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Abstract

A machine learning framework for analyzing experimental EEG data is pre-
sented. The question of whether the human brain is capable of more abstract
processing during sleep is partly answered by analyzing data from 18 sleeping
subjects tested at a semantic level using two different classes of auditory input.
Using a pattern recognition algorithm it is possible to localize significant dis-
criminating activity in 12 subjects during sleep. To validate the method, it is
applied to data from the same experiment obtained during wakefulness. Here it
produces significant results for 16 subjects.
The purpose of the presented pattern-based analysis is twofold. The first ob-
jective is to consider whether classification is possible with the underlying pre-
sumption that if a classifier can label new examples with a better accuracy than
chance, then the two conditions are indeed differently represented in the brain.
The second is to make claims about information representation in the brain.
Both objectives are fulfilled. Regardless of differences in latency and morphology
at a single-subject level, patterns similar to results from the relevant literature
concerning wakefulness do arise. This can be an indication of cognitive process-
ing during sleep all the way up to motor planning.
The presented results are obtained using a novel method for image based analysis
of EEG spectrograms at the sensor level. A non-linear support vector machine
is trained directly on spectrograms and combined with an embedded feature
selection scheme to overcome the challenges posed by low sample size high di-
mensional data. Opposite to classical analysis of EEG data, this method allows
analysis at an individual subject level, where results are normally obtained at a
group level. In addition to answering the question of whether there is informa-
tion of interest (pattern discrimination), the method also to some degree answer
the questions of where and how the information is encoded (pattern localization
and pattern characterization).
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Resumé

I hvor høj grad hjernen fortsætter med at behandle eksterne input, mens men-
nesket sover, har været diskuteret gennem årtier. I det følgende vises, at hjernen
i en vis grad forsætter med at behandle auditoriske input på et semantisk niveau
i de lette søvnfaser.
Der anvendes EEG-optagelser fra et forsøg, hvor testpersoner skal skelne mellem
ordklasser i vågen tilstand og i forlængelse deraf i sovende tilstand. Til analysen
udvikles en selvlærende algoritme, som finder signifikant diskriminerende hjer-
neaktivitet i mindst 12 ud af 18 sovende testpersoner. Metoden valideres på data
fra den vågne tilstand af forsøget. Her er det muligt at vise diskriminerende ak-
tivitet i 16 ud af de 18 testpersoner.
Den foreslåede metode til analyse af EEG-optagelser fra et eksperimentelt setup,
benytter en ikke-lineær support vektor maskine med en inkorporeret automa-
tisk udvælgelse af relevante datapunkter. Det giver mulighed for både at vise
diskriminerende aktivitet i hjernen, samt at undersøge hvor og hvordan informa-
tionen er indkodet. Resultaterne sammenlignes med litteraturen på området, og
der findes generelle ligheder. Mellem forsøgspersonerne ses betydelige forskelle i
latens og morfologi ved aktivering af hjernen. Resultaterne tyder på, at hjernen
behandler information helt op til forberedelse af bevægelse.
Metoden udmærker sig ved, at det i modsætning til klassisk analyse af EEG-data
er muligt at analysere data på individniveau. Ligeledes giver metoden mulighed
for at analysere direkte på spektrogrammer fra enkelte elektroder på trods af de
højdimensionelle repræsentationer med få forsøgseksempler.
Metoden er generisk i den forstand, at relevante spatiotemporale strukturer i
hjernen udvælges automatisk på baggrund af relevans for klassifikationen. Det
gør den særligt anvendelig i kendte såvel som ukendte eksperimentelle paradig-
mer, hvor forhåndsantagelser kan være problematiske.
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Chapter 1

Introduction

Sleep is a recurring and readily reversible state of unconsciousness in every hu-
man being. It is revealed by inactivity of most voluntary muscles and apparent
unresponsiveness to, and interaction with, external stimuli. To what extend
the brain actually shuts down and whether semantic processes take place dur-
ing sleep however, is relatively unknown. This thesis deals with the question
of whether, and to what extent, the brain continues to respond to and process
external stimuli during sleep.

Though [Emmons and Simon, 1956] state that material presented a number
of times during sleep cannot be subsequently recalled and in contrast [Huxley,
1932]’s conditioning of children in "Brave New World" via hypnopedia seems far
fetched, both some older [Oswald et al., 1960, Formby, 1967] and newer [Halperin
and Iorio, 1981, Bastuji et al., 2002] studies have shown that auditory stimuli
with a relevant meaning are more likely to lead to awakening, indicating some
discriminating brain activity. However, it is still unclear if the brain is capable
of more abstract processing or even preparation of task-relevant responses.
To get an insight on this issue, data from an experiment, where subjects were
presented a task-set while awake and tested later whether this task-set would
be maintained while the same subjects were asleep, is used. Subjects were pre-
sented with auditory stimuli before sleep onset and had to give a behavioral
response, classifying the stimulus as animals vs. objects by pressing a button
using the right and left hand respectively. This is known to induce contralateral
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activity patterns in the brain, [Pfurtscheller and Lopes da Silva, 1999]. Hence,
this task allowed the mapping of two specific categories with a specific manual
response. It was reasoned that the induction of a category-response mapping
just before sleep onset would promote the maintenance of this task-set after
the disappearance of behavioral responsiveness. Following sleep onset, subjects
were exposed to new auditory stimuli within the same two categories to ensure
the involvement of semantic categorization rather than simple stimulus-response
associations.

Sleeping subjects present several significant challenges since classical analysis
of motor action is not possible. A lot of cognitive experiments are a combina-
tion of a presented stimulus and a simple forced-choice perceptual report. This
is the case in the awake case of the present experiment. During sleep there
is no direct way to evaluate the response. Both during sleep and wakefulness
however, it is possible to measure and evaluate brain activity using Electroen-
cephalography, EEG.
Usually grand averages of EEG-signals within a group of subjects might give
some insights using event-related potentials, ERP, and event-related desynchro-
nization, ERD and synchronization, ERS. However, in EEG signals from sleep-
ing subjects the signal-to-noise ratio is reduced and simple statistical analyses is
more challenging, also due to a considerable intra- and inter- subject variability.
Furthermore, when dealing with high dimensional data representations in neuro-
science studies, classical statistics are insufficient for analysis of single subjects.
Simplified analysis where the dimension is reduced to a single measurement
might be unsatisfactory and hence, the analysis can often only be conducted at
a group level.
More advanced mathematical tools may provide additional insights. One ap-
proach to high dimensional problems is to use pattern recognition systems.
Pattern recognition is about seeing similarities in diverse data and machine
learning techniques, especially the Support Vector Machine, SVM [Boser et al.,
1992, Cortes and Vapnik, 1995, Vapnik, 1998], has proven very powerful for
various classification- and pattern recognition problems, including EEG data
interpretation in Brain Computer Interfaces, BCI, [Lotte et al., 2007]. Hence
they may help to answer the question of the degree of semantic processing con-
tinuing in the brain during sleep. Utilizing the structure of the models might
even help to identify specific cortical dynamics associated with the described
tasks. Using SVMs it is possible to do the analysis at the level of individual
subjects.

The adaption of support vector machines for neuro-scientific image-based statis-
tical analysis is inspired by several functional magnetic resonance imaging, fMRI
studies [Pereira et al., 2009]. Two or more sets of images, in the present thesis
EEG spectrograms corresponding to two different conditions, are analyzed with
the goal of identifying differences. This is done by training an SVM on one part
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of the data set and then predict the labels on the rest of the data set. The
underlying presumption is that if an SVM can label new examples with a better
accuracy than chance, the two conditions are indeed different, and the SVM
implicitly find the differences. Furthermore, the benefit of the SVM is that it
does not assume independence between the data set features.

The performance of pattern recognition systems obviously depends on the in-
put features and the applied classification algorithm. Furthermore, tuning of
parameters in the different algorithms is of great importance. SVMs are usually
considered to have two user defined hyperparameters. The kernel parameter, σ,
to control the degree of nonlinearity applied to the feature space and a regular-
ization term, C, which determines the trade off between minimizing the training
error and minimizing model complexity. However, there is another parameter
in many of these systems, which is usually less investigated. This parameter is
the stopping criterion, ε, employed in the different optimization algorithms. It
could potentially impact the results of the SVM in terms of accuracy and speed.
This parameter is explored in this thesis.

SVMs normally use regularization to avoid overfitting without requiring space
dimensionality reduction. However e.g.[Guyon et al., 2002] show that SVMs can
benefit from space dimensionality reduction, not only concerning computational
tractability, but also regarding prediction performance.
One solution to space dimensionality reduction is feature selection. In addition
to performance improvements, it is an intuitive way to get a better understand-
ing of the influence of the input data, i.e. identifying the characteristics of the
cortical dynamics needed for classification.
Feature selection can be done using the weights of a linear SVM itself, by sen-
sitivity analysis, correlation coefficients, ranking criterions etc, [Guyon et al.,
2006]. Recursive feature elimination, [Guyon et al., 2002], is a technique that
removes features iteratively using an internal measure. It is reported to obtain a
better ranking of features than by using the weights of a single classifier. In this
thesis the recursive feature elimination is expanded to comply with a non-linear
version of the SVM to identify and utilize possible non-linear patterns as well.

Hence to summarize, the goal of the current thesis is to harness machine learn-
ing techniques to analyze EEG recordings obtained during sleep at a level not
possible using classical statistical analysis. The two main objectives are:
Objective 1: Classify (SVM) and locate (Feature Selection) patterns in sleep-
ing brains which can indicate discriminating activity at a semantic level during
sleep.
Objective 2: Improve (Feature Selection and Feature Construction) and in-
vestigate computational tractability (Feature Selection and Optimization Tol-
erance) of the classification model.
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The thesis is organized as follows. The physiological background and the exper-
iment used for the data acquisition are presented in Chapter 2. The SVM and
the algorithm for solving it will be derived in Chapter 3. The SVM is enhanced
for the current setting by feature selection schemes introduced in Chapter 4.
Considerations related to parameter tuning and model selection are presented
in Chapter 5 along with a resampling framework for evaluation of the methods.
Small examples are provided to illustrate the impact of the proposed heuristics.
Finally the data obtained from the experiment are analyzed in Chapter 6 using
the presented framework. In Chapter 7 the results are discussed and extensions
are proposed before a final conclusion is provided in Chapter 8.



Chapter 2

Physiological Background

2.1 Brain Activity and EEG

A fundamental property of the brain is the ability of groups of neurons to work
in synchrony and generate oscillatory activity, [Bear et al., 2007]. Brain activ-
ity and inactivity is widely studied and large-scale activity can be measured by
non-invasive techniques such as EEG, which is the recording of electrical activ-
ity along the scalp, see Figure 2.1 and 2.2. In general, EEG signals have a good
time resolution and a broad spectral content. The signals are usually described
using the oscillatory activity in specific frequency bands, and it appears that
the frequency of brain oscillations is negatively correlated with amplitude. The
amplitude is furthermore proportional to the number of synchronously active
neurons. This indicates that slowly oscillating cell assemblies comprise more
neurons than fast oscillating assemblies [Brown and Singer, 1993]. These fluc-
tuations of field potentials from large cell assemblies are measured by electrodes
that are fixed to the outside of the scalp. Single electrodes can easily be mounted
and removed, but since the EEG signal is usually recorded at many locations
simultaneously, the use of EEG caps is an advantage. In such a setup, the
distance between neighboring electrodes is usually in the range of one to a few
centimeters.
The spatial resolution of EEG is not only limited by the distance between elec-
trodes, [Nunez and Srinivasan, 2006]. EEG recordings suffer from the fact that
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the electric signal has to pass through the intra-cerebral liquor, the meninges,
the skull bone, and the skin, see Figure 2.2. These layers act as a low-pass
filter to the electrical fields and act as a spatial low-pass filter as well. EEG is
furthermore very prone to so-called artifacts. Artifacts are signal components
picked up by EEG electrodes that are not caused by neural activity and can
be so strong in amplitude that interesting signals are not detectable any more.
The fact that artifacts are picked up with highest intensity at electrodes closest
to their origin can help to identify them. Typical artifacts in EEG comprise:
muscle activity, movements of the eyeball, eye blinks and exterior signal sources.
Most artifacts however, can be controlled by proper instruction of the subjects
by using additional control electrodes close to possible artifact locations and by
proper frequency filtering of the recorded signals, [Nunez and Srinivasan, 2006].
[Berger, 1929] discovered the oscillatory behavior and described the commonly
occurring alpha activity (8 -13 Hz) after his invention of EEG around 1930. It
can be detected from the occipital lobe during relaxed wakefulness and increases
when the eyes are closed. Later defined frequency bands are delta (1 - 4 Hz),
theta (4 - 8 Hz), beta (13 - 30 Hz) and gamma (> 30 Hz). Generally oscillations
in the beta band and above indicate an activated cortex [Bear et al., 2007]. The
exact definitions of the frequency ranges are varying slightly in the literature,
especially the transition from beta to gamma is defined over a broader range,
see e.g. [Nunez and Srinivasan, 2006, Pfurtscheller and Lopes da Silva, 1999].
It has been shown that several kinds of events can induce time-locked changes
in the oscillatory activity of ensembles of neurons or neural networks. These
changes are commonly referred to as event-related potentials, ERP. Averaging
techniques are commonly used to detect ERPs since these will enhance the
signal-to-noise ratio. The underlying assumption is that the brain signal has a
relatively fixed time-delay to the stimulus and other ongoing activity behaves as
additive noise. This is however just a simplification of the real condition. Certain
events are indeed time-locked but not phase-locked and can either desynchro-
nize or even block the present alpha activity. These types of changes can not
be extracted by simple averaging methods, but may be detected by frequency
analysis [Pfurtscheller and Lopes da Silva, 1999]. These kind of phenomena
where power in a given frequency band is either increased or decreased may be
viewed as an increase or decrease in synchrony of the underlying neural network.
It is referred to as event-related synchronization, ERS, [Pfurtscheller, 1992] and
event-related desynchronization, ERD, [Pfurtscheller, 1977].
[Pfurtscheller and Lopes da Silva, 1999] propose that ERPs reflect changes in
afferent activity in the cortical neurons and ERD/ERS reflect changes in the
activity of local interactions between main neurons and interneurons.
[Pfurtscheller and Lopes da Silva, 1999] and [Donner et al., 2009] summarizes
from several studies how rhythmic neural activity carries information about sen-
sory stimuli, cognitive processes, or motor tasks. Limb movements especially
are reported to be accompanied by suppression of low-frequency activity and
enhancement of high frequency activity in motor cortex, which is the part of
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the brain responsible for planning and execution of movements. It is notewor-
thy that both suppression and enhancement of activity is stronger contralateral
than ipsilateral to the movement. Furthermore [Donner et al., 2009] finds in
accordance with other studies that neural activity exhibit robust lateralized ef-
fector selectivity of opposite polarity in beta and gamma bands.
Figure 2.3 shows the areas of the brain responsible for planning and execution of
movements. Two main areas, area 4 just anterior to the central sulcus and area
6 which lies anterior to area 4, constitute the areas responsible for planning and
execution of movements. All the highlighted areas in Figure 2.3 are however
involved to some extend in voluntary limb movement. It has been shown that
stimulation of area 4 leads to movements of the muscles on the contralateral side
of the body and EEG recordings from this area show clear patterns when limb
movements are present. Likewise, as described in the classification studies in
the following section, area 6 is active when movements are imagined or planned
but not executed whereas area 4 is dominant during the actual movement [Bear
et al., 2007].

