodes are splitted (line 6)
with one of the splitting methods presented in Section 2.1.4. Node changes are
propagated updards (lines 4, 7) and are handled by AdjustTree, described in
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Level 3

Level 1

Level 2

A1 A2

A3

B1

B2
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B4

B5

B6

B7

Figure 2.3: Leaf and internal nodes’ MBRs spatial representation of the example
2–dimensional R-tree (Section 2.1.1). The tree structure of the example R-tree
is shown in Figure 2.2.
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Input: Node N , Rectangle S
Output: Set A (index entries whose MBR intersect S)

if N is not a leaf node then /* Search subtree */1

foreach entry e ∈ N do2

if e.mbr that intersects S then3

call RangedSearch (e.ptr, S);4

else /* Search leaf node */5

foreach entry e ∈ N do6

if e.mbr intersects S then7

add e in A;8

9

return A10

Algorithm 2.1.1: RangedSearch(Node N , Rectangle S): R-tree Range
Search. Based on the description in [28, p. 49].

Algorithm 2.1.4.

The method ChooseLeaf, described in Algorithm 2.1.3, returns the appropriate
node N that will accommodate the new entry E. It descents the tree from root
to the leaf nodes and in each node finds the entry that requires the minimum
area enlargement in order to include E.mbr.

During the insertion of a new node two changes can occur: either an overflown
node is split, or an entry was added to a leaf node. These changes are propagated
upwards by the method AdjustTree, described in Algorithm 2.1.4. The method
ascends the tree from a leaf or internal node towards the root T and once the
root has been reached the algorithm stops. In each level of the tree the MBR
of the parent entry of a node N is adjusted to reflect any changes. Then, if
a split has occured (line 5), a new entry is added in the parent node of N to
accomodate the new node. If there is not enough room in the parent node for
a new entry, then the split is propagated upwards (line 11) usinf one of the
available splitting methods (Section 2.1.4). Finally, the algorithm prepares to
ascend the tree one level.
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Input: Entry E, Node T (root)
Output: Modifies R-tree by adding new entry.

L← ChooseLeaf (T , E); /* Find leaf node for the new entry */1

if L is not full then /* Add entry to leaf node */2

add E in L;3

AdjustTree (L, ∅); /* Propagate changes upwards */4

else5

(L1, L2) ← SplitNode (L);6

AdjustTree (L1, L2); /* Propagate changes upwards */7

if T was split then /* Grow tree taller */8

create new root, and add the old root’s split nodes as children;9

Algorithm 2.1.2: Insert(Entry E, Node T ): R-tree Insertion. Based on
the description in [28, p. 49]

Input: Node N , Entry E
Output: Node N (leaf node where the new entry will be inserted)

while N is not leaf node do1

K ← entry of N whose K.mbr will require the minimum area2

enlargement in order to include E.mbr;
Resolve ties by choosing the child whose MBR has the minimum area;3

N ← K.ptr;4

return N ;5

Algorithm 2.1.3: ChooseLeaf(Node N , Entry E): Called by R-tree
Insert (Algorithm 2.1.2). Based on the description in [28, p. 50].
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Input: Node N1, Node N2.
Output: Modifies R-tree path starting from the leaf node where a new

entry was inserted and stopping at the root.

while N1 is not the root T do1

P ← parent of N1;2

EN1
← N1’s entry in P ;3

Adjust EN1
.mbr so that it tightly encloses all MBRs of N1;4

if split has occurred then /* N2 is not ∅ */5

create new entry EN2
, with:6

a) EN2
.ptr ← N2 and7

b) EN2
.mbr ← MBR enclosing all MBRs of N28

if there is room in P then9

add EN2
in P;10

else /* Propagate node split upwards */11

(K1, K2) ← SplitNode (P );12

13

if parent split has occurred then14

N1 ← K1;15

N2 ← K2;16

else17

N1 ← P ;18

N2 ← ∅;19

Algorithm 2.1.4: AdjustTree(Node N1, Node N2): Called by R-tree
Insert (Algorithm 2.1.2). Based on the description in [28, p. 50].
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2.1.4 Node Splitting

Let an R-tree with root node T and a new entry E that needs to be inserted.
In order to add a new entry to a full node, that contains M entries, the set of
M + 1 nodes must be split in two new nodes N1 and N2. The objective of the
split is to minimize the possibility that the two newly created nodes will both
be searched in a future range search query.

During search, the decision whether to visit a node is based on whether the MBR
of the node intersects with the search rectangle. This means that after a node is
split, the total area of the MBRs of the two new nodes should be minimized. In
Figure 2.4 we present an example of bad and good split based on this criterion.
Let a 2–dimensional (with m = 2, M = 3) R-tree and four geometries with
MBRs 0–3 (the light gray rectangles). The units used in this example are
arbirtary “canvas” units that simply represent the analogies between the lengths.
When the fourth geometry is inserted, the root node must be split. The two
possible splits are either (0, 1) & (2, 3), or (0, 2) & (1, 3), that corresponds to
the (A1, A2) or (B1, B2) MBRs for the the two new nodes. The total area of
A1 and A2 is smaller than the one of B1 and B2, meaning that the left split is
better than the right one.

Guttman proposed the three following algorithms to handle splits: Exhaustive,
Quadratic, and Linear.

Quadratic Split The method QuadraticSplit, that describes this splitting
technique, is described in Algorithm 2.1.5. Initially, two objects are chosen
by PickSeeds (Algorithm 2.1.6) as seeds for two new nodes N1 and N2, so
that these objects create together as much dead space as possible. Let J be
the MBR, that bounds both N1 and N2, and N1.mbr, N2.mbr their respective
MBRs. Dead space d is the area d = J − N1.mbr − N2.mbr. For the rest of
the remaining objects, the increase N1.mbr and N2.mbr, if an entry is assigned
in one of the nodes, is calculated and the object is assigned to the node, that
requires the least enlargement of its MBR.

Method PickSeeds, that handles picks two entries of node N based on the dead
space, is described in Algorithm 2.1.6. It calculates the inefficiency d of grouping
each pair of entries E1, E2 of the node, and selects the most wasteful pair.

Linear Split This algorithm is identical to the Quadratic, but uses a different
way to select the starting seeds, trying to select two objects that are as far apart
as possible from each other. Then, each remaining object is assigned to the
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Input: Node N
Output: Node N1, Node N2

(N1, N2) ← PickSeeds (N); /* Initialize two nodes with two1

seeds */

while there are unassigned entries do2

if N1 or N2 has so few entries that the rest must be assigned to it so3

that it has the required minimum entries then
assign them;4

return5

foreach unassigned entry e do /* Select an entry to assign */6

d1 ← area increase required so that N1.mbr includes e;7

d2 ← area increase required so that N2.mbr includes e;8

choose e with maximum difference between d1 and d2;9

assign it to the node whose MBR has to be least enlarged to include10

it;
Resolve ties by adding the entry:11

1) to the group with the smaller area;12

2) to the group with the fewer entries;13

3) randomly to one of them;14

Algorithm 2.1.5: QuadraticSplit(Node N): One of the available R-tree
splitting methods. Based on the description in [28, p. 52].

Input: Node N
Output: Node N1, Node N2

/* Calculate inefficiency of pairs */

foreach pair of entries (E1, E2) ∈ N do1

J ← MBR of E1 and E2;2

d← J.area - E1.mbr.area - E2.mbr.area;3

choose the pair (E1, E2) with the largest d;4

create new empty nodes N1 and N2;5

(N1, N2)← (E1, E2);6

return (N1, N2)7

Algorithm 2.1.6: PickSeeds(Node N): Called by R-tree
QuadraticSplit (Algorithm 2.1.5). Based on the description in [28,
p. 52].
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Total area: 97508
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Figure 2.4: The left split is better than the right one because, the total area of
the two new nodes is minimized. The units are arbitrary “canvas” units, used
for qualitative calculations. Based on [28, p. 51].

node requiring the smallest enlargement of its respective MBR — the order of
examination is not important.

Exhaustive Split The most straightforward way to find the minimum area
node split is to generate all possible groupings and select the best one. However,
the number of possible groupings is 2M−1 and with large number of maximum
entries in a node the cost of the algorithm becomes prohibiting.

Guttman suggested using the Quadratic algorithm as a good compromise be-
tween insertion speed and retrieval performance. Future research and literature
on R-trees investigated additional splitting methods and criteria, and in many
cases deviated further from the original R-tree.

2.1.5 Deletion

The deletion of an entry from the R-tree is performed by first searching the tree
to locate the leaf L that contains the object that needs to be deleted. After the
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removal of the entry from L, the node may contain fewer entries than m, so the
node is underflown.

Handling of underflown nodes is different from B+-tree, where such an issue is
solved by merging two sibling nodes. B+-trees index one–dimensional data, so
two sibling nodes contain “consecutive” entries, whereas R-trees handle multi–
dimensional data and this property doesn’t hold. Moreover, merging of nodes
is avoided and re-insertion is preferred for the following reasons:

• In order to locate the leaf of the entry that needs deletion, disk was ac-
cessed and the path from the root to this leaf might be available in memory.
This means that re-insertion might need fewer disk accesses in order to
insert the underflown entries.

• The insertion algorithm tries to maintain a good quality of splitting be-
tween the nodes. This means that after several deletions, merging of nodes
could decrease the quality of the tree, whereas re-insertion ensures it.

Method Delete handles the deletion and is described in Algorithm 2.1.7. Find-
ing the leaf containing the entry to delete (line 1) is handled by FindLeaf

and is described in Algorithm 2.1.8. Underflown nodes (line 5) are handled by
CondenseTree and the method is described in Algorithm 2.1.9.

Input: Entry E
Output: Modifies R-tree by removing the specified entry.

L←FindLeaf (T , E); /* Find leaf containing entry E */1

if no match found for E then /* Entry E not in tree */2

return 13

remove E from L;4

CondenseTree (L); /* Propagate changes upwards */5

if T has only 1 child then /* Shorten tree */6

make this child the new root;7

Algorithm 2.1.7: Delete(Node N): R-tree Deletion. Based on the de-
scription in [28, p. 50].

Method FindLeaf, described in Algorithm 2.1.8, finds the leaf node L that
contains the entry E. It descends the tree from the root node T towards the
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leaf nodes, and is called recursively with initial Node argument the root T . In
each level of the tree, the entries of node N are checked and each entry that
intersects with E.mbr is checked. In R-trees allow overlapping MBRs for the
entries of a node, so more one subtrees of a node might be needed to be checked.
Moreover, an entry will be accomodated in only one leaf node, so once we find
the entry E, the algorith stops.

Input: Entry E
Output: Node L

L← T ;1

while L is not leaf do /* Search subtree */2

foreach entry e ∈ L do /* Entries’ MBRs could intersect */3

if e.mbr intersects E.mbr then4

N ← e.ptr;5

FindLeaf (N);6

if FindLeaf returned successfully then7

return L;8

foreach entry e ∈ L do9

if e matches E then /* Found leaf node of E */10

return L;11

return Null; /* Entry E not in this subtree */12

Algorithm 2.1.8: FindLeaf(Node N): Called by R-tree Delete (Algo-
rithm 2.1.7). Based on the description in [28, p. 50].

Node elimination is handled by method CondenseTree, described in Algorithm
2.1.9. It ascends the tree from a leaf node towards the root T . It propagates
upwards key adjustments and underflown node elimination. If root node T
is reached the algorithm stops. If N has too few entries, the its entry from
the parent node is removed, and it is added to the set of eliminated nodes
Q. MBR changes are propagated upwards. Finally, the entries of nodes in Q
are re-inserted, at the level of the tree they were removed from, using Insert

(Algorithm 2.1.2).
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Input: Node L
Output: Modifies R-tree path from root to the leaf where the entry was

deleted, propagating upwards underflown nodes.

N ← L;1

Q← ∅; /* Set of eliminated nodes */2

while N is not T do3

P ← parent of N ;4

EN ← N ’s entry in P ;5

if N contains less than m entries then6

remove EN from P ;7

add N in Q;8

if N has not been removed then9

update EN .mbr10

N ← P ;11

foreach node q ∈ Q do12

if q was leaf node then13

/* Re-insert leaf nodes normally as leaves */

foreach entry e ∈ q do14

Insert (e, T );15

else16

/* Re-insert internal nodes as inner nodes */

foreach entry e ∈ q do17

Insert (e, T , height flag = True);18

Algorithm 2.1.9: CondenseTree(Node N): Called by R-tree Delete (Al-
gorithm 2.1.7). Based on the description in [28, p. 50].
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2.2 GiST Trees

In traditional RDBMSes B+-trees are sufficient for the queries posed on al-
phanumeric data types. On the other hand, new applications, including GIS,
multimedia systems and biomedical databases, pushed the research on index
trees to accommodate the new challenges. The major approaches are special-
ized search trees, search trees for extensible data types and abstract search
trees.

Specialized search trees Many types of trees were developed to solve specific
problems. One such example is R-trees, presented in Section 2.1, that manages
to solve spatial range queries well. However, only for R-trees in [42, pp. 4–
5] (from 2005) more than 60 variants are reported, meaning that the effort
to implement and maintain a good variety of indexing data structures, in an
RDBMS, is extremely high.

Search trees for extensible data types An alternative to the creation
of new data structures, is to extend the data types they can support [111].
This extension allows the definition of a) new data types, b) new operators
for these data types, c) implementation of indexes for these data types and d)
instructions, regarding the handling of these data types and indexes, for the
query optimizer. In this way for user-defined data types B+-trees can support
queries regarding equality and linear range predicates, and R-trees can support
queries regarding equality, overlap and containment predicates. However, this
method doesn’t support the extension of types of queries [29, p. 1] and doesn’t
solve the difficulty of implementing the new indexes [111, p. 18].

Abstract search trees In [29] and the accompanying technical report [30],
Hellerstein, Naughton and Pfeffer presented a third approach for search trees,
that extends both the data types and the types of supported queries. This
approach uses Generalized Search Tree (GiST), a data structure that provides
all the basic search tree logic required by a DBMS, unifying different structures
like B+-trees and R-trees.

The rest of the section is based on [29, 30] and is organized as follows: in
Section 2.2.1, we present a high altitude view of search trees. In Section 2.2.2,
we examine the basic properties of the GiSTs. Then, we investigate the details
of search in Section 2.2.3, insertion in Section 2.2.4 and deletion in Section 2.2.5.



30 Preliminaries on R-trees and GiSTs

Figure 2.5: Abstraction of a database search tree highlighting its main com-
ponents: the leaf nodes contain pointers to the actual data, the internal nodes
contain pointers to children nodes and keys that hold for each children below
the key [29, p. 563].

2.2.1 Abstracting search trees

The idea behind GiSTs is that different search trees can be unified under a single
data structure that extends both data types and supported queries. In order
to understand this abstraction, it is useful to first review search trees in a sim-
plified manner. The discussion focuses only on the common basic properties of
search trees, laying the foundations of a general framework. All the unspecified
details will be later filled in, by describing the algorithms of the framework and
examples that extend the framework.

A rough abstraction of a search tree is given in Figure 2.5. GiSTs are based
on balanced trees with a high fan-out. The leaf nodes contain pointers to the
actual data, and they also form a linked list to allow partial or a full sequential
scan. The internal nodes are pairs of pointers, to children subtrees, and keys.
The way the keys are structured plays a major role in GiSTs. For consistency
with [29], the term predicate is used as a synonym of the key, implying that
something is true or false concerning a quality of the data.

To search for a query predicate q, the search starts at the root node. For each
key of a node that, doesn’t rule out the possibility that data stored below the
pointer matches q, then search traverses this subtree. This property of the key is
called consistency. The following practical examples will help the understanding
of consistency:

• In B+-trees the queries are in the form of range predicate, like find all the
entries e such as a ≤ e ≤ b. In this case the keys dictate whether the
data below a pointer match the query. If the query range and a node’s
key overlap, then the key and query are consistent and the subtree under
the node is traversed.

• In R-trees the queries are in the form (in the simple case) of 2-dimensional
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range predicate, like find all the entries e such that the region
(
(x1, y1),

(x2, y2)
)

intersects with e. The key of a node (the Minimum Bounding
Rectangle) dictates that it contains all the keys (the MBRs) of the all
children nodes. If the query region and the node’s key overlap, the subtree
under the node is traversed.

In both these cases the keys are containment attributes, that describe a con-
tinuous region in which all the data below the pointer are contained. However,
the difference between the two trees is that in R-trees more than one key on the
same node may hold simultaneously for a range query. An example can be seen
in Figure 2.3, where in level one the MBRs A1 and A3 intersect. If the range
query overlaps the intersection of A1 and A3, then both A1 and A3 must be
examined.

In GiSTs a key is defined as “any arbitrary predicate that holds for each data
below the key” and each subtrees of a GiST represents a partition of data
records, but do not necessarily partition the data space itself. In practice a
GiST key is a member of a user-defined class, and represents some property
that is true of all data items reachable from the pointer associated with the key.
The indexed data can be arbitrary data objects. For consistency with [29] we
call each indexed datum a tuple.

The above ideas form the basis of GiSTs, an abstract data structure for search
trees. GiSTs are the base for a framework on search trees, that provides ex-
tendibility and a simple way of implementing different trees. The framework
exposes methods related to the key definition as well as the handling of over-
flown and underflown nodes, and the user further defines the inner workings of
these methods.

2.2.2 Basic Properties

In this section we present in detail the basic properties of the GiST. It is a
balanced tree with a fanout between kM and 2

M ≤ k ≤ 1
2 , where M is the

maximum number of elements in a node, and k is the minimum fill factor, a
factor defining the minimum number of elements in a node.

A GiST satisfies the following properties:

1. Every node contains between kM and M entries, unless it is the root.
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2. Each entry of a leaf node is of the form (p, ptr), where p is a predicate
that is used as a search key and ptr a pointer the identifier of a tuple in
the database. p is true when instantiated with the values from the pointed
tuple and this is described as “p holds for the tuple”.

3. Each entry of an internal node is also of the form (p, ptr), where p is a
predicate used as a search key and ptr a pointer to a child node. p is true
when instantiated with the values of any tuple below ptr.

4. The root node has at least two children, unless it is a leaf.

5. All leaf nodes appear on the same level.

Property 3 highlights an important feature of GiSTs. For another entry E′ =
(p′, ptr′), below ptr, it is simply required that p′ and p both hold for all tuples
below ptr′, whereas the stricter requirement of other trees (like R-tree) p′ → p
is not required (→ stands for “implies” in the boolean meaning). An R-tree
would require the second because it represents a containment hierarchy.

We should mention here that the original paper, for property 3 states, that it’s
valid for every tuple reachable from ptr. We guess that this is a typo and the
the authors meant below ptr, which is consistent with the rest of the paper.

2.2.2.1 Key Methods

In order to provide to the user a framework to manipulate keys (for inser-
tion, deletion and search), GiSTs provide the key-related methods Consistent,
Union, Compress, Decompress, Penalty and PickSplit:

Consistent(E, q) given an entry E = (p, ptr) and a query predicate q, this
method returns false if p ∧ q are definitely unsatisfiable and true otherwise.
This means that searching the tree can return false positives but never false
negatives.

Union(P ) given a set P of entries (p1, ptr1), . . . , (pn, ptrn), this method returns
a predicate r that holds for all the tuples stored below ptr1, . . . , ptrn. This
means that a predicate r that can satisfy all of the predicates (p1 ∨ · · · ∨ pn) or
(p1 ∨ · · · ∨ pn)→ r.
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Compress(E) given an entry E = (p, ptr), this method returns an entry (pc, ptr)
where pc is a compressed representation of p.

Decompress(E) given an entry E = (pc, ptr), where pc = Compress(p, ptr),
this method returns an entry (pd, ptr) so that pc → pd. It is not required that
pc ↔ pd so the compression method can be a “lossy”.

Penalty(E1, E2) given two entries E1 = (p1, ptr1) and E2 = (p2, ptr2), this
method returns a domain specific penalty for inserting E1 in E2. This is mainly
used to aid the splitting and insertion algorithms, that must have a metric of
choosing whether E1 must be inserted in E2 or E3. For example, in R-trees
the penalty is the increase in the node’s MBR enlargement (see ChooseLeaf in
Algorithm 2.1.3 and QuadraticSplit in Algorithm 2.1.5).

PickSplit(P ) given a set P of M + 1 entries, this method splits P into two
sets of entries P1 and P2 each of size at least kM . This method is used during
the splitting of overflown nodes, orchestrating the Penalty method and the cost
of examining the combinations of the M + 1 entries.

2.2.2.2 Example

Whereas the previous sections presented the basics of GiSTs, in this section
a concrete example is presented. Let an 2D R-tree-based GiST tree, with the
MBRs of the indexed data as the key. The key of a node i is represented by the
predicate contains(mbri, v) where mbri the MBR of the node i, and v a free
variable.

Let such a tree with an internal node Nparent and Nchild be its child node. In
R-trees the organization of the keys is based on a containment hierarchy of the
nodes’ MBRs. If we recall the properties of an R-tree (Section 2.1.1), proper-
ties 2 and 4 dictate that Nchild’s MBR (pchild) must be contained in Nparent’s
MBR (pparent). This means that pchild → pparent ⇒ contains(mbrchild, v) →
contains(mbrparent, v).

However, in GiSTs from property 3 (Section 2.2.2) it is simply required that
pchild, pparent both hold for all nodes Nbelow below Nchild, or that both contains

(mbrchild,mbrbelow) and contains (mbrparent,mbrbelow) are true.
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R-trees can support many types of predicates and some simple ones include
Contains, Equal and Overlap. Also, more complex predicates like the ones
mentioned in [88] can be accomodated.

The GiST key methods must be implemented to represent the R-tree properties:

Consistent(E, q) Let an entry E = (p, ptr), q a query predicate on an MBR
x, and p the predicate contains(mbr, v) that represents the key of the tree. For
any of the query predicates Contains, Equal and Overlap this method returns
true if Overlap(mbrE , x) and false otherwise.

Union(E1 . . . En) returns the MBR of (E1 . . . En).

Compress(E) returns an entry (E.mbr,E.ptr), where E.mbr is the MBR of E.

Decompress(E) in the case of R-trees this method simply returns E. Let x the
MBR of E with x = Compress(E). Decompress must return an entry (pd, ptr)
so that x→ pd. The identity function satisfies this property.

Penalty(E1, E2) compute q = Union(E1, E2) and return area(q)− area(E1).
This is the increase in the node’s MBR enlargement (see ChooseLeaf in Algo-
rithm 2.1.3 and QuadraticSplit in Algorithm 2.1.5).

PickSplit(P ) return P splitted in two sets according to QuadraticSplit in
Algorithm 2.1.5.

2.2.3 Search

GiSTs support two search methods. In Section 2.2.3.1 we present the first search
method, that traverses as much of the tree as necessary, descending from the
root towards the leaf nodes in a manner similar to a B-tree. In Section 2.2.3.2
we describe the second one, that is useful when the indexed data support linear
ordering.



2.2 GiST Trees 35

2.2.3.1 General Search

This search method is a general search similar to the search of B-trees and R-
trees. Given an GiST with root node T and a predicate q we can form the
following query: find all index entries that satisfy q. The predicate q can be
either an exact match, or satisfiable by many values in order to support a range
query, or even more general predicates not based on contiguous areas in order
to support set containment predicates such as all supersets of {2, 50, 63}. The
answer of the query is a set A of objects.

The method GeneralSearch is described in Algorithm 2.2.1. It is called recur-
sively, with the the root node T as the initial Node argument. All the entries
of a node are checked and if an entry’s key p is consistent with with the search
predicate q, then the algorithm is called on the subtree. As the algorithm de-
scents the tree, if a leaf node is reached all the entries of the leaf node are
checked. If an leaf node entry’s if an entry’s key p is consistent with with the
search predicate q, then the entry is added in the answer set A. For an entry
E of a node its key is denoted as E.p and the pointer to a child is denoted as
E.ptr.

As we have already mentioned, in order to get the final answer of the search
the entries of the answer set A must be checked against the predicate q, since
GiSTs act as a filtering mechanism. This check can be either performed by the
search algorithm or performed by the calling process.

Input: Node N , Predicate q
Output: Set A (index entries that satisfy q)

if N is not a leaf node then /* Search subtree */1

foreach entry e ∈ N do2

if Consistent (e.p, q) then3

GeneralSearch (e.ptr, q);4

else /* Search leaf node */5

foreach entry e do6

if Consistent (e.p, q) then7

add e in A;8

9

return A10

Algorithm 2.2.1: GeneralSearch(Node N , Predicate q): GiST General
Search. Based on the description in [30, pp. 6–8]
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2.2.3.2 Linearly Ordered Domains

If the domain of the indexed data offers linear ordering, and queries are usually
equality or range containment predicates, then a more efficient search method
is possible. The user must make sure the some additional methods and flags
(IsOrdered, Compare, FindMin, Next) are defined, and that some properties
(regarding comparison and overlapping keys) are taken care of:

1. IsOrdered: Additional flag, that otherwise defaults to false, must be set
to true. This is a static property of the tree that can only be set during
the definition of the tree.

2. Compare: Additional method. Given two entries E1 = (p1, ptr1) and E2 =
(p2, ptr2), this method returns whether p1 proceeds, follows or is equally
ordered with p2.

3. FindMin: Additional method. It is able to efficiently find the minimum
tuple, in the linear order, that satisfies the search predicate q.The method
is described in Algorithm 2.2.3.

4. Next: Additional method. Returns the next entry on the same level of
the tree that satisfies q. The method is described in Algorithm 2.2.4.

Using the functions, flags and properties we mentioned above, equality and
range-containment queries can be performed more efficiently with LinearSearch

than GeneralSearch (Algorithm 2.2.1). The method is presented in Algo-
rithm 2.2.2. The search is performed by first using FindMin, described in Algo-
rithm 2.2.3, that locates the minimum entry that holds for the search predicate.
With this method only one path from root to leaf node will be traversed, un-
like GeneralSearch that might traverse multiple subtrees. Afterwards, Next,
presented in Algorithm 2.2.4, is called repeatedly. This method visits only leaf
nodes and simply traverses the ordered entries across multiple leaf nodes, until
the predicate holds no more.

To find the minimum tuple in linear order, that satisfies the search predicate q,
method FindMin, described in Algorithm 2.2.3, is used. It descent the leftmost
branch of tree and finds the first entry of a leaf node that is Consistent with q.
It is called recursively and the initial Node argument is root node T . Consistent
(lines 2 and 8) is described Section 2.2.2.1.

After FindMin finds the minimum tuple that satisfies the predicate q, method
Next, described in Algorithm 2.2.4, is used. This method finds the next entry,
in linear order, on the same level of the tree that satisfies q. Consistent (lines 3
and 12) is described Section 2.2.2.1.
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Input: Predicate q (equality and range-containment)
Output: Set A (index entries that satisfy q)

A← ∅;1

N ← FindMin (T , q); /* First entry that holds for q */2

if N == ∅ then3

return;4

add N to A;5

while true do /* All Next entries that hold for q */6

N ← Next (N);7

if N == ∅ then8

break;9

else10

add N to A;11

Algorithm 2.2.2: LinearSearch(Predicate q): GiST Linear Search.
Based on the description in [30, pp. 6–8]

Input: Node N , Predicate q
Output: Entry E (minimum leaf node entry that satisfies q)

if N is not a leaf node then /* Search subtree */1

Find first entry E, in linear order, of N so that Consistent (E, q);2

if such E was found then3

FindMin (e.ptr, q);4

else5

return ∅;6

else /* Search leaf node */7

Find first entry E, in linear order, of N so that Consistent (E, q);8

if such E was found then9

return E;10

else11

return ∅;12

13

Algorithm 2.2.3: FindMin(Node N , Predicate q): Called by GiST
LinearSearch (Algorithm 2.2.2). Based on the description in [30, pp.
6–8]
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Input: Node N , Predicate q, Entry E
Output: Entry E (next entry, in linear order, that satisfies q)

if E is not the rightmost entry of N then /* Next on this node */1

Eright ← next entry to the right of E;2

if Consistent (Eright, q) then3

return Eright;4

else5

return ∅;6

else /* Next on neighboring node */7

Nright ← next node to the right of N on the same tree level;8

if Nright == ∅ then9

return ∅;10

Eright ← leftmost entry of Nright;11

if Consistent (Eright, q) then12

return Eright;13

else14

return ∅;15

16

Algorithm 2.2.4: Next(Node N , Predicate q, Entry E): Called by GiST
LinearSearch (Algorithm 2.2.2). Based on the description in [30, pp. 6–8]
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2.2.4 Insert

Insertion in GiSTs is close to the one of R-trees, that resembles the one of B+-
trees. It is allowed to insert a node in a specific level of the tree, allowing reuse
from other methods. The algorithm descents the tree from root, in order to
locate the appropriate leaf to accommodate the new entry. The new entry is
added to the leaf node, and if the node overflows it is split. Then upwards from
the leaf node, the nodes towards the root are updated.

Let a GiST with root T , a new entry E, a desired tree level l. Moreover, for
an entry E, E.p denotes the predicate of the node and E.ptr denotes pointer to
the children node. Method Insert is described in Algorithm 2.2.5. Finding the
lead node that will accommodate the new node (line 1) is handled by method
ChooseSubtree (Algorithm 2.2.6). For domains that support linear ordering,
Compare (line 4) can be used (Section 2.2.3.2). Method Split (line 8) handles
overflown nodes (Algorithm 2.2.7). Finally AdjustKeys (line 9) propagates key
changes upwards (Algorithm 2.2.8).

Input: Node T (root), Entry E, Level l
Output: Modifies GiST by adding new entry E

L← ChooseSubtree (T,E, l); /* Find node where E will be1

inserted */

if L is not full then /* Add entry to leaf node */2

if IsOrdered then3

add E in L according to Compare;4

else5

add E in L;6

else7

Split (L,E);8

AdjustKeys (L); /* Propagate changes upwards */9

Algorithm 2.2.5: Insert(Node N , Entry E, Level l): GiST Insertion.
Based on the description in [30, pp. 8–10]

ChooseSubtree (Algorithm 2.2.6) descents the tree trying to find the appropri-
ate node that will accommodate the inserted node, by using method Penalty

(line 5), that is described in Section 2.2.2.1). The method is called recursively
and the initial argument is the root node T .

Method Split, described in Algorithm 2.2.7, chooses how to split the node N .
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Input: Node N , Entry E, Level l
Output: Node at level l

if N is at level l then1

return N ;2

else3

foreach entry e ∈ N do4

Penalty (e, E);5

K ← entry e with the minimum penalty;6

N ← ChooseSubtree (K.ptr, E, l);7

return N ;8

Algorithm 2.2.6: ChooseSubtree(Node N , Entry E, Level l): Called by
GiST Insert (Algorithm 2.2.5). Based on the description in [30, pp. 8–10]

First, method PickSplit (line 1) splits the keys of node N and the new entry
E in two nodes. The first node node is put directly in N , and the second is
inserted in the parent node. If there is room in the parent node, then an entry
pointing to the second node is added. In case the domain is linearly ordered
then Compare (line 8), described in Section 2.2.3.2, is used for the addition. If
the parent node is full, the splitting is propagated upwards. In all the cases a
node has changed and the key of its entry in the parent node must be updated
(lines 3 xand 14) Union is used (described in Section 2.2.2.1).

Method AdjustKeys, described in Algorithm 2.2.8, ascends tree from node N
and makes all predicates of the nodes accurate characterizations of their sub-
trees. It stops once the root T is reached or when a predicate is already accu-
rate.Method Union (line 5), described in Section 2.2.2.1, is used to calculate the
predicate u that holds for all tuples stored under node N .

2.2.5 Delete

The deletion is similar to the one of B+-trees and R-trees. Method Delete is
presented in Algorithm 2.2.9. It finds and removes the entry to be deleted and
propagates upwards key changes and possible elimination of underflown nodes.
The entry to be delete is located with a generic or linear Search (line 1) pre-
sented in Section 2.2.3. Propagation of key changes and handling of underflown
is performed by method CondenseTree (line 5) described in Algorithm 2.2.10.

CondenseTree, described in Algorithm 2.2.10, ascends the tree from node N and
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Input: Node N , Entry E
Output: Modifies GiST by splitting N and adding new entry E

(N,N ′)← PickSplit (N ∪ {E});1

EN ′ ← (q, ptr′) where:2

q ← Union (N ′);3

ptr′ pointer to N ′;4

P ← Parent (N);5

if there is room in P then /* Insert EN ′ in parent node */6

if IsOrdered then7

add EN ′ in P according to Compare;8

else9

add EN ′ in P ;10

else11

Split (P,EN ′);12

K ← entry of P , where K.ptr points to N ;13

K.p← Union (N);14

Algorithm 2.2.7: Split(Node N , Entry E): Called by GiST Insert

(Algorithm 2.2.5). Based on the description in [30, pp. 8–10]

Input: Node N
Output: Modifies GiST so that ancestors of N contain correct keys

if N is the root then1

return;2

else3

E ← entry of P , where E.ptr points to N ;4

u←Union (N);5

if E.p is as accurate as u then6

return;7

else8

E.p← u;9

AdjustKeys (Parent (N));10

return;11

Algorithm 2.2.8: AdjustKeys(Node N): Called by GiST Insert (Algo-
rithm 2.2.5). Based on the description in [30, pp. 8–10]
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Input: Entry E
Output: Modifies GiST by deleting entry E

L← Search (T,E.p); /* Find node */1

if L == ∅ then /* Entry E not found */2

return ∅;3

Remove E from L;4

CondenseTree (L);5

if T has only 1 child then /* Shorten tree */6

make this child the new root;7

Algorithm 2.2.9: Delete(Node N): GiST Deletion. Based on the de-
scription in [30, pp. 10–11]

makes the predicates of the nodes accurate characterizations of the subtrees. It
stops once the root T is reached or when a predicate is already accurate. In the
end orphaned entries are re-inserted like in R-trees.
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Input: Node N
Output: Modifies GiST so that ancestors of N contain correct keys

N ← L;1

Q← ∅; /* Set of eliminated nodes */2

while N is not T do3

P ← Parent (N);4

EN ← N ’s entry in P ;5

if N contains less than kM entries then6

if IsOrdered then7

N ′ ← neighboring node in order;8

if number of entries in N and N ′ ≥ 2kM then /* Try to9

borrow entries */

split evenly the entries between N and N ′;10

else /* Merge with neighbor */11

put entries of N in N ′;12

remove EN from P ;13

AdjustKeys (N ′);14

AdjustKeys (P );15

16

else /* Remove Node */17

add N in Q;18

remove EN from P ;19

AdjustKeys (P );20

21

if EN was removed from P then22

N ← P ;23

else24

AdjustKeys (N);25

break;26

foreach node N ∈ Q do /* Re-insert orphaned entries */27

foreach entry e ∈ N do28

Insert (e,Level (e));29

Algorithm 2.2.10: CondenseTree(Node N): Called by GiST Delete

(Algorithm 2.2.9). Based on the description in [30, pp. 10–11]



44 Preliminaries on R-trees and GiSTs

2.2.6 GiSTs in Postgres

Postgres’ GiST Application Programming Interface (API) and the functions the
user has to implement to use this API is described by the manual in [94]. Ac-
cording to the source file backend/src/access/gist/README Postgre’s GiST
is very close to the original [29]. The implementation has solved concurrency
issues and lately improved recovery-related issues. However, as the developers
commented in the “pgsql-hackers” mailing list [96] the information in the file is
in general correct but might not completely reflect the status of the implemen-
tation.

The C API is defined in src/include/access/gist.h and implemented in
src/backend/access/gist/. The functions are registered in the system as
built-in SQL functions (src/include/catalog/pg proc.h) and are hooked in
src/backend/access/gist/gist.c. It will be interesting to investigate this
implementation in detail, since it has been in production since 2005 [97] but
due to time constraints we couldn’t go in the source code.

According to the R-tree implementation provided by Postgres (src/backend/
access/gist/gistproc.c) the following functions are defined in order to use
the GiST API:

• same returns true if the 2 input geometries are equal. This function is not
mentioned in the original GiST framework, but is needed widely in the
implementation.

• consistent for a query predicate (or as named in the source code “query
operator”) this function returns false if for all the data indexed below an
entry if the qury predicate is false.

• union Given a set of entries, this function generates a new index entry
that represents all the given entries.

• penalty calculates the cost of inserting the new entry in an a node.

• picksplit a method to split an overflown node.

• compress prepares the physical storage of the key in an index page. In the
case of R-trees the MBR of the indexed datum is the key and is already
considered as “compressed”.

• decompress converts the stored representation of the data item into a
format that can be manipulated by the database. In the case of R-trees
the key of the indexed datum is its MBR and the system is already capable
of handling the data structure, so it doens’t need “decompression”.
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2.3 Summary

In this chapter we presented the spatial index R-tree and the abstract search
tree GiST. For both indexing solutions we first discussed their basic properties.
Then we described how search, insertion and deletion are performed and the
details of the algorithms that drive these actions. Moreover, we took a look at
the splitting of tree nodes that are full and joining tree nodes that are filled
below their fill threshold.
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Chapter 3

Dynamic R-tree versions

The R-tree data structure is a major spatial indexing solution. A survey from
Gaede and Guenther [21] and the one of the book [42], that serves as one of our
main sources of reference, describe a large number of dynamic R-tree variants.
This chapter focuses on a number of these dynamic variants where the spatial
objects are inserted on a one-by-one basis. For each, their structure, indexing,
splitting and querying techniques are examined in detail.

Six variations of the original R-tree are investigated. In Section 3.1, the R+-tree
variant is presented. Then, we present the R∗-tree variant in Section 3.2, and the
Hilbert R-tree in Section 3.3. Two splitting algorithms are then introduced, the
linear splitting in Section 3.4, and the optimal splitting in Section 3.5. Finally,
VoR-Tree a variant for nearest neighbor queries is described in Section 3.6.

3.1 R+-tree

The original R-tree based its search performance on two factors, that could
easily create performance problems:

• minimal overlap: during insertion a new node is inserted in the path that
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causes the minimum area enlargement. This factor the most critical.

• minimal coverage: during split of overflown nodes, the two new nodes
should have as much as empty space between them as possible.

Moreover, if only a few large rectangles are inserted, the overlap of internal can
increase significantly and decrease search performance.

Sellis, Roussopoulos and Faloutsos proposed the R+-tree data structure in [103],
whose major goal was to provide not just minimal, but zero overlap. In the R-
tree structure each entry is accommodated in only one node, whereas the R+-tree
allows the splitting of a node, in order to avoid overlap of internal nodes.

An example of the main idea behind the R+-tree is given in Figure 3.1. Let
four example objects (the gray rectangles 0–3) that are inserted in a (2, 3) R-
tree (left column) and a (2, 3) R+-tree (right column). The dashed rectangles
(A1, A2, B1, B2) represent the MBRs of the internal nodes of each tree. For
consistency with [103], the term data rectangle is used to “denote a rectangle
that is the MBR of an object” as opposed to rectangles that correspond to
the intermediate nodes of the tree. Whenever a data rectangle overlaps with a
rectangle of a higher level, it is decomposed in non-overlapping sub-rectangles.
The union of these sub-rectangles is the original rectangle. In our example,
object 3 causes a problem in the minimum overlap factor of the R-tree, making
nodes A1 and A2 to overlap. In order to have zero overlap between the nodes,
object 3 is decomposed in two sub-rectangles B1 and B2 that have zero overlap.
In the R+-tree the data rectangle of object 3 is located in two leaf nodes.

R+-trees are balanced trees and their leaf and intermediate nodes have the same
form as in R-trees. They satisfy the following properties:

1. Each entry of an intermediate node is of the form (mbr, ptr), where ptr is
a pointer to a child node and mbr is the MBR that contains completely
all the MBRs of this child.

2. For two entries (mbr1, ptr1) and (mbr2, ptr2), of an intermediate node,
there is zero overlap between mbr1 and mbr2.

3. Each entry of an leaf node is of the form (mbr, id), where mbr is the MBR
that contains the object and id the object’s identifier. The leaf’s entry
mbr is not required to be completely contained in the parent’s entry mbr.

4. The root node has at least two children, unless it is a leaf.

5. All leaf nodes appear on the same level.
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Figure 3.1: R-tree overlapping and R+-tree decomposition of MBRs. Top row:
Leaf and internal nodes’ MBRs spatial representation of trees. Bottom row:
tree structure of the tree above. Left column: R-tree. Right column: R+-tree.

The rest of the section is organized as follows: in Section 3.1.1, we present how
search is performed. In Section 3.1.2, insertion is described. In Section 3.1.3,
splitting is presented, and in Section 3.1.4, partitioning is introduced. In Sec-
tion 3.1.5, packing is discussed briefly. Finally, in Section 3.1.6, we outline the
basics of deletion.

We should note that the authors of the paper made an error in the definition
of the the format of nodes [103, p. 511]. They mention the “form of the leaf
nodes” and the “form of the internal node”, but instead they mean the form
of entries of the leaf and internal nodes accordingly. These terms, node and
entry of a node, also get confused in the definition of the SplitNode algorithm
in [103, pp. 513–514].

3.1.1 Search

The search is described in Algorithm 3.1.1. The space is already decomposed
in disjoint sub-regions. The method descents the tree from root to leaf nodes
and in each level checks the subtrees of the entries, whose MBRs intersect with
the search area S. It is called recursively with initial Node argument the root
T . The procedure differs to the insertion of R-trees (Algorithm 2.1.1) in line 4,
where only the search area is clipped as the algorithm goes to the level below.
Also in line 8, duplicates must be eliminated from the answer set either in this



50 Dynamic R-tree versions

method or by the caller of the search.

Input: Node N , Rectangle S
Output: Set A (index entries whose MBR intersect S)

if N is not a leaf node then /* Search subtree */1

foreach entry e ∈ N do2

if e.mbr that intersects S then3

call Search (e.ptr, S ∩ e.mbr);4

else /* Search leaf node */5

foreach entry e ∈ N do6

if e.mbr intersects S then7

add e in A ; /* Avoid duplicates */8

9

return A;10

Algorithm 3.1.1: Search(Node N , Rectangle S): R+-tree Search. Based
on description in [103, p. 512].

3.1.2 Insert

Insertion is handled by method Insert described in Algorithm 3.1.2. A new
entry E is inserted in an R+-tree, by performing a recursive search on the tree
and adding the entry in the leaf nodes. The initial node argument is the root
node T . Unlike the case of an R-tree, the new entry might be added in more
than one leaf nodes and the MBR of the new entry is decomposed in sub-regions
in the internal nodes. Method SplitNode (line 8) handles overflown nodes by
re-organizing the tree. Splitting is described in Section 3.1.3.

Moreover, we should note that the if clause in line 3 doesn’t have a corre-
sponding else clause, even if a new entry could not intersect with existing
node’s MBRs. This implies a decomposition of the whole space, during the
creation of the tree similar to the K-D-B-trees [100].

3.1.3 Split

Method SplitNode, presented in Algorithm 3.1.3, handles overflown nodes by
re-organizing the tree. In line 2 method Partition, described in Algorithm 3.1.4,
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Input: Entry E, Node N (root)
Output: Modifies R+-tree by adding new entry.

if N is not a leaf node then /* Search subtree */1

foreach entry e ∈ N do2

if e.mbr intersects S then3

call Insert (e.ptr, E.mbr);4

else /* Search leaf node */5

add E in N ;6

if N has M + 1 entries then7

SplitNode (N); /* Re-organize tree */8

9

Algorithm 3.1.2: Insert(Entry E, Node N): R+-tree Insertion. Based
on description in [103, p. 512].

is used to find two mutually disjoint partitions for the node N . Even if the
method returns a Node and a Set of entries, both returned data structures are
used as sets of entries. Their MBRs are used to initialize two new empty nodes,
and then their entries are then divided to the node that covers them completely
(lines 8 and 10). If an entry intersects with both partitions then if the algorithm
is on a leaf node the entry is placed in both nodes. Otherwise the splitting is
propagated downwards SplitNode on the subtree. In the end, node splitting
changes are propagated upwards.

Downwards propagation of splitting is required due to the property 1 of R+-
trees (Section 3.1), as children nodes might need to be split. Such a case is
demonstrated in Figure 3.2. Node A1 is the parent of node A2, and A2 is
the parent of Node A3. The tree structure is presented on the right and the
spatial representation of the nodes on the left. If node A1 has to be split, then
its children might also need to be split. In this example, if the partition line
crosses all three children, then all of them need to be checked for splitting.

3.1.4 Partition

Partitioning is used to decompose the space of a node in non-overlapping sub-
regions. In this section we present the algorithms for two dimensions, however
their generalization is straight-forward.
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Input: Node N
Output: Modifies R+-tree by splitting overflown nodes.

