
Real-time Rendering of
Translucent Materials

Mircea-Costin Rohat

Kongens Lyngby 2012

IMM-MSc-2012-0060

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-MSc-2012-0060

Summary

The goal of the thesis is to implement and describe the implementation of one
solution for capturing the correct appearence of light's complex behavior in
translucent materials. The thesis focuses on real-time performance: a quality
that physically based solutions do not o�er.

Related literature study has helped to shape a solution that combines previous
works. Still, the solution detaches itself from the previous ones due to di�erent
interpretations and the aim was to develop a more robust algorithm.

The implementation for the chosen solution takes full advantage of the mod-
ern graphics processing unit's programmable pipeline and uses programming
procedures known as point splatting, texture space sampling, environment map
�ltering and deferred rendering. The underlying theory comes from radiometry,
di�usion approximation and numerical integration.

To reach real-time performance, a trade-o� has been made and light-geometry
interaction has been limited to account only for single-bounce and multiple scat-
tering events inside the medium. The renderings obtained are visually pleasing,
they capture the appearence of the materials they depict and they match (to
a degree set by the above mentioned trade-o�) their corresponding o�-line ren-
derings.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling at the Technical University of Denmark in ful�llment of the require-
ments for acquiring an M.Sc. in Informatics. The author, Mircea-Costin Rohat,
has worked on this thesis from February to July 2012 under the supervision of
his teacher Jeppe Revall Frisvad.

The thesis deals with real-time rendering of translucent materials using the
capabilities of modern computer graphics hardware. This topic is constantly
extending in the �eld of computer graphics and the theory behind it is of great
signi�cance in rendering materials such as marble, jade or wax.

The author's interest in this subject arose during the winter semester of 2011.
After successfully �nishing two important courses dealing with real-time graph-
ics and physically based rendering that took place in the spring semester of
2011, in the winter semester he has chosen to start a course project on real-time
teeth rendering. Time was too short to allow a thorough study of the topic
and to achieve a full and robust solution to the problem, but nevertheless it was
enough for the author to see the great potential that sub-surface light scattering
has for rendering real-life images. Without delay, as soon as his �nal semester
has started, he has enrolled in writing his Master's Thesis registered under the
name of Real-time Rendering of Translucent Materials.

The thesis consists of a practical application and a report. The application
was developed solely by the author during the duration of his thesis, and the
source code relevant to the topic was written entirely by him. The complete
solution, however, includes C/C++ libraries for geometry calculations or the
Fourier Transform (FFTW - available under GNU General Public License) or

iv

two source code �les (for generating random numbers) available with their au-
thors' permission. The report was written by the author alone, simultaneous
with the development of the application. References or source links are provided
everywhere he has used the work of other authors. The screenshots present are
rendered using the application developed, and photographs (unless the source
is speci�ed) were taken by the author or used with permission.

Lyngby, 02-July-2012

Mircea-Costin Rohat

Acknowledgements

First of all, I would like to thank my supervisor and teacher, Jeppe Revall
Frisvad, for constant guidance, support and feedback, during the duration of the
thesis as well as during the previous two semesters. During the period in which
the thesis has been developed, the weekly group meetings, private meetings
during his o�ce hours and his e-mail responses to my questions and requests
have been of vital aid. I would also like to thank my teacher Jakob Andreas
Bærentzen, who, along with Jeppe led the weekly group meetings. Their advice,
directions and ideas were a great source of inspiration and motivation.

Many thanks go to my colleagues Meletis Stathis and Martin Skytte Kristensen
for contributing with ideas, advice and feedback for my results. As well, Peter
Dahl Ejby Jensen from 3Shape has been of great help, showing a lot of interest
in my progress and results, o�ering feedback and directions and pointing out
where to emphasize in my report. Nonetheless, all three of them showed great
moral support and played a signi�cant role in my progress.

Last but not least, I wouldn't have had the opportunity to achieve the results of
my thesis without the university's sta�. I sincerely thank you all for providing
me a desk inside a project room and a powerful computer and graphics card.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

2 Related Work 5

3 Background 7

3.1 Basic Radiometry . 8

3.2 Surface Re�ection . 11

3.2.1 Bidirectional Re�ection Distribution Function 12

3.2.2 Bidirectional Surface-Scattering Re�ection Distribution Func-
tion . 17

3.2.3 Fresnel Re�ectance . 18

3.3 Light Transport in Volumes . 20

3.3.1 Volume Light Transport Processes 20

3.3.2 Phase Functions . 22

3.4 Di�usion Approximation . 23

3.4.1 Dipole Approximation . 23

3.4.2 Multipole Approximation 26

3.5 Numerical Integration . 29

3.5.1 Discrete Integration . 30

3.5.2 Monte Carlo Integration 32

viii CONTENTS

4 Method 35

4.1 Algorithm Overview . 35
4.2 Materials . 39

4.2.1 Acquiring the needed parameters 40
4.2.2 The Di�usion Properties 41

4.3 Re�ectance and Transmittance Pro�les 43
4.3.1 Multi-layered materials 48

4.4 Rendering with Point Light Illumination 48
4.5 Rendering with Environment Illumination 51

4.5.1 Uniform Sampling . 51
4.5.2 Environment Illumination 53

5 Implementation 57

5.1 Translucent Materials under Point Light Illumination 57
5.1.1 Rendering with the Dipole Approximation 64
5.1.2 Rendering with the Multipole Approximation 66
5.1.3 Rendering with multiple light sources 73
5.1.4 Rendering multiple materials 74

5.2 Rendering with Point Light Illumination - Discussion 74
5.2.1 Advantages . 75
5.2.2 Caveats . 76
5.2.3 Drawbacks . 81

5.3 Translucent Materials under Environment Illumination 82
5.3.1 Pre-rendering . 82
5.3.2 Rendering . 93

5.4 Rendering with Environment Illumination - Discussion 96

6 Results and Validation 103

6.1 Performance . 103
6.2 Visual Results . 113

6.2.1 Translucent Materials under Point Light Illumination . . 113
6.2.2 Translucent Materials under Environment Illumination . . 118

6.3 Validation . 124

7 Future Work 129

7.1 Improving the solution . 129
7.2 Extending the solution . 133

8 Conclusions 135

A Large-Scale Images and Special Renderings 137

Bibliography 151

Chapter 1

Introduction

Translucent materials range from solids and liquids (marble, jade, wax or milk)
to organic materials (skin, algae, leaves or �ower petals). As opposed to opaque
materials which re�ect most of the incident light back into the environment
and completely transparent materials which allow incident light to pass through
them unmodi�ed, these materials allow incident light to penetrate them, scatter
inside and to be absorbed or to exit at a di�erent point with another direction.
The interaction between light and the material takes place at a very small scale
and may be with molecules or atoms (in solids like marble) or cellular structures
(in leaves, algae or skin). Besides the particular coloring, this behavior gives
front lit materials a di�use look and is especially seen when the objects are lit
from behind (as seen in �gure 1.1).

Computer animated movies successfully use o�-line rendering methods to render
realistic images of scenes that contain translucent materials. Unfortunately,
their long rendering time (up to hours) makes these methods not suitable for
use in interactive applications. Having a real-time method to simulate these
e�ects adds an important amount of realism to the scene and allows a broader
range of models to be rendered accurately, models such as skin, teeth, fruits or
gem stones.

This thesis proposes to present a solution to the problem of rendering translucent
materials in real-time with accurate depiction of their distinctive appearence. To

2 Introduction

Figure 1.1: Examples of Subsurface Scattering. The phenomenon may
appear everywhere in the surrounding environment: from solids,
plants and fruits to skin and body tissue. Note the distinctive
appearence of back lit objects depending on their thickness and
composition (the top row and the human hand) and the di�use
appearence of wax (bottom right) and wall tiles (middle left)

3

complete the goal, related literature and related theory have been studied and
a solution has been implemented and tested. A report, containing the essence
of both the study phase and the implementation phase, has been written during
the duration of the thesis.

The report is structured into 8 chapters. After this short introduction to subsur-
face scattering is given and the problem is described, the next chapter (chapter
2) gives an overview of the related literature and previous solutions to the prob-
lem. The next three chapters are essential to understand the implementation
of the solution. First, in chapter 3 the theoretical background is presented fol-
lowed by chapter 4 which explains in theoretical terms the method chosen. At
the same time, chapter 4 will guide the reader from the theoretical principles of
chapter 3 to the practical issues in chapter 5. Chapter 5 is dedicated to details
of the particular implementation used and it is intended to give enough prac-
tical information that a programmer can use to replicate the solution and at
the same time to motivate the decisions taken. Chapter 6 presents the results
obtained and validates the implementation by comparing the results with other
methods. Chapter 7 presents additional work that can be done to improve the
solution and gives references to literature useful for the implementation. The
�nal chapter brie�y revisits the previous chapters and presents the conclusions.

4 Introduction

Chapter 2

Related Work

Probably the most in�uential work in the �eld of subsurface scattering has been
done by Henrik Wann Jensen et al in A Practical Model for Subsurface Light
Transport [Jensen et al., 2001]. The authors present a method to evaluate light
transport due to subsurface scattering in translucent materials taking into ac-
count single scattering and multiple scattering. The multiple scattering term is
calculated based on the observation that an incoming in�nitesimal beam on light
will scatter in an uniform isotropic manner inside a highly scattering medium.
Using a method called dipole approximation, the authors calculate the di�use
re�ectance from a uniformly lit semi-�nite material slab.

Using the theory from [Jensen et al., 2001], Jensen and Buhler presented a
new and fast approach to the subsurface light transport problem in [Jensen and
Buhler, 2002]. For rendering purposes, they describe a sampling method and
hierarchical method of integrating the iradiance from the sample points that are
easy to include in a ray tracer implementation. They have successfully achieved
a huge speed-up using their BSSRDF approximation method (5 minutes ren-
dering time) against a Monte Carlo simulation method (1250 minutes). Due
to the continually increasing computational power and the possibilities o�ered
nowadays by the programmable GPU pipeline their method might be suitable
for achieving interactive frame rates.

In his Ph.D. Thesis Towards Realistic Image Synthesis of Scattering Materi-

6 Related Work

als [Donner, 2006], Craig Donner extended the previous theory on di�usion
approximation. Instead of using a dipole source, the new theory uses a num-
ber of multipole sources mirrored above and below the slab to calculate the
re�ectance and transmittance pro�les. The condition that the slab should be
semi-in�nitely thick [Jensen et al., 2001] is now relaxed and the method is ded-
icated to thick and thin slabs with multilayer components with varying indices
of refraction. Combining the pro�les of multiple layers is done by applying
Kubelka-Munk theory in frequency space. The method can be integrated into
ray tracing applications or real-time applications and, as the results from the
paper show, it is highly accurate and very close to a Monte Carlo simulation.

A di�erent method, running in real time but based on the theory from [Jensen
et al., 2001] was proposed by Carsten Dachsbacher and Marc Stamminger in
Translucent Shadow Maps [Dachsbacher and Stamminger, 2003]. The algorithm
is very similar to shadow mapping: a shadow map is rendered containing the
information on irradiance and normals in each pixel, along with 3D position,
data which is needed to calculate the translucency. On each pixel seen from
the observer's perspective a �lter with di�erent precomputed weights is applied
to e�ciently integrate the contribution from all sample points in the shadow
map. The technique relies on mip-map textures and the programmable pipeline
of modern GPUs, and unfortunately it is restricted to directional light sources.
Another drawback is that the method makes use of 3D textures which are not
available on all graphics hardware.

The paper [Chang et al., 2008] presents a novel approach for the problem of
accurately rendering translucent materials. Taking full advantage of the GPU,
the method uses importance sampling for approximating incident irradiance on
the surface of the model and then calculating the subsurface transport. The
irradiance is sampled from the focused object's texture space which is created
in a pre-processing step by parametrization of the object's triangle mesh. The
authors combine local and global translucency calculations to achieve a �nal
accurate visual result at real-time frame rates.

[Shah et al., 2009] present a di�erent solution for rendering subsurface scattering
using texture space sampling and point splatting. Using a dual representation
of the scene, from the light source's perspective and the observer's perspective,
the geometry is rendered twice to obtain the points where light is incident and
the points visible to the observer, respectively. Irradiance is sampled from the
geometry visible to the light source which is stored in a render texture, and
at the center of the sample points screen aligned quads are positioned. The
quads are used to shade the points visible to the observer using the di�usion
approximation from [Jensen et al., 2001] or [Donner, 2006], thus light transport
towards the viewer is approximated from sampled irradiance.

Chapter 3

Background

This section of the report begins with a short overview of radiometry and the
basic terminology and continues with basic re�ectance distribution functions.
Next, volume transport in participating media is described and the di�usion
approximation theory needed for rendering translucent materials. At the end
of the chapter the numerical approximation methods are presented. Though
this chapter contains only a small percentage of the underlying theory behind
rendering translucent materials, it is enough to describe the rest of the report.

Note that this chapter presents theoretical principles and formulas that were
not derived or developed during this thesis, and are the work of their respective
authors. References and citations are provided. Sections 3.1, 3.2 and 3.3 are
structured and presented similar to [Pharr and Humphreys, 2004]. Section 3.4
only shows the solutions of [Jensen et al., 2001] and [Donner, 2006] for subsurface
light transport. The derivation and a thorough description of the solution can
be found in the original papers.

8 Background

Symbol Meaning Description
x geometric point
n geometric normal normalised vector

ω direction normalised vector

(n · ω) dot product between two vec-
tors

normalised vectors

A area m2

Φ radiant �ux J/s (W)

E Irradiance W/m2

I Intensity W/sr−1

L Radiance W/(sr−1m−2)

α albedo
α′ reduced albedo
η index of refraction
g asymmetry coe�cient
σa absorption coe�cient
σs scattering coe�cient
σt extinction coe�cient
σ′s reduced scattering coe�cient
σ′t reduced extinction coe�cient
i subscript denotes incoming

direction or incidence
point

o subscript denotes outgoing
direction or exit point

Table 3.1: Table of frequently used symbols and notations.

3.1 Basic Radiometry

Radiometry is the study that measures electromagnetic radiation and provides
a set of principles and mathematical tools used to describe light propagation
and re�ectance. The study of energy transfer in the form of electromagnetic
radiation is called radiative transfer and describes by mathematical equations
the propagation of radiation through a medium. Radiative transfer is de�ned
at the geometric optics abstraction level where light propagation is described

3.1 Basic Radiometry 9

in terms of "rays" and successfully theoretizes light interaction with objects
much larger than light's wavelength. This means it accounts for scattering,
absorption and emission of light but not for phenomena like di�raction and
interference [Pharr and Humphreys, 2004].

The basic quantities in radiometry that are important to graphics rendering are:
radiant �ux, irradiance, intensity and radiance.

Radiant Flux

Radiant �ux is the total amount of energy passing through a surface area per
unit time. It is normally represented as Φ and it is measured in joules per
second or watts (J/s or W). In �gure 3.1 the total amount of radiant �ux
(power) arriving on both of the spheres is equal, though locally, per area unit
it is di�erent [Pharr and Humphreys, 2004].

Figure 3.1: Radiant Flux and Irradiance. Two concen-
tric spheres with di�erent radii and a point-light
source placed in their center. Radiant �ux is equal
on both of them, while Irradiance is greater on the
smaller, closer sphere.

10 Background

Irradiance

Irradiance, denoted by E, is the area density of �ux arriving at a surface and is
measured in watts per square meter: W/m2. For the sphere with radius r lit
by a point light source in �gure 3.1 the irradiance is calculated as:

E =
Φ

4πr2

Note that for the larger sphere in �gure 3.1 the irradiance at a local point is
less than the irradiance on the smaller sphere. In more general terms
irradiance is the di�erential �ux over the di�erential area:

E =
dΦ

dA

The converse measure of irradiance is exitant radiance which is the density of
�ux leaving the surface area [Pharr and Humphreys, 2004].

Intensity

Before de�ning intensity the notion of solid angle needs to be introduced as
the extension of planar angles to an angle on the unit sphere. The solid angle
is the total area of an object projected on the unit sphere (see �gure 3.2), it is
measured in steradians and it ranges to 4π (when the object is fully covering
the unit sphere).

The set of vectors with origin in a point p and oriented towards the unit sphere
centered at p will be denoted by ω and they will be considered normalised.

Having these de�nitions, the intensity can be calculated as �ux density per
solid angle [Pharr and Humphreys, 2004]:

I =
dΦ

dω

Radiance

Radiance is the quantity of the �ux density per solid angle per projected
surface area. The projected surface area is the area of the corresponding
perpendicular surface to ω [Pharr and Humphreys, 2004](see �gure 3.3).

3.2 Surface Re�ection 11

Figure 3.2: Solid angle. The solid angle is the set of direc-
tions that surround the object, and is equal to the
area on the unit sphere of the projected object.

L =
dΦ

dωdA⊥

3.2 Surface Re�ection

When light interacts with an object, at the separation surface between the two
media, two phenomena are likely to appear: transmission− when light enters the
new medium and re�ection − when light scatters on the surface and is re�ected
back into the �rst medium. Re�ection is characterized by two varying attributes:
the spectral distribution and the directional distribution of the re�ected light.

Translucent materials exhibit a more complex light−medium interaction: light
passes the separation surface, scatters inside and it is absorbed or exits again
back into the �rst medium at another location.

Re�ection from a separation surface can be therefore described by two indepen-
dent mechanisms: bidirectional re�ectance distribution function, henceforth de-

12 Background

Figure 3.3: Projected Area. To calculate the radiance, the
surface is projected on the plane perpendicular to
the incoming direction.

noted BRDF and bidirectional surface−scattering re�ectance distribution func-
tion, denoted BSSRDF in the remaining parts of the report.

3.2.1 Bidirectional Re�ection Distribution Function

Surfaces that re�ect light without surface scattering can be generically divided
into four categories depending on the re�ection pattern [Pharr and Humphreys,
2004]: di�use, glossy specular, perfect specular and retro-re�ective surfaces (see
�gure 3.4). Di�use surfaces (�gure 3.4 a))re�ect light equally in all directions
in the positive hemisphere (oriented in the normal direction) centered at the
incidence point. Glossy specular surfaces (�gure 3.4 b)) re�ect light in a pre-
ferred set of directions which depend on the incidence angle. Such surfaces are
plastic, metals or surfaces covered in glossy paint and their distinctive feature
is that they show the surrounding environment blurred. Perfect specular sur-
faces(�gure 3.4 c)), on the other hand, re�ect light in a single direction, and the
environment is shown on them similar to a mirror re�ection. Retro-re�ective
surfaces re�ect light in a preferential set of directions that are opposite to the
incidence direction (�gure 3.4 d)). Examples include velvet and road signs.

3.2 Surface Re�ection 13

Figure 3.4: Re�ection Patterns. The four basic re�ection types: a) di�use;
b) glossy specular; c) perfectly specular; d) retro-re�ection.

The BRDF is a function describing how light is re�ected o� an opaque surface
and it was �rst introduced in [Nicodemus et al., 1977]. It is a multi dimensional
function depending on material properties of the shaded point and incidence
point and the geometrical properties of the scene (see �gure 3.5):

xi the point where light is incident
n the surface normal at the incidence point
ωo the outgoing direction
ωi the incoming direction

Numerically, the BRDF is equal to the ratio between the di�erential outgoing
radiance at point xi in ωo direction and the di�erential irradiance at point xi
from ωi direction:

fr(xi, ωo, ωi) =
dLo(xi, ωo)

dE(xi, ωi)
.

14 Background

Figure 3.5: Bidirectional Re�ectance Distribution

Function. The BRDF and its dependencies.