Figure 2.1: Principle of EEG recordings. Small voltage fluctuations are mea-
sured between selected pairs of electrodes placed on the scalp. Different areas
of the brain, e.g. anterior, posterior, left or right, can be compared by selecting
corresponding electrodes. The output from the amplifier either drives a pen
recorder or is recorded digitally. (Source: [Bear et al., 2007])
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Figure 2.2: A small collection of pyramidal cells is seen. This is the prevalent
neuron type of the cerebral cortex. The human nervous system consists of ap-
proximately 1010 neurons, where most of the neurons are situated in the central
nervous system consisting of the brain and the spinal chord.
A neuron receives information either from sensory cells or from other neurons
in the form of electrical or chemical stimulations which can be excitatory or
inhibitory. If excitatory stimulations prevail, an inflow of Na+ ions through the
membrane occurs. This inflow transiently disturbs the resting cell potential,
depolarizes the membrane, and leads to a so-called excitatory postsynaptic po-
tential. This depolarization only lasts for 1-2 ms before the influx of K+ ions
reestablishes the original polarization.
The electrical contribution from a single neuron is extremely small and it must
pass through several layers of non-neural tissue as seen in the figure to reach the
electrode. Only if thousands of cells contribute to the signal, it is large enough
to be measured by the electrode. The amplitude of the signal depends on how
synchronous the underlying activity is. By convention EEG signals are plotted
with negativity upward. (Source: [Bear et al., 2007])
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Figure 2.3: The areas of the cerebral cortex related to planning and execution
of voluntary movements. Area 4 is the primary motor cortex and area 6 consti-
tutes the premotor cortex involved in planning of movements. (Source: [Bear
et al., 2007])
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2.1.1 Classification Studies

[Pfurtscheller et al., 2006] present a classification study of four motor imagery
task and concludes that the discrimination improved when ERD end ERS pat-
terns were induced in at least one or two tasks. The most important electrode
positions for the classification are found to be C3, C4, and Cz of the interna-
tional 10-20 system, see Figure 2.5. Furthermore an optimal spatial filtering
reveals electrodes in the neighborhood of C3 and C4 to be the most impor-
tant. They finally conclude there is a great inter- and intra-subject variability
concerning the reactivity of upper mu rhythm (9-13 Hz), which is the typical
rhytmic activity exhibited by motor cotical areas at rest.
[Morash et al., 2008] use neural signals preceding movement and motor imagery
to predict which of the four movements/motor imageries is about to occur, and
to access this utility for BCI applications [Crone et al., 1998].
Within BCI applications machine learning techniques are widely used in connec-
tion with EEG recordings,[Blankertz et al., 2004, Lotte et al., 2007, Lal et al.,
2004]. [Lotte et al., 2007] review classification algorithms used in a BCI set-
ting and find that especially the support vector machine performs well. Using
similar techniques to analyze experimental data in an EEG framework is less
widespread whereas they are commonly used to analyze neuroimaging data in
fMRI settings [Pereira et al., 2009, Haynes and Rees, 2006, Norman et al., 2006].
[Cruse et al., 2012] and [Cruse et al., 2011] investigate motor imagery tasks in a
group of patients in the minimally conscious state and vegetative state using a
linear SVM and find robust responses in some cases. They use artifact rejected,
downsampled EEG signals recorded over the motor cortex and calculate log
power values at every time step in four frequency bands ranging from 7-30 Hz.
60 to 203 trials contribute to each subjects single-trial analysis and accuracies
in the range 38-78 % are obtained for the two-class analysis.

2.2 The Sleeping Brain

EEG signals change dramatically during sleep and show a transition from faster
to increasingly slower frequencies. The spectral content is therefore one of the
measures used to characterize different sleep stages.
Sleep has several very distinct phases but can overall be characterized by two
main stages, the the Rapid Eye Movement, REM, and non-REM sleep discovered
in the 50’s by [Aserinsky and Kleitman, 1953]. The non-REM is characterized
by high voltage and slow synchronized EEG rhythms whereas the REM sleep
is characterized by desynchronized, fast and low voltage signals. When falling
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asleep the EEG alpha rhythms of relaxed wakefulness become less regular and
decline along with the eyes making slow, rolling movements. This is the first
of four stages in the non-REM sleep [Bear et al., 2007], see Figure 2.4, and is
also referred to as the drowsiness period. The second stage (light sleep) usu-
ally enters after a few minutes and lasts 5-15 minutes. This stage is slightly
deeper and usually considered to be the actual onset of sleep. It is character-
ized by occasional sleep spindles and K-complexes. Sleep spindles are longer
lasting oscillatory brain activity in the 8-14 Hz domain whereas the K-complex
is a brief high-amplitude sharp wave, see Figure 2.4. The K-complex can oc-
cur spontaneously but also in response to e.g. auditory stimuli [Roth et al.,
1956] and is often followed by spindles. Around actual sleep onset and before
K-complexes and spindles occur, vertex sharp waves can be observed. They are
small spike-like positive discharges that occur spontaneously or in response to
sensory stimuli, [Rodenbeck et al., 2006]. Stage 3 (deep sleep) show large ampli-
tude slow delta waves and sleep spindles gradually disappear as sleep becomes
deeper. Stage 4 (very deep sleep) is the deepest of the four stages with large
delta waves of 2 Hz or less. After stage 4 sleep lightens again and ascends to
stage 2 from where it enters a brief period of REM sleep with fast beta rhythms.
Physically, the REM sleep is characterized by rapid eye movements, rapid and
irregular heart rate and breathing, increased blood pressure and the muscles
of the body are virtually paralyzed. During a night the brain cycles through
the different stages and generally moves towards more REM sleep as the night
progress, [Bear et al., 2007]. Newer publications, e.g. [Iber, 2007], revise this
classical view slightly with new class definitions and introduction of micro awak-
enings and deepening of sleep within sleep stages.

2.2.1 Processing During Sleep

During sleep external stimuli are processed to some extent. The fact that peo-
ple are more easily awoken by presentation of their own name and mother’s by
their baby’s cry is a clear indication that relevant external stimuli do get some
attention, [Hennevin et al., 2007, Oswald et al., 1960, Formby, 1967, Burton
et al., 1988, Bruck et al., 2009]. Another indication of the processing of external
stimuli is observed from the phenomenon that external stimuli can be incorpo-
rated in dreams [Kramer et al., 1982].
[Edeline et al., 2000] show for the guinea pig that auditory messages sent by
thalamic cells to cortical neurons are reduced but preserved both in terms of
rate and frequencies, which indicate that the messages sent to cortical cells are
not deprived of relevant information and can explain how processing of relevant
stimuli is possible during sleep. There is hence also evidence of maintained
cortical responsiveness to auditory stimuli during REM and non-REM sleep in
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Figure 2.4: Typical EEG rhythms recorded during wakefulness and during
sleep. The different signals illustrate the signals that characterize different sleep
stages. (Source: [Bear et al., 2007])
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both humans and animals, [Hennevin et al., 2007].
Human ERP studies of response to external auditory stimuli, such as one’s own
name, [Atienza et al., 2001], indicate that auditory information processing is
possible though it is affected differently during the different stages of sleep.
The P300 effect is an ERP component showing a positive deflection (relative to
reference electrode) in voltage with a latency of 250 to 500 ms, which during
wakefulness is evoked in the process of decision making. During sleep, studies of
the P300 component indicate that discriminating processes occur though shape,
latency and amplitude compared to the normal P300 component is different
[Hennevin et al., 2007, Atienza et al., 2001, Perrin, 2004, Perrin et al., 1999], at
least during early sleep stages and REM sleep. Compelling are also ERP studies
which show that the N400 effect appears from word associations during both
REM and early stages of non-REM sleep [Brualla et al., 1998, Ibáñez et al.,
2008, Bastuji et al., 2002]. The N400 is a negative potential (relative to refer-
ence electrode) seen in the EEG which peaks around 400 ms post-stimulus in
response to a wide array of meaningful or potentially meaningful stimuli such as
auditory words. However, it is a rather automatic mechanism [Federmeier and
Kutas, 2009, Kutas and Federmeier, 2011], but manipulations that affect the
extent to which attention is allocated to N400-eliciting stimuli do influence the
size of N400 effects. Whether processes indexed by the N400 require awareness
has been debated for decades, but experiments suggest that N400 effects can
be obtained even when manipulations are incidental to the task and when the
stimuli themselves elicit little conscious awareness, e.g. during sleep.
At another level, [Antony et al., 2012] recently showed that a partly auditory
task learned during wakefulness can be promoted during sleep, which is another
indication that more active processing takes place.
Hence there are various indications that during sleep, auditory stimuli are inte-
grated at a semantic level, but clearly further evidence and investigation of the
level of cognitive processing is needed. Whether sleep involves deeper processing
not only at a semantic level but all the way "up" to the preparation of task-
relevant responses remains unclear. According to [Nofzinger et al., 2002, Ma-
quet et al., 2000, Manganotti et al., 2004] the relative cortical activity in sleep
and awakening of motor cortex indicates that motor cortex is not fully deacti-
vated during sleep. However, it does remain a question whether cortical motor
processes are active during sleep. And it is indeed a question posing certain
challenges to investigate since the initialization of a new task-set might prove
difficult during sleep stages, because the prefrontal regions dealing with execu-
tive functions are particularly suppressed in comparison to other cortical regions
[Muzur et al., 2002, Maquet et al., 2000]. This is somewhat addressed in the ex-
periment described in Section 2.3, which is the background of this thesis. Here
an induction strategy is used as an approach for the study of non-conscious
perception. The results presented in the following are obtained during the early
stages of non-REM sleep and hence it remains to investigate whether it gener-
alize to other sleep stages including REM sleep.
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Figure 2.5: Standard placement of the electrodes according to the international
10-20 system. Each location is paired with a letter and a number to identify
the lobe and hemisphere location respectively. F, T, P and O corresponds to
frontal, temporal, parietal, and occipital lobe, and additionally C (central lobe)
is introduced for further identification. Even numbers refer to electrode positions
on the right hemisphere, and odd numbers refer to those on the left hemisphere.
Z refers to an electrode placed on the midline.
The nasion, which is the point between the forehead and the nose, and the inion,
which is the lowest point of the skull from the back of the head, are used as
reference for the EEG electrodes. (Source: www.gtec.at)
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2.3 Experimental Setup

The depth of unconscious cognitive processing can be investigated at various
levels and using various approaches. More specifically the present thesis deals
with the question of whether there is maintained some semantic processing in
the unconscious state of sleep and if it is possible to show that auditory stimuli
presented to the sleeping subject can reach higher levels of processing.
To answer the question, data from an experiment conducted by Dr. Sid Kouider
at Laboratoire de Sciences Cognitives et Psycholinguistique, École Normale
Supérieure is analyzed. In this study it was tested if an association between
a semantic category and a specific motor response learned during wakefulness
can be maintained in sleep. More specifically, it was tested whether a learned
motor mapping association between a lateralized motor action and specific se-
mantic category is preserved during early sleep stages. The experiment relies
on an induction strategy to overcome the problem of learning a completely new
task-set during sleep. Subjects were presented a task-set while they were still
awake and then tested whether this task-set was maintained after subjects fell
asleep, see Figure 2.6. In this section the experimental setup will be described
briefly.

2.3.1 Procedure

Subjects were instructed to do a categorization of spoken words by pressing
a button with their left or right hand depending on corresponding semantic
category, i.e. animals or objects, see Figure 2.6. While doing the classification
subjects were lying in a comfortable chair in a dark room with their eyes closed
to encourage the transition towards sleep. The auditory stimuli was presented
in headphones and subjects were instructed that they could fall asleep anytime
during the experiment but were also asked not to stop responding voluntarily
to easier fall asleep. When the subjects were assessed to be asleep a new list
of words was introduced. This new list had the same properties, see Section
2.3.2, as the list presented during sleep, but was introduced to test for genuine
semantic effects rather than simple stimulus-response associations [Kouider and
Dehaene, 2007].

2.3.2 Stimuli

The spoken words used as stimuli were selected from the CELEX lexical database
(Linguistic Data Consortium, University of Pennsylvania). There were 48 names
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Figure 2.6: Before falling asleep subjects had to classify a word presented to
them through headphones every 6 to 9 seconds as either animals or objects.
This task allowed the mapping of each specific category with a specific motor
response. This induction of a category-response mapping just before the onset
of sleep is believed to promote the maintenance the task-set even after sleep
onset. Testing conditions encouraged the transition towards sleep while remain-
ing engaged with the same task-set. For each subject one of two lists of words
was presented during wakefulness and the other list during sleep ensuring ac-
tual abstract categorization rather than simple stimulus-response associations.
(Source: Sid Kouider)
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of objects and 48 names of animals. Half were monosyllabic and the other half
disyllabic, with animal and object names matched as closely as possible in terms
of combined (spoken and written) log lemma frequencies, as confirmed by an in-
dependent t-test (p > 0.10). Additionally, words within the two categories were
matched in a pair-wise fashion regarding their phonological properties: each
object name was matched with a similar animal name (for example "quilt" was
matched with "quail"), ensuring that animal and object names could not be dif-
ferentiated in terms of phonological properties. The words were tape-recorded
by a female voice and digitized. Durations of the resulting stimuli ranged from
357 to 800 ms. Two lists of 48 stimuli each were produced, one for the awakening
period and the other for the sleeping period.