S ← set of all entries in N ;1

(K,S′) = Partition (S, f);2

S1, S2 ← 1st, 2nd sub-regions of partition;3

(N1, N2)← (∅, ∅) ; /* New empty nodes */4

EN1
← (N.mbr ∩ S1.mbr,N1) ; /* Entries pointing to them */5

EN2
← (N.mbr ∩ S2.mbr,N2) ; /* with initialized MBRs */6

foreach entry e of N do7

if e.mbr completely in EN1 .mbr then8

add e in N1;9

else if e.mbr completely in EN2
.mbr then10

add e in N2;11

else /* Partially in either of them */12

if N is leaf node then13

add e in both nodes;14

else /* Internal node */15

(K1,K2)← SplitNode (e.ptr) ; /* Split subtree */16

add K1 and K2 as children in nodes N1 and N2, depending in17

which of N1 and N2 they are included completely;
18

19

if N == T then /* Propagate changes upwards */20

create new root with children N1 and N2;21

else22

P ← parent node of N ;23

ep ← entry of N in P ;24

remove ep from P ;25

add entries pointing to N1 and N2;26

if P has more then M entries then27

SplitNode (P );28

Algorithm 3.1.3: SplitNode(Entry E, Node N): R+-tree Splitting.
Called by Insert described in (Algorithm 3.1.2). Based on description
in [103, p. 513].
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Figure 3.2: R+-tree downwards propagation example [103].

The 2-dimensional space is divided in two sub-regions using one of the available
axis. The criteria on which the axis is chosen are:

1. nearest neighbors,

2. minimal total axis displacement,

3. minimal total space coverage due to the new sub-regions, and

4. minimal number of entry splits.

The first three criteria help search performance by reducing coverage of dead
space, whereas the fourth limits the tree height.

The method that handles partitioning is Partition described in Algorithm 3.1.4.
Beginning from the lowest point of the set (lx, ly), Sweep (line 6) scans each of
the available axes. This method is described in Algorithm 3.1.5 and returns the
cost of splitting each axis. The overall minimum cost is calculated according to
one or a combination of the above mentioned criteria, and the axis that has this
cost is used for the portioning. The two sub-regions define one node and one
set, each containing all the nodes of N that fall in each sub-region.

Sweep, described in Algorithm 3.1.5, scans an axis a to find the partitioning
point cut. It begins scanning the axis from the point l and it collects the first f
elements from the given set of rectangles S. The authors mention that the set
S is sorted, but they don’t define how this sorting is performed, so we assume
that they mean ordering by the value on the axis a. The value, on axis a, of the
last element that is inserted is the point cut (line 3).

Another error that appears in the paper is that the authors mention that cut gets
the largest value, from one of the axes, of the f entries. We believe they mean
the largest value of the axis that is currently scanned, since the partitioning of
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Input: Set of rectangles S, FillFactor f
Output: Node N , Set of rectangles S′

N ← ∅;1

if S contains ≤ f elements then /* No partition required */2

add all elements of S in N ;3

return (N, ∅);4

(lx, ly)← Lowest x and y coordinates of all elements of S;5

(Cx, cutx)← Sweep (x, lx, f, S) (Cy, cuty)← Sweep (y, ly, f, S);6

(Cmin, cutmin)← smallest cost and the corresponding cut point;7

/* Now cutmin divides S is two sub-regions */

N ← all elements of S that fall in 1st sub-region;8

S′ ← set of all elements of S that fall in 2nd sub-region;9

return (N,S′);10

Algorithm 3.1.4: Partition(Set of rectangles S, FillFactor f): R+-tree
Partitioning. Called by SplitNode (Algorithm 3.1.3). Based on descrip-
tion in [103, p. 514].

the node selects one axis and cut is the point where the partitioning is performed.
The value of other axis might be outside the range of values available for the
axis that is currently scanned.

Cost (line 3) calculates the cost C for this partitioning point, according to one
or a combination of the above mentioned criteria. This implementation is not
presented and is left for the implementation of the tree.

3.1.5 Pack

The packing algorithm re-creates the tree, in order to improve its search perfor-
mance, that could degrade, as nodes are inserted and deleted. The interested
reader can find its description in [103], as well as in [101] that discusses this
packing method in detail.
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Input: Axis a, Point l, FillFactor f , Set of rectangles S
Output: Cost C, Point cut

G← ∅ ; /* Set of first f elements */1

starting from point l, add to G the f largest elements of S on axis a;2

cut← the value of the largest element added in G, for axis a C ← Cost3

(G) ; /* Cost of measured property */

return (C, cut);4

Algorithm 3.1.5: Sweep(Set of rectangles S, FillFactor f): R+-tree Par-
titioning. Called by Partition described in (Algorithm 3.1.4). Based on
description in [103, p. 515].

3.1.6 Delete

The deletion algorithm is similar to the one of R-trees. The difference is that
an indexed object might be present in more than one leaf nodes, so it has to be
removed by all of them. The algorithm is described in [42, p. 17]

3.2 R∗-tree

In 1990, Beckmann, Kriegel, Schneider and Seeger proposed an R-tree variant
the R∗-tree [7]. It is very close to Guttman’s data structure (Section 2.1 and
[28]), but offers a more engineered approach when it comes to choosing the inser-
tion path and the splitting procedure. The algorithm is currently implemented
in Oracle [118] and SQLite [109], and is still considered in the literature as a
“prevailing performance-wise structure often used as a basis for performance
comparisons” [42, p. 18]. In Section 3.2.1 choosing the appropriate insertion
path is described, in Section 3.1.3 the splitting of overflown nodes is presented
and finally in Section 3.2.3 the re-insertion procedure is analyzed.

The criteria considered for insertion path choosing and reinsertion are the fol-
lowing:

• Minimization of the area covered by MBRs: this factor is the only one
also considered in the original R-tree. The goal is to minimize the dead
space, the area of an node’s MBR that is not covered by its children nodes
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MBRs.

• Minimization of overlap covered by MBRs: the goal is to minimize the
expected number of paths followed by a range query.

• Minimization of MBR margins: margin is defined as the sum of the lengths
of the edges of an MBR. The goal is to shape the MBRs as quadratic as
possible. This also improves the packing of the nodes making the MBRs
of upper levels of the tree smaller, thus achieving indirectly minimization
of the area.

• Maximization of node utilization: the higher the node utilization the less
nodes will be read from disk during query processing.

In their paper they state that they tested different combinations of the above
mentioned criteria to find which one is the preferable to choose an appropriate
insertion path. They concluded that the best results are given when the over-
lap is defined when minimization of the area covered by MBRs is taken into
account [7, p. 325].

3.2.1 Insertion path

Since R-tree is a dynamic data structure, the insertion of new entries plays an
important role in its performance. The first issue Beckmann, Kriegel, Schneider
and Seeger try to improve is the insertion strategy and the way the appropriate
insertion path is chosen.

Method ChooseSubtree, described in Algorithm 3.2.1 returns the appropriate
node N that will accommodate the new entry E. It descents the tree from root
to the leaf nodes and it is similar to ChooseLeaf, described in Algorithm 2.1.3.
The main difference is that it uses different methods to determine the insertion
path. If the node N , that is currently examined, has children that are leaf nodes
(line 2), the method finds the entry that requires the minimum overlap enlarge-
ment in order to include E.mbr. If the node N , that is currently examined,
has children that are non leaf nodes (line 5), the method finds the entry that
requires the minimum area enlargement in order to include E.mbr.

Moreover, in their paper, the authors offer a method of finding the nearly min-
imum overlap for trees with a large number of entries per node, in order to
achieve smaller CPU cost.
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Input: Node N , Entry E
Output: Node N (leaf node where the new entry will be inserted)

while N is not leaf node do1

if children of N entries are leaf nodes then /* determine the2

minimum overlap */

K ← entry of N whose K.mbr will require the minimum overlap3

enlargement in order to include E.mbr;
Resolve ties by choosing the child whose MBR has the minimum4

area;

else /* determine the minimum area cost */5

K ← entry of N whose K.mbr will require the minimum area6

enlargement in order to include E.mbr;
Resolve ties by choosing the child whose MBR has the minimum7

area;
N ← K.ptr;8

return N ;9

Algorithm 3.2.1: ChooseSubtree(Node N , Entry E): Called by R-tree
and R∗-tree Insert (Algorithm 2.1.2 - ChooseLeaf). Based on description
in [7, p. 324].



58 Dynamic R-tree versions

3.2.2 Splitting

The splitting method tries to split an overflown node in 2 new nodes in a good
way. In order to decide the where the split will occur it examines the different
grouping of all the entries of the node. We should remind the notation used to
describe the properties of R-trees: M is the maximum entries a node can hold,
and m, with 2 ≤ m ≤M , is the minimum entries a node can hold. The grouping
is performed by sorting the entries, and creating M−2m+2 distributions of two
groups. For the k-th distribution the first group contains the first (m − 1) + k
sorted entries and the second the rest entries.

Let an example 2-dimensional R∗-tree with (m = 2,M = 5), with an overflown
node of M + 1 = 6 entries. The spatial representation of the entries’ MBRs
and the sorting of the entries by upper and lower value for axis X are shown in
Figure 3.3. For each sorting there are three distributions. The distributions, for
the sorting of upper values for axis X, are also shown in Figure 3.3. In the first
distribution the first group contains the first 2 entries and the second group the
remaining, in the second distribution the first group contains the first 3 entries
and the second group the remaining, and in the third distribution the first group
contains the first 4 entries and the second group the remaining.

The method ChooseSubtree implements the splitting of an overflown node. It
first calls ChooseSplitAxis (line 1) to determine the axis on which the split
will occur and then calls ChooseSplitIndex (line 2) to determine the two new
groups that will be created.

Input: Node N (the overflown node)
Output: Node A, Node B (the result of the spitting)

axis← ChooseSplitAxis;1

A,B ← ChooseSplitIndex (axis);2

Distribute the entries in two groups A,B;3

return A,B;4

Algorithm 3.2.2: Split(Node N): R∗-tree splitting. Called by
OverflowTreatment (Algorithm 3.2.7). Based on description in [7, p. 326].

The method ChooseSplitAxis is called by Split (Algorithm 3.2.2) and picks
the axis perpendicular to which the split will occur. It examines all the available
axis and creates two sortings: by lower and by upper value of this axis (lines 2–
3). Then it finds all the available distributions of the entries of the node (line 4),
, as it was explained in the introduction of this section (3.2.2 - page 58). Finally
it picks the axis where the sum of margins of all its distributions is minimum.
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Figure 3.3: a) example of an overflown R∗-tree node and b) its entries distribu-
tions during splitting for upper values of axis X.

Input: Node N
Output: Axis axis

foreach axis do1

A = sort entries by lower value on axis;2

B = sort entries by upper value on axis;3

Determine all the distributions of A,B (as described in text);4

foreach distribution do5

find the sum s of margins for both groups of the distribution;6

find the sum S of all the s for each distribution;7

axis← the axis with the minimum S;8

return axis;9

Algorithm 3.2.3: ChooseSplitAxis(Node N): R∗-tree splitting. Called
by ChooseSplit (Algorithm 3.2.2). Based on description in [7, p. 326].
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The method ChooseSplitIndex is called by Split (Algorithm 3.2.2) and selects
the two groups in which the overflown node will be split. After the axis of the
split is selected (ChooseSplit Algorithm 3.2.3), the selected axis is examined.
It creates two sortings: by lower and by upper value of this axis (lines 1–2).
Then, it finds all the available distributions of the entries of the node (line 3),
as it was explained in the introduction of this section (3.2.2 - page 58). For each
distribution the overlap value and the area value are calculated. The distribution
with the minimum overlap value is selected. Ties are resolved by choosing the
distribution with the minimum area value.

Input: Axis axis
Output: Group A, Group B (the result of the spitting)

A = sort entries by lower value on axis;1

B = sort entries by lower value on axis;2

Determine all the distributions of A,B (as described in text);3

foreach distribution do4

compute overlap value O of both groups of the distribution;5

compute area value A of both groups of the distribution;6

pick the distribution with minimum O;7

resolve ties by choosing the minimum A;8

return A,B;9

Algorithm 3.2.4: ChooseSplitIndex(Axis axis): R∗-tree splitting.
Called by ChooseSplit (Algorithm 3.2.2). Based on description in [7,
p. 326].

3.2.3 Reinsert

Since R-tree is a dynamic index data structure, different sequences of the same
insertions will lead to a different indexing. Moreover, the way old entries were
inserted in the tree might not reflect the current status of the indexed data,
leading to a bad retrieval performance. In their paper, Beckmann, Kriegel,
Schneider and Seeger [7] examined the performance effect that the reinsertion
of old entries in the tree would have. The results showed a performance im-
provement of 20% to 50% depending on the type of queries [7, p. 326]. This
is the reason why R∗-tree dynamically reorganizes itself during the insertion of
new entries.

The insertion of new entries is similar to the one described for the original R-tree
(Algorithm 2.1.2), except the overflow treatment that will be presented in the
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rest of the section. Method InsertData (Algorithm 3.2.5) is a simple wrapper
around the main insertion method Insert (Algorithm 3.2.6). It initiates the
procedure of inserting a new entry in the tree, and calls Insert (Algorithm 3.2.6)
with the level of the leaf nodes as argument.

Input: Entry E

l← leaf level of the tree;1

Insert (E, l);2

Algorithm 3.2.5: InsertData(Node N): R∗-tree Insertion. Based on
description in [7, p. 327].

Method Insert, presented in Algorithm 3.2.6, is responsible for performing
the insertion of new entries in the appropriate level of the tree. The first
time it is called the level argument is the level of the leaf nodes. It calls
ChooseSubtree (Algorithm 3.2.1) to find the node N that will accommodate
the new entry. If N has enough room the new entry is added to the node.
Otherwise OverflowTreatment (Algorithm 3.2.7) is called in order to perform
either a re-insertion or a split of the node. Next, if OverflowTreatment split-
ted a node, OverflowTreatment is propagated upwards, and if a splitting of the
root occurs, a new root is created. Finally all the MBRs are adjusted to reflect
the changes of the tree.

Input: Entry N , Level l

N ← ChooseSubtree (E, l);1

if N is not full then /* Add entry to node */2

add E in N ;3

else4

add E in N ; /* split and others expect M+1 entries */5

OverflowTreatment (N, l);6

if OverflowTreatment was called and split was performed then7

propagate OverflowTreatment upwards if necessary;8

if root was split then /* Grow tree taller */9

create new root, and add the old root’s split nodes as children;10

adjust all MBRs in the insertion path;11

Algorithm 3.2.6: Insert(Node N , Level l): R∗-tree Insertion. Based on
description in [7, p. 327].
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Method OverflowTreatment, described in Algorithm 3.2.7, decides how an over-
flown node will be handled. If OverflowTreatment is called for the first time
in this level, some of the entries of the node will be re-inserted by ReInsert

(Algorithm 3.2.8). Otherwise, the node is split by Split (Algorithm 3.2.2).

Input: Node N , Level l

if l is not root level and this is the first call of OverflowTreatment then1

ReInsert (N);2

else3

Split (N);4

Algorithm 3.2.7: OverflowTreatment(Node N , Level l): R∗-tree Inser-
tion. Called by Insert (Algorithm 3.2.6). Based on description in [7, p.
327].

Method ReInsert, shown in Algorithm 3.2.8, is responsible for re-organizing
the tree by re-inserting some of the overflown node’s entries. It calculates the
distance of the center of each entry from the center of the node. The p entries
of the node that have the largest distance are removed from the node and re-
inserted (to the leaf nodes) by calling Insert for each of them.

Input: Node N

foreach entry e of N do1

compute distance d between center of e.mbr to the center of N.mbr;2

sort ds in descending order;3

remove the first p entries from N ;4

adjust N.mbr;5

foreach of the removed p entries e of N , keeping the sorting order do6

Insert (e) ; /* call Insert to reinsert them */7

Algorithm 3.2.8: ReInsert(Node N): R∗-tree Insertion. Called by
OverflowTreatment (Algorithm 3.2.7). Based on description in [7, p. 327].

3.3 Hilbert R-tree

In [36], Kamel and Faloutsos propose the Hilbert R-tree, a hybrid structure
between the R-tree and B+-tree. The way the splitting of overflown nodes is
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handled, involves the usage of the Hilbert filling curve, which serves as the
ordering criterion of a node’s entries. In Section 3.3.1 the Hilbert curve and
its properties are presented, in Section 3.3.2 the basic properties of the data
structure are given. In Section 3.3.3, insertion is presented; in Section 3.3.4,
the way the splitting of overflown nodes is handled is explained; and finally, in
Section 3.3.5, the deletion is described.

3.3.1 The Hilbert curve

Space filling curves are paths than can be applied in a 2-dimensional grid. Such
a path visits all the points of the grid, exactly once without crossing itself and
joins each point of the grid with a vertex. A path has two free ends, a start and
an end that can be joined with other paths. These curves are usually constructed
recursively, by defining a basic curve of order 1. Then, to derive the curve of
order i, each vertex is replaced by the curve of order i−1 which could be rotated
and reflected to fit the new curve [18]. The construction of the curves can of
course be generalized for higher dimensions.

The Hilbert curve, proposed by David Hilbert [31] in 1891, is a space filling
curve that can be constructed by Algorithm 3.3.1. The algorithm is recursive
and its initial arguments is the order of the curve and a default value of 90
degrees. The algorithm is presented in Logo style where a “pen” moves on a
canvas for a defined length, and while it moves it draws a straight line on the
canvas. When it stops moving we can change the direction of the next straight
line. The drawing point of the order 1 curve turns right, moves forward, turns
left, moves forward, turns left, moves forward, and turns right. Higher order
curves recursively call the drawing of the lower order curves. Figure 3.4 shows
4 Hilbert curves (black path) of order one, two, three and four. All curves have
the same “move forward” length and for each curve the grid (light gray) they
fill is shown.

In [18], the spatial distance-preserving mappings ability of various filling curves
is investigated. More specifically, the performance of a distance preserving map-
ping under range and nearest neighbor queries is benchmarked and the results
show that Hilbert curve behaves better because it avoids long jumps between
points. This is the reason why the Hilbert curve is used as the ordering criterion
in Hilbert R-tree.
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Input: Level level, Angle angle
Output: Hilbert Curve Drawing

if level == 0 then1

return2

/* Always move forward by a predefined length */

turn right (angle);3

Hilbert (level − 1, −angle);4

move forward;5

turn left (angle);6

Hilbert (level − 1, angle);7

move forward;8

Hilbert (level − 1, angle);9

turn left (angle);10

move forward;11

Hilbert (level − 1, -angle);12

turn right (angle);13

Algorithm 3.3.1: 2-dimensional Hilbert curve construction (Logo style).
Initial angle argument is 90 degrees.
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Figure 3.4: 2-dimensional Hilbert curves of order 1, 2, 3 and 4.

3.3.2 Basic Properties

Hilbert R-trees differ only slightly from the original R-tree. The leaf nodes have
the same structure but the internal nodes are of the form (mbr, id, lhv), where
mbr is the MBR that contains the object and id the object’s identifier, like in
the R-tree. Additionally lhv stores the largest Hilbert value of all the entries
below the node. The largest Hilbert value lhv is used as the primary key on
which the entries of the tree are sorted, and this is where lies the resemblance
with B+-trees.

3.3.3 Insertion

Insertion of Hilbert R-tree is similar to the one of R-trees (Section 2.1.3).
Method Insert handles the insertion and is described in Algorithm 3.3.2. The
way a leaf node is found for the new entry (line 1) is handled by ChooseLeaf.
The overflown nodes are balanced with HandleOverflow described in Algo-
rithm 3.3.4 (line 6) using other sibling nodes, as presented in Section 3.3.4, and
a split is performed if needed. Node changes are propagated upwards (line 8)
and are handled by AdjustTree.
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Input: Entry E, Node T (root)
Output: Modifies R-tree by adding new entry.

L← ChooseLeaf (T , E); /* Find leaf node for the new entry */1

if L is not full then /* Add entry to leaf node */2

add E in L, ordered by Hilbert value;3

return4

else5

L1 ← HandleOverflow (L);6

S ← set containing L, the cooperating siblings, and L1;7

AdjustTree (S); /* Propagate changes upwards */8

if T was split then /* Grow tree taller */9

create new root, and add the old root’s split nodes as children;10

Algorithm 3.3.2: Insert(Entry E, Node T ): Hilbert R-tree Insertion.
Based on description in [36, pp. 502–504].

Method ChooseLeaf is similar to the one of R-trees (Algorithm 2.1.3). The
difference that the largest Hilbert value of the node that is examined is used to
select the next node of the insertion path. Method AdjustTree is also similar to
R-tree’s Algorithm 2.1.4, where both the MBRs and the largest Hilbert values
of the sibling and upper nodes is adjusted.

3.3.4 Overflown Nodes

Method HandleOverflow, presented in Algorithm 3.3.3, handles overflown nodes
of Hilbert R-trees. Suppose that when the overflow occurs the level has s nodes.
The method, first tries to move some the overlfown’s node entries to the other
s sibling nodes (line 3). If that fails, the entries of the s nodes are distributed
among s + 1 nodes (line 6).

Since the largest Hilbert value of the entries, represented an ordering, it is
possible to perform both the moving (line 3) and the distribution (line 6) of
entries.
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Input: Entry E, Node N
Output: Node N (∅ if no split occurred)

S ← set containing all entries from N and it’s cooperating sibling nodes;1

add E to S;2

if one of the sibling nodes is not full then3

distribute S evenly among the s nodes according to Hilbert value;4

return ∅;5

else /* All sibling nodes are full */6

create a new node N ′ ;7

distribute S evenly among the s + 1 nodes according to Hilbert value;8

return N ′;9

10

Algorithm 3.3.3: HandleOverflow(Entry E, Node T ): Hilbert R-tree
Overflown node handling. Based on description in [36, p. 504].

3.3.5 Deletion

Deletion is slightly different from the other R-tree variants we have encountered
so far. It doesn’t follow a re-insert procedure, but tries to compact the entries
in the available nodes.

Suppose that when the overflow occurs the level has s+1 nodes. Method Delete,
presented in Algorithm 3.3.4 first locates the leaf node, where resides the node
to be deleted, and deletes it. If the node is underfull then entries from the other
s nodes (line 4) are borrowed, but if all the other s nodes are in the verge of
being underfull, the s + 1 nodes are merged into s nodes (line 6).

The largest Hilbert value of the entries, represents an ordering, that makes
possible to both the borrowing and the merging of entries.

3.4 Linear Node Splitting

As we described in Section 2.1.4, the original R-tree has three splitting tech-
niques to handle overflown nodes. In [5] Ang and Tan proposed an additional
splitting algorithm of linear time. The goal of the method is first to distribute
the entries, of the overflown node in two nodes, as evenly as possible and second
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Input: Entry E
Output: Modifies R-tree by deleting entry.

L← Search (E); /* Find leaf node containing entry E */1

Remove E from L;2

if L is underfull then3

borrow entries from the other s nodes;4

if all s nodes are ready to underfull then5

merge s + 1 nodes to s;6

adjust the resulting nodes;7

S ← L;8

if underflow occurred then9

S ← S∪ cooperating siblings;10

AdjustTree (S); /* Propagate changes upwards */11

Algorithm 3.3.4: Delete(Entry E): Hilbert R-tree Deletion. Based on
description in [36, p. 504].

to minimize the overlap between them. Finally, the last goal is to minimize total
coverage.

The method of the new linear splitting is described in Algorithm 3.4.1. Four
lists LL, LB , LR, LT (line 1) hold the entries e of node N , that are closer to
the left, bottom, right and top of N.mbr (lines 2-10). These lists represent two
partitionings since each entry can be part of LL or LR and LB or LT . The
decision of the axis, on which the split is performed, depends on the vertical
and horizontal distribution of the entries. The metric used is the number of
elements in the LL, LR (horizontal) and LB , LT (vertical) lists.

In Figure 3.5 an example node with 11 entries, of a 2-dimensional R-tree, is
given. The rectangles with the black line are the MBRs of the entries, and the
dotted rectangle is the MBR of the node. The numbers in parenthesis is the
number of elements in each list. The spatial distribution of the nodes is selected
on purpose, so that it is easy to find, without calculations, the list in which
each node entry belongs to. Qualitative, we see that the maximum number
of elements of the horizontal lists is 6, whereas the the maximum number of
elements of the vertical lists is 7. This means that the entries are distributed
more evenly horizontally, and that the splitting axis will be X.
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Input: Node N
Output: Node N1, Node N2

/* initialize lists for left, bottom, right, top */

LL ← LB ← LR ← LT ← ∅ ;1

/* fill lists */

foreach entry e ∈ N do2

/* N.mbr = (L, B, R, T) - left, bottom, right, top */

/* e.mbr = (xl, yl, xh, xh) - left, bottom, right, top */

if xl − L < R− xh then3

LL ← LL ∪ e;4

else5

LR ← LR ∪ e;6

if yl −B < T − yh then7

LB ← LB ∪ e;8

else9

LT ← LT ∪ e;10

/* choose split axis */

if max (|LL|, |LR|) < max (|LB |, |LT |) then11

spit along X axis;12

else if max (|LL|, |LR|) > max (|LB |, |LT |) then13

spit along Y axis;14

else /* tie */15

if overlap (LL, LR) < overlap (LB , LT ) then16

spit along X axis;17

else if overlap (LL, LR) > overlap (LB , LT ) then18

spit along Y axis;19

else /* tie */20

split along axis with smallest total overage;21

22

23

Algorithm 3.4.1: NewLinear(Node N): Additional R-tree node splitting
method. Based on [5, p. 5]
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Figure 3.5: Example distribution of a node’s entries in the left, right, bottom
and top lists.

3.5 optimal split

In [23] the authors presented an optimal node splitting algorithm that is de-
scribed in [42, pp. 24-25]. When we tried to read the actual paper we couldn’t
find it, even if it’s a relatively new paper from VLDB ’98. In one of author’s site
we read that “there is an error in this paper, a corrected version will appear”
[40]. However, we couldn’t find a new version of the paper either, so we omit
this splitting algorithm.

3.6 VoR-Tree

Sharifzadeh and Shahabi present in [105] the VoR-Tree, an R-tree variant that
performs very well for nearest neighbor queries by using Voronoi diagrams.

In Section 3.6.1 we introduce the Voronoi diagram and in Section 3.6.2 the
Delaunay graph. In Section 3.6.3 the VoR-Tree data structure is presented and
finally in Section 3.6.4 a quick reference to the maintenance of the index is given.
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3.6.1 Voronoi diagrams

Let a set P = {p1, . . . , pn} of n points in Rd. The Voronoi diagram of P
partitions the Rd space in n regions. Given a distance metric D, each region
includes all the points in Rd that fulfill the following:

∀p′ ∈ P, p 6= p′, D(q, p) ≤ D(q, p′)

We call Voronoi cell V (p), the region containing the point p, and all the points
that are closet to p than all the other points of P . Finally we call Voronoi
neighbors of p the points of P with which p has a common Voronoi edge. In
Figure 3.6a, we present a set P of eleven points and the corresponding Voronoi
diagram for R2 and Euclidean D. For point p we show, in gray, its the Voronoi
cell V (p). Additionally we note one of its Voronoi edges, one of its Voronoi
vertexes and one of its neighbors.

For R2 and Euclidean distance as the distance metric D, Voronoi cells are convex
hulls. Each edge of the polygon is a line segment of the perpendicular bisector of
the line connecting p to another point of P . We call each of these edges Voronoi
edge. we call each of its end points, which are also the vertices of the polygon,
Voronoi vertex.

3.6.2 Delaunay graph

Let an undirected graph DG(P ) = G(V,E) with the set of vertices V = P . The
edges that connect the points:

∀p, p′ ∈ V and p is neighbor of p′

form the Delaunay graph. In Figure 3.6b we represent the Delaunay graph (black
line) of the set of points P , that is shown in Figure 3.6a. The dotted diagram
is the Voronoi diagram of the same set.

3.6.3 VoR-Tree Structure

The structure of the VoR-Tree augments the original R-tree with Voronoi dia-
gram and Delaunay graph information. More specifically, the internal nodes are
structured like the ones of R-tree, but the leaf nodes store Voronoi information.
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c) Example leaf node containing
 points p1, p2, p3.

p

Voronoi cell V(p)

Voronoi vertex of p

Voronoi neighbor of p

Voronoi edge of p

b) Delaunay graph DG(P) of set P

a) Voronoi diagram VP(P) of set P 

p1

p3

p2

p4

p5

p6

Figure 3.6: a) Voronoi Diagram, b) Delaunay graph for R2 and Euclidean D for
a set of 11 points and c) example leaf node containing 3 points.
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Let a set of points P and the corresponding Voronoi diagram V (P ). The leaf
node stores everything stored in an R-tree, a set of points PS , subset of P .
Additionally, for each point p ∈ PS , it stores the pointer to the location of each
Voronoi neighbor of p (V N(P )) and also the vertices of the Voronoi cell of p
(V (p)).

Let a leaf node of the points shown in Figure 3.6c, that contains the points
p1, p2, p3. The corresponding Voronoi cells have a gray fill, and the MBR of
the node is shown in a dashed rectangle. For each point the node contains the
following information:

V N(p1) = {p2, p3, p6, p4, p5}

V (p1) = { vertices of p1’s Voronoi cell }

V N(p2) = {p3, p1}

V (p2) = { vertices of p2’s Voronoi cell }

V N(p3) = {p6, p4, p1, p2}]

V (p3) = { vertices of p3’s Voronoi cell }

3.6.4 Insertion, Deletion and Querying

The maintenance of the VoR-Tree is described in detail in the authors’ paper.
Moreover, the algorithms are given in a clear code-like form, so we don’t feel
the need to further explain them here.

3.7 Conclusion

In this Section, six variants of the R-tree we presented in detail. We encountered
a variety both in the algorithmic approach, and in the domain each variant tries
to solve. Also, it’s intersting that even recently, almost thirty years after the
introduction of the original R-tree, there is active research going on in the field
of low level spatial indexing solutions. Finally, their common characteristics
would benefit from an common spatial data structure that could be used for the
implementation of all these R-tree variants.



74 Dynamic R-tree versions



Chapter 4

MySQL Internals

This chapter focuses on MySQL internals and the way the server performs op-
erations behind the scenes. We begin with section 4.1 where we define which
code we work with. Then, in section 4.2, a bird’s eye description of MySQL’s
architecture is given. In Section 4.3 the storage engine pluggable architecture is
presented and in Section 4.4 we intorduce the MyISAM storage engine. The core
of this chapter is found in section 4.5, where we dive in the details of the way
spatial indexing is performed with MySQL and the MyISAM storage engine.
Finally, we conclude in section 4.6.

We should note that throughout the whole chapter any mentioned directory and
files, that belong to the MySQL codebase, are paths relevant to the directory
of the source code. For example the directory storage/myisam and the file
storage/myisam/ha myisam.cc are both relative paths to the directory of the
codebase.

4.1 Codebase details

The software where we performed the implementation of this research is Mari-
aDB (see Section 1.3). As we already mentioned in Section 1.3.2, MariaDB is a



76 MySQL Internals

fork of MySQL and its code and features are synchronized with the changes of
the MySQL code. This means it’s a backward compatible, drop-in replacement
of MySQL. So, when we refer to “MySQL” we refer to the MariaDB codebase
or the MariaDB server, because the code we discuss in the next chapters is
common and everything that we discuss applies both to the RDBMSes MySQL
and MariaDB.

MariaDB is an open source project so it can be downloaded and used under the
terms of the GPL v2 license. Installation instructions are given in the docu-
mentation of the software which can be found in [47]. The development source
code is available through the publicly available repository [46] and detailed in-
structions can be found in [45].

The version we worked on is 5.5 (more specifically 5.5.27). The same changes
can, with extremely few modifications, be applied in the MariaDB 5.3, as well
as the MySQL code.

4.2 MySQL Architecture

The MySQL online manual [59] includes a wealth of information about MySQL
in different levels of detail. MySQL offers different storage engines [60] each
trying to solve different needs. Storage engines are plugins to the server and
implement the actual physical storage of the tables and data. Some of the avail-
able storage engines are briefly described to demonstrate the range of different
needs that MySQL can handle:

• InnoDB: a transactional ACID-compliant [41, pp. 19–21] storage engine,
that provides crash-safe data storage [61].

• MyISAM: non-transactional, simple but not crash safe. Can index spa-
tial data [62], [102, pp. 17–19].

• Archive: stores large amounts of data without indexes, compressed so
that they have a very small footprint [64].

• Memory: stores contents only in memory. It’s very fast, but not crash
safe [63].

• InfiniDB: column-oriented storage engine for data warehouse solutions.
The product is distributed separately [10].

• SphinxSE: provides an SQL interface to the Sphinx fulltext search server
[120, 72].
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Figure 4.1 is borrowed from [102] and gives an abstraction of the MySQL server
internals. MySQL follows the client/server architecture and the server is im-
plemented in such a way so that the query handling and the actual reading or
writing of data is separated:

• The core server handles the queries and requests data from the storage
engines.

• The storage engines, that are plugins to the server, perform the actual
reading and writing of data and reply to the requests of the core server.

The flow of a query throughout the server can be observed in Figure 4.1.

1. Clients connect to the server (component 1) and send queries. In this level
the server handles network, threads, authentication and security.

2. Then the client’s query is transfered to the parser (component 2) that
parses the SQL. In this level, all the functionality that spans across all
storage engines is handled. These include triggers, stored procedures and
built in functions (date, time, string, math, encryption, etc). For queries
that only read data, the parser checks whether the query’s resultset should
be fetched from a MySQL internal cache (component 3), or if the resultset
should be read from the database. If the server decides that the read or
write query needs to be executed, then the SQL optimizer (component 4)
finds an optimal execution plan and initiates the execution of the query.

3. In order to execute the query the server requests from the table’s storage
engine to read or write data. The storage engine replies back to the server
and then the server performs final operations on the returned data.

4.3 Storage engine implementation overview

The pluggable architecture of MySQL is discussed in length in [66, 25]. The
storage engine plugins are implemented through two main structures [25, pp 161-
162] that are found in sql/handler.h and sql/handler.cc:

• handler is a class. It is the interface for dynamically loadable storage en-
gines and there can be many objects of this class. It provides the methods
that work on a single table which includes, among others, operations like
opening a table, reading from an index and writing a row.
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Figure 4.1: A logical view of the MySQL server architecture. Source [102]

• handlerton is a singleton structure. There is one instance per storage
engine and provides access to the storage engine’s functionality that affect
the whole of the storage engine. This includes, among others, operations
like committing and aborting transactions, and showing the status of the
storage engine.

4.4 MyISAM storage engine

MyISAM is one of the main storage engines of MySQL and its properties are
discussed in length in [60, 102], where the interested reader can find extensive
examples and design ideas. MySQL was originally built around MyISAM-like
storage and multiple pluggable storage engines were added later. This legacy is
still reflected, even if the core server vs. storage engine separation is clear, by
the fact that some functionality is still tied to the core server and engineered
having in mind the way MyISAM is designed.

MyISAM provides a large list of features including compression, full-text search
indexing, spatial functions and spatial indexing. Some of the features it’s missing
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are transactions, row-level locking and crash safety. However, MyISAM suits
very well certain workloads and specifications and is used in production system
with success.

For MyISAM, the code that is responsible for implementing the interface with
the pluggable storage engines (see Section 4.3) is found in storage/myisam/

ha myisam.cc and storage/myisam/ha myisam.h. The class ha myisam inher-
its from handler and several functions implement methods of handlerton.

4.5 R-trees in MyISAM

In this section the way R-trees are handled in MySQL is discussed. Insertion is
presented in Section 4.5.1, deletion in Section 4.5.2 and search in Section 4.5.3.
Finally, a summary is given in Section 4.5.4.

MySQL implements the R∗-tree variant. MySQL’s R-tree index has the struc-
ture of the original R-tree (which is the identical to the R∗-tree). The tree has
levels, and in each level there are several nodes. Each node is either an internal
node or a leaf. Each node has many keys, and each key is a data structure with
two members:

• a pointer to a node down (for internal nodes), or to data (for leaf nodes).

• a rectangle that represents the MBR of the data the pointer points to. For
internal nodes it is the MBR of the child node, and for leaf nodes it is the
MBR of the data.

In the sections below, the term “node” is equivalent to the term “disk page”.
Each node of the tree has the size of one disk page. Modifying a tree node
means that a disk page is modified, and writing a node to disk means that a
disk page is written.

4.5.1 Insertion

In this section, we describe the insertion flow for MySQL’s R-tree keys. In
Section 4.5.1.1, the algorithm is presented in an abstract way and then, in
Section 4.5.1.2, it is described with more details. Finally, in Section 4.5.1.3, the
differences with the original R-tree algorithm are discussed.
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4.5.1.1 Abstract description

The code that is associated with the R-tree insertion resides in the source files
storage/myisam/rt index.c and storage/myisam/rt key.c. A high level
view of the insertion flow is presented in Algorithms 4.5.1 and 4.5.2 and the
most important methods are:

• rtree insert level

• rtree insert req

• rtree add key

The method rtree insert level (Algorithm 4.5.1) is called from the root of
the tree and calls rtree insert req. When rtree insert req returns, the
new key has been added in the leaf level and all the nodes below the root have
been adjusted. Then the root node is adjusted and the insertion finishes.

The method rtree insert req (Algorithm 4.5.2) is called recursively and de-
scends the tree towards the leaf nodes. If an internal node is encountered then
rtree insert req is called (line 3) to descend down one level with arguments
the child node and the increased level. When it returns, the current level is
adjusted and if it’s needed it is split. When the leaf node is encountered the
key is added (line 8) and if necessary the node is split.

Input: key

begin1

rtree insert req (key, 0);2

Adjust root if needed;3

end4

Algorithm 4.5.1: rtree insert level abstract: MyISAM R-tree inser-
tion abstract.

4.5.1.2 Detailed description

This section describes MySQL’s R-tree insertion flow in detail. More specifically
the following methods are presented:

• rtree insert (Algorithm 4.5.3)
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Input: key, level

begin1

if can go one level down then2

rtree insert req (key, level + 1);3

Adjust key if child node was modified;4

Split node if necessary;5

return6

else7

rtree add key;8

return9

end10

Algorithm 4.5.2: rtree insert req abstract: MyISAM R-tree insertion
abstract.

• rtree insert level (Algorithm 4.5.4)

• rtree insert req (Algorithm 4.5.5)

• rtree add key (Algorithm 4.5.6)

Even if we do provide enough details to understand how insertions are per-
formed, some details fall outside the scope of the description. The description
focuses on the fact that somehow, the key information can be read, updated and
saved, and that nodes can be read and saved permanently, but doesn’t mention
how this is performed. These are important but lower level MyISAM operations
and the interested reader can check directly in the source code files.

rtree insert The method is described in Algorithm 4.5.3 and is the single
point of entry for the insertion of keys in MySQL’s R-trees. It modifies the
index by inserting one key and returns 0 for success and 1 if something went
wrong. It is a wrapper around rtree insert level (line 1) that is described
in Algorithm 4.5.4. The input arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.
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3. key: the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

Input: info, keynr, key, key length
Output: Modifies R-tree: 1 for Error, 0 for OK

res ← rtree insert level (info, keynr, key, key length, −1);1

return res;2

Algorithm 4.5.3: rtree insert: MyISAM R-tree insertion.

rtree insert level The method is described in Algorithm 4.5.4. It modifies
the index by calling rtree insert req to insert the key. Returns 0 if the root
was not split, 1 if it was split and −1 if something went wrong. It is called
either during insertion by rtree insert (Algorithm 4.5.3) or during deletion at
the re-insertion stage (Section 4.5.2.2, Algorithm 4.5.9). The input arguments
of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. ins level: the level at which the key is going to be insert. To insert a leaf
node (like from an SQL Insert command) −1 is used. To insert a key
during delete reinsertion (Section 4.5.2.2, Algorithm 4.5.9) the level of the
key is used.

First, the root of the tree and information regarding the table’s keys are taken
from info. Afterwards, an empty new node is created in memory, in case it’s
needed further down the algorithm. Then a check for the existence of the root
node is performed (line 4). If it doesn’t exist it’s created and the key is added to
the empty root. If the root does exist, then rtree insert req is called (line 11).
It recursively calls itself, in order to insert the key to the leaf node and adjust
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all the associated internal nodes. It returns with either an error or success. If
the root was split during the process, a new root is created and keys are added
there.

Input: info, keynr, key, key length, ins level
Output: Modifies R-tree: −1 for Error, 0 if root was not split, 1 if root

was split

keyinfo ← take key information from info;1

new page ← new empty node;2

old root ← take root node from info;3

if Root doesn’t exist then4

Create new root;5

if error during new root creation then6

return −1;7

else8

res ← rtree add key; /* add key to the empty node */9

return res;10

res ← rtree insert req (info, keyinfo, key, key length, old root,11

new page , ins level, 0);

if res == 0 then /* Root was not split */12

return 013

else if res == 1 then /* Root was split */14

Create new root and add keys there;15

if error during new root creation then16

return −117

return 118

else19

return −120

Algorithm 4.5.4: rtree insert level: MyISAM R-tree insertion.
Called from the root of the tree.

rtree insert req The method, described in in Algorithm 4.5.5, is called re-
cursively in order to modify one level of the tree. The input arguments of this
method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.
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2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. new page: an new empty node in memory. It is a place holder to insert
new keys if needed.

6. ins level: the level at which the key is going to be insert. To insert a leaf
node (like from an SQL Insert command) −1 is used. To insert a key
during delete reinsertion (Section 4.5.2.2, Algorithm 4.5.9) the level of the
key is used.

7. level: the current level of the tree. When rtree insert req descends one
level down then this argument is increased by one.

First, the algorithm decides if the recursion should go one level down towards the
leaf nodes (line 1). In case rtree insert req was called by rtree insert level,
in order to insert a new key in the tree, then the recursion continues until the leaf
nodes are reached. In case the rtree insert req was called by rtree delete

during the deletion of a key, in order to re-insert a node that became filled less
than the fill factor, the recursion continues until the level of the re-inserted node
is reached.

If the algorithm must go one level down (line 1), then one key is picked up from
the available keys of the node (line 2). The child of this key is the node where
the algorithm will descend into (line 4). Then rtree insert req is called for
this key. Once it returns, the key has been added somewhere below and all the
nodes below the current level have been adjusted. If the child node was not split
(line 5), then the current node is adjusted. If the child was split, (line 11), then
a new key points to the new child node. Afterwards, the new key and the old
key are adjusted, the new key is added to the node (line 14) and the method
returns the result of rtree add key or −1 if something went wrong.

If the algorithm must not go one level down (line 21), then the key is added to
the node (line 22) and the method returns the result of rtree add key or −1 if
something went wrong.

rtree add key The method handles adding the key to a node and it is pre-
sented in Algorithm 4.5.6. The input arguments of this method are the following:
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Input: info, keyinfo, key, key length, page, new page, ins level, level
Output: Modifies one level in the R-tree: −1 for Error, 0 if child was not

split, 1 if child was split

if go down one level then1

k ← rtree pick key /* will insert into entry k */2

p ← node where k points to (internal node or data);3

res ← rtree insert req (info, keyinfo, key, key length, p,4

new page , ins level, level + 1);

if res == 0 then /* Child was not split */5

rtree combine rect (k, key); /* add key MBR to k MBR */6

save node;7

if error then8

return −19

return 0;10

else if res == 1 then /* Child was split */11

new key ← new child node;12

/* calculate & store new and existing key MBRs */

rtree set key mbr (k); rtree set key mbr (new key);13

/* add new key to current node */

res ← rtree add key (new key);14

save current node;15

if error during the above then16

return −117

return res18

else19

return −120

else /* Node is leaf or we don’t have to go further down */21

res ← rtree add key (key) ;22

save node;23

if error during write then24

return −1 ;25

else26

return res;27

28

Algorithm 4.5.5: rtree insert req: MyISAM R-tree insertion. Called
recurcively on each level of the tree.



86 MySQL Internals

1. info: data structure that includes information about the database table
associated with the insertion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. new page: a new empty node.

If the node has enough free space for one more key, then the key is added (line 1).
If the node is a leaf then the key points to the data stored. If the node is internal
then the key points to a child node. The method returns 0 indicating that the
node was not split.

If the node does not have enough space for one more key, then the node is split
and the new node is written in new page (line 7). The method returns −1 on
error or 1 on success indicating that the node was split.

Input: info, keyinfo, key, key length, new page
Output: Modifies key node: −1 for Error, 0 for no split, 1 for split

if node has enough free space to hold one more key then1

/* modify key’s pointer */

if node is not leaf then2

add the child node link to the key;3

else4

add the data record link to the key;5

return 0;6

res ← rtree split page;7

if res == 1 then8

return −1;9

else10

return 1;11

Algorithm 4.5.6: rtree add key: MyISAM R∗-tree insertion. Add key
to node
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4.5.1.3 Comparison with original R∗-tree insertion

The insertion algorithm closely follows the original R∗-tree. The one and major
difference with the original algorithm is that the nodes don’t keep the informa-
tion of their parent node. This means that changes cannot be adjusted after the
insertion has finished. Each level is adjusted right after the insertion of the node
has been finished in its child node. This doesn’t affect the logic of the algorithm,
it simply makes the code to perform better as far as IO time is concerned.

Another interesting option concerns the criteria used for finding the correct
insertion path. In Section 3.2, we presented the criteria tested by Beckmann et
al. which include among others minimization of area (that the authors chose as
the preferable method) and margin of MBRs. The functionality to use either
one of these criteria is available in the code and it can be compiled accordingly,
with the default being the area.