The incoming di�erential irradiance at x is equal to:

dE(xi, ωi) = Li(xi, ωi) cos θi dωi,

where cos θi = n · ωi, therefore the BRDF can be expressed as

fr(xi, ωo, ωi) =
dLo(xi, ωo)

Li(xi, ωi) cos θi dωi
. (3.1)

The outgoing radiance at point xo in direction ωo due to incoming irradiance at
point xi can be calculated by integrating over all ωi directions in the surrounding
unit sphere :

Lo(xi, ωo) =

∫
S2

fr(xi, ωo, ωi)Li(xi, ωi)cos θidωi (3.2)

Lambertian BRDF

One of the simplest BRDFs is the Lambertian distribution:

fr(xi, ωo, ωi) =
α

π
,

3.2 Surface Re�ection 15

Figure 3.6: Lambertian BRDF. Light is re�ected
equally in all directions.

where α is the albedo of the surface and denotes the re�ecting power of the sur-
face calculated as the ration between the outgoing radiance and the incoming
radiance. Therefore a lambertian material will re�ect incoming light equally
in all directions and independent on the viewing angle [Pharr and Humphreys,
2004](see �gure 3.6).
There are no perfectly lambertian surfaces found in nature. Matte paper is a
material that resembles lambertian re�ectance except at small viewing angles,
when the material shows a glossy re�ection [Pharr and Humphreys, 2004]. Spec-
tralon is the material with the highest albedo of any known materials over the
visible spectrum (over 99%) [Georgiev and Butler, 2007], fresh snow re�ects ap-
proximately 80%-90% of the incoming radiation [Markvart and Castaner, 2003]
while soil re�ects under 20% [Markvart and Castaner, 2003].

Specular BRDFS

Materials usually do not exhibit a single type of surface re�ection, but in fact
show a mixture of the four re�ection types described above. Phong proposed
an empirical model in [Phong, 1975], based on the observation that illumination
from a surface is the sum of three elements: the ambient, di�use and specular

16 Background

re�ection. Thus, the intensity re�ected at a point is

I = Ia + Id + Is
= La + fdLd + fsLs

where

La is the ambient illumination term
Ld is the di�use illumination term
Ls is the specular illumination term
fd is the di�use BRDF
fs is the specular BRDF

A model for the specular BRDF was proposed by [Blinn and Newell, 1976] as
an improvement to the Phong model. Blinn's model is based on the observation
that light re�ected by a perfectly specular (mirror) surface will be visible to the
observer only if the surface normal points in the direction between the viewing
and the incidence direction. The median direction is called half-vector, denoted
by H (see �gure 3.7), and it is numerically equal to:

H =
L+ E

‖L+ E‖

The deviation of the half-vector from the surface normal (calculated as the cosine
between the two vectors) will measure the fall-o� in the re�ection. The degree
of sharpness of the highlight is simulated by taking the cosine to a number in
connection to the shininess of the material. Thus, the specular BRDF proposed
by Blinn is:

fs = (N ·H)s

where s is a constant value speci�c for the shaded material and represents the
shininess. Note that the normal N and the half-vector H are normalised vectors,
so their dot product is equal to the cosine of the angle between them. When
the shininess term tends to in�nity, the cosine term will tend to zero, unless it
is equal to one:

lim
s→∞

ft =

{
1 if (N ·H) = 1

0 if (N ·H) < 1

The re�ection from a surface will tend to become perfectly specular as the
shininess term becomes very large.

3.2 Surface Re�ection 17

Figure 3.7: The Half Vector. The median direction be-
tween light's incidence angle and the viewing
direction is called the Half Vector. The devia-
tion of the half vector from the surface normal
is measured by the cosine of the angle between
them.

3.2.2 Bidirectional Surface-Scattering Re�ection Distribu-

tion Function

The BSSRDF is a function describing the subsurface light transport in translu-
cent materials as the ration between the di�erential radiance at incidence point
xi and the di�erential irradiance at exit point xo. The phenomenon is shown in
�gure 3.8.

The analytical equation that describes the BSSRDF is

S(xo, ωo, xi, ωi) =
dLo(xo, ωo)

dΦ(xi, ωi)

If the incidence point and the exit point are the same (xi ≡ xo) the BSSRDF is
reduced to the BRDF (see equation 3.1).

The scattering equation(3.3) for the BSSRDF is now integrated over the surface

18 Background

Figure 3.8: Subsurface Scattering. Light enters
the medium and scatters inside, to be ab-
sorbed inside or exit at another location.

area as well to account for radiance from all incoming incidence points xi [Pharr
and Humphreys, 2004]:

Lo(xo, ωo) =

∫
A

∫
S2

S(xo, ωo, xi, ωi)Li(x, ωi)cos θidωidA (3.3)

3.2.3 Fresnel Re�ectance

When light hits a separation surface a fraction of light is re�ected o� the surface
while the rest is transmitted through. The amount of re�ected light is described
by the Fresnel equations [Pharr and Humphreys, 2004]. The Fresnel equations
are di�erent depending on the conductivity of the materials: dielectrics (ma-
terials that do not conduct electricity - glass) and conductors (metals). Also
the Fresnel re�ectance is dependent on the polarization of light but a typical
approximation in computer graphics is to consider light as being unpolarized.
Therefore the result is the average of the squares of the parallel and perpendic-
ular polarization terms [Pharr and Humphreys, 2004].

3.2 Surface Re�ection 19

Figure 3.9: Re�ection and Transmittance at the separation

surface. At the incidence point, depending on the in-
cident direction and the indices of refraction, a fraction
of light is re�ected while the rest is transmitted in the
directions shown in the �gure.

Fresnel Equations for Dielectrics

In order to calculate the re�ectance at the separation surface between two
media the following need to be know: incoming light direction ωi, transmitted
light direction ωt, the surface normal n and the indices of refraction of the two
media. For the following equations it is assumed that both mentioned
directions are oriented outwards and the normal is �ipped to be on the same
side as each of them (see �gure 3.9). Therefore the angles θi and θt are
between

[
0, π2

]
. θt can be found using Snell's law [Rashed, 1990]:

sin θi
sin θt

=
ηt
ηi

The Fresnel terms for each type of polarization are:

r‖ =
ηt cos(θi)− ηi cos(θt)

ηt cos(θi) + ηi cos(θt)

20 Background

r⊥ =
ηi cos(θi)− ηt cos(θt)

ηi cos(θi) + ηt cos(θt)

The average of the squares of each independent term is the Fresnel re�ectance
for dielectrics for unpolarized light:

Fr =
1

2

(
r2‖ + r2⊥

)
.

The Fresnel transmittance term, describing the amount of light transmitted
through the separation surface, can be easily calculated taking into account the
law of conservation of energy [Pharr and Humphreys, 2004]. This is applied to
both conductors and dielectrics:

Ft = 1− Fr

3.3 Light Transport in Volumes

The collection of particles that make up a volume and alter light as it passes
through it is referred to as participating media. Subsurface scattering is possible
to render only by considering the in�uence of the participating media on the in-
coming radiation. Besides translucent materials, other phenomena that exhibit
light interaction with participating media are atmospheric haze, fog, clouds,
smoke or light passing through cloudy water.
The medium's properties that in�uence light's propagation are the scattering
coe�cient, the absorption coe�cient and the phase function. The next subsec-
tion will detail these three measures and the processes that take place along a
beam of light inside participating media.

3.3.1 Volume Light Transport Processes

Inside participating media a light beam can lose radiance due to absorption and
the transfer of light energy to another type of energy, can gain energy from
emission of light energy by luminous particles or can scatter in other directions
by colliding with the particles. These processes may be constant throughout
the volume (homogeneous − in solids like wax or marble) or may vary in space
and time (inhomogeneous − clouds, smoke or cloudy water).

3.3 Light Transport in Volumes 21

Absorption

Denoted by σa, absorption is the rate of radiance attenuation per meter. In
homogeneous materials absorption is constant, but otherwise it may vary with
position and light direction inside the volume. Absorption is also usually a
wavelength dependent measure: for example green jade absorbs most of the
blue and red wavelengths and therefore it's green appearence. Another example
of absorption in participating media are the shadows cast by clouds: incoming
sun light is scattered and absorbed does not reach the surface below.

Scattering

While it travels inside the participating media a light beam interacts (collides)
with the particles in the medium and scatters in di�erent directions losing ra-
diance. The process is called out-scattering and the rate of scattering per unit
distance is denoted by σs. Light that out-scatters from a beam of light can
continue in the direction of another beam, thus adding radiance. This is called
in-scattering.

It is usefull to de�ne also the extinction (or attenuation) coe�cient σt = σa+σs
to measure the total reduction in radiance due to absorption and out-scattering.

Emission

Emission increases the radiation along a ray from small scale interactions with
luminescent particles. These particles chemically produce radiation (chemilu-
minescence) or absorb speci�c wavelength radiation and emit back radiation at
di�erent wavelengths - in the visible or non visible spectrum. Emission is seen,
for example, in living creatures (�re�ies, jelly �sh) or in �uorescent minerals
which absorb ultraviolet light and emit visible light (�gure 3.10).

22 Background

Figure 3.10: Emission. Light is absorbed in-
side the medium and emitted at
di�erent wavelengths. Source:
http://en.wikipedia.org/wiki/Fluorescence

3.3.2 Phase Functions

The probability distribution that light will scatter and change its direction from
ω to a certain direction ω′ is given by the phase function p(ω → ω′). If the
medium scatters light equally in all directions with equal probability then its
phase function is [Pharr and Humphreys, 2004]:

pisotropic(ω → ω′) =
1

4π

This is because the phase function is a probability density function and it is
normalised over the domain:∫

4π

p(ω → ω′)dω′ = 1

The phase function de�nes another characteristic of an isotropic scattering
medium: the asymmetry parameter g which is [Pharr and Humphreys, 2004]:

g =
∫
4π
p(ω → ω′)(ω · ω′)dω′

= 2π
∫ π
0
p(cos(θ)) cos θ sin θdθ

3.4 Di�usion Approximation 23

3.4 Di�usion Approximation

The �rst part of this section presents a model for the BSSRDF as presented
by [Jensen et al., 2001] based on a twin light source pair (dipole). Later
the multipole approximation is described as presented by [Donner and Jensen,
2005]. These BSSRDFs are dedicated for rendering highly scattering homoge-
neous translucent materials so, unless speci�ed otherwise, the rest of the report
will refer only to this subset of translucent materials.

The full derivation of the formulas in this section can be found in the original
articles [Jensen et al., 2001,Donner and Jensen, 2005] or in Craig Donner's PhD
thesis [Donner, 2006].

3.4.1 Dipole Approximation

The dipole approximation [Jensen et al., 2001] is used to approximate subsur-
face transport in optically thick media. The solution is to replace the original
light source with a pair of light sources (called dipole sources) placed above and
below the separation surface. The two light sources will account for light scat-
tering below the surface. Figure 3.11 shows the setting in which light-surface
interaction will be considered. Incoming radiance from direction ωi is incident
at xi and penetrates through the separation surface. Inside the medium, light
scatters (as presented in �gure 3.8) and it exits at xo in direction ωo. The
distance between the incidence and exit points is denoted r.

24 Background

Figure 3.11: Dipole Approximation. The light
source is replaced by a pair of light
sources placed above and below the sep-
aration surface.

The two light sources are placed at distances zv and zr from the separation
surface [Jensen et al., 2001]:

zr = 1
σ′t

zv = zr(1 + 4A
3)

where σ′s is the reduced scattering coe�cient and A is the Groenhuis parame-
ter [Groenhuis et al., 1983] :

A =
1 + Fdr
1− Fdr

In the previous de�nition, Fdr is the average Fresnel re�ectance:

Fdr =

∫
2π

Fr(η, n · ωi)(n · ωi)dωi

where n is the normal at the incidence point and η is the relative refraction
index of the two media.

3.4 Di�usion Approximation 25

The average di�use Fresnel re�ectance can be calculated analytically, but it
is commonly approximated with a polynomial expansion [Egan and Hilgeman,
1979]:

Fdr w=

−0.4399 + 0.7099

η − 0.3319
η2 + 0.0636

η3 , η < 1

− 1.4399
η2 + 0.7099

η + 0.6681 + 0.0636η, η > 1

The distances to the exit points are denoted dv and dr (�gure 3.11) and are
numerically equal to:

dr =
√
r2 + z2r

dv =
√
r2 + z2v

where r is the euclidean distance between xi and xo.

The total re�ectance at outgoing point xo is calculated as the sum from the
contribution of each dipole source:

Rd(r) = α′

4π

[
(σtrdr + 1) e

−σtrdr

σ′td
3
r

+ (1 + 4A
3)(σtrdv + 1) e

−σtrdv

σ′td
3
v

]
where α′ is the reduced albedo, σtr is the e�ective transport and σ

′
t the reduced

extinction coe�cient [Jensen et al., 2001]:

σ′s = (1− g)σs
σ′t = σa + σ′s
α′ =

σ′s
σ′t

σtr =
√

3σ′tσa

Note that the di�use re�ectance term (Rd) is a function of the distance between
the xi and xo points.

The BSSRDF is calculated by multiplying the di�use re�ectance term with the
Fresnel re�ection for the incoming and outgoing ray directions.

S(xo, ωo, xi, ωi) =
1

π
Ft(η, ωi)Rd(‖xi − xo‖)Ft(η, ωo). (3.4)

26 Background

3.4.2 Multipole Approximation

Opposed to the dipole approximation, in the multipole approximation [Donner,
2006] the point light source is replaced by an array of dipoles (see �gure 3.12).

Figure 3.12: Multipole Approximation. The light
source is replaced by a number of dipole
light sources.

Each pair of dipole sources will have its corresponding position with respect to
the separation surface, denoted zv,i and zr,i for the dipole pair i. When the
relative index of refraction is equal to 1, the z-coordinates for the each dipole
sources are given by [Donner, 2006]:

zr,i = 2i(d+ 2zb) + l
zv,i = 2i(d+ 2zb)− l − 2zb

where zb is given by:

zb = 2AD

A = 1+Fdr
1−Fdr

D = 1
3σ′t

3.4 Di�usion Approximation 27

The re�ectance and transmittance pro�les are calculated by summing up the
individual contribution from each of the n dipole pairs:

R(r, d) =

i=n∑
i=−n

(
α′zr,i(1 + σtrdr,i)e

−σtrdr,i

4πd3r,i
−

α′zv,i(1 + σtrdv,i)e
−σtrdv,i

4πd3v,i

)
(3.5)

T (r, d) =

i=n∑
i=−n

(
α′(d− zr,i)(1 + σtrdr,i)e

−σtrdr,i

4πd3r,i
−

α′(d− zv,i)(1 + σtrdv,i)e
−σtrdv,i

4πd3v,i

)
(3.6)

where dr,i =
√
r2 + z2r,i and dv,i =

√
r2 + z2v,i.

Note that the di�use re�ection and transmission terms for the multipole ap-
proximation are functions of the distance between the xi and xo points and of
d, the thickness of the slab (see �gure 3.12).

Multilayered Materials

Donner [Donner and Jensen, 2005] 3.6 focuses also on calculating the pro�les
for multi-layered materials. The constraints set at the start of the chapter
(highly scattering homogeneous materials) are still considered.

Considering an slab of material covered uniformly with another layer (both
being highly scattering and homogeneous) the transmittance pro�le for both
layers can be calculated by convolving each layer's pro�le [Donner and Jensen,
2005]:

T12(r) =

∫ ∞
−∞

∫ ∞
−∞

T1(r′)T2(r′′)dx′dy′ = T1(r) ∗ T2(r); (3.7)

28 Background

Figure 3.13: Light Re�ection and Transmission in multiple

layers. Between the two separation surfaces light
scatters and su�ers multiple re�ections, and �nally
is transmitted in the second underlying layer or back
into the �rst medium.

where T1 and T2 are each layer's transmittance pro�le and r′ =
√
x′2 + y′2.

The previous equation would be true only if no light is re�ected o� the second
layer. The exact phenomenon is shown in �gure 3.13 and the correct
transmittance pro�le for both layers is:

T12 = T1 ∗ T2 + T1 ∗R2 ∗R1 ∗ T2 + T1 ∗R2 ∗R1 ∗R2 ∗R1 ∗ T2 + . . . (3.8)

[Donner and Jensen, 2005] propose to calculate the above mentioned
convolutions in frequency domain where they will be simpli�ed to element-wise
multiplications. Considering R and T to be the Fourier transformed
re�ectance and transmittance pro�les, equation 3.8 becomes:

T12 = T1T2 + T1R2R1T2 + T1R2R1R2R1T2 + . . .
= T1T2(1 +R2R1 + (R2R1)2 + (R2R1)3 + . . .)

(3.9)

3.5 Numerical Integration 29

The sum of products on the right side can be considered a geometric
progression and equation 3.11 can be reduced to a simpler form:

T12 = T1T2
(

1− (R2R1)n

1−R2R1

)

Assuming R2R1 < 1 then (R2R1)n will converge to 0, and the formula for the
two-layered transmittance pro�le is:

T12 =
T1T2

1−R2R1
(3.10)

The same steps can be followed to calculate the total re�ectance from two
layered materials (consider �gure 3.13):

R12 = R1 + T1R2T1 + T1R2R1R2T1 + T1R2R1R2R1R2T1 + . . .
= R1 + T1R2T1(1 +R2R1 + (R2R1)2 + (R2R1)3 + . . .)

= R1 + T1R2T1
(

1−(R2R1)
n

1−R2R1

) (3.11)

With the same assumption as in 3.10 the re�ectance pro�le of two layers is:

R12 = R1 +
T1R2T1

1−R2R1
(3.12)

Note that the pro�les calculated above are still in frequency domain. The real
response is obtained by applying the inverse Fourier transform to the pro�les.
The frequency domain formulas 3.10 and 3.12 are identical to the
Kubelka-Munk equations [Kubelka, 1954].

3.5 Numerical Integration

As presented in section 3.1, the rendering equations (for example equations 3.3
and 3.2) are mainly integral equations. These integrals often do not have ana-
lytical solutions, therefore a numerical approach is needed to approximate the
results.

30 Background

For single dimensional integrals the trapezoidal method or Simpson's rule can
be used to approximate their value. For multidimensional and discontinuous
functions a better approach is to use Monte Carlo integration methods, based
on random numbers.

3.5.1 Discrete Integration

For one-dimensional functions, the de�nition for the integral was �rst introduced
with the Riemann equation. Considering the closed interval [a, b] and a tagged
partition of it de�ned by the points xi and tj :

a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ x2 ≤ · · · ≤ xn−1 ≤ tn ≤ xn = b

the integral of a function f over [a, b] is considered to be the Riemann sum
[Anton, 1998]:

∫ b

a

f(x)dx u
N∑
i=1

f(ti)4i (3.13)

where 4i is de�ned as xi − xi−1. In�nite partitions (when N tends to in�nity)
would allow the value of the sum to converge to the value of the integral.

A more practical approximation is the rectangle method. For a function f de-
�ned in [a, b], the interval is subdivided into N equal parts of length h = b−a

N .
Each subinterval has a de�ned area under the function's graph which can be
approximated to the area of a rectangle, and thus much easier to calculate. The
area under the whole function (the value of the integral) is therefore approxi-
mated with the sum of the areas of the subintervals (see picture 3.14):

3.5 Numerical Integration 31

Figure 3.14: The Rectangle Rule. The area under the func-
tion is divided into a series of rectangles, for which
the area is easily calculated. The integral is approxi-
mated to the sum of the areas of the rectangles. Ob-
tained using http://mathworld.wolfram.com/

Another approach is Simpson's Composite rule, based on subdividing the in-
terval into an even number n of subintervals and applying Simpson's Rule to
each subinterval. It is more accurate to apply Simpson's rule rather than the
rectangle Rule for each subinterval. The equation for Simpson's Composite Rule
is:

∫ b

a

f(x)dx u
h

3

f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

 (3.14)

The approach to solving a one dimensional integral can be extended to solving a
multidimensional integral based in Fubini's theorem [Fubini, 1958,Thomas and
Finney, 1995]:∫

A×B
f(x, y)d(x, y) =

∫
A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy (3.15)

32 Background

Considering a two-dimensional integration
∫
A
f(x)dA, using Fubini's theorem

and a discrete integration method (Riemann's equation) yields:

∫
A

f(x, y)dA =

∫ x2

x1

∫ y2

y1

f(x, y)dxdy u
Nx∑
i=1

Ny∑
j=1

f(xi, yj)4xi4yj (3.16)

3.5.2 Monte Carlo Integration

Probability Density Function

For a uniform random variable x, the probability density function (pdf), denoted
p(x), is a function describing the probability that x takes a certain value within
a de�ned domain. Given an interval [a, b], the probability that x is inside is:

x(a ≤ x ≤ b) =

∫ b

a

p(x)dx

An important property for any pdf is that it is non-negative and it is integrated
to 1 over the domain.