2.3.3 Sleep Assessment

Sleep onset was assessed both online and offline. During the experiment subjects
were assessed to be asleep when showing no overt response for at least two
minutes of stimulation and if the EEG showed sleep markers before and after
the presentation of each word, i.e. vertex sharp waves, regular spontaneous and
evoked K-complexes, sleep spindles, and an overall reduction of fast, alpha/beta
rhythms in favor of slower delta/theta rhythms, cf. Section 2.2. After the
experiment was finished, this was verified offline, and ambiguous epochs were
excluded from the analysis.

2.3.4 Subjects

18 out of 47 subjects fell asleep for at least 9 consecutive minutes and were
included in this study. Of these, 6 were women and 12 were men in the age
range 18-30-years-old. They were all healthy native English speakers, right-
handed and reported no auditory, neurological or psychiatric alterations. Only
self reported easy sleepers [Johns et al., 1991] were chosen for the experiment
to increase the probability that subjects would fall asleep. Subjects were also
asked to avoid exciting substances as coffee, and to sleep 1-2 hours less than
usual the night preceding the experiment. They signed a written consent and
were paid for their participation.
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2.3.5 EEG Equipment

The electroencephalogram was continuously recorded from 64 Ag/AgCl elec-
trodes mounted on an electrode cap (Easycap, Falk Minow Services, Herrsching-
Breitbrunn, Germany) using SynAmps amplifiers (NeuroScan Labs, Sterling,
VA), with Cz as a reference. The impedance for electrodes was kept below 6
kΩ. Data were acquired with a sampling rate of 500 Hz, and then down sampled
at 250 Hz. An electrooculogram (EOG) was recorded through electrodes placed
above and below the right eye (vertical) and at the outer canthi (horizontal).
Amplifier band pass was 0.1-100 Hz.



Chapter 3

Support Vector Machines

Statistical learning theory [Vapnik, 2006, Vapnik, 2000, Vapnik, 1998] provides
the theoretical basis for machine learning and Support Vector Machines, SVM.
It deals with the problem of inferring a predictive function based on empirical
data using concepts from the fields of statistics and functional analysis.
SVMs have developed in several directions such that they have applications both
within regression estimation as well as single-class and multi-class classification.
This thesis deals with the formulation dealing with two-class pattern recognition
in the non-linear version [Boser et al., 1992, Cortes and Vapnik, 1995, Vapnik,
1998].
The foundation of the SVM is the separating hyperplane. From this an optimal
margin hyperplane can be defined and extended to the case where data are non-
separable. Furthermore the optimal margin hyperplane can be generalized to a
non-linear version where it is computed in a feature space non-linearly related
to the input space. The following review is inspired by [Schölkopf and Smola,
2002, Bishop, 2007].
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3.1 The Learning Setting

Suppose m observations, where each observation belongs to only one of two
different classes, are given. Each observation consists of a pattern vector xi ∈
X , i = 1, ...,m and the associated class label yi, which for mathematical conve-
nience is labelled by either +1 or −1 in the simple binary classification problem.
In the present thesis this corresponds to the classification of words belonging
to one of two classes. In the frame of mathematical learning the goal is to be
able to generalize to unseen data, i.e. for a new x ∈ X it is possible to predict
the corresponding y ∈ ±1. Again in the present thesis, given an EEG epoch
recorded during auditory stimulation, it is possible to predict the word class. In
the following it is assumed that there exists some unknown but fixed probability
distribution P(x,y) from which these data are drawn and the data are assumed
i.i.d. For all x ∈ X we want to estimate a function f : X → {±1}.

3.2 Separating Hyperplanes

If the pattern vectors are given in a dot product space x ∈ H, then any hyper-
plane can be written as

{x ∈ H|〈w,x〉+ b = 0}, w ∈ H, b ∈ <, (3.1)

where w is an orthogonal vector to the hyperplane, see also Figure 3.1.

The dot product is a simple similarity measure, since it represents geometric
constructions that can be formulated in terms of angles, lengths and distances.
Later a kernel function, k, will be introduced since it turns out that in many
problems the dot product is not sufficiently general. However, both the dot
product and kernels gives a way to characterize similarity in two patterns ge-
ometrically and hence the ability to construct learning algorithms using linear
algebra and analytic geometry. In both cases the space H is called a feature
space.
If the hyperplane is scaled such that the point closest to the hyperplane has a
distance of 1

‖w‖ , the hyperplane is said to be canonical and much freedom in
choosing a hyperplane is gone. Nevertheless, it is still possible to choose both
(w, b) and (−w,−b). Without class labels it is not possible to distinguish these
hyperplanes. For pattern recognition problems they are different as they make
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Figure 3.1: The SVM "learns" a hyperplane which gives the best separation of
two classes. The figure shows a 2-dimensional classification problem where red
dots correspond to the class label +1 and green dots corresponds to the class
label -1.

opposite class assignments using the two inversely correlated decision functions

fw,b : H → {±1}
x 7→ fw,b(x) = sgn(〈w,x〉+ b). (3.2)

From this it is clear how a separating hyperplane can be constructed if the data
are separable, i.e. two disjoint sets with corresponding different class labels.
In creating learning algorithms it proves useful to define the margin as well. The
margin is defined as the perpendicular distance between the decision boundary
and the closest data point, hence for a hyperplane, the geometric margin of the
point (x, y) ∈ H × {±1} is defined as

ρ(w,b)(x, y) := y(〈w,x〉+ b)/‖w‖, (3.3)

and the minimum value

ρ(w,b) := min
i=1,...,m

ρ(w,b)(xi, yi), (3.4)

is the geometrical margin, or just the margin, of (x1, y1), . . . , (xm, ym).
For a correctly classified point (x, y) the margin is the distance from x to the hy-
perplane and for a misclassified point the margin gives a negative distance. This
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can be seen from the fact that for the canonical hyperplane considered the mar-
gin is 1/‖w‖ and the length of the weight vector is 1. Hence it is the projection
of x onto the direction orthogonal to the hyperplane. The idea behind SVMs is
to choose a decision boundary for which the margin of the separating hyperplane
is maximized. The intuition behind this is that a large margin will give the op-
timal separation of the data. Furthermore, since the observed data is assumed
to have been generated by the same underlying process it seems reasonable to
assume that new observations will lie close (inH) to one of the training patterns.

3.3 Optimal Margin Hyperplanes

An important property of support vector machines is that the determination of
the model parameters eventually corresponds to a convex optimization problem,
hence any local solution is also a global optimum. Finding the optimal separat-
ing hyperplane (maximum margin) is the heart of the support vector machine
and it basically boils down to optimizing the parameters w and b in order to
maximize the decision boundary.
For the canonical hyperplane all points will satisfy yi(〈xi,w〉 + b) ≥ 1 and the
decision boundary is optimized when ‖w‖−1 is maximized. Hence, for a linearly
separable set of training data the optimal separating hyperplane can be found
from the following quadratic optimization problem

min
w∈H,b∈<

τ(w) =
1

2
‖w‖2 (3.5)

subject to: yi(〈xi,w〉+ b) ≥ 1 ∀ i = 1, ...,m. (3.6)

Solving this primal problem will result in (w, b) with the largest possible ge-
ometric margin with respect to the training set. The dual problem however,
can give some additional insight and it is here the foundation of the SVM is
found. The Lagrangian of the inequality constrained primal convex quadratic
optimization problem is given by

L(w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αi(yi(〈xi,w〉+ b)− 1), (3.7)

where αi ≥ 0 are the Lagrange multipliers.
The corresponding Karush-Kuhn-Tucker, KKT, optimality conditions, [Nocedal
and Wright, 1999] are both necessary and sufficient conditions for optimality
since both the objective function and the inequality constraints are continuously
differentiable convex functions.
To obtain the same solution as to the primal problem, the Lagrangian must be
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minimized with respect to w and b and maximized with respect to αi, hence the
solution is found at a saddle point. Minimizing the Lagrangian with respect to
w and b yields two conditions

∂

∂w
L(w, b,α) = 0 (3.8)

∂

∂b
L(w, b,α) = 0, (3.9)

which implies that

m∑
i=1

αiyi = 0 (3.10)

w =

m∑
i=1

αiyixi. (3.11)

From 3.11 it can furthermore be seen that the unique solution vector (due to
convexity) has an expansion only in terms of the training data. If 3.11 is plugged
into the Lagrangian 3.7, we obtain

L(w, b,α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjxTi xj − b
m∑
i=1

αiyi, (3.12)

which can be reduced using 3.10 such that

L(w, b,α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjxTi xj . (3.13)

Combined with the constraints, we have the dual form of the primal optimization
problem

max
α∈<m

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉 (3.14)

subject to: αi ≥ 0, i = 1, ...,m (3.15)
m∑
i=1

αiyi = 0. (3.16)

This is the foundation of the SVM algorithm, written only in terms of the inner
product between points in the input feature space and the parameters (Lagrange
multipliers) αi. For every training point there is a Lagrange multiplier αi. At
the solution, those points, xi for which αi > 0 are called support vectors and
they lie exactly on the margin. All other training points have αi = 0 and are
irrelevant as they do not appear in (3.11).
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Now suppose the models αi’s are found using a training set, and we wish to
make a prediction at a new input x. We would then calculate 〈w,x〉 + b, and
predict y = 1 if and only if this quantity is bigger than zero. But using (3.11) ,
this quantity can also be written

wTx + b = (

m∑
i=1

αiyixi)Tx + b =

m∑
i=1

αiyi〈xi,x〉+ b. (3.17)

Hence the prediction only depends on the inner product between the new point
x and the points in the training set. Moreover, the αi’s will all be zero except
for the support vectors. Thus, many of the terms in the sum will be zero, and
only the inner products between x and the support vectors (of which there is
often only a small number) need to be calculated in order to calculate (3.17)
and make a prediction using the sgn function.

3.4 Soft Margin Optimal Hyperplanes

The classifier considered so far is ideally suited for linearly separable data with-
out outliers. However, in practice data is rarely in that condition, and the
algorithm must be adjusted to work for non-separable data sets and to be less
sensitive to outliers. To allow some of the training points to be misclassified,
the optimization problem can be reformulated by introducing slack variables for
each training point, ξi ≥ 0, i = 1, ...,m and relax the separation constraints 3.6
such that

yi(〈xi,w〉+ b) ≥ 1− ξi i = 1, ...,m. (3.18)

Correctly classified training points that are either on the margin or on the correct
side of the margin yields ξi = 0. Points that lie inside the margin, but on the
correct side of the decision boundary have 0 < ξi ≤ 1, and misclassified data
points on the wrong side of the decision boundary yields ξi ≥ 1, see Figure
3.1. This allows the constraints to be satisfied by making ξi large enough as it
relaxes the hard margin constraint to give a "soft" margin and allows some of the
training set data points to be misclassified. However, it is necessary to penalize
large values of ξi in order not to obtain the trivial solution where all ξi’s are
large. This can be done by including the slack variables in the objective function
of (3.5), hence our goal is now to maximize the margin while penalizing points
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that lie on the wrong side of the margin. This can be formulated as follows

min
w∈H,b∈<

τ(w) =
1

2
‖w‖2 + C

m∑
i=1

ξi (3.19)

subject to: yi(〈xi,w〉+ b) ≥ 1− ξi i = 1, ...,m (3.20)
ξi ≥ 0 i = 1, ...,m, (3.21)

where the parameter C > 0 is similar to a regularization coefficient because it
controls the trade-off between minimizing training errors (corresponding to the
non-zero slack variables and the corresponding penalty) and controlling model
complexity (maximizing margin). The original formulation can for separable
data be recovered in the limit where C →∞. The selection of the C parameter
has proven to be rather unintuitive, and there is no obvious a priory way of
selecting it, other than searching a wide range of values, [Shawe-Taylor and
Cristianini, 2004]. As for the original primal problem (3.5) - (3.6) it is possible
to obtain a dual formulation. The Lagrangian is given by

L(w, b, ξ,α, r) =
1

2
‖w‖2 + C

m∑
i=1

ξi −
m∑
i=1

αi[yi(〈xi,w〉+ b)− 1 + ξi]−
m∑
i=1

riξi,

(3.22)

where ξi ≥ 0 and ri ≥ 0 are the corresponding Lagrange multipliers. Following
the same procedure as previous the dual formulation can be obtained

max
α∈<m

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉 (3.23)

subject to: 0 ≤ αi ≤ C, i = 1, ...,m (3.24)
m∑
i=1

αiyi = 0, (3.25)

where the only change turns out to be an upper bound on the αi’s, these con-
straints are known as box constraints. Predictions for new data points are done
using 3.17.

3.5 The Non-linear Support Vector Machine for
Non-separable Data

A very important extension of the presented classifier comes with the intro-
duction of kernels. Everything in the setting so far deals with classification of
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more or less linearly separable data. In the following kernels are introduced to
non-linearly transform the input data, now denoted x1, ..., xm ∈ X , using a map
φ : xi → xi into a high-dimensional feature space and do the linear separation
there. In practice it requires only small modifications of the presented formula-
tion and the transformation leads to a much more powerful classification tool.
As with the dot product, the kernel function is used as a similarity measure,
and a large class of kernels actually admit a dot product representation in a
feature space. Kernels can in general be regarded as generalized dot products
and any dot product is in fact a kernel. More formally the class of kernels k
that correspond to a dot product in a feature space H via a map φ that satisfies

φ : X → H
x→ x := φ(x), (3.26)

then

k(x, xi) = 〈φ(x),φ(xi)〉. (3.27)

There are no constraints on the structure of the domain X other than it needs
to be a non-empty set. Since it is possible to compare similarities between non-
vectorial objects such as strings [Haussler, 1999] it makes kernels applicable in
situations where vectorial representation is not readily available and expands the
field of kernel methods. In this thesis however, only vectorial data is considered.
The term kernel originates from the first use of this type of function in the field
of integral operators. They were originally introduced since there are many
classes of problems that are harder to solve in their original representations.
An integral transform maps a function from its original domain into another
domain. Solving the equation in the target domain can be easier than in the
original domain. The solution can then be mapped back to the original domain
using the inverse of the integral transform.