4.5.2 Deletion

In this section, we describe how deletion is performed in MySQL’s R-tree keys.
In Section 4.5.2.1, the algorithm is presented in an abstract way and then, in
Section 4.5.2.2, it is described with more details. Finally, in Section 4.5.2.3 ,the
differences with the original R-tree deletion algorithm are discussed.

4.5.2.1 Abstract description

The code that is associated with the R-tree deletion resides in the source files
storage/myisam/rt index.c and storage/myisam/rt key.c. A high level
view of the deletion flow is presented in Algorithm 4.5.7.

The method rtree delete is called from the root of the tree and then it calls
rtree delete req. This method recursively calls itself until the proper leaf
node is reached and the key is deleted (line 2). During this process some nodes
might require reinsertion. This is performed after rtree delete req has re-
turned (line 3). Reinserting is required when some of the nodes become filled
less than their minumum fill factor during the deletion process,.
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Input: key

begin1

rtree delete req (key);2

Reinsert deleted nodes;3

end4

Algorithm 4.5.7: rtree delete abstract: MyISAM R-tree deletion ab-
stract.

4.5.2.2 Detailed description

This section describes MySQL’s R-tree deletion flow in detail. More specifically
the following methods are presented:

• rtree delete (Algorithm 4.5.8)

• rtree delete req (Algorithm 4.5.9)

• rtree delete key

Even if we do provide enough details to understand how deletion is performed,
some details fall outside the scope of the description. The description focuses
on the fact that somehow the key information can be read, updated and saved,
and that nodes can be read and saved permanently, but doesn’t mention how
this is performed. These are important but lower level MyISAM operations and
the interested reader can check directly in the source code files.

rtree delete The method is described in Algorithm 4.5.8, and it is the single
point of entry for deleting a key from the index. It modifies the index by deleting
one key and returns 0 for success and -1 if something went wrong (same as
rtree insert in Algorithm 4.5.3). The input arguments of this method are the
following:

1. info: data structure that includes information about the database table
associated with the deletion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: is the leaf key that will be deleted in the tree



4.5 R-trees in MyISAM 89

4. key length: is the key length. Keys can have different lengths because they
can be of columns of data types with different size.

First, the key’s information are taken from the table data structure (line 1)
as well as the root of the tree. Also, an empty list, that can accommodate
nodes that will be re-inserted, is created (line 3). Then rtree delete req is
called. This method calls itself recursively and descends the tree until the leaf
nodes are reached. Then, it deletes the keys. During this process, some nodes
might become filled less than the fill factor and must be re-inserted. They are
deleted from the tree and they are appended to ReinsertList. Once method
rtree delete req returns, the re-insertion takes place (line 6). The method
rtree insert level (line 9), described in Algorithm 4.5.4, is called to insert
either leaf nodes or internal nodes. For internal nodes it reinserts the keys of
the internal nodes. The subtrees of the internal node’s keys are left untouched.

rtree delete req The method, described in Algorithm 4.5.9, is called recur-
sively in order to modify one level of the tree. The input arguments of this
method are the following:

1. info: data structure that includes information about the database table
associated with the deletion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the leaf key that will be deleted from the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. page: the current page that is operated.

6. page size: total size of keys on the current page.

7. ReinsertList: the list of nodes that might require to be re-inserted after
deletion has finished.

8. level: the current level of the tree. When rtree delete req descends one
level down then this argument is increased by one.

First, for each node that is visited all the keys are checked (line 1) in a loop. If
the node is internal (line 2) and if the key to delete MBR in inside the node’s
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Input: info, keynr, key, key length
Output: Modifies R-tree: −1 for Error, 0 if key was deleted

keyinfo ← take key information from info;1

old root ← take root node from info;2

ReinsertList ← empty list of pages;3

res ← rtree delete req (info, keyinfo, key, key length, old root,4

page size, ReinsertList, 0);

if res == 0 then /* not split */5

foreach page i ∈ ReinsertList do6

foreach key k ∈ ReinsertList.[i] do7

l ← ReinsertList.pages.[i].[k].level;8

rtree insert level (info, keynr, k, key length, l);9

if root was split and tree grew one level then10

∀ remaing pages and keys increase by one the re-insertion11

level;

if any error during the above then12

return −1;13

return 0;14

else if res == 1 then /* key not found */15

return −1;16

else if res == 2 then /* tree is now empty */17

return 0;18

else19

return −1;20

Algorithm 4.5.8: rtree delete: MyISAM R-tree deletion. Called from
the root of the tree.
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key MBR (line 3), then rtree delete req is called for the child node (line 5).
Otherwise the loop visits the next key of the node.

Once rtree delete req returns, the algorithm takes different actions depending
on the returned value. If the deletion was successful (returned 0 - line 6), the
fill of the page is checked (line 7) and if it is below the fill factor the node is
appended to the ReinsertList and rtree delete key is called to delete the key
(line 11). If the key for deletion was not in the subtree just checked (returned 1
- line 15) visit the next key of the node (line 1). If the child node was is empty
and the subtree is no longer needed (returned 2 - line 17) the key is deleted.

When the algorithm finishes with the current key (lines 3 - 23), the next key of
the node is visited until all keys of the current node have been checked. We do
need to visit all the keys of the node even if rtree delete req has been called
for one of them, because the node MBRs might overlap. This means that even
if the MBR of the key we want to delete is inside one of the MBR of the keys
of the node (line 3), the subtree of this key might not have the key we want to
delete.

If the node’s key is a leaf node (line 24) and the node’s key matches exactly
the search key and refers to the same data (line 25), then rtree delete key is
called to delete the key (line 26). If the page is now empty 2 is returned, if it is
not empty 0 is returned and if something went wrong during the deletion −1 is
returned.

rtree delete key This method deletes a key from a node. An algorithm for
this method is not presented because the actions it performs are extremely
simple: a node is given and a specific key is deleted from the node. The deletion
of a key is much simpler than the method rtree add key (Section 4.5.1) that
needs to perform a series of operations and checks.

4.5.2.3 Comparison with original R∗-tree deletion

The deletion algorithm closely follows the original R∗-tree. As with the search
algorithm the one and major difference with the original algorithm is that the
nodes don’t keep information about which node is their parent.
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Input: info, keyinfo, key, key length, page, page size, ReinsertList,
level

Output: Modifies one level in the R-tree: −1 for Error, 0 if key was
deleted, 1 if key was not found, 2 if the leaf is empty

foreach key k ∈ node do /* loop the keys of the node */1

if node is internal then2

if key within k then /* rtree key cmp */3

child ← child page of k;4

res ← rtree delete req (info, keyinfo, key, key length,5

child, page size, ReinsertList, level + 1);
if res == 0 then6

if page is adequatly filled then7

rtree set key mbr (k); /* store key MBR */8

else9

add k’s child to ReinsertList;10

rtree delete key (k) ;11

if error during the above then12

return −113

return res14

else if res == 1 then /* key not found */15

continue the loop and check other keys;16

else if res == 2 then /* last key in leaf page */17

rtree delete key;18

if any error during the above then19

return −1;20

return 0;21

else22

return −1;23

else /* Leaf node */24

if key MBR is equal to k and refers to the same data then25

/* rtree key cmp */

rtree delete key;26

if page is now empty then27

return 2;28

else29

return 0;30

if any error during the above then31

return −1;32

return 1;33

Algorithm 4.5.9: rtree delete req: MyISAM R-tree deletion. Called
recursively on each level of the tree.
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4.5.3 Search

In this section, we describe how indexes are used during search and specifically
how search is performed with MySQL’s R-tree keys. First, in Section 4.5.3.1, we
present some information about the way indexes are used by the MyISAM stor-
age engine during search operations. Then, we continue with the R-tree specific
parts of the storage engine and in Section 4.5.3.2, the algorithms are presented
in an abstract way. Then, in Section 4.5.3.3, we dive into more details. Finally,
in Section 4.5.3.4, the differences with the original R-tree search algorithm are
discussed.

4.5.3.1 MyISAM index search

The search is a bit more complex than the deletion and insertion (Sections 4.5.2
and 4.5.1 ). The reason for this is that the MySQL classifies the SELECT queries
into many search modes; 13 in total and 5 of them concern spatial searches
(defined in include/my base.h). The API of the storage engines with the core
MySQL server, for both deletion and insertion, has a single point of entry. On
the contrary, handling searching the data using indexes involves more than 20
storage engine API functions [25, pp. 203–239].

Interface handler implementation The MyISAM handler implementation
is in storage/myisam/ha myisam.cc. The most important storage engine API
methods, that are needed to understand the way search is performed, are the
following:

• index read: It takes as argument a key and its length and is used to
search in the index.

• index read map This function works like index read but takes as argu-
ment a key and bitmap of keys. For example, if a key is created over
KEY(a,b,c,d,e,f) and the search is performed using for 3 columns only
(WHERE a=1 AND b=2 AND c=3) the bitmap argument is 000111 (in bi-
nary).

• index read idx map: The only difference between the index read idx map

method and the index read map method is that it takes the index number
as an argument. The handler class implements this method by converting
it into a sequence of index read map.
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• index next: This method can be called after index read, when we want
to get the next value of the index, after the last one found. This is used
in index scans or for getting all matching values from a non-unique index.

• index next same: This method is similar to index next, but next row is
returned only if it has exactly the same key as the one that was searched
for. On the other hand, index next returns the next row independent of
its key. The handler class implements this method by calling index next

and comparing the key of the returned row.

MyISAM methods using indexes The MyISAM storage engine handler

methods call the MyISAM specific functions that handle the lower level opera-
tions, and they are the following:

• mi rkey: reads a row using a key (defined in storage/myisam/mi rkey.c).

• mi rnext: reads the next row with the same key as the previous read
(defined in storage/myisam/mi rnext.c).

• mi rnext same: same as mi rnext but aborts reading if the key has
changed (defined in storage/myisam/mi rnext same.c).

R-tree index methods Finally, the following the methods, that are described
in Section 4.5.3.2 in detail, are the index specific methods to access the R-tree
index:

• rtree find first

• rtree find next

• rtree get first

• rtree get next

In Figure 4.2 we summarize the caller graph for all the above mentioned meth-
ods.
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Handler Storage engine - MyISAM MyISAM R-Trees index

index_read_map

index_read_idx_map

index_next

index_next_same

mi_rkey

mi_rnext

mi_rnext_same

rtree_find_first

rtree_find_next

rtree_get_first

rtree_get_next

Figure 4.2: Caller graph for the main methods used to search indexes in My-
ISAM.

4.5.3.2 Abstract description

The code that is associated with the R-tree search is found in the source files
storage/myisam/rt index.c and storage/myisam/rt key.c. A high level
view of the search is given by the methods:

• rtree find first presented in Algorithm 4.5.10.

• rtree find next presented in Algorithm 4.5.11.

The method rtree find first is called from the root of the tree when index
search is used in order to find the first match. It calls rtree find req. This
method recursively calls itself until the proper leaf node is reached and the data
is found.

Input: key

begin1

return rtree find req (key);2

end3

Algorithm 4.5.10: rtree find first abstract: MyISAM R-tree search
abstract.
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The method rtree find next is called when index search is used to find the next
first match. If the table has changed since the last read, then rtree find first

is called to find the next match (line 3). If the key of the last row can be used and
it matches the search criteria, then it returns 0 (line 5). If the next key satisfies
the search criteria, the algorithm updates the cursor and returns (line 6).

Input: key

begin1

if table was changed since the last read then2

return rtree find first (key);3

if key of last row can be used then4

return 0;5

return rtree find req (key);6

end7

Algorithm 4.5.11: rtree find next abstract: MyISAM R-tree search
abstract.

All the methods rtree find first, rtree find next and rtree find req have
a second variant. The names of the variants are the same but the “find” part of
the name is replaced with “get”. For example the equivalent of rtree find first

is rtree get first.

These methods have the same input and output and the same flow. The differ-
ence between the two variants is that the “get” ones are used for index full scans
and traverse the index without doing any comparisson at the nodes, whereas
the “find” variants traverse the index and compare the keys of the nodes with
the key currently being searched.

4.5.3.3 Detailed description

This section describes MySQL’s R-tree search flow in detail. More specifically
the following methods are presented:

• rtree find first (Algorithm 4.5.12)

• rtree find next (Algorithm 4.5.13)

• rtree find req (Algorithm 4.5.14)

• rtree get first (Algorithm 4.5.15)
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• rtree get next (Algorithm 4.5.16)

• rtree get req (Algorithm 4.5.17)

Even if we do provide enough details to understand how search is performed,
some details fall outside the scope of the description. The description focuses
on the fact that somehow the key information can be read, updated and saved,
and that nodes can be read and saved permanently but doesn’t mention how
this is performed. These are important but lower level MyISAM operations and
the interested reader can check them directly in the source code files.

rtree find first The method is described in Algorithm 4.5.12. It finds the first
occurrence of the data that matches the search criteria by calling rtree find req.

The input arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: key to search for

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. search flag: flag related to search properties.

Lines 1 to 4 initialize the variables needed for the search. The structure info
contains a temporary storage (buff) for the keys which can be used by mi rnext.
This function reads the next row after the last row read, using the current index.
In line 4 the flag, that marks that reusing the key of the previous row read, is
set.

Finally, a recursive search on the tree begins (line 6) and the result of rtree find req

is returned.

rtree find next The method is described in Algorithm 4.5.13 and finds the
next key during a search. The input arguments of this method are the following:
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Input: info, keynr, key, key length, search flag
Output: −1 for Error, 0 if found, 1 if not found

keyinfo ← information from info regarding the index used in search;1

info.last rkey length ← key length;2

info.rtree recursion depth ← −1;3

/* info.buff is a temporary storage for keys */

info.buff used ← 1; /* buff has to be reread for rnext */4

nod cmp flag ← MBR INTERSECT;5

return rtree find req (info, keyinfo, search flag, nod cmp flag,6

root, 0);

Algorithm 4.5.12: rtree find first: MyISAM R-tree search.

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. search flag: flags the describes the search criteria that comes from the
MyISAM engine.

First, a check whether the table has changed is performed (line 1). When reading
the next row of data the key used for the previous search could be reused. If the
table has changed since the last read, then the key must be found again from
scratch, by calling rtree find req (line 2) and the algorithm ends here.

If the table hasn’t changed and the key from the previous search can be used to
find the next key, then the next keys of the page will be read in a loop (lines 5-
9). If a key matches the search criteria (line 6), then this key is used and 0 is
returned. Otherwise, the next key of the page is checked (line 9).

If the method has not returned yet, it means that the table has not changed (so
the next key of the same page could have be used) but all the keys of the node
were checked. So rtree find req is called to get the next node (line 12).

rtree find req The method, described in in Algorithm 4.5.14, is called recur-
sively. It descends the tree towards the leaf nodes in order to find a match. The
input arguments of this method are the following:
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Input: info, keynr, search flag
Output: −1 for Error, 0 if found, 1 if not found

if table has changed and the change was a deletion then1

/* find again the last key */

return rtree find first (info, keynr, lastkey, lastkey length,2

search flag);
3

if temporary storage of the key can be reread (for rnext) then4

while not at end of page do5

if key matches the search criteria then /* rtree key cmp */6

info.lastpos ← position of next data;7

return 0;8

key ← next key in page;9

10

nod cmp flag ← MBR INTERSECT;11

return rtree find req (info, keyinfo, search flag, nod cmp flag,12

root, 0);

Algorithm 4.5.13: rtree find next: MyISAM R-tree search.

1. info: data structure that includes information about the database table
associated with the insertion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. search flag: flags the describes the search criteria that comes from the
MyISAM engine. It’s used for the internal nodes only.

5. nod cmp flag: same as search flag but used for the leaf nodes only.

6. page: position of the node in the index.

7. level: the current level of the tree. When rtree find req descends one
level down then this argument is increased by one.

The algorithm loops through all the keys of the node it is currently on. If
the node is internal (lines 2–13), the key is matched against the search criteria
(line 3). If it does not match the loop continues to the next key. If it matches
the search criteria then rtree find req is called to descend one level down the
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tree and the result of rtree find req is checked and the recursion ends here
for the current level.

If the node is leaf (line 14), the key is matched against the search criteria
(line 15). If it does not match the loop continues to the next key. If it matches
the search criteria then the key is saved for later usage and 0 is returned.

Finally, if the loop has finished without a match (line 20), the algorithm returns
1 for failure.

Input: info, keyinfo, search flag, nod cmp flag, page, level
Output: −1 for Error, 0 if found, 1 if not found

foreach key k ∈ page do1

if node is internal then /* page is internal */2

if k matches the search criteria then /* rtree key cmp */3

res ← rtree find req; /* go one level down */4

if res == 0 then /* found, break recursion */5

return res;6

else if res == 1 then /* not found, continue */7

info.rtree recursion state ← level;8

break;9

if error then10

return −111

12

13

else /* page is leaf */14

if k matches the search criteria then /* rtree key cmp */15

save position and lenth of next key to info;16

info.rtree recursion state ← level;17

18

19

/* loop finished and match wasn’t found */

return 1;20

Algorithm 4.5.14: rtree find req: MyISAM R-tree search. Called
recurcively on each level of the tree.

rtree get first The method is described in Algorithm 4.5.15 and it flows sim-
ilar to rtree find first (Algorithm 4.5.12). The input arguments of this
method are the following:
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1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

Lines 1 to 3 initialize the variables needed for the search. The structure info
contains a temporary storage (buff) for the keys which can be used by mi rnext.
This function reads the next row after the last row read, using the current index.
In line 3 the flag, that marks that reusing the key of the previous row read, is
set.

Finally, a recursive search on the tree begins (line 4) and the result of rtree get req

is returned.

Input: info, keynr, key length
Output: −1 for Error, 0 if found, 1 if not found

keyinfo ← information from info regarding the index used in search;1

info.rtree recursion depth ← −1;2

/* info.buff is a temporary storage for keys */

info.buff used ← 1; /* buff has to be reread for rnext */3

return rtree get req (info, keyinfo, key length, root, 0);4

Algorithm 4.5.15: rtree get first: MyISAM R-tree search.

rtree get next The method is described in Algorithm 4.5.16 and its flow
similar to rtree find next (Algorithm 4.5.13). The input arguments of this
method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.
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The method checks if the next key is on the same page and if the page has not
changed (line 1). If one of the two is not valid, then rtree get req is called to
find the next key (line 5). If both are valid, then the position of the next data
is stored and the method returns successfully (line 3).

Input: info, keyinfo, key length, page, level
Output: −1 for Error, 0 if found, 1 if not found

if next key is on the same page and page has not changed then1

info.lastpos ← position of next data;2

return 0;3

4

return rtree get req (info, keyinfo, keylength, root, 0);5

Algorithm 4.5.16: rtree get next: MyISAM R-tree search.

rtree get req The method, described in in Algorithm 4.5.17, is called recur-
sively and its flow similar to rtree find req (Algorithm 4.5.14). It descends
the tree towards the leaf nodes in order to find the next row of the search based
on information about the last row read and key used. The input arguments of
this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

4. page: position of the node in the index.

5. level: the current level of the tree. When rtree get req descends one
level down then this argument is increased by one.

The method scans in a loop all the keys of a node (lines 1–15). If the node is
internal (lines 2–11), the algorithm descends one level down the tree by calling
rtree get req. If a node was found (line 4), the result is returned. If a node
was not found, the algorithm continues to the next key in the loop (line 6).
Finally if an error occurred the algorithm terminates (line 9).
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If the node is a leaf (lines 12–15), the position of the next row is saved and the
algorithm returns.

Finally, if the loop has examined all the keys of the node it returns 1 (line 16).

Input: info, keyinfo, key length, page, level
Output: −1 for Error, 0 if found, 1 if not found

foreach key k ∈ page do1

if node is internal then /* page is internal */2

res ← rtree get req; /* go one level down */3

if res == 0 then /* node was found, break recursion */4

return res;5

else if res == 1 then /* not found, continue */6

info.rtree recursion state ← level;7

break;8

if error then9

return −110

11

else /* page is leaf */12

save position and lenth of next key to info;13

info.rtree recursion state ← level;14

15

/* loop finished and all keys were examined */

return 1;16

Algorithm 4.5.17: rtree get req: MyISAM R-tree search. Called re-
curcively on each level of the tree.

4.5.3.4 Comparison with original R∗-tree search algorithm

The search algorithm is very close to the original R∗-tree and R-tree search
algorithms. Method rtree find req (Algorithm 4.5.14) is quite similar to the
method RangedSearch (Algorithm 2.1.1), that follows closely the way search
is performed in B-trees. The rest of the search methods are wrappers around
rtree find req and facilitate the way the core MySQL server performs search
using indexes. rtree find first finds the first row occurrence, and rtree find

next finds the next row to read, both using rtree find req when needed.
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$ wc -l storage/myisam/ha_myisam.cc storage/myisam/ha_myisam.h \

storage/myisam/rt_index.c storage/myisam/rt_index.h storage/myisam/rt_key.c \

storage/myisam/rt_key.h storage/myisam/rt_mbr.h storage/myisam/mi_search.c \

storage/myisam/mi_delete.c storage/myisam/mi_write.c storage/myisam/mi_open.c \

storage/myisam/mi_rkey.c storage/myisam/mi_rnext.c \

storage/myisam/mi_rnext_same.c include/my_base.h

2412 storage/myisam/ha_myisam.cc

179 storage/myisam/ha_myisam.h

1126 storage/myisam/rt_index.c *

45 storage/myisam/rt_index.h *

106 storage/myisam/rt_key.c *

31 storage/myisam/rt_key.h *

36 storage/myisam/rt_mbr.h

1925 storage/myisam/mi_search.c

894 storage/myisam/mi_delete.c

1050 storage/myisam/mi_write.c

1366 storage/myisam/mi_open.c

266 storage/myisam/mi_rkey.c

157 storage/myisam/mi_rnext.c

127 storage/myisam/mi_rnext_same.c

599 include/my_base.h

10319 total

Figure 4.3: Files investigated for the reasearch of Section 4.5.

4.5.4 MyISAM R-tree summary

In this section we summarize the way R-trees are handled in the MyISAM
storage engine. As we discussed the search, deletion and insertion methods
resemble the original R∗-tree methods. The main differences are found in the
fact that the keys don’t keep information about their parent keys. This forces
the tree operation to be performed in a clear recursive way and the changes
that must be performed to a tree level due to changes to lower levels are done
immediately after the method returns from the lower level. Moroever, the search
is wrapped around a method that follows R-tree closely, in order to handle the
many search modes of the MySQL core server.

In Figure 4.3 we present the source code files were read in order to perform the
research of the Section 4.5. First the Linux bash command wc, that counts the
lines of the files given as arguments is given. Then follows a list and in each
row there is the number of lines in the file (including whitespace and comments)
and the path of the file. The asterisc (*) marks the files where most of the
Algorithms presented in the Section 4.5 are found. The last line of the list
shows the sum of lines in all the files we investigated (around 10K lines).
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4.6 Summary

This chapter was a thorough introduction to MySQL internals, and we begun
this introduction by defining the codebase we worked with. A high level overview
of the MySQL server’s architecture was given, as well as the path an SQL query
follows from the moment it reaches the server until data is read from the storage.
MyISAM, one of MySQL’s main storage engines and the storage engine we used
for our implementation, was then presented. Finally, the way MySQL and
MyISAM currently perform spatial indexing was extensively discussed.
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Chapter 5

GiST Implementation

This chapter presents the implementation part of the research. Based on the
knowledge discussed in Chapter 4, we implemented our own GiST-based index
solution for the MyISAM storage engine of MySQL. In Section 5.1, we begin by
describing the changes needed to make the MySQL server GiST aware. Then,
in Section 5.2 we discuss the core implementation of the indexes and in Sec-
tion 5.3 we dive into the details of the index algorithms. Finally, we conclude
in Section 5.6.

For a complete and working GiST implementation both the code of Sections 5.1
and 5.2 is required. The implementation process itself was split in these two
steps, so it made sense for the presentation to follow the same logic.

The code was based on the latest 5.5 version (currently 5.5.27). The source code
of MariaDB is required in order to follow the description of the patches. Direc-
tions and details for downloading and compiling the source for Linux Debian
based systems are given in Appendix A.
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5.1 Making MySQL GiST-aware

In this section we discuss the changes that we performed to the codebase in order
to make the server “aware” of GiSTs. After these modifications are applied,
the GiST indexes are hooked in the MySQL server and the MyISAM storage
engine. However, the indexes are only skeleton implementations and their full
implementation is discussed in Section 5.2.

First, in Section 5.1.1 the changes necessary in the build infrastructure are
presented. Then in Section 5.1.2 the changes needed to extend the SQL parser
are shown. In Section 5.1.3 we discuss the changes required in the MySQL core
server and finally in Section 5.1.4 the changes to the MyISAM storage engine.
Finally, in Section 5.1.5 we present the changes required for a GiST skeleton
implementation.

All the code changes discussed in this Section can be found in Section B.1 in a
diff format. The paths of all the files are relative to the directory of the source
code.

5.1.1 Changes in the build infrastructure

In this section we present the changes to the build infrastructure. MariaDB
uses cmake for building and we made it aware of the new files and generic flags
required to build the MariaDB server with GiST enabled.

storage/myisam/CMakeLists.txt We added the new files required to build
MyISAM with GiSTs. The gist-* files include the index implementation but
it’s a skeleton one, and used only to keep the compiler and the linker happy. In
Section 5.2 these files are enhanced to include the full implementation.

config.h.cmake We added the C preprocessor flag HAVE GIST KEYS that is
used to wrap the GiST-related code. Figure 5.1, presents two examples of using
such a preprocessor flag. In the first one, the code used to call a feature, is
called only if the HAVE SOMETHING has been defined. In the second example, the
code used to call a feature is wrapped in the true part of the ifdef and if the
HAVE SOMETHING has not been defined, an exception is thrown.
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#ifdef HAVE_SOMETHING

call_feature_something();

#endif

#ifdef HAVE_SOMETHING

call_feature_something();

#else

throw a debug assertion

#endif

Figure 5.1: Examples of using a C preprocessor flag in the code

5.1.2 Changes in the SQL parser

The SQL parser of MySQL is implemented with the Bison parser generator,
that in turn is compatible with Yacc. The Bison generator accepts as input the
definition of a grammar as well as hooks for specific actions, and produces a C
program that can parse the given grammar and execute the defined hooks [9].

Parsing of SQL for the creation of keys occurs in two SQL commands: CREATE

TABLE and CREATE INDEX [55, 54].

We have extended the current SQL syntax to accept two new types of indexes:
a GiST for the R∗-tree index and GiST for the original R-tree. Both types of
indexes belong to the SPATIAL index type.

In Figure 5.2 we present the changes in the syntax of the CREATE INDEX SQL
command. Lines 1–16 show the current syntax and lines 18–33 the new one.
The command has been extended (lines 11 and 28) to accept the new types of
indexes. The same change was applied for the CREATE TABLE command.

After the changes the CREATE TABLE and CREATE INDEX SQL commands of Fig-
ure 5.3 are valid.

sql/lex.h In this file we only define the two new SQL keywords GIST RSTAR

and GIST RGUT83.

sql/sql yacc.yy This file describes the syntax of the SQL language that
MySQL can parse. We changed the parser for the SQL commands CREATE
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1 # current syntax

2 CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

3 [index_type]

4 ON tbl_name (index_col_name ,...)

5 [index_option] ...

6

7 index_col_name:

8 col_name [( length)] [ASC | DESC]

9

10 index_type:

11 USING {BTREE | HASH}

12

13 index_option:

14 KEY_BLOCK_SIZE [=] value

15 | index_type

16 | WITH PARSER parser_name

17

18 # new syntax

19 CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

20 [index_type]

21 ON tbl_name (index_col_name ,...)

22 [index_option] ...

23

24 index_col_name:

25 col_name [( length)] [ASC | DESC]

26

27 index_type:

28 USING {BTREE | HASH | GIST_RSTAR | GIST_RGUT83}

29

30 index_option:

31 KEY_BLOCK_SIZE [=] value

32 | index_type

33 | WITH PARSER parser_name

Figure 5.2: Valid CREATE TABLE and CREATE INDEX SQL commands with GiST
index types

CREATE TABLE ‘t1‘ (

‘c1‘ geometry NOT NULL,

SPATIAL KEY ‘idx1‘ (‘c1‘) USING GIST_RSTAR

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

CREATE SPATIAL INDEX ‘idx2‘ ON t1 (c1) USING GIST_RGUT83;

Figure 5.3: Valid CREATE TABLE and CREATE INDEX SQL commands with GiST
index types
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TABLE and CREATE INDEX, so that they can accept the new index types after
the SQL keyword USING.

client/mysql.cc We define the existence of two new SQL keywords GIST RSTAR

and GIST RGUT83 to the mysql command line client tool.

5.1.3 Changes in the MySQL core server

In this section we present the changes required to the core MySQL server, in
order to enable various aspects of the GiST indexes.

include/maria.h A simple comment change to remind us of the presence of
GiST indexes.

include/myisam.h A simple comment change to remind us of the presence
of GiST indexes.

include/my base.h This file is used for a number of server-wide data struc-
tures. In the C enumeration ha key alg we added the two new types of in-
dexes GIST RSTAR and GIST RGUT83 that are mapped to the internal values
HA KEY ALG GIST RSTAR and HA KEY ALG GIST RGUT83 accordingly. Moreover,
the flag HA GIST INDEX is used to mark the indexes as of type GiST.

sql/handler.h In the handler interface we added a preprocessor macro that
returns 1 if the storage engine is capable of GiST indexes.

sql/sql show.cc The methods in the this file are responsible for the SQL
command SHOW TABLE. It returns a string that is the CREATE TABLE command
that corresponds to this table. We added code that handles the presence of
GiST indexes.

In the next three set of changes, we added code that deals with server variables.
These are variable that the user can use to interact with the server and configure
it [58]. For the server-user interaction SQL or configuration files are used.
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sql/mysqld.cc We added the definition of the server variable have gist keys.

sql/set var.h We added the definition of the server variable have gist keys

for the SQL command SET variable. We noticed that in these values are the
same ones in the file sql/mysqld.cc and that are redefined. An improvement
for the MySQL codebase would be to use one common place for these definitions.

sql/sys vars.cc We added the code that returns the value of the server vari-
able have gist keys.

5.1.4 Changes in the MyISAM storage engine

In this section we present the changes required to add the GiST indexes in
MyISAM. The MyISAM storage engine supports, B-tree, fulltext and spatial
indexes and there is already code that checks the type of the index and performs
the proper operations. We added checks to this code that handle the GiST index
type.

storage/myisam/mi check.c In the function that checks if the key type
matches the data record we added code that handles the GiST indexes.

storage/myisam/mi create.c We simply added debugging code.

storage/myisam/mi open.c The methods in this file are responsible for the
proper opening of the table. We added code to check the type of the index, mark
the presence of GiST indexes and map the GiST functions with the key’s data
structure.

storage/myisam/myisamdef.h This file defines several data structures used
by MyISAM. We add in the MYISAM INFO data structure two fields that store
the depth and the state of the recursion when traversing the GiST tree.
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storage/myisam/ha myisam.cc We added code that informs the server via
the handler API that the MyISAM storage engine can handle GiST indexes.

In the next three set of changes, we added code to check the existence of GiST
indexes during search related operations.

storage/myisam/mi rkey.c The methods in this file are responsible for read-
ing a data record using a key.

storage/myisam/mi rnext.c The methods in this file are responsible for
reading the next row (in the index order) after a successful index read.

storage/myisam/mi rnext same. The methods in this file are responsible
for reading the next row (in the index order) with the same key as previous
read.

5.1.5 Changes for a GiST skeleton implementation

In this section we present the changes required to the core MySQL server, in
order to implement a skeleton version of the GiST indexes. The skeleton version
doesn’t provide any indexing functionality like insertion, deletion or searching.
However, it was implemented for the following reasons:

• It allows for the creation of tables and indexes with GiST indexes.

• It provides all the necessary points and hooks in the code to start imple-
menting the actual functionality of the index.

• While providing the above point, it keeps the compiler and linker happy
in order to build the MySQL server.

The files we added were the following:

• storage/myisam/gist index.c

• storage/myisam/gist index.h

• storage/myisam/gist key.c

• storage/myisam/gist key.h
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5.2 GiST implementation

In this section we discuss the changes that we performed to the codebase in order
to implement the GiST functionality. In Section 5.2.1 we show the changes to
the build infrastructure, and in Section 5.2.2 the changes to the MyISAM storage
engine. Then in Section 5.2.3 we describe the debugging code we added to some
methods. Finally, in Section 5.2.4 we present the changes for the core GiST
implementation and in Section 5.2.5 the tests we added.

All the code changes are presented in Section B.2 in a diff format. The paths of
all the files are relative to the directory of the source code.

5.2.1 Changes in the build infrastructure

File storage/myisam/CMakeLists.txt was modified in order to accommodate
the new GiST-related files.

5.2.2 Changes in the MyISAM storage engine

File storage/myisam/mi range.c contains code that gives an estimation for the
number of records that exist between two keys. We added code that handles
the GiST indexes.

5.2.3 Changes for debugging information

In this section we present the files where we added debug code:

• storage/myisam/ha myisam.cc

• storage/myisam/mi check.c

• storage/myisam/mi open.c

• storage/myisam/mi rkey.c

• storage/myisam/mi rnext.c

• storage/myisam/mi rnext same.c
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• storage/myisam/mi search.c

• storage/myisam/mi dynrec.c

• storage/myisam/mi write.c

• storage/myisam/mi key.c

The reason we added more debug code is that we wanted to be able to monitor
the operations on the indexes through the trace file MySQL produces when it
runs with debug code enable. Adding debug code doesn’t cause any performance
penalty at all in the non-debug version of the server, since the debug code
is implemented only with C preprocessor code, that can turn on and off the
presence of debug code.

5.2.4 Changes for the GiST indexes

In this section we present the changes we performed for the core of the GiST
implementation. We show how we stripped the files related to R-tree from
any code that could be re-used in other indexes and moved it in common files,
and what kind of functionality was added in the GiST-related files. A detailed
analysis of the GiST tree algorithms follows in Section 5.3.

In the following two sets of changes we describe the code that could be re-used
for other indexes from rt index files.

storage/myisam/rt index.c We removed code that defined data structures
used for the reinsertion of nodes during deletion, since this code could be re-used
from other indexes too. We also added debug code.

storage/myisam/rt index.h We redefined some functions from being static

(in the C meaning) to non-static functions so that they are accessible for other
R-tree-like indexes.

In the following four sets of changes we describe the re-usable code that was
moved from the rt index files.

storage/myisam/sp reinsert.h Definitions of methods related to re-insertion
of nodes was moved from rt index files into a separated header file.
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storage/myisam/gist functions.c We moved here code that is related to
splitting nodes and adjusting the node’s keys. For the moment this is a simple
wrapper around the existing rtree functionality.

storage/myisam/gist functions.h The definitions of the methods in file
storage/myisam/gist functions.c.

In the following four set of changes we describe the functionality that was added
to the files related closely to the GiST implementation.

storage/myisam/gist index.c In this file the code related to the insertion,
deletion and search of GiST trees was added. A detailed analysis of the algo-
rithms is found in Section 5.3.

storage/myisam/gist index.h The definitions of the methods in file storage/
myisam/gist index.c.

storage/myisam/gist key.c In this file we added code that is related to
adding, deleting and comparing nodes of the GiST tree.

storage/myisam/gist key.h The definitions of the methods in file storage/
myisam/gist key.h.

5.2.5 Changes for testing the GiST implementation

In order to test the implementation of the GiST index we used the MySQL
testing suite. The testing procedure is described in detail in Section 5.5. The
test we added was the file mysql-test/t/gis-gist.test.

5.3 Analysis of the GiST algorithms

In this section we present the details of the algorithms that we implemented. The
files where the GiST implementation is found are the files storage/myisam/gist *

(as already described in Section 5.2.4).
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The basic idea behind the implementation is to wrap the GiST functionality
around the existing R-tree. In Sections 4.5.3.4, 4.5.1.3 and 4.5.2.3 we have al-
ready noticed the similarity of MySQL’s R-tree implementation with the original
R∗-tree algorithms. Moreover, as we have already noticed from Sections 2.2.3,
2.2.4 and 2.2.5 the GiST algorithms are similar to the algorithms of B-tree and
R-tree algorithms.

These similarities have driven our implementation and the reader will notice a
similarity in the search, deletion and insertion algorithms between the existing
R∗-tree implementation (presented in Section 4.5) and our new implementation
GiST presented here. Additionally, we kept the same naming conventions in
order to make following browsing the code easier to a reader experienced with
the MyISAM codebase. Last but not least, the GiST implementation has the
same interface with the rest of the MyISAM code, as the existing R-tree has.
This helps the implementation itself, since the changes in non-related places are
kept to a minimum.

In Section 5.3.1 we present the search functionality, in Section 5.3.2 the deletion
functionality and finally in Section 5.3.3 the insertion.

5.3.1 GiST search

In this section, we describe how searching is performed. The reader will notice
a similarity between the search algorithm in this section and the existing R-tree
MySQL indexes (Section 4.5.3).

First, in Section 5.3.1.1 we describe in an abstract level the way GiST search
operates. Then, in Section 5.3.1.2, take a closer look to the details. Finally,
in Section 5.3.1.3, the differences with the original GiST search algorithm are
discussed.

5.3.1.1 Abstract description

The code associated with the GiST search is found in the source files storage/
myisam/gist *. A high level view of the search is given by the methods:

• gist find first presented in Algorithm 5.3.1.

• gist find next presented in Algorithm 5.3.2.
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The method gist find first is called from the root of the tree in order to find
the first match and it calls gist find req. This method recursively calls itself
until the correct leaf node is reached and the data is found.

Input: key

begin1

return gist find req (key);2

end3

Algorithm 5.3.1: gist find first abstract: MyISAM GiST search ab-
stract.

The method gist find next is called to find the next match. If the table has
changed since the last read, then gist find first is called to find the next
match (line 3). If the key of the last row can be used and it matches the search
criteria, then it returns 0 (line 5). If the next key satisfies the search criteria,
the algorithm updates the cursor and returns (line 6).

Input: key

begin1

if table was changed since the last read then2

return gist find first (key);3

if key of last row can be used then4

return 0;5

return gist find req (key);6

end7

Algorithm 5.3.2: gist find next abstract: MyISAM GiST search ab-
stract.

All the methods gist find first, gist find next and gist find req have a
second variant, as their rtree * equivalents do. The names of the variants are
the same but the “find” part of the name is replaced with “get”. For example
the equivalent of gist find first is gist get first.

These methods have the same input and output and the same flow. The differ-
ence between the two variants is that the “get” ones are used for index full scans
and traverse the index without doing any comparisson at the nodes, whereas
the “find” variants traverse the index and compare the keys of the nodes with
the key currently being searched.
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5.3.1.2 Detailed description

This section describes MySQL’s R-tree search flow in detail. More specifically
the following methods are presented:

• gist find first (Algorithm 5.3.3)

• gist find next (Algorithm 5.3.4)

• gist find req (Algorithm 5.3.5)

• gist get first (Algorithm 5.3.6)

• gist get next (Algorithm 5.3.7)

• gist get req (Algorithm 5.3.8)

Even if we do provide enough details to understand how search is performed,
some details fall outside the scope of the description. The description focuses
on the fact that somehow the key information can be read, updated and saved,
and that nodes can be read and saved permanently but doesn’t mention how
this is performed. These are important but lower level MyISAM operations and
the interested reader can check them directly in the source code files.

gist find first The method is described in Algorithm 5.3.3. It finds the first
occurrence of the data that matches the search criteria by calling gist find req.

The input arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: key to search for

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. search flag: flag related to search properties.
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Lines 1 to 4 initialize the variables needed for the search. The structure info
contains a temporary storage (buff) for the keys which can be used by mi rnext.
This function reads the next row after the last row read, using the current index.
In line 4 the flag, that marks that reusing the key of the previous row read, is
set.

Finally, a recursive search on the tree begins (line 6) and the result of gist find

req is returned.

Input: info, keynr, key, key length, search flag
Output: −1 for Error, 0 if found, 1 if not found

keyinfo ← information from info regarding the index used in search;1

info.last rkey length ← key length;2

info.gist recursion depth ← −1;3

/* info.buff is a temporary storage for keys */

info.buff used ← 1; /* buff has to be reread for rnext */4

nod cmp flag ← MBR INTERSECT;5

return gist find req (info, keyinfo, search flag, nod cmp flag, root,6

0);

Algorithm 5.3.3: gist find first: MyISAM GiST search.

gist find next The method is described in Algorithm 5.3.4 and finds the next
key during a search. The input arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. search flag: flags the describes the search criteria that comes from the
MyISAM engine.

First, a check whether the table has changed is performed (line 1). When reading
the next row of data the key used for the previous search could be reused. If the
table has changed since the last read, then the key must be found again from
scratch, by calling gist find req (line 2) and the algorithm ends here.

If the table hasn’t changed and the key from the previous search can be used to
find the next key, then the next keys of the page will be read in a loop (lines 5-
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9). If a key matches the search criteria (line 6), then this key is used and 0 is
returned. Otherwise, the next key of the page is checked (line 9).

If the method has not returned yet, it means that the table has not changed (so
the next key of the same page could have be used) but all the keys of the node
were checked. So gist find req is called to get the next node (line 12).

Input: info, keynr, search flag
Output: −1 for Error, 0 if found, 1 if not found

if table has changed and the change was a deletion then1

/* find again the last key */

return gist find first (info, keynr, lastkey, lastkey length,2

search flag);
3

if temporary storage of the key can be reread (for rnext) then4

while not at end of page do5

if key matches the search criteria then /* gist key cmp */6

info.lastpos ← position of next data;7

return 0;8

key ← next key in page;9

10

nod cmp flag ← MBR INTERSECT;11

return gist find req (info, keyinfo, search flag, nod cmp flag, root,12

0);

Algorithm 5.3.4: gist find next: MyISAM GiST search.

gist find req The method, described in in Algorithm 5.3.5, is called recur-
sively. It descends the tree towards the leaf nodes in order to find a match. The
input arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. search flag: flags the describes the search criteria that comes from the
MyISAM engine. It’s used for the internal nodes only.
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5. nod cmp flag: same as search flag but used for the leaf nodes only.

6. page: position of the node in the index.

7. level: the current level of the tree. When gist find req descends one
level down then this argument is increased by one.

The algorithm loops through all the keys of the node it is currently on. If
the node is internal (lines 2–13), the key is matched against the search criteria
(line 3). If it does not match the loop continues to the next key. If it matches
the search criteria then gist find req is called to descend one level down the
tree and the result of gist find req is checked and the recursion ends here for
the current level.

If the node is leaf (line 14), the key is matched against the search criteria
(line 15). If it does not match the loop continues to the next key. If it matches
the search criteria then the key is saved for later usage and 0 is returned.

Finally, if the loop has finished without a match (line 20), the algorithm returns
1 for failure.

gist get first The method is described in Algorithm 5.3.6 and it flows similar
to gist find first (Algorithm 5.3.3). The input arguments of this method
are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

Lines 1 to 3 initialize the variables needed for the search. The structure info
contains a temporary storage (buff) for the keys which can be used by mi rnext.
This function reads the next row after the last row read, using the current index.
In line 3 the flag, that marks that reusing the key of the previous row read, is
set.

Finally, a recursive search on the tree begins (line 4) and the result of gist get

req is returned.
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Input: info, keyinfo, search flag, nod cmp flag, page, level
Output: −1 for Error, 0 if found, 1 if not found

foreach key k ∈ page do1

if node is internal then /* page is internal */2

if k matches the search criteria then /* gist key cmp */3

res ← gist find req; /* go one level down */4

if res == 0 then /* found, break recursion */5

return res;6

else if res == 1 then /* not found, continue */7

info.gist recursion state ← level;8

break;9

if error then10

return −111

12

13

else /* page is leaf */14

if k matches the search criteria then /* gist key cmp */15

save position and lenth of next key to info;16

info.gist recursion state ← level;17

18

19

/* loop finished and match wasn’t found */

return 1;20

Algorithm 5.3.5: gist find req: MyISAM GiST search. Called recur-
cively on each level of the tree.

Input: info, keynr, key length
Output: −1 for Error, 0 if found, 1 if not found

keyinfo ← information from info regarding the index used in search;1

info.gist recursion depth ← −1;2

/* info.buff is a temporary storage for keys */

info.buff used ← 1; /* buff has to be reread for rnext */3

return gist get req (info, keyinfo, key length, root, 0);4

Algorithm 5.3.6: gist get first: MyISAM GiST search.
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gist get next The method is described in Algorithm 5.3.7 and its flow similar
to gist find next (Algorithm 5.3.4). The input arguments of this method are
the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

The method checks if the next key is on the same page and if the page has not
changed (line 1). If one of the two is not valid, then gist get req is called to
find the next key (line 5). If both are valid, then the position of the next data
is stored and the method returns successfully (line 3).