Monte Carlo Integration

For a multidimensional function f(x1, x2, . . . , xn) de�ned on the domain V,
{V|ai ≤ xi ≤ bi}, using Monte Carlo method, the integral can be approximated
to:

I =

∫
V
f(X)dX u V 1

N

N∑
i=1

f(Xi) (3.17)

where X is the tuple {x1, x2, . . . , xn} and V is the dimension of the domain.
For a single dimensional function de�ned on [a . . . b], equation 3.17 reduces to:

∫ b

a

f(x)dx u
b− a
N

N∑
i=1

f(xi) (3.18)

3.5 Numerical Integration 33

In equation 3.17 and 3.18 xi and Xi are uniformly random sampled variables in
the domain of de�nition.
If not uniformly sampled, the pdf can be used for importance sampling. Then,
the integral is approximated by:

∫ b

a

f(x)dx u
1

N

N∑
i=1

f(xi)

p(xi)

34 Background

Chapter 4

Method

This chapter describes the methods chosen for rendering translucent materi-
als under both point-light and environment illumination. The details in this
chapter link the theoretical background from Chapter 3 with the GPU oriented
implementation presented in Chapter 5.

First, the algorithm is presented along with the motivation behind the method
used. The next section describes how to acquire the material properties and
how to use them in rendering. The �nal two sections describe the mathematical
approach to solving the equation for outgoing radiance for translucent materials
under point light illumination and environment illumination respectively.

4.1 Algorithm Overview

For each screen pixel written during rendering, the outgoing radiance visible to
the observer is:

Lo(xo, ωo) =

∫
A

∫
S2

S(xo, ωo, xi, ωi)Li(xi, ωi) cos θidωidA (4.1)

In a typical o�-line ray tracing implementation, the outgoing radiance is cal-

36 Method

culated by sending a ray through each pixel of the screen and checking for all
ray-scene interactions. To account for scattering, the ray is traced inside the
scattering medium it hits until it exits at another location or it is absorbed.
The number of times a beam of light bounces inside is determined by the op-
tical properties of the medium (see section 3.3.1). Highly scattering materials
will change the trajectory of the ray more often and after shorter distances, so
simulating this behavior requires a large number of steps. The computational
cost of rendering highly scattering translucent materials is therefore very large.

Presented here is a di�erent method for rendering highly scattering translucent
materials. The approach is opposed to conventional path tracing: incoming ra-
diance is sampled from the surface of the object at di�erent positions. Centered
at the sample positions, "splats" are created that are projected on the screen to
shade all points visible to the user. This allows the calculation of the amount
of light scattered from the sample point. The splats are screen aligned quads
that link the sample position with the points being shaded. Contribution from
all sample points is simulated by additively blending all the splats that overlap
each pixel and so equation 4.1 is numerically approximated. In a deferred ren-
dering stage the translucent material is rendered on the screen along with the
rest of the scene, and specular highlights are added. The presented method was
previously implemented and used by [Shah et al., 2009].

It is important to motivate the necessity of screen-aligned rectangles that will
shade the model. In highly scattering materials, the distribution of light due
to multiple scattering events, tends to become isotropic. This is because each
scattering event will blur the previous distribution [Jensen and Buhler, 2002].
Considering a point light source surrounded by an in�nite medium of highly
scattering homogeneous material as in �gure 4.1, the light distribution in it will
be radially symmetric, with a high intensity (close to the light source) that dims
away as the distance to the light source grows. The spherical light distribution,
projected on the screen will be reduced to a circle, independent on the viewing
direction. The geometry of the medium may vary, but a screen aligned quad will
be enough to cover any light distribution projected on the screen. Of course,
other geometric primitives can be used (for example a disc), but a screen aligned
quad is much easier to handle during implementation and much more easier to
be rendered.

4.1 Algorithm Overview 37

Figure 4.1: The motivation for screen aligned quads.

Projected on the screen, any light distribution can
be covered by a screen aligned quad.

Figure 4.1 shows that a spherical light distribution is completely covered by a
screen aligned quad, but this scenario (a point light source surrounded by an
in�nite medium) is not often encountered. Usually, the geometry will shape
the distribution, but the quads should not be dependent on the geometry being
shaded. Figure 4.2 shows how two identical quads with di�erent orientation will
yield di�erent results. The left side of the �gure shows a quad oriented perpen-
dicular to the surface normal, but its projection on the viewer's screen will not
cover the whole distribution, and thus, a signi�cant amount of scattering events
can be neglected. The right side of �gure 4.2 shows that if the quad is oriented
perpendicular to the viewing direction, it will cover the whole distribution. Of
course, the �rst quad (perpendicular to the surface normal) can be scaled up in
order to span over a larger area, but it will introduce computational overhead,
therefore screen aligned quads will be a better choice for shading. The solution
to the minimum size of the quad will be detailed in section 4.3.

38 Method

Figure 4.2: Geometry aligned quads. The left image shows a quad ori-
ented perpendicular to the surface normal. It is visible that signi�-
cant scattering events can be omitted because the screen-projected
quad will not fully cover the screen-projected light distribution.
The problem is solved by using screen-aligned quads, as depicted
in the right image.

Equation 4.1 has two distinct sets of variables: variables that describe outgo-
ing radiance (denoted with o subscript) and variables that describe incoming
radiance (denoted with i subscript). The output points xo are the set of points
visible to the viewer, while the xi point set holds the points where radiance may
be incident. To approximate the amount of light scattered from a sample point
to a shaded point (or to calculate the BSSRDF in equation 3.3) it is needed to
have along with the positions the incident direction and the outgoing direction.
This yields to a dual representation of the scene: from light's perspective and
from the observer's perspective (see �gure 4.3).

In theory, the surface of the model holds an in�nity of points where light can
be incident. To overcome this, in practice a subset of the points on the surface
will be chosen, called in the remainder of the report sample points. Each point
in this subset will be used to approximate the surface area in its vicinity.

Sample points are generated by sampling a texture space for point light illu-
mination and by directly sampling the 3D model for environment illumination.
Each of the methods will be described in detail in chapter 5. The point light
illumination is done by splitting the light's perspective texture space into equal
discrete intervals and the integration is done as presented in section 3.5.1. The
detailed implementation is described in section 5.1 of Chapter 5.

For environment illumination, a Monte Carlo integration as presented in sec-

4.2 Materials 39

Figure 4.3: Dual representation of the scene. The scene
is rendered from the eye's and light source's per-
spective in separate render passes.

tion 3.5.2 is used to solve equation 4.1. The sample points are randomly placed
at �rst, and uniformly distributed in a pre-rendering step. The environment
map is �ltered so that a simpler representation is achieved. The detailed imple-
mentation is described in section 5.3 of Chapter 5.

4.2 Materials

To simulate scattering inside the translucent medium, the optical properties
of the material need to be known. The shape in which these properties are
presented varies, and the next section will describe how to handle each case. To
calculate the BSSRDF described in section 3.4 (see equations 3.4.1, 3.5 and 3.6)
it is needed to know the reduced scattering coe�cient, absorption coe�cient
and the index of refraction.

40 Method

4.2.1 Acquiring the needed parameters

Direct coe�cients

The simplest method is to have the reduced scattering and absorption
coe�cients directly in RGB color channel format. [Jensen et al., 2001] have
developed a method of aquiring these parameters and presented them in their
paper A practical model for light transport [Jensen et al., 2001]:

Material
σ′s[mm

−1] σa[mm−1]
η

R G B R G B
Apple 2.29 2.39 1.97 0.0030 0.0034 0.46 1.3
Marble 2.19 2.62 3.00 0.0021 0.0041 0.0071 1.5
Potato 0.68 0.70 0.55 0.0024 0.0090 0.12 1.3

Skimmilk 0.70 1.22 1.90 0.0014 0.0025 0.0142 1.3
Spectralon 11.6 20.4 14.9 0.00 0.00 0.00 1.3
Wholemilk 2.55 3.21 3.77 0.0011 0.0024 0.014 1.3

Table 4.1: Reduced scattering and absorption coe�cients and index of refrac-
tion

Obtaining the reduced scattering coe�cient

Sometimes, the medium properties are described in terms of scattering
coe�cient, absorption coe�cient, index of refraction and the mean cosine term
of the phase function g(see section 3.3.2). The reduced scattering coe�cient
can be calculated from the scattering coe�cient and the asymetry
coe�cient [Jensen et al., 2001]:

σ′s = σs(1− g) (4.2)

Imaginary part of the refraction index

The absorption coe�cient is sometimes represented as the imaginary part of
the refraction index, as seen in table 4.2.

Conversion from complex index of refraction to RGB coe�cients is possible
with:

4.2 Materials 41

refractive index (η)
Re Im

R 1.5 1.16979e-7i
G 1.5 1.79447e-7i
B 1.5 2.40125e-7i

Table 4.2: Complex index of refraction for marble

σa(λ) =
4π · Im(η)

λ

where λ is the wavelength for which the absorption coe�cient is calculated.

The absorption coe�cients calculated for marble from complex index of
refraction are shown in table 4.3. Note that the absorption coe�cient values in
table 4.3 and table 4.1 are identical.

refractive index (η) λ absorption coe�cient
[
m−1

]
R 1.5 + 1.16979e-7i 700.0e-9 2.1
G 1.5 + 1.79447e-7i 550.0e-9 4.1
B 1.5 + 2.40125e-7i 425.0e-9 7.1

Table 4.3: Absorption coe�cients calculated from the complex index of refrac-
tion for marble

4.2.2 The Di�usion Properties

To calculate the di�use re�ectance and transmittance pro�les for a material,
equation 3.4.1 or 3.5 and 3.6 have to be evaluated. For this purpose, based on
the optical properties of the material, the di�usion properties are calculated.
The varying parameters in the above mentioned equations are the distance r
and the thickness of the slab, but the di�usion properties remain constant, so
it is not needed to recalculate them. A better approach would be to store and
reuse them.

The scattering (σs) and absorption (σa) coe�cients can be either received as
input directly in RGB format, or transformed to RGB format as shown in sec-
tion 4.2.1. The extinction coe�cient is σt = σa + σs (see section 3.3.1). The

42 Method

reduced extinction coe�cient σ′t is obtained by substituting σs with σ
′
s and the

e�ective transport coe�cient σtr and reduced albedo α′ can be calculated:

σ′t = σ′s + σa

σtr =
√

3σ′tσa

α′ =
σ′s
σ′t

Two important parameters in estimating the di�usion are the distances at which
to place the dipole sources. The real source is placed at distance zr below the
slab and the virtual source is placed at distance zv above the surface of the slab
(�gures 3.11 and 3.12).

The dipole system will have only one pair of values that describe the positioning
of the dipole source. The multipole will instead have a number of pairs of dipoles,
each having it's own values for zr and zv.

Dipole Approximation

The �rst distance, zr corresponds to the reduced mean free path:

zr =
1

σ′t

The di�usion coe�cient D [Ishimaru, 1978] and the correction coe�cient A are
used to calculate the o�set of the virtual source:

D = 1
3σ′t

A = 1−Fdr
1+Fdr

zv = zr + 4AD

Multipole Approximation

For the multipole di�usion approximation (equations 3.5 and 3.6) the
distances zr and zv are individual for each dipole pair. The notation will be
zr,i for the distance to the real source of dipole pair i, and similar for zv,i:

4.3 Re�ectance and Transmittance Pro�les 43

zr,i = 2i(d+A(0)D +A(d)D) + zr,0

zv,i = 2i(d+A(0)D +A(d)D)− zv,0

The di�erent refraction indices of the top and bottom layers in multi-layered
materials are accounted for by the A(0) term a the top of the slab and the
A(d) term at the bottom [Donner, 2006]. For i = 0, the zr,0 and zv,0 pair is the
equivalent of the zr and zv pair in the dipole approximation:

zr,0 = 1
σ′t

zv,0 = zr,0 + 4AD

4.3 Re�ectance and Transmittance Pro�les

The di�usion properties are used in equations 3.4.1 or 3.5 and 3.6. For the dipole
di�usion the equation is dependent only on r, the distance from the incidence
position of light to the surface position where it exits the object. The distance
dependent di�usion pro�le is shown in �gure 4.4

It is important to note two characteristics in the shape of the plot:

• it is monotone and smooth

• its intensity drops quickly with the distance to values that can be neglected

The distance threshold after which the di�use re�ectance is neglectable, can
be approximated by calculating where it's contribution is below a certain value
[Shah et al., 2009]:

∫∞
0
Rd(r)dr −

∫ rmax
0

Rd(r)dr∫∞
0
Rd(r)dr

< ε (4.3)

Since the plot tells that the function is smooth, a numerical integration rule as
Simpson's Rule can be applied to solve the integrals. The integrals are consid-
ered to start from 0 because the distance should be a positive real number. It is

44 Method

Figure 4.4: Dipole Re�ectance Pro�le. Plot of the re�ectance pro�le for
marble calculated using the Dipole Method. The plot was done in
Matlab.

not necessary to consider the �rst integral an in�nite one, because the di�usion
function Rd(r) will converge to 0 very shortly.

For multipole di�usion approximation, the equation has two varying quantities:
the distance between the incidence point and the exit point, and the depth of the
slab (as presented in section 3.4.2). The pro�les are calculated only for values
of the distance in the truncated domain de�ned above. The depth of the slab
in�uences the transmittance term of the multipole equation. Intuitively, thinner
slabs will allow more transmittance, while for thicker slabs the transmittance
term will converge to zero. The pro�les for marble, at three distinct slab depths,
are shown in �gure 4.5.

First row shows the re�ection and transmittance pro�les for very thin slabs,
of thickness equal to 2 mean free paths. Notice how the blue color channel is
re�ected more than the other channels, while the red channel is transmitted the
most.

The second shows the pro�les at a thickness of 10 mean free paths. Notice that
the re�ection is almost constant with respect to the thickness of the slab while
the transmittance was highly attenuated with 2 orders of magnitude (from 0.8
to 0.0075). At 20 mean free paths (third row) the transmittance is converging
to really small values of 10−4 order. Note that the plots are similar to the ones

4.3 Re�ectance and Transmittance Pro�les 45

in [Donner and Jensen, 2005].

The multipole di�usion approximation will introduce errors if the thickness of
the slab is too small. [Donner and Jensen, 2005] use as a minimum depth a
few mean fee paths. Figure 4.6 shows the transmittance pro�les for marble at
depths of 1.15 and 1.5 mean free paths. Note that the plots are di�erent with
an order of magnitude for a very small di�erence in the depth.

46 Method

Figure 4.5: Re�ectance and Transmittance pro�les at di�erent thick-

ness. The plots for the re�ectance (left) and transmittance (right)
pro�les for marble. The vertical axis represents the re�ectance and
transmittance pro�les respectively, and the horizontal axis repre-
sents the variation of the distance r. The values for the �rst row
were obtained for a thickness of 2 mean free paths, for the second
row 10 mean free paths and for the third row 20 mean free paths

4.3 Re�ectance and Transmittance Pro�les 47

Figure 4.6: The transmittance pro�le for marble for very thin slabs. The left
plot was calculated for a thickness of 1.15 mean free paths and the
right plot for 1.5 mean free paths.

48 Method

4.3.1 Multi-layered materials

In multi-layered materials the contribution from all individual layers in�uences
light's behavior. As presented in section 3.4.2 after successive re�ections and
refractions light exits the object.

A thorough implementation for multi-layered materials needs depth peeling. In
this thesis, the coating layer is considered to have a certain known thickness. In
the pre-rendering phase, the pro�les of the two materials (the coating layer and
the underlying layer) are convoluted and the combined pro�les are used in ren-
dering. The theoretical background for the method is presented in section 3.4.2
and the detailed implementation is described in 5.1.2. The rest of the algorithm
remains the same.

4.4 Rendering with Point Light Illumination

Recall equation 4.1 calculating the outgoing radiance in ωo direction:

Lo(xo, ωo) =

∫
A

∫
2π

S(xo, ωo, xi, ωi)Li(xi, ωi) cos θidωidA

The integration is done over surface area because more than one point where
light is incident can have a contribution on xo and the total contribution is the
sum from all of them. For each of the points, the incoming radiance is calculated
by integrating over the positive hemisphere around the point to account for all
possible directions. The di�use BSSRDF (equation 3.4) is the product of three
terms:

Ft(η, ωo) depending on the outgoing direction
Ft(η, ωi) depending on the incoming direction
Rd(‖xi − xo‖) depending on the distance‖xi − xo‖

Re-arranging the terms inside the integrals, the previous equation can be re-
written as:

Lo(xo, ωo) = Ft(η, ωo)

∫
A

Rd(‖xi − xo‖)
∫
S2

Li(xi, ωi)Ft(η, ωi) cos θidωidA

The second part of the integral, dependent on ωi is easily calculated for a single

4.4 Rendering with Point Light Illumination 49

point-light source:

E(xi, ωi) =
∫
2π
Li(xi, ωi)Ft(η, ωi) cos θidωi

= I(ωi)
‖xlight−xi‖2Ft(η, ωi) cos θi

For a single point light source, equation 4.1 becomes

Lo(xo, ωo) = Ft(η, ωo)

∫
A

Rd(‖xi − xo‖)E(xi)dA

The remaining integral does not have an analytical solution and thus, needs to
be numerically approximated, but a more suitable shape can be achieved. The
integration domain A is the surface of the 3D model which is a triangle mesh,
therefore A is the sum of the area of each triangle in the mesh:

A =

N∑
i=1

A4i,

where N is the number of triangles of the mesh and i denotes the ith triangle.
It is known that for de�nite integrals we can apply the additivity of integration
on intervals rule:

∫ b

a

fdx+

∫ c

b

fdx =

∫ c

a

fdx

or

∫
A1

fdx+

∫
A2

fdx =

∫
A1+A2

fdx

and equation 4.1 is now:

Lo(xo, ωo) = Ft(η, ωo)

N∑
i=1

∫
A4i

Rd(‖xi − xo‖)E(xi)dA4i

The term E(xi) is the incoming radiance from the light source, and if the point xi
is visible in the light's perspective, then the value for E(xi) will have a positive,

50 Method

non zero, value. The point may not visible: could be behind the light source or
not in it's viewport; or it may be shadowed by other geometry from the scene or
by other parts of the mesh (self-shadowing). Therefore, only a restricted area
of the mesh is suitable for sampling, and that is the visible surface area from
light's point of view. The equation now becomes:

Lo(xo, ωo) = Ft(η, ωo)

∫
visA

Rd(‖xi − xo‖)E(xi)dA

= Ft(η, ωo)

Nvis∑
i=1

∫
A4i

Rd(‖xi − xo‖)E(xi)dA4i

where the subscript vis on Avis and Nvis denotes the visible surface area and
the number of visible triangles respectively.

The set of visible polygons is in fact the subset of the triangle mesh that reach
the rasterizing stage of the GPU pipeline and are written in the light's output
render texture. Therefore it is suitable to transform the integration domain
from surface area to texture space area (denoted Ats in equation 4.4). This will
introduce a scaling factor for the integral [Chang et al., 2008]:

Lo(xo, ωo) =
Avis
Ats

∫
Ats

Rd(‖xi − xo‖)E(xi)dAts (4.4)

Using discrete numerical integration (brie�y discussed in section 3.5.1), the ap-
proximate value of Lo(xo, ωo) calculated for Ns samples is:

Lo(xo, ωo) u
Avis
Ats

Ns∑
s=1

Rd(‖xs − xo‖)E(xs)4Ats (4.5)

where xs is the sample point on the texture and 4Ats is the di�erential texture
space area associated with xs:

4Ats =
Ats
Ns

4.5 Rendering with Environment Illumination 51

Substituting 4Ats in equation 4.5 results in:

Lo(xo, ωo) u
Avis
Ats

Ats
Ns

Ns∑
s=1

Rd(‖xs − xo‖)E(xs)

=
Avis
Ns

Ns∑
s=1

Rd(‖xs − xo‖)E(xs)

(4.6)

Unless the model occupies the whole texture space, there will be unwritten pixels
in the texture. This does not pose a threat to the method, since the associated
irradiance with an empty pixel will be zero and the result of the approximation
will remain unmodi�ed.

Increasing the number of samples from the texture will allow the splats to overlap
and each pixel of the screen (or xo point) will have enough samples for the
integral to converge.

4.5 Rendering with Environment Illumination

4.5.1 Uniform Sampling

In equation 4.1 to calculate the outgoing radiance, light contribution is inte-
grated from points on the model's surface.