Definition 3.1 [Polyanin and Manzhirov, 2008]
A function k which gives rise to an operator Tk via
(Tkf)(x) =

∫
X k(x, xi)f(xi)dxi

is called the kernel of Tk.

For a kernel to be valid and describe a dot product in some feature space it
generally needs to satisfy Mercer’s Theorem, see e.g. [Mercer, 1909, Schölkopf
and Smola, 2002]. Usually Mercer’s theorem is presented in a form involving
L2 functions, but when the input data take values in Rn as in this thesis, it is
equivalent to:

Theorem 3.2 (Mercer) Let K : Rn ×Rn → Rn be given.
Then for K to be a valid kernel, it is necessary and sufficient that for any
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{x1, ..., xm}, (m < ∞), the corresponding kernel matrix is symmetric positive
semi-definite.

In continuation of Mercers Theorem, the following proposition is used:

Proposition 3.3 [Schölkopf and Smola, 2002]
If k is a kernel satisfying the conditions of Mercers Theorem, we can construct
a mapping φ into a space where k acts as a dot product,
〈φ(x),φ(xi)〉 = k(x, xi),
for almost all (except for sets of measure zero) x, xi ∈ X . Moreover, given any
ε ≥ 0, there exists a map φn into an n-dimensional dot product space (where
n ∈ N depends on ε) such that
|k(x, xi)− 〈φ(x),φ(xi)〉| ≤ ε
for almost all (except for sets of measure zero) x, xi ∈ X .

Positive definite kernels are also called reproducing kernels [Schölkopf and Smola,
2002] and can thought of as a set of dot products in another space. The repro-
ducing kernel property amounts to

〈φ(x),φ(xi)〉 = k(x, xi), (3.28)

which is also the basis of the "kernel trick", which basically states that any algo-
rithm formulated in terms of a positive definite kernel, k, can be reformulated to
an alternative algorithm by replacing k by a new positive definite kernel k̃. The
Reproducing Kernel Hilbert Spaces theory more precisely states which kernel
functions correspond to a dot product and the linear spaces that implicitly are
induced by these kernel functions, see [Schölkopf and Smola, 2002].
An example of this is an algorithm where the k is the dot product in the in-
put domain such as the formulation of the optimal separating hyperplane. If
the formulation of the optimal hyperplane everything can be rewritten in terms
of φ(s) instead of x and then using the kernel trick we have a way of write a
nonlinear operator as a linear one in a space of higher dimension

max
α∈<m

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to: 0 ≤ αi ≤ C, i = 1, ...,m (3.29)
m∑
i=1

αiyi = 0,

with the corresponding decision function

f(x) = sgn

(
m∑
i=1

yiαik(x, xi) + b

)
. (3.30)
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For support vectors xj for which ξj = 0 the threshold b can be computed by
averaging 3.20 over all support vectors xj , since they satisfy 0 < αj < C.

3.5.1 Kernel

One function satisfying the properties described in the previous section is the
Radial Basis Function, RBF, kernel. In general the RBF kernel shows some
attractive properties and performs very well for a wide range of problems, see
[Caputo et al., 2002]. Any continuous decision boundary can be obtained using
the RBF kernel, but with proper parameter selection it makes the SVM behave
like a simple linear classifier, see section 5.5.1. The RBF kernel is given by

K(x, xi) = e−
||x−xi||

2σ2 . (3.31)

Other kernel functions are e.g. the linear kernel, the polynomial kernel, the
spline kernel, the Fourier kernel, and the Sigmoid kernel. Except for the linear
kernel which is considered briefly, these are not considered further.

3.6 Numerical Optimization

As long as the kernel matrix fits the main memory of modern computers, fast
and accurate solutions exist in terms of Quadratic Programming, QP, solvers.
In many real life problems the kernel matrix however, is too large to make the
full problem tractable.

The Sequential Minimal Optimization, SMO, was introduced by Platt [Platt,
1998], improved by [Keerthi et al., 2001] and a modified version [Fan et al., 2005]
is implemented in LIBSVM [Chang and Lin, 2011] in an analogous version of
the quadratic formulation presented in previous sections. The SMO algorithm
is a widely applied approach for solving the considered QP problem as it has
desirable properties for large-scale problems. The SMO algorithm consists in
most implementations of an analytical part for optimizing the smallest possible
subproblem consisting of two multipliers, and a heuristic part for choosing which
two multipliers to optimize.
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3.6.1 Subset selection

The quadratic optimization problem in 3.29 is covered by the following QP

min
α

1

2
αTQα+ cTα

subject to Aα = d (3.32)
0 ≤ α ≤ u,

which can be formulated as a convex program in a subset of the variables.
Assume there exists a subset, the working set, Sw ⊂ [m] which will be used
during optimization and a fixed set Sf = [m] \ Sw which will not be modified.
Then Q, c,A, and u can be split up accordingly into the following permutation
matrices

Q =

[
Qww Qfw

Qwf Qff

]
, c = (cw, cf ), A = [Aw, Af ], u = (uw, uf ), (3.33)

and the QP can be restated as

min
αw

1

2
αTwQwwαw + [cw +Qwfαf ]Tα+ [

1

2
αTf Qff αf + cTf αf ] (3.34)

subject to Awαw = d−Afαf
0 ≤ αw ≤ uw,

where the constant offset produced by αf is not to be considered in the actual
optimization. Solving the subset problem will lead to an improvement of the
full problem, and several heuristics have been proposed for choosing the working
set.

3.6.2 Sequential Minimal Optimization

The SMO algorithm is the extreme case of the above, where the working set
only consist of two variables

min
αi, αj

1

2
[α2
iQii + α2

jQjj + 2αiαjQij ] + ciαi + cjαj

subject to sαi + αj = γ

0 ≤ αi ≤ Ci

0 ≤ αj ≤ Cj ,

where s ∈ ±1, Q ∈ <2x2, and ci, cj , γ ∈ < are chosen accordingly.
There exist an analytic solution to this optimization problem. The following
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shows the derivation and finds the explicit values needed during iterations of the
algorithm. By using the equality constraint, sαi+αj = γ, it is possible to express
the objective function only in terms of αi since αj = γ− sαi. Furthermore, due
to the constraints on αj , sαi = γ − αj , the following bound γ ≥ sαi ≥ γ − Cj
applies. Combining this with the bound on αi, 0 ≤ αi ≤ Ci, it is possible to
obtain the following constraint: H ≥ αi ≥ L, where

L =

{
max(0, s−1(γ − Cj )) if s > 0
max(0, s−1γ) o.w.

H =

{
min(Ci, s

−1γ) if s > 0
min(Ci, s

−1(γ − Cj )) o.w.

Then, with the new bound on αi, it is possible to substitute αj = γ − sαi and
the QP can then be stated only in terms of αi as

min
αi

1

2
α2
i (Qii +Qjj − 2sQij ) + αi(ci − scj + γQij − γsQjj )

subject to L ≤ αi ≤ H. (3.35)

By introducing the auxiliary variables

Γ = scj − ci + γsQjj − γQij (3.36)
Λ = (Qii +Qjj − 2sQij ), (3.37)

the unconstrained objective function can be written as: Λ
2 α

2
i − Γαi. By taking

the derivative, the corresponding unconstrained minimum is obtained at αi =
Λ−1Γ. To ensure that the solution is within the constrained interval αi ∈ [L,H]
the unconstrained solution is cut to the interval, i.e. αi = min(max(Λ−1Γ, L), H).
In the case of classification it must hold that

∑m
i=1 yiαi = 0 and hence yiαi +

yjαj = yiα
old
i + yjα

old
j . This gives γ := yiyjαi + αj = yiyjα

old
i + αoldj and

s = yiyj .
Furthermore from (3.33) it is given that Qii = Kii, Qjj = Kjj , Qij = Qji =
sKij where Kij := k(xi, xj) is the kernel matrix and hence

Λ = Kii +Kjj + 2Kij . (3.38)

To find Γ, ci and cj can be obtained from (3.34)

ci = −1 + yi

 m∑
l 6=i,j

αlk(xi, xl)

 = yi(f(xi)− b− yi)− αiKii − αjsKij (3.39)

cj = −1 + yj

 m∑
l 6=i,j

αlk(xj , xl)

 = yj(f(xj)− b− yj)− αiKjj − αisKij .

(3.40)
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Then Γ can be computed using yi = yjs

Γ =− yi(f(xi)− b− yi) + αiKii + αjsKij + yi(f(xj)− b− yj)
+ αjsKjjαiKij + (αi + sαj)(Kij −Kjj

=yi((f(xj)− yj)− (f(xi)− yi)) + αiΛ. (3.41)

Plugging back into the original formulation yields the following results:
If yi = yj

L = max(0, αoldi + αoldj − Cj) (3.42)

H = min(Ci, α
old
i + αoldj ), (3.43)

and if yi 6= yj

L = max(0, αoldi + αoldj ) (3.44)

H = min(Ci, Cj + αoldi + αoldj ), (3.45)

then the optimal values are

αi = min(max(ᾱ, L), H) (3.46)

αj = s(αoldi − αi)− αoldj , (3.47)

where

ᾱ =

 αoldi + Λ−1δ if Λ > 0
−∞ if Λ = 0 and δ > 0
∞ if Λ = 0 and δ < 0

,

and δ := yi((f(xj)− yj)− (f(xi)− yi)).

From the above, it can be seen that if the constrained and unconstrained so-
lution are identical, i.e. αi = ᾱ, then the objective function is improved by
Λ−1((f(xj)− yj)− (f(xi)− yi))2. Hence it is important to select a working set
which makes this term large, see e.g. [Keerthi et al., 2001].

3.6.3 Stopping Criterion

As the decomposition method asymptotically approaches an optimum, it is in
practice terminated after satisfying a stopping criterion. Some methods focus on
the precision of the Lagrange multipliers αi, whereas others use the proximity
of the primal and the dual objective functions [Schölkopf and Smola, 2002]. It is
worth noticing that an improvement in the primal objective does not necessarily
imply an improvement in the dual and vice versa. In SMO the dual gap can
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fluctuate considerably. In the SMO-algorithm implemented in LIBSVM, [Chang
and Lin, 2011], the KKT conditions are checked to be within ε of fulfillment: The
standard KKT conditions [Nocedal and Wright, 1999] of the dual formulation,
Equation 3.32, states that if there exist a scalar, b, and two nonnegative vectors
λ and µ such that

∇f(α) + by = λ + µ (3.48)
λiαi = 0, i = 1..m (3.49)

µi(C − αi) = 0, i = 1..m (3.50)
λi = 0, i = 1..m (3.51)
µi = 0, i = 1..m (3.52)

where ∇f(α) ≡ Qα+c is the gradient of f(α). Then a feasible α is a stationary
point of 3.32. The conditions can be rewritten as

∇if(α) + byi ≥ 0 if αi < C (3.53)
∇if(α) + byi ≤ 0 if αi > 0. (3.54)

Utilizing the fact that yi = ±1 this yields that there exists a b such that

m(α) = max
i∈Ihi(α)

−yi∇if(α) ≤ b ≤M(α) = min
i∈Ilo(α)

−yi∇if(α), (3.55)

where

Ihi(α) ≡ {t|αt < C, yt = 1 or αt > 0, yt = −1} (3.56)
Ilo(α) ≡ {t|αt < C, yt = −1 or αt > 0, yt = 1}. (3.57)

Hence for an α to be feasible it must hold

m(α) ≤M(α), (3.58)

which gives the stopping condition employed in LIBSVM

m(α)−M(α) ≤ ε, (3.59)

where ε is the stopping tolerance. The SMO algorithm with the described stop-
ping criterion has been shown to converge in a finite number of iterations [Chen
et al., 2006, Fan et al., 2005, Keerthi and Gilbert, 2002].
The time required for the SMO algorithm to converge hence depends on the de-
sired accuracy of the output but also on the working set selection. The literature
investigating this kind of stopping tolerance for the SMO algorithm is limited,
but it generally seems there is consensus that ε = 10−3 is the default value to
use. [Joachims, 1999, Chang and Lin, 2011, Fan et al., 2005, Hsu and Lin, 2002]
use ε = 10−3, with the general note that this is an acceptable value, though
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without providing any evidence except from Platt’s paper [Platt, 1998] which
states: "Recognition systems typically do not need to have the KKT conditions
fulfilled to high accuracy: it is acceptable for examples on the positive margin to
have outputs between 0.999 and 1.001". Nevertheless, it is a very interesting pa-
rameter to investigate further since it obviously is a trade-off between accuracy
and computational effort.

3.6.4 Implementation

LIBSVM [Chang and Lin, 2011] is a library for SVMs written in C++. It
implements a version of a SVM for classification problems similar to the one
described in the present chapter and solves the optimization problem using the
SMO algorithm. LIBSVM has a compiled interface which allows all functions
to be called from MATLAB. The library is modified in this thesis to produce
a non-standard output used for the feature extraction algorithm described in
Section 4.2.3. The code is slow since it, in addition to the suppressible outputs,
produces non-suppressible outputs during every iteration. These are removed
and a Matlab routine, which utilizes the SUN grid-engine cluster facilities at
DTU Informatics, is written, to be able to process high-dimensional jobs in a
high performing parallel environment.
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Chapter 4

Feature Extraction

Machine learning methods, including SVMs, do not necessarily work well when
applied to raw EEG data signal segments. One of the major difficulties in
building a classification model based on EEG recordings is to find a good data
representation. Feature extraction deals with construction and selection of rel-
evant and informative features.

4.1 Feature Construction

New features can be constructed to get an appropriate data representation. Ac-
cording to [Guyon and Elisseeff, 2003], performance can often be improved using
features derived from the original input. Building a new feature representation
is also a way of incorporating domain knowledge. There are a number of generic
feature construction methods, including clustering, linear transforms of the in-
put variables, e.g. Principal Component Analysis, PCA, Linear Discriminant
Analysis, LDA, and spectral transforms e.g. Fourier, multitaper, and wavelet
transforms.
As described in Section 2.1, raw EEG signals are time series of voltage fluc-
tuations resulting from ionic current flows within the neurons of the brain.
Many applications and analyses does however, as described, generally focus on
the spectral content of EEG, i.e. the type of neural oscillations that can be
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observed in EEG signals and it has been demonstrated numerous times that
assessing specific frequencies can often yield insights into the functional cogni-
tive correlations of these signals. Hence instead of representing the data in the
original domain, it can be transformed to the time-frequency domain.