Input: info, keyinfo, key length, page, level
Output: −1 for Error, 0 if found, 1 if not found

if next key is on the same page and page has not changed then1

info.lastpos ← position of next data;2

return 0;3

4

return gist get req (info, keyinfo, keylength, root, 0);5

Algorithm 5.3.7: gist get next: MyISAM GiST search.

gist get req The method, described in in Algorithm 5.3.8, is called recursively
and its flow similar to gist find req (Algorithm 5.3.5). It descends the tree
towards the leaf nodes in order to find the next row of the search based on
information about the last row read and key used. The input arguments of this
method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.
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3. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

4. page: position of the node in the index.

5. level: the current level of the tree. When gist get req descends one level
down then this argument is increased by one.

The method scans in a loop all the keys of a node (lines 1–15). If the node is
internal (lines 2–11), the algorithm descends one level down the tree by calling
gist get req. If a node was found (line 4), the result is returned. If a node was
not found, the algorithm continues to the next key in the loop (line 6). Finally
if an error occurred the algorithm terminates (line 9).

If the node is a leaf (lines 12–15), the position of the next row is saved and the
algorithm returns.

Finally, if the loop has examined all the keys of the node it returns 1 (line 16).

Input: info, keyinfo, key length, page, level
Output: −1 for Error, 0 if found, 1 if not found

foreach key k ∈ page do1

if node is internal then /* page is internal */2

res ← gist get req; /* go one level down */3

if res == 0 then /* node was found, break recursion */4

return res;5

else if res == 1 then /* not found, continue */6

info.gist recursion state ← level;7

break;8

if error then9

return −110

11

else /* page is leaf */12

save position and lenth of next key to info;13

info.gist recursion state ← level;14

15

/* loop finished and all keys were examined */

return 1;16

Algorithm 5.3.8: gist get req: MyISAM GiST search. Called recur-
cively on each level of the tree.
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5.3.1.3 Comparison with original R∗-tree search algorithm

The search algorithm is very close to the original GiST search algorithm. How-
ever, we haven’t implemented the full abstraction that GiST provides. The
important missing part is the Union and Compare functionality. Even if it is
currently not implemented, when we do implement them, the flow of the algo-
rithm will not change. The changes will have to be performed to the lower level
method gist key cmp. This will simply call the appropriate Compare methods
for the specific variant the GiST index abstracts.

5.3.2 GiST deletion

In this section, we describe the algorithm for the deletion of GiST keys. The
reader will notice a similarity between the deletion algorithms in this section
and the existing R-tree MySQL indexes (Section 4.5.2).

In Section 5.3.2, the algorithm is presented in an abstract way and then, in
Section 5.3.2.2 with more details. Finally, in Section 5.3.2.3, the differences
with the original GiST deletion algorithm are discussed.

5.3.2.1 Abstract description

The code that is associated with the GiST deletion is found in the source files
storage/myisam/gist *. A high level view of the deletion flow is presented in
Algorithm 5.3.9.

The method gist delete is called from the root of the tree and then it calls
gist delete req. This method recursively calls itself until the proper leaf node
is reached and the key is deleted (line 2). During this process some nodes
might require reinsertion. This is performed after gist delete req has returned
(line 3). Reinserting is required when some of the nodes become filled less than
their minimum fill factor during the deletion process,.

5.3.2.2 Detailed description

This section describes MySQL’s GiST deletion flow in detail. More specifically
the following methods are presented:
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Input: key

begin1

gist delete req (key);2

Reinsert deleted nodes;3

end4

Algorithm 5.3.9: gist delete abstract: MyISAM GiST deletion ab-
stract.

• gist delete (Algorithm 5.3.10)

• gist delete req (Algorithm 5.3.11)

• gist delete key

Even if we do provide enough details to understand how deletion is performed,
some details fall outside the scope of the description. The description focuses
on the fact that somehow the key information can be read, updated and saved,
and that nodes can be read and saved permanently, but doesn’t mention how
this is performed. These are important but lower level MyISAM operations and
the interested reader can check directly in the source code files.

gist delete The method is described in Algorithm 5.3.10, and it is the single
point of entry for deleting a key from the index. It modifies the index by deleting
one key and returns 0 for success and -1 if something went wrong (same as
gist insert in Algorithm 5.3.14). The input arguments of this method are the
following:

1. info: data structure that includes information about the database table
associated with the deletion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: is the leaf key that will be deleted in the tree

4. key length: is the key length. Keys can have different lengths because they
can be of columns of data types with different size.

First, the key’s information are taken from the table data structure (line 1)
as well as the root of the tree. Also, an empty list, that can accommodate
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nodes that will be re-inserted, is created (line 3). Then gist delete req is
called. This method calls itself recursively and descends the tree until the leaf
nodes are reached. Then, it deletes the keys. During this process, some nodes
might become filled less than the fill factor and must be re-inserted. They are
deleted from the tree and they are appended to ReinsertList. Once method
gist delete req returns, the re-insertion takes place (line 6). The method
gist insert level (line 9), described in Algorithm 5.3.15, is called to insert
either leaf nodes or internal nodes. For internal nodes it reinserts the keys of
the internal nodes. The subtrees of the internal node’s keys are left untouched.

Input: info, keynr, key, key length
Output: Modifies GiST: −1 for Error, 0 if key was deleted

keyinfo ← take key information from info;1

old root ← take root node from info;2

ReinsertList ← empty list of pages;3

res ← gist delete req (info, keyinfo, key, key length, old root,4

page size, ReinsertList, 0);

if res == 0 then /* not split */5

foreach page i ∈ ReinsertList do6

foreach key k ∈ ReinsertList.[i] do7

l ← ReinsertList.pages.[i].[k].level;8

gist insert level (info, keynr, k, key length, l);9

if root was split and tree grew one level then10

∀ remaing pages and keys increase by one the re-insertion11

level;

if any error during the above then12

return −1;13

return 0;14

else if res == 1 then /* key not found */15

return −1;16

else if res == 2 then /* tree is now empty */17

return 0;18

else19

return −1;20

Algorithm 5.3.10: gist delete: MyISAM GiST deletion. Called from
the root of the tree.
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gist delete req The method, described in Algorithm 5.3.11, is called recur-
sively in order to modify one level of the tree. The input arguments of this
method are the following:

1. info: data structure that includes information about the database table
associated with the deletion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the leaf key that will be deleted from the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. page: the current page that is operated.

6. page size: total size of keys on the current page.

7. ReinsertList: the list of nodes that might require to be re-inserted after
deletion has finished.

8. level: the current level of the tree. When gist delete req descends one
level down then this argument is increased by one.

First, for each node that is visited all the keys are checked (line 1) in a loop. If
the node is internal (line 2) and if the key to delete MBR in inside the node’s
key MBR (line 3), then gist delete req is called for the child node (line 5).
Otherwise the loop visits the next key of the node.

Once gist delete req returns, the algorithm takes different actions depending
on the returned value. If the deletion was successful (returned 0 - line 6), the
fill of the page is checked (line 7) and if it is below the fill factor the node is
appended to the ReinsertList and gist delete key is called to delete the key
(line 11). If the key for deletion was not in the subtree just checked (returned 1
- line 15) visit the next key of the node (line 1). If the child node was is empty
and the subtree is no longer needed (returned 2 - line 17) the key is deleted.

When the algorithm finishes with the current key (lines 3 - 23), the next key of
the node is visited until all keys of the current node have been checked. We do
need to visit all the keys of the node even if gist delete req has been called
for one of them, because the node MBRs might overlap. This means that even
if the MBR of the key we want to delete is inside one of the MBR of the keys
of the node (line 3), the subtree of this key might not have the key we want to
delete.
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If the node’s key is a leaf node (line 24) and the node’s key matches exactly
the search key and refers to the same data (line 25), then gist delete key is
called to delete the key (line 26). If the page is now empty 2 is returned, if it is
not empty 0 is returned and if something went wrong during the deletion −1 is
returned.

gist delete key This method deletes a key from a node. An algorithm for this
method is not presented because the actions it performs are extremely simple:
a node is given and a specific key is deleted from the node. The deletion of a
key is much simpler than the method gist add key (Section 5.3.3) that needs
to perform a series of operations and checks.

5.3.2.3 Comparison with original GiST deletion

The deletion algorithm closely follows the original GiST. The major difference
with the original algorithm is that we haven’t implemented the full abstraction
that GiST provides. Even if it is currently not fully implemented, when we do
implement them, the flow of the algorithm will not change. The changes will
have to be performed to the lower level methods

• gist key cmp

• gist delete key

• gist set key mbr

that currently use the existing R-tree functionality. The same applies for the
methods that are responsible for compacting the nodes (called by gist delete key).
All these will simply call the appropriate Compare and Union methods for the
specific variant the GiST index abstracts.

5.3.3 GiST insertion

In this section, we describe the algorithms of GiST keys for the insertion of
data. The reader will notice a similarity between the deletion algorithms in this
section and the existing R-tree MySQL indexes (Section 4.5.1).
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Input: info, keyinfo, key, key length, page, page size, ReinsertList,
level

Output: Modifies one level in the GiST: −1 for Error, 0 if key was
deleted, 1 if key was not found, 2 if the leaf is empty

foreach key k ∈ node do /* loop the keys of the node */1

if node is internal then2

if key within k then /* gist key cmp */3

child ← child page of k;4

res ← gist delete req (info, keyinfo, key, key length,5

child, page size, ReinsertList, level + 1);
if res == 0 then6

if page is adequatly filled then7

gist set key mbr (k); /* store key MBR */8

else9

add k’s child to ReinsertList;10

gist delete key (k) ;11

if error during the above then12

return −113

return res14

else if res == 1 then /* key not found */15

continue the loop and check other keys;16

else if res == 2 then /* last key in leaf page */17

gist delete key;18

if any error during the above then19

return −1;20

return 0;21

else22

return −1;23

else /* Leaf node */24

if key MBR is equal to k and refers to the same data then25

/* gist key cmp */

gist delete key;26

if page is now empty then27

return 2;28

else29

return 0;30

if any error during the above then31

return −1;32

return 1;33

Algorithm 5.3.11: gist delete req: MyISAM GiST deletion. Called
recursively on each level of the tree.
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First, in Section 5.3.3.1, the algorithm is presented from a high level view and
then in Section 5.3.3.2 it is described with more details. Finally, in Section
5.3.3.3, the differences with the original GiST algorithm are discussed.

5.3.3.1 Abstract description

The code that is associated with the GiST insertion is found in the source files
storage/myisam/gist *. A high level view of the insertion flow is presented in
Algorithms 5.3.12 and 5.3.13 and the most important methods are:

• gist insert level

• gist insert req

• gist add key

The method gist insert level (Algorithm 5.3.12) is called from the root of
the tree and in turn calls gist insert req. When gist insert req returns,
the new key has been added, at the leaf level, and all the nodes below the root
have been adjusted. Then the root node itself is adjusted and the insertion has
finished.

The method gist insert req (Algorithm 5.3.13) is called recursively and de-
scends the tree towards the leaf nodes. If an internal node is encountered then
gist insert req is called (line 3) to descend down one level and takes as argu-
ments the child node and the increased level. When it returns, the current level
is adjusted and it is split, if required. When a leaf node is encountered the key
is added (line 8) and if necessary the node is split.

Input: key

begin1

gist insert req (key, 0);2

Adjust root if needed;3

end4

Algorithm 5.3.12: gist insert level abstract: MyISAM GiST inser-
tion abstract.
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Input: key, level

begin1

if can go one level down then2

gist insert req (key, level + 1);3

Adjust key if child node was modified;4

Split node if necessary;5

return6

else7

gist add key;8

return9

end10

Algorithm 5.3.13: gist insert req abstract: MyISAM GiST insertion
abstract.

5.3.3.2 Detailed description

This section describes the details of GiST insertion. More specifically the fol-
lowing methods are presented:

• gist insert (Algorithm 5.3.14)

• gist insert level (Algorithm 5.3.15)

• gist insert req (Algorithm 5.3.16)

• gist add key (Algorithm 5.3.17)

Even if we do provide enough details to understand how insertions are per-
formed, some details fall outside the scope of the description. The description
focuses on the fact that somehow, the key information can be read, updated and
saved, and that nodes can be read and saved permanently, but doesn’t mention
how this is performed. These are important but lower level MyISAM operations
and the interested reader can check directly in the source code files.

gist insert The method is described in Algorithm 5.3.14 and is the single
point of entry for the insertion of keys in MySQL’s GiSTs. It modifies the index
by inserting one key and returns 0 for success and 1 if something went wrong. It
is a wrapper around gist insert level (line 1, described in Algorithm 5.3.15).
The input arguments of this method are the following:
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1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

Input: info, keynr, key, key length
Output: Modifies GiST: 1 for Error, 0 for OK

res ← gist insert level (info, keynr, key, key length, −1);1

return res;2

Algorithm 5.3.14: gist insert: MyISAM GiST insertion.

gist insert level The method is described in Algorithm 5.3.15. It modifies
the index by calling gist insert req to insert the key. Returns 0 if the root
was not split, 1 if it was split and −1 if something went wrong. It is called either
during insertion by gist insert (Algorithm 5.3.14) or during deletion at the
re-insertion stage (Section 5.3.2.2, Algorithm 5.3.11). The input arguments of
this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keynr: the number of index that is being used. In each table, each index
has a number that identifies it.

3. key: the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. ins level: the level at which the key is going to be insert. To insert a leaf
node (like from an SQL Insert command) −1 is used. To insert a key
during delete reinsertion (Section 5.3.2.2, Algorithm 5.3.11) the level of
the key is used.
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First, from the info data structure the root of the tree and information regarding
the table’s keys are read. Afterwards, an empty new node is created in memory,
because it might be required further down the algorithm. Then the existence of
the root node is tested (line 4). If the root node doesn’t exist it’s created and
the key is added to the empty root. If the root does exist, gist insert req is
called (line 11). This method recursively calls itself, in order to insert the key
to the leaf node and adjust all the associated internal nodes. It returns with
either an error or success. If the root was split during the process, a new root
is created and keys are added there.

Input: info, keynr, key, key length, ins level
Output: Modifies GiST: −1 for Error, 0 if root was not split, 1 if root

was split

keyinfo ← take key information from info;1

new page ← new empty node;2

old root ← take root node from info;3

if Root doesn’t exist then4

Create new root;5

if error during new root creation then6

return −1;7

else8

res ← gist add key; /* add key to the empty node */9

return res;10

res ← gist insert req (info, keyinfo, key, key length, old root,11

new page , ins level, 0);

if res == 0 then /* Root was not split */12

return 013

else if res == 1 then /* Root was split */14

Create new root and add keys there;15

if error during new root creation then16

return −117

return 118

else19

return −120

Algorithm 5.3.15: gist insert level: MyISAM GiST insertion.
Called from the root of the tree.
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gist insert req The method, described in in Algorithm 5.3.16, is called re-
cursively and in each recursion it modifies one level of the tree. The input
arguments of this method are the following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. new page: an new empty node in memory. It is a place holder to insert
new keys if needed.

6. ins level: the level at which the key is going to be insert. To insert a leaf
node (like from an SQL Insert command) −1 is used. To insert a key
during delete reinsertion (Section 5.3.2.2, Algorithm 5.3.11) the level of
the key is used.

7. level: the current level of the tree. When gist insert req descends one
level down then this argument is increased by one.

Initially, the algorithm decides if the recursion should go one level down towards
the leaf nodes (line 1). In case gist insert req was called by gist insert level

to insert a new key in the tree, then the recursion continues until the leaf nodes
are reached. In case the gist insert req was called by gist delete, during
the deletion of a key to re-insert a node that became filled less than the fill
factor, the recursion continues until the level of the re-inserted node is reached.

If the algorithm must go one level down (line 1), then one key is picked up from
the available keys of the node (line 2). The child of this key is the node where
the algorithm will descend into (line 4). Then gist insert req is called for
this key. Once it returns, the key has been added somewhere below and all the
nodes below the current level have been adjusted. If the child node was not split
(line 5), then the current node is adjusted. If the child was split, (line 11), then
a new key points to the new child node. Afterwards, the new key and the old
key are adjusted, the new key is added to the node (line 14) and the method
returns the result of gist add key or −1 if something went wrong.

If the algorithm decides not go down one level (line 21), then the key is added
to the node (line 22) and the method returns the result of gist add key. Ir
returns −1 if something went wrong.
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Input: info, keyinfo, key, key length, page, new page, ins level, level
Output: Modifies one level in the GiST: −1 for Error, 0 if child was not

split, 1 if child was split

if go down one level then1

k ← gist pick key /* will insert into entry k */2

p ← node where k points to (internal node or data);3

res ← gist insert req (info, keyinfo, key, key length, p,4

new page , ins level, level + 1);

if res == 0 then /* Child was not split */5

gist combine rect (k, key); /* add key MBR to k MBR */6

save node;7

if error then8

return −19

return 0;10

else if res == 1 then /* Child was split */11

new key ← new child node;12

/* calculate & store new and existing key MBRs */

gist set key mbr (k); gist set key mbr (new key);13

/* add new key to current node */

res ← gist add key (new key);14

save current node;15

if error during the above then16

return −117

return res18

else19

return −120

else /* Node is leaf or we don’t have to go further down */21

res ← gist add key (key) ;22

save node;23

if error during write then24

return −1 ;25

else26

return res;27

28

Algorithm 5.3.16: gist insert req: MyISAM GiST insertion. Called
recurcively on each level of the tree.
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gist add key This method is responsible for adding a key to a node and it
is presented in Algorithm 5.3.17. The input arguments of this method are the
following:

1. info: data structure that includes information about the database table
associated with the insertion.

2. keyinfo: data structure that includes information about the key associated
with the insertion.

3. key: is the new leaf key that will be inserted in the tree

4. key length: the key length. Keys can have different lengths because they
can be of columns of data types with different size.

5. new page: a new empty node.

If the node has enough free space for one additional key, then the key is added
(line 1). If the node is a leaf then the key points to the data stored. If the node
is internal then the key points to a child node. The method returns 0 indicating
that the node was not split.

If the node does not have enough space for one more key, then the node is split
and the new node is written in new page (line 7). The method returns −1 on
error or 1 on success indicating that the node was split.

5.3.3.3 Comparison with original GiST insertion

The insertion algorithm closely follows the original GiST. The major difference
is that we haven’t implemented the full abstraction that GiST provides. Even
if it is currently not fully implemented, when we do implement them, the flow
of the algorithm will not change. The changes will have to be performed to the
lower level methods

• gist key cmp

• gist add key

• gist set key mbr

that currently use the existing R-tree. The same applies for the method that
is responsible for splitting the nodes (called by gist add key). They will all
simply call the appropriate Compare and Union methods for the specific variant
the GiST index abstracts.
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Input: info, keyinfo, key, key length, new page
Output: Modifies key node: −1 for Error, 0 for no split, 1 for split

if node has enough free space to hold one more key then1

/* modify key’s pointer */

if node is not leaf then2

add the child node link to the key;3

else4

add the data record link to the key;5

return 0;6

res ← gist split page;7

if res == 1 then8

return −1;9

else10

return 1;11

Algorithm 5.3.17: gist add key: MyISAM GiST insertion. Add key to
node

5.4 Evaluation

In the previous sections we described the technical and algorithmic details of
the GiST implementation. In this section we will perform and evaluation of
the work, as far as the initial goals are concerned, as well as further work that
should be done at the implementation.

We managed to implement the algorithms as close as possible to the original
GiST algorithms, provide a solid mechanism for abstracting search trees and
to hook the existing R∗-tree methods to it. As we already noted in Sections
5.3.3.3, 5.3.2.3 and 5.3.1.3 the algorithms don’t abstract the tree as much as the
original GiST algorithms can.

To sum up, the methods:

• gist key cmp

• gist add key

• gist delete key

• gist set key mbr
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are currently using are the existing R-tree functionality and are missing the
usage of the GiST methods Union and Compare. However, the current imple-
mentation allows for the future addition of Union and Compare without change
the flow of the insert, delete and search algorithms.

5.5 Testing the GiST implementation

As we have already discussed in Section 1.3.1 MySQL is an RDBMS widely
used in production in heavy workload and large infrastructures. Such a prod-
uct wouldn’t be complete without a good testing framework. Indeed, MySQL
provides an extensive testing framework [65].

Even if testing “Testing shows the presence, not the absence of bugs” [70, p. 16]
it is a valuable tool. It can make sure that the already test vectors that verify
the correct behavior of a program hasn’t been disrupted. After we implemented
the changes in the codebase, we run three types of tests:

• A general health check: we run the generic test after building the patched
MySQL with make test. All tests were successful. This means that our
implementation didn’t break something in the core server.

• GIS-specific tests: the testing suite includes GIS functionality and R-tree
specific tests:

– gis-precise.test

– gis-rt-precise.test

– gis-rtree.test

– gis.test

They all were run and were successful. This means that our implementa-
tion didn’t break the existing GIS and R-tree functionality.

• A GiST-specific test: We duplicated the gis-rtree.test and we changed
it so that all the indexes created and operated upon are GiST instead of R-
tree. All tests were successful, which means that our GiST index replicates
the existing R-tree functionality.
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5.6 Summary

This chapter presented our GiST in MySQL’s MyISAM storage engine. The im-
plementation is split in two parts The first makes MySQL aware of the presence
of the new index type. The second one is the implementation of the the index
functionality. The changes were described in two ways. We first examined the
modifications in the codebase per source code file, and then the algorithms of
the GiST indexes were analyzed. Finally we summed up the implementation
presentation and discussed how we use MySQL’s existing testing suite to make
sure our changes work well.
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Chapter 6

Conclusion

The goal of the research was to conduct a thorough study of the existing spatial
indexing solutions and search tree abstraction data models, and to implement
a working example in the RDBMS MySQL. Despite the fact that there are still
details to be explored and implemented, the general goals set initially for this
project have been completed successfully.

We begun by explaining how the original spatial index R-tree and the abstract
search tree GiST work. We analyzed the basic properties of each indexing
solution and we then described them in detail. We presented all the algorithms in
a detailed and code-like way, so that they are as close as possible to implementing
them.

In the next chapter we changed our focus to spatial indexing solutions, and more
specifically variants of the R-tree. We examined six variants the R+-tree, the
R∗-tree, the Hilbert R-tree, two splitting algorithms, and finally the VoR-Tree.
The all shared the basic properties of R-trees. For some of them all the search,
delete and insert functionality was presented and for others we examined their
special features.

We then switched to the implementation part of the research. We presented high
level views of the MySQL server, the interaction with the storage engines and
some details on the MyISAM storage engine. We the thoroughly investigated
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the way the R∗-tree works in MyISAM.

After having understood the way indexes and R∗-tree is implemented in My-
ISAM we extended the SQL the server can parse and then implemented our own
GiST indexing solution. Under GiST trees we plugged the already existing R∗-
tree spatial index, in a way that future R-tree-like indexes can be implemented.

6.1 Further work

The main points that would require further investigation in order to complete
the current state of the project are implementing the full abstraction of GiST
trees as well as implementing more spatial indexing solutions under GiSTs.

Understanding the way MySQL uses indexes was a procedure with a steep learn-
ing curve, but we managed to deliver a working new index tree. In order to fully
take advantage of GiSTs and the effort we made to understand MySQL and My-
ISAM internals, the future work should focus on abstracting the way the nodes
are handled. As we already discussed in Section 5.4 the methods:

• gist key cmp

• gist add key

• gist delete key

• gist set key mbr

currently use the existing R-tree functionality. They should be altered so that
they are using Union and Compare. This addition requires to analyze in detail
the code that handles the nodes and performs actions like:

• finding the position of the next key in the node

• finding the position end of the node

• finding the length of the key

The above mentioned changes will not require modifications in the flow our
GiST implementation algorithms.
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The next step would be to implement new indexes under our GiST implemen-
tation. All the R-tree variants discussed in Section 3 are possible candidates.
VoR-Tree would be interesting to implement since it extends the leaf data struc-
ture, and we could also perform benchmark and test of the various splitting
methods that were discussed in Sections 3.4 and 3.5 as well as in the R∗-tree
paper (Section 3.2).
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Appendix A

Compiling and running
MariaDB

In this Section we present the procedure we followed to download and compile
the source code of MariaDB. Extensive instructions for different types of oper-
ating systems and architectures are given in [45, 43]. However, for the sake of
completeness and the ability to reproduce the whole procedure we do present
all the required steps to build the MariaDB server and clients from scratch.

In Figure A.1 we present the operating system commands needed to install the
requires software packages. The Debian’s apt package handling utility facilitates
the procedure.

• bzr: is the version control system used by MariaDB

• build-dep mysql-server: installs all the dependencies required to build
MySQL (as well as MariaDB)

• exuberant-ctags: this optional software annotates C and C++ code and
makes source navigation with editors like vi and emacs very smooth.

In Figure A.2 we present the commands needed to download the source code
from using the bzr version control system. The code repository is hosted on
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# install necessary packages

$ apt-get install bzr build-dep mysql-server

# optional package for easy source code tagging

$ apt-get install exuberant-ctags

Figure A.1: Commands for the installation of packages needed in Ubuntu/De-
bian Linux systems.

# download the latest ’trunk’

$ bzr branch lp:maria <DIR>

# download the latest 5.5 branch source code

$ bzr branch lp:maria/5.5 <DIR>

Figure A.2: Commands for downloading the latest source code from launchpad.

launchpad.net [46]. The current versions of MariaDB are 5.5 and 5.3 which
are on their own branches. The user can use bzr to download the latest code of
each version.

If the source code is needed, without revision history or using bzr, a tarball of
the code can be dowloaded from [44].

In Figure A.3 we present the command required to producde the annotation
that editors can use. The annotation is save in a file called TAGS.

In Figure A.4 we present the commands required to build the source code.
MariaDB does provide handy build scripts (in directory BUILD/). However,
we wanted to have full control of the procedure and the ability to reproduce
evey aspect of the compilation. So, we recreated from the compile scripts the
commands required to build a version of MariaDB for linux for a 64-bit machine
with debug support.

$ cd /path/to/the/source/code

$ ctags -e -R * # -e emacs format

Figure A.3: Commands for the creating the source tagging/browsing for vi and
emacs.
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The make install command is optional. In Figure A.5 we show how the com-
piled MariaDB server and clients can be run without the time-consuming step
of the installation.

If the reader does want to perform the installation step then configure option
--prefix=<PATH>/compiled can be used so that the make install installs
everything under a specific directory, thus avoiding ovewriting of the currently
installed version of MariaDB or MySQL.

The make install and the post installation commands are required to run once,
in roder to create the directories where the data are saved, and the database
mysql which holds the credentials for the database users. The initial root user
password is empty and not required for loggin in the server.

In Figure A.5 we present the commands required to start the server, stop the
server, check the status of the server, and the run a client that connects to this
server. The commands require that the make install and the post installation
commands (of Figure A.4) were executed once. The reader might notice that the
sample commands for stoping the server, checking the status of the server and
running the client, don’t use the compiled clients and utilities but the system-
wide programs. This is possible since MariaDB is both binary compatible with
MySQL and uses the same network protocol.

In Figure A.6 we present a minimal MySQL my.cnf configuration file. All the
other configuration options get their default values. The custom values are:

• port: a different port (3340) from the MySQL’s default (3306) is used to
make sure that there is no clash between an already installed MySQL or
MariaDB and that the client will connect to the proper server.

• data: this is a path to the data directory of MySQL. This is were the files
containing the database and table data are saved.
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$ cd /path/to/version/5.5/source/code

# prepare makefiles and build infrastructure, run once (for 5.5 branch)

$ cmake .

# creates the ./configure script (optional)

$ bash BUILD/autorun.sh

# setup environment for GCC compilation (optional)

$ CC="gcc" \

CFLAGS="-Wall -Wextra -Wunused -Wwrite-strings -DUNIV_MUST_NOT_INLINE \

-DEXTRA_DEBUG -DFORCE_INIT_OF_VARS -DSAFEMALLOC -DPEDANTIC_SAFEMALLOC \

-O0 -g3 -gdwarf-2 " \

CXX="g++" \

CXXFLAGS="-Wall -Wextra -Wunused -Wwrite-strings -Wno-unused-parameter \

-Wnon-virtual-dtor -felide-constructors -fno-exceptions -fno-rtti \

-DUNIV_MUST_NOT_INLINE -DEXTRA_DEBUG -DFORCE_INIT_OF_VARS -DSAFEMALLOC \

-DPEDANTIC_SAFEMALLOC -O0 -g3 -gdwarf-2 " \

CXXLDFLAGS=""

# configure (optional)

# option ’--with-gist-index’ requires that the code is patched

$ ./configure \

--prefix=<PATH> \

--enable-assembler \

--enable-thread-safe-client \

--with-big-tables \

--with-plugin-aria \

--with-aria-tmp-tables \

--without-plugin-innodb_plugin \

--with-mysqld-ldflags=-static \

--with-client-ldflags=-static \

--with-readline \

--with-debug=full \

--with-ssl \

--with-plugins=max \

--with-libevent \

--enable-local-infile

# build

$ make

# installation (optional)

$ make install

# post installation commands (optional, run once)

$ cd <PATH>/compiled

$ ./bin/mysql_install_db \

--basedir=<PATH> \

--datadir=<PATH>/data \

--skip-name-resolve \

--force

Figure A.4: Commands for compiling the MariaDB source code.
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$ cd /path/to/the/source/code

# start the server

$ ./sql/mysqld --defaults-file=/home/vag/projects/mariadb/compiled/my.cnf

# start the server with a debug trace file

$ ./sql/mysqld --defaults-file=/home/vag/projects/mariadb/compiled/my.cnf

--debug=d,info,error,query,general,where:O,/home/vag/mysql.trace:f,mi_create &

# check the status of the server

$ mysqladmin -uroot --port=3340 --host=127.0.0.1 ping

# stop the server

$ mysqladmin -uroot --port=3340 --host=127.0.0.1 shutdown

# start a client

$ mysql -uroot --port=3340 --host=127.0.0.1

Figure A.5: Commands for running the MariaDB server and clients.

[mysqld]

port=3340

data=<PATH>/data

language=<PATH>/share/

Figure A.6: Sample configuration file for running MariaDB server.
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Appendix B

Patches for the MariaDB
codebase

In this chapter we present the changes we performed in the MariaDB codebase
for the implementation of GiSTs. In Section B.1 we present the changes required
to make MariaDB GiST-aware and in Section B.2 we present the changes re-
quired for the core GiST implementation.

The changes are presented in diff format. The numbers on the left are line
numbers of the patch file. The syntax highlighting is as follows:

• Gray background is used for the beginning of individual file diffs.

1 === path of the file that the diff applies to

• Dark gray letters are used for diff information regarding the chunk’s line
position and file properties.

1 --- client/mysql.cc 2012 -08 -09 15:22:00 +0000
2 +++ client/mysql.cc 2012 -08 -18 05:37:44 +0000
3 @@ -670,6 +670,8 @@

• Black letters are used for the lines of code that we added.

1 + line of code added
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• Light gray letters are used for the code that is present in the diff, but
wasn’t changed.

1 line of code already existing

B.1 Make MariaDB GiST-aware

1 === modified file ’client/mysql.cc ’

2 --- client/mysql.cc 2012 -08 -09 15:22:00 +0000
3 +++ client/mysql.cc 2012 -08 -18 05:37:44 +0000
4 @@ -670,6 +670,8 @@
5 { "ROWS", 0, 0, 0, ""},
6 { "ROW_FORMAT", 0, 0, 0, ""},
7 { "RTREE", 0, 0, 0, ""},
8 + { "GIST_RSTAR", 0, 0, 0, ""},
9 + { "GIST_RGUT83", 0, 0, 0, ""},

10 { "SAVEPOINT", 0, 0, 0, ""},
11 { "SCHEMA", 0, 0, 0, ""},
12 { "SCHEMAS", 0, 0, 0, ""},
13

14 === modified file ’config.h.cmake ’

15 --- config.h.cmake 2012 -07 -31 17:29:07 +0000
16 +++ config.h.cmake 2012 -08 -18 05:37:44 +0000
17 @@ -588,6 +588,7 @@
18 */
19 #define HAVE_SPATIAL 1
20 #define HAVE_RTREE_KEYS 1
21 +#define HAVE_GIST_KEYS 1
22 #define HAVE_QUERY_CACHE 1
23 #define BIG_TABLES 1
24
25

26 === modified file ’include/maria.h’

27 --- include/maria.h 2012 -05 -04 05:16:38 +0000
28 +++ include/maria.h 2012 -08 -18 05:37:44 +0000
29 @@ -177,7 +177,7 @@
30 uint16 keysegs; /* Number of key -segment */
31 uint16 flag; /* NOSAME , PACK_USED */
32
33 - uint8 key_alg; /* BTREE , RTREE */
34 + uint8 key_alg; /* BTREE , RTREE , GIST */
35 uint8 key_nr; /* key number (auto) */
36 uint16 block_length; /* Length of keyblock (auto) */
37 uint16 underflow_block_length; /* When to execute underflow */
38

39 === modified file ’include/my_base.h’

40 --- include/my_base.h 2012 -05 -21 18:54:41 +0000
41 +++ include/my_base.h 2012 -08 -18 05:37:44 +0000
42 @@ -91,7 +91,9 @@
43 HA_KEY_ALG_BTREE= 1, /* B-tree , default one */
44 HA_KEY_ALG_RTREE= 2, /* R-tree , for spatial searches */
45 HA_KEY_ALG_HASH= 3, /* HASH keys (HEAP tables) */
46 - HA_KEY_ALG_FULLTEXT= 4 /* FULLTEXT (MyISAM tables) */
47 + HA_KEY_ALG_FULLTEXT= 4, /* FULLTEXT (MyISAM tables) */
48 + HA_KEY_ALG_GIST_RSTAR= 5, /* GiST R-start algorithm */
49 + HA_KEY_ALG_GIST_RGUT83= 6, /* GiST R-tree Gutman ’s original

algorithm */
50 };
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51
52 /* Storage media types */
53 @@ -253,12 +255 ,13 @@
54 #define HA_NULL_ARE_EQUAL 2048 /* NULL in key are cmp as equal */
55 #define HA_GENERATED_KEY 8192 /* Automaticly generated key */
56 #define HA_RTREE_INDEX 16384 /* For RTREE search */
57 +#define HA_GIST_INDEX 4096 /* For GIST search */
58
59 /* The combination of the above can be used for key type comparison.

*/
60 #define HA_KEYFLAG_MASK (HA_NOSAME | HA_PACK_KEY | HA_AUTO_KEY | \
61 HA_BINARY_PACK_KEY | HA_FULLTEXT | HA_UNIQUE_CHECK

| \
62 HA_SPATIAL | HA_NULL_ARE_EQUAL | HA_GENERATED_KEY |

\
63 - HA_RTREE_INDEX)
64 + HA_RTREE_INDEX | HA_GIST_INDEX )
65
66 /*
67 Key contains partial segments.
68

69 === modified file ’include/myisam.h’

70 --- include/myisam.h 2012 -03 -27 23:04:46 +0000
71 +++ include/myisam.h 2012 -08 -18 05:37:44 +0000
72 @@ -163,7 +163,7 @@
73 uint16 keysegs; /* Number of key -segment */
74 uint16 flag; /* NOSAME , PACK_USED */
75
76 - uint8 key_alg; /* BTREE , RTREE */
77 + uint8 key_alg; /* BTREE , RTREE , GIST */
78 uint16 block_length; /* Length of keyblock (auto) */
79 uint16 underflow_block_length; /* When to execute underflow */
80 uint16 keylength; /* Tot length of keyparts (auto) */
81

82 === modified file ’sql/handler.h’

83 --- sql/handler.h 2012 -07 -16 07:48:03 +0000
84 +++ sql/handler.h 2012 -08 -18 05:37:44 +0000
85 @@ -187,6 +187,7 @@
86 engine.
87 */
88 #define HA_MUST_USE_TABLE_CONDITION_PUSHDOWN (LL(1) << 42)
89 +#define HA_CAN_GISTKEYS (LL(1) << 43)
90
91 /*
92 Set of all binlog flags. Currently only contain the capabilities
93

94 === modified file ’sql/lex.h’

95 --- sql/lex.h 2012 -03 -11 22:45:18 +0000
96 +++ sql/lex.h 2012 -08 -18 05:37:44 +0000
97 @@ -24,6 +24,7 @@
98 SYM_GROUP sym_group_common= {"", ""};
99 SYM_GROUP sym_group_geom= {" Spatial extentions", "HAVE_SPATIAL "};

100 SYM_GROUP sym_group_rtree= {"RTree keys", "HAVE_RTREE_KEYS "};
101 +/* SYM_GROUP sym_group_dummy= {"Dummy keys", "HAVE_DUMMY_KEYS "};*/
102
103 /* We don ’t want to include sql_yacc.h into gen_lex_hash */
104 #ifdef NO_YACC_SYMBOLS
105 @@ -245,6 +246,8 @@
106 { "GEOMETRY", SYM(GEOMETRY_SYM)},
107 { "GEOMETRYCOLLECTION",SYM(GEOMETRYCOLLECTION)},
108 { "GET_FORMAT", SYM(GET_FORMAT)},
109 + { "GIST_RSTAR", SYM(GIST_RSTAR_SYM)},
110 + { "GIST_RGUT83", SYM(GIST_RGUT83_SYM)},
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111 { "GLOBAL", SYM(GLOBAL_SYM)},
112 { "GRANT", SYM(GRANT)},
113 { "GRANTS", SYM(GRANTS)},
114

115 === modified file ’sql/mysqld.cc ’

116 --- sql/mysqld.cc 2012 -08 -09 15:22:00 +0000
117 +++ sql/mysqld.cc 2012 -08 -18 05:37:44 +0000
118 @@ -633,7 +633,7 @@
119 MY_LOCALE *my_default_lc_time_names;
120
121 SHOW_COMP_OPTION have_ssl , have_symlink , have_dlopen , have_query_cache;
122 -SHOW_COMP_OPTION have_geometry , have_rtree_keys;
123 +SHOW_COMP_OPTION have_geometry , have_rtree_keys , have_gist_keys;
124 SHOW_COMP_OPTION have_crypt , have_compress;
125 SHOW_COMP_OPTION have_profiling;
126
127 @@ -7346,6 +7346 ,11 @@
128 #else
129 have_rtree_keys=SHOW_OPTION_NO;
130 #endif
131 +#ifdef HAVE_GIST_KEYS
132 + have_gist_keys=SHOW_OPTION_YES;
133 +#else
134 + have_gist_keys=SHOW_OPTION_NO;
135 +#endif
136 #ifdef HAVE_CRYPT
137 have_crypt=SHOW_OPTION_YES;
138 #else
139

140 === modified file ’sql/set_var.h’

141 --- sql/set_var.h 2012 -03 -27 23:04:46 +0000
142 +++ sql/set_var.h 2012 -08 -18 05:37:44 +0000
143 @@ -293,7 +293,7 @@
144
145 extern SHOW_COMP_OPTION have_ssl , have_symlink , have_dlopen;
146 extern SHOW_COMP_OPTION have_query_cache;
147 -extern SHOW_COMP_OPTION have_geometry , have_rtree_keys;
148 +extern SHOW_COMP_OPTION have_geometry , have_rtree_keys , have_gist_keys;
149 extern SHOW_COMP_OPTION have_crypt;
150 extern SHOW_COMP_OPTION have_compress;
151
152

153 === modified file ’sql/sql_show.cc ’

154 --- sql/sql_show.cc 2012 -08 -09 15:22:00 +0000
155 +++ sql/sql_show.cc 2012 -08 -18 05:37:44 +0000
156 @@ -1661,6 +1661 ,12 @@
157 !(key_info ->flags & HA_SPATIAL))
158 packet ->append(STRING_WITH_LEN (" USING RTREE"));
159
160 + if (key_info ->algorithm == HA_KEY_ALG_GIST_RSTAR )
161 + packet ->append(STRING_WITH_LEN (" USING GIST_RSTAR "));
162 +
163 + if (key_info ->algorithm == HA_KEY_ALG_GIST_RGUT83 )
164 + packet ->append(STRING_WITH_LEN (" USING GIST_RGUT83 "));
165 +
166 if ((key_info ->flags & HA_USES_BLOCK_SIZE) &&
167 table ->s->key_block_size != key_info ->block_size)
168 {
169

170 === modified file ’sql/sql_table.cc ’

171 --- sql/sql_table.cc 2012 -08 -15 11:37:55 +0000
172 +++ sql/sql_table.cc 2012 -08 -18 05:37:44 +0000
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173 @@ -3393,6 +3393 ,7 @@
174 */
175
176 /* TODO: Add proper checks if handler supports key_type and algorithm */
177 + DBUG_PRINT ("info", ("key_info ->flags: %lu", key_info ->flags))

;
178 if (key_info ->flags & HA_SPATIAL)
179 {
180 if (!(file ->ha_table_flags () & HA_CAN_RTREEKEYS))
181

182 === modified file ’sql/sql_yacc.yy ’

183 --- sql/sql_yacc.yy 2012 -08 -09 15:22:00 +0000
184 +++ sql/sql_yacc.yy 2012 -08 -18 05:37:44 +0000
185 @@ -754,6 +754,7 @@
186 enum enum_var_type var_type;
187 Key:: Keytype key_type;
188 enum ha_key_alg key_alg;
189 + enum ha_key_alg gist_key_alg;
190 handlerton *db_type;
191 enum row_type row_type;
192 enum ha_rkey_function ha_rkey_mode;
193 @@ -1009,6 +1010 ,9 @@
194 %token GEOMETRYCOLLECTION
195 %token GEOMETRY_SYM
196 %token GET_FORMAT /* MYSQL -FUNC */
197 +%token GIST_SYM /* GiST tree and algorithms */
198 +%token GIST_RSTAR_SYM
199 +%token GIST_RGUT83_SYM
200 %token GLOBAL_SYM /* SQL -2003-R */
201 %token GRANT /* SQL -2003 -R */
202 %token GRANTS
203 @@ -1533,6 +1537 ,10 @@
204 %type <key_alg >
205 btree_or_rtree
206
207 +%type <gist_key_alg >
208 + gist_variant
209 +
210 +
211 %type <string_list >
212 using_list
213
214 @@ -2123,7 +2131 ,7 @@
215 if (add_create_index_prepare(Lex , $7))
216 MYSQL_YYABORT;
217 }
218 - ’(’ key_list ’)’ spatial_key_options
219 + ’(’ key_list ’)’ gist_key_alg spatial_key_options
220 {
221 if (add_create_index(Lex , $2, $4))
222 MYSQL_YYABORT;
223 @@ -5404,7 +5412 ,7 @@
224 | spatial opt_key_or_index opt_ident init_key_options
225 ’(’ key_list ’)’
226 { Lex ->option_list= NULL; }
227 - spatial_key_options
228 + gist_key_alg spatial_key_options
229 {
230 if (add_create_index (Lex , $1 , $3))
231 MYSQL_YYABORT;
232 @@ -6271,6 +6279 ,11 @@
233 | init_key_options key_using_alg
234 ;
235
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236 +gist_key_alg:
237 + /* empty */ {}
238 + | USING gist_variant { Lex ->key_create_info.algorithm= $2; }
239 + ;
240 +
241 normal_key_options:
242 /* empty */ {}
243 | normal_key_opts
244 @@ -6364,6 +6377 ,11 @@
245 | HASH_SYM { $$= HA_KEY_ALG_HASH; }
246 ;
247
248 +gist_variant:
249 + GIST_RSTAR_SYM { $$= HA_KEY_ALG_GIST_RSTAR; }
250 + | GIST_RGUT83_SYM { $$= HA_KEY_ALG_GIST_RGUT83; }
251 + ;
252 +
253 key_list:
254 key_list ’,’ key_part order_dir { Lex ->col_list.push_back($3); }
255 | key_part order_dir { Lex ->col_list.push_back($1); }
256 @@ -13069,6 +13087 ,9 @@
257 | GEOMETRY_SYM {}
258 | GEOMETRYCOLLECTION {}
259 | GET_FORMAT {}
260 + | GIST_SYM {}
261 + | GIST_RSTAR_SYM {}
262 + | GIST_RGUT83_SYM {}
263 | GRANTS {}
264 | GLOBAL_SYM {}
265 | HASH_SYM {}
266

267 === modified file ’sql/sys_vars.cc ’

268 --- sql/sys_vars.cc 2012 -08 -14 10:40:40 +0000
269 +++ sql/sys_vars.cc 2012 -08 -18 05:37:44 +0000
270 @@ -3114,6 +3114 ,10 @@
271 "have_rtree_keys", "have_rtree_keys",
272 READ_ONLY GLOBAL_VAR(have_rtree_keys), NO_CMD_LINE);
273
274 +static Sys_var_have Sys_have_gist_keys(
275 + "have_gist_keys", "have_gist_keys",
276 + READ_ONLY GLOBAL_VAR(have_gist_keys), NO_CMD_LINE);
277 +
278 static Sys_var_have Sys_have_ssl(
279 "have_ssl", "have_ssl",
280 READ_ONLY GLOBAL_VAR(have_ssl), NO_CMD_LINE);
281

282 === modified file ’storage/myisam/CMakeLists.txt ’