In equation 3.5.2, a pdf is used to weigh the contribution of each sample. When
the surface of the model is uniformly sampled , the pdf of a sample point i is:

pdf(xi) =
1

Asurface

Note that this is a valid pdf since the constraint in 3.5.2 is respected:

∫
Asurface

pdf(xi)dAsurface =

∫
Asurface

1

Asurface
dAsurface = 1

52 Method

Integrating the radiance (equation 4.1) will become:

Lo(xo, ωo) =

∫
A

∫
2π

S(xo, ωo, xi, ωi)Li(xi, ωi) cos θidωidA

=
1

Ns

Ns∑
j=1

∫
2π
S(xo, ωo, pj , ωi)Li(xj , ω) cos θdω

pdf(xj)

=
Asurface
Ns

Ns∑
j=1

∫
2π

S(xo, ωo, pj , ω)Li(xj , ω) cos θdω

(4.7)

To reach an uniform distribution, at �rst, points are generated randomly on
the surface of the model and then the distribution is smoothed using a point
relaxation procedure. However, a good idea would be to choose the initial
random position of the points based on a cumulative distribution function (cdf)
according to each triangle's face area. This would allow larger triangle faces to
receive more points. The di�erence between randomly placing the points and
placing them according to a cdf is shown in �gure 4.7, where 100 samples were
chosen on a planar triangle mesh.

Figure 4.7: Sampling according to a cdf. A number of 100 sample points
distributed on a planar mesh randomly (left) and according to a
cumulative distribution function (right). The distribution is al-
ready a step forward towards uniformity in the right image, com-
pared to the left image.

The point relaxation procedure will move each point depending on the in�u-
ence the points in its vicinity will have on it. The details for creating the cdf ,
sampling the mesh and how to reach a uniform distribution will be presented in
section 5.3.1.

4.5 Rendering with Environment Illumination 53

4.5.2 Environment Illumination

Complex illumination in scenes is di�cult to implement using point light or
directional light sources. Usually, to simulate illumination in real scenes it is
needed to account also for area lights, very distant and large light sources (like
sun light) or the continuous ambient light distribution from the sky.

Blinn and Newel [Blinn and Newell, 1976] introduced re�ection maps to simulate
environment lighting contribution on mirror-like objects. A generalization that
includes a wider class of re�ectance models was proposed by Miller and Ho�man
[Miller and Ho�man, 1984], based on pre-�ltering the environment maps. The
pre-�ltering is an o�-line process done before rendering and it usually stores the
map in a more appropriate way to reach interactive frame rates [Greene, 1986].

To render translucent objects under environment illumination, in this thesis, in-
coming radiance is separated into two distinct components: di�use contribution
(corresponding to low frequency illumination) and specular contribution. The
two di�erent types are obtained from di�erent representations of the environ-
ment map. The separation into the respective components is motivated by the
fact that incoming light will be transmitted or re�ected at the surface of the
object. Transmitted light will be blurred with each scattering event inside the
highly scattering material and will result in di�use outgoing radiance. Light
re�ected o� the surface is considered to contribute to the specular highlights.

For di�use illumination, the environment map needs to be �ltered and its con-
tribution needs to be reduced to a set of numerical coe�cients in a pre-rendering
step as in [Ramamoorthi and Hanrahan, 2001]. This is done in order to achieve
a suitable representation of the map, for interactive rendering. On the other
hand, specular illumination will be obtained directly from the environment map,
without pre-�ltering.

This section will continue by giving an overview of the method chosen to obtain
the di�use contribution from the environment map. The method is based on
using the �rst 9 spherical harmonics coe�cients to �lter the environment map
as presented in [Ramamoorthi and Hanrahan, 2001]. In section 5.3.1, the imple-
mentation of the �ltering and rendering of di�use illumination will be described.

Spherical harmonics are the 3D equivalent on the unit sphere of the 2D Fourier
basis functions. For the rest of the report, the spherical harmonics coe�cient of
rank l and order m will be denoted with Y ml . A visual representation is shown
in �gure 4.8.

54 Method

Figure 4.8: The �rst nine spherical harmonics coe�cients. Source:
http://en.wikipedia.org/wiki/File:Harmoniki.png

The �rst 9 spherical harmonics coe�cients are [Ramamoorthi and Hanrahan,
2001]:

Y 0
0 (θ, φ) = 0.282095 = 0.282095

Y −11 (θ, φ) = 0.488603 · sin θ cosφ = 0.488603 · x
Y 0
1 (θ, φ) = 0.488603 · cos θ = 0.488603 · z
Y 1
1 (θ, φ) = 0.488603 · sin θ sinφ = 0.488603 · y

Y −22 (θ, φ) = 1.092548 · sin θ cosφ sin θ sinφ = 1.092548 · xy
Y −12 (θ, φ) = 1.092548 · sin θ sinφ cos θ = 1.092548 · yz
Y 0
2 (θ, φ) = 0.315392 · (3 cos2 θ − 1) = 0.315392 · (3z2 − 1)
Y 1
2 (θ, φ) = 1.092548 · sin θ cosφ cos θ = 1.092548 · xz
Y 2
2 (θ, φ) = 0.546274 · ((sin θ cosφ)2 − (sin θ sinφ)2) = 0.546274 · (x2 − y2)

(4.8)

The equations above show the coe�cients in spherical coordinates and in their
corresponding Cartesian coordinates.

The pre-�ltering calculates the lighting coe�cients Lml [Ramamoorthi and Han-
rahan, 2001]:

Lml =

∫ π

θ=0

∫ 2π

φ=0

L(θ, φ)Y ml (θ, φ) sin θdθdφ (4.9)

The l and m indices refer to the rank and order of the spherical harmonics co-
e�cients. L(θ, φ) is the irradiance from the environment map. Each lighting

4.5 Rendering with Environment Illumination 55

coe�cient Lml is calculated by integrating over the environment map the values
weighted by the Y ml coe�cients. The implementation of the numerical approx-
imation for the �ltering integral in equation 4.9 will be described in detail in
section 5.3.1.

The irradiance is calculated with the following formula [Ramamoorthi and Han-
rahan, 2001]:

E(θ, φ) =
∑
l,m

ÂlL
m
l Y

m
l (θ, φ) (4.10)

In terms of Cartesian coordinates equation 4.11 becomes:

E(n) =
∑
l,m ÂlL

m
l Y

m
l (n)

n = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)
(4.11)

[Ramamoorthi and Hanrahan, 2001] give a formula for the necessary values of
Âl :

l = 1 Â1 = 2π
3

l > 1, odd Âl = 0

l, even Âl = 2π (−1)
l
2
−1

(l+2)(l−1)

[
l!

2l(l2 !)
2

] (4.12)

Equation 4.11 can be expanded for the �rst 9 SH terms:

E(θ, φ) =
∑
l,m ÂlL

m
l Y

m
l (θ, φ) =

= A0L
0
0Y

0
0 (θ, φ)+

+ A1L
−1
1 Y −11 (θ, φ) +A1L

0
1Y

0
1 (θ, φ) +A1L

1
1Y

1
1 (θ, φ)+

+ A2L
−1
2 Y −12 (θ, φ) +A2L

−1
2 Y −12 (θ, φ) +A2L

0
2Y

0
2 (θ, φ)+

+ A2L
1
2Y

1
2 (θ, φ) +A2L

2
2Y

2
2 (θ, φ)

(4.13)

Using equations 4.8 and 4.12, the authors present the reduced formula by group-

56 Method

ing the variables with respect to their common multiplier:

E(n) = c1L
−2
2 (x2 − y2) + c3L

0
2z

2 + c4L
0
0 − c5L0

2+

2c1
(
L−22 xy + L1

2xz + L−12 yz
)

+

2c2
(
L1
1x+ L−11 y + L0

1z
) (4.14)

The set of constants ci are also given in the paper [Ramamoorthi and Hanrahan,
2001]:

c1 = 0.429043 c2 = 0.511664 c3 = 0.743125
c4 = 0.886227 c5 = 0.247708

(4.15)

The constants are obtained from the formulas for Y ml and Âl (equations 4.8
and 4.12). For example, the constants c3 and c5 for L

0
2z

2 and L0
2 are veri�ed by

introducing l = 2 and m = 0 in equation 4.13:

E(θ, φ)l=2,m=0 = A2L
0
2(θ, φ)Y 0

2 (θ, φ)
= 0.785398L0

2 · 0.315392(3 cos2 θ − 1)
= 0.7431247L0

2 cos2 θ − 0.2477082L0
2

= c3L
0
2z

2 − c5L0
2

Equation 4.14 will be used during rendering. Note that it's parameter is a
normal vector, meaning that the formula calculates the di�use illumination from
the normal direction.

Chapter 5

Implementation

This chapter will describe the speci�c details for the algorithm to be imple-
mented. Chapter 4 presented the overview of the algorithm and the method
chosen. The next section will describe the implementation for the algorithm
in a scene where one translucent object and one point light source are present.
Enough information is provided at the end of the section for rendering more
objects with more light sources.

5.1 Translucent Materials under Point Light Il-

lumination

In the case of illumination from a single point-light source the algorithm is com-
posed of three main render passes and a �nal deferred rendering pass. Before the
�rst frame is rendered, the splat size is approximated (rmax) and the di�usion
pro�les are calculated and tabulated into textures. The values are calculated
only once and re-used every frame. There is very little work done on the CPU
after the pro�les have been calculated, the rest being done on the GPU.

To calculate the value of rmax, equation 4.3 has to be solved. Because the di�u-
sion pro�le Rd is a smooth function, it is possible to apply Simpson's Composite

58 Implementation

Rule (see equation 3.14) to approximate numerically the integrals in the equa-
tion. A function for approximating the value of the integral of Rd between [a, b],
using a number of samples is shown in the code example below.

Vec3f simpson_s (f loat a , f loat b , int samples , D i f f u s i o nP r op e r t i e s
dp)

{
Vec3f sum (0) ;
f loat s t e p s i z e = (b − a) / samples ;
sum = R_d (a , dp) + R_d (b , dp) ;
for (int i = 1 ; i <= samples − 1 ; i++)
{

i f (i%2 == 0)
sum += 2 ∗ R_d (a + i ∗ s t ep s i z e , dp) ;

else
sum += 4 ∗ R_d (a + i ∗ s t ep s i z e , dp) ;

}
return sum ∗ s t e p s i z e / 3 . 0 ;

}

Listing 5.1: Simpson's Composite Rule

First, the method is applied for a large enough radius rinf to approximate the
in�nite integral. The plots of the di�usion pro�le show that the values come
close to zero very shortly, so rinf can be easily substituted with a large value,
for example 100. Next, the integral is approximated for an interval of [0, rmax],
where rmax takes discrete values from 0 to rinf , and the �rst value for which
the inequality is satis�ed will be the solution. The value used for ε was 0.01.

The value of Rd (equation 3.4.1) can be calculated at runtime but since the
domain where its parameter r is known (from 0 to the maximum extent where
the contribution is noticeable, rmax in equation 4.3) it is preferred to have the
values pre-calculated. For this reason, a 1D texture with the dipole re�ectance
pro�le is sent to the GPU and sampled during shading. Figure 5.1 shows the
plot of the di�usion pro�le with di�erent sampling densities, corresponding to
the texture's size. If the size is too small, banding artifacts will appear because
the values between two consecutive samples will be linearly interpolated. A
texture size of 256 or 512 will be large enough to have the pro�le well de�ned
and low enough not to introduce overhead in the pre-rendering step.

In the �rst pass, the scene is rendered from light's point of view and the fragment
shader outputs to a double o�-screen frame bu�er 3D light-space position and
light-space normal, similar to the Translucent Shadow Map algorithm [Dachs-
bacher and Stamminger, 2003] (see section 2). Code samples are shown in the

5.1 Translucent Materials under Point Light Illumination 59

Figure 5.1: Sampling a di�usion pro�le with di�erent numbers of

samples. The green dots represent the sample points on the pro-
�le. Values between the sample points are obtained by linear in-
terpolation, therefore small sample counts (bottom lines) will not
approximate the shape of the pro�le su�ciently.

listings below.

g l_Pos i t ion = f t rans fo rm () ;
pos i t i on_es = (gl_ModelViewMatrix ∗ gl_Vertex) . xyz ;
normal_es = normal ize (gl_NormalMatrix ∗ gl_Normal) ;

Listing 5.2: Vertex Shader

gl_FragData [0] = vec4 (pos i t ion_es , 1 . 0) ;
gl_FragData [1] = vec4 (normal_es , 1 . 0) ;

Listing 5.3: Fragment Shader

This texture will hold the points where light incident on the model is sampled,
equivalent to the xi point set in equation 4.1. Note that the last channel of the

60 Implementation

position bu�er is set to 1.0 for each pixel written. Because the bu�er is initialized
to 0.0, this channel will act as a �ag, to see which pixels were written. The same
texture can be used as a shadow map for the rest of the scene, so the resolution
can be adjusted to �t this purpose. The output from this pass should follow the
pattern in �gure 5.2.

Figure 5.2: The output pattern for the �rst two render passes. The left picture
shows positions and the right picture shows normals

In the second render pass, the set of xo points and their respective no normals
from equation 4.1 are generated. Into a di�erent framebu�er, the scene is ren-
dered from the observer's perspective and, in the fragment shader, eye-space
positions and normals are written to two di�erent screen-sized textures. The
output will follow the same color pattern and aspect as in �gure 5.2 but the
orientation of the model and its size of course can be di�erent. Again, the last
channel will be used as a �ag to see which pixels were written during this pass,
and it will be needed in the deferred rendering stage.

Before the third pass is rendered on the GPU, the sampling pattern has to be
generated on the CPU. A set of texture coordinates is generated so that during
the GPU stage, light's texture is sampled at those locations and the sample
positions are found. Since the sample map is going to be reused to calculate
the shadows in the scene, normally the translucent object will occupy a varying
area on the texture, therefore it is important to know where to sample. The
sampling region of interest can be calculated by projecting the object's bounding
box onto the screen and creating a rectangle from the minimum and maximum
coordinates (see �gure 5.3). The bene�ts of sampling just the region of interest
will be discussed later in section 5.2.2

The sampling pattern is generated by splitting the region of interest from the
sample map into a N ×M grid and choosing the middle of each grid rectangle.
The application stage sends to the GPU 2D vertices having as position (u, v)

5.1 Translucent Materials under Point Light Illumination 61

Figure 5.3: The Region of Interest The left picture shows the object and
its surrounding bounding box in eye's viewport. On the right, the
sampling region is shown, calculated by projecting the bounding
box on the screen and choosing the minimum and the maximum
values

coordinates and none of these 2D vertices will end on the screen since they are
just a fast method to send sampling positions to the GPU.

Note that the number of samples needed for point light illumination is still
an open problem. The solution presented by [Shah et al., 2009] did not o�er
suitable results in this thesis' implementation.

In the vertex shader, 3D positions are extracted from the sample map at the
(u, v) coordinates from the sampling pattern received. The values extracted
from the sample map will be the new positions of each vertex sent through
the pipeline. Each vertex that arrives in the geometry stage of the pipeline is
checked to see if it belongs to a translucent object. This is done because light's
�eld of view will not necessarily see only the focused translucent object, but
also other objects present in the scene that have a di�erent shading model. As
well, sample positions that are outside of the object will be discarded because
they will not have irradiance. The �ag set in the �rst render pass states that
the pixel stores information from a translucent object.

Since the geometry shader can spawn new geometric primitives [Akenine-Moller
et al., 2008] the translucent vertex is transformed into a quad centered at the
sample point and oriented towards the screen. A two-dimensional visualization
of the process is shown in 5.4. It is important to specify that each quad is
rendered in eye space. Its role is to act as a handle between the light sample
attributes (3D position and normal) and the points being shaded (which are
calculated in the second pass). That is why the splats will need also texture

62 Implementation

coordinates which are calculated as well in the geometry stage and are relative
to the screen sized textures rendered in the second pass from the eye's perspec-
tive. The code sample below shows how to calculate and assign the texture
coordinates to the top-right corner of a quad.

g l_Pos i t ion = proj_matrix ∗
vec4 (pos i t i on_es . xyz + vec3 (r_max , r_max , 0) , 1) ;

tex_coords = (g l_Pos i t ion . xy / g l_Pos i t ion .w + vec2 (1)) ∗ 0 . 5 ;
EmitVertex () ;

Listing 5.4: Emitting the top right corner of the screen aligned quad with its
respective texture coordinates

Figure 5.4: The 2D visualization of the splatting procedure. The red dots rep-
resent the sample positions in the sample map, which is rendered
from light's perspective. The splats are aligned (parallel) with the
observer's view plane, and positioned on the geometry

The fragment shader will output the scattering texture to a screen sized ren-
der target. The splats will be shaded individually and blended as depicted in
�gure 5.5. Blending is done by calling glEnable(GL_BLEND) and setting the
blending function with glBlendFunc (GL_ONE, GL_ONE). It is important to
also disable the depth test (glDisable(GL_DEPTH_TEST)) so the splats will
not occlude each other. The generation of the scattering texture is detailed in
sections 5.1.1 and 5.1.2.

5.1 Translucent Materials under Point Light Illumination 63

Figure 5.5: The splatting procedure from the eye's perspective. Only a few
samples are expanded to quads, to show how some overlap and
some span outside of eye's viewport

The last rendering pass renders to the default framebu�er the translucent object
with the rest of the scene and with specular re�ections. It is a deferred render
pass in which the textures obtained from the previous passes are used to shade
a quad spanning the whole screen.

glMatrixMode (GL_PROJECTION) ;
g lLoadIdent i ty () ;
glOrtho (−1 .0 ,1 .0 , −1 .0 ,1 .0 , −1 .0 ,1 .0) ;
glMatrixMode (GL_MODELVIEW) ;
g lLoadIdent i ty () ;

g lBeg in (GL_QUADS) ;
glTexCoord2f (0 . 0 , 0 . 0) ; g lVe r t ex3 f (−1.0 , −1.0 , 0 . 0) ;
glTexCoord2f (1 . 0 , 0 . 0) ; g lVe r t ex3 f (1 . 0 , −1.0 , 0 . 0) ;
glTexCoord2f (1 . 0 , 1 . 0) ; g lVe r t ex3 f (1 . 0 , 1 . 0 , 0 . 0) ;
glTexCoord2f (0 . 0 , 1 . 0) ; g lVe r t ex3 f (−1.0 , 1 . 0 , 0 . 0) ;

glEnd () ;

Listing 5.5: Creating the screen alligned quad for deferred rendering

The render targets from the second and third passes were screen sized textures,
so the texture coordinates of each fragment on the deferred shading quad will be
used to retrieve information from them. First, note in �gure 5.5 that the splats

64 Implementation

may span outside of the model. In the fragment shader, the eye space texture
is sampled and if the corresponding texel belongs to a translucent material (if
the �ag set in the second pass is not null) then the scatter texture is sampled
at the same position and the value is written in the frame bu�er.

Next, specular highlights can be added on the translucent model. For this, the
light direction and the viewing direction need to be calculated. The light po-
sition in eye space is calculating by transforming the origin of the light space
coordinate system to eye space position. The origin of the light space coordinate
system is multiplied with the inverse light transformation matrix to obtain the
object space light position, and then multiplied with the eye space transforma-
tion matrix to obtain the eye space position. The following code sample is used
to calculate the specular component of the illumination.

vec4 pos i t i on_es = texture2D (pos i t ion_tex , tex_coords) ;
vec4 normal_es = texture2D (normal_tex , tex_coords) ;
// c a l c u l a t e eye−space l i g h t po s i t i on
vec4 l i ghtPos_es =

eye_matrix ∗ inverse_l ight_matr ix ∗ vec4 (0 , 0 , 0 , 1) ;
vec3 view_dir = normal ize (− pos i t i on_es . xyz) ;
vec3 l i gh t_d i r = normal ize (l ightPos_es . xyz − pos i t i on_es . xyz) ;
// c a l c u l a t e h a l f v ec tor
vec3 ha l f_vector = normal ize (view_dir + l i gh t_d i r) ;
f loat cosNH = dot (ha l f_vector , normal_es) ;
i f (cosNH > 0)
{

specPower = pow (cosNH , s h i n i n e s s) ;
//add incoming radiance mu l t i p l i e d by specu la r power
gl_FragColor += L_i ∗ specPower ;

}

Listing 5.6: Adding the specular component

5.1.1 Rendering with the Dipole Approximation

Recall the geometrical parameters needed to calculate the outgoing radiance 4.1
and the BSSRDF 3.4: the incoming and outgoing light directions ωi and ωo,
the sample point xi and the shaded point xo. The dipole approximation (equa-
tion 3.4.1) is a function of the distance between light's incidence point and the
visible point, denoted r, and it is equal to the length of the vector between xi
and xo:

r = ‖xi − xo‖

5.1 Translucent Materials under Point Light Illumination 65

The texture space position u where the dipole texture is sampled is calculated
as:

u =
r

rmax
(5.1)

Note that the u value calculated above can have only positive values (being,
in fact, the ratio of two distances) but its maximum extent is unde�ned. The
functionality of the graphics library or the hardware needs to clamp this value to
[0, 1], the range of a texture coordinate1. Equation 5.1 assures that the values of
r for which light scattering is noticeable will be indexed correctly in the di�usion
pro�le texture. A simple splat, shading a �at surface, thus over a linear radius,
is presented in �gure 5.6.