4.1.1 Spectral Decomposition

In theory, every signal can be decomposed into sinusoidal oscillations of differ-
ent frequencies. Such a decomposition is traditionally computed using a Fourier
transform to quantify the oscillations that compose the signal [Nunez and Srini-
vasan, 2006]. Time-frequency analysis makes it possible to study oscillatory
neural activity that appears consistently at particular times, relative to the
event of interest, even if this activity is not phase locked to the event and there-
fore averages out in conventional analyses of evoked responses.
All methods of time-frequency analysis are inherently limited by the fact that
the resolution in time is inversely related to frequency resolution, called the
uncertainty principle [Percival and Walden, 1993]. Different methods of time-
frequency analysis handle this trade-off slightly different and are therefore op-
timal for certain kinds of signals and suboptimal for others.

4.1.1.1 Wavelets and Multitapers

Wavelet transforms have shown advantageous when handling the trade-off be-
tween temporal resolution and frequency resolution in the analysis of EEG sig-
nals, [Mørup et al., 2007, van Vugt et al., 2007]. The continuous wavelet trans-
form is very similar to a short time Fourier transform, but instead of having the
same window length at all frequencies, it varies the window length over different
frequencies. The wavelet length is shorter for higher frequencies than lower fre-
quencies, which is desirable for EEG since high frequencies generally vary more
rapidly in time than low frequencies. There are various types of wavelets, but
the Morlet wavelet, which compares the signal with short segments of an oscilla-
tion multiplied by a Gaussian window function, is widely used in EEG analysis
[Mørup et al., 2007, Oostenveld et al., 2011]. The continuous wavelet transform
for a sampled signal x(tn) is defined at time t0 using the wavelet coefficient

X(t0, a) =
1√
a

∞∑
n=−∞

φ̃(
tn − t0
a

)x(tn), (4.1)
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with scale a and mother wavelet

φ̃(t) =
1√

2πσ2
e−i2πte−

t2

2σ2 , (4.2)

where the number of oscillations included in the analysis is defined from the
width of the wavelet, 2πσ. The width of the wavelets is given in number of
cycles, where smaller values will increase the temporal resolution at the expense
of frequency resolution.
Multitapers, [Percival and Walden, 1993], have also been proposed and adopted
to analyses of EEG data because of their properties [Mitra and Pesaran, 1999,
Raghavachari et al., 2001, Hoogenboom et al., 2006]. Multitapers differ from
wavelets in that the width of the function stays the same in absolute time across
frequencies, which is similar to a Fourier transform. In the Multitaper transform,
the original signal is multiplied with Slepian windows, which are designed to
prevent leakage of power to neighboring frequencies. After multiplication of the
window function, a Fourier Transform is performed, and the absolute square
is taken of the resulting signal. The convolution is repeated with a number of
orthogonal windows to reduce the variance of the estimate. Both transforms
produce spectrograms similar to the ones in Figure 4.1.

4.2 Feature Selection

The presented EEG classification problem using a spectral transform comprise
numerous input features. The number of features for the transformed EEG data
is a function of the number of channels, the time resolution, and the frequency
resolution. In the setting described there are hundreds of thousands of initial
feature dimensions in contrast to the small number of trials.
Many features do not contain relevant information for the classification prob-
lem and some input features are more likely comprised of noise and hence only
correlate with the task labels of the training set by chance. A classifier trained
on these features might overfit to these false regularities and fail out-of-sample.
Figure 4.2 illustrate the trade-off between too many and too few features in rela-
tion to out-of-sample classification error. Furthermore, high dimensional input
features enlarge the complexity and capacity needed to reach a good separation
on the training data. If noisy features can be removed, the capacity is not un-
necessarily increased. This can also prevent the classifier from overfitting the
training data.
In the current setting with sleeping subjects there are too few training vectors
to cope with the original dimension. Only a median of 17 trials (range 7 - 24)
in each class (left/right) was recorded during sleep, hence the classification only
have few examples in each condition compared to the dimension of the input
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Figure 4.1: Averaged spectrograms in (a) and (b) for one condition and aver-
aged artifact rejected spectrograms in (c) and (d) for the same condition where
the k-complex occurring 300 ms after the stimulus is removed. Furthermore av-
eraged artifact rejected spectrograms for the other condition is shown in (e) and
(f). Just by visual inspection it seems obvious that some processing takes place
after approximately 800 ms, but it is hard to distinguish the two conditions by
visual inspection. The spectrograms are constructed using a wavelet transform.
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space. One way to obtain more examples is to use the trials across subjects,
but it has been shown in BCI settings that "good" features usually cannot be
transferred from one person to another without problems. Brain structures are
not organized exactly the same way, and hence brain signal characteristics vary
between subjects, and some subjects even lack typical mu-rhythm activity, see
e.g. [Lal et al., 2004, Pfurtscheller and Lopes da Silva, 1999]. Furthermore, the
recording positions can not be controlled in enough detail to transfer directly
since the exact positioning of EEG caps is difficult and the re-application at
different recording sessions does not result in identical recording positions. This
means that an optimal set of features has to be determined for each subject
though there might be some overlap.
However, there are also obvious benefits in reducing the number of input fea-
tures. The interpretability of the recorded signal is improved by extracting
a few significant features. For new experimental paradigms, prior knowledge
about the importance of features is limited and might even be misleading if
transferred directly from other paradigms.
Selecting a subset of features can also lead to improved experiments. If only a
subset of channels proves to be relevant future, EEG research can e.g. rely on
a reduced set of electrodes.

4.2.1 NIPS 2003 Feature Selection Challenge Summary

One of the most rigorous investigations of different feature selection schemes is
the NIPS 2003 Feature Selection Challenge [Guyon et al., 2004]. This is the main
inspiration for the selected methods in this thesis. To summarize the results of
the NIPS 2003 Feature Selection Challenge [Guyon et al., 2006] it is found that
non-linear classifiers generally outperform linear classifiers in the competition.
Even for data sets with a high number of features and few examples adequate
regularization of nonlinear classifiers leads to better performance than linear
classifiers. The SVM is furthermore identified as a versatile classifier.
7 out of 10 of the best performing classifiers use some feature selection strategy
where most used forward selection or backward elimination inspired approaches.
Forward selection algorithms starts with an empty set of features and then pro-
gressively add features based on some measure of improvement of performance.
The backward elimination algorithms starts with a full set of unranked features
and then progressively removes the least important features. Though some of
the top entrants use embedded methods, others perform well using all the avail-
able features. Unsupervised dimensionality reductions methods, e.g. Principal
Component Analysis, PCA, are shown to work well, as are filter methods like
the Pearson correlation coefficient.
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Figure 4.2: The figure shows a typical behavior of the classification error
versus the size of the selected feature subset for a setting where the features are
ranked according to their relevance to the classification task. (Adapted from
[Tangermann, 2007])

4.2.2 Univariate Methods

To test the relevance of individual features simple univariate methods, such
as the T-test, F-score etc., can be employed, and they usually perform quite
well [Guyon et al., 2006]. A univariate ranking index for a binary classification
problem use a test statistic to compare means or variances of two assumed
gaussian processes. The T-statistic compares the means of two classes and the
realization, t, of the statistic T is given by

t =
µA − µB

(mA−1)s2A+(mb−1)s2B
mA+mB−2

√
1
mA

+ 1
mB

, (4.3)

where mA and mB are the number of trials in each class, µA and µB are the
means of each class, and sA and sB are the estimated standard deviation, [Guyon
et al., 2006]. The absolute value of the T-statistic can be used directly as a
ranking criterion, with the largest value corresponding to the most informative
feature. Feature ranking based on such a correlation makes an implicit orthog-
onality assumption and do not take mutual information between features into
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account. However, this assumption is rarely valid, especially not in high di-
mensional settings such as the presented EEG classification, where features are
highly correlated.

4.2.3 Multivariate Embedded Methods

Multivariate embedded methods deal with the shortcomings of univariate meth-
ods. The term embedded refers to the relation between the feature selection
method and the classification method. Embedded methods integrate the classi-
fication algorithm in the feature selection algorithm and this coupling leads to a
good feature subset while the classifier is trained. Among the embedded meth-
ods used for feature selection, the greedy algorithms based on forward selection
and backward elimination are the most popular. A popular embedded method
is a backward elimination algorithm proposed by [Guyon et al., 2002]. The Re-
cursive Feature Elimination, RFE, algorithm operates by trying to choose the
subset of features, which leads to the largest margin of class separation using a
measure given by the SVM classifier itself. The algorithm is mostly used with
linear SVMs where the weights directly apply as a measure, but it can be gen-
eralized to the non-linear case. In the present thesis the non-linear version is
used in a modified version. In the case of a linear SVM, the decision function is
given by f(x) = wx+ b, and the algorithm iteratively removes the feature with
the smallest weight, |wi|, and retrains the model until all features are ranked.
In the non-linear case it iteratively removes the features leading to the smallest
change in the SVM cost function, see Equation (3.29). Hence the RFE is a
pruning method according to the smallest change in objective function. At the
expense of sub-optimality, several features can be removed at every iteration.
For high dimensional data it is common practice, see e.g. [Guyon et al., 2006],
to remove chunks of the features at every iteration. The algorithm is described
in Algorithm 1. Compared to the original algorithm, it is modified such that
the σ and C parameter is re-estimated for every reduced subset of features, this
simple improves the performance. Furthermore the full cost function is esti-
mated using a modified output of LIBSVM since it normally does not return
this value.
In the present implementation, see Algorithm 1, the number of features that are
removed in every iteration of the algorithm is adjusted depending on the remain-
ing number of features. Hence, during the first few iterations, large chunks of
features are removed, whereas later in the process only few features are removed
every iteration. This will be further discussed in Section 5.5.3. To select the
optimal number of features, [Guyon et al., 2002] simply evaluate the accuracy
directly on the test set for different sized subsets of genes in a gene selection
task. Alternatively it could be based on the ranking criterion itself or by split-
ting the training set into two new sets, where one is used for validation and on
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for training, and then pick the optimal number of features based on the predic-
tive performance on the validation set. This procedure however, proves to be
rather intractable and results in this thesis are therefore presented inspired by
[Guyon et al., 2002].
The algorithm, see Algorithm 1, is implemented in Matlab and it turns out that
it can benefit from the result in Section 3.6.3 and 5.5.2. During evaluation of the
single features, the stopping tolerance can be adjusted to reduce computational
time. To obtain the the margin based ranking criterion, LIBSVM [Chang and
Lin, 2011] is modified to produce the desired values.
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Algorithm 1 Modified Recursive Feature Elimination
Input:
Training examples
X0 = [x1;x2; . . . ;xl]
Class labels
Y0 = [y1; y2; . . . ; yl]

Initilalize:
Feature subset of all original features
s = [1, 2, ..., n]
Empty subset of ranked features
r = [ ]

while s non-empty do
Reduce training examples to surviving feature indices
X = X0(:, s)

Estimate SVM parameters for the reduced set of features
(σ,C) = crossval(X,T0)

Train the SVM classifier on the feature subspace defined by s
W = svmtrain(Y0,X) ( i.e. W = (αT − 1

2α
T yiyjK(xi, xj)α))

For each feature m ∈ s compute the ranking score
for m = 1→ size(s) do

W\m = svmtrain(Y0,X\m)
end for
C(i) = abs(W2 −W\m

2)

Find the feature with the smallest ranking criterion
f = argmin(C(i))

Update indices
r = [s(f), r]
s=s(1:f-1,f+1:length(s))

%%% Modification to remove P % of the features at every iteration
Find least important features
[∼, f] = sort(C, 1, ’ascend’);
Update the ranked feature list
r = [fliplr(s(f(1 : ceil(size(X, 2)/P )))), r];
Remove the least important features
s(f(1 : ceil(size(X, 2)/P ))) = [ ];
%%%

end while
Output:
Ranked list of features r
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Chapter 5

Model Selection

As mentioned earlier, the amount of examples available for training a single-
subject classifier is rather limited since only a median of 17 examples (range 7
- 24) are available in each class (left/right). Therefore a resampling strategy is
applied to obtain robust estimates of the performance of the classification al-
gorithm. In doing this, the possibility of estimating sound bounds on the error
diminishes, but for high-dimensional data sets with few examples this is gen-
erally not possible anyway, see [Guyon et al., 1998]. In the following a general
description of high dimensional spaces in low sample size settings is given as this
is the condition of the used data set. Then a cross-validation approach appli-
cable to this is described, along with a way to test significance of the obtained
results. Some small synthetic data sets are introduced to illustrate various as-
pects of parameter selection. Finally, measures to evaluate the performance are
introduced.

5.1 The Curse of Dimensionality

The term "curse of dimensionality" is commonly used to describe challenges
in high dimensional spaces, [Bishop, 2007]. Especially geometrical intuitions
from two and three dimensions are not always valid in high dimensional spaces.
[Hall et al., 2005] investigate general properties of high dimensional low sample



46 Model Selection

size data in a classification setting and present some rather interesting insights.
They prove for a finite sample size setting that all points will lose subsequently
more of their spatial topology if dimensionality is increased towards infinity. In
the presented asymptotic case of infinity, the points will be pairwise orthogonal.
Furthermore, they will be asymptotically located on the vertices of a regular
simplex where all points have almost the same distances to the origin as well as
among each other.
This distance concentration, where all distances in high dimensional space are
almost equal, is just one aspect of the special characteristics posed by high di-
mensional problems. Low sample size high dimensional data additionally gives
rise to the phenomenon known as hubness, see [Radovanović et al., 2010]. This
phenomenon is related to the number of times a point occurs among the k nearest
geometric neighbors. It is shown for a wide range of problems, see [Radovanović
et al., 2010], that when dimensionality is increased, the distribution of the num-
ber of occurrences becomes considerably skewed. Few points appear to be the
nearest geometric neighbor to other points more often. Nevertheless, the phe-
nomena of hubs is related to the distance concentration. As shown by [Hall
et al., 2005], the points in low sample size high dimensional settings are almost
orthogonal with the same distance to each other and to the origin of the high di-
mensional simplex. If one point is an "outlier" in the sense that it is a little closer
to the the simplex origin than the rest are, it is then also closer to several other
points. Hence hubs are outliers in the sense that they are found in low density
areas of the distribution, but are close to many other points. Normally outliers
are thought of as further away from the center, this is not the case for hubs.
These observations can influence classifier performance if not handled with care.