283 --- storage/myisam/CMakeLists.txt 2012 -05 -22 09:04:32 +0000
284 +++ storage/myisam/CMakeLists.txt 2012 -08 -18 05:37:44 +0000
285 @@ -25,7 +25,8 @@
286 mi_rsame.c mi_rsamepos.c mi_scan.c mi_search.

c mi_static.c mi_statrec.c
287 mi_unique.c mi_update.c mi_write.c rt_index.c

rt_key.c rt_mbr.c
288 rt_split.c sort.c sp_key.c mi_extrafunc.h

myisamdef.h
289 - rt_index.h mi_rkey.c)
290 + rt_index.h mi_rkey.c
291 + gist_index.h gist_index.c)
292
293 MYSQL_ADD_PLUGIN(myisam ${MYISAM_SOURCES}
294 STORAGE_ENGINE
295
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296 === added file ’storage/myisam/gist_index.c’

297 --- storage/myisam/gist_index.c 1970 -01 -01 00:00:00 +0000
298 +++ storage/myisam/gist_index.c 2012 -08 -18 05:37:44 +0000
299 @@ -0,0 +1,219 @@
300 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
301 +
302 + This program is free software; you can redistribute it and/or modify
303 + it under the terms of the GNU General Public License as published by
304 + the Free Software Foundation; version 2 of the License.
305 +
306 + This program is distributed in the hope that it will be useful ,
307 + but WITHOUT ANY WARRANTY; without even the implied warranty of
308 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
309 + GNU General Public License for more details.
310 +
311 + You should have received a copy of the GNU General Public License
312 + along with this program; if not , write to the Free Software
313 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
314 +
315 +#include "myisamdef.h"
316 +
317 +#ifdef HAVE_GIST_KEYS
318 +
319 +#include "gist_index.h"
320 +
321 +typedef struct st_page_level
322 +{
323 + uint level;
324 + my_off_t offs;
325 +} stPageLevel;
326 +
327 +typedef struct st_page_list
328 +{
329 + ulong n_pages;
330 + ulong m_pages;
331 + stPageLevel *pages;
332 +} stPageList;
333 +
334 +
335 +
336 +
337 +/*
338 + Find first key in gist -tree according to search_flag condition
339 +
340 + SYNOPSIS
341 + gist_find_first ()
342 + info Handler to MyISAM file
343 + uint keynr Key number to use
344 + key Key to search for
345 + key_length Length of ’key ’
346 + search_flag Bitmap of flags how to do the search
347 +
348 + RETURN
349 + -1 Error
350 + 0 Found
351 + 1 Not found
352 +*/
353 +
354 +int gist_find_first(MI_INFO *info , uint keynr , uchar *key , uint key_length ,
355 + uint search_flag)
356 +{
357 +
358 + my_off_t root;
359 + //uint nod_cmp_flag;
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360 + // MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
361 + DBUG_ENTER (" gist_find_first "); // no DBUG were initially used
362 + if ((root = info ->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
363 + {
364 + my_errno= HA_ERR_END_OF_FILE;
365 + return -1;
366 + }
367 + DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u

search_flag: %u", (ulong) info , keynr , key , key_length , search_flag ) );
368 + DBUG_RETURN (0); /* sceleton return */
369 +
370 +}
371 +
372 +
373 +/*
374 + Find next key in gist -tree according to search_flag condition
375 +
376 + SYNOPSIS
377 + gist_find_next ()
378 + info Handler to MyISAM file
379 + uint keynr Key number to use
380 + search_flag Bitmap of flags how to do the search
381 +
382 + RETURN
383 + -1 Error
384 + 0 Found
385 + 1 Not found
386 +*/
387 +
388 +int gist_find_next(MI_INFO *info , uint keynr , uint search_flag)
389 +{
390 + my_off_t root;
391 + uint nod_cmp_flag;
392 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
393 +
394 + nod_cmp_flag = 0;
395 + root = 0;
396 + DBUG_PRINT ("gist", ("info: %lu keynr: %u search_flag: %u", (ulong) info ,

keynr , search_flag ) );
397 + DBUG_PRINT ("gist", (" keyinfo: %lu keynr: %u search_flag: %lu", (ulong)

keyinfo , nod_cmp_flag , (ulong) root ) );
398 +
399 + if (info ->update & HA_STATE_DELETED)
400 + return gist_find_first(info , keynr , info ->lastkey , info ->lastkey_length ,
401 + search_flag);
402 +
403 + my_errno= HA_ERR_END_OF_FILE;
404 + return -1;
405 +}
406 +
407 +
408 +
409 +/*
410 + Get first key in gist -tree
411 +
412 + RETURN
413 + -1 Error
414 + 0 Found
415 + 1 Not found
416 +*/
417 +
418 +int gist_get_first(MI_INFO *info , uint keynr , uint key_length)
419 +{
420 + my_off_t root;
421 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
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422 +
423 + DBUG_PRINT ("gist", ("nfo: %lu keynr: %u key_length: %u, keyinfo: %p", (

ulong) info , keynr , key_length , keyinfo ) );
424 +
425 +
426 + if ((root = info ->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
427 + {
428 + my_errno= HA_ERR_END_OF_FILE;
429 + return -1;
430 + }
431 +
432 + return -1;
433 +}
434 +
435 +
436 +/*
437 + Get next key in gist -tree
438 +
439 + RETURN
440 + -1 Error
441 + 0 Found
442 + 1 Not found
443 +*/
444 +
445 +int gist_get_next(MI_INFO *info , uint keynr , uint key_length)
446 +{
447 + my_off_t root= info ->s->state.key_root[keynr];
448 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
449 +
450 + DBUG_PRINT ("gist", ("info: %lu keynr: %u key_length: %u, keyinfo: %p,

root: %lu", (ulong) info , keynr , key_length , keyinfo , (ulong) root ) );
451 +
452 + if (root == HA_OFFSET_ERROR)
453 + {
454 + my_errno= HA_ERR_END_OF_FILE;
455 + return -1;
456 + }
457 +
458 + return -1;
459 +}
460 +
461 +
462 +
463 +
464 +/*
465 + Insert key into the tree - interface function
466 +
467 + RETURN
468 + -1 Error
469 + 0 OK
470 +*/
471 +
472 +int gist_insert(MI_INFO *info , uint keynr , uchar *key , uint key_length)
473 +{
474 + DBUG_ENTER (" gist_insert ");
475 + /* DBUG_RETURN ((! key_length || */
476 + /* (gist_insert_level(info , keynr , key , key_length , -1) ==

-1)) ? */
477 + /* -1 : 0); */
478 + DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u", (ulong

) info , keynr , key , key_length ) );
479 + DBUG_RETURN (-1); /* sceleton return */
480 +}
481 +
482 +
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483 +
484 +
485 +/*
486 + Delete key - interface function
487 +
488 + RETURN
489 + -1 Error
490 + 0 Deleted
491 +*/
492 +
493 +int gist_delete(MI_INFO *info , uint keynr , uchar *key , uint key_length)
494 +{
495 + uint page_size;
496 + stPageList ReinsertList;
497 + my_off_t old_root;
498 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
499 + DBUG_ENTER (" gist_delete ");
500 +
501 + if (( old_root = info ->s->state.key_root[keynr ]) == HA_OFFSET_ERROR)
502 + {
503 + my_errno= HA_ERR_END_OF_FILE;
504 + DBUG_RETURN (-1); /* purecov: inspected */
505 + }
506 + DBUG_PRINT ("rtree", (" starting deletion at root page: %lu",
507 + (ulong) old_root));
508 +
509 + page_size = 0;
510 + DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u", (ulong

) info , keynr , key , key_length ) );
511 + DBUG_PRINT ("gist", (" page_size: %u ReinsertList: %p keyinfo: %p ",

page_size , &ReinsertList , keyinfo ) );
512 + DBUG_RETURN (-1); /* sceleton return */
513 +}
514 +
515 +
516 +
517 +#endif /* HAVE_RTREE_KEYS */
518 +
519

520 === added file ’storage/myisam/gist_index.h’

521 --- storage/myisam/gist_index.h 1970 -01 -01 00:00:00 +0000
522 +++ storage/myisam/gist_index.h 2012 -08 -18 05:37:44 +0000
523 @@ -0,0 +1,39 @@
524 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
525 +
526 + This program is free software; you can redistribute it and/or modify
527 + it under the terms of the GNU General Public License as published by
528 + the Free Software Foundation; version 2 of the License.
529 +
530 + This program is distributed in the hope that it will be useful ,
531 + but WITHOUT ANY WARRANTY; without even the implied warranty of
532 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
533 + GNU General Public License for more details.
534 +
535 + You should have received a copy of the GNU General Public License
536 + along with this program; if not , write to the Free Software
537 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
538 +
539 +#ifndef _gist_index_h
540 +#define _gist_index_h
541 +
542 +#ifdef HAVE_GIST_KEYS
543 +
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544 +#define gist_PAGE_FIRST_KEY(page , nod_flag) (page + 2 + nod_flag)
545 +#define gist_PAGE_NEXT_KEY(key , key_length , nod_flag) (key + key_length + \
546 + (nod_flag ? nod_flag : info ->s->base.rec_reflength))
547 +#define gist_PAGE_END(page) (page + mi_getint(page))
548 +
549 +#define gist_PAGE_MIN_SIZE(block_length) ((uint)(block_length) / 3)
550 +
551 +int gist_insert(MI_INFO *info , uint keynr , uchar *key , uint key_length);
552 +int gist_delete(MI_INFO *info , uint keynr , uchar *key , uint key_length);
553 +
554 +int gist_find_first(MI_INFO *info , uint keynr , uchar *key , uint key_length ,
555 + uint search_flag);
556 +int gist_find_next(MI_INFO *info , uint keynr , uint search_flag);
557 +
558 +int gist_get_first(MI_INFO *info , uint keynr , uint key_length);
559 +int gist_get_next(MI_INFO *info , uint keynr , uint key_length);
560 +
561 +#endif /* HAVE_GIST_KEYS */
562 +#endif /* _gist_index_h */
563

564 === added file ’storage/myisam/gist_key.c’

565 --- storage/myisam/gist_key.c 1970 -01 -01 00:00:00 +0000
566 +++ storage/myisam/gist_key.c 2012 -08 -18 05:37:44 +0000
567 @@ -0,0 +1,23 @@
568 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
569 +
570 + This program is free software; you can redistribute it and/or modify
571 + it under the terms of the GNU General Public License as published by
572 + the Free Software Foundation; version 2 of the License.
573 +
574 + This program is distributed in the hope that it will be useful ,
575 + but WITHOUT ANY WARRANTY; without even the implied warranty of
576 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
577 + GNU General Public License for more details.
578 +
579 + You should have received a copy of the GNU General Public License
580 + along with this program; if not , write to the Free Software
581 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
582 +
583 +#include "myisamdef.h"
584 +
585 +#ifdef HAVE_GIST_KEYS
586 +#include "gist_index.h"
587 +#include "gist_key.h"
588 +
589 +
590 +#endif /* HAVE_GIST_KEYS */
591

592 === added file ’storage/myisam/gist_key.h’

593 --- storage/myisam/gist_key.h 1970 -01 -01 00:00:00 +0000
594 +++ storage/myisam/gist_key.h 2012 -08 -18 05:37:44 +0000
595 @@ -0,0 +1,23 @@
596 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
597 +
598 + This program is free software; you can redistribute it and/or modify
599 + it under the terms of the GNU General Public License as published by
600 + the Free Software Foundation; version 2 of the License.
601 +
602 + This program is distributed in the hope that it will be useful ,
603 + but WITHOUT ANY WARRANTY; without even the implied warranty of
604 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
605 + GNU General Public License for more details.
606 +
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607 + You should have received a copy of the GNU General Public License
608 + along with this program; if not , write to the Free Software
609 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
610 +
611 +
612 +#ifndef _gist_key_h
613 +#define _gist_key_h
614 +
615 +#ifdef HAVE_GIST_KEYS
616 +
617 +#endif /* HAVE_GIST_KEYS */
618 +#endif /* _gist_key_h */
619

620 === modified file ’storage/myisam/ha_myisam.cc ’

621 --- storage/myisam/ha_myisam.cc 2012 -07 -18 18:40:15 +0000
622 +++ storage/myisam/ha_myisam.cc 2012 -08 -18 05:37:44 +0000
623 @@ -242,6 +242,7 @@
624 keydef[i]. key_alg= pos ->algorithm == HA_KEY_ALG_UNDEF ?
625 (pos ->flags & HA_SPATIAL ? HA_KEY_ALG_RTREE : HA_KEY_ALG_BTREE) :
626 pos ->algorithm;
627 + DBUG_PRINT ("debug", (" algorithm: %u, flag: %u", keydef[i].key_alg ,

keydef[i].flag ));
628 keydef[i]. block_length= pos ->block_size;
629 keydef[i].seg= keyseg;
630 keydef[i]. keysegs= pos ->key_parts;
631 @@ -650,7 +651,7 @@
632 HA_CAN_VIRTUAL_COLUMNS |
633 HA_DUPLICATE_POS | HA_CAN_INDEX_BLOBS | HA_AUTO_PART_KEY |
634 HA_FILE_BASED | HA_CAN_GEOMETRY | HA_NO_TRANSACTIONS |
635 - HA_CAN_INSERT_DELAYED | HA_CAN_BIT_FIELD |

HA_CAN_RTREEKEYS |
636 + HA_CAN_INSERT_DELAYED | HA_CAN_BIT_FIELD |

HA_CAN_RTREEKEYS | HA_CAN_GISTKEYS |
637 HA_HAS_RECORDS | HA_STATS_RECORDS_IS_EXACT | HA_CAN_REPAIR

),
638 can_enable_indexes (1)
639 {}
640 @@ -685,6 +686 ,10 @@
641 "SPATIAL" :
642 (table ->key_info[key_number ]. algorithm == HA_KEY_ALG_RTREE) ?
643 "RTREE" :
644 + (table ->key_info[key_number ]. algorithm == HA_KEY_ALG_GIST_RSTAR) ?
645 + "GIST_RSTAR" :
646 + (table ->key_info[key_number ]. algorithm == HA_KEY_ALG_GIST_RGUT83) ?
647 + "GIST_RGUT83" :
648 "BTREE");
649 }
650
651

652 === modified file ’storage/myisam/mi_check.c’

653 --- storage/myisam/mi_check.c 2012 -04 -07 13:58:46 +0000
654 +++ storage/myisam/mi_check.c 2012 -08 -18 05:37:44 +0000
655 @@ -52,6 +52,7 @@
656 #include <sys/mman.h>
657 #endif
658 #include "rt_index.h"
659 +#include "gist_index.h"
660
661 /* Functions defined in this file */
662
663 @@ -1222,14 +1223 ,29 @@
664 /* We don ’t need to lock the key tree here as we don ’t allow
665 concurrent threads when running myisamchk
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666 */
667 - int search_result=
668 + int search_result;
669 #ifdef HAVE_RTREE_KEYS
670 - (keyinfo ->flag & HA_SPATIAL) ?
671 - rtree_find_first(info , key , info ->lastkey , key_length ,
672 - MBR_EQUAL | MBR_DATA) :
673 -#endif
674 + if (keyinfo ->flag & HA_SPATIAL)
675 + {
676 + search_result = rtree_find_first(info , key , info ->lastkey ,
677 + key_length , MBR_EQUAL | MBR_DATA);
678 + }
679 + else
680 +#endif
681 +#ifdef HAVE_GIST_KEYS
682 + if (search_result && keyinfo ->flag & HA_GIST_INDEX)
683 + {
684 + search_result = gist_find_first(info , key , info ->lastkey ,
685 + key_length , 0);
686 + }
687 + else
688 +#endif
689 + if (search_result)
690 + {
691 _mi_search(info ,keyinfo ,info ->lastkey ,key_length ,
692 SEARCH_SAME , info ->s->state.key_root[key]);
693 + }
694 +
695 if (search_result)
696 {
697 mi_check_print_error(param ," Record at: %10s "
698 @@ -1919,7 +1935 ,9 @@
699 /* cannot sort index files with R-tree indexes */
700 for (key= 0,keyinfo= &share ->keyinfo [0]; key < share ->base.keys ;
701 key++,keyinfo ++)
702 - if (keyinfo ->key_alg == HA_KEY_ALG_RTREE)
703 + if (keyinfo ->key_alg == HA_KEY_ALG_RTREE ||
704 + keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ||
705 + keyinfo ->key_alg == HA_KEY_ALG_GIST_RGUT83)
706 DBUG_RETURN (0);
707
708 if (!(param ->testflag & T_SILENT))
709 @@ -2020,6 +2038 ,8 @@
710
711 /* cannot walk over R-tree indices */
712 DBUG_ASSERT(keyinfo ->key_alg != HA_KEY_ALG_RTREE);
713 + DBUG_ASSERT(keyinfo ->key_alg != HA_KEY_ALG_GIST_RSTAR);
714 + DBUG_ASSERT(keyinfo ->key_alg != HA_KEY_ALG_GIST_RSTAR);
715 new_page_pos=param ->new_file_pos;
716 param ->new_file_pos +=keyinfo ->block_length;
717
718

719 === modified file ’storage/myisam/mi_create.c’

720 --- storage/myisam/mi_create.c 2012 -03 -06 19:46:07 +0000
721 +++ storage/myisam/mi_create.c 2012 -08 -18 05:37:44 +0000
722 @@ -254,9 +254 ,11 @@
723 share.state.key_root[i]= HA_OFFSET_ERROR;
724 min_key_length_skip=length=real_length_diff =0;
725 key_length=pointer;
726 + DBUG_PRINT ("debug", (" keydef flag: %u", keydef ->flag));
727 if (keydef ->flag & HA_SPATIAL)
728 {
729 #ifdef HAVE_SPATIAL
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730 +
731 /* BAR TODO to support 3D and more dimensions in the future */
732 uint sp_segs=SPDIMS *2;
733 keydef ->flag=HA_SPATIAL;
734

735 === modified file ’storage/myisam/mi_open.c’

736 --- storage/myisam/mi_open.c 2012 -03 -06 19:46:07 +0000
737 +++ storage/myisam/mi_open.c 2012 -08 -18 05:37:44 +0000
738 @@ -19,6 +19,7 @@
739 #include "fulltext.h"
740 #include "sp_defs.h"
741 #include "rt_index.h"
742 +#include "gist_index.h"
743 #include <m_ctype.h>
744 #include <mysql_version.h>
745
746 @@ -71,7 +72,7 @@
747
748 MI_INFO *mi_open(const char *name , int mode , uint open_flags)
749 {
750 - int lock_error ,kfile ,open_mode ,save_errno ,have_rtree =0, realpath_err;
751 + int lock_error ,kfile ,open_mode ,save_errno ,have_rtree =0, have_gist =0,

realpath_err;
752 uint i,j,len ,errpos ,head_length ,base_pos ,offset ,info_length ,keys ,
753 key_parts ,unique_key_parts ,base_key_parts ,fulltext_keys ,uniques;
754 char name_buff[FN_REFLEN], org_name[FN_REFLEN], index_name[FN_REFLEN],
755 @@ -322,6 +323 ,12 @@
756 end_pos);
757 if (share ->keyinfo[i]. key_alg == HA_KEY_ALG_RTREE)
758 have_rtree =1;
759 + if (share ->keyinfo[i]. key_alg == HA_KEY_ALG_GIST_RSTAR ||
760 + share ->keyinfo[i]. key_alg == HA_KEY_ALG_GIST_RGUT83)
761 + {
762 + have_gist =1;
763 + }
764 +
765 set_if_smaller(share ->blocksize ,share ->keyinfo[i]. block_length);
766 share ->keyinfo[i].seg=pos;
767 for (j=0 ; j < share ->keyinfo[i]. keysegs; j++,pos ++)
768 @@ -528,7 +535,7 @@
769 HA_OPTION_COMPRESS_RECORD |
770 HA_OPTION_TEMP_COMPRESS_RECORD)) ||
771 (open_flags & HA_OPEN_TMP_TABLE) ||
772 - have_rtree) ? 0 : 1;
773 + have_rtree || have_gist) ? 0 : 1;
774 if (share ->concurrent_insert)
775 {
776 share ->lock.get_status=mi_get_status;
777 @@ -560,6 +567,7 @@
778 goto err;
779 errpos =5;
780 have_rtree= old_info ->rtree_recursion_state != NULL;
781 + have_gist= old_info ->gist_recursion_state != NULL;
782 }
783
784 /* alloc and set up private structure parts */
785 @@ -572,6 +580,7 @@
786 &info.first_mbr_key , share ->base.max_key_length ,
787 &info.filename ,strlen(name)+1,
788 &info.rtree_recursion_state ,have_rtree ? 1024 : 0,
789 + &info.gist_recursion_state ,have_gist ? 1024 : 0,
790 NullS))
791 goto err;
792 errpos =6;
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793 @@ -579,6 +588 ,10 @@
794 if (! have_rtree)
795 info.rtree_recursion_state= NULL;
796
797 + if (! have_gist)
798 + {
799 + info.gist_recursion_state= NULL;
800 + }
801 strmov(info.filename ,name);
802 memcpy(info.blobs ,share ->blobs ,sizeof(MI_BLOB)*share ->base.blobs);
803 info.lastkey2=info.lastkey+share ->base.max_key_length;
804 @@ -812,6 +825 ,17 @@
805 DBUG_ASSERT (0); /* mi_open should check it never happens */
806 #endif
807 }
808 + else if (keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ||
809 + keyinfo ->key_alg == HA_KEY_ALG_GIST_RGUT83)
810 + {
811 +#ifdef HAVE_GIST_KEYS
812 + /* gist api will cal lthe proper key specific functionality */
813 + keyinfo ->ck_insert = gist_insert;
814 + keyinfo ->ck_delete = gist_delete;
815 +#else
816 + DBUG_ASSERT (0); /* mi_open should check it never happens */
817 +#endif
818 + }
819 else
820 {
821 keyinfo ->ck_insert = _mi_ck_write;
822 @@ -819,6 +843,7 @@
823 }
824 if (keyinfo ->flag & HA_BINARY_PACK_KEY)
825 { /* Simple prefix compression

*/
826 + DBUG_PRINT ("info", (" HA_BINARY_PACK_KEY: bin_search -> _mi_seq_search "))

;
827 keyinfo ->bin_search=_mi_seq_search;
828 keyinfo ->get_key=_mi_get_binary_pack_key;
829 keyinfo ->pack_key=_mi_calc_bin_pack_key_length;
830 @@ -837,6 +862,7 @@
831 cannot represent blank like ASCII does. In these cases we have
832 to use _mi_seq_search () for the search.
833 */
834 + DBUG_PRINT ("info", (" HA_VAR_LENGTH_KEY , HA_PACK_KEY: bin_search ->

_mi_seq_search OR _mi_prefix_search "));
835 if (!keyinfo ->seg ->charset || use_strnxfrm(keyinfo ->seg ->charset) ||
836 (keyinfo ->seg ->flag & HA_NULL_PART) ||
837 (keyinfo ->seg ->charset ->mbminlen > 1))
838 @@ -848,6 +874,7 @@
839 }
840 else
841 {
842 + DBUG_PRINT ("info", (" HA_VAR_LENGTH_KEY , no HA_PACK_KEY: bin_search ->

_mi_seq_search "));
843 keyinfo ->bin_search=_mi_seq_search;
844 keyinfo ->pack_key=_mi_calc_var_key_length; /* Variable length key */
845 keyinfo ->store_key=_mi_store_static_key;
846 @@ -855,6 +882,7 @@
847 }
848 else
849 {
850 + DBUG_PRINT ("info", (" other key flag: bin_search -> _mi_bin_search "));
851 keyinfo ->bin_search=_mi_bin_search;
852 keyinfo ->get_key=_mi_get_static_key;
853 keyinfo ->pack_key=_mi_calc_static_key_length;



168 Patches for the MariaDB codebase

854

855 === modified file ’storage/myisam/mi_rkey.c’

856 --- storage/myisam/mi_rkey.c 2012 -02 -21 19:51:56 +0000
857 +++ storage/myisam/mi_rkey.c 2012 -08 -18 05:37:44 +0000
858 @@ -18,6 +18,7 @@
859
860 #include "myisamdef.h"
861 #include "rt_index.h"
862 +#include "gist_index.h"
863
864 /* Read a record using key */
865 /* Ordinary search_flag is 0 ; Give error if no record with key */
866 @@ -94,6 +95,30 @@
867 }
868 break;
869 #endif
870 +#ifdef HAVE_GIST_KEYS
871 + case HA_KEY_ALG_GIST_RSTAR:
872 + if (gist_find_first(info ,inx ,key_buff ,use_key_length ,nextflag) < 0)
873 + {
874 + mi_print_error(info ->s, HA_ERR_CRASHED);
875 + my_errno=HA_ERR_CRASHED;
876 + if (share ->concurrent_insert)
877 + rw_unlock (&share ->key_root_lock[inx]);
878 + fast_mi_writeinfo(info);
879 + goto err;
880 + }
881 + break;
882 + case HA_KEY_ALG_GIST_RGUT83:
883 + if (gist_find_first(info ,inx ,key_buff ,use_key_length ,nextflag) < 0)
884 + {
885 + mi_print_error(info ->s, HA_ERR_CRASHED);
886 + my_errno=HA_ERR_CRASHED;
887 + if (share ->concurrent_insert)
888 + rw_unlock (&share ->key_root_lock[inx]);
889 + fast_mi_writeinfo(info);
890 + goto err;
891 + }
892 + break;
893 +#endif
894 case HA_KEY_ALG_BTREE:
895 default:
896 if (! _mi_search(info , keyinfo , key_buff , use_key_length ,
897

898 === modified file ’storage/myisam/mi_rnext.c’

899 --- storage/myisam/mi_rnext.c 2012 -01 -13 14:50:02 +0000
900 +++ storage/myisam/mi_rnext.c 2012 -08 -18 05:37:44 +0000
901 @@ -17,6 +17,7 @@
902 #include "myisamdef.h"
903
904 #include "rt_index.h"
905 +#include "gist_index.h"
906
907 /*
908 Read next row with the same key as previous read
909 @@ -52,6 +53,14 @@
910 error=rtree_get_first(info ,inx ,info ->lastkey_length);
911 break;
912 #endif
913 +#ifdef HAVE_GIST_KEYS
914 + case HA_KEY_ALG_GIST_RSTAR:
915 + error=gist_get_first(info ,inx ,info ->lastkey_length);
916 + break;
917 + case HA_KEY_ALG_GIST_RGUT83:
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918 + error=gist_get_first(info ,inx ,info ->lastkey_length);
919 + break;
920 +#endif
921 case HA_KEY_ALG_BTREE:
922 default:
923 error=_mi_search_first(info ,info ->s->keyinfo+inx ,
924 @@ -86,6 +95,21 @@
925 error= rtree_get_next(info ,inx ,info ->lastkey_length);
926 break;
927 #endif
928 +#ifdef HAVE_GIST_KEYS
929 + case HA_KEY_ALG_GIST_RSTAR:
930 + /*
931 + Note (from rtree ?)
932 + */
933 + error= gist_get_next(info ,inx ,info ->lastkey_length);
934 + break;
935 + case HA_KEY_ALG_GIST_RGUT83:
936 + /*
937 + Note (from rtree ?)
938 + */
939 + error= gist_get_next(info ,inx ,info ->lastkey_length);
940 + break;
941 +
942 +#endif
943 case HA_KEY_ALG_BTREE:
944 default:
945 if (! changed)
946

947 === modified file ’storage/myisam/mi_rnext_same.c’

948 --- storage/myisam/mi_rnext_same.c 2011 -11 -03 18:17:05 +0000
949 +++ storage/myisam/mi_rnext_same.c 2012 -08 -18 05:37:44 +0000
950 @@ -16,6 +16,7 @@
951
952 #include "myisamdef.h"
953 #include "rt_index.h"
954 +#include "gist_index.h"
955
956 /*
957 Read next row with the same key as previous read , but abort if
958 @@ -56,6 +57,28 @@
959 }
960 break;
961 #endif
962 +#ifdef HAVE_GIST_KEYS
963 + case HA_KEY_ALG_GIST_RSTAR:
964 + if ((error=gist_find_next(info ,inx ,
965 + myisam_read_vec[info ->last_key_func ])))
966 + {
967 + error =1;
968 + my_errno=HA_ERR_END_OF_FILE;
969 + info ->lastpos= HA_OFFSET_ERROR;
970 + break;
971 + }
972 + break;
973 + case HA_KEY_ALG_GIST_RGUT83:
974 + if ((error=gist_find_next(info ,inx ,
975 + myisam_read_vec[info ->last_key_func ])))
976 + {
977 + error =1;
978 + my_errno=HA_ERR_END_OF_FILE;
979 + info ->lastpos= HA_OFFSET_ERROR;
980 + break;
981 + }
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982 + break;
983 +#endif
984 case HA_KEY_ALG_BTREE:
985 default:
986 if (!(info ->update & HA_STATE_RNEXT_SAME))
987

988 === modified file ’storage/myisam/myisamdef.h’

989 --- storage/myisam/myisamdef.h 2012 -03 -27 23:04:46 +0000
990 +++ storage/myisam/myisamdef.h 2012 -08 -18 05:37:44 +0000
991 @@ -301,6 +301,7 @@
992 void *index_cond_func_arg; /* parameter for the func */
993 THR_LOCK_DATA lock;
994 uchar *rtree_recursion_state; /* For RTREE */
995 + uchar *gist_recursion_state; /* For GIST */
996 int rtree_recursion_depth;
997 };

B.2 GiST implementation

1 === added file ’mysql -test/t/gis -gist.test ’

2 --- mysql -test/t/gis -gist.test 1970 -01 -01 00:00:00 +0000
3 +++ mysql -test/t/gis -gist.test 2012 -08 -18 11:29:56 +0000
4 @@ -0,0 +1,958 @@
5 +-- source include/have_geometry.inc
6 +
7 +#
8 +# test of rtree (using with spatial data)
9 +#

10 +--disable_warnings
11 +DROP TABLE IF EXISTS t1 , t2;
12 +--enable_warnings
13 +
14 +CREATE TABLE t1 (
15 + fid INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
16 + g GEOMETRY NOT NULL ,
17 + SPATIAL KEY(g) USING GIST_RSTAR
18 +) ENGINE=MyISAM;
19 +
20 +SHOW CREATE TABLE t1;
21 +
22 +let $1=150;
23 +let $2=150;
24 +while ($1)
25 +{
26 + eval INSERT INTO t1 (g) VALUES (GeomFromText(’LineString($1 $1, $2 $2)’));
27 + dec $1;
28 + inc $2;
29 +}
30 +
31 +SELECT count (*) FROM t1;
32 +EXPLAIN SELECT fid , AsText(g) FROM t1 WHERE Within(g, GeomFromText(’Polygon

((140 140 ,160 140 ,160 160 ,140 160 ,140 140)) ’));
33 +SELECT fid , AsText(g) FROM t1 WHERE Within(g, GeomFromText(’Polygon ((140

140 ,160 140 ,160 160 ,140 160 ,140 140)) ’));
34 +
35 +DROP TABLE t1;
36 +
37 +CREATE TABLE t2 (
38 + fid INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
39 + g GEOMETRY NOT NULL
40 +) ENGINE=MyISAM;
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41 +
42 +let $1=10;
43 +while ($1)
44 +{
45 + let $2=10;
46 + while ($2)
47 + {
48 + eval INSERT INTO t2 (g) VALUES (LineString(Point($1 * 10 - 9, $2 * 10 -

9), Point($1 * 10, $2 * 10)));
49 + dec $2;
50 + }
51 + dec $1;
52 +}
53 +
54 +ALTER TABLE t2 ADD SPATIAL KEY(g) USING GIST_RSTAR;
55 +SHOW CREATE TABLE t2;
56 +SELECT count (*) FROM t2;
57 +EXPLAIN SELECT fid , AsText(g) FROM t2 WHERE Within(g,
58 + GeomFromText(’Polygon ((40 40,60 40,60 60,40 60,40 40)) ’));
59 +SELECT fid , AsText(g) FROM t2 WHERE Within(g,
60 + GeomFromText(’Polygon ((40 40,60 40,60 60,40 60,40 40)) ’));
61 +
62 +let $1=10;
63 +while ($1)
64 +{
65 + let $2=10;
66 + while ($2)
67 + {
68 + eval DELETE FROM t2 WHERE Within(g, Envelope(GeometryFromWKB(Point($1 *

10 - 9, $2 * 10 - 9), Point($1 * 10, $2 * 10))));
69 + SELECT count (*) FROM t2;
70 + dec $2;
71 + }
72 + dec $1;
73 +}
74 +
75 +DROP TABLE t2;
76 +
77 +drop table if exists t1;
78 +CREATE TABLE t1 (a geometry NOT NULL , SPATIAL (a) USING GIST_RSTAR );
79 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
80 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
81 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
82 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
83 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
84 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
85 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
86 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
87 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
88 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
89 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
90 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
91 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")
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);
92 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
93 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
94 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
95 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
96 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
97 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
98 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
99 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
100 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
101 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
102 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
103 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
104 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
105 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
106 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
107 +INSERT INTO t1 VALUES (GeomFromText (" LINESTRING (100 100, 200 200, 300 300)")

);
108 +check table t1;
109 +analyze table t1;
110 +drop table t1;
111 +
112 +#
113 +# The following crashed gis
114 +#
115 +
116 +CREATE TABLE t1 (
117 + fid INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
118 + g GEOMETRY NOT NULL ,
119 + SPATIAL KEY(g) USING GIST_RSTAR
120 +) ENGINE=MyISAM;
121 +
122 +INSERT INTO t1 (g) VALUES (GeomFromText(’LineString (1 2, 2 3) ’)) ,(

GeomFromText(’LineString (1 2, 2 4) ’));
123 +#select * from t1 where g<GeomFromText(’LineString (1 2, 2 3) ’);
124 +drop table t1;
125 +
126 +CREATE TABLE t1 (
127 + line LINESTRING NOT NULL ,
128 + kind ENUM(’po’, ’pp’, ’rr ’, ’dr’, ’rd ’, ’ts’, ’cl ’) NOT NULL DEFAULT ’po’,
129 + name VARCHAR (32),
130 +
131 + SPATIAL KEY (line) USING GIST_RSTAR
132 +
133 +
134 +) engine=myisam;
135 +
136 +ALTER TABLE t1 DISABLE KEYS;
137 +INSERT INTO t1 (name , kind , line) VALUES
138 + (" Aadaouane", "pp", GeomFromText (" POINT (32.816667 35.983333) ")),
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139 + (" Aadassiye", "pp", GeomFromText (" POINT (35.816667 36.216667) ")),
140 + (" Aadbel", "pp", GeomFromText ("POINT (34.533333 36.100000) ")),
141 + (" Aadchit", "pp", GeomFromText ("POINT (33.347222 35.423611) ")),
142 + (" Aadchite", "pp", GeomFromText (" POINT (33.347222 35.423611) ")),
143 + (" Aadchit el Qoussair", "pp", GeomFromText (" POINT (33.283333 35.483333) ")),
144 + (" Aaddaye", "pp", GeomFromText ("POINT (36.716667 40.833333) ")),
145 + ("’Aadeissa", "pp", GeomFromText (" POINT (32.823889 35.698889) ")),
146 + (" Aaderup", "pp", GeomFromText ("POINT (55.216667 11.766667) ")),
147 + (" Qalaat Aades", "pp", GeomFromText (" POINT (33.503333 35.377500) ")),
148 + ("A ad’ino", "pp", GeomFromText ("POINT (54.812222 38.209167) ")),
149 + ("Aadi Noia", "pp", GeomFromText ("POINT (13.800000 39.833333) ")),
150 + ("Aad La Macta", "pp", GeomFromText ("POINT (35.779444 -0.129167)")),
151 + (" Aadland", "pp", GeomFromText ("POINT (60.366667 5.483333) ")),
152 + (" Aadliye", "pp", GeomFromText ("POINT (33.366667 36.333333) ")),
153 + (" Aadloun", "pp", GeomFromText ("POINT (33.403889 35.273889) ")),
154 + ("Aadma", "pp", GeomFromText ("POINT (58.798333 22.663889) ")),
155 + ("Aadma Asundus", "pp", GeomFromText ("POINT (58.798333 22.663889) ")),
156 + (" Aadmoun", "pp", GeomFromText ("POINT (34.150000 35.650000) ")),
157 + (" Aadneram", "pp", GeomFromText (" POINT (59.016667 6.933333) ")),
158 + (" Aadneskaar", "pp", GeomFromText ("POINT (58.083333 6.983333) ")),
159 + (" Aadorf", "pp", GeomFromText ("POINT (47.483333 8.900000) ")),
160 + (" Aadorp", "pp", GeomFromText ("POINT (52.366667 6.633333) ")),
161 + (" Aadouane", "pp", GeomFromText (" POINT (32.816667 35.983333) ")),
162 + (" Aadoui", "pp", GeomFromText ("POINT (34.450000 35.983333) ")),
163 + (" Aadouiye", "pp", GeomFromText (" POINT (34.583333 36.183333) ")),
164 + (" Aadouss", "pp", GeomFromText ("POINT (33.512500 35.601389) ")),
165 + ("Aadra", "pp", GeomFromText ("POINT (33.616667 36.500000) ")),
166 + ("Aadzi", "pp", GeomFromText ("POINT (38.100000 64.850000) "));
167 +
168 +ALTER TABLE t1 ENABLE KEYS;
169 +INSERT INTO t1 (name , kind , line) VALUES (" austria", "pp", GeomFromText(’

LINESTRING (14.9906 48.9887 ,14.9946 48.9904 ,14.9947 48.9916) ’));
170 +drop table t1;
171 +
172 +CREATE TABLE t1 (st varchar (100));
173 +INSERT INTO t1 VALUES ("Fake string ");
174 +CREATE TABLE t2 (geom GEOMETRY NOT NULL , SPATIAL KEY gk(geom) USING

GIST_RSTAR);
175 +--error 1416
176 +INSERT INTO t2 SELECT GeomFromText(st) FROM t1;
177 +drop table t1 , t2;
178 +
179 +CREATE TABLE t1 (‘geometry ‘ geometry NOT NULL default ’’,SPATIAL KEY ‘gndx ‘

(‘geometry ‘) USING GIST_RSTAR) ENGINE=MyISAM DEFAULT CHARSET=latin1;
180 +
181 +INSERT INTO t1 (geometry) VALUES
182 +(PolygonFromText(’POLYGON (( -18.6086111000 -66.9327777000 , -18.6055555000
183 + -66.8158332999 , -18.7186111000 -66.8102777000 , -18.7211111000

-66.9269443999 ,
184 + -18.6086111000 -66.9327777000)) ’));
185 +
186 +INSERT INTO t1 (geometry) VALUES
187 +(PolygonFromText(’POLYGON (( -65.7402776999 -96.6686111000 , -65.7372222000
188 + -96.5516666000 , -65.8502777000 -96.5461111000 , -65.8527777000

-96.6627777000 ,
189 + -65.7402776999 -96.6686111000)) ’));
190 +check table t1 extended;
191 +
192 +drop table t1;
193 +
194 +#
195 +# Bug #17877 - Corrupted index
196 +#
197 +CREATE TABLE t1 (
198 + c1 geometry NOT NULL default ’’,



174 Patches for the MariaDB codebase

199 + SPATIAL KEY i1 (c1) USING GIST_RSTAR
200 +) ENGINE=MyISAM DEFAULT CHARSET=latin1;
201 +INSERT INTO t1 (c1) VALUES (
202 + PolygonFromText(’POLYGON (( -18.6086111000 -66.9327777000 ,
203 + -18.6055555000 -66.8158332999 ,
204 + -18.7186111000 -66.8102777000 ,
205 + -18.7211111000 -66.9269443999 ,
206 + -18.6086111000 -66.9327777000))’));
207 +# This showed a missing key.
208 +CHECK TABLE t1 EXTENDED;
209 +DROP TABLE t1;
210 +#
211 +CREATE TABLE t1 (
212 + c1 geometry NOT NULL default ’’,
213 + SPATIAL KEY i1 (c1) USING GIST_RSTAR
214 +) ENGINE=MyISAM DEFAULT CHARSET=latin1;
215 +INSERT INTO t1 (c1) VALUES (
216 + PolygonFromText(’POLYGON (( -18.6086111000 -66.9327777000 ,
217 + -18.6055555000 -66.8158332999 ,
218 + -18.7186111000 -66.8102777000 ,
219 + -18.7211111000 -66.9269443999 ,
220 + -18.6086111000 -66.9327777000))’));
221 +INSERT INTO t1 (c1) VALUES (
222 + PolygonFromText(’POLYGON (( -65.7402776999 -96.6686111000 ,
223 + -65.7372222000 -96.5516666000 ,
224 + -65.8502777000 -96.5461111000 ,
225 + -65.8527777000 -96.6627777000 ,
226 + -65.7402776999 -96.6686111000))’));
227 +# This is the same as the first insert to get a non -unique key.
228 +INSERT INTO t1 (c1) VALUES (
229 + PolygonFromText(’POLYGON (( -18.6086111000 -66.9327777000 ,
230 + -18.6055555000 -66.8158332999 ,
231 + -18.7186111000 -66.8102777000 ,
232 + -18.7211111000 -66.9269443999 ,
233 + -18.6086111000 -66.9327777000))’));
234 +# This showed (and still shows) OK.
235 +CHECK TABLE t1 EXTENDED;
236 +DROP TABLE t1;
237 +
238 +#
239 +# Bug #21888: Query on GEOMETRY field using PointFromWKB () results in lost

connection
240 +#
241 +CREATE TABLE t1 (foo GEOMETRY NOT NULL , SPATIAL INDEX(foo) USING GIST_RSTAR)