Figure 5.6: The left �gure shows a shaded splat. On the right side, 15 × 15
splats are positioned on the object. The right image's intensity
has been increased for the e�ects to be visible.

Each of the samples from the sample map spawns a rectangle projected on the
screen. The right side of �gure 5.6 shows how a 15 × 15 grid is sampled from
light's texture and the points are splatted and shaded similar to the left side
of the �gure 5.6. Light's viewpoint is shown in the small viewport on the top-
right side. Note that this is a case of under-sampling and is only shown for
visualization and to describe the approach step by step.

Recalling equation 4.6 for numerically solving the integral for outgoing radiation,
it is observed that the result of the blending operations during the creation of

1The implementation can vary depending on the OpenGL version and hardware. This
paper assumes the texture coordinates are normalised, e.g. lie in the [0, 1] range. Available
with GL_TEXTURE_RECTANGLE_ARB extension, the possibility to use non-power-of-
two sized textures is available, which are indexed with unnormalised coordinates

66 Implementation

the scattering texture needs to be scaled down by the ratio between the visible
surface area and the number of samples: Avis

Ns
. The visible surface may be

computationally expensive to calculate, thus, a much cheaper and useful method
is to approximate it with the visible area of the bounding box (the bounding
box previously calculated). In case this scaling factor is omitted, the model may
appear brighter when its orientation or the light source's orientation change.
This is because changing the domain of integration will change the result of an
integral, and in this case, the visible area is the domain of integration.

5.1.2 Rendering with the Multipole Approximation

Rendering with the multipole approximation reduces to changing the shading
of each individual splats using the multipole approximation. The algorithm is
basically the same as described for the dipole approximation in section 5.1.1,
but a few noticeable di�erences will be presented in this section. Also, the
additional information for rendering multi-layered materials is presented at the
end of the section.

Single layer Materials

Recall equations 3.5 and 3.6. The values for the re�ectance and di�usion pro�les
are calculated by summing the contribution from a series of dipole pairs. Due to
the increased number of calculations needed to solve the mentioned equations,
the pro�les need to be tabulated in the pre-computational stage and stored
in textures. The textures are now two dimensional (as opposed to the dipole
approximation): the horizontal dimension of the textures holds the variation
of the pro�les over the variable radius and the vertical dimension holds the
variation over the variable thickness.

Another di�erence is the number of parameters that it takes to calculate the
pro�les for a material. The dipole pro�le was calculated using the distance
between the sample point and the visible point, but the multipole pro�les also
need the local thickness of the model. This thickness is the mean distance that
light travels through the material in the incoming direction, until it exits at
another position, therefore, it will be relative to light's positioning.

A thorough method to calculate the thickness of the model is depth peeling
[Everitt, 2001,Bavoil and Myers, 2008], which uses additional render passes to
store each layer of polygons in additional o�-screen frame bu�ers. However, for
convex models, an easier and much faster method is presented here next.

5.1 Translucent Materials under Point Light Illumination 67

Figure 5.7: Calculating the thickness of convex objects from the observer's
perspective.

Recall the �rst render pass from section 5.1, rendered from light's point of
view. In an o�-screen framebu�er the position of each point on the visible
surface of the model is stored (along with the surface normal). The triangle
mesh is �ltered through the culling test (passing only front facing polygons)
and then through the depth test and, intuitively, the texels from the texture
will hold the set of points from the model's surface which are closest to the light
source. For a convex model, the thickness is equivalent to the distance from
the front facing polygons to the back facing polygons (see �gure 5.7) as seen
from light's perspective. It is possible to calculate this distance using the GPU's
functionality, by rendering the backward facing polygons2 in a similar render
pass as the �rst one. The fragment shader will output the positions of the point
in the furthest away layer. The thickness of the model is now easily calculated
by sampling both textures and calculating the length of the vector between the
2 points.

In the case of concave objects is it hard to calculate the exact mean distance that
light travels inside the object using only two frame bu�ers. Consider �gure 5.8 of
the 2D representation of the behavior: light travels inside the object, exits and
then enters again. Using the method presented above, the distance calculated
will be ‖xi − xo‖. However, if the observer (the blue observer on the right side
of �gure 5.8) and the light are pointed in the same direction, a better solution
would to approximate the distance as ‖x′i−x′o‖. This is because it is not probable

2using the GL calls glEnable(GL_CULL_FACE) and glCullFace (GL_FRONT).
The default state is restored calling glCullFace (GL_BACK) and if needed glDis-
able(GL_CULL_FACE)

68 Implementation

Figure 5.8: Approximating the thickness of the models depending on the ori-
entation of the observer

that light exiting the object will return after successive re�ections to the viewer.

On the other hand, if the viewer is located at the opposite side, the more accurate
distance would be ‖xi − xo‖ . However, in practice, there is no noticeable
di�erence depending on how the thickness is calculated when the viewer is in
this position. This is because, as see in the plots in �gure 4.5, the transmittance
term converges to 0 after just 20 mean free paths.

The distance d used to calculate the multipole pro�les is de�ned in the range of
[dmin, dmax]. The minimum distance dmin is considered to be a few mean free
paths because the errors introduced by the multipole approximation near the
source [Donner and Jensen, 2005]. From the tests done, it was observed that
a minimum distance, dmin, of 4 mean free paths is enough to avoid numerical
errors, while a maximum distances dmax of 64 mean free paths (see �gure 4.5)
is large enough for the transmittance to converge to a neglectable value, and at
the same time is small enough not to introduce high computational cost.

For the texture lookup, the (u, v) coordinates are calculated as following:

u =
r

rmax

v =
d

dmax

(5.2)

5.1 Translucent Materials under Point Light Illumination 69

The contribution from each of the pro�les is weighted by the cosine of the
angle between the normal at the incidence point and the normal at the shaded
point. [Donner and Jensen, 2005] proposes to calculate the contribution from
both pro�les as:

P (r, d) =
1

2
(ns · nl + 1)R(r, d) +

1

2
(1− ns · nl)T (r, d)

An intuitive reason for which this shading model is used is that if a point on the
surface is back lit only the transmission term will be used, and when it is front
lit, only the re�ection term will be used. In between these two states both the
pro�les are used, weighted by the cosine between the normals at the incidence
point and at the shaded point. A code sample is provided below:

Listing 5.7: Combining the re�ectance and transmittance pro�les for shading

vec2 tex_coords = vec2 (r , d) ;
R = texture2D (multipoleR , tex_coords) ;
T = texture2D (multipoleT , tex_coords) ;

vec4 P = 0.5 ∗ (dot (Nl , Ns) + 1) ∗ R +
0.5 ∗ (1 − dot (Nl , Ns)) ∗ T;

The multipole approximation introduces the transmission term in the BSSRDF
and the results for thin objects and in general for back-lit objects are better.
Figure 5.9 shows a marble Stanford Dragon front and back lit.

Multi-layered Materials

For multi-layered materials the re�ectance and transmittance pro�les are calcu-
lated in the pre-rendering stage. This section is dedicated to rendering translu-
cent materials covered in a single highly scattering translucent layer. The princi-
ple can be extended for rendering any number of layers, and it will be described
at the end of the section.

For objects covered in a single layer, �rst, the individual pro�les for each of the
materials are generated and stored, similar to the procedure presented in 4.3
and described in section 5.1. In the remainder of this section R and T will
denote the re�ectance and transmittance pro�les, and the subscripts 1 and 2 will

70 Implementation

refer to the coating layer and the underlying material respectively. The light
re�ected or transmitted after all interactions with the two media (see �gure 3.13)
is approximated into two single pro�les (one for re�ectance and the other for
transmittance) that will characterize the pair of materials as a whole.

To apply the convolution between the two media, �rst, from the one-dimensional
re�ectance and transmittance pro�les of size N , two dimensional radially sym-
metric pro�les are calculated and stored into two-dimensional arrays of size
2N − 1 × 2N − 1. The �rst position from the one-dimensional pro�le will cor-
respond to the center position [N,N] in the two dimensional pro�le. Next,
using the fast Fourier transform, the two dimensional pro�les are transformed
to frequency domain and equations 3.10 and 3.12 are applied, so the re�ectance
and transmittance pro�les are calculated for the top and bottom materials as
a whole. These pro�les are then transformed by the inverse Fourier Transform
to the time domain and used in rendering as presented in section 5.1. The
procedure is shown in �gure 5.10.

The transformation from time domain to frequency domain and the converse
transformation to time domain were implemented in this thesis using the FFTW
library3. In his PhD thesis [Donner, 2006], Donner uses the Discrete Hankel
Transform4, but because of the poor on-line documentation for the libraries
that implement DHT, in this thesis FFTW was preferred.

To render objects covered in more than two layers (for example skin), the pro-
cedure is repeated to convolute the �rst two layers with the next one, and
re-iterated for all remaining layers.

The problem of rendering multi-layered materials is only partially covered in this
thesis. The main focus of the thesis is rendering with the dipole and multipole
approximation under point light and environment illumination.

3http://www.�tw.org/#documentation
4http://www.gnu.org/software/gsl/manual/html_node/Discrete-Hankel-Transforms.html

5.1 Translucent Materials under Point Light Illumination 71

Figure 5.9: The Stanford Dragon rendered with the Multipole Approximation.
Note the translucency e�ect on the thin surfaces like the tip of its
back or the tip of its knee

72 Implementation

Figure 5.10: Overview of the steps for creating the pro�les for multi-layered
materials: from the one-dimensional pro�les, two-dimensional ra-
dially symmetric pro�les are created. The new pro�les are trans-
formed to frequency domain using FFT, where they are convo-
luted. Finally, using the inverse FFT, the pro�les are trans-
formed to time domain.

5.1 Translucent Materials under Point Light Illumination 73

5.1.3 Rendering with multiple light sources

The previous sections were dedicated to rendering translucent materials under
illumination from a single point-light source. To account for illumination from
multiple light sources, the same principle is used repeatedly for each light source.

Considering the scene is lit by Nl light sources, instead of using a single render
pass to generate the xi set of points, the scene is renderedNl times from all of the
light sources' perspectives. The output from each of the Nl passes is written in
separate double frame bu�ers, similar to the technique used for single point-light
illumination, thus generating Nl sample maps. The regions of interest where
the sample maps will be sampled must be calculated individually for each light
source, so the object's bounding box will be projected using the transformation
from each perspective. The procedure is depicted in �gure 5.11. The render
pass from the eye's point of view remains the same.

To create the scattering texture, the sampling pattern is sent to the GPU for
each light source. Each sample point will have associated the intensity of the
light source it belongs to.

74 Implementation

Figure 5.11: The 2D visualization of the splatting process using two light
sources. Each light will have its own sample map and the splats
will be shaded according to the properties of their light source.

5.1.4 Rendering multiple materials

To render multiple materials, when the scene is rendered from the eye's per-
spective, instead of using a double render target (positions and normals) a triple
render target is used to store positions, normals and material information. Since
the render target has four channels, albedo and shininess can be stored as ma-
terial properties for non-translucent materials. This is usually referred to as the
G-bu�er [Policarpo and Fonseca, 2005]. Similar to the procedure for rendering
single objects, the last channel of the render target containing the positions will
now act as a unique shader identi�er. If the pixel is written during this render
pass, it will be non zero and it will hold the ID of the material used.

In the deferred rendering stage, the shader ID is checked and if the pixel cur-
rently shaded covers a translucent material, the scatter texture is sampled and
the value is written in the framebu�er.

5.2 Rendering with Point Light Illumination - Dis-

cussion

This section will begin by presenting the advantages of the method and a few
of the results. The full set of results will be displayed in a later chapter (Chap-

5.2 Rendering with Point Light Illumination - Discussion 75

ter 6) and in the appendix (in Appendix A). Next, this section will present
some of particularities of the method that have been observed during the im-
plementation, and will end with presenting the drawbacks of the method. A
later chapter will propose ideas and references to literature for solutions that
can possibly overcome the drawbacks.

5.2.1 Advantages

Recall that the output from the �rst render pass was two bu�ers with light space
positions and normals. The set of positions seen from light's perspective, or the
distances from the visible points to the light source, can be used for a shadow
map on the whole scene. This is useful combined with the careful sampling of
the texture space, only in the region occupied by the translucent object.

Shadows add a great amount of realism to the rendered scene and can give
important clues about the geometry in the scene. The shadow map generated in
the �rst pass needs to be used only on non-translucent objects. The translucent
object will have inherent shadows since the sample points will be chosen only
from the lit surfaces of the model.

Another important aspect of the method is that soft-shadows, usually computa-
tionally expensive in other applications, are obtained at no additional cost. This
is due to the blending of overlapping splats, which in fact are radially symmetric
di�use distributions. Figure 5.12 presents a scene composed of two marble ob-
jects: the �oor and the Killeroo 3D model. Note the di�use shadow on the �oor
and the shadowed arms and legs of the character. This demonstrates that the
method accounts for occlusion and self-shadowing with no additional cost. Still,
the soft-shadows are arti�cial, since theoretical point light sources generate only
robust hard shadows.

76 Implementation

Figure 5.12: Killeroo with soft shadows and specular highlight on the �oor.

5.2.2 Caveats

As it was brie�y mentioned in the description of the implementation, the sample
positions are carefully placed in a region of interest which the translucent object
spans in the light source's texture space. For this, the bounding box of the object
(easily calculated when the triangle mesh is loaded) is projected on the screen,
and the maximum and the minimum values of its eight vertices will shape a
rectangle on the screen. This is the region of interest. Instead of sampling the
texture space in the [0 . . . 1] × [0 . . . 1] domain, it is more suitable to sample
inside the [umin . . . umax]× [vmin . . . vmax] domain, as depicted in �gure 5.13.

5.2 Rendering with Point Light Illumination - Discussion 77

Figure 5.13: The region of interest and its extent

For example, if the light is far away from the scene and the object occupies a
small area in light's viewport, not sampling only the region of interest would
result in a very large number of sample points to cover the whole texture. The
di�erent behaviors are shown in �gure 5.14.

Figure 5.14: Comparison between sampling only the region of interest (left)
and the whole sample map (right) with the same sample count.
Light's perspective is shown in the top right corner. Also note
that the right image's intensity has been increased to show the
e�ect of under-sampling.

78 Implementation

In the description of the �rst render pass, it was mentioned that the last channel
of the �rst render target (the alpha channel of the position texture) will be set
to 1 for each pixel written during the pass, acting as a �ag. When the texture
is sampled, many sample positions may fall outside the object so it is useful
to make the distinction between valid samples that belong to the translucent
object and invalid samples that fall outside. Not only they will be causing an
artifact on the object (as in the left side of �gure 5.15), but they will introduce
a computational overhead because more blending operation per pixel will be
needed to shade them. Invalid samples that are outside of the translucent object
will be sent to the geometry shader as vertices situated in (0, 0, 0) so a number
of splats will be centered in the origin of the coordinate system. The samples
that fall on the border of the translucent object will be interpolated between
valid and invalid texels, and their transformed positions will be on the lights
view volume (as see in the right picture of �gure 5.15).

Figure 5.15: The white splats are spawn by invalid samples and they create
artifacts on the rendered model. Note how the invalid splats are
placed on the border of light's view frustum. The object rendered
from light's perspective is shown in the top right corner of each
image

This issue can be solved by checking during the geometry shader stage if the
sample position is valid or not. Invalid samples will be discarded, with the aid
of the geometry shader's functionality [Akenine-Moller et al., 2008].

5.2 Rendering with Point Light Illumination - Discussion 79

vec4 po s i t i on_ l s = texture2D (light_pos_tex , tex_coords) ;
val idSample = po s i t i on_ l s .w;

Listing 5.8: Removing invalid samples - Vertex Shader

i f (val idSample)
{

// crea t e quad v e r t i c e s
// emit v e r t i c e s
//end p r im i t i v e

}
else ; // d i scard sample po in t

Listing 5.9: Removing invalid samples - Geometry Shader

Note that some of the samples may fall very close to the border of the translucent
object in the texture space and their value may be the interpolation between
neighboring pixels. That is why, only samples with the �ag equal to 1 are
considered valid.

An important issue with sampling light's texture space is texture �ltering. When
the number of samples becomes too large, it is very possible that two neighbor
samples will be very close to each other that they will share the same texel in
the texture. This will not only induce redundancy and computational overhead
when their corresponding splats are blended, but will also create a grid-like
pattern on the translucent object. Figure 5.16 shows the e�ect.

80 Implementation

Figure 5.16: The grid-like pattern artifact that appears when the incorrect
texture environment is set

To avoid this, the �ltering texture parameters of the render target must be
set to GL_LINEAR. Thus, OpenGL will do a linear interpolation between the
4 neighboring texels of the sample point, instead of the default behavior of
choosing the closest one (GL_NEAREST). This is also recommended for the
re�ectance and transmittance pro�les to avoid banding artifacts.

The re�ectance and transmittance textures should also be con�gured to clamp
the texture coordinates to 1, using GL_CLAMP. The behavior of GL_REPEAT
is not suitable for the purpose of this thesis. It is also indicated to set the last
element in the textures to 0, so that texture coordinates with values larger than
1 will point to null values.

As it was previously mentioned, the sample points in light's texture space are
positioned in the middle of the texture space rectangle that they will approxi-
mate. This may introduce unwanted patterns on speci�c models. One way to
overcome this is to add a small random deviation on each sample's texture space
position, taking care not to exceed its default rectangle.

In [Shah et al., 2009] the authors apply a technique for re-using a subset of

5.2 Rendering with Point Light Illumination - Discussion 81

the sample points from one frame to the following one. The motivation is that
artifacts may appear when the viewing direction or light's orientation is changed
between frames [Shah et al., 2009]. In practice, during the implementation and
testing of this thesis, it was noticed that using su�cient sampling points, without
losing interactive frame-rates, the artifacts are not visible.

5.2.3 Drawbacks

Because the incoming radiance is sampled on a two dimensional domain (the
texture space) which is the screen projection of the visible surface area, under-
sampling issues may occur when faces of the model are oriented at a grazing
angle with respect to the light's direction. If the surface is relatively small this
may remain unnoticed, but as its area increases the samples from the texture
space will no longer be enough to shade it. This unwanted behavior is shown in
�gure 5.17.

Figure 5.17: Artifacts at small incidence angles. The left side of the
�gure shows the whole model. The right side, shows the focused
area, where artifacts arise due to under-sampling. (The right
image's contrast and intensity have been increased for a better
visualization in the printed document)

One way to overcome this problem can be to add additional sample points
during rendering, in the geometry stage of the third pass. Enough information

82 Implementation

to detect the under-sampled areas and to position new samples is obtained from
the render textures in the �rst pass. A more detailed description of a possible
solution in presented in Chapter 7 - Future Work.

5.3 Translucent Materials under Environment Il-

lumination

The algorithm consists of a pre-rendering step in which the sample points are
positioned on the model and the environment map is �ltered, so a more suitable
representation is obtained for interactive rendering. Opposed to point light
illumination there will be only two main render passes on the GPU: the �rst
in which the object is rendered and the set of xo points is obtained and the
second in which the scattering texture is created. In a last, deferred rendering
pass, the translucent object is rendered with added specular highlights and the
environment map is placed in the background.

5.3.1 Pre-rendering

Sampling the triangle mesh

To obtain the sample positions, random points are placed on the surface of the
model according to a cdf based on the surface of each triangle. Once obtained,
the sample positions are moved on the surface until they reach an uniform
distribution.