5.2 Cross-validation

A common approach, to avoid overfitting due to the resampling, is to use cross-
validation. This is a technique where subsets of data are held out and used
for validation, while the model is trained on the remaining data [Bishop, 2007].
This procedure is repeated and the quality of the predictions across the test sets
are averaged to yield an overall measure of the predictive power, i.e. the test
error. The mean accuracy of the single SVM estimated on the hold-out set is
an unbiased estimator of the mean. Furthermore, in a resampling setting, the
mean of several unbiased estimates also produces a new unbiased estimate of
the mean. The exact strategy for determining the size of the training- and test-
subset may vary. One form of cross-validation leaves out a single observation
at a time, whereas K-fold cross-validation splits the data into K subsets, which
are each used for validation. Both the kernel- and the regularization parameter
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are chosen using this strategy within the training set.
In a two class classification task it is common practice to use a leave-two-out
procedure, where one example from each class is left out of the training set. In
the presented data set the leave-two-out procedure is applied on balanced data
sets, i.e. a number of trials are left completely out at every iteration to obtain an
equal number of examples in each class. This is done to avoid that the trained
classifier just behaves as "majority" classifier. In continuation of the general
properties presented for high dimensional spaces, [Hall et al., 2005] show that a
basic SVM will predict based on the majority class alone for a dimension towards
infinity if the inter-distance between two classes is too small. Furthermore, for
unbalanced data, it is shown that the SVM gives asymptotically completely in-
correct classification for the population with the smaller sample. Inspired by
these results [Klement et al., 2008] show that infinity is not that large in prac-
tice, especially not for the soft margin SVM. This means that a leave-one-out
procedure will misclassify all examples even for rather low dimensional data if
only a small number of examples are available for training.

5.3 Permutation Test

While the mean of the errors obtained via cross-validation is indeed an unbiased
estimate of the expected error, the variance is not. The cross-validation trials
are not independent and hence it requires thorough modeling of the dependence
to avoid a too optimistic estimate of the variance. An alternative is to use a
permutation test to estimate how likely it is to obtain the result by chance,
due to some random pattern detected by the SVM in the high dimensional data
[Golland and Fischl, 2003, Golland et al., 2005, Efron and Tibshirani, 1993]. The
result provided by the permutation test provides a weaker answer than standard
convergence bounds, since it gives no indication of how well the obtained error
rate will generalize. However, it does answer whether the classification result
could be obtained by chance.
The null hypothesis of the permutation test is that the SVM cannot learn to
predict labels based on the given training set and works under the assumption
that the data distribution is adequately represented by the sample data.
For a set of examples, {xi, yi}mi=1, with all the possible permutations, Zm for
indices 1...m, and with the test statistic T based on the cross-validation error,
the permutation test procedure consists of N iterations, see Algorithm 2.
Ideally the full set of permutations should be used to generate the cumulative
distribution, P̂ , but this is not computational tractable, and hence the algorithm
relies on sampling from Zm. This strategy is feasible as long as N is sufficiently
large.
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Algorithm 2 Permutation Test
for n = 1→ N do

Sample a permutaion zn = (zn1 , ..., z
n
m) from a uniform distribution over

Zm

Compute the statistic tn = T (x1, yzn1 , ...,xm, yznm)
end for

Construct an empirical cumulative distribution

P̂ (T ≤ t) =
1

N

N∑
n=1

Θ(t− tm)

where Θ is a step function (Θ(x) = 1, ifx > 0; 0 o.w.)

Compute the statistic for the true labels, t0 = T (x, y, ...,xm, ym) and the
corresponding p-value p0 under the empirical distribution P̂

Reject the null hypothesis if p0 ≤ α, where α is the acceptable significance
level

5.4 Synthetic Data

In addition to the main analysis of the presented EEG data some synthetic data
sets are created to investigate the performance of the classifier and to illustrate
e.g. kernel behavior.
The Exclusive OR, XOR, problem is a classical problem used to illustrate chal-
lenges in classification problems. Examples of the XOR problem is the chess-
board problem seen in Figure 5.4 and the intertwined circles seen in Figure 5.1.
It is clear that neither the input variable x1 nor x2 is able to perform the classi-
fication independently whereas patterns or regularities in the data can be found
if the combination of x1 and x2 is used. If the input data is composed of addi-
tional noisy features the shown regularity might not be found through classical
statistical analysis. In that case more advanced methods can be employed to
retrieve the two relevant features thus also simplifying the classification task.
Furthermore the chessboard like patterns require highly non-linear decision
boundaries, and hence is a good problem to test non-linear classifiers on.
Likewise, the problem composed of two intertwined semi-circles, see Figure 5.1,
is a good XOR problem for illustrating kernel properties.
Finally two high dimensional problems are constructed. An XOR data set with
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a more smooth decision boundary is constructed, namely an n-dimensional ball
inside an n-dimensional spherical shell - the two having an overlap of 20 % of
the data points. For n = 2 this corresponds to the circle and annulus shown
in Figure 5.2. In addition to this a very high dimensional problem where all
features are drawn from two standard normal distributions with different mean
is constructed.
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Figure 5.1: An example of the XOR problem.

5.5 Parameter Selection

Both the SVM, SMO and the RFE requires a parameter selection. In the fol-
lowing the structure of the data is used to determine the SVM parameter de-
termining the non-linearity and it is investigated how computational effort can
be reduced for the RFE and SMO without jeopardizing accuracy.

5.5.1 SVM Parameters

Generally there is consensus that the RBF kernel is among the best performing
kernels [Schölkopf and Smola, 2002]. Actually, [Caputo et al., 2002] find in a
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Figure 5.2: A 2-dimensional example of the n-dimensional ball overlapped by
an n-dimensional spherical shell.

comparison of standard kernel functions for a wide range of different features,
that when the RBF kernel is not the best performing kernel, the error rate
is not higher than 1% with respect to the best performing kernel. In many
applications of the RBF kernel, the parameters are picked using a coarse search
over a very wide range of values [Chang and Lin, 2011] without paying attention
to the structure of the problem. [Caputo et al., 2002] propose a heuristic to
select the kernel parameter, σ, which is independent of feature type. They find
that the best σ-value can be found by searching the interval from the 0.1 - 0.9
quantile of ||xi−xj || = 2σ2. Figure 5.3 shows an image of the kernel matrix for
different σ’s in the proposed interval for the XOR problem shown in Figure 5.1.
It can be seen that for σ’s, corresponding to the 0.1 quantile, only few elements
(neighboring points) are non-zero and hence a very sparse representation is
obtained, whereas for σs corresponding to the 0.9 quantile, all entries are non-
zero. Figure 5.4 furthermore shows how the RBF kernel creates centers, see
Figure 5.4b, for each of the squares in the XOR checkerboard problem, see
Figure 5.4a.
The regularization parameter, C, is less intuitive and is usually picked from a
coarse search over a wide range of values.
Underfitting, where the entire set is assigned to the majority class, generally
occurs when σ is fixed and C → 0, when C is fixed sufficiently small and σ → 0
and when σ →∞ and C is fixed. Overfitting is seen when small regions around
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the training examples of the smallest class are classified to be that class, while
the rest is classified as the majority class. This occurs in the case where σ → 0
and C is sufficiently large and when σ is fixed and C →∞ for noisy data since
the SVM classifier strictly separates the training examples of the two classes.
The linear kernel matrix is shown in Figure 5.3d. Though there is little visual
resemblance between the images, it can be shown that for σ → ∞ and proper
scaling of C the non-linear SVM classifier with RBF kernel converges to the
linear SVM classifier, [Keerthi and Lin, 2003].

Theorem 5.1 For a proper fixed value of C = C̃σ2 and σ →∞ the non-linear
SVM with a Gaussian RBF kernel converges to the linear SVM.

Proof. For σ →∞ the Gaussian RBF kernel function can be written, using a
series expansion, as

K(x, x) = exp

(
−‖x− x‖

2

2σ2

)
(5.1)

=1− ‖x− x‖
2

2σ2
+O

(
‖x− x‖2

σ2

)
(5.2)

=1− ‖x‖
2

2σ2
− ‖x‖

2

2σ2
− xTx

σ2
+O

(
‖x− x‖2

σ2

)
. (5.3)

Using this approximation, the quadratic term of the objective function 3.29 in
the non-linear version of the SVM can be written as∑

i

∑
j

αiαjyiyjK(x, x) =

∑
i

∑
j

αiαjyiyj

−
∑
i

∑
j αiαjyiyj‖xi‖2

2σ2

−
∑
i

∑
j αiαjyiyj‖xj‖2

2σ2

+

∑
i

∑
j αiαjyiyjx

T
i xj

σ2

+
1
2

∑
i

∑
j αiαjyiyj∆ij

σ2
, (5.4)

where lim
σ2→∞

∆ij = 0.

By defining α̃i = αi
σ2 and using the constraint from the QP-formulation in (3.29)

(
∑m
i=1 αiyi = 0) in the three first terms of the approximation in (5.4), the
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formulation in (3.29) can, if the objective function is divided by σ2, be written
as

min
α̃

F

σ2
=

1

2

m∑
i,j=1

α̃iα̃jyiyjK̃ij −
m∑
i=1

αi

subject to: 0 ≤ α̃i ≤ C̃, i = 1, ...,m

yT α̃ = 0,

where C̃ = C
σ2 and K̃ij = xTi xj + ∆ij which is equivalent to the linear kernel

since lim
σ2→∞

∆ij = 0, hence there is no need, other than computational effort, to

consider the linear SVM.
If C is just fixed, and hence not varied with σ2, the classifier will, as described
earlier, underfit severely.

5.5.2 SMO Parameter

The influence of the optimization stopping tolerance, ε, is investigated on the
synthetic data sets. As seen in Figure 5.5 - 5.7, and as stated in [Platt, 1998], the
tolerance for fulfilling the KKT conditions and hence stopping the optimization
need not to be very fine. The accuracy remains unchanged for tolerances up to
10−1 − 100.
For sparse kernel matrices the number of support vectors changes considerably
more than for less sparse kernel matrices, i.e. if σ is chosen around the 0.9
quantile, cf. Section 5.5.1, the number of support vectors does not depend too
much on ε whereas if σ is chosen around the 0.1 quantile, the number of sup-
port vectors varies with ε. The C value affects the total computational time
and harder regularization generally leads to longer processing time and in some
cases reduces the number of support vectors considerably for coarse stopping
tolerances, see Figure 5.7a - Figure 5.7b. The chessboard problem requires a
higher degree of regularization for values of σ around the 0.9 quantile, this in-
crease the computational time.
Regarding the examples assigned as support vectors in each data set, it seems
reasonable to choose ε = 10−3 as proposed by Platt. As seen, the accuracy how-
ever, does not change significantly even if some borderline vectors are either left
out or included as support vectors, whereas the computational time is reduced
rather notably. Especially for the very non-linear decision boundaries, it can be
seen that a coarse tolerance leads to a noteworthy reduction of computational
time. This result comes in handy in the implementation of Algorithm 1, Section
4.2.3.
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Figure 5.3: Selection of kernel parameter, σ, based on different quantiles of the
scaled width ||xi − xj || of the intertwined semi-circles. The figure additionally
illustrates that the RBF kernel (a)-(c) is translational invariant, whereas the
linear (d) is not. For the RBF kernel especially the clear diagonals should be
noticed.



5.5 Parameter Selection 55

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

(a) 2 x 2 chessboard XOR problem.

x
1

x
2

 

 

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Corresponding kernel for σ based on the 0.1 quantile.

Figure 5.4: The image of the kernel matrix for the 2 x 2 chessboard XOR
problem shows how the RBF kernel creates a center for each of
the squares.
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Figure 5.5: 50-dimensional ball and spherical shell with 1,000 examples in each
class for both the test and training set. In (a) σ is chosen as the 0.1 quantile and
C = 102 and in (b) σ is chosen as the 0.9 quantile. The results are averaged over
100 data sets. The two classes are overlapping, hence around 90% classification
accuracy is expected.Time and nSV (number of support vectors) are divided by
their maximum values.
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Figure 5.6: 3 x 3 chessboard problem with 1,000 examples in each square
and no overlapping classes. In (a) σ is chosen as the 0.1 quantile and C = 102

and in (b) σ is chosen as the 0.9 quantile. No overlapping classes, hence 100
% classification accuracy is expected. The results are averaged over 100 data
sets. Time and nSV (number of support vectors) are divided by their maximum
values.
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Figure 5.7: 10,000 dimensional examples with all features drawn from normal
distributions. One class has mean +1 for all features, the other class has mean
-1 for all features. σ is chosen as the 0.9 quantile and C = 1 and C = 108 in
(a) and (b) respectively. The results are averaged over 10 data sets. Time and
nSV (number of support vectors) are divided by their maximum values. In (a)
both nSV and accuracy is 100 and in (b) accuracy is 100.
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5.5.3 RFE Parameters

The implementation of the RFE algorithm described in Section 4.2.3 removes
25 % of the features during each iteration while the feature dimension is over
1,000, and removes 10 % during each iteration when a feature dimension below
1,000 is obtained. This approach gives very comparable results to just removing
5 % of the features during all iterations, but reduces the time considerably.
The SVM parameters are re-estimated during every iteration as this improves
results significantly. Especially re-estimating the σ-parameter is important as
the problem changes size dramatically during the iterations. However, to reduce
computational time, only a very coarse grid is used to find values for C and σ.
In the final implementation C is found searching a log2 interval and σ is found
using a coarse grid from the 0.1 - 0.9 quantile of ||xi − xj || = 2σ2. Using a very
fine grid gives comparable performance for all subjects. The most important
parameter of the two proves to be σ and since a rather "narrow" feasible range
is given from the inter- and intra class distance, this result is not surprising.
Furthermore a value of ε = 10−2 is used as stopping criterion in the RFE algo-
rithm. When evaluating final performance ε = 10−3 is used.