;
242 +INSERT INTO t1 (foo) VALUES (POINT (1,1));
243 +INSERT INTO t1 (foo) VALUES (POINT (1,0));
244 +INSERT INTO t1 (foo) VALUES (POINT (0,1));
245 +INSERT INTO t1 (foo) VALUES (POINT (0,0));
246 +SELECT 1 FROM t1 WHERE foo != POINT (0,0);
247 +DROP TABLE t1;
248 +
249 +#
250 +# Bug #25673 - spatial index corruption , error 126 incorrect key file for

table
251 +#
252 +CREATE TABLE t1 (id bigint (12) unsigned NOT NULL auto_increment ,
253 + c2 varchar (15) collate utf8_bin default NULL ,
254 + c1 varchar (15) collate utf8_bin default NULL ,
255 + c3 varchar (10) collate utf8_bin default NULL ,
256 + spatial_point point NOT NULL ,
257 + PRIMARY KEY(id),
258 + SPATIAL KEY (spatial_point) USING GIST_RSTAR
259 + )ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
260 +#
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261 +INSERT INTO t1 (c2, c1, c3, spatial_point) VALUES
262 + (’y’, ’s’, ’j’, GeomFromText(’POINT (167 74) ’)),
263 + (’r’, ’n’, ’d’, GeomFromText(’POINT (215 118) ’)),
264 + (’g’, ’n’, ’e’, GeomFromText(’POINT (203 98) ’)),
265 + (’h’, ’d’, ’d’, GeomFromText(’POINT (54 193) ’)),
266 + (’r’, ’x’, ’y’, GeomFromText(’POINT (47 69) ’)),
267 + (’t’, ’q’, ’r’, GeomFromText(’POINT (109 42) ’)),
268 + (’a’, ’z’, ’d’, GeomFromText(’POINT (0 154) ’)),
269 + (’x’, ’v’, ’o’, GeomFromText(’POINT (174 131) ’)),
270 + (’b’, ’r’, ’a’, GeomFromText(’POINT (114 253) ’)),
271 + (’x’, ’z’, ’i’, GeomFromText(’POINT (163 21) ’)),
272 + (’w’, ’p’, ’i’, GeomFromText(’POINT (42 102) ’)),
273 + (’g’, ’j’, ’j’, GeomFromText(’POINT (170 133) ’)),
274 + (’m’, ’g’, ’n’, GeomFromText(’POINT (28 22) ’)),
275 + (’b’, ’z’, ’h’, GeomFromText(’POINT (174 28) ’)),
276 + (’q’, ’k’, ’f’, GeomFromText(’POINT (233 73) ’)),
277 + (’w’, ’w’, ’a’, GeomFromText(’POINT (124 200) ’)),
278 + (’t’, ’j’, ’w’, GeomFromText(’POINT (252 101) ’)),
279 + (’d’, ’r’, ’d’, GeomFromText(’POINT (98 18) ’)),
280 + (’w’, ’o’, ’y’, GeomFromText(’POINT (165 31) ’)),
281 + (’y’, ’h’, ’t’, GeomFromText(’POINT (14 220) ’)),
282 + (’d’, ’p’, ’u’, GeomFromText(’POINT (223 196) ’)),
283 + (’g’, ’y’, ’g’, GeomFromText(’POINT (207 96) ’)),
284 + (’x’, ’m’, ’n’, GeomFromText(’POINT (214 3) ’)),
285 + (’g’, ’v’, ’e’, GeomFromText(’POINT (140 205) ’)),
286 + (’g’, ’m’, ’m’, GeomFromText(’POINT (10 236) ’)),
287 + (’i’, ’r’, ’j’, GeomFromText(’POINT (137 228) ’)),
288 + (’w’, ’s’, ’p’, GeomFromText(’POINT (115 6) ’)),
289 + (’o’, ’n’, ’k’, GeomFromText(’POINT (158 129) ’)),
290 + (’j’, ’h’, ’l’, GeomFromText(’POINT (129 72) ’)),
291 + (’f’, ’x’, ’l’, GeomFromText(’POINT (139 207) ’)),
292 + (’u’, ’d’, ’n’, GeomFromText(’POINT (125 109) ’)),
293 + (’b’, ’a’, ’z’, GeomFromText(’POINT (30 32) ’)),
294 + (’m’, ’h’, ’o’, GeomFromText(’POINT (251 251) ’)),
295 + (’f’, ’r’, ’d’, GeomFromText(’POINT (243 211) ’)),
296 + (’b’, ’d’, ’r’, GeomFromText(’POINT (232 80) ’)),
297 + (’g’, ’k’, ’v’, GeomFromText(’POINT (15 100) ’)),
298 + (’i’, ’f’, ’c’, GeomFromText(’POINT (109 66) ’)),
299 + (’r’, ’t’, ’j’, GeomFromText(’POINT (178 6) ’)),
300 + (’y’, ’n’, ’f’, GeomFromText(’POINT (233 211) ’)),
301 + (’f’, ’y’, ’m’, GeomFromText(’POINT (99 16) ’)),
302 + (’z’, ’q’, ’l’, GeomFromText(’POINT (39 49) ’)),
303 + (’j’, ’c’, ’r’, GeomFromText(’POINT (75 187) ’)),
304 + (’c’, ’y’, ’y’, GeomFromText(’POINT (246 253) ’)),
305 + (’w’, ’u’, ’d’, GeomFromText(’POINT (56 190) ’)),
306 + (’n’, ’q’, ’m’, GeomFromText(’POINT (73 149) ’)),
307 + (’d’, ’y’, ’a’, GeomFromText(’POINT (134 6) ’)),
308 + (’z’, ’s’, ’w’, GeomFromText(’POINT (216 225) ’)),
309 + (’d’, ’u’, ’k’, GeomFromText(’POINT (132 70) ’)),
310 + (’f’, ’v’, ’t’, GeomFromText(’POINT (187 141) ’)),
311 + (’r’, ’r’, ’a’, GeomFromText(’POINT (152 39) ’)),
312 + (’y’, ’p’, ’o’, GeomFromText(’POINT (45 27) ’)),
313 + (’p’, ’n’, ’m’, GeomFromText(’POINT (228 148) ’)),
314 + (’e’, ’g’, ’e’, GeomFromText(’POINT (88 81) ’)),
315 + (’m’, ’a’, ’h’, GeomFromText(’POINT (35 29) ’)),
316 + (’m’, ’h’, ’f’, GeomFromText(’POINT (30 71) ’)),
317 + (’h’, ’k’, ’i’, GeomFromText(’POINT (244 78) ’)),
318 + (’z’, ’v’, ’d’, GeomFromText(’POINT (241 38) ’)),
319 + (’q’, ’l’, ’j’, GeomFromText(’POINT (13 71) ’)),
320 + (’s’, ’p’, ’g’, GeomFromText(’POINT (108 38) ’)),
321 + (’q’, ’s’, ’j’, GeomFromText(’POINT (92 101) ’)),
322 + (’l’, ’h’, ’g’, GeomFromText(’POINT (120 78) ’)),
323 + (’w’, ’t’, ’b’, GeomFromText(’POINT (193 109) ’)),
324 + (’b’, ’s’, ’s’, GeomFromText(’POINT (223 211) ’)),
325 + (’w’, ’w’, ’y’, GeomFromText(’POINT (122 42) ’)),
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326 + (’q’, ’c’, ’c’, GeomFromText(’POINT (104 102) ’)),
327 + (’w’, ’g’, ’n’, GeomFromText(’POINT (213 120) ’)),
328 + (’p’, ’q’, ’a’, GeomFromText(’POINT (247 148) ’)),
329 + (’c’, ’z’, ’e’, GeomFromText(’POINT (18 106) ’)),
330 + (’z’, ’u’, ’n’, GeomFromText(’POINT (70 133) ’)),
331 + (’j’, ’n’, ’x’, GeomFromText(’POINT (232 13) ’)),
332 + (’e’, ’h’, ’f’, GeomFromText(’POINT (22 135) ’)),
333 + (’w’, ’l’, ’f’, GeomFromText(’POINT (9 180) ’)),
334 + (’a’, ’v’, ’q’, GeomFromText(’POINT (163 228) ’)),
335 + (’i’, ’z’, ’o’, GeomFromText(’POINT (180 100) ’)),
336 + (’e’, ’c’, ’l’, GeomFromText(’POINT (182 231) ’)),
337 + (’c’, ’k’, ’o’, GeomFromText(’POINT (19 60) ’)),
338 + (’q’, ’f’, ’p’, GeomFromText(’POINT (79 95) ’)),
339 + (’m’, ’d’, ’r’, GeomFromText(’POINT (3 127) ’)),
340 + (’m’, ’e’, ’t’, GeomFromText(’POINT (136 154) ’)),
341 + (’w’, ’w’, ’w’, GeomFromText(’POINT (102 15) ’)),
342 + (’l’, ’n’, ’q’, GeomFromText(’POINT (71 196) ’)),
343 + (’p’, ’k’, ’c’, GeomFromText(’POINT (47 139) ’)),
344 + (’j’, ’o’, ’r’, GeomFromText(’POINT (177 128) ’)),
345 + (’j’, ’q’, ’a’, GeomFromText(’POINT (170 6) ’)),
346 + (’b’, ’a’, ’o’, GeomFromText(’POINT (63 211) ’)),
347 + (’g’, ’s’, ’o’, GeomFromText(’POINT (144 251) ’)),
348 + (’w’, ’u’, ’w’, GeomFromText(’POINT (221 214) ’)),
349 + (’g’, ’a’, ’m’, GeomFromText(’POINT (14 102) ’)),
350 + (’u’, ’q’, ’z’, GeomFromText(’POINT (86 200) ’)),
351 + (’k’, ’a’, ’m’, GeomFromText(’POINT (144 222) ’)),
352 + (’j’, ’u’, ’r’, GeomFromText(’POINT (216 142) ’)),
353 + (’q’, ’k’, ’v’, GeomFromText(’POINT (121 236) ’)),
354 + (’p’, ’o’, ’r’, GeomFromText(’POINT (108 102) ’)),
355 + (’b’, ’d’, ’x’, GeomFromText(’POINT (127 198) ’)),
356 + (’k’, ’s’, ’a’, GeomFromText(’POINT (2 150) ’)),
357 + (’f’, ’m’, ’f’, GeomFromText(’POINT (160 191) ’)),
358 + (’q’, ’y’, ’x’, GeomFromText(’POINT (98 111) ’)),
359 + (’o’, ’f’, ’m’, GeomFromText(’POINT (232 218) ’)),
360 + (’c’, ’w’, ’j’, GeomFromText(’POINT (156 165) ’)),
361 + (’s’, ’q’, ’v’, GeomFromText(’POINT (98 161) ’));
362 +SET @@RAND_SEED1 =692635050 , @@RAND_SEED2 =297339954;
363 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
364 +SET @@RAND_SEED1 =159925977 , @@RAND_SEED2 =942570618;
365 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
366 +SET @@RAND_SEED1 =328169745 , @@RAND_SEED2 =410451954;
367 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
368 +SET @@RAND_SEED1 =178507359 , @@RAND_SEED2 =332493072;
369 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
370 +SET @@RAND_SEED1 =1034033013 , @@RAND_SEED2 =558966507;
371 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
372 +UPDATE t1 set spatial_point=GeomFromText(’POINT (230 9) ’) where c1 like ’y

%’;
373 +UPDATE t1 set spatial_point=GeomFromText(’POINT (95 35) ’) where c1 like ’j

%’;
374 +UPDATE t1 set spatial_point=GeomFromText(’POINT (93 99) ’) where c1 like ’a

%’;
375 +UPDATE t1 set spatial_point=GeomFromText(’POINT (19 81) ’) where c1 like ’r

%’;
376 +UPDATE t1 set spatial_point=GeomFromText(’POINT (20 177) ’) where c1 like ’h

%’;
377 +UPDATE t1 set spatial_point=GeomFromText(’POINT (221 193) ’) where c1 like ’u

%’;
378 +UPDATE t1 set spatial_point=GeomFromText(’POINT (195 205) ’) where c1 like ’d

%’;
379 +UPDATE t1 set spatial_point=GeomFromText(’POINT (15 213) ’) where c1 like ’u

%’;
380 +UPDATE t1 set spatial_point=GeomFromText(’POINT (214 63) ’) where c1 like ’n

%’;
381 +UPDATE t1 set spatial_point=GeomFromText(’POINT (243 171) ’) where c1 like ’c
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%’;
382 +UPDATE t1 set spatial_point=GeomFromText(’POINT (198 82) ’) where c1 like ’y

%’;
383 +INSERT INTO t1 (c2, c1, c3, spatial_point) VALUES
384 + (’f’, ’y’, ’p’, GeomFromText(’POINT (109 235) ’)),
385 + (’b’, ’e’, ’v’, GeomFromText(’POINT (20 48) ’)),
386 + (’i’, ’u’, ’f’, GeomFromText(’POINT (15 55) ’)),
387 + (’o’, ’r’, ’z’, GeomFromText(’POINT (105 64) ’)),
388 + (’a’, ’p’, ’a’, GeomFromText(’POINT (142 236) ’)),
389 + (’g’, ’i’, ’k’, GeomFromText(’POINT (10 49) ’)),
390 + (’x’, ’z’, ’x’, GeomFromText(’POINT (192 200) ’)),
391 + (’c’, ’v’, ’r’, GeomFromText(’POINT (94 168) ’)),
392 + (’y’, ’z’, ’e’, GeomFromText(’POINT (141 51) ’)),
393 + (’h’, ’m’, ’d’, GeomFromText(’POINT (35 251) ’)),
394 + (’v’, ’m’, ’q’, GeomFromText(’POINT (44 90) ’)),
395 + (’j’, ’l’, ’z’, GeomFromText(’POINT (67 237) ’)),
396 + (’i’, ’v’, ’a’, GeomFromText(’POINT (75 14) ’)),
397 + (’b’, ’q’, ’t’, GeomFromText(’POINT (153 33) ’)),
398 + (’e’, ’m’, ’a’, GeomFromText(’POINT (247 49) ’)),
399 + (’l’, ’y’, ’g’, GeomFromText(’POINT (56 203) ’)),
400 + (’v’, ’o’, ’r’, GeomFromText(’POINT (90 54) ’)),
401 + (’r’, ’n’, ’d’, GeomFromText(’POINT (135 83) ’)),
402 + (’j’, ’t’, ’u’, GeomFromText(’POINT (174 239) ’)),
403 + (’u’, ’n’, ’g’, GeomFromText(’POINT (104 191) ’)),
404 + (’p’, ’q’, ’y’, GeomFromText(’POINT (63 171) ’)),
405 + (’o’, ’q’, ’p’, GeomFromText(’POINT (192 103) ’)),
406 + (’f’, ’x’, ’e’, GeomFromText(’POINT (244 30) ’)),
407 + (’n’, ’x’, ’c’, GeomFromText(’POINT (92 103) ’)),
408 + (’r’, ’q’, ’z’, GeomFromText(’POINT (166 20) ’)),
409 + (’s’, ’a’, ’j’, GeomFromText(’POINT (137 205) ’)),
410 + (’z’, ’t’, ’t’, GeomFromText(’POINT (99 134) ’)),
411 + (’o’, ’m’, ’j’, GeomFromText(’POINT (217 3) ’)),
412 + (’n’, ’h’, ’j’, GeomFromText(’POINT (211 17) ’)),
413 + (’v’, ’v’, ’a’, GeomFromText(’POINT (41 137) ’)),
414 + (’q’, ’o’, ’j’, GeomFromText(’POINT (5 92) ’)),
415 + (’z’, ’y’, ’e’, GeomFromText(’POINT (175 212) ’)),
416 + (’j’, ’z’, ’h’, GeomFromText(’POINT (224 194) ’)),
417 + (’a’, ’g’, ’m’, GeomFromText(’POINT (31 119) ’)),
418 + (’p’, ’c’, ’f’, GeomFromText(’POINT (17 221) ’)),
419 + (’t’, ’h’, ’k’, GeomFromText(’POINT (26 203) ’)),
420 + (’u’, ’w’, ’p’, GeomFromText(’POINT (47 185) ’)),
421 + (’z’, ’a’, ’c’, GeomFromText(’POINT (61 133) ’)),
422 + (’u’, ’k’, ’a’, GeomFromText(’POINT (210 115) ’)),
423 + (’k’, ’f’, ’h’, GeomFromText(’POINT (125 113) ’)),
424 + (’t’, ’v’, ’y’, GeomFromText(’POINT (12 239) ’)),
425 + (’u’, ’v’, ’d’, GeomFromText(’POINT (90 24) ’)),
426 + (’m’, ’y’, ’w’, GeomFromText(’POINT (25 243) ’)),
427 + (’d’, ’n’, ’g’, GeomFromText(’POINT (122 92) ’)),
428 + (’z’, ’m’, ’f’, GeomFromText(’POINT (235 110) ’)),
429 + (’q’, ’d’, ’f’, GeomFromText(’POINT (233 217) ’)),
430 + (’a’, ’v’, ’u’, GeomFromText(’POINT (69 59) ’)),
431 + (’x’, ’k’, ’p’, GeomFromText(’POINT (240 14) ’)),
432 + (’i’, ’v’, ’r’, GeomFromText(’POINT (154 42) ’)),
433 + (’w’, ’h’, ’l’, GeomFromText(’POINT (178 156) ’)),
434 + (’d’, ’h’, ’n’, GeomFromText(’POINT (65 157) ’)),
435 + (’c’, ’k’, ’z’, GeomFromText(’POINT (62 33) ’)),
436 + (’e’, ’l’, ’w’, GeomFromText(’POINT (162 1) ’)),
437 + (’r’, ’f’, ’i’, GeomFromText(’POINT (127 71) ’)),
438 + (’q’, ’m’, ’c’, GeomFromText(’POINT (63 118) ’)),
439 + (’c’, ’h’, ’u’, GeomFromText(’POINT (205 203) ’)),
440 + (’d’, ’t’, ’p’, GeomFromText(’POINT (234 87) ’)),
441 + (’s’, ’g’, ’h’, GeomFromText(’POINT (149 34) ’)),
442 + (’o’, ’b’, ’q’, GeomFromText(’POINT (159 179) ’)),
443 + (’k’, ’u’, ’f’, GeomFromText(’POINT (202 254) ’)),
444 + (’u’, ’f’, ’g’, GeomFromText(’POINT (70 15) ’)),
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445 + (’x’, ’s’, ’b’, GeomFromText(’POINT (25 181) ’)),
446 + (’s’, ’c’, ’g’, GeomFromText(’POINT (252 17) ’)),
447 + (’a’, ’c’, ’f’, GeomFromText(’POINT (89 67) ’)),
448 + (’r’, ’e’, ’q’, GeomFromText(’POINT (55 54) ’)),
449 + (’f’, ’i’, ’k’, GeomFromText(’POINT (178 230) ’)),
450 + (’p’, ’e’, ’l’, GeomFromText(’POINT (198 28) ’)),
451 + (’w’, ’o’, ’d’, GeomFromText(’POINT (204 189) ’)),
452 + (’c’, ’a’, ’g’, GeomFromText(’POINT (230 178) ’)),
453 + (’r’, ’o’, ’e’, GeomFromText(’POINT (61 116) ’)),
454 + (’w’, ’a’, ’a’, GeomFromText(’POINT (178 237) ’)),
455 + (’v’, ’d’, ’e’, GeomFromText(’POINT (70 85) ’)),
456 + (’k’, ’c’, ’e’, GeomFromText(’POINT (147 118) ’)),
457 + (’d’, ’q’, ’t’, GeomFromText(’POINT (218 77) ’)),
458 + (’k’, ’g’, ’f’, GeomFromText(’POINT (192 113) ’)),
459 + (’w’, ’n’, ’e’, GeomFromText(’POINT (92 124) ’)),
460 + (’r’, ’m’, ’q’, GeomFromText(’POINT (130 65) ’)),
461 + (’o’, ’r’, ’r’, GeomFromText(’POINT (174 233) ’)),
462 + (’k’, ’n’, ’t’, GeomFromText(’POINT (175 147) ’)),
463 + (’q’, ’m’, ’r’, GeomFromText(’POINT (18 208) ’)),
464 + (’l’, ’d’, ’i’, GeomFromText(’POINT (13 104) ’)),
465 + (’w’, ’o’, ’y’, GeomFromText(’POINT (207 39) ’)),
466 + (’p’, ’u’, ’o’, GeomFromText(’POINT (114 31) ’)),
467 + (’y’, ’a’, ’p’, GeomFromText(’POINT (106 59) ’)),
468 + (’a’, ’x’, ’z’, GeomFromText(’POINT (17 57) ’)),
469 + (’v’, ’h’, ’x’, GeomFromText(’POINT (170 13) ’)),
470 + (’t’, ’s’, ’u’, GeomFromText(’POINT (84 18) ’)),
471 + (’z’, ’z’, ’f’, GeomFromText(’POINT (250 197) ’)),
472 + (’l’, ’z’, ’t’, GeomFromText(’POINT (59 80) ’)),
473 + (’j’, ’g’, ’s’, GeomFromText(’POINT (54 26) ’)),
474 + (’g’, ’v’, ’m’, GeomFromText(’POINT (89 98) ’)),
475 + (’q’, ’v’, ’b’, GeomFromText(’POINT (39 240) ’)),
476 + (’x’, ’k’, ’v’, GeomFromText(’POINT (246 207) ’)),
477 + (’k’, ’u’, ’i’, GeomFromText(’POINT (105 111) ’)),
478 + (’w’, ’z’, ’s’, GeomFromText(’POINT (235 8) ’)),
479 + (’d’, ’d’, ’d’, GeomFromText(’POINT (105 4) ’)),
480 + (’c’, ’z’, ’q’, GeomFromText(’POINT (13 140) ’)),
481 + (’m’, ’k’, ’i’, GeomFromText(’POINT (208 120) ’)),
482 + (’g’, ’a’, ’g’, GeomFromText(’POINT (9 182) ’)),
483 + (’z’, ’j’, ’r’, GeomFromText(’POINT (149 153) ’)),
484 + (’h’, ’f’, ’g’, GeomFromText(’POINT (81 236) ’)),
485 + (’m’, ’e’, ’q’, GeomFromText(’POINT (209 215) ’)),
486 + (’c’, ’h’, ’y’, GeomFromText(’POINT (235 70) ’)),
487 + (’i’, ’e’, ’g’, GeomFromText(’POINT (138 26) ’)),
488 + (’m’, ’t’, ’u’, GeomFromText(’POINT (119 237) ’)),
489 + (’o’, ’w’, ’s’, GeomFromText(’POINT (193 166) ’)),
490 + (’f’, ’m’, ’q’, GeomFromText(’POINT (85 96) ’)),
491 + (’x’, ’l’, ’x’, GeomFromText(’POINT (58 115) ’)),
492 + (’x’, ’q’, ’u’, GeomFromText(’POINT (108 210) ’)),
493 + (’b’, ’h’, ’i’, GeomFromText(’POINT (250 139) ’)),
494 + (’y’, ’d’, ’x’, GeomFromText(’POINT (199 135) ’)),
495 + (’w’, ’h’, ’p’, GeomFromText(’POINT (247 233) ’)),
496 + (’p’, ’z’, ’t’, GeomFromText(’POINT (148 249) ’)),
497 + (’q’, ’a’, ’u’, GeomFromText(’POINT (174 78) ’)),
498 + (’v’, ’t’, ’m’, GeomFromText(’POINT (70 228) ’)),
499 + (’t’, ’n’, ’f’, GeomFromText(’POINT (123 2) ’)),
500 + (’x’, ’t’, ’b’, GeomFromText(’POINT (35 50) ’)),
501 + (’r’, ’j’, ’f’, GeomFromText(’POINT (200 51) ’)),
502 + (’s’, ’q’, ’o’, GeomFromText(’POINT (23 184) ’)),
503 + (’u’, ’v’, ’z’, GeomFromText(’POINT (7 113) ’)),
504 + (’v’, ’u’, ’l’, GeomFromText(’POINT (145 190) ’)),
505 + (’o’, ’k’, ’i’, GeomFromText(’POINT (161 122) ’)),
506 + (’l’, ’y’, ’e’, GeomFromText(’POINT (17 232) ’)),
507 + (’t’, ’b’, ’e’, GeomFromText(’POINT (120 50) ’)),
508 + (’e’, ’s’, ’u’, GeomFromText(’POINT (254 1) ’)),
509 + (’d’, ’d’, ’u’, GeomFromText(’POINT (167 140) ’)),
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510 + (’o’, ’b’, ’x’, GeomFromText(’POINT (186 237) ’)),
511 + (’m’, ’s’, ’s’, GeomFromText(’POINT (172 149) ’)),
512 + (’t’, ’y’, ’a’, GeomFromText(’POINT (149 85) ’)),
513 + (’x’, ’t’, ’r’, GeomFromText(’POINT (10 165) ’)),
514 + (’g’, ’c’, ’e’, GeomFromText(’POINT (95 165) ’)),
515 + (’e’, ’e’, ’z’, GeomFromText(’POINT (98 65) ’)),
516 + (’f’, ’v’, ’i’, GeomFromText(’POINT (149 144) ’)),
517 + (’o’, ’p’, ’m’, GeomFromText(’POINT (233 67) ’)),
518 + (’t’, ’u’, ’b’, GeomFromText(’POINT (109 215) ’)),
519 + (’o’, ’o’, ’b’, GeomFromText(’POINT (130 48) ’)),
520 + (’e’, ’m’, ’h’, GeomFromText(’POINT (88 189) ’)),
521 + (’e’, ’v’, ’y’, GeomFromText(’POINT (55 29) ’)),
522 + (’e’, ’t’, ’m’, GeomFromText(’POINT (129 55) ’)),
523 + (’p’, ’p’, ’i’, GeomFromText(’POINT (126 222) ’)),
524 + (’c’, ’i’, ’c’, GeomFromText(’POINT (19 158) ’)),
525 + (’c’, ’b’, ’s’, GeomFromText(’POINT (13 19) ’)),
526 + (’u’, ’y’, ’a’, GeomFromText(’POINT (114 5) ’)),
527 + (’a’, ’o’, ’f’, GeomFromText(’POINT (227 232) ’)),
528 + (’t’, ’c’, ’z’, GeomFromText(’POINT (63 62) ’)),
529 + (’d’, ’o’, ’k’, GeomFromText(’POINT (48 228) ’)),
530 + (’x’, ’c’, ’e’, GeomFromText(’POINT (204 2) ’)),
531 + (’e’, ’e’, ’g’, GeomFromText(’POINT (125 43) ’)),
532 + (’o’, ’r’, ’f’, GeomFromText(’POINT (171 140) ’));
533 +UPDATE t1 set spatial_point=GeomFromText(’POINT (163 157) ’) where c1 like ’w

%’;
534 +UPDATE t1 set spatial_point=GeomFromText(’POINT (53 151) ’) where c1 like ’d

%’;
535 +UPDATE t1 set spatial_point=GeomFromText(’POINT (96 183) ’) where c1 like ’r

%’;
536 +UPDATE t1 set spatial_point=GeomFromText(’POINT (57 91) ’) where c1 like ’q

%’;
537 +UPDATE t1 set spatial_point=GeomFromText(’POINT (202 110) ’) where c1 like ’c

%’;
538 +UPDATE t1 set spatial_point=GeomFromText(’POINT (120 137) ’) where c1 like ’w

%’;
539 +UPDATE t1 set spatial_point=GeomFromText(’POINT (207 147) ’) where c1 like ’c

%’;
540 +UPDATE t1 set spatial_point=GeomFromText(’POINT (31 125) ’) where c1 like ’e

%’;
541 +UPDATE t1 set spatial_point=GeomFromText(’POINT (27 36) ’) where c1 like ’r

%’;
542 +INSERT INTO t1 (c2, c1, c3, spatial_point) VALUES
543 + (’b’, ’c’, ’e’, GeomFromText(’POINT (41 137) ’)),
544 + (’p’, ’y’, ’k’, GeomFromText(’POINT (50 22) ’)),
545 + (’s’, ’c’, ’h’, GeomFromText(’POINT (208 173) ’)),
546 + (’x’, ’u’, ’l’, GeomFromText(’POINT (199 175) ’)),
547 + (’s’, ’r’, ’h’, GeomFromText(’POINT (85 192) ’)),
548 + (’j’, ’k’, ’u’, GeomFromText(’POINT (18 25) ’)),
549 + (’p’, ’w’, ’h’, GeomFromText(’POINT (152 197) ’)),
550 + (’e’, ’d’, ’c’, GeomFromText(’POINT (229 3) ’)),
551 + (’o’, ’x’, ’k’, GeomFromText(’POINT (187 155) ’)),
552 + (’o’, ’b’, ’k’, GeomFromText(’POINT (208 150) ’)),
553 + (’d’, ’a’, ’j’, GeomFromText(’POINT (70 87) ’)),
554 + (’f’, ’e’, ’k’, GeomFromText(’POINT (156 96) ’)),
555 + (’u’, ’y’, ’p’, GeomFromText(’POINT (239 193) ’)),
556 + (’n’, ’v’, ’p’, GeomFromText(’POINT (223 98) ’)),
557 + (’z’, ’j’, ’r’, GeomFromText(’POINT (87 89) ’)),
558 + (’h’, ’x’, ’x’, GeomFromText(’POINT (92 0) ’)),
559 + (’r’, ’v’, ’r’, GeomFromText(’POINT (159 139) ’)),
560 + (’v’, ’g’, ’g’, GeomFromText(’POINT (16 229) ’)),
561 + (’z’, ’k’, ’u’, GeomFromText(’POINT (99 52) ’)),
562 + (’p’, ’p’, ’o’, GeomFromText(’POINT (105 125) ’)),
563 + (’w’, ’h’, ’y’, GeomFromText(’POINT (105 154) ’)),
564 + (’v’, ’y’, ’z’, GeomFromText(’POINT (134 238) ’)),
565 + (’x’, ’o’, ’o’, GeomFromText(’POINT (178 88) ’)),
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566 + (’z’, ’w’, ’d’, GeomFromText(’POINT (123 60) ’)),
567 + (’q’, ’f’, ’u’, GeomFromText(’POINT (64 90) ’)),
568 + (’s’, ’n’, ’t’, GeomFromText(’POINT (50 138) ’)),
569 + (’v’, ’p’, ’t’, GeomFromText(’POINT (114 91) ’)),
570 + (’a’, ’o’, ’n’, GeomFromText(’POINT (78 43) ’)),
571 + (’k’, ’u’, ’d’, GeomFromText(’POINT (185 161) ’)),
572 + (’w’, ’d’, ’n’, GeomFromText(’POINT (25 92) ’)),
573 + (’k’, ’w’, ’a’, GeomFromText(’POINT (59 238) ’)),
574 + (’t’, ’c’, ’f’, GeomFromText(’POINT (65 87) ’)),
575 + (’g’, ’s’, ’p’, GeomFromText(’POINT (238 126) ’)),
576 + (’d’, ’n’, ’y’, GeomFromText(’POINT (107 173) ’)),
577 + (’l’, ’a’, ’w’, GeomFromText(’POINT (125 152) ’)),
578 + (’m’, ’d’, ’j’, GeomFromText(’POINT (146 53) ’)),
579 + (’q’, ’m’, ’c’, GeomFromText(’POINT (217 187) ’)),
580 + (’i’, ’r’, ’r’, GeomFromText(’POINT (6 113) ’)),
581 + (’e’, ’j’, ’b’, GeomFromText(’POINT (37 83) ’)),
582 + (’w’, ’w’, ’h’, GeomFromText(’POINT (83 199) ’)),
583 + (’k’, ’b’, ’s’, GeomFromText(’POINT (170 64) ’)),
584 + (’s’, ’b’, ’c’, GeomFromText(’POINT (163 130) ’)),
585 + (’c’, ’h’, ’a’, GeomFromText(’POINT (141 3) ’)),
586 + (’k’, ’j’, ’u’, GeomFromText(’POINT (143 76) ’)),
587 + (’r’, ’h’, ’o’, GeomFromText(’POINT (243 92) ’)),
588 + (’i’, ’d’, ’b’, GeomFromText(’POINT (205 13) ’)),
589 + (’r’, ’y’, ’q’, GeomFromText(’POINT (138 8) ’)),
590 + (’m’, ’o’, ’i’, GeomFromText(’POINT (36 45) ’)),
591 + (’v’, ’g’, ’m’, GeomFromText(’POINT (0 40) ’)),
592 + (’f’, ’e’, ’i’, GeomFromText(’POINT (76 6) ’)),
593 + (’c’, ’q’, ’q’, GeomFromText(’POINT (115 248) ’)),
594 + (’x’, ’c’, ’i’, GeomFromText(’POINT (29 74) ’)),
595 + (’l’, ’s’, ’t’, GeomFromText(’POINT (83 18) ’)),
596 + (’t’, ’t’, ’a’, GeomFromText(’POINT (26 168) ’)),
597 + (’u’, ’n’, ’x’, GeomFromText(’POINT (200 110) ’)),
598 + (’j’, ’b’, ’d’, GeomFromText(’POINT (216 136) ’)),
599 + (’s’, ’p’, ’w’, GeomFromText(’POINT (38 156) ’)),
600 + (’f’, ’b’, ’v’, GeomFromText(’POINT (29 186) ’)),
601 + (’v’, ’e’, ’r’, GeomFromText(’POINT (149 40) ’)),
602 + (’v’, ’t’, ’m’, GeomFromText(’POINT (184 24) ’)),
603 + (’y’, ’g’, ’a’, GeomFromText(’POINT (219 105) ’)),
604 + (’s’, ’f’, ’i’, GeomFromText(’POINT (114 130) ’)),
605 + (’e’, ’q’, ’h’, GeomFromText(’POINT (203 135) ’)),
606 + (’h’, ’g’, ’b’, GeomFromText(’POINT (9 208) ’)),
607 + (’o’, ’l’, ’r’, GeomFromText(’POINT (245 79) ’)),
608 + (’s’, ’s’, ’v’, GeomFromText(’POINT (238 198) ’)),
609 + (’w’, ’w’, ’z’, GeomFromText(’POINT (209 232) ’)),
610 + (’v’, ’d’, ’n’, GeomFromText(’POINT (30 193) ’)),
611 + (’q’, ’w’, ’k’, GeomFromText(’POINT (133 18) ’)),
612 + (’o’, ’h’, ’o’, GeomFromText(’POINT (42 140) ’)),
613 + (’f’, ’f’, ’h’, GeomFromText(’POINT (145 1) ’)),
614 + (’u’, ’s’, ’r’, GeomFromText(’POINT (70 62) ’)),
615 + (’x’, ’n’, ’q’, GeomFromText(’POINT (33 86) ’)),
616 + (’u’, ’p’, ’v’, GeomFromText(’POINT (232 220) ’)),
617 + (’z’, ’e’, ’a’, GeomFromText(’POINT (130 69) ’)),
618 + (’r’, ’u’, ’z’, GeomFromText(’POINT (243 241) ’)),
619 + (’b’, ’n’, ’t’, GeomFromText(’POINT (120 12) ’)),
620 + (’u’, ’f’, ’s’, GeomFromText(’POINT (190 212) ’)),
621 + (’a’, ’d’, ’q’, GeomFromText(’POINT (235 191) ’)),
622 + (’f’, ’q’, ’m’, GeomFromText(’POINT (176 2) ’)),
623 + (’n’, ’c’, ’s’, GeomFromText(’POINT (218 163) ’)),
624 + (’e’, ’m’, ’h’, GeomFromText(’POINT (163 108) ’)),
625 + (’c’, ’f’, ’l’, GeomFromText(’POINT (220 115) ’)),
626 + (’c’, ’v’, ’q’, GeomFromText(’POINT (66 45) ’)),
627 + (’w’, ’v’, ’x’, GeomFromText(’POINT (251 220) ’)),
628 + (’f’, ’w’, ’z’, GeomFromText(’POINT (146 149) ’)),
629 + (’h’, ’n’, ’h’, GeomFromText(’POINT (148 128) ’)),
630 + (’y’, ’k’, ’v’, GeomFromText(’POINT (28 110) ’)),
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631 + (’c’, ’x’, ’q’, GeomFromText(’POINT (13 13) ’)),
632 + (’e’, ’d’, ’s’, GeomFromText(’POINT (91 190) ’)),
633 + (’c’, ’w’, ’c’, GeomFromText(’POINT (10 231) ’)),
634 + (’u’, ’j’, ’n’, GeomFromText(’POINT (250 21) ’)),
635 + (’w’, ’n’, ’x’, GeomFromText(’POINT (141 69) ’)),
636 + (’f’, ’p’, ’y’, GeomFromText(’POINT (228 246) ’)),
637 + (’d’, ’q’, ’f’, GeomFromText(’POINT (194 22) ’)),
638 + (’d’, ’z’, ’l’, GeomFromText(’POINT (233 181) ’)),
639 + (’c’, ’a’, ’q’, GeomFromText(’POINT (183 96) ’)),
640 + (’m’, ’i’, ’d’, GeomFromText(’POINT (117 226) ’)),
641 + (’z’, ’y’, ’y’, GeomFromText(’POINT (62 81) ’)),
642 + (’g’, ’v’, ’m’, GeomFromText(’POINT (66 158) ’));
643 +SET @@RAND_SEED1 =481064922 , @@RAND_SEED2 =438133497;
644 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
645 +SET @@RAND_SEED1 =280535103 , @@RAND_SEED2 =444518646;
646 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
647 +SET @@RAND_SEED1 =1072017234 , @@RAND_SEED2 =484203885;
648 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
649 +SET @@RAND_SEED1 =358851897 , @@RAND_SEED2 =358495224;
650 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
651 +SET @@RAND_SEED1 =509031459 , @@RAND_SEED2 =675962925;
652 +DELETE FROM t1 ORDER BY RAND() LIMIT 10;
653 +UPDATE t1 set spatial_point=GeomFromText(’POINT (61 203) ’) where c1 like ’y

%’;
654 +UPDATE t1 set spatial_point=GeomFromText(’POINT (202 194) ’) where c1 like ’f

%’;
655 +UPDATE t1 set spatial_point=GeomFromText(’POINT (228 18) ’) where c1 like ’h

%’;
656 +UPDATE t1 set spatial_point=GeomFromText(’POINT (88 18) ’) where c1 like ’l

%’;
657 +UPDATE t1 set spatial_point=GeomFromText(’POINT (176 94) ’) where c1 like ’e

%’;
658 +UPDATE t1 set spatial_point=GeomFromText(’POINT (44 47) ’) where c1 like ’g

%’;
659 +UPDATE t1 set spatial_point=GeomFromText(’POINT (95 191) ’) where c1 like ’b

%’;
660 +UPDATE t1 set spatial_point=GeomFromText(’POINT (179 218) ’) where c1 like ’y

%’;
661 +UPDATE t1 set spatial_point=GeomFromText(’POINT (239 40) ’) where c1 like ’g

%’;
662 +UPDATE t1 set spatial_point=GeomFromText(’POINT (248 41) ’) where c1 like ’q

%’;
663 +UPDATE t1 set spatial_point=GeomFromText(’POINT (167 82) ’) where c1 like ’t

%’;
664 +UPDATE t1 set spatial_point=GeomFromText(’POINT (13 104) ’) where c1 like ’u

%’;
665 +UPDATE t1 set spatial_point=GeomFromText(’POINT (139 84) ’) where c1 like ’a

%’;
666 +UPDATE t1 set spatial_point=GeomFromText(’POINT (145 108) ’) where c1 like ’p

%’;
667 +UPDATE t1 set spatial_point=GeomFromText(’POINT (147 57) ’) where c1 like ’t

%’;
668 +UPDATE t1 set spatial_point=GeomFromText(’POINT (217 144) ’) where c1 like ’n

%’;
669 +UPDATE t1 set spatial_point=GeomFromText(’POINT (160 224) ’) where c1 like ’w

%’;
670 +UPDATE t1 set spatial_point=GeomFromText(’POINT (38 28) ’) where c1 like ’j

%’;
671 +UPDATE t1 set spatial_point=GeomFromText(’POINT (104 114) ’) where c1 like ’q

%’;
672 +UPDATE t1 set spatial_point=GeomFromText(’POINT (88 19) ’) where c1 like ’c

%’;
673 +INSERT INTO t1 (c2, c1, c3, spatial_point) VALUES
674 + (’f’, ’x’, ’p’, GeomFromText(’POINT (92 181) ’)),
675 + (’s’, ’i’, ’c’, GeomFromText(’POINT (49 60) ’)),
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676 + (’c’, ’c’, ’i’, GeomFromText(’POINT (7 57) ’)),
677 + (’n’, ’g’, ’k’, GeomFromText(’POINT (252 105) ’)),
678 + (’g’, ’b’, ’m’, GeomFromText(’POINT (180 11) ’)),
679 + (’u’, ’l’, ’r’, GeomFromText(’POINT (32 90) ’)),
680 + (’c’, ’x’, ’e’, GeomFromText(’POINT (143 24) ’)),
681 + (’x’, ’u’, ’a’, GeomFromText(’POINT (123 92) ’)),
682 + (’s’, ’b’, ’h’, GeomFromText(’POINT (190 108) ’)),
683 + (’c’, ’x’, ’b’, GeomFromText(’POINT (104 100) ’)),
684 + (’i’, ’d’, ’t’, GeomFromText(’POINT (214 104) ’)),
685 + (’r’, ’w’, ’g’, GeomFromText(’POINT (29 67) ’)),
686 + (’b’, ’f’, ’g’, GeomFromText(’POINT (149 46) ’)),
687 + (’r’, ’r’, ’d’, GeomFromText(’POINT (242 196) ’)),
688 + (’j’, ’l’, ’a’, GeomFromText(’POINT (90 196) ’)),
689 + (’e’, ’t’, ’b’, GeomFromText(’POINT (190 64) ’)),
690 + (’l’, ’x’, ’w’, GeomFromText(’POINT (250 73) ’)),
691 + (’q’, ’y’, ’r’, GeomFromText(’POINT (120 182) ’)),
692 + (’s’, ’j’, ’a’, GeomFromText(’POINT (180 175) ’)),
693 + (’n’, ’i’, ’y’, GeomFromText(’POINT (124 136) ’)),
694 + (’s’, ’x’, ’s’, GeomFromText(’POINT (176 209) ’)),
695 + (’u’, ’f’, ’s’, GeomFromText(’POINT (215 173) ’)),
696 + (’m’, ’j’, ’x’, GeomFromText(’POINT (44 140) ’)),
697 + (’v’, ’g’, ’x’, GeomFromText(’POINT (177 233) ’)),
698 + (’u’, ’t’, ’b’, GeomFromText(’POINT (136 197) ’)),
699 + (’f’, ’g’, ’b’, GeomFromText(’POINT (10 8) ’)),
700 + (’v’, ’c’, ’j’, GeomFromText(’POINT (13 81) ’)),
701 + (’d’, ’s’, ’q’, GeomFromText(’POINT (200 100) ’)),
702 + (’a’, ’p’, ’j’, GeomFromText(’POINT (33 40) ’)),
703 + (’i’, ’c’, ’g’, GeomFromText(’POINT (168 204) ’)),
704 + (’k’, ’h’, ’i’, GeomFromText(’POINT (93 243) ’)),
705 + (’s’, ’b’, ’s’, GeomFromText(’POINT (157 13) ’)),
706 + (’v’, ’l’, ’l’, GeomFromText(’POINT (103 6) ’)),
707 + (’r’, ’b’, ’k’, GeomFromText(’POINT (244 137) ’)),
708 + (’l’, ’d’, ’r’, GeomFromText(’POINT (162 254) ’)),
709 + (’q’, ’b’, ’z’, GeomFromText(’POINT (136 246) ’)),
710 + (’x’, ’x’, ’p’, GeomFromText(’POINT (120 37) ’)),
711 + (’m’, ’e’, ’z’, GeomFromText(’POINT (203 167) ’)),
712 + (’q’, ’n’, ’p’, GeomFromText(’POINT (94 119) ’)),
713 + (’b’, ’g’, ’u’, GeomFromText(’POINT (93 248) ’)),
714 + (’r’, ’v’, ’v’, GeomFromText(’POINT (53 88) ’)),
715 + (’y’, ’a’, ’i’, GeomFromText(’POINT (98 219) ’)),
716 + (’a’, ’s’, ’g’, GeomFromText(’POINT (173 138) ’)),
717 + (’c’, ’a’, ’t’, GeomFromText(’POINT (235 135) ’)),
718 + (’q’, ’m’, ’d’, GeomFromText(’POINT (224 208) ’)),
719 + (’e’, ’p’, ’k’, GeomFromText(’POINT (161 238) ’)),
720 + (’n’, ’g’, ’q’, GeomFromText(’POINT (35 204) ’)),
721 + (’t’, ’t’, ’x’, GeomFromText(’POINT (230 178) ’)),
722 + (’w’, ’f’, ’a’, GeomFromText(’POINT (150 221) ’)),
723 + (’z’, ’m’, ’z’, GeomFromText(’POINT (119 42) ’)),
724 + (’l’, ’j’, ’s’, GeomFromText(’POINT (97 96) ’)),
725 + (’f’, ’z’, ’x’, GeomFromText(’POINT (208 65) ’)),
726 + (’i’, ’v’, ’c’, GeomFromText(’POINT (145 79) ’)),
727 + (’l’, ’f’, ’k’, GeomFromText(’POINT (83 234) ’)),
728 + (’u’, ’a’, ’s’, GeomFromText(’POINT (250 49) ’)),
729 + (’o’, ’k’, ’p’, GeomFromText(’POINT (46 50) ’)),
730 + (’d’, ’e’, ’z’, GeomFromText(’POINT (30 198) ’)),
731 + (’r’, ’r’, ’l’, GeomFromText(’POINT (78 189) ’)),
732 + (’y’, ’l’, ’f’, GeomFromText(’POINT (188 132) ’)),
733 + (’d’, ’q’, ’m’, GeomFromText(’POINT (247 107) ’)),
734 + (’p’, ’j’, ’n’, GeomFromText(’POINT (148 227) ’)),
735 + (’b’, ’o’, ’i’, GeomFromText(’POINT (172 25) ’)),
736 + (’e’, ’v’, ’d’, GeomFromText(’POINT (94 248) ’)),
737 + (’q’, ’d’, ’f’, GeomFromText(’POINT (15 29) ’)),
738 + (’w’, ’b’, ’b’, GeomFromText(’POINT (74 111) ’)),
739 + (’g’, ’q’, ’f’, GeomFromText(’POINT (107 215) ’)),
740 + (’o’, ’h’, ’r’, GeomFromText(’POINT (25 168) ’)),
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741 + (’u’, ’t’, ’w’, GeomFromText(’POINT (251 188) ’)),
742 + (’h’, ’s’, ’w’, GeomFromText(’POINT (254 247) ’)),
743 + (’f’, ’f’, ’b’, GeomFromText(’POINT (166 103) ’));
744 +SET @@RAND_SEED1 =866613816 , @@RAND_SEED2 =92289615;
745 +INSERT INTO t1 (c2, c1, c3, spatial_point) VALUES
746 + (’l’, ’c’, ’l’, GeomFromText(’POINT (202 98) ’)),
747 + (’k’, ’c’, ’b’, GeomFromText(’POINT (46 206) ’)),
748 + (’r’, ’y’, ’m’, GeomFromText(’POINT (74 140) ’)),
749 + (’y’, ’z’, ’d’, GeomFromText(’POINT (200 160) ’)),
750 + (’s’, ’y’, ’s’, GeomFromText(’POINT (156 205) ’)),
751 + (’u’, ’v’, ’p’, GeomFromText(’POINT (86 82) ’)),
752 + (’j’, ’s’, ’s’, GeomFromText(’POINT (91 233) ’)),
753 + (’x’, ’j’, ’f’, GeomFromText(’POINT (3 14) ’)),
754 + (’l’, ’z’, ’v’, GeomFromText(’POINT (123 156) ’)),
755 + (’h’, ’i’, ’o’, GeomFromText(’POINT (145 229) ’)),
756 + (’o’, ’r’, ’d’, GeomFromText(’POINT (15 22) ’)),
757 + (’f’, ’x’, ’t’, GeomFromText(’POINT (21 60) ’)),
758 + (’t’, ’g’, ’h’, GeomFromText(’POINT (50 153) ’)),
759 + (’g’, ’u’, ’b’, GeomFromText(’POINT (82 85) ’)),
760 + (’v’, ’a’, ’p’, GeomFromText(’POINT (231 178) ’)),
761 + (’n’, ’v’, ’o’, GeomFromText(’POINT (183 25) ’)),
762 + (’j’, ’n’, ’m’, GeomFromText(’POINT (50 144) ’)),
763 + (’e’, ’f’, ’i’, GeomFromText(’POINT (46 16) ’)),
764 + (’d’, ’w’, ’a’, GeomFromText(’POINT (66 6) ’)),
765 + (’f’, ’x’, ’a’, GeomFromText(’POINT (107 197) ’)),
766 + (’m’, ’o’, ’a’, GeomFromText(’POINT (142 80) ’)),
767 + (’q’, ’l’, ’g’, GeomFromText(’POINT (251 23) ’)),
768 + (’c’, ’s’, ’s’, GeomFromText(’POINT (158 43) ’)),
769 + (’y’, ’d’, ’o’, GeomFromText(’POINT (196 228) ’)),
770 + (’d’, ’p’, ’l’, GeomFromText(’POINT (107 5) ’)),
771 + (’h’, ’a’, ’b’, GeomFromText(’POINT (183 166) ’)),
772 + (’m’, ’w’, ’p’, GeomFromText(’POINT (19 59) ’)),
773 + (’b’, ’y’, ’o’, GeomFromText(’POINT (178 30) ’)),
774 + (’x’, ’w’, ’i’, GeomFromText(’POINT (168 94) ’)),
775 + (’t’, ’k’, ’z’, GeomFromText(’POINT (171 5) ’)),
776 + (’r’, ’m’, ’a’, GeomFromText(’POINT (222 19) ’)),
777 + (’u’, ’v’, ’e’, GeomFromText(’POINT (224 80) ’)),
778 + (’q’, ’r’, ’k’, GeomFromText(’POINT (212 218) ’)),
779 + (’d’, ’p’, ’j’, GeomFromText(’POINT (169 7) ’)),
780 + (’d’, ’r’, ’v’, GeomFromText(’POINT (193 23) ’)),
781 + (’n’, ’y’, ’y’, GeomFromText(’POINT (130 178) ’)),
782 + (’m’, ’z’, ’r’, GeomFromText(’POINT (81 200) ’)),
783 + (’j’, ’e’, ’w’, GeomFromText(’POINT (145 239) ’)),
784 + (’v’, ’h’, ’x’, GeomFromText(’POINT (24 105) ’)),
785 + (’z’, ’m’, ’a’, GeomFromText(’POINT (175 129) ’)),
786 + (’b’, ’c’, ’v’, GeomFromText(’POINT (213 10) ’)),
787 + (’t’, ’t’, ’u’, GeomFromText(’POINT (2 129) ’)),
788 + (’r’, ’s’, ’v’, GeomFromText(’POINT (209 192) ’)),
789 + (’x’, ’p’, ’g’, GeomFromText(’POINT (43 63) ’)),
790 + (’t’, ’e’, ’u’, GeomFromText(’POINT (139 210) ’)),
791 + (’l’, ’e’, ’t’, GeomFromText(’POINT (245 148) ’)),
792 + (’a’, ’i’, ’k’, GeomFromText(’POINT (167 195) ’)),
793 + (’m’, ’o’, ’h’, GeomFromText(’POINT (206 120) ’)),
794 + (’g’, ’z’, ’s’, GeomFromText(’POINT (169 240) ’)),
795 + (’z’, ’u’, ’s’, GeomFromText(’POINT (202 120) ’)),
796 + (’i’, ’b’, ’a’, GeomFromText(’POINT (216 18) ’)),
797 + (’w’, ’y’, ’g’, GeomFromText(’POINT (119 236) ’)),
798 + (’h’, ’y’, ’p’, GeomFromText(’POINT (161 24) ’));
799 +UPDATE t1 set spatial_point=GeomFromText(’POINT (33 100) ’) where c1 like ’t