The cumulative distribution function is an array with size equal to Nt, the
number of triangles in the 3D mesh. Iterating over all triangle faces, each
position i in the cdf is calculated as the sum of the areas of all triangles visited
before it, divided by the total surface area:

cdf(i) =

∑Nt
j=1A4j

As

It is intuitive that the values in the cdf will be in the (0 . . . 1] interval, will be
ordered, and that cdf(Nt) = 1. To choose a random point on the surface of
the model, �rst a random triangle face will be chosen, according to the previ-
ously calculated cdf . For this, an uniform random number is generated between
[0 . . . 1) and then the cdf is checked to see which interval will the number belong

5.3 Translucent Materials under Environment Illumination 83

to. The index of the interval will yield the index of the triangle face. Because
the triangle mesh can have a large number of triangles, since cdf is an ordered
list, it is indicated to perform a binary search.

Now that a triangle has been chosen, the sample point is generated by sampling
inside the triangle. This is done by generating two random variables (ξ1 and
ξ2), again in the [0 . . . 1) interval. From these, the barycentric coordinates of
the point are generated:

ξ1 = rand(0, 1)
ξ2 = rand(0, 1)
u = 1−

√
ξ1

v = (1− ξ2)
√
ξ1

w = ξ2
√
ξ1

Considering a triangle with vertices A, B and C, the position of the sample
point is:

P = Au+Bv + Cw

The total number of sample points can be approximated to [Jensen and Buhler,
2002]

Ns =
As
πl2u

If the points are distributed uniformly, then the maximum distance between
them will not exceed the mean free path, lu, so if their number is increased,
they will blur each other's light distribution . A much lower number of samples
will introduce low frequency noise [Jensen and Buhler, 2002].

Uniform point distribution

The point relaxation procedure is applied for each sample point, and will be
explained in detail for a single point, called in the remainder of the section pivot
point. The two dimensional case will be considered �rst, and then the three
dimensional case for a 3D mesh.

First, the neighbors of the pivot point situated in the circle of radius r surround-
ing it (henceforth called in�uence zone) will be identi�ed. The neighbors will
exert a repulsion force on the pivot point, and the sum of all forces will move it
to a new location on the triangle mesh (see �gure 5.18). It is important to note
that the repulsion force may push a point outside the triangle containing it, so
it will be moved to the neighboring triangle in the force's direction.

84 Implementation

The process is repeated for all the sample points and their position is updated
when all of them have been used as pivot points. Iterations of this procedure
are needed so that the distribution will converge to uniformity. The algorithm
in pseudo-code for the two-dimensional case is described in listing 5.10 below:

repeat
for each point Pi

i d e n t i f y ne ighbors
c a l c u l a t e r epu l s i on f o r c e Fi

end for
for each point Pi

update po s i t i o n to Fi + Pi

update t r i a n g l e f a c e for Pi

end for
until uniform

Listing 5.10: The pseudocode for the 2D relaxation procedure

Figure 5.18: The pivot point (red dot), will be pushed according to the re-
pulsion forces of its neighbors (orange dots). The green points
outside the in�uence area (orange circle) are not considered to
be in�uential. The pivot point will be moved according to the
sum of the forces of it's neighbors

The lookup radius r is calculated as [Turk, 1991]:

5.3 Translucent Materials under Environment Illumination 85

r = 2
√
As ·Ns

where Ns is the number of sample points.

The force that a neighbor point exerts on the pivot point is calculated according
to the lookup radius r. The closest the neighbor is, the more powerful the
repulsion will be, while neighbors closer to the edge of the in�uence zone will
have weaker repulsion forces. Therefore, the repulsion from a point on the
border of the in�uence zone needs to be null. Every point further away will not
be considered as in�uential. Several heuristics can be used for the equation of
the repulsion force, but the simplest may be a linear fall-o� according to the
distance. As an example, considering the pivot point P , the neighbor point A
and the distance between them d (presented in �gure 5.18), the repulsion force
FA is:

FA =
P −A
‖P −A‖

· (r − d) (5.3)

The force is therefore null if the neighbor point lies on the border, while if it is
exactly near the pivot point, it pushes it to the other side of the in�uence area.

The new position of P is

P ′ = P + ~F

The repulsion force (equation 5.3) is scaled by the distance from the neighbor
point to the border of the in�uence zone. Having many points very close to
the pivot point would push it away with a large magnitude force. Scaling down
the total force with a small value solves this problem [Turk, 1991], but on the
other hand the solution to the exact value is open and depends on the heuristic.
Using a really small value would result in a slower convergence of the algorithm,
while a large value would push the points back and forward between successive
iterations (see table 5.4).

For a planar mesh, the neighbor lookup, calculating the repulsion force and mov-
ing the pivot point are straight forward since everything is in two dimensions.
Rendering translucent materials, however, will rarely imply planar objects, and
will almost always use three dimensional models. In this case, the procedure has
a similar work�ow but it needs slight modi�cations so that it will be locally two
dimensional, meaning that it will be coplanar with respect to the pivot point's
triangle. Below, listing 5.11 shows the algorithm in pseudo-code.

86 Implementation

repeat
for each point Pi

i d e n t i f y ne ighbors
r o t a t e non−cop lanar ne ighbors

c a l c u l a t e r epu l s i on f o r c e Fi

end for
for each point Pi

push until Fi i s nu l l
update po s i t i o n
update t r i a n g l e f a c e for Pi

update normal for Pi

end for
until uniform

Listing 5.11: The pseudocode for the 3D relaxation procedure

Considering a pivot point P situated on the triangle face Tp, �rst the neighboring
points are discovered. The in�uence zone is now the sphere of radius r centered
at the pivot point. Some of the neighbors will be inside Tp or coplanar with Tp,
while the rest will be outside of the plane. To calculate the repulsion force the
points need to be coplanar, therefore the ones that lie outside Tp's plane will be
rotated so that they are coplanar.

For a neighbor point situated on an adjacent triangle to Tp, the axis of rotation
will be the common edge between them. The angle of rotation is the angle
between the two triangle faces as shown in �gure 5.19. For a neighbor point
situated on a more remote triangle Tq that does not share any edge with Tp,
the axis of rotation is the closest edge of Tp to the neighbor point. The angle
of rotation is not the dihedral angle between the planes of each triangle face
(because there are situations when they are parallel). Instead, a virtual plane
is created from the closest edge of Tp and the neighbor point, and the scenario
is reduced to the previous situation in which the triangles shared an edge. The
angle of rotation is now the dihedral angle between the plane spanned by Tp
and the virtual plane.

The rotation procedure is shown in �gure 5.19. The same principle as in �g-
ure 5.18 can be applied to all neighboring points once they are coplanar, and
the force F is calculated.

5.3 Translucent Materials under Environment Illumination 87

Figure 5.19: The procedure used to allign a neighbor point Tq (orange) with
the plane in which the pivot point Tp (red) lies. The angle of
rotation (yellow) is the angle between the Tp's plane and the
plane de�ned by Tq and the closest edge (solid light blue) of Tp's
triangle

The calculated repulsion force lies in the Tp plane. To move the point, �rst it
is needed to check whether the new position P ′ is inside the triangle. A quick
and useful solution is to check if the force vector ~F is intersecting any of the
triangle's edges. If no intersection is detected, then P ′ is still in Tp. Otherwise,
the intersection point Pi is calculated (see �gure 5.20). The excess force (the
dotted line) is then rotated over the adjacent edge until it is coplanar with the
adjacent triangle face. Of course, the new position may not be in the adjacent
triangle. This happens if the rotated excess force intersects another edge of the
adjacent triangle, in which case the procedure is repeated.

88 Implementation

Figure 5.20: Rotating the excess force (dotted orange line) so that it is copla-
nar with the adjacent triangle

The point is moved across the faces of the model until the repulsion force is null.
If the a border edge is crossed then the point is moved until the border and the
procedure is stopped. Figure 5.21 shows the di�erence between a randomly
sampled complex model and the same model with a uniform distribution. The
uniform distribution was obtained using the described procedure.

Figure 5.21: Uniform Distribution. The same model with a random dis-
tribution of sample points (left) and a uniform distribution of
points (right).

5.3 Translucent Materials under Environment Illumination 89

Note that the mesh needs to be transformed to triangle mesh in case not all
the faces are triangles. This is because the vertices that make up a face in a
non-triangle mesh are not always coplanar and the point moving procedure will
fail. To handle this, before sampling the set of points, the mesh is transformed
to a triangle mesh. The rendering in the next stages can be performed on the
initial mesh or the created triangle mesh.

Di�use Illumination from the Environment

As presented in section 4.5.2 di�use illumination from the environment will be
obtained by �ltering the environment map using the �rst 9 spherical harmonics
coe�cients [Ramamoorthi and Hanrahan, 2001]:

Lml =

∫ π

θ=0

∫ 2π

φ=0

L(θ, φ)Y ml (θ, φ) sin θdθdφ (5.4)

The above equation will result in 9 lighting coe�cients that will be used in
rendering. The numerical approximation for the integral (equation 5.4 is calcu-
lated using the theory from section 3.5.1. The integration domain [0..π]× [0..2π]
is split into height × width equal subintervals of size dθ and dφ, where width
and height represent the map's dimensions respectively. Each subinterval will
correspond to a texel in the map and the direction corresponding to it can be
calculated by converting from spherical coordinates to Cartesian coordinates:

ω(θ, φ) = ~d = (sin θ cosφ, sin θ sinφ, cos θ)

The direction is then projected and the corresponding texture coordinates (u, v)
of the texel in the environment map are calculated:

u = r ∗ ~dx
v = r ∗ ~dy

where

r =
1

π
∗ cos−1 ~dz√

~d2x + ~d2y

The environment map is sampled at the (u, v) position and the incident radi-

ance from direction ~d is obtained. This is done on the CPU side so normally the

90 Implementation

texture would be stored in a two dimensional array of size width×height, where
each element has three components corresponding to the RGB channels. Index-
ing the two-dimensional array with the (u, v) coordinates is done by mapping
them to integer coordinates (i, j) inside the [0..width]× [0..height] domain:

i = bu · widthc
j = bv · heightc

The result of the integration is done by summing the values for each dθ and dφ.
The �nal value of each coe�cient Lml is normalised by multiplying with dθ×dω.
The numerical formula for Lml therefore is:

Lml =

π∑
θ=0

2π∑
φ=0

Lml (θ, φ)Y ml (θ, φ) sin(θ)dθdφ

where

dφ =
π

width

dθ =
2π

height

The authors do not o�er a solution for the integral in the paper [Ramamoorthi
and Hanrahan, 2001]. Instead they provide the source code for the pre-�ltering
stage in which they use a di�erent method for calculating the lighting coe�cients
Lml . However the results obtained in this thesis and the ones obtained with the
author's code are very close (see tables 5.1 and 5.2).

5.3 Translucent Materials under Environment Illumination 91

Eucalyptus Grove
Author's results Thesis results Maximum Deviation

L0
0 .38 .43 .45 0.3792 0.4271 0.4517 0.0029

L−11 -.29 2 -.362 -.412 -0.2888 -0.3587 -0.4146 0.0112
L0
1 .04 .03 .01 0.0387 0.0303 0.0105 0.0013

L1
1 -.10 -.10 -.09 -0.1034 -0.1032 -0.0884 0.0034

L−22 .06 2 .062 .042 0.0619 0.0551 0.0394 0.0049
L−12 -.01 2 .01 2 .05 2 -0.0079 0.0147 0.0471 0.0047
L0
2 -.09 -.13 -.15 -0.0932 -0.1250 -0.1522 0.0050

L1
2 -.06 -.05 -.04 -0.0583 -0.0514 -0.0376 0.0024

L2
2 .02 -.00 -.05 0.0215 -0.0031 -0.0438 0.0062

Table 5.1: The nine lighting coe�cients obtained by the authors (left col-
umn), this thesis (middle column) and the maximum deviation
between the two (right column). The coe�cients are in RGB for-
mat. The environment map used was Eucalyptus Grove, source:
http://www.pauldebevec.com/Probes/

St. Peter's Basilica
Author's results Thesis results Maximum Deviation

L0
0 .36 .26 .23 .3637 .2627 .2328 0.0037

L−11 -.182 -.142 -.132 -.1784 -.1443 -.1266 0.0043
L0
1 -.02 -.01 -.00 -.0257 -.0106 -.0014 0.0057

L1
1 .032 .022 .012 .0348 .0224 .0101 0.0048

L−22 -.02 -.01 -.00 -.0198 -.0143 -.0043 0.0043
L−12 .052 .032 .012 .0489 .0263 .0124 0.0037
L0
2 -.09 -.08 -.07 -.0917 -.077 -.074 0.0083

L1
2 .01 .00 .00 .0043 .0033 -.0004 0.0033

L2
2 -.08 -.0322 2 .00 -.0843 .0362 .0029 0.0043

Table 5.2: The nine lighting coe�cients obtained by the authors (left col-
umn), this thesis (middle column) and the maximum deviation
between the two (right column). The coe�cients are in RGB for-
mat. The environment map used was St. Peter's Basilica, source:
http://www.pauldebevec.com/Probes/

With the presented method it is possible to represent the di�use illumination

2The values obtained with the source code provided by the authors on
http://graphics.stanford.edu/papers/envmap/ di�er in sign from the values presented
in their paper [Ramamoorthi and Hanrahan, 2001]

92 Implementation

from any environment map with using just 9 spherical harmonics coe�cients.
The lighting coe�cients have been calculated as well for another environment
map:

U�zzy Gallery Light Probe
L0
0 0.4763 0.4621 0.5257

L−11 -0.5572 -0.5530 -0.6445
L0
1 -0.0055 -0.0051 -0.0063

L1
1 -0.0122 -0.0127 -0.0171

L−22 0.0280 0.0283 0.0370
L−12 0.0169 0.0158 0.0183
L0
2 -0.4197 -0.4140 -0.4788

L1
2 0.0009 0.0006 0.0004

L2
2 -0.3626 -0.3615 -0.4262

Table 5.3: The nine lighting coe�cients obtained with the method presented
in this thesis. The environment map focused was U�zi Gallery.
Source: http://www.pauldebevec.com/Probes/

The values in the tables were used to render three spheres in scenes with three
di�erent environment maps. Figure 5.22 shows the di�use contribution from the
environment maps in the three distinct cases.

5.3 Translucent Materials under Environment Illumination 93

Figure 5.22: Spheres rendered with di�use illumination from each of the three
environment maps, using the described method

5.3.2 Rendering

After the pre-rendering step in which the points are uniformly distributed across
the surface of the model and the environment map is �ltered, the rendering of
the scene can start.

The process is composed of three render passes: the �rst one renders the translu-
cent object to obtain the xo points; the second in which the scatter texture is
generated and the third in which the scatter texture and specular highlights are
applied on the model and the environment map is rendered on the screen. The
third pass is done as in deferred rendering.

The total outgoing radiance Lo will be composed of two terms: the di�usion
term and the specular term.

Lo = Ldiffusion + Lspecular

94 Implementation

The di�usion term, Ldiffusion, corresponds to the outgoing radiance calculated
with the dipole approximation (presented in section 3.4.1) and it will be stored
in the scatter texture. The �ltered environment map is used to calculate the
di�use incoming radiance on the model's surface. Lspecular, the specular term,
will be added in the deferred rendering stage, and obtained from the normal,
un�ltered, environment map.

In the �rst render pass, into a double frame bu�er, the object is rendered and the
fragment shader will output to two di�erent render targets eye space position
and eye space normals. This render pass is done from the eye's point of view
and the render targets are the size of the screen. Also, besides the model, it is
needed to draw the environment. This is done by drawing a large enough sphere
that will cover the whole viewport and the model. Again, the last channel in
the position texture will act as a �ag so a distinction between the model and
the environment is made in the �nal render pass.

In the second render pass, the sample points are sent to the GPU. Object space
position and object space normals are sent as vertex attributes (as seen the
following code sample 5.12).

g lBeg in (GL_POINTS) ;
for (int i = 0 ; i < samples . s i z e () ; i ++)
{

glNormal3fv (normals [i] . get ()) ;
g lVertex3dv (samples [i] . get ()) ;

}
glEnd () ;

Listing 5.12: Sending the sample positions to the GPU

In the vertex shader, the object space position is transformed to eye-space po-
sition by multiplication with the Model-View Matrix. As described in the pre-
vious section for point light illuminations, in the geometry shader they will be
expanded to screen aligned quads centered at the sample point.

5.3 Translucent Materials under Environment Illumination 95

Figure 5.23: The 3D model surrounded by the environment map. The sample
points xi(red dots) are positioned on the model and splats (gray
rectangles) are centered on each of them. The contribution from
the environment map is obtained by sampling in the normal di-
rection of the sample point, ni. Again, the splats are oriented
towards the viewer.

In the fragment shader, the splats are shaded in a similar manner as in point light
illumination. The precomputed lighting coe�cients Lml are sent as uniforms to
the shader because they are dependent on the environment map used. The
constants ci are static variables in the shader and radiance is calculated using
equation 4.14 for the eye space normal:

vec3 n = normal_es . xyz ; // eye−space normal
vec3 E = c1 ∗ L22 ∗ (n . x ∗ n . x − n . y ∗ n . y) +

c3 ∗ L20 ∗ (n . z ∗ n . z) +
c4 ∗ L00 −
c5 ∗ L20 +
c1 ∗ 2 ∗ (L2_2 ∗ n . x ∗ n . y + L21 ∗ n . x ∗ n . z +

L2_1 ∗ n . y ∗ n . z) +
c2 ∗ 2 ∗ (L11 ∗ n . x + L1_1 ∗ n . y + L10 ∗ n . z) ;

Listing 5.13: Irradiance from Environment Map

96 Implementation

Figure 5.23 shows the process from the observer's perspective: sample points
(or the set of xi points in equation 4.1) are positioned on the model (in the
pre-rendering stage) and splats are created (during the second rendering pass).
The �ltered (di�use) environment map is sampled in the sample point's normal
direction to obtain the di�use illumination on the sample point.

The OpenGL state used in this render pass is the same as the one described in
the previous section: the depth test is disabled and additive blending is enabled
so that each pixel will receive the contribution from the sample points close to
him. After this pass is �nished, the depth test is enabled and additive blending
is disabled.

Next, the deferred rendering stage starts, similar to the one used in point light
illumination. A screen sized quad is drawn and the pixels it spans will be shaded
depending on what part of the scene they cover.

On the translucent objects, specular highlights are added, as the projection of
the environment map on the surface, weighted by the Fresnel term (described
in section 3.2.3).

5.4 Rendering with Environment Illumination -

Discussion

The results obtained using the presented integration method used for the pre-
�ltering step are very close numerically to the ones presented by the authors
in their paper. Column three of table 5.1 and table 5.2 show that the error
is small and it most probably arises from rounding. The di�use illumination
(or low frequency illumination) from the environment map on a model used in
rendering is shown in �gure 5.24.

5.4 Rendering with Environment Illumination - Discussion 97

Figure 5.24: Di�use illumination from the environment map on a complex 3D
model

Note that the pre-�ltering step was �nished in under a few seconds for a 1000×
1000 pixels environment map.

The point relaxation procedure needs a variable number of iterations to reach
uniformity. If the repulsion forces are scaled down too much, the points will
slowly move towards a stable uniform distribution but they will reach it after
a large number of iterations. On the other hand, if the force is not scaled
down enough, points will rapidly move across the surface, but may never reach
a stable uniform distribution. The following table 5.4 shows the approximate
number of iterations needed for a number sample points to reach uniformity on
the speci�ed model.

98 Implementation

Model
Polygon
Count

Sample
Points

Scaling
Fac-
tor

Iterations (appx.)
Running
Time
(appx.)

Stanford Dragon 100 000 10 000 0.001 60 17 sec.
Stanford Dragon 100 000 10 000 0.01 10 4 sec.
Stanford Dragon 100 000 10 000 0.1 did not converge -

Buddha Statue 100 000 10 000 0.001 100 18 sec.
Buddha Statue 100 000 10 000 0.01 25 6 sec.
Buddha Statue 100 000 10 000 0.1 did not converge - sec.

Cube 16 4 000 0.001 40 5 sec.
Cube 16 4 000 0.01 10 1 sec.
Cube 16 4 000 0.1 did not converge - sec.