5.6 Evaluation of Model Performance

The SVM classifier is evaluated in terms of achieved prediction error (one minus
the number of correct predictions divided by the total number of predictions).
Additionally the permutation test is conducted corresponding to a 95% signif-
icance level. In addition to the permutation test described in Section 5.3 the
classifier is also evaluated on the data presented in the awake condition and on
data obtained solely over the visual cortex (electrodes O1 and O2). The data
from the awake condition is expected to contain enough information for an ac-
tual classification in most cases and the data obtained over the visual cortex is
expected to show less or no predictive power.
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Chapter 6

Results

The following chapter analyses the EEG data obtained from the experiment
described in Section 2.3. The EEG data is pre-processed as described in the
next section and then analyzed using the setup described in the previous chap-
ters. The SVM described in Chapter 3 is combined with the two feature se-
lection schemes described in Chapter 4. All parameters are tuned as described
in Section 5.5. Performance is assessed using the balanced leave-two-out cross-
validation scheme described in Section 5.2 and significance is evaluated using
the permutation test described in Section 5.3. Everything is implemented in
Matlab. The results are reported in this chapter and discussed in the following
chapter.

A general overview of the subjects included in the analysis is shown in Ta-
ble 6. The table shows the number of trials obtained during wakefulness and
during sleep. As can be seen, the number of trials included for the different
subjects to obtain a balanced training and test set varies between 14 and 46.

6.1 Data Pre-processing

The raw EEG data are pre-processed using a Matlab toolbox developed by Sid
Kouider, École Normale Supérieure, Leonardo da Silva Barbosa, École Normale
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Subject Sleep Sleep Balanced Awake Awake Balanced
EL ER no. of trials L R no. of trials

105 20 22 40 21 15 30
107 17 16 32 20 22 40
109 16 20 32 22 24 44
111 17 7 14 16 20 32
113 20 17 34 21 21 42
117 9 13 18 12 13 24
118 20 17 34 24 24 48
122 17 16 32 15 15 30
127 18 17 34 22 21 42
129 10 10 20 18 19 36
134 21 24 42 18 21 36
137 21 19 38 15 16 30
138 10 9 18 18 19 36
139 10 17 20 21 25 42
144 16 19 32 15 13 26
147 21 22 42 15 15 30
149 23 20 40 23 24 46
150 23 24 46 23 20 40

Table 6.1: Overview of subjects and corresponding number of trials. EL,
expected left, and ER, expected right, corresponds to the L, left, and R, right
in the awake case and indicates whether the expected response for the subject
is left or right (object vs. animal).

Supérieure, and Carsten Stahlhut, Technical University of Denmark. The tool-
box is mainly based on other open source toolboxes for Matlab, namely SPM8
[Ashburner et al., 2008], FieldTrip [Oostenveld et al., 2011] and EEGLAB [De-
lorme and Makeig, 2004].
The pre-processing steps include high-pass filtering, low-pass filtering, epoching,
baseline correction and downsampling of the raw data.
In addition to this all features are standardized, as recommended when dealing
with SVMs [Chang and Lin, 2011].
The spectral transforms are found using the SPM8 interface to FieldTrip.
Along with the general pre-processing, a more sparse representation of the EEG
data is found. This representation is more computational tractable and improves
the predictive power of the classifier.
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6.1.1 Data Set Dimensionality Reduction

A spectral transform of the EEG data leads to a very high feature dimension.
The dimension is a function of the number of channels × the frequency resolu-
tion × the time resolution. For a standard wavelet transform of the 64 channel
signal with a frequency resolution of 1 Hz, this leads to a feature space with a
dimension greater than 106 for each trail.
It is of course a trade off between tractability and information resolution when
the dimensionality is reduced. However, it proves that reducing the spatiotem-
poral resolution, i.e. binning frequencies into coarser intervals and reducing the
time resolution, not only leads to a reduction in computational time but also
improves the predictive power of the SVM. This is not surprising both from a
physical and data dimension point of view. Since only a few trials in each con-
dition are present, the physiological variability between trials will lead to too
much difference between relevant features. If the time and frequency resolution
is too fine and only a few features can be selected by the feature selection algo-
rithm to reduce noise, there will simply not be an overlap of features between
the different trials. Additionally, when the resolution is reduced, the power of
informative features will increase. On the other hand if the resolution is re-
duced too much, the informative features will lose information due to too much
"averaging" with the neighboring features. As proposed by e.g. [Pfurtscheller
et al., 2006], the most important electrodes are in the motor cortex area around
C3 and C4, hence a considerable sparse prior to apply, is that only those two
electrodes are included in the analysis. The predominant frequencies are ex-
pected to lie in the interval 4-40 Hz as described in Section 2.2, and hence the
frequency interval from 4 - 40 Hz is used with steps of 4 Hz. The original time
resolution is reduced to 50 Hz. This gives a more manageable dimension of the
feature space, namely 2,800.
One (sub)optimal configuration is to use a 7 cycle wavelet transform with fre-
quency intervals of 4 Hz in the range 4 - 40 Hz and a reduce the number of time
samples, using the subsample option = 10. If nothing else stated, results are
obtained using this representation, which is denoted the reduced data set in the
following.

6.1.2 Artifact Rejection

An artifact rejected data set is constructed to investigate possible improvements,
see Figure 4.1. The artifacts found in EEG data sets recorded during sleep are
significantly different from the ones found in a normal EEG signal. Especially
some auditory components and K-complexes have been removed in the artifact
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rejected data set using Independent Component Analysis, ICA. In the awake
condition as well as during sleep, auditory components were removed from vir-
tually all trials, whereas the K-complexes are only present during sleep. Only
during wakefulness eye movements are removed, since these disappear during
early sleep phases.

6.2 Feature Selection

Both the reduced data set described in 6.1.1 and the full wavelet transform leads
to classification accuracies for all subjects around 50 % if no feature selection is
performed. Hence the results are not described in further detail. In the following
these results obtained using feature selection are presented.

6.3 T-Test Based Feature Selection

Using the T-test described in Section 4.2.2 generally leads to a poor classifier
performance around chance level for the full spectral transform. On the reduced
data set, the picture changes and it is possible to obtain significant results for at
least 11 subjects though in general performance is worse or at best comparable to
using the RFE approach, hence the results are not described in further detail.
A comparison of the two methods can be seen in Figure 6.1. It shows the
obtained error rates averaged over all 18 subjects. A major advantage of the
t-test based feature selection is that the computational burden is significantly
reduced compared to the RFE. This feature selection approach also leads to anti-
learning, which is classification performance consistently worse than chance, in
a few subjects, see discussion in Section 7.2 for further details.

6.4 RFE Feature Selection

Using the RFE based features selection requires more computational effort but
leads to compelling performance. Results for all subjects are presented in Figure
6.3 - 6.6 and in Appendix A. For a majority of the subjects classification bet-
ter than chance is possible. The corresponding features selected to obtain the
reported results are harder to interpret. There is no single conclusion readily
available, but classification performance combined with inspection of the feature
selection yields several insights to extract. For each subject a figure showing
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Figure 6.1: Group averaged results for the 18 subjects included in the analysis
for the two different feature selection methods described.

error rates vs. the number of features included in the classification model is
shown. Additionally two figures showing the features selected from electrode
C3 and C4 is shown. The results obtained using the RFE algorithm are exam-
ined in the following.
Generally the multitaper transform leads to slightly worse performance than the
wavelet transform, see also Chapter 7, and these results are hence not reported
in detail. Figure 6.2 shows the group averaged predictive performance for the
multitaper and wavelet transform respectively using the RFE algorithm. As
seen the overall error is lower using the wavelet transform.
Furthermore, for most subjects the classification error deteriorate if the fre-
quency range is reduced, i.e. including gamma range activity improves the
predictive power.
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Figure 6.2: Group averaged results for the 18 subjects included in the analysis
using the wavelet- and the multitaper transform. The overall picture as well as
at a single-subject level, is that a wavelet transform leads to lower error rates
than a multitaper transform.

6.4.1 Permutation Test

The result of the permutation test is shown as a red band in Figure 6.3 - 6.6 and
in Appendix A, indicating a range of the performance for a classifier trained on
permuted labels. Generally the classifier trained on data with permuted labels
obtains error rates in the range ∼45% - 55% regardless the number of features
included. Hence for at result to be significant it should be outside this range.
For the permutation test described in Section 5.3, 20 iterations appear to be
enough to obtain a significance level of 95 %. However, in addition to this, [Efron
and Tibshirani, 1993] state that the estimate of the achieved significance level
is affected by the Monte Carlo error. To reduce the influence of the variation
to less than 10 %, a conservative estimate of 1,901 permutations are required
to obtain an achieved significance level of 95 %. For subject 129 the full 1,901
iterations are carried out and showed together with the result of 20 iterations,
see Figure 6.5. As can be seen, the variation is not decisive when testing the
hypothesis that labels are exchangeable, and hence N = 20 is used for the
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Figure 6.3: Subject 117. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 117. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure 6.4: Subject 118. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 118. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure 6.5: Subject 129. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 129. The number of times a feature is
selected gives an indication of how important the single features are. In addition
to the permutation test for N=20, the result of a test with N=1,901 is shown.
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Figure 6.6: Subject 139. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 139. The number of times a feature is
selected gives an indication of how important the single features are.
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remaining subjects.

6.4.2 Data From Pre-motor Cortex

Using data from electrodes C3 and C4 recorded during sleep, yields a classifier
performance significantly better than chance for 12 out of the 18 subjects, using
either the artifact (subject 105, 113, 117, 134, 139, 144, and 150) or non-artifact
(subject 107, 111, 122, 129, and 138) rejected data, see Figure 6.3 - 6.6 and
Figure A.1 - A.14 in Appendix A. Some subjects get a much better signal,
by removing artifacts, thus the artifact rejected data results are reported for
these subjects (labelled ICA). For others the manual artifact rejection does not
change the performance of the classifier. In some cases it removes to much of
the signal, leading to worse classification performance. For these subjects, non-
artifact rejected results are reported.
Five subjects (subject 109, 118, 127, 137, and 147) are borderline cases regarding
classification performance, since only small parts of the feature subsets produce
significant classification results or classification error rates are close to chance
level. In subject 149, see Figure A.13, anti learning behavior is seen. This
behavior is discussed in Section 7.2.
Except for the cases where only few features are included in the model, the
training error is generally 0 and most trials are treated as support vectors,
though not all. Looking at classifier performance shows that a certain number
of features are needed to obtain the best classification, but including too many
features leads to a decrease in performance, as depicted in Figure 4.2. The
plateau where including features neither improves nor worsen performance varies
in size for the subjects. For subject 111 where a very low error rate is obtained,
the plateau is around 100 features, which is not obvious from the shown plot,
see Figure A.4. The best single-subject classification accuracy is exceeding 80%,
see Figure 6.3, and several subjects yield accuracies around 70% - 80%. A few
subjects, see e.g. Figure 6.4, have no or very little predictive signal. As stated
earlier the accuracies are unbiased estimates, but it is not possible to obtain
reliable error bars. However, those results not conflicting with the permutation
interval (red bars) are significant at a 95% level.

6.4.3 Data From Visual Cortex

Data recorded from electrodes O1/O2 during sleep is used as a proxy for visual
cortex. It is expected that data collected from the visual cortex should not
lead to good classification. However, it is not entirely the case, see Figure
6.3 - 6.6 and Figure A.1 - A.14 in Appendix A. For subjects 137, see Figure
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A.9, and 149, see Figure A.13, the classifier yields results better than chance
level. More puzzling are the results obtained for half of the subjects (107,
111, 113, 117, 129, 134, 139, and 150). Here the classifier produces results
worse than chance, implicating that flipping all labels would yield a classifier
performing significantly better than chance. Running a permutation test on the
data collected from O1/O2 yields chance level results as expected. The number
of predicted labels in each class are additionally relatively balanced, as are the
error rates for the two classes. This anti-learning behavior, where the classifier
consistently assign opposite class labels to the test set, indicates that though
with a special structure, signal is present in the data. This is discussed further
in Section 7.2.

6.4.4 Data From the Awake Condition

Data collected from pre-motor cortex in the awake condition is also shown in
Figure 6.3 - 6.6 and Figure A.1 - A.14 in Appendix A. Non-artifact rejected data
yields a classifier performance better than chance for 7 out of the 18 subjects
(109, 111, 117, 134, 138, 139, and 144) with up to 100 features included in the
model. One subject (118) is a borderline case. 6 subjects (107, 122, 127, 129,
137, and 149) exhibit the anti-learning behavior further discussed in Section 7.2.
However, several subjects indicate that including more features lead to better
classification performance. This is investigated for all subjects including up to
a 1,000 features. Additionally, the analysis is done on both artifact rejected
and non-artifact rejected data. In that case 10 of the 18 subjects yield good
classification performance (109, 111, 113, 117, 118, 134, 138, 139, 144, and 149)
where two of the subjects 111 and 113 gives the best performance on artifact
rejected data. 6 subjects (107, 122, 127, 129, 137, and 147) show strong anti
leaning behavior where subject 122 and 147 gives the result for artifact rejected
data. Only 2 out of the 18 subjects yield chance level results for the chosen
data representation. The remaining 16 yield results different from chance. Only
selected results are shown in Appendix C. For subject 113, see Figure C.1a, it
can be seen that building the model based on the top 200 features using artifact
rejected data yields improved classifier performance and for subject 118, see
Figure C.1b, it can be seen that the model improves significantly by including
around 250 features using non-artifact rejected data in the model.
Very interestingly, it can be observed in general for all subjects, see Figure C.2a
and C.2b for two examples, that anti-learning is reduced when more (noisy)
features are added to the model. This behavior is similar to what is seen for
normal learning, see Figure 4.2. But conversely to learning, anti-learning is
reversed to learning for some subjects, e.g. subject 149, see Figure C.2b, for
the non-artifact rejected data set. Here, if less than 100 features are included in
the training set, anti-learning is observed, whereas proper learning is observed
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when more than 400 of the top ranked features are included in the training set.
It is not always the case that anti-learning is reversed to learning by adding
more features. The representation might simply be too noisy compared to the
number of available trials.