%’;
800 +UPDATE t1 set spatial_point=GeomFromText(’POINT (41 46) ’) where c1 like ’f

%’;
801 +CHECK TABLE t1 EXTENDED;
802 +DROP TABLE t1;
803 +
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804 +#
805 +# Bug #30286 spatial index cause corruption and server crash!
806 +#
807 +
808 +create table t1 (a geometry not null , spatial index(a));
809 +insert into t1 values (POINT (1.1517219314031e+164, 131072));
810 +insert into t1 values (POINT (9.1248812352444e+192, 2.9740338169556e+284));
811 +insert into t1 values (POINT (4.7783097267365e-299, -0));
812 +insert into t1 values (POINT (1.49166814624e-154, 2.0880974297595e-53));
813 +insert into t1 values (POINT (4.0917382598702e+149, 1.2024538023802e+111));
814 +insert into t1 values (POINT (2.0349165139404e+236, 2.9993936277913e-241));
815 +insert into t1 values (POINT (2.5243548967072e-29, 1.2024538023802e+111));
816 +insert into t1 values (POINT(0, 6.9835074892995e -251));
817 +insert into t1 values (POINT (2.0880974297595e-53, 3.1050361846014e+231));
818 +insert into t1 values (POINT (2.8728483499323e-188, 2.4600631144627e+260));
819 +insert into t1 values (POINT (3.0517578125e-05, 2.0349165139404e+236));
820 +insert into t1 values (POINT (1.1517219314031e+164, 1.1818212630766e-125));
821 +insert into t1 values (POINT (2.481040258324e-265, 5.7766220027675e -275));
822 +insert into t1 values (POINT (2.0880974297595e-53, 2.5243548967072e-29));
823 +insert into t1 values (POINT (5.7766220027675e-275, 9.9464647281957e+86));
824 +insert into t1 values (POINT (2.2181357552967e+130, 3.7857669957337e-270));
825 +insert into t1 values (POINT (4.5767114681874e-246, 3.6893488147419e+19));
826 +insert into t1 values (POINT (4.5767114681874e-246, 3.7537584144024e+255));
827 +insert into t1 values (POINT (3.7857669957337e-270, 1.8033161362863e-130));
828 +insert into t1 values (POINT(0, 5.8774717541114e-39));
829 +insert into t1 values (POINT (1.1517219314031e+164, 2.2761049594727e-159));
830 +insert into t1 values (POINT (6.243497100632e+144, 3.7857669957337e -270));
831 +insert into t1 values (POINT (3.7857669957337e-270, 2.6355494858076e-82));
832 +insert into t1 values (POINT (2.0349165139404e+236, 3.8518598887745e-34));
833 +insert into t1 values (POINT (4.6566128730774e-10, 2.0880974297595e-53));
834 +insert into t1 values (POINT (2.0880974297595e-53, 1.8827498946116e -183));
835 +insert into t1 values (POINT (1.8033161362863e-130, 9.1248812352444e+192));
836 +insert into t1 values (POINT (4.7783097267365e-299, 2.2761049594727e-159));
837 +insert into t1 values (POINT (1.94906280228e+289, 1.2338789709327e-178));
838 +drop table t1;
839 +
840 +# End of 4.1 tests
841 +
842 +#
843 +# bug #21790 (UNKNOWN ERROR on NULLs in RTree)
844 +#
845 +CREATE TABLE t1(foo GEOMETRY NOT NULL , SPATIAL INDEX(foo) USING GIST_RSTAR )

;
846 +--error 1048
847 +INSERT INTO t1(foo) VALUES (NULL);
848 +--error 1416
849 +INSERT INTO t1() VALUES ();
850 +--error 1416
851 +INSERT INTO t1(foo) VALUES (’’);
852 +DROP TABLE t1;
853 +
854 +#
855 +# Bug #23578: Corruption prevents Optimize table from working properly with

a
856 +# spatial index
857 +#
858 +
859 +CREATE TABLE t1 (a INT AUTO_INCREMENT , b POINT NOT NULL , KEY (a), SPATIAL

KEY (b) USING GIST_RSTAR);
860 +
861 +INSERT INTO t1 (b) VALUES (GeomFromText(’POINT (1 2) ’));
862 +INSERT INTO t1 (b) SELECT b FROM t1;
863 +INSERT INTO t1 (b) SELECT b FROM t1;
864 +INSERT INTO t1 (b) SELECT b FROM t1;
865 +INSERT INTO t1 (b) SELECT b FROM t1;
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866 +INSERT INTO t1 (b) SELECT b FROM t1;
867 +
868 +OPTIMIZE TABLE t1;
869 +DROP TABLE t1;
870 +
871 +
872 +#
873 +# Bug #29070: Error in spatial index
874 +#
875 +
876 +CREATE TABLE t1 (a INT , b GEOMETRY NOT NULL , SPATIAL KEY b(b) USING

GIST_RSTAR);
877 +INSERT INTO t1 VALUES (1, GEOMFROMTEXT(’LINESTRING (1102218.456 1 ,2000000 2)

’));
878 +INSERT INTO t1 VALUES (2, GEOMFROMTEXT(’LINESTRING (1102218.456 1 ,2000000 2)

’));
879 +
880 +# must return the same number as the next select
881 +SELECT COUNT (*) FROM t1 WHERE
882 + MBRINTERSECTS(b, GEOMFROMTEXT(’LINESTRING (1 1 ,1102219 2) ’) );
883 +SELECT COUNT (*) FROM t1 IGNORE INDEX (b) WHERE
884 + MBRINTERSECTS(b, GEOMFROMTEXT(’LINESTRING (1 1 ,1102219 2) ’) );
885 +
886 +DROP TABLE t1;
887 +
888 +
889 +--echo #
890 +--echo # Bug #48258: Assertion failed when using a spatial index
891 +--echo #
892 +CREATE TABLE t1(a LINESTRING NOT NULL , SPATIAL KEY(a) USING GIST_RSTAR);
893 +INSERT INTO t1 VALUES
894 + (GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1 1, 1 1) ’)),
895 + (GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1 1, 1 1) ’));
896 +EXPLAIN SELECT 1 FROM t1 WHERE a = GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1

-1, -1 1, 1 1) ’);
897 +SELECT 1 FROM t1 WHERE a = GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1

1, 1 1) ’);
898 +EXPLAIN SELECT 1 FROM t1 WHERE a < GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1

-1, -1 1, 1 1) ’);
899 +SELECT 1 FROM t1 WHERE a < GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1

1, 1 1) ’);
900 +EXPLAIN SELECT 1 FROM t1 WHERE a <= GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1

-1, -1 1, 1 1) ’);
901 +SELECT 1 FROM t1 WHERE a <= GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1

1, 1 1) ’);
902 +EXPLAIN SELECT 1 FROM t1 WHERE a > GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1

-1, -1 1, 1 1) ’);
903 +SELECT 1 FROM t1 WHERE a > GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1

1, 1 1) ’);
904 +EXPLAIN SELECT 1 FROM t1 WHERE a >= GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1

-1, -1 1, 1 1) ’);
905 +SELECT 1 FROM t1 WHERE a >= GEOMFROMTEXT(’LINESTRING (-1 -1, 1 -1, -1 -1, -1

1, 1 1) ’);
906 +DROP TABLE t1;
907 +
908 +
909 +--echo #
910 +--echo # Bug #51357: crash when using handler commands on spatial indexes
911 +--echo #
912 +
913 +CREATE TABLE t1(a GEOMETRY NOT NULL ,SPATIAL INDEX a(a) USING GIST_RSTAR);
914 +HANDLER t1 OPEN;
915 +HANDLER t1 READ a FIRST;
916 +HANDLER t1 READ a NEXT;
917 +HANDLER t1 READ a PREV;
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918 +HANDLER t1 READ a LAST;
919 +HANDLER t1 CLOSE;
920 +
921 +# second crash fixed when the tree has changed since the last search.
922 +HANDLER t1 OPEN;
923 +HANDLER t1 READ a FIRST;
924 +INSERT INTO t1 VALUES (GeomFromText(’Polygon ((40 40,60 40,60 60,40 60,40 40)

)’));
925 +--echo # should not crash
926 +--disable_result_log
927 +HANDLER t1 READ a NEXT;
928 +--enable_result_log
929 +HANDLER t1 CLOSE;
930 +
931 +DROP TABLE t1;
932 +
933 +
934 +--echo End of 5.0 tests.
935 +
936 +
937 +--echo #
938 +--echo # Bug #57323/11764487: myisam corruption with insert ignore
939 +--echo # and invalid spatial data
940 +--echo #
941 +
942 +CREATE TABLE t1(a LINESTRING NOT NULL , b GEOMETRY NOT NULL ,
943 + SPATIAL KEY(a) USING GIST_RSTAR , SPATIAL KEY(b) USING GIST_RSTAR) ENGINE=

MyISAM;
944 +INSERT INTO t1 VALUES(GEOMFROMTEXT ("point (0 0)"), GEOMFROMTEXT (" point (1 1)

"));
945 +--error ER_CANT_CREATE_GEOMETRY_OBJECT
946 +INSERT IGNORE INTO t1 SET a=GEOMFROMTEXT ("point (-6 0)"), b=GEOMFROMTEXT ("

error");
947 +--error ER_CANT_CREATE_GEOMETRY_OBJECT
948 +INSERT IGNORE INTO t1 SET a=GEOMFROMTEXT ("point (-6 0)"), b=NULL;
949 +SELECT ASTEXT(a), ASTEXT(b) FROM t1;
950 +DROP TABLE t1;
951 +
952 +CREATE TABLE t1(a INT NOT NULL , b GEOMETRY NOT NULL ,
953 + KEY(a), SPATIAL KEY(b) USING GIST_RSTAR) ENGINE=MyISAM;
954 +INSERT INTO t1 VALUES(0, GEOMFROMTEXT ("point (1 1)"));
955 +--error ER_CANT_CREATE_GEOMETRY_OBJECT
956 +INSERT IGNORE INTO t1 SET a=0, b=GEOMFROMTEXT (" error");
957 +--error ER_CANT_CREATE_GEOMETRY_OBJECT
958 +INSERT IGNORE INTO t1 SET a=1, b=NULL;
959 +SELECT a, ASTEXT(b) FROM t1;
960 +DROP TABLE t1;
961 +
962 +--echo End of 5.1 tests
963

964 === modified file ’storage/myisam/CMakeLists.txt ’

965 --- storage/myisam/CMakeLists.txt 2012 -08 -18 05:37:44 +0000
966 +++ storage/myisam/CMakeLists.txt 2012 -08 -18 11:29:56 +0000
967 @@ -26,7 +26,7 @@
968 mi_unique.c mi_update.c mi_write.c rt_index.c

rt_key.c rt_mbr.c
969 rt_split.c sort.c sp_key.c mi_extrafunc.h

myisamdef.h
970 rt_index.h mi_rkey.c
971 - gist_index.h gist_index.c)
972 + gist_index.h gist_index.c gist_key.h gist_key

.c gist_functions.h gist_functions.c sp_reinsert.h)
973
974 MYSQL_ADD_PLUGIN(myisam ${MYISAM_SOURCES}
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975 STORAGE_ENGINE
976

977 === added file ’storage/myisam/gist_functions.c’

978 --- storage/myisam/gist_functions.c 1970 -01 -01 00:00:00 +0000
979 +++ storage/myisam/gist_functions.c 2012 -08 -18 11:29:56 +0000
980 @@ -0,0 +1,66 @@
981 +/*
982 + Copyright (c) 2012 Monty Program AB & Vangelis Katsikaros
983 +
984 + This program is free software; you can redistribute it and/or modify
985 + it under the terms of the GNU General Public License as published by
986 + the Free Software Foundation; version 2 of the License.
987 +
988 + This program is distributed in the hope that it will be useful ,
989 + but WITHOUT ANY WARRANTY; without even the implied warranty of
990 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
991 + GNU General Public License for more details.
992 +
993 + You should have received a copy of the GNU General Public License
994 + along with this program; if not , write to the Free Software
995 + Foundation , Inc., 51 Franklin St, Fifth Floor , Boston , MA 02110 -1301 USA
996 +*/
997 +
998 +#include "myisamdef.h"
999 +

1000 +#ifdef HAVE_GIST_KEYS
1001 +
1002 +#include "rt_index.h" // for rtree_split_page
1003 +#include "rt_mbr.h" // for rtree_combine_rect
1004 +
1005 +// TODO now it’s just a wrapper: convert to GiST proper wrapper
1006 +int gist_split_page(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *page , uchar *

key ,
1007 + uint key_length , my_off_t *new_page_offs)
1008 +{
1009 + DBUG_ENTER (" gist_split_page ");
1010 +
1011 + DBUG_PRINT ("gist", (" key_alg: %d", keyinfo ->key_alg));
1012 + if (keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ){
1013 + DBUG_PRINT ("gist", ("will call rtree_split_page" ) );
1014 + DBUG_RETURN (( rtree_split_page(info , keyinfo , page , key , key_length ,
1015 + new_page_offs) ? -1 : 1));
1016 + }
1017 + else{
1018 + DBUG_PRINT ("gist", (" Unkown key_alg: will fail with assert "));
1019 + // this should never happen
1020 + DBUG_ASSERT (0);
1021 + }
1022 +}
1023 +
1024 +
1025 +
1026 +
1027 +// rtree_combine_rect wrapper
1028 +// PROBABLY not needed , replaced combine_rect with set_mbr
1029 +/* int gist_adjust_key(HA_KEYSEG *keyseg , uchar* a, uchar* b, uchar* c, */
1030 +/* uint key_length) */
1031 +/* { */
1032 +/* DBUG_ENTER (" gist_adjust_key "); */
1033 +
1034 +/* if (keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ){ */
1035 +/* DBUG_RETURN (( rtree_combine_rect(keyinfo ->seg , k, key , k, key_length))

; */
1036 +/* } */
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1037 +/* else{ */
1038 +/* // this should never happen */
1039 +/* // TODO ASSERT */
1040 +/* DBUG_RETURN (-1); */
1041 +/* } */
1042 +
1043 +/* } */
1044 +
1045 +
1046 +#endif /* HAVE_GIST_KEYS */
1047

1048 === added file ’storage/myisam/gist_functions.h’

1049 --- storage/myisam/gist_functions.h 1970 -01 -01 00:00:00 +0000
1050 +++ storage/myisam/gist_functions.h 2012 -08 -18 11:29:56 +0000
1051 @@ -0,0 +1,26 @@
1052 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
1053 +
1054 + This program is free software; you can redistribute it and/or modify
1055 + it under the terms of the GNU General Public License as published by
1056 + the Free Software Foundation; version 2 of the License.
1057 +
1058 + This program is distributed in the hope that it will be useful ,
1059 + but WITHOUT ANY WARRANTY; without even the implied warranty of
1060 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1061 + GNU General Public License for more details.
1062 +
1063 + You should have received a copy of the GNU General Public License
1064 + along with this program; if not , write to the Free Software
1065 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
1066 +
1067 +
1068 +#ifndef _gist_functions_h
1069 +#define _gist_functions_h
1070 +
1071 +#ifdef HAVE_GIST_KEYS
1072 +
1073 +int gist_split_page(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *page , uchar *

key ,
1074 + uint key_length , my_off_t *new_page_offs);
1075 +
1076 +#endif /* HAVE_GIST_KEYS */
1077 +#endif /* _gist_functions_h */
1078

1079 === modified file ’storage/myisam/gist_index.c’

1080 --- storage/myisam/gist_index.c 2012 -08 -18 05:37:44 +0000
1081 +++ storage/myisam/gist_index.c 2012 -08 -18 11:29:56 +0000
1082 @@ -17,21 +17 ,158 @@
1083
1084 #ifdef HAVE_GIST_KEYS
1085
1086 +#include "gist_key.h" // TODO can gist_key.

h and gist_functions.h be combined?
1087 #include "gist_index.h"
1088 -
1089 -typedef struct st_page_level
1090 -{
1091 - uint level;
1092 - my_off_t offs;
1093 -} stPageLevel;
1094 -
1095 -typedef struct st_page_list
1096 -{
1097 - ulong n_pages;
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1098 - ulong m_pages;
1099 - stPageLevel *pages;
1100 -} stPageList;
1101 -
1102 +#include "gist_functions.h"
1103 +
1104 +// These 2 are needed for rtree_pick_key // TODO remove

function from here to gist_functions.h. What about static?
1105 +#include "rt_index.h"
1106 +#include "rt_mbr.h"
1107 +
1108 +
1109 +
1110 +/*
1111 + Fill reinsert page buffer
1112 +
1113 + RETURN
1114 + -1 Error
1115 + 0 OK
1116 +*/
1117 +
1118 +static int gist_fill_reinsert_list(stPageList *ReinsertList , my_off_t page ,
1119 + int level)
1120 +{
1121 + DBUG_ENTER (" gist_fill_reinsert_list ");
1122 + DBUG_PRINT ("gist", ("page: %lu level: %d", (ulong) page , level));
1123 + if (ReinsertList ->n_pages == ReinsertList ->m_pages)
1124 + {
1125 + ReinsertList ->m_pages += REINSERT_BUFFER_INC;
1126 + if (!( ReinsertList ->pages = (stPageLevel *) my_realloc ((uchar *)

ReinsertList ->pages ,
1127 + ReinsertList ->m_pages * sizeof(stPageLevel), MYF(MY_ALLOW_ZERO_PTR))))
1128 + goto err1;
1129 + }
1130 + /* save page to ReinsertList */
1131 + ReinsertList ->pages[ReinsertList ->n_pages ].offs = page;
1132 + ReinsertList ->pages[ReinsertList ->n_pages ].level = level;
1133 + ReinsertList ->n_pages ++;
1134 + DBUG_RETURN (0);
1135 +
1136 +err1:
1137 + DBUG_RETURN (-1); /* purecov: inspected */
1138 +}
1139 +
1140 +
1141 +/*
1142 + Find next key in gist -tree according to search_flag recursively
1143 +
1144 + NOTES
1145 + Used in gist_find_first () and gist_find_next ()
1146 +
1147 + RETURN
1148 + -1 Error
1149 + 0 Found
1150 + 1 Not found
1151 +*/
1152 +
1153 +static int gist_find_req(MI_INFO *info , MI_KEYDEF *keyinfo , uint search_flag

,
1154 + uint nod_cmp_flag , my_off_t page , int level)
1155 +{
1156 + uchar *k;
1157 + uchar *last;
1158 + uint nod_flag;
1159 + int res;



190 Patches for the MariaDB codebase

1160 + uchar *page_buf;
1161 + int k_len;
1162 + uint *saved_key = (uint*) (info ->gist_recursion_state) + level;
1163 +
1164 + DBUG_ENTER (" gist_find_req ");
1165 + if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length)))
1166 + {
1167 + my_errno = HA_ERR_OUT_OF_MEM;
1168 + DBUG_RETURN (-1);
1169 + }
1170 + if (! _mi_fetch_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf , 0))
1171 + goto err1;
1172 + nod_flag = mi_test_if_nod(page_buf);
1173 +
1174 + k_len = keyinfo ->keylength - info ->s->base.rec_reflength;
1175 +
1176 + if(info ->gist_recursion_depth >= level)
1177 + {
1178 + k = page_buf + *saved_key;
1179 + }
1180 + else
1181 + {
1182 + k = rt_PAGE_FIRST_KEY(page_buf , nod_flag);
1183 + }
1184 + last = rt_PAGE_END(page_buf);
1185 +
1186 + for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len , nod_flag))
1187 + {
1188 + if (nod_flag)
1189 + {
1190 + /* this is an internal node in the tree */
1191 + if (!( res = gist_key_cmp(keyinfo ->seg , info ->first_mbr_key , k,
1192 + info ->last_rkey_length , nod_cmp_flag)))
1193 + {
1194 + switch ((res = gist_find_req(info , keyinfo , search_flag ,

nod_cmp_flag ,
1195 + _mi_kpos(nod_flag , k), level + 1)))
1196 + {
1197 + case 0: /* found - exit from recursion */
1198 + *saved_key = (uint) (k - page_buf);
1199 + goto ok;
1200 + case 1: /* not found - continue searching */
1201 + info ->gist_recursion_depth = level;
1202 + break;
1203 + default: /* error */
1204 + case -1:
1205 + goto err1;
1206 + }
1207 + }
1208 + }
1209 + else
1210 + {
1211 + /* this is a leaf */
1212 + if (! gist_key_cmp(keyinfo ->seg , info ->first_mbr_key , k,
1213 + info ->last_rkey_length , search_flag))
1214 + {
1215 + uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len , nod_flag);
1216 + info ->lastpos = _mi_dpos(info , 0, after_key);
1217 + info ->lastkey_length = k_len + info ->s->base.rec_reflength;
1218 + memcpy(info ->lastkey , k, info ->lastkey_length);
1219 + info ->gist_recursion_depth = level;
1220 + *saved_key = (uint) (last - page_buf);
1221 +
1222 + if (after_key < last)
1223 + {



B.2 GiST implementation 191

1224 + info ->int_keypos = info ->buff;
1225 + info ->int_maxpos = info ->buff + (last - after_key);
1226 + memcpy(info ->buff , after_key , last - after_key);
1227 + info ->buff_used = 0;
1228 + }
1229 + else
1230 + {
1231 + info ->buff_used = 1;
1232 + }
1233 +
1234 + res = 0;
1235 + goto ok;
1236 + }
1237 + }
1238 + }
1239 + info ->lastpos = HA_OFFSET_ERROR;
1240 + my_errno = HA_ERR_KEY_NOT_FOUND;
1241 + res = 1;
1242 +
1243 +ok:
1244 + my_afree ((uchar*) page_buf);
1245 + DBUG_RETURN(res);
1246 +
1247 +err1:
1248 + my_afree ((uchar*) page_buf);
1249 + info ->lastpos = HA_OFFSET_ERROR;
1250 + DBUG_RETURN (-1);
1251 +}
1252
1253
1254
1255 @@ -55,19 +192 ,42 @@
1256 int gist_find_first(MI_INFO *info , uint keynr , uchar *key , uint key_length ,
1257 uint search_flag)
1258 {
1259 -
1260 my_off_t root;
1261 - //uint nod_cmp_flag;
1262 - // MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
1263 - DBUG_ENTER (" gist_find_first "); // no DBUG were initially used
1264 + uint nod_cmp_flag;
1265 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
1266 +
1267 + DBUG_ENTER (" gist_find_first ");
1268 + /*
1269 + At the moment index can only properly handle the
1270 + MBR_INTERSECT , so we use it for all sorts of queries.
1271 + TODO: better searsh for CONTAINS/WITHIN.
1272 + */
1273 + search_flag= nod_cmp_flag= MBR_INTERSECT;
1274 +
1275 if ((root = info ->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
1276 {
1277 my_errno= HA_ERR_END_OF_FILE;
1278 - return -1;
1279 + DBUG_RETURN (-1);
1280 }
1281 +
1282 + /*
1283 + Save searched key , include data pointer.
1284 + The data pointer is required if the search_flag contains MBR_DATA.
1285 + (minimum bounding rectangle)
1286 + */
1287 + memcpy(info ->first_mbr_key , key , keyinfo ->keylength);
1288 + info ->last_rkey_length = key_length;
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1289 +
1290 + info ->gist_recursion_depth = -1;
1291 + info ->buff_used = 1;
1292 +
1293 + /*
1294 + TODO better search for CONTAINS/WITHIN.
1295 + nod_cmp_flag= (( search_flag & (MBR_EQUAL | MBR_WITHIN)) ?
1296 + MBR_WITHIN : MBR_INTERSECT);
1297 + */
1298 DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u

search_flag: %u", (ulong) info , keynr , key , key_length , search_flag )
);

1299 - DBUG_RETURN (0); /* sceleton return */
1300 -
1301 + DBUG_RETURN( gist_find_req(info , keyinfo , search_flag , nod_cmp_flag , root ,

0) );
1302 }
1303
1304
1305 @@ -86,24 +246 ,192 @@
1306 1 Not found
1307 */
1308
1309 +/*
1310 + Find next key in gist -tree according to search_flag condition
1311 +
1312 + SYNOPSIS
1313 + gist_find_next ()
1314 + info Handler to MyISAM file
1315 + uint keynr Key number to use
1316 + search_flag Bitmap of flags how to do the search
1317 +
1318 + RETURN
1319 + -1 Error
1320 + 0 Found
1321 + 1 Not found
1322 +*/
1323 +
1324 int gist_find_next(MI_INFO *info , uint keynr , uint search_flag)
1325 {
1326 my_off_t root;
1327 uint nod_cmp_flag;
1328 MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
1329
1330 - nod_cmp_flag = 0;
1331 - root = 0;
1332 + DBUG_ENTER (" gist_find_next ");
1333 + /*
1334 + At the moment index can only properly handle the
1335 + MBR_INTERSECT , so we use it for all sorts of queries.
1336 + TODO: better searsh for CONTAINS/WITHIN.
1337 + */
1338 + search_flag= nod_cmp_flag= MBR_INTERSECT;
1339 +
1340 DBUG_PRINT ("gist", ("info: %lu keynr: %u search_flag: %u", (ulong) info ,

keynr , search_flag ) );
1341 DBUG_PRINT ("gist", (" keyinfo: %lu keynr: %u search_flag: %lu", (ulong)

keyinfo , nod_cmp_flag , (ulong) root ) );
1342
1343 if (info ->update & HA_STATE_DELETED)
1344 - return gist_find_first(info , keynr , info ->lastkey , info ->lastkey_length ,
1345 - search_flag);
1346 -
1347 + DBUG_RETURN( gist_find_first(info , keynr , info ->lastkey , info ->

lastkey_length ,
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1348 + search_flag) );
1349 +
1350 + if (!info ->buff_used)
1351 + {
1352 + uchar *key= info ->int_keypos;
1353 +
1354 + while (key < info ->int_maxpos)
1355 + {
1356 + if (! gist_key_cmp(keyinfo ->seg , info ->first_mbr_key , key ,
1357 + info ->last_rkey_length , search_flag))
1358 + {
1359 + uchar *after_key = key + keyinfo ->keylength;
1360 +
1361 + info ->lastpos= _mi_dpos(info , 0, after_key);
1362 + memcpy(info ->lastkey , key , info ->lastkey_length);
1363 +
1364 + if (after_key < info ->int_maxpos)
1365 + info ->int_keypos= after_key;
1366 + else
1367 + info ->buff_used= 1;
1368 + DBUG_RETURN (0);
1369 + }
1370 + key+= keyinfo ->keylength;
1371 + }
1372 + }
1373 + if ((root = info ->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
1374 + {
1375 my_errno= HA_ERR_END_OF_FILE;
1376 - return -1;
1377 -}
1378 + DBUG_RETURN (-1);
1379 + }
1380 +
1381 + /*
1382 + TODO better search for CONTAINS/WITHIN.
1383 + nod_cmp_flag= ((( search_flag & (MBR_EQUAL | MBR_WITHIN)) ?
1384 + MBR_WITHIN : MBR_INTERSECT));
1385 + */
1386 + DBUG_RETURN(gist_find_req(info , keyinfo , search_flag , nod_cmp_flag , root ,

0));
1387 +}
1388 +
1389 +
1390 +
1391 +
1392 +/*
1393 + Get next key in gist -tree recursively
1394 +
1395 + NOTES
1396 + Used in rtree_get_first () and rtree_get_next ()
1397 +
1398 + RETURN
1399 + -1 Error
1400 + 0 Found
1401 + 1 Not found
1402 +*/
1403 +
1404 +static int gist_get_req(MI_INFO *info , MI_KEYDEF *keyinfo , uint key_length ,
1405 + my_off_t page , int level)
1406 +{
1407 + uchar *k;
1408 + uchar *last;
1409 + uint nod_flag;
1410 + int res;
1411 + uchar *page_buf;
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1412 + uint k_len;
1413 + uint *saved_key = (uint*) (info ->gist_recursion_state) + level;
1414 +
1415 + DBUG_ENTER (" gist_find_req ");
1416 +
1417 + if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length)))
1418 + DBUG_RETURN (-1);
1419 + if (! _mi_fetch_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf , 0))
1420 + goto err1;
1421 + nod_flag = mi_test_if_nod(page_buf);
1422 +
1423 + k_len = keyinfo ->keylength - info ->s->base.rec_reflength;
1424 +
1425 + if(info ->gist_recursion_depth >= level)
1426 + {
1427 + k = page_buf + *saved_key;
1428 + if (! nod_flag)
1429 + {
1430 + /* Only leaf pages contain data references. */
1431 + /* Need to check next key with data reference. */
1432 + k = rt_PAGE_NEXT_KEY(k, k_len , nod_flag);
1433 + }
1434 + }
1435 + else
1436 + {
1437 + k = rt_PAGE_FIRST_KEY(page_buf , nod_flag);
1438 + }
1439 + last = rt_PAGE_END(page_buf);
1440 +
1441 + for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len , nod_flag))
1442 + {
1443 + if (nod_flag)
1444 + {
1445 + /* this is an internal node in the tree */
1446 + switch ((res = gist_get_req(info , keyinfo , key_length ,
1447 + _mi_kpos(nod_flag , k), level + 1)))
1448 + {
1449 + case 0: /* found - exit from recursion */
1450 + *saved_key = (uint) (k - page_buf);
1451 + goto ok;
1452 + case 1: /* not found - continue searching */
1453 + info ->gist_recursion_depth = level;
1454 + break;
1455 + default:
1456 + case -1: /* error */
1457 + goto err1;
1458 + }
1459 + }
1460 + else
1461 + {
1462 + /* this is a leaf */
1463 + uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len , nod_flag);
1464 + info ->lastpos = _mi_dpos(info , 0, after_key);
1465 + info ->lastkey_length = k_len + info ->s->base.rec_reflength;
1466 + memcpy(info ->lastkey , k, info ->lastkey_length);
1467 +
1468 + info ->gist_recursion_depth = level;
1469 + *saved_key = (uint) (k - page_buf);
1470 +
1471 + if (after_key < last)
1472 + {
1473 + info ->int_keypos = (uchar*) saved_key;
1474 + memcpy(info ->buff , page_buf , keyinfo ->block_length);
1475 + info ->int_maxpos = rt_PAGE_END(info ->buff);
1476 + info ->buff_used = 0;
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1477 + }
1478 + else
1479 + {
1480 + info ->buff_used = 1;
1481 + }
1482 +
1483 + res = 0;
1484 + goto ok;
1485 + }
1486 + }
1487 + info ->lastpos = HA_OFFSET_ERROR;
1488 + my_errno = HA_ERR_KEY_NOT_FOUND;
1489 + res = 1;
1490 +
1491 +ok:
1492 + my_afree ((uchar*) page_buf);
1493 + DBUG_RETURN(res);
1494 +
1495 +err1:
1496 + my_afree ((uchar*) page_buf);
1497 + info ->lastpos = HA_OFFSET_ERROR;
1498 + DBUG_RETURN (-1);
1499 +}
1500 +
1501 +
1502
1503
1504
1505 @@ -121,19 +449 ,23 @@
1506 my_off_t root;
1507 MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
1508
1509 + DBUG_ENTER (" gist_get_first ");
1510 DBUG_PRINT ("gist", ("nfo: %lu keynr: %u key_length: %u, keyinfo: %p", (

ulong) info , keynr , key_length , keyinfo ) );
1511
1512 -
1513 if ((root = info ->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
1514 {
1515 my_errno= HA_ERR_END_OF_FILE;
1516 - return -1;
1517 + DBUG_RETURN (-1);
1518 }
1519
1520 - return -1;
1521 + info ->gist_recursion_depth = -1;
1522 + info ->buff_used = 1;
1523 +
1524 + DBUG_RETURN(gist_get_req(info , keyinfo , key_length , root , 0));
1525 }
1526
1527
1528 +
1529 /*
1530 Get next key in gist -tree
1531
1532 @@ -142,21 +474 ,265 @@
1533 0 Found
1534 1 Not found
1535 */
1536 -
1537 int gist_get_next(MI_INFO *info , uint keynr , uint key_length)
1538 {
1539 my_off_t root= info ->s->state.key_root[keynr ];
1540 MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
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1541
1542 + DBUG_ENTER (" gist_get_next ");
1543 DBUG_PRINT ("gist", ("info: %lu keynr: %u key_length: %u, keyinfo: %p,

root: %lu", (ulong) info , keynr , key_length , keyinfo , (ulong) root )
);

1544 -
1545 +
1546 if (root == HA_OFFSET_ERROR)
1547 {
1548 my_errno= HA_ERR_END_OF_FILE;
1549 - return -1;
1550 - }
1551 -
1552 - return -1;
1553 + DBUG_RETURN (-1);
1554 + }
1555 +
1556 + if (!info ->buff_used && !info ->page_changed)
1557 + {
1558 + uint k_len = keyinfo ->keylength - info ->s->base.rec_reflength;
1559 + /* rt_PAGE_NEXT_KEY(info ->int_keypos) */
1560 + uchar *key = info ->buff + *(int*)info ->int_keypos + k_len +
1561 + info ->s->base.rec_reflength;
1562 + /* rt_PAGE_NEXT_KEY(key) */
1563 + uchar *after_key = key + k_len + info ->s->base.rec_reflength;
1564 +
1565 + info ->lastpos = _mi_dpos(info , 0, after_key);
1566 + info ->lastkey_length = k_len + info ->s->base.rec_reflength;
1567 + memcpy(info ->lastkey , key , k_len + info ->s->base.rec_reflength);
1568 +
1569 + *(uint*)info ->int_keypos = (uint) (key - info ->buff);
1570 + if (after_key >= info ->int_maxpos)
1571 + {
1572 + info ->buff_used = 1;
1573 + }
1574 +
1575 + DBUG_RETURN (0);
1576 + }
1577 +
1578 + DBUG_RETURN(gist_get_req(info , keyinfo , key_length , root , 0));
1579 +}
1580 +
1581 +
1582 +
1583 +static uchar *gist_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
1584 + uint key_length , uchar *page_buf , uint nod_flag)
1585 +{
1586 + /*

// TODO gist_penalty
1587 + TODO reform this to match the gist ChooseSubtree algorith:
1588 + loop all entires and calulate gist_Penalty( key_in_node , new_key )
1589 + K = entry e with the minimum penalty;
1590 +
1591 + gist_Penalty(E1 , E2 ) {
1592 + if(rtree){
1593 + // rtree specific implementation
1594 + q = gist_Union(E1 , E2 )
1595 + return area(q)- area(E1 ).
1596 + }
1597 + }
1598 + */
1599 +
1600 + if (keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ){
1601 + return rtree_pick_key(info , keyinfo , key , key_length , page_buf ,
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1602 + nod_flag);
1603 + }
1604 + // TODO assert this should never happen
1605 + return NULL;
1606 +}
1607 +
1608 +
1609 +
1610 +
1611 +/*
1612 + Go down and insert key into tree
1613 +
1614 + RETURN
1615 + -1 Error
1616 + 0 Child was not split
1617 + 1 Child was split
1618 +*/
1619 +
1620 +static int gist_insert_req(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
1621 + uint key_length , my_off_t page , my_off_t *

new_page ,
1622 + int ins_level , int level)
1623 +{
1624 + uchar *k;
1625 + uint nod_flag;
1626 + uchar *page_buf;
1627 + int res;
1628 + DBUG_ENTER (" gist_insert_req ");
1629 +
1630 + if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length +
1631 + HA_MAX_KEY_BUFF)))
1632 + {
1633 + my_errno = HA_ERR_OUT_OF_MEM;
1634 + DBUG_RETURN (-1); /* purecov: inspected */
1635 + }
1636 + if (! _mi_fetch_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf , 0))
1637 + goto err1;
1638 + nod_flag = mi_test_if_nod(page_buf);
1639 + DBUG_PRINT ("gist", ("page: %lu level: %d ins_level: %d nod_flag: %u",
1640 + (ulong) page , level , ins_level , nod_flag));
1641 +
1642 + if (( ins_level == -1 && nod_flag) || /* key: go down to leaf */
1643 + (ins_level > -1 && ins_level > level)) /* branch: go down to ins_level

*/
1644 + {
1645 + DBUG_PRINT ("gist", ("go one level down"));
1646 + if ((k = gist_pick_key(info , keyinfo , key , key_length , page_buf ,

// TODO pick key
1647 + nod_flag)) == NULL)
1648 + goto err1;
1649 + switch ((res = gist_insert_req(info , keyinfo , key , key_length ,

// ...
1650 + _mi_kpos(nod_flag , k), new_page , ins_level , level + 1))

)
1651 + {
1652 + case 0: /* child was not split */
1653 + {
1654 + DBUG_PRINT ("gist", ("child was not split "));
1655 + gist_set_key_mbr(info , keyinfo , k, key_length ,_mi_kpos(nod_flag , k))

; // TODO adjust. REPLACED: rtree_combine_rect with
rtree_set_key_mbr.