Table 5.4: The number of iterations and time needed for the point distribution
to converge for di�erent 3D models.

It is important to note that the number of polygons in the 3D mesh is not the
main parameter in the running time of the relaxation procedure. The level of
tessellation is important when a point is pushed outside it's triangle. The num-
ber of sample points, on the other hand, dictates the computational cost. The
neighbor lookup for each pivot point would require, in a naive implementation,
to iterate over the whole set of sample points and check for each of them if they
lie inside the in�uence zone. Using an acceleration structure to store the points
(for example a kd− tree [Bentley, 1975]) will reduce the neighbor look up cost.
Even if the structure needs to be recreated every iteration, better running times
are expected compared to the naive implementation.

Figure 5.25 shows the Stanford Dragon model rendered with illumination from
the Eucalyptus Grove environment map. The points have not been distributed
uniformly and low frequency noise is visible on the model.

5.4 Rendering with Environment Illumination - Discussion 99

Figure 5.25: Translucent object rendered with di�use illumination from the
environment map. The sample points have not yet been uni-
formly distributed and low frequency noise is highly visible.

Applying the point relaxation procedure, after a few iteration cumulating ap-
proximately 4 seconds, the noise is eliminated. The rendering is shown in �g-
ure 5.26.

The specular highlights are added and the �nal rendering is shown in �gure 5.27.

100 Implementation

Figure 5.26: Translucent object rendered with di�use illumination from the
environment map. The sample points have been uniformly dis-
tributed using the point relaxation procedure described in this
section. The low frequency noise is not visible anymore

5.4 Rendering with Environment Illumination - Discussion 101

Figure 5.27: The translucent model rendered as above, but with added spec-
ular re�ections from the environment map

102 Implementation

Chapter 6

Results and Validation

This chapter presents the results obtained using the algorithm described in the
previous sections. The �rst section will focus on performance and the second
section will focus on the visual quality of the results. In the third and last
section, the method is validated by comparing its results (both performance
and visual accuracy) to the results from other methods.

All the tests and renderings have been done on the same hardware system: Intel
Core i5 @ 3.1 Ghz with 4GB RAM, running a 64 bit operating system. The
graphics hardware used was nVidia Quadro 600. Unless otherwise speci�ed, the
resolution of the render targets and �nal rendering frame bu�er was 512× 512
pixels.

6.1 Performance

For point light illumination, after the di�usion pro�les are calculated and stored
into textures, except the OpenGL draw calls, the CPU will be responsible just
for the generation of the sampling pattern. Therefore, the main computational
e�ort is done on the GPU, and the performance will be dependent on the amount
of calculations executed in the shaders. The render pass in which the scattering
texture is created is the main candidate for the bottle neck, since the other are

104 Results and Validation

trivial for any modern GPU. Using gDEBugger as a pro�ling tool, the suppo-
sition was con�rmed, therefore the following tests focused on the render pass
responsible for creating the scattering texture.

During the creation of the scattering texture, there are three parameters that
in�uence the rendering time: the number of splats, the size of an individual
splat, and the number of pixels the object occupies on the screen. This is based
on the observation that with increasing number of splats and increasing splat
size, an increasing number of splats will overlap on a screen pixel. Thus, more
blending operations will be done per pixel. With the increasing number of screen
pixels occupied by the object, the overall rendering time will increase.

First, the running time has been analyzed for a 3D model rendered with varying
number of splats, a �xed splat size and fully focused in the observer's viewport.
The values are presented in the table below:

Number of splats
Model 4# Method 55× 38 65× 45 75× 52 85× 60 95× 67
Dragon 105 Dipole 62.1 48.9 38.9 30.5 25.4
Dragon 105 Multipole 40.1 30.7 24.1 19.6 15.2

Table 6.1: Frame rates for rendering a single 3D model with varying number
of samples. The middle column from the results corresponds to the
minimum number of splats for which no artifacts were visible.

The middle column in table 6.1 corresponds to the number of splats needed for
the integral to converge and the model to appear smooth and without sampling
artifacts. Note that the algorithm runs in real-time for the dipole approxima-
tion method (approximately 39 frames per second) and at an acceptable inter-
active frame rate for the multipole approximation (24 frames per second). The
overhead in the multipole method is because the extra render pass needed to
calculate the object's thickness.

Below the threshold in column 3 of table 6.1, the model is under-sampled.
Though the frame rates increase, the visual results are not satisfying. Above
the threshold the visual results will not change, so the number of samples is not
indicated to use.

Figure 6.1 shows the di�erence between the under-sampled model (left) and the
correctly sampled model (right). Increasing the number of splats will not provide
additional detail or visual e�ects, but instead will decrease the performance, as
presented in column 5 of table 6.1.

6.1 Performance 105

Figure 6.1: The Stanford Dragon 3D model. In the left image, the model
is under sampled and artifacts are visible. The right image was
rendered with the optimal number of splats at interactive frame
rates. Higher number of splats will not o�er better visual results,
but the frame-rate will drop.

To use the render target from the �rst render pass as a shadow map, its res-
olution needs to be increased for a better visual result and for more accurate
shadows. Table 6.2 shows the rendering frame rates for a complex 3D model
rendered using the dipole and multipole method, and a number of splats of
75×32. Note that even for a texture size of 2048×2048 the algorithm still runs
in real-time for the dipole method (26 frames per second) and at interactive
frame rates for the multipole method (19 frames per second).

Texture Size
Model 4# Method 512× 512 1024× 1024 2048× 2048 4096× 4096
Dragon 105 Dipole 38.9 35.2 26.1 13.8
Dragon 105 Multipole 24.1 22.8 19.0 11.4

Table 6.2: Frame rates for rendering a complex 3D model with a �xed number
of samples and varying render target size.

The following table shows that having a di�erent model, the number of samples
needed to reach convergence (shown in column 3) is di�erent. The bunny model,
even though it has a lower polygon count will be rendered without artifacts at
a similar frame rate as the previous model:

106 Results and Validation

Number of splats
4# Method 30× 29 35× 34 40× 39 45× 44 50× 49 55× 54
69451 Dipole 62.1 48.8 40.6 31.2 27.0 21.5
69451 Multipole 39.2 30.6 25.2 20.6 16.5 13.1

Table 6.3: Frame rates for rendering a single 3D model with varying number of
samples. The minimum number of splats for which no artifacts were
visible is 40 × 39. The frame rate at which the model is rendered
without artifacts is close to the one presented in the previous table.

Figure 6.2 shows the di�erence between under-sampling (left) and correct sam-
pling (right).

Figure 6.2: The Stanford Bunny 3D model. In the left image, the model
is under sampled and artifacts are visible. The right image was
rendered with the optimal number of splats at interactive frame
rates. Higher number of splats will not o�er better visual results,
but the frame-rate will drop.

The splat size is calculated according to the material's di�usion properties,
Therefore, it is normal that the frame rate is dependent on the material prop-
erties. Tables 6.4 and 6.5 present the frame rates obtained for rendering two
di�erent materials: marble and an empirically chosen material to resemble green
jade. The visual quality was evaluated for each material at each splat count and
the values at which algorithm converges were placed in the middle column of
each table. It is important to note that the visual results converged at approx-

6.1 Performance 107

imately the same frame rate. Figure 6.3 shows the renderings for the Buddha
model using green jade and marble properties, both for the under-sampling case
(left) and the optimal splat count number (right).

Number of splats
Model 4# Method 40× 97 55× 137 70× 170 85× 206 100× 243
Jade 105 Dipole 98.1 60.9 40.6 28.4 21.3
Jade 105 Multipole 58.1 34.8 22.6 15.8 11.6

Table 6.4: Frame rates for rendering the Buddha 3D model with varying num-
ber of samples, using scattering properties of green Jade. The mid-
dle column from the results corresponds to the minimum number
of splats for which no artifacts were visible.

Number of splats
Model 4# Method 20× 48 25× 60 30× 72 35× 85 40× 97
Marble 105 Dipole 94.1 67.5 49.1 38.5 30.1
Marble 105 Multipole 59.1 41.8 30.2 23.3 18.2

Table 6.5: Frame rates for rendering the Buddha 3D model with varying num-
ber of samples, using scattering properties of marble. The middle
column from the results corresponds to the minimum number of
splats for which no artifacts were visible.

The next parameter that in�uences the rendering time is the splat's dimension.
In table 6.6, the frame rates were measured for varying splat size. The smallest
splat size considered is 40% of the initial splat size calculated in the pre-rendering
stage. Scaling down the splat size corresponds to scaling up the 3D model.
Each row in the table corresponds to the frame rates for a particular splat scale,
while each column represents the number of splats needed for the algorithm to
converge at that splat size. Note that the frame rates at which the algorithm
converges in the di�erent scenarios are therefore the �rst diagonal, and they are
roughly the same.

108 Results and Validation

Number of splats
4# Method Splat Size 75× 32 92× 64 129× 90 150× 105
105 Multipole 1 24.0 16.6 8.9 6.9
105 Multipole 0.8 34.9 24.5 13.3 9.9
105 Multipole 0.6 54.9 39.6 22.1 16.8
105 Multipole 0.4 96.1 73.5 43.6 24.4

Table 6.6: Frame rates for rendering the Stangford Dragon 3D model with
varying number of samples, using scattering properties of marble.
The splat size varies vertically and the sample count horizontally.
The �rst diagonal of the results corresponds to the frame rate for
which the model was rendered without artifacts. Below the diago-
nal, artifacts are visible though the frame rates are higher. Above
the diagonal, samples are redundant and the visual results do not
change, while the frame rate drops.

6.1 Performance 109

Figure 6.3: The Buddha 3D model, rendered with green jade material prop-
erties (top row) and marble (bottom row). The images in the left
column show artifacts due to under-sampling. The right column
shows the models rendered with the optimal splat count and no
artifacts visible.

110 Results and Validation

The next test was done to evaluate the frame rate when the object does not
fully occupy the observer's viewport. The results (shown in table 6.7) con�rm
that the rendering time is dependent on the positioning of the object. This is
because as the object gets closer and occupies a larger area on the screen, the
number of pixels for which blending is performed increases and induces higher
overhead.

Distance to the observer
4# Method # Splats Very Close Moderate Far
69451 Multipole 50× 49 16.5 28.8 78.2
69451 Multipole 60× 59 11.7 20.4 57.3
69451 Multipole 70× 69 8.7 15.2 44.8
69451 Multipole 80× 79 6.8 11.9 34.8

Table 6.7: Frame rates for rendering the Stanford Bunny 3D model, with vary-
ing number of splats, and with di�erent positioning in the observer's
viewport. The �rst line of the results shows that interactive frame
rates are achieved even if the model is very close and occupies most
of the viewport.

Figure 6.4 shows the object's position for which the frame rates have been
measured.

Figure 6.4: The Stanford Bunny 3D model. From left to right, the model
is positioned very close, moderate, and far with respect to the
observer.

For environment illumination, the frame rate has been measured for varying
splat size and varying number of splats. The object's positioning on the screen
will in�uence the rendering time in the same manner as presented in table 6.7.
The �rst column in table 6.8 lists the rendering times for a number of splats
calculated as in section 5.3.1. The following columns show the measurements
for an increased number of samples, up to double the initial number. A lower

6.1 Performance 111

number of samples than the one in the �rst column was not of interest since low
frequency noise appears because of under-sampling. The �rst line corresponds
to the normal size calculated in the pre-rendering stage, while the measurements
in the next lines correspond to smaller splats, from 80% to 40% of the normal
size. The renderings are presented in �gure 6.5 both for the under sampled case
(focusing on the artifacts) and the optimal scenario.

Number of splats
4# Splat Size 5789 6947 8105 9263

100000 1 16.7 13.1 11.1 9.4
100000 0.8 22.1 19.3 16.4 14.0
100000 0.6 35.8 31.7 26.9 23.1
100000 0.4 70.1 60.2 53.2 45.6

Table 6.8: Frame rates for rendering the Stanford Dragon model under envi-
ronment illumination with the multipole method. The splat size
varies vertically, while the sample number varies horizontally. The
�rst diagonal of the results in the table corresponds to the frame
rates at which the model rendered does not present artifacts.

112 Results and Validation

Figure 6.5: The Stanford Dragon 3D model rendered under environment illu-
mination. The left column shows the artifacts that appear when
the splat size is lower than the one calculated, while the right col-
umn shows the model rendered correctly. The bottom row focuses
on the same region of the 3D model to emphasize for comparison
between the two scenarios.

6.2 Visual Results 113

6.2 Visual Results

This section shows the visual results of the rendering algorithm presented and it
focuses on the di�erent appearence of materials with di�erent scattering proper-
ties and the di�erent appearence of a few 3D models under di�erent illumination
directions. More images rendered with this algorithm are found in appendix A.

The materials chosen to illustrate the algorithm were marble and green jade.

6.2.1 Translucent Materials under Point Light Illumina-

tion

First, the results from the dipole and multipole methods will be compared. In
�gure 6.6 the Stanford Dragon model is rendered using the dipole method and
the scattering coe�cients for marble.

Figure 6.6: The Stanford Dragon 3D model rendered with the Dipole method.
When the model is illuminated from behind translucency is visible,
and the thin surfaces allow more light to exit.

The upper right corner of both images in �gure 6.6 shows the model rendered
with simple Phong shading from the light's perspective. This demonstrates that
the left side of the �gure was rendered with front illumination while on the right
side the model is back-lit. Note that with the translucent shader the object
appears di�use and shiny and simulates surface-scattering.

114 Results and Validation

The dipole method does not account for transmittance separately, thus, when
the model is back-lit (right side of �gure 6.6) the transmittance is approximated
with the re�ectance term.

The multipole method uses separate terms for re�ectance and transmittance.
Thus, the visual appearence for back-lit objects is more accurate (see �gure 6.7).
The left side of �gure 6.7 shows that front illumination is similar regardless of
the method used.

Figure 6.7: The Stanford Dragon 3D model rendered with the Multipole
method. When the model is illuminated from behind translucency
is more accurately approximated using the Multipole method.

Figure 6.8 shows the Buddha Statue model rendered with material properties
that resemble green jade. Note that when the model is illuminated from behind,
the translucency is green.

6.2 Visual Results 115

Figure 6.8: The Buddha 3D model rendered with the dipole method and green
jade material properties. Note the distinctive shiny and green
appearence when the model is rendered from the viewing direction
and the green transmittance when the model is back lit.

The multipole method allows to render thin slabs and thus it is possible to render
models covered with thin coating layers. Figure 6.9 shows a 3D model rendered
with marble properties (left) and marble in a white coating layer (right).

116 Results and Validation

Figure 6.9: Cat 3D model rendered with marble material properties (left) and
marble covered in a thin white layer (right). Translucency is not
visible on the thin parts when the model is covered in the white
layer.

Note that the left image in �gure 6.9 presents translucency on thin area of the
model (the tip of the tail and the tip of the ears). When rendering with the
coating layer, the model is less translucent and almost opaque.

When rendering with the multipole approximation, the thickness of the model
can be adjusted by scaling the distance d (the mean distance the light travels
inside the medium). Thus, varying scattering properties and thickness can be
simulated at runtime, without re-calculating the di�usion pro�les. Figure 6.10
shows a 3D model with side illumination and thickness decreasing from the
top-left corner down to the bottom-right corner.

6.2 Visual Results 117

Figure 6.10: The statue model rendered with altered thickness. The thickness
is down-scaled from the image in the top-left corner to the im-
age in the bottom-right corner and accordingly the translucency
of the object increases. Varying thickness can be adjusted at
runtime.

Varying material properties can be simulated during runtime, without recal-
culating the di�usion pro�les, by scaling the look-up radius and the splat size
accordingly. This actually corresponds to scaling the 3D model before rendering.
Figure 6.11 illustrates the success of the method. The same model was rendered
under the same illumination and, but scaling the parameters, its appearence
changes from almost opaque to very translucent.

118 Results and Validation

Figure 6.11: The bird model rendered with varying splat size and look-up
radius. Scaling both parameters corresponds to altering the ob-
ject's size and/or the object's material properties.

6.2.2 Translucent Materials under Environment Illumina-

tion

With the �ltering method and the algorithm presented in section 5.3.1 and
the point relaxation procedure in 5.3.1 , models can be rendered under di�use
illumination from the environment map. The following �gures will show the
renderings from di�erent orientations and environment maps, for the di�use
illumination (top) and the translucent objects under environment illumination
(bottom). The specular highlights and tone mapping are applied in the deferred
rendering stage.

6.2 Visual Results 119

Figure 6.12: The Stanford Dragon model rendered with simple di�use illu-
mination from the environment map (top) and with translucent
material properties (bottom). Note that the di�use illumination
corresponding to the areas in the environment map: the green-
brown shades from the ground and the blue shades from the sky
and the forest's canopy.

120 Results and Validation

In the following �gure, the model is oriented towards the brighter area of the en-
vironment map. The top part of the �gure, showing only the di�use component
with a simple shader, shows that illumination on the visible side of the model is
mostly dark, from the leaves and the ground. The bottom part image, where the
translucent shader was used and specular highlights were added, shows that the
thin parts of the model (the tip of its back) are highly lit, even though they are
not oriented towards the bright areas. This is due to scattering and corresponds
to the single point-light illumination scenario presented in �gure 6.7, when the
model was illuminated from behind.

6.2 Visual Results 121

Figure 6.13: The Stanford Dragon model rendered with simple di�use illu-
mination from the environment map (top) and with translucent
material properties (bottom). The thin parts of the Dragon's
back are lit using di�use illumination that corresponds to the
sky and the forest's canopy and the appearence is similar to the
back-lit illumination, since the top image is not bright in those
areas.

122 Results and Validation

The images in �gure 6.14 were rendered with illumination from an environment
map �ltered with the procedure presented in section 5.3.1. Note that in the top
image of �gure 6.14 (the di�use illumination), the dark areas on the model do
not correspond to self shadowing, but to the dark areas in the lower part of the
environment map. The bottom image shows the model rendered with marble
properties, hence its distinctive di�use and shiny appearence.

6.2 Visual Results 123

Figure 6.14: The Stanford Dragon model rendered with simple di�use illumi-
nation from the environment map (top) and with translucent ma-
terial properties (bottom). A new environment map was �ltered
and its contribution was reduced to a set of lighting coe�cients.
The bright areas on the renderings correspond to illumination
from the sky while the dark areas receive di�use illumination
from the ground.

124 Results and Validation

6.3 Validation

The following section will validate the method and the implementation pre-
sented in this thesis against previous work in real-time rendering of translucent
materials or against o�-line renderings of similar scenes. Both performance and
visual results will be considered to assess the validity of this implementation. It
can be considered that the validation process has started in the early stages of
the implementation: �gure 4.5 showing the plots for the re�ectance and trans-
mittance pro�les match their corresponding plots in [Donner, 2006]. As well,
it was shown that the results of the �ltering method used in this thesis only
have a minor, neglectable deviation from the values given by [Ramamoorthi
and Hanrahan, 2001]. Next, the visual results will be compared.

Figure 6.15 compares the Bird model rendered with this implementation (top)
and the results from [Shah et al., 2009]. The orientation of the model is di�erent,
as it was di�cult to obtain the same camera perspective. The images, though,
are similar and the distinctive traits of translucent materials are highly visible
in both implementations. Figure 6.16 presents the same similarities between the
two images, in which the models have been rendered with other material prop-
erties. The left image in �gure 6.16 uses empirically chosen material properties.

Figure 6.17 compares the rendering of the Bird model using the implementation
presented in this thesis (top) and an o�-line method (bottom). The results are
similar, though the real-time method lacks inter-re�ections (visible on the bird's
neck). However, the top image was rendered at 22 frames per second while the
o�-line method presents visible noise after more that 10 hours of rendering.

Figure 6.18 shows the di�erence between the results from [Dachsbacher and
Stamminger, 2003] (�rst row) and this thesis (second row). Visually, the results
on the second row are better, especially for the second column where the material
properties have been modi�ed to exhibit more translucency. Note that the
di�raction-like pattern visible on the model's tail in the top-left image is not
present in this thesis' renderings.

The rendering times obtained in this thesis are presented in the tables through-
out section 6.1. The interactive and real-time frame rates are obtained for
models rendered with di�erent material properties. Note that even when the
size of the render textures was increased up to 2048 × 2048, the running time
was still interactive.

6.3 Validation 125

Figure 6.15: The Bird model rendered with the implementation from this the-
sis (top) and the similar rendering extracted from the original
authors [Shah et al., 2009](bottom). Slight di�erences can be
observed, probably caused by di�erent model orientation. The
distinctive characteristics of translucent materials are identical
in both images.

126 Results and Validation

Figure 6.16: The Buddha model rendered with the implementation from this
thesis (left) and the similar rendering extracted from the original
authors (right). For the left rendering, the material properties
have been chosen empirically. The translucency is very similar
in both images, as well as the distinctive di�use look and the
distinctive color.

6.3 Validation 127

Figure 6.17: The Bird model rendered with the implementation from this the-
sis (top) and an o�-line rendering of the same model. The imple-
mentation manages to achieve a similar look and almost identical
specular highlights running at interactive frame rates. Note that
the bottom image was rendered during approximately 10 hours.

128 Results and Validation

Figure 6.18: The top image is extracted from [Dachsbacher and Stamminger,
2003] and depicts renderings of the same model with varying ma-
terial properties. The bottom image, rendered with the presented
implementation, shows renderings of the same model and focuses
as well on varying material properties. A clear improvement in
the appearence is noticeable in the results of this thesis.

Chapter 7

Future Work

Chapter 6 presented visually pleasing results of models with di�erent material
properties rendered at real-time frame rates. During the implementation, sev-
eral drawbacks and possible improvements have been encountered. This chapter
presents the drawbacks, possible solutions to avoid them and references to re-
lated literature that may be used in the implementation of the solutions.

Because the solutions required additional research, study and possibly restruc-
turing the framework built for the results presented so far, the implementation
was postponed for future work.

7.1 Improving the solution

Solving Under-sampling Issues

As presented in section 5.1, sampling the texture spaces introduces under-
sampling artifacts when light is incident on the surface of the model at grazing
angles. The areas where this issue may arise are almost parallel to the light's
incidence direction, so if sample points fall inside these areas, they can be iden-
ti�ed easily. Figure 7.1 shows a generalized situation in which under-sampling

130 Future Work

occurs: a single point light source and two adjacent faces of a cube. In the left
image, light is perpendicular on the left face of the cube; the sample points are
small white rectangles. In the right image, the light source is slightly deviated
from it's original perpendicular direction and illumination is incident on the
right face of the cube. The density of the sample points should be the same on
the right face of the cube as on the left face.

Figure 7.1: Under-sampling at small incidence angles. The left image
shows the position of the sample points when light is perfectly
perpendicular to the left face of the cube. The right image shows
the case when a small deviation is applied to the light direction.
Thus, light is incident at a grazing angle, and the surface (the
right face) will be under-sampled.

In the third render pass of the point light illumination procedure, in the ge-
ometry stage, the application can test if the sample point lies inside an under-
sampled area by checking if the cosine of the incidence angle is below a certain
threshold value. If so, enough information can be found in the render textures
from the �rst pass to resample the surface in the vicinity of the current sample
position. For example, the sample's 3D position and normal can be used to �nd
the equation of the plane in which the 3D sample point lies. The additional
samples can be chosen inside this plane, in the vicinity of the initial sample
point.

7.1 Improving the solution 131

Scattering Artifacts

Because the algorithm runs on the GPU and most of the calculations are consid-
ered to be in screen-space (eye-space), there is little information available about
the connectivity of the triangle mesh. Figure 7.2 shows a scenario where visual
artifacts can appear because a splat centered at sample point xi will cover a
part of the model where it cannot possibly contribute.

Figure 7.2: Artifacts due to screen-space projection. A splat centered
at an incidence point (red dot) can overlap pixels that it can't
possibly contribute to.

This artifact can be avoided if the model has associated connectivity informa-
tion. For example, a mesh segmentation algorithm can be used to split the 3D
mesh into patches(see �gure 7.3). Then, the xo and xi points (see �gure 7.2) will
belong to di�erent patches and will not be a valid pair. Of course, valid pairs
might be rejected because they belong to di�erent patches after the segmen-
tation, though they are very close together and contribution can be possible.
To avoid this, the segmentation can be interpolated at the border between two
patches (see the right side of �gure 7.3), and the validity of a pair of xi, xo
points can be checked based on how large is the di�erence between their patch
identi�ers.

Mesh segmentation techniques include [Shatz et al., 2006] for paper craft models
and [Lai et al., 2006,Lai et al., 2008,Yamauchi et al., 2005] for feature sensitive
segmentation. The bluring of the segmentation can be performed in a separate

132 Future Work

render pass.

Figure 7.3: Simple connectivity maps. Two simple connectivity maps,
listed for visualization. The right image shows blurred borders be-
tween patches. This way, valid pairs of incidence and exit points
will not be rejected, because the di�erence between their patch
identi�ers in the blurred zone will be small.

Rendering Arbitrary Number of Layers

As it was seen in section 5.1.2, the BSSRDF calculated with the multipole ap-
proximation is dependent on the thickness of the model. For concave triangle
meshes where the correct thickness cannot be calculated as described in sec-
tion 5.1.2, depth peeling [Bavoil and Myers, 2008, Everitt, 2001] needs to be
applied. Using depth peeling for multi-layered objects, the thickness of each
layer of coating can be calculated and thus it is possible to render a larger
gamma of objects with varying layer thickness.

7.2 Extending the solution 133

7.2 Extending the solution

Screen Space E�ects

As presented in chapter 5, the �rst render pass for point light illumination (from
light's perspective) is used to obtain the information about the geometry visible
to the light source. The render texture used contains enough information to be
used with di�erent purposes, for example, as a shadow map.

The output from the second render pass, contains the information for the geom-
etry from the observer's perspective and is useful for a series of real-time screen
space techniques as screen space ambient occlusion. For this, after the second
pass is �nished, for each screen pixel (equivalent to each texel from the render
texture), its position (or depth) and normal will be used to roughly estimate the
occlusion from the geometry in its vicinity [Bavoil and Sainz, 2008]. [Akenine-
Moller et al., 2008] gives a good overview of di�erent methods for simulating
ambient occlusion in real-time.

A variety of screen space after e�ects can be used to alter or enhance the �nal
visual appearence of the rendered scene including edge detection �lters, toon
shading or blurring. More important in this subset of post e�ects is global
illumination. Several papers can be of reference for screen space global illumi-
nation: [Dachsbacher and Stamminger, 2006] uses light texture sampling and
splats to simulate �rst bounce illumination; [Ritschel et al., 2009] propose a
general screen space procedure that accounts for ambient occlusion, direct illu-
mination and one-bounce indirect illumination.

Environment Illumination

The environment map �ltering method described in this report and used in
the implementation in section 5.3.1 of chapter 5 is independent on the material
rendered and may de-emphasize certain optical e�ects. In Optimizing Environ-
ment Maps for Material Depiction [Bousseau et al., 2011] the authors present
a method for optimizing and �ltering the environment maps focusing on the
optical properties of each individual material in the scene. Using their proposed
method, it may be possible to render translucent objects under environment
illumination and enhance each object individually. For example, marble objects
would be enhanced by a nicer specular appearence while wax objects by a more
di�use look.

134 Future Work

Chapter 8

Conclusions

The previous chapters have presented a solution to rendering translucent mate-
rials that focuses on performance and generating accurate visual results.

Chapter 2 gave a brief overview of the related literature, showing only a small
number of the many attempts that have successfully pushed forward the limits
of rendering subsurface light transport.

Chapters 3, 4 and 5, together, o�er in detail the theory, the method and the
implementation for another solution to the above mentioned topic. The solution
combines principles and procedures assimilated by the author during the incip-
ient phase of the thesis (related literature study), then improved and re�ned
during the implementation phase. The desire to reach a complete, global solu-
tion has resulted in a more robust approach that di�erentiates itself from others
by using a di�erent sampling strategy, di�erent mathematical approach and by
taking more advantage of the programmable pipeline. Nonetheless, di�erent
interpretation and framework design certainly bring novelty in this approach.

Chapter 6 validates the implementation by comparing its results with the results
from related literature. The performance values obtained �t the requirements
for interactive applications (20 frames per second) and real-time applications (30
frames per second) for numerous test scenes. The images rendered capture the
correct appearence of the materials they were intended to show and at the same

136 Conclusions

time match the renderings of previous authors, or are visually more pleasing.

Finally, chapter 7 details a few of the possible improvements that may bene�t
to this solution. The potential seen so far in this approach makes the list of
improvements open and without visible limits in sight.

It is the author's opinion that the goals of this thesis have been reached, based
on the results obtained in chapter 6. Together, these chapters may once become
the starting point or the partial inspiration for another approach to rendering
translucent materials.

Appendix A

Large-Scale Images and

Special Renderings

138 Large-Scale Images and Special Renderings

Figure A.1: The Buddha model rendered with marble material properties,
using the multipole method. Interactive frame rates have been
achieved, shown in the middle column of table 6.5. The image is
an enlarged version of the bottom-right image in �gure 6.3.

139

Figure A.2: The Stanford Bunny model rendered with scattering properties
corresponding to marble, using the multipole method. The image
is an enlarged version of the right image in �gure 6.2 and was ren-
dered at interactive frame-rates as presented in the third column
of table 6.3.

140 Large-Scale Images and Special Renderings

Figure A.3: The Stanford Dragon model rendered with scattering properties
corresponding to marble, using the dipole method. The image
is an enlarged version of the right image in �gure 6.6, and was
rendered in real-time.

141

Figure A.4: The marble Stanford Dragon model rendered with the multipole
method. The image is an enlarged version of the right image in
�gure 6.7, and was rendered at interactive frame-rates.

142 Large-Scale Images and Special Renderings

Figure A.5: The marble Stanford Dragon Model, rendered with illumination
from an environment map at interactive frame rate. The image
shows how the bottom of the model is illuminated by the lower
part of the environment corresponding to the ground. Light scat-
ters from the brighter nearby areas of the model, hence the di�use
look.

143

Figure A.6: A scene containing two models: the marble Stanford Dragon and
a marble �oor. The image was rendered at approximately 15
frames per second and uses a large number of splats to shade the
whole �oor. This demonstrates that visually pleasing images can
be rendered using the method implemented. Note the distinctive
look of marble captured in the rendering, the specular highlights
and the soft shadow on the ground.

144 Large-Scale Images and Special Renderings

Figure A.7: A scene containing two models: the marble Stanford Dragon and
a marble �oor. The image was rendered at approximately 21
frames per second. The rendering focuses on the di�use shadow
that follows the shape of the object and on the translucency e�ect
on the Dragon's thin parts.

145

Figure A.8: Rendering of the Killeroo model on a marble �oor. Note the soft
shadow and the self occlusion on the model.

146 Large-Scale Images and Special Renderings

Figure A.9: The Bird model rendered at interactive frame rate under environ-
ment illumination from St. Peter's Basilica light probe. Note the
di�use look of the material and slight specular highlights. The
color of the model corresponds to the di�use illumination from
the environment.

147

Figure A.10: Cat model rendered with material properties for chocolate milk.

148 Large-Scale Images and Special Renderings

Figure A.11: Cat model rendered with material properties for white jade. The
model is illuminated slightly from below, and the scattering ef-
fect can be observed on its head and paws.

149

����

150 Large-Scale Images and Special Renderings

Bibliography

[Akenine-Moller et al., 2008] Akenine-Moller, T., Haines, E., and Ho�man, N.
(2008). Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA,
USA.

[Anton, 1998] Anton, H. (1998). Calculus: A New Horizon. Number vb. 1�3.
John Wiley & Sons.

[Bavoil and Myers, 2008] Bavoil, L. and Myers, K. (2008). Order independent
transparency with dual depth peeling. Technical report, nVidia.

[Bavoil and Sainz, 2008] Bavoil, L. and Sainz, M. (2008). Screen space ambient
occlusion. Technical report, nVidia.

[Bentley, 1975] Bentley, J. L. (1975). Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509�517.

[Blinn and Newell, 1976] Blinn, J. F. and Newell, M. E. (1976). Texture and re-
�ection in computer generated images. Communications of the ACM, 19:542�
547.

[Bousseau et al., 2011] Bousseau, A., Chapoulie, E., Ramamoorthi, R., and
Agrawala, M. (2011). Optimizing environment maps for material depiction.
Computer Graphics Forum, Volume 30, Issue 4:1171�1180.

[Chang et al., 2008] Chang, C.-W., Lin, W.-C., Ho, T.-C., Huang, T.-S., and
Chuang, J.-H. (2008). Real-time translucent rendering using gpu-based tex-
ture space importance sampling. Eurographics, 27(2).

[Dachsbacher and Stamminger, 2003] Dachsbacher, C. and Stamminger, M.
(2003). Translucent shadow maps. Eurographics Symposium on Rendering.

152 BIBLIOGRAPHY

[Dachsbacher and Stamminger, 2006] Dachsbacher, C. and Stamminger, M.
(2006). Splatting indirect illumination. Proceedings of the Symposium on
Interactive 3D Graphics, 2006:93�100.

[Donner and Jensen, 2005] Donner, C. and Jensen, H. W. (2005). Light di�u-
sion in multi-layered translucent materials. ACM SIGGRAPH Proceedings,
24 Issue3, July 2005.

[Donner, 2006] Donner, C. S. (2006). Towards Realistic Image Synthesis of
Scattering Materials. PhD thesis, University of California, San Diego.

[Egan and Hilgeman, 1979] Egan, W. G. and Hilgeman, T. W. (1979). Optical
Properties of Inhomogeneous Materials. Academic Press.

[Everitt, 2001] Everitt, C. (2001). Interactive order-independent transparency.

[Fubini, 1958] Fubini, G. (1958). Sugli integrali multipli. Opere scelte, 2:243�
249.

[Georgiev and Butler, 2007] Georgiev, G. T. and Butler, J. J. (2007). Long-
term calibration monitoring of spectralon di�users brdf in the air-ultraviolet.
Appl. Opt., 46(32):7892�7899.

[Greene, 1986] Greene, N. (1986). Environment mapping and other applications
of world projections. IEEE Comput. Graph. Appl., 6(11):21�29.

[Groenhuis et al., 1983] Groenhuis, R. A. J., Ferwerda, H. A., and Bosch, J.
J. T. (1983). Scattering and absorption of turbid materials determined from
re�ection measurements. 1: Theory. Appl. Opt., 22(16):2456�2462.

[Ishimaru, 1978] Ishimaru, A. (1978). Wave propagation and scattering in ran-
dom media. Academic Press.

[Jensen and Buhler, 2002] Jensen, H. W. and Buhler, J. (2002). A rapid hier-
archical rendering technique for translucent materials. ACM Transactions on
Graphics, Volume 21 Issue 3.

[Jensen et al., 2001] Jensen, H. W., Marcschner, S. R., Levoy, M., and Hanra-
han, P. (2001). A practical model for subsurface light transport. SIGGRAPH.

[Kubelka, 1954] Kubelka, P. (1954). New contributions to the optics of intensely
light-scattering materials. part ii: Nonhomogeneous layers. J. Opt. Soc. Am.,
44(4):330�334.

[Lai et al., 2008] Lai, Y.-K., min Hu, S., Martin, R. R., and Rosin, P. L. (2008).
Fast mesh segmentation using random walks. In In ACM Symposium on Solid
and Physical Modeling.

BIBLIOGRAPHY 153

[Lai et al., 2006] Lai, Y.-K., Zhou, Q.-Y., Hu, S.-M., and Martin, R. R. (2006).
Feature sensitive mesh segmentation. In Proceedings of the 2006 ACM sym-
posium on Solid and physical modeling, SPM '06, pages 17�25, New York,
NY, USA. ACM.

[Markvart and Castaner, 2003] Markvart, T. and Castaner, L., editors (2003).
Practical handbook of photovoltaics: fundamentals and applications. Elsevier.

[Miller and Ho�man, 1984] Miller, G. S. and Ho�man, C. R. (1984). Illumina-
tion and re�ection maps: Simulated objects in simulated and real environ-
ments. SIGGRAPH 84: Advanced Computer Graphics Animation Seminar
Notes.

[Nicodemus et al., 1977] Nicodemus, F. E., Richmond, J., Hsia, J., Ginsberg,
I., and Limperis, T. (1977). Geometrical considerations and nomenclature for
re�ectance. National Bureau of Standards (U.S.) monograph.

[Pharr and Humphreys, 2004] Pharr, M. and Humphreys, G. (2004). Physically
Based Rendering: From Theory to Implementation. Morgan Kaufmann.

[Phong, 1975] Phong, B. T. (1975). Illumination for computer generated pic-
tures. Commun. ACM, 18(6):311�317.

[Policarpo and Fonseca, 2005] Policarpo, F. and Fonseca, F. (2005). Deferred
shading tutorial. Technical report, Ponti�cal Catholic University of Rio de
Janeiro.

[Ramamoorthi and Hanrahan, 2001] Ramamoorthi, R. and Hanrahan, P.
(2001). An e�cient representation for irradiance environment maps. Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques.

[Rashed, 1990] Rashed, R. (1990). A Pioneer in Anaclastics: Ibn Sahl on Burn-
ing Mirrors and Lenses.

[Ritschel et al., 2009] Ritschel, T., Grosch, T., and Seidel, H.-P. (2009). Ap-
proximating Dynamic Global Illumination in Screen Space. In Proceedings
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.

[Shah et al., 2009] Shah, M. A., Konttinen, J., and Pattanaik, S. (2009). Image-
space subsurface scattering for interactive rendering of deformable translucent
objects. IEEE Computer Graphics and Applications.

[Shatz et al., 2006] Shatz, I., Tal, A., and Leifman, G. (2006). Paper craft
models from meshes. The Visual Computer, Volume 22:825�834.

[Thomas and Finney, 1995] Thomas, G. B. and Finney, R. L. (1995). Calculus
and Analytic Geometry. Addison Wesley.

154 BIBLIOGRAPHY

[Turk, 1991] Turk, G. (1991). Generating textures on arbitrary surfaces using
reaction-di�usion. ACM SIGGRAPH Computer Graphics, 25 Issue 4, July
1991.

[Yamauchi et al., 2005] Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev,
A., and Seidel, H.-P. (2005). Feature sensitive mesh segmentation with mean
shift. In Proceedings of the International Conference on Shape Modeling and
Applications 2005, SMI '05, pages 238�245, Washington, DC, USA. IEEE
Computer Society.

	Summary
	Preface
	Acknowledgements
	1 Introduction
	2 Related Work
	3 Background
	3.1 Basic Radiometry
	3.2 Surface Reflection
	3.2.1 Bidirectional Reflection Distribution Function
	3.2.2 Bidirectional Surface-Scattering Reflection Distribution Function
	3.2.3 Fresnel Reflectance

	3.3 Light Transport in Volumes
	3.3.1 Volume Light Transport Processes
	3.3.2 Phase Functions

	3.4 Diffusion Approximation
	3.4.1 Dipole Approximation
	3.4.2 Multipole Approximation

	3.5 Numerical Integration
	3.5.1 Discrete Integration
	3.5.2 Monte Carlo Integration

	4 Method
	4.1 Algorithm Overview
	4.2 Materials
	4.2.1 Acquiring the needed parameters
	4.2.2 The Diffusion Properties

	4.3 Reflectance and Transmittance Profiles
	4.3.1 Multi-layered materials

	4.4 Rendering with Point Light Illumination
	4.5 Rendering with Environment Illumination
	4.5.1 Uniform Sampling
	4.5.2 Environment Illumination

	5 Implementation
	5.1 Translucent Materials under Point Light Illumination
	5.1.1 Rendering with the Dipole Approximation
	5.1.2 Rendering with the Multipole Approximation
	5.1.3 Rendering with multiple light sources
	5.1.4 Rendering multiple materials

	5.2 Rendering with Point Light Illumination - Discussion
	5.2.1 Advantages
	5.2.2 Caveats
	5.2.3 Drawbacks

	5.3 Translucent Materials under Environment Illumination
	5.3.1 Pre-rendering
	5.3.2 Rendering

	5.4 Rendering with Environment Illumination - Discussion

	6 Results and Validation
	6.1 Performance
	6.2 Visual Results
	6.2.1 Translucent Materials under Point Light Illumination
	6.2.2 Translucent Materials under Environment Illumination

	6.3 Validation

	7 Future Work
	7.1 Improving the solution
	7.2 Extending the solution

	8 Conclusions
	A Large-Scale Images and Special Renderings
	Bibliography