6.4.5 Spectro-histo-grams

Along with the obtained classification rates, the features selected to obtain these
are investigated. For every subject, see Figure 6.3 - 6.6 and Figure A.1 - A.14 in
Appendix A, subfigures are shown corresponding to electrode C3 and electrode
C4. The figures are combined spectro- and histo- grams, showing the number
of times a feature is selected during the 300 iterations of the described cross-
validation scheme, see Section 5.2. The histograms are composed by counting
the top 50 features. Acceptable inspection of the spectrograms and the corre-
sponding selected features is a trade-off between noise and informative features.
An increased number of features significantly increases the scattered noise and
makes it harder to see patterns, whereas decreasing the number of included
features might remove too much information to actually see any patters. The
dominating patterns are present over a wider range of included features, but
there is inter-subject variation.
Generally, it can be seen that the classifier uses pre-stimulus features along with
post-stimulus features to create the decision boundaries. The pre-stimulus most
likely serves like a kind of baseline for the classifier. However, this does not mean
that features selected post-stimulus are all discriminative between the two con-
ditions. Post-stimulus features can easily serve as baseline as well. Whether a
feature is discriminative or serves as a "reference" is not to say since the se-
lected features together compose one high-dimensional discriminative pattern,
separating the two classes.
For a lot of the subjects the patterns of selected features are scattered and it
is hard to extract clear information as can be done in standard ERP analysis.
It is further to be noted that the classifier uses the actual power levels in each
electrode, hence the classifier can choose features from both C3 and C4 even
though contralateral patterns are expected for the two classes.
In the following the main patterns found in the subjects with discriminative
performance are described.

For subject 129, see Figure 6.5, the most prominent features are selected in the
alpha band ∼700 ms post-stimulus in electrode C4 and in the high beta ranges
at electrode C3 at the same timing. The corresponding classification error is
low, around 25 % for several subset of features. For this subject the permuta-
tion test is performed with N=1,901 and N=20 to compare the variation. The
variation is not substantial, and it is clear that the result is still significant at a
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95% significance level.
For subject 117, see Figure 6.3, the classifier is also performing very well with
error rates as low as 15 %. However, the selected features are rather differ-
ent. Several early and late, very high beta and low gamma features are selected
around ∼500 ms post-stimulus and again 2,100 ms post-stimulus in electrode
C4, furthermore beta range features ∼1,000 ms post-stimulus are selected in C4.
Features selected in C3 are more scattered and less frequent.
Subject 139, see Figure 6.6, shows a clear pattern in the upper alpha and lower
beta around ∼1,100 ms in electrode C4. Early, ∼300 - 600 ms, and pre-stimulus
features in the beta band are furthermore selected. In electrode C3, gamma
range frequencies are selected ∼1,200 ms post-stimulus.
Subject 105, see Figure A.1, again shows a rather different pattern. The
obtained error rates are relatively good, but mostly very early and very late
features are selected in the alpha and beta band. Additionally gamma band
frequencies dominates the picture. In electrode C4 features in the alpha band
are selected ∼900 ms post-stimulus, furthermore activity in the high beta and
low gamma band is selected at around the same timing
A somewhat similar pattern is seen for subject 122, see Figure A.6 with very
early features in lower frequencies and then mainly gamma band features post-
stimulus. However, the classification error is slightly higher.
For subject 107, see Figure A.2, the picture is the same though some very late
alpha activity is selected in C4 and the classifier obtains a relatively low error
rate.
In subject 111, see Figure A.4, post-stimulus activity is selected in C4 in the
beta band from 0 - ∼700 ms and ∼800 ms post-stimulus alpha activity is se-
lected in electrode C3. In both electrodes there is scattered low gamma activity
and in electrode C4 a notable amount of features in the gamma range is selected
∼2,000 ms post-stimulus.
For subject 113, see Figure A.5, very early alpha and beta features are se-
lected. ∼1,000 ms post-stimulus high alpha and low beta features are selected
in electrode C3 and additionally beta activity ∼1,400 post-stimulus is selected
in C3. Scattered features are selected in the gamma range.
Subject 134, see Figure A.8, shows from the error rate that only few features
are necessary, hence spectro-histo-grams for 6 included features can be seen
in Appendix A.15. This shows only two clear patterns, beta activity selected
around ∼350 ms post-stimulus and gamma activity selected ∼ 900-1,100 ms
post-stimulus.
Subject 138, see figure A.10, shows alpha activity selected 1,100 ms post-
stimulus in electrode C4 followed by selection of beta range activity ∼1,300-
1,600 ms post-stimulus. Late gamma activity is selected in both electrodes.
Subject 144 shows a very blurry picture with scattered activity above alpha
selected over full time interval, the picture remains more or less unchanged for
fewer features included. Beta activity selected ∼ 2,100 ms post-stimulus is most
dominant.
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The above observations give no clear picture, but some common patters can
be extracted.

6.4.6 Inter-Subject Learning & Group Level Results

Using the described feature selection and classification framework, it is not pos-
sible to classify on an inter-subject basis. The group averaged classification
error rates can be seen in Figure 6.2. Summing and scaling all the spectro-histo-
grams, S, obtained for the 12 subjects leading to good classification performance
gives a completely scattered image. However, by applying an averaging filter,
some general structure is indicated, see Figure 6.7. The corresponding Z-scores,
see Figure 6.7b, show that especially high beta and gamma activity transfers
across subjects, but also around 1,000 ms post-stimulus, a pattern of low al-
pha and theta activity is consistently detected. Interestingly, pre-stimulus is
selected rather consistently across subjects as described earlier. The Z-scores
(Z =

1
n

∑
S

σ(S)

√
n
2 ) are found using a split-half resampling strategy inspired by

the NPAIRS framework [Strother et al., 2002] and the nonparametric analysis
of statistical images presented by [Holmes et al., 1996].

6.4.7 Learning Curves

For all subjects learning curves are created where classifier error rate is shown
as a function of the size of the training set. For subject 117, see Figure 6.8, both
learning curves for different feature size subset and for a cross-section taken at
the best performing subset are shown, see Figure 6.8a and B.3a. The learning
curves for other subjects are in Appendix B, see Figure B.1a - B.6b. Only cross-
sectional learning curves are shown and they generally indicate that convergence
in terms of the included number of trials is not obtained for the full set of trials.
From the slopes it seems clear that the classifier in most cases would benefit
from more trials included.

6.4.8 Included Electrodes

In the main analysis only electrodes C3 and C4 are included. An analysis where
the electrodes posterior and anterior to C3 and C4 are included is however also
conducted, such that the classification is done based on 6 electrodes instead of 2.
For most subjects performance is decreased due to the increased dimensionality,
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Figure 6.7: Group averaged spectro-histo-gram in Figure 6.7a. 6.7a is a com-
pilation of spectro-histo-grams from electrodes C3 and C4 for the 12 subjects
yielding good classification performance. Each spectro-histo-gram is scaled by
its sum. To reduce the scattered structure it has been convoluted with an av-
eraging filter. In Figure 6.7b the corresponding Z-scores are calculated using
a split-half resampling scheme. Low values in the averages spectrogram are
thresholded out.
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Figure 6.8: Cross-section of the learning curves with 60 features included, and
the full set of learning curves for subject 117, where m indicates the number of
trials included in the training set.
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but for three subjects performance is increased (122, 127, and 137). Two of the
three subjects (127 and 137) are the borderline cases from the previous analysis,
which yield significant results when more electrodes are included. Lateralized
averaging of neighboring electrodes does not generally improve performance.

6.4.9 Kernel Parameter

The kernel parameter, σ, is found using the described cross-validation scheme
and results from Section 5.5.1. It is furthermore investigated which optimal ker-
nel parameter is selected during the cross-validation. Using a confusion matrix,
only values where the classifier predicts both labels correctly are investigated.
When the classification model is estimated from up to around 20 features the
majority of the σ’s averaged over subjects are selected within the interval cor-
responding to the ]0.1; 0.9[ quantile of the width. Nevertheless, there is a large
variability between subjects. When more features are included in the model,
only a few percent of the models have σ-values corresponding to an almost non-
linear decision boundary. These results are obtained if the cross-validation is
set to prefer higher σ-values if equally good. For the reverse case where the
cross-validation is set to prefer a smaller value of σ the σ’s selected for higher
dimensional problems are tend to be smaller.

6.4.10 Number of Cross-validation Iterations

The number of leave-two-out cross-validation iterations included in the analyses
are set to 300 for all subjects. A value of 300 leads to convergence within a few
percent compared to up to 1,000 cv-iterations included and obviously reduce
computational time compared to 1,000 cv-iterations where all subjects produce
very stable solutions.



Chapter 7

Discussion

Discriminating brain activity was found in the majority of the subjects. The
localization of the patterns are discussed in the following.
Classification errors significantly above 50% might be hard to grasp at first sight
in the presented framework, since the classifier could obtain the reverse (and
desirable) result by flipping all labels. This anti-learning behavior is discussed
in the following.
Finally improvements to the setting and computational issues are discussed.

7.1 Spatiotemporal Cortical Dynamics

For the 12 subjects showing discriminating brain activity, the overall picture is
that general patterns do seem to occur though latency, morphology and range
varies. Alpha and beta range features show clear patterns between ∼700 and
∼1,400 ms post-stimulus at a single-subject level. Both very early and late
patterns occurs as well. For several subjects a considerable number of features
are also selected in the gamma band over the course of the epoch. Here la-
tency varies over the full epoch, but late activity is generally more clear. Figure
6.7 showing the averaged result and corresponding Z-scores for the group do
catch some of these patterns, but the inter-subject variability blur the general
picture. Especially high beta and gamma activity transfer across subjects, but
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also around 1,000 ms post-stimulus, a pattern of low alpha and theta activity
is consistently detected.
As described in the introductory section, see Chapter 2, voluntary movement is
widely acknowledged in the literature [Pfurtscheller and Lopes da Silva, 1999] to
induce a desynchronization in the upper alpha and lower beta frequency bands
close to the motor areas of the cortex. In addition to alpha and beta rhythms,
oscillations are also found in the gamma range frequencies [Pfurtscheller et al.,
1993, Pfurtscheller and Lopes da Silva, 1999]. [Andrew and Pfurtscheller, 1996]
reports an increase of coherence in phase of 40 Hz oscillations between the con-
tralateral motor and the supplementary motor areas during the performance of
unilateral finger movements. The gamma activity can be separated over differ-
ent parts of the cerebrum but exhibit high correlation and synchrony during the
performance of motor tasks. In contrast to the alpha band rhythms, the gamma
range activity reflect active information processing. According to [Pfurtscheller
and Lopes da Silva, 1999] desynchronization of alpha band rhythms may be
a prerequisite for the forming of gamma range frequencies. They furthermore
suggest that gamma rhythms indicate active information processing, which may
be related to a binding of motor integration.
The results obtained could indicate that the activity is a result of motor plan-
ning, but since classification is possible using other electrode pairs than C3/C4,
some source localization algorithm would have to be applied to be able to truly
determine the origin of the signal. Furthermore, in the current setting it is not
possible to determine whether classification is based on the contralateral pat-
terns arising from motor planning or some other discriminating effect, though it
is the most plausible explanation. In the described experiment, clear contralat-
eral patterns can be found when analyzing the data obtained during wakeful-
ness. Looking at the lateralized readiness potential, LRP, which is obtained by
subtracting ipsilateral ERPs from contralateral ERPs recorded over the scalp,
contralateral patterns arise which reflect the preparation of motor activity.
Results (though reversed, see the following discussion of anti-learning) obtained
from visual cortex are most likely the true cognitive motor effects, just detected
further away due to transcranial volume conduction. The effects can be ex-
plained from the fact that conduction is not restricted to one direction and
thus electrodes all over the scalp receives some signal though fainter than the
electrodes nearer the source. Methods, such as SVMs, not relying on averaging
techniques to enhance signal-to-noise ratios are more sensitive and can detect
even vague signals if present. This is supported by the actual results, which
generally show that electrodes over the visual cortex show less predictive power
than those at pre-motor cortex, indicating that the origin of the signal is not
visual cortex.
Regarding the data obtained during wakefulness, only 16 of the 18 subjects are
found to contain either learnable or anti-learable signal, it is however relatively
common in EEG experiments that signal from some subjects is hard to analyze
or



7.2 Anti-Learning 81

7.2 Anti-Learning

In continuation of the remarkable geometric representation found in low sample
high dimensional settings, see Section 5.1, it was also described how [Hall et al.,
2005] and [Klement et al., 2008] show that for small sample size data, a basic
SVM will classify all examples as the same class, even in lower dimensions.
As described earlier, to avoid this kind of behavior, all results are obtained with
a balanced resampling scheme on a balanced data set. Hence, the described
anti-learning is not a product of this.
Further analysis is hence required to deal with the observed anti-learning be-
havior since this kind of behavior is very unusual. Best case it is a rare event
and therefore rarely reported, though it is more likely that when encountered
it is ignored or misinterpreted as a case of over-fitting of noisy data not worth
further investigation.
Anti-learning is not a product of choice of classifier. It has been shown, [Kowal-
czyk et al., 2007], that all standard supervised learning algorithms such as the
linear SVM, kernel SVM, naive Bayes, ridge regression, k-nearest neighbors,
shrunken centroid, multilayer perceptron and decision trees perform in an un-
usual way on natural and synthetic data sets containing certain structures. They
all classify a randomly sampled training set almost perfectly and perform worse
than chance on new unseen validation data. The structure in the synthetic data
is the outcome of a winner take all zero-sum game where any two examples
of the opposite class are more correlated than any two examples of the same
class. This can geometrically be interpreted as that the intra-class distance be-
tween examples is greater than the inter-class distance. Based on the structure
of the "game" and the anti-learning behavior, [Kowalczyk et al., 2007] states:
Such a simple "Darwinian" mechanism makes it plausible to argue that anti-
learning signatures can arise in the biological datasets. However, there are also
many other models generating anti-learnable signature, for instance a model of
mimicry. Hence, the anti-learning behavior indicate genuine informative fea-
tures rather than other phenomena, though the structure of the data is different
than usually reported. This is supported by the fact that the permutation
test yields chance level results. The anti-learning behavior in a general set-
ting is not very well investigated, and reports of the behavior is mostly related
to biological low sample size high dimensional feature space data sets, such as
microarray data used for prediction of cancer outcomes and data sets originat-
ing from bio-medical research, including heart