1656 + if (_mi_write_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf)
)

1657 + goto err1;
1658 + goto ok;
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1659 + }
1660 + case 1: /* child was split */
1661 + {
1662 + DBUG_PRINT ("gist", ("child was split"));
1663 + uchar *new_key = page_buf + keyinfo ->block_length + nod_flag;
1664 + /* set proper MBR for key */
1665 + if (gist_set_key_mbr(info , keyinfo , k, key_length ,

// TODO adjust
1666 + _mi_kpos(nod_flag , k)))
1667 + goto err1;
1668 + /* add new key for new page */
1669 + _mi_kpointer(info , new_key - nod_flag , *new_page);
1670 + if (gist_set_key_mbr(info , keyinfo , new_key , key_length , *new_page))

// TODO adjust
1671 + goto err1;
1672 + res = gist_add_key(info , keyinfo , new_key , key_length ,

// TODO gist_add_key
1673 + page_buf , new_page);
1674 + if (_mi_write_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf)

)
1675 + goto err1;
1676 + goto ok;
1677 + }
1678 + default:
1679 + case -1: /* error */
1680 + {
1681 + DBUG_PRINT ("gist", ("error "));
1682 + goto err1;
1683 + }
1684 + }
1685 + }
1686 + else
1687 + {
1688 + DBUG_PRINT ("gist", ("don ’t go down: add key"));
1689 + res = gist_add_key(info , keyinfo , key , key_length , page_buf , new_page);

// TODO gist_add_key
1690 + if (_mi_write_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf))
1691 + goto err1;
1692 + DBUG_PRINT ("gist", (" added with res: %d", res));
1693 + goto ok;
1694 + }
1695 +
1696 +ok:
1697 + DBUG_PRINT ("gist", ("ok: return %d", res));
1698 + my_afree ((uchar*) page_buf);
1699 + DBUG_RETURN(res);
1700 +
1701 +err1:
1702 + DBUG_PRINT ("gist", (" error"));
1703 + my_afree ((uchar*) page_buf);
1704 + DBUG_RETURN (-1); /* purecov: inspected */
1705 +}
1706 +
1707 +
1708 +
1709 +
1710 +
1711 +/*
1712 + Insert key into the tree
1713 +
1714 + RETURN
1715 + -1 Error
1716 + 0 Root was not split
1717 + 1 Root was split
1718 +*/
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1719 +
1720 +static int gist_insert_level(MI_INFO *info , uint keynr , uchar *key ,
1721 + uint key_length , int ins_level)
1722 +{
1723 + my_off_t old_root;
1724 + MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
1725 + int res;
1726 + my_off_t new_page;
1727 + DBUG_ENTER (" gist_insert_level ");
1728 +
1729 + if (( old_root = info ->s->state.key_root[keynr ]) == HA_OFFSET_ERROR)
1730 + {
1731 + DBUG_PRINT ("gist", (" special install new root"));
1732 + if (( old_root = _mi_new(info , keyinfo , DFLT_INIT_HITS)) ==

HA_OFFSET_ERROR)
1733 + DBUG_RETURN (-1);
1734 + info ->buff_used = 1;
1735 + mi_putint(info ->buff , 2, 0);
1736 + res = gist_add_key(info , keyinfo , key , key_length , info ->buff , NULL);

// TODO gist_add_key
1737 + if (_mi_write_keypage(info , keyinfo , old_root , DFLT_INIT_HITS , info ->

buff))
1738 + DBUG_RETURN (1);
1739 + info ->s->state.key_root[keynr] = old_root;
1740 + DBUG_RETURN(res);
1741 + }
1742 +
1743 + DBUG_PRINT ("gist", (" calling gist_insert_req "));
1744 + switch ((res = gist_insert_req(info , keyinfo , key , key_length ,

// TODO gist_insert_req
1745 + old_root , &new_page , ins_level , 0)))
1746 + {
1747 + case 0: /* root was not split */
1748 + {
1749 + DBUG_PRINT ("gist", ("root was not split "));
1750 + break;
1751 + }
1752 + case 1: /* root was split , grow a new root */
1753 + {
1754 + DBUG_PRINT ("gist", ("root split , grow new root"));
1755 + uchar *new_root_buf= info ->buff + info ->s->base.max_key_block_length;
1756 + my_off_t new_root;
1757 + uchar *new_key;
1758 + uint nod_flag = info ->s->base.key_reflength;
1759 +
1760 + DBUG_PRINT ("gist", ("root was split , grow a new root"));
1761 +
1762 + mi_putint(new_root_buf , 2, nod_flag);
1763 + if (( new_root = _mi_new(info , keyinfo , DFLT_INIT_HITS)) ==
1764 + HA_OFFSET_ERROR)
1765 + goto err1;
1766 +
1767 + new_key = new_root_buf + keyinfo ->block_length + nod_flag;
1768 +
1769 + _mi_kpointer(info , new_key - nod_flag , old_root);
1770 + if (gist_set_key_mbr(info , keyinfo , new_key , key_length , old_root))

// TODO
1771 + goto err1;
1772 + if (gist_add_key(info , keyinfo , new_key , key_length , new_root_buf ,

NULL) // TODO gist_add_key
1773 + == -1)
1774 + goto err1;
1775 + _mi_kpointer(info , new_key - nod_flag , new_page);
1776 + if (gist_set_key_mbr(info , keyinfo , new_key , key_length , new_page))

// TODO
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1777 + goto err1;
1778 + if (gist_add_key(info , keyinfo , new_key , key_length , new_root_buf ,

NULL) // TODO gist_add_key
1779 + == -1)
1780 + goto err1;
1781 + if (_mi_write_keypage(info , keyinfo , new_root ,
1782 + DFLT_INIT_HITS , new_root_buf))
1783 + goto err1;
1784 + info ->s->state.key_root[keynr] = new_root;
1785 + DBUG_PRINT ("gist", ("new root page: %lu level: %d nod_flag: %u",
1786 + (ulong) new_root , 0, mi_test_if_nod(new_root_buf)

));
1787 +
1788 + break;
1789 +err1:
1790 + DBUG_PRINT ("gist", (" error during insert_level "));
1791 + DBUG_RETURN (-1); /* purecov: inspected */
1792 + }
1793 + default:
1794 + case -1: /* error */
1795 + {
1796 + DBUG_PRINT ("gist", ("req returned error "));
1797 + break;
1798 + }
1799 + }
1800 + DBUG_RETURN(res);
1801 }
1802
1803
1804 @@ -173,11 +749 ,158 @@
1805 int gist_insert(MI_INFO *info , uint keynr , uchar *key , uint key_length)
1806 {
1807 DBUG_ENTER (" gist_insert ");
1808 - /* DBUG_RETURN ((! key_length || */
1809 - /* (gist_insert_level(info , keynr , key , key_length , -1) ==

-1)) ? */
1810 - /* -1 : 0); */
1811 DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u", (ulong

) info , keynr , key , key_length ) );
1812 - DBUG_RETURN (-1); /* sceleton return */
1813 + DBUG_RETURN ((! key_length ||
1814 + (gist_insert_level(info , keynr , key , key_length , -1) == -1))

?
1815 + -1 : 0);
1816 +}
1817 +
1818 +
1819 +
1820 +
1821 +/*
1822 + Go down and delete key from the tree
1823 +
1824 + RETURN
1825 + -1 Error
1826 + 0 Deleted
1827 + 1 Not found
1828 + 2 Empty leaf
1829 +*/
1830 +
1831 +static int gist_delete_req(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
1832 + uint key_length , my_off_t page , uint *page_size ,
1833 + stPageList *ReinsertList , int level)
1834 +{
1835 + uchar *k;
1836 + uchar *last;
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1837 + ulong i;
1838 + uint nod_flag;
1839 + uchar *page_buf;
1840 + int res;
1841 + DBUG_ENTER (" gist_delete_req ");
1842 +
1843 + if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length)))
1844 + {
1845 + my_errno = HA_ERR_OUT_OF_MEM;
1846 + DBUG_RETURN (-1); /* purecov: inspected */
1847 + }
1848 + if (! _mi_fetch_keypage(info , keyinfo , page , DFLT_INIT_HITS , page_buf , 0))
1849 + goto err1;
1850 + nod_flag = mi_test_if_nod(page_buf);
1851 + DBUG_PRINT ("gist", ("page: %lu level: %d nod_flag: %u",
1852 + (ulong) page , level , nod_flag));
1853 +
1854 + k = rt_PAGE_FIRST_KEY(page_buf , nod_flag);
1855 + last = rt_PAGE_END(page_buf);
1856 +
1857 + for (i = 0; k < last; k = rt_PAGE_NEXT_KEY(k, key_length , nod_flag), ++i)

// TODO iterate the keys
1858 + {
1859 + if (nod_flag)
1860 + {
1861 + /* not leaf */
1862 + if (! rtree_key_cmp(keyinfo ->seg , key , k, key_length , MBR_WITHIN))

// TODO compare
1863 + {
1864 + switch ((res = gist_delete_req(info , keyinfo , key , key_length ,

// TODO recursive
1865 + _mi_kpos(nod_flag , k), page_size , ReinsertList , level + 1)

))
1866 + {
1867 + case 0: /* deleted */
1868 + {
1869 + /* test page filling */
1870 + if (* page_size + key_length >= rt_PAGE_MIN_SIZE(keyinfo ->

block_length))
1871 + {
1872 + /* OK */
1873 + /* Calculate a new key value (MBR) for the shrinked block. */
1874 + if (gist_set_key_mbr(info , keyinfo , k, key_length ,

// TODO adjust
1875 + _mi_kpos(nod_flag , k)))
1876 + goto err1;
1877 + if (_mi_write_keypage(info , keyinfo , page ,
1878 + DFLT_INIT_HITS , page_buf))
1879 + goto err1;
1880 + }
1881 + else
1882 + {
1883 + /*
1884 + Too small: delete key & add it descendant to reinsert list.
1885 + Store position and level of the block so that it can be
1886 + accessed later for inserting the remaining keys.
1887 + */
1888 + DBUG_PRINT ("gist", ("too small. move block to reinsert list"))

;
1889 + if (gist_fill_reinsert_list(ReinsertList , _mi_kpos(nod_flag , k

), // TODO reinsert fill
1890 + level + 1))
1891 + goto err1;
1892 + /*
1893 + Delete the key that references the block. This makes the
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1894 + block disappear from the index. Hence we need to insert
1895 + its remaining keys later. Note: if the block is a branch
1896 + block , we do not only remove this block , but the whole
1897 + subtree. So we need to re -insert its keys on the same
1898 + level later to reintegrate the subtrees.
1899 + */
1900 + gist_delete_key(info , page_buf , k, key_length , nod_flag);

// TODO delete key
1901 + if (_mi_write_keypage(info , keyinfo , page ,
1902 + DFLT_INIT_HITS , page_buf))
1903 + goto err1;
1904 + *page_size = mi_getint(page_buf);
1905 + }
1906 +
1907 + goto ok;
1908 + }
1909 + case 1: /* not found - continue searching */
1910 + {
1911 + break;
1912 + }
1913 + case 2: /* vacuous case: last key in the leaf */
1914 + {
1915 + gist_delete_key(info , page_buf , k, key_length , nod_flag);

// TODO delete key
1916 + if (_mi_write_keypage(info , keyinfo , page ,
1917 + DFLT_INIT_HITS , page_buf))
1918 + goto err1;
1919 + *page_size = mi_getint(page_buf);
1920 + res = 0;
1921 + goto ok;
1922 + }
1923 + default: /* error */
1924 + case -1:
1925 + {
1926 + goto err1;
1927 + }
1928 + }
1929 + }
1930 + }
1931 + else
1932 + {
1933 + /* leaf */
1934 + if (! gist_key_cmp(keyinfo ->seg , key , k, key_length , MBR_EQUAL |

MBR_DATA)) // TODO compare
1935 + {
1936 + gist_delete_key(info , page_buf , k, key_length , nod_flag);

// TODO delete keys
1937 + *page_size = mi_getint(page_buf);
1938 + if (* page_size == 2)
1939 + {
1940 + /* last key in the leaf */
1941 + res = 2;
1942 + if (_mi_dispose(info , keyinfo , page , DFLT_INIT_HITS))
1943 + goto err1;
1944 + }
1945 + else
1946 + {
1947 + res = 0;
1948 + if (_mi_write_keypage(info , keyinfo , page , DFLT_INIT_HITS ,

page_buf))
1949 + goto err1;
1950 + }
1951 + goto ok;
1952 + }
1953 + }
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1954 + }
1955 + res = 1;
1956 +
1957 +ok:
1958 + my_afree ((uchar*) page_buf);
1959 + DBUG_RETURN(res);
1960 +
1961 +err1:
1962 + my_afree ((uchar*) page_buf);
1963 + DBUG_RETURN (-1); /* purecov: inspected */
1964 }
1965
1966
1967 @@ -204,16 +927 ,116 @@
1968 my_errno= HA_ERR_END_OF_FILE;
1969 DBUG_RETURN (-1); /* purecov: inspected */
1970 }
1971 - DBUG_PRINT (" rtree", (" starting deletion at root page: %lu",
1972 + DBUG_PRINT ("gist", (" starting deletion at root page: %lu",
1973 (ulong) old_root));
1974 -
1975 - page_size = 0;
1976 DBUG_PRINT ("gist", ("info: %lu keynr: %u key: %s key_length: %u", (ulong

) info , keynr , key , key_length ) );
1977 DBUG_PRINT ("gist", (" page_size: %u ReinsertList: %p keyinfo: %p ",

page_size , &ReinsertList , keyinfo ) );
1978 - DBUG_RETURN (-1); /* sceleton return */
1979 +
1980 +
1981 + ReinsertList.pages = NULL;
1982 + ReinsertList.n_pages = 0;
1983 + ReinsertList.m_pages = 0;
1984 +
1985 + switch (gist_delete_req(info , keyinfo , key , key_length , old_root ,
1986 + &page_size , &ReinsertList , 0)) //

TODO gist recursive
1987 + {
1988 + case 2: /* empty */
1989 + {
1990 + info ->s->state.key_root[keynr] = HA_OFFSET_ERROR;
1991 + DBUG_RETURN (0);
1992 + }
1993 + case 0: /* deleted */
1994 + {
1995 + uint nod_flag;
1996 + ulong i;
1997 + for (i = 0; i < ReinsertList.n_pages; ++i)
1998 + {
1999 + uchar *page_buf;
2000 + uchar *k;
2001 + uchar *last;
2002 +
2003 + if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length)))
2004 + {
2005 + my_errno = HA_ERR_OUT_OF_MEM;
2006 + goto err1;
2007 + }
2008 + if (! _mi_fetch_keypage(info , keyinfo , ReinsertList.pages[i].offs ,
2009 + DFLT_INIT_HITS , page_buf , 0))
2010 + goto err1;
2011 + nod_flag = mi_test_if_nod(page_buf);
2012 + DBUG_PRINT ("gist", (" reinserting keys from "
2013 + "page: %lu level: %d nod_flag: %u",
2014 + (ulong) ReinsertList.pages[i].offs ,
2015 + ReinsertList.pages[i].level , nod_flag));
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2016 +
2017 + k = rt_PAGE_FIRST_KEY(page_buf , nod_flag);
2018 + last = rt_PAGE_END(page_buf);
2019 + for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length , nod_flag))
2020 + {
2021 + int res;
2022 + if ((res= gist_insert_level(info , keynr , k, key_length ,
2023 + ReinsertList.pages[i]. level)) == -1)

// TODO reinsert
2024 + {
2025 + my_afree ((uchar*) page_buf);
2026 + goto err1;
2027 + }
2028 + if (res)
2029 + {
2030 + ulong j;
2031 + DBUG_PRINT ("gist", ("root has been split , adjust levels "));
2032 + for (j= i; j < ReinsertList.n_pages; j++)
2033 + {
2034 + ReinsertList.pages[j]. level ++;
2035 + DBUG_PRINT ("gist", ("keys from page: %lu now level: %d",
2036 + (ulong) ReinsertList.pages[i].offs ,
2037 + ReinsertList.pages[i]. level));
2038 + }
2039 + }
2040 + }
2041 + my_afree ((uchar*) page_buf);
2042 + if (_mi_dispose(info , keyinfo , ReinsertList.pages[i].offs ,
2043 + DFLT_INIT_HITS))
2044 + goto err1;
2045 + }
2046 + if (ReinsertList.pages)
2047 + my_free(ReinsertList.pages);
2048 +
2049 + /* check for redundant root (not leaf , 1 child) and eliminate */
2050 + if (( old_root = info ->s->state.key_root[keynr ]) == HA_OFFSET_ERROR)
2051 + goto err1;
2052 + if (! _mi_fetch_keypage(info , keyinfo , old_root , DFLT_INIT_HITS ,
2053 + info ->buff , 0))
2054 + goto err1;
2055 + nod_flag = mi_test_if_nod(info ->buff);
2056 + page_size = mi_getint(info ->buff);
2057 + if (nod_flag && (page_size == 2 + key_length + nod_flag))
2058 + {
2059 + my_off_t new_root = _mi_kpos(nod_flag ,
2060 + rt_PAGE_FIRST_KEY(info ->buff , nod_flag)

);
2061 + if (_mi_dispose(info , keyinfo , old_root , DFLT_INIT_HITS))
2062 + goto err1;
2063 + info ->s->state.key_root[keynr] = new_root;
2064 + }
2065 + info ->update= HA_STATE_DELETED;
2066 + DBUG_RETURN (0);
2067 +
2068 +err1:
2069 + DBUG_RETURN (-1); /* purecov: inspected */
2070 + }
2071 + case 1: /* not found */
2072 + {
2073 + my_errno = HA_ERR_KEY_NOT_FOUND;
2074 + DBUG_RETURN (-1); /* purecov: inspected */
2075 + }
2076 + default:
2077 + case -1: /* error */
2078 + {
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2079 + DBUG_RETURN (-1); /* purecov: inspected */
2080 + }
2081 + }
2082 }
2083
2084
2085 -
2086 -#endif /* HAVE_RTREE_KEYS */
2087 +
2088 +#endif /* HAVE_GIST_KEYS */
2089
2090

2091 === modified file ’storage/myisam/gist_index.h’

2092 --- storage/myisam/gist_index.h 2012 -08 -18 05:37:44 +0000
2093 +++ storage/myisam/gist_index.h 2012 -08 -18 11:29:56 +0000
2094 @@ -16,6 +16,8 @@
2095 #ifndef _gist_index_h
2096 #define _gist_index_h
2097
2098 +#include "sp_reinsert.h"
2099 +
2100 #ifdef HAVE_GIST_KEYS
2101
2102 #define gist_PAGE_FIRST_KEY(page , nod_flag) (page + 2 + nod_flag)
2103 @@ -35,5 +37,8 @@
2104 int gist_get_first(MI_INFO *info , uint keynr , uint key_length);
2105 int gist_get_next(MI_INFO *info , uint keynr , uint key_length);
2106
2107 +int gist_split_page(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *page , uchar *

key ,
2108 + uint key_length , my_off_t *new_page_offs);
2109 +
2110 #endif /* HAVE_GIST_KEYS */
2111 #endif /* _gist_index_h */
2112

2113 === modified file ’storage/myisam/gist_key.c’

2114 --- storage/myisam/gist_key.c 2012 -08 -18 05:37:44 +0000
2115 +++ storage/myisam/gist_key.c 2012 -08 -18 11:29:56 +0000
2116 @@ -19,5 +19 ,127 @@
2117 #include "gist_index.h"
2118 #include "gist_key.h"
2119
2120 +/* GIST_RSTAR */
2121 +#include "rt_index.h"
2122 +#include "rt_key.h"
2123 +#include "rt_mbr.h"
2124 +
2125 +/*
2126 + Add key to the page
2127 +
2128 + RESULT VALUES
2129 + -1 Error
2130 + 0 Not split
2131 + 1 Split
2132 +*/
2133 +
2134 +int gist_add_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2135 + uint key_length , uchar *page_buf , my_off_t *new_page)
2136 +{
2137 + uint page_size = mi_getint(page_buf);
2138 + uint nod_flag = mi_test_if_nod(page_buf);
2139 + DBUG_ENTER (" gist_add_key ");
2140 +
2141 + if (page_size + key_length + info ->s->base.rec_reflength <=
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2142 + keyinfo ->block_length)
2143 + {
2144 + DBUG_PRINT ("gist", (" checking ..."));
2145 + /* split won ’t be necessary */
2146 + if (nod_flag)
2147 + {
2148 + DBUG_PRINT ("gist", (" split won ’t be necessary "));
2149 + /* save key */
2150 + DBUG_ASSERT(_mi_kpos(nod_flag , key) < info ->state ->key_file_length);
2151 + memcpy(rt_PAGE_END(page_buf), key - nod_flag , key_length + nod_flag);

// rt_mbr
2152 + page_size += key_length + nod_flag;
2153 + }
2154 + else
2155 + {
2156 + DBUG_PRINT ("gist", ("save key"));
2157 + /* save key */
2158 + DBUG_ASSERT(_mi_dpos(info , nod_flag , key + key_length +
2159 + info ->s->base.rec_reflength) <
2160 + info ->state ->data_file_length + info ->s->base.

pack_reclength);
2161 + memcpy(rt_PAGE_END(page_buf), key , key_length +

// rt_mbr
2162 + info ->s->base.rec_reflength);
2163 + page_size += key_length + info ->s->base.rec_reflength;
2164 + }
2165 + mi_putint(page_buf , page_size , nod_flag);
2166 + DBUG_RETURN (0);
2167 + }
2168 +
2169 + DBUG_PRINT ("gist", ("will call gist_split_page "));
2170 + DBUG_RETURN(gist_split_page(info , keyinfo , page_buf , key , key_length ,

// gist_split_page
2171 + new_page));
2172 +}
2173 +
2174 +/*
2175 + Calculate and store key MBR
2176 +*/
2177 +
2178 +int gist_set_key_mbr(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2179 + uint key_length , my_off_t child_page)
2180 +{
2181 + DBUG_ENTER (" gist_set_key_mbr ");
2182 +
2183 + if (! _mi_fetch_keypage(info , keyinfo , child_page ,
2184 + DFLT_INIT_HITS , info ->buff , 0))
2185 + DBUG_RETURN (-1); /* purecov: inspected */
2186 +
2187 + if (keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ){
2188 + DBUG_RETURN(rtree_page_mbr(info , keyinfo ->seg , info ->buff , key ,

key_length));
2189 + }
2190 + else{
2191 + // this should never happen
2192 + // TODO ASSERT
2193 + DBUG_RETURN (-1);
2194 + }
2195 +}
2196 +
2197 +
2198 +/*
2199 + Delete key from the page
2200 +*/
2201 +int gist_delete_key(MI_INFO *info , uchar *page_buf , uchar *key ,
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2202 + uint key_length , uint nod_flag)
2203 +{
2204 + uint16 page_size = mi_getint(page_buf);
2205 + uchar *key_start;
2206 +
2207 + key_start= key - nod_flag;
2208 + if (! nod_flag)
2209 + key_length += info ->s->base.rec_reflength;
2210 +
2211 + memmove(key_start , key + key_length , page_size - key_length -
2212 + (key - page_buf));
2213 + page_size -= key_length + nod_flag;
2214 +
2215 + mi_putint(page_buf , page_size , nod_flag);
2216 + return 0;
2217 +}
2218 +
2219 +
2220 +// TODO now it’s just a wrapper: convert to GiST proper wrapper
2221 +/*
2222 + Compares two keys a and b depending on nextflag
2223 + nextflag can contain these flags:
2224 + MBR_INTERSECT(a,b) a overlaps b
2225 + MBR_CONTAIN(a,b) a contains b
2226 + MBR_DISJOINT(a,b) a disjoint b
2227 + MBR_WITHIN(a,b) a within b
2228 + MBR_EQUAL(a,b) All coordinates of MBRs are equal
2229 + MBR_DATA(a,b) Data reference is the same
2230 + Returns 0 on success.
2231 +*/
2232 +
2233 +int gist_key_cmp(HA_KEYSEG *keyseg , uchar *b, uchar *a, uint key_length ,
2234 + uint nextflag)
2235 +{
2236 + DBUG_ENTER (" gist_set_key_cmp ");
2237 +
2238 + DBUG_RETURN(rtree_key_cmp(keyseg , b, a, key_length , nextflag));
2239 +}
2240 +
2241 +
2242
2243 #endif /* HAVE_GIST_KEYS */
2244

2245 === modified file ’storage/myisam/gist_key.h’

2246 --- storage/myisam/gist_key.h 2012 -08 -18 05:37:44 +0000
2247 +++ storage/myisam/gist_key.h 2012 -08 -18 11:29:56 +0000
2248 @@ -19,5 +19,18 @@
2249
2250 #ifdef HAVE_GIST_KEYS
2251
2252 +int gist_add_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2253 + uint key_length , uchar *page_buf , my_off_t *new_page);
2254 +
2255 +int gist_set_key_mbr(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2256 + uint key_length , my_off_t child_page);
2257 +
2258 +int gist_delete_key(MI_INFO *info , uchar *page_buf , uchar *key ,
2259 + uint key_length , uint nod_flag);
2260 +
2261 +int gist_key_cmp(HA_KEYSEG *keyseg , uchar *b, uchar *a, uint key_length ,
2262 + uint nextflag);
2263 +
2264 +
2265 #endif /* HAVE_GIST_KEYS */
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2266 #endif /* _gist_key_h */
2267

2268 === modified file ’storage/myisam/ha_myisam.cc ’

2269 --- storage/myisam/ha_myisam.cc 2012 -08 -18 05:37:44 +0000
2270 +++ storage/myisam/ha_myisam.cc 2012 -08 -18 11:29:56 +0000
2271 @@ -701,7 +701,9 @@
2272 flags= 0;
2273 else
2274 if (( table_share ->key_info[inx].flags & HA_SPATIAL ||
2275 - table_share ->key_info[inx]. algorithm == HA_KEY_ALG_RTREE))
2276 + table_share ->key_info[inx]. algorithm == HA_KEY_ALG_RTREE ||
2277 + table_share ->key_info[inx]. algorithm == HA_KEY_ALG_GIST_RSTAR ||
2278 + table_share ->key_info[inx]. algorithm == HA_KEY_ALG_GIST_RGUT83))
2279 {
2280 /* All GIS scans are non -ROR scans. We also disable

IndexConditionPushdown */
2281 flags= HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE |
2282

2283 === modified file ’storage/myisam/mi_check.c’

2284 --- storage/myisam/mi_check.c 2012 -08 -18 05:37:44 +0000
2285 +++ storage/myisam/mi_check.c 2012 -08 -18 11:29:56 +0000
2286 @@ -1225,18 +1225 ,23 @@
2287 */
2288 int search_result;
2289 #ifdef HAVE_RTREE_KEYS
2290 - if (keyinfo ->flag & HA_SPATIAL)
2291 + //if (keyinfo ->flag & HA_SPATIAL)
2292 + if(keyinfo ->key_alg == HA_KEY_ALG_RTREE)
2293 {
2294 + DBUG_PRINT ("info", ("rtree "));
2295 search_result = rtree_find_first(info , key , info ->lastkey ,
2296 key_length , MBR_EQUAL | MBR_DATA);
2297 }
2298 else
2299 #endif
2300 #ifdef HAVE_GIST_KEYS
2301 - if (search_result && keyinfo ->flag & HA_GIST_INDEX)
2302 + //if (keyinfo ->flag & HA_GIST_INDEX)
2303 + if(keyinfo ->key_alg == HA_KEY_ALG_GIST_RSTAR ||
2304 + keyinfo ->key_alg == HA_KEY_ALG_GIST_RGUT83)
2305 {
2306 + DBUG_PRINT ("info", ("gist tree"));
2307 search_result = gist_find_first(info , key , info ->lastkey ,
2308 - key_length , 0);
2309 + key_length , MBR_EQUAL | MBR_DATA);
2310 }
2311 else
2312 #endif
2313

2314 === modified file ’storage/myisam/mi_dynrec.c’

2315 --- storage/myisam/mi_dynrec.c 2012 -04 -10 06:28:13 +0000
2316 +++ storage/myisam/mi_dynrec.c 2012 -08 -18 11:29:56 +0000
2317 @@ -295,6 +295,7 @@
2318 error=write_dynamic_record(info ,rec_buff+ALIGN_SIZE(

MI_MAX_DYN_BLOCK_HEADER),
2319 reclength2);
2320 my_afree(rec_buff);
2321 + DBUG_PRINT ("info",(" Finished _mi_write_blob_record. Res: %d", error));
2322 return(error);
2323 }
2324
2325 @@ -375,8 +376 ,10 @@
2326 goto err;
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2327 } while (reclength);
2328
2329 + DBUG_PRINT ("info",(" Return with ok 0"));
2330 DBUG_RETURN (0);
2331 err:
2332 + DBUG_PRINT ("info",(" Return with error 1"));
2333 DBUG_RETURN (1);
2334 }
2335
2336

2337 === modified file ’storage/myisam/mi_key.c’

2338 --- storage/myisam/mi_key.c 2011 -11 -03 18:17:05 +0000
2339 +++ storage/myisam/mi_key.c 2012 -08 -18 11:29:56 +0000
2340 @@ -225,7 +225,9 @@
2341 DBUG_ENTER (" _mi_pack_key ");
2342
2343 /* "one part" rtree key is 2* SPDIMS part key in MyISAM */
2344 - if (info ->s->keyinfo[keynr]. key_alg == HA_KEY_ALG_RTREE)
2345 + if (info ->s->keyinfo[keynr]. key_alg == HA_KEY_ALG_RTREE ||
2346 + info ->s->keyinfo[keynr]. key_alg == HA_KEY_ALG_GIST_RSTAR ||
2347 + info ->s->keyinfo[keynr]. key_alg == HA_KEY_ALG_GIST_RGUT83)
2348 keypart_map= ((( key_part_map)1) << (2* SPDIMS)) - 1;
2349
2350 /* only key prefixes are supported */
2351

2352 === modified file ’storage/myisam/mi_open.c’

2353 --- storage/myisam/mi_open.c 2012 -08 -18 05:37:44 +0000
2354 +++ storage/myisam/mi_open.c 2012 -08 -18 11:29:56 +0000
2355 @@ -782,6 +782,7 @@
2356 share ->base.pack_reclength += share ->base.pack_bits;
2357 if (share ->base.blobs)
2358 {
2359 + DBUG_PRINT ("info",("Will call _mi_write_blob_record "));
2360 share ->update_record=_mi_update_blob_record;
2361 share ->write_record=_mi_write_blob_record;
2362 }
2363

2364 === modified file ’storage/myisam/mi_range.c’

2365 --- storage/myisam/mi_range.c 2012 -01 -13 14:50:02 +0000
2366 +++ storage/myisam/mi_range.c 2012 -08 -18 11:29:56 +0000
2367 @@ -92,6 +92,68 @@
2368 break;
2369 }
2370 #endif
2371 +#ifdef HAVE_GIST_KEYS
2372 + case HA_KEY_ALG_GIST_RSTAR:
2373 + {
2374 + // all this come from case HA_KEY_ALG_RTREE:
2375 + uchar * key_buff;
2376 + uint start_key_len;
2377 +
2378 + /*
2379 + The problem is that the optimizer doesn ’t support
2380 + RTree keys properly at the moment.
2381 + Hope this will be fixed some day.
2382 + But now NULL in the min_key means that we
2383 + didn ’t make the task for the RTree key
2384 + and expect BTree functionality from it.
2385 + As it ’s not able to handle such request
2386 + we return the error.
2387 + */
2388 + if (! min_key)
2389 + {
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2390 + res= HA_POS_ERROR;
2391 + break;
2392 + }
2393 + key_buff= info ->lastkey+info ->s->base.max_key_length;
2394 + start_key_len= _mi_pack_key(info ,inx , key_buff ,
2395 + (uchar*) min_key ->key , min_key ->keypart_map ,
2396 + (HA_KEYSEG **) 0);
2397 + res= rtree_estimate(info , inx , key_buff , start_key_len ,
2398 + myisam_read_vec[min_key ->flag]);
2399 + res= res ? res : 1; /* Don ’t return 0 */
2400 + break;
2401 + }
2402 + case HA_KEY_ALG_GIST_RGUT83:
2403 + {
2404 + // all this come from case HA_KEY_ALG_RTREE:
2405 + uchar * key_buff;
2406 + uint start_key_len;
2407 +
2408 + /*
2409 + The problem is that the optimizer doesn ’t support
2410 + RTree keys properly at the moment.
2411 + Hope this will be fixed some day.
2412 + But now NULL in the min_key means that we
2413 + didn ’t make the task for the RTree key
2414 + and expect BTree functionality from it.
2415 + As it ’s not able to handle such request
2416 + we return the error.
2417 + */
2418 + if (! min_key)
2419 + {
2420 + res= HA_POS_ERROR;
2421 + break;
2422 + }
2423 + key_buff= info ->lastkey+info ->s->base.max_key_length;
2424 + start_key_len= _mi_pack_key(info ,inx , key_buff ,
2425 + (uchar*) min_key ->key , min_key ->keypart_map ,
2426 + (HA_KEYSEG **) 0);
2427 + res= rtree_estimate(info , inx , key_buff , start_key_len ,
2428 + myisam_read_vec[min_key ->flag]);
2429 + res= res ? res : 1; /* Don ’t return 0 */
2430 + break;
2431 + }
2432 +#endif
2433 case HA_KEY_ALG_BTREE:
2434 default:
2435 start_pos= (min_key ? _mi_record_pos(info , min_key ->key ,
2436

2437 === modified file ’storage/myisam/mi_rkey.c’

2438 --- storage/myisam/mi_rkey.c 2012 -08 -18 05:37:44 +0000
2439 +++ storage/myisam/mi_rkey.c 2012 -08 -18 11:29:56 +0000
2440 @@ -84,6 +84,7 @@
2441 switch (info ->s->keyinfo[inx]. key_alg) {
2442 #ifdef HAVE_RTREE_KEYS
2443 case HA_KEY_ALG_RTREE:
2444 + DBUG_PRINT ("info", (" Rtree"));
2445 if (rtree_find_first(info ,inx ,key_buff ,use_key_length ,nextflag) < 0)
2446 {
2447 mi_print_error(info ->s, HA_ERR_CRASHED);
2448 @@ -97,6 +98,7 @@
2449 #endif
2450 #ifdef HAVE_GIST_KEYS
2451 case HA_KEY_ALG_GIST_RSTAR:
2452 + DBUG_PRINT ("info", ("Will call gist_find_first "));
2453 if (gist_find_first(info ,inx ,key_buff ,use_key_length ,nextflag) < 0)
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2454 {
2455 mi_print_error(info ->s, HA_ERR_CRASHED);
2456 @@ -108,6 +110,7 @@
2457 }
2458 break;
2459 case HA_KEY_ALG_GIST_RGUT83:
2460 + DBUG_PRINT ("info", ("Will call gist_find_first "));
2461 if (gist_find_first(info ,inx ,key_buff ,use_key_length ,nextflag) < 0)
2462 {
2463 mi_print_error(info ->s, HA_ERR_CRASHED);
2464 @@ -121,6 +124,7 @@
2465 #endif
2466 case HA_KEY_ALG_BTREE:
2467 default:
2468 + DBUG_PRINT ("info", (" Btree"));
2469 if (! _mi_search(info , keyinfo , key_buff , use_key_length ,
2470 myisam_read_vec[search_flag], info ->s->state.key_root[

inx]))
2471 {
2472

2473 === modified file ’storage/myisam/mi_rnext.c’

2474 --- storage/myisam/mi_rnext.c 2012 -08 -18 05:37:44 +0000
2475 +++ storage/myisam/mi_rnext.c 2012 -08 -18 11:29:56 +0000
2476 @@ -47,22 +47,27 @@
2477 changed=_mi_test_if_changed(info);
2478 if (!flag)
2479 {
2480 + DBUG_PRINT ("info", ("Read first"));
2481 switch(info ->s->keyinfo[inx]. key_alg){
2482 #ifdef HAVE_RTREE_KEYS
2483 case HA_KEY_ALG_RTREE:
2484 + DBUG_PRINT ("info", (" Rtree"));
2485 error=rtree_get_first(info ,inx ,info ->lastkey_length);
2486 break;
2487 #endif
2488 #ifdef HAVE_GIST_KEYS
2489 case HA_KEY_ALG_GIST_RSTAR:
2490 + DBUG_PRINT ("info", ("Will call gist_get_first "));
2491 error=gist_get_first(info ,inx ,info ->lastkey_length);
2492 break;
2493 case HA_KEY_ALG_GIST_RGUT83:
2494 + DBUG_PRINT ("info", ("Will call gist_get_first "));
2495 error=gist_get_first(info ,inx ,info ->lastkey_length);
2496 break;
2497 #endif
2498 case HA_KEY_ALG_BTREE:
2499 default:
2500 + DBUG_PRINT ("info", (" Btree"));
2501 error=_mi_search_first(info ,info ->s->keyinfo+inx ,
2502 info ->s->state.key_root[inx]);
2503 break;
2504 @@ -84,9 +89,11 @@
2505 }
2506 else
2507 {
2508 + DBUG_PRINT ("info", ("Read next"));
2509 switch (info ->s->keyinfo[inx]. key_alg) {
2510 #ifdef HAVE_RTREE_KEYS
2511 case HA_KEY_ALG_RTREE:
2512 + DBUG_PRINT ("info", (" Rtree"));
2513 /*
2514 Note that rtree doesn ’t support that the table
2515 may be changed since last call , so we do need
2516 @@ -100,18 +107 ,21 @@
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2517 /*
2518 Note (from rtree?)
2519 */
2520 + DBUG_PRINT ("info", ("Will call gist_get_next "));
2521 error= gist_get_next(info ,inx ,info ->lastkey_length);
2522 break;
2523 case HA_KEY_ALG_GIST_RGUT83:
2524 /*
2525 Note (from rtree?)
2526 */
2527 + DBUG_PRINT ("info", ("Will call gist_get_next "));
2528 error= gist_get_next(info ,inx ,info ->lastkey_length);
2529 break;
2530
2531 #endif
2532 case HA_KEY_ALG_BTREE:
2533 default:
2534 + DBUG_PRINT ("info", (" Btree"));
2535 if (! changed)
2536 error= _mi_search_next(info ,info ->s->keyinfo+inx ,info ->lastkey ,
2537 info ->lastkey_length ,flag ,
2538

2539 === modified file ’storage/myisam/mi_rnext_same.c’

2540 --- storage/myisam/mi_rnext_same.c 2012 -08 -18 05:37:44 +0000
2541 +++ storage/myisam/mi_rnext_same.c 2012 -08 -18 11:29:56 +0000
2542 @@ -47,6 +47,7 @@
2543 {
2544 #ifdef HAVE_RTREE_KEYS
2545 case HA_KEY_ALG_RTREE:
2546 + DBUG_PRINT ("info", (" Rtree"));
2547 if ((error=rtree_find_next(info ,inx ,
2548 myisam_read_vec[info ->last_key_func ])))
2549 {
2550 @@ -59,6 +60,7 @@
2551 #endif
2552 #ifdef HAVE_GIST_KEYS
2553 case HA_KEY_ALG_GIST_RSTAR:
2554 + DBUG_PRINT ("info", ("Will call gist_find_next "));
2555 if ((error=gist_find_next(info ,inx ,
2556 myisam_read_vec[info ->last_key_func ])))
2557 {
2558 @@ -69,6 +71,7 @@
2559 }
2560 break;
2561 case HA_KEY_ALG_GIST_RGUT83:
2562 + DBUG_PRINT ("info", (" gist_find_next "));
2563 if ((error=gist_find_next(info ,inx ,
2564 myisam_read_vec[info ->last_key_func ])))
2565 {
2566 @@ -81,6 +84,7 @@
2567 #endif
2568 case HA_KEY_ALG_BTREE:
2569 default:
2570 + DBUG_PRINT ("info", (" Btree"));
2571 if (!(info ->update & HA_STATE_RNEXT_SAME))
2572 {
2573 /* First rnext_same; Store old key */
2574

2575 === modified file ’storage/myisam/mi_search.c’

2576 --- storage/myisam/mi_search.c 2012 -01 -13 14:50:02 +0000
2577 +++ storage/myisam/mi_search.c 2012 -08 -18 11:29:56 +0000
2578 @@ -99,6 +99,7 @@
2579
2580 if (flag)
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2581 {
2582 + DBUG_PRINT ("info", ("flag from bin_search "));
2583 if ((error=_mi_search(info ,keyinfo ,key ,key_len ,nextflag ,
2584 _mi_kpos(nod_flag ,keypos))) <= 0)
2585 DBUG_RETURN(error);
2586 @@ -114,6 +115,7 @@
2587 }
2588 else
2589 {
2590 + DBUG_PRINT ("info", ("no flag from bin_search "));
2591 if (( nextflag & SEARCH_FIND) && nod_flag &&
2592 ((keyinfo ->flag & (HA_NOSAME | HA_NULL_PART)) != HA_NOSAME ||
2593 key_len != USE_WHOLE_KEY))
2594

2595 === modified file ’storage/myisam/mi_write.c’

2596 --- storage/myisam/mi_write.c 2012 -01 -13 14:50:02 +0000
2597 +++ storage/myisam/mi_write.c 2012 -08 -18 11:29:56 +0000
2598 @@ -118,6 +118,7 @@
2599 }
2600 else
2601 {
2602 + DBUG_PRINT ("info",("Will call ck_insert "));
2603 if (share ->keyinfo[i]. ck_insert(info ,i,buff ,
2604 _mi_make_key(info ,i,buff ,record ,filepos)))
2605 {
2606

2607 === modified file ’storage/myisam/myisamdef.h’

2608 --- storage/myisam/myisamdef.h 2012 -08 -18 05:37:44 +0000
2609 +++ storage/myisam/myisamdef.h 2012 -08 -18 11:29:56 +0000
2610 @@ -303,6 +303,7 @@
2611 uchar *rtree_recursion_state; /* For RTREE */
2612 uchar *gist_recursion_state; /* For GIST */
2613 int rtree_recursion_depth;
2614 + int gist_recursion_depth;
2615 };
2616
2617 #define USE_WHOLE_KEY HA_MAX_KEY_BUFF *2 /* Use whole key in _mi_search ()

*/
2618

2619 === modified file ’storage/myisam/rt_index.c’

2620 --- storage/myisam/rt_index.c 2012 -06 -04 15:26:11 +0000
2621 +++ storage/myisam/rt_index.c 2012 -08 -18 11:29:56 +0000
2622 @@ -21,23 +21,9 @@
2623 #include "rt_key.h"
2624 #include "rt_mbr.h"
2625
2626 -#define REINSERT_BUFFER_INC 10
2627 #define PICK_BY_AREA
2628 /*# define PICK_BY_PERIMETER */
2629
2630 -typedef struct st_page_level
2631 -{
2632 - uint level;
2633 - my_off_t offs;
2634 -} stPageLevel;
2635 -
2636 -typedef struct st_page_list
2637 -{
2638 - ulong n_pages;
2639 - ulong m_pages;
2640 - stPageLevel *pages;
2641 -} stPageList;
2642 -
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2643
2644 /*
2645 Find next key in r-tree according to search_flag recursively
2646 @@ -61,6 +47,8 @@
2647 uchar *page_buf;
2648 int k_len;
2649 uint *saved_key = (uint*) (info ->rtree_recursion_state) + level;
2650 +
2651 + DBUG_PRINT ("info", (" rtree_find_req: Level %d", level));
2652
2653 if (!( page_buf = (uchar*) my_alloca ((uint)keyinfo ->block_length)))
2654 {
2655 @@ -399,6 +387 ,10 @@
2656 my_off_t root;
2657 MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
2658
2659 + DBUG_PRINT ("info", (" rtree_find_first "));
2660 +
2661 + DBUG_PRINT ("info", (" rtree_get_first "));
2662 +
2663 if ((root = info ->s->state.key_root[keynr ]) == HA_OFFSET_ERROR)
2664 {
2665 my_errno= HA_ERR_END_OF_FILE;
2666 @@ -426,6 +418,8 @@
2667 my_off_t root= info ->s->state.key_root[keynr ];
2668 MI_KEYDEF *keyinfo = info ->s->keyinfo + keynr;
2669
2670 + DBUG_PRINT ("info", (" rtree_get_next "));
2671 +
2672 if (root == HA_OFFSET_ERROR)
2673 {
2674 my_errno= HA_ERR_END_OF_FILE;
2675 @@ -463,7 +457,7 @@
2676 */
2677
2678 #ifdef PICK_BY_PERIMETER
2679 -static uchar *rtree_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2680 +uchar *rtree_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2681 uint key_length , uchar *page_buf , uint nod_flag)
2682 {
2683 double increase;
2684 @@ -496,7 +490,7 @@
2685 #endif /* PICK_BY_PERIMETER */
2686
2687 #ifdef PICK_BY_AREA
2688 -static uchar *rtree_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2689 +uchar *rtree_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2690 uint key_length , uchar *page_buf , uint nod_flag)
2691 {
2692 double increase;
2693 @@ -728,7 +722,7 @@
2694 0 OK
2695 */
2696
2697 -static int rtree_fill_reinsert_list(stPageList *ReinsertList , my_off_t page ,
2698 +int rtree_fill_reinsert_list(stPageList *ReinsertList , my_off_t page ,
2699 int level)
2700 {
2701 DBUG_ENTER (" rtree_fill_reinsert_list ");
2702

2703 === modified file ’storage/myisam/rt_index.h’

2704 --- storage/myisam/rt_index.h 2006 -12 -31 00:32:21 +0000
2705 +++ storage/myisam/rt_index.h 2012 -08 -18 11:29:56 +0000
2706 @@ -16,6 +16,8 @@
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2707 #ifndef _rt_index_h
2708 #define _rt_index_h
2709
2710 +#include "sp_reinsert.h"
2711 +
2712 #ifdef HAVE_RTREE_KEYS
2713
2714 #define rt_PAGE_FIRST_KEY(page , nod_flag) (page + 2 + nod_flag)
2715 @@ -41,5 +43,14 @@
2716 int rtree_split_page(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *page , uchar *

key ,
2717 uint key_length , my_off_t *new_page_offs);
2718
2719 +
2720 +
2721 +uchar *rtree_pick_key(MI_INFO *info , MI_KEYDEF *keyinfo , uchar *key ,
2722 + uint key_length , uchar *page_buf , uint nod_flag);
2723 +
2724 +int rtree_fill_reinsert_list(stPageList *ReinsertList , my_off_t page , int

level);
2725 +
2726 +
2727 +
2728 #endif /* HAVE_RTREE_KEYS */
2729 #endif /* _rt_index_h */
2730

2731 === modified file ’storage/myisam/rt_mbr.h’

2732 --- storage/myisam/rt_mbr.h 2006 -12 -31 00:32:21 +0000
2733 +++ storage/myisam/rt_mbr.h 2012 -08 -18 11:29:56 +0000
2734 @@ -32,5 +32,9 @@
2735 uint key_length , double *ab_perim);
2736 int rtree_page_mbr(MI_INFO *info , HA_KEYSEG *keyseg , uchar *page_buf ,
2737 uchar* c, uint key_length);
2738 +
2739 +int rtree_key_cmp(HA_KEYSEG *keyseg , uchar *b, uchar *a, uint key_length ,
2740 + uint nextflag);
2741 +
2742 #endif /* HAVE_RTREE_KEYS */
2743 #endif /* _rt_mbr_h */
2744

2745 === added file ’storage/myisam/sp_reinsert.h’

2746 --- storage/myisam/sp_reinsert.h 1970 -01 -01 00:00:00 +0000
2747 +++ storage/myisam/sp_reinsert.h 2012 -08 -18 11:29:56 +0000
2748 @@ -0,0 +1,36 @@
2749 +/* Copyright (C) 2012 Monty Program AB & Vangelis Katsikaros
2750 +
2751 + This program is free software; you can redistribute it and/or modify
2752 + it under the terms of the GNU General Public License as published by
2753 + the Free Software Foundation; version 2 of the License.
2754 +
2755 + This program is distributed in the hope that it will be useful ,
2756 + but WITHOUT ANY WARRANTY; without even the implied warranty of
2757 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2758 + GNU General Public License for more details.
2759 +
2760 + You should have received a copy of the GNU General Public License
2761 + along with this program; if not , write to the Free Software
2762 + Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

*/
2763 +
2764 +#ifndef _SP_REINSERT_H
2765 +#define _SP_REINSERT_H
2766 +
2767 +#define REINSERT_BUFFER_INC 10
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2768 +
2769 +typedef struct st_page_level
2770 +{
2771 + uint level;
2772 + my_off_t offs;
2773 +} stPageLevel;
2774 +
2775 +typedef struct st_page_list
2776 +{
2777 + ulong n_pages;
2778 + ulong m_pages;
2779 + stPageLevel *pages;
2780 +} stPageList;
2781 +
2782 +
2783 +
2784 +#endif /* _SP_REINSERT_H */
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API Application Programming Interface.

B+-tree B-tree variant. By Knuth [38]. Name first used in [13, p. 129].

B-tree Binary Search Tree. By Bayer and McCreight [6].

CAD Computer-Aided Design.

CAM Computer-Aided Manufacturing.

DBMS DataBase Management System.

DICOM Digital Imaging and Communications in Medicine.

GIS Geographic Information System.

GiST Generalized Search Tree. By Hellerstein, Naughton and Pfeffer [29].

IDC International Data Corporation.

ISO International Organization for Standardization.

K-D-B-tree B-tree multidimensional variant. By Robinson [100].

MBR Minimum Bounding Rectangle.

MySQL An RDBMS. Known as “The world’s most popular open source data-
base”.
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OGC Open Geospatial Consortium.

OSM Open Street Maps.

R+-tree R-tree variant. By Sellis, Roussopoulos and Faloutsos [103].

R-tree Rectangular-based B-tree. By Guttman [28] .

RDBMS Relational DataBase Management System.
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[31] David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück.
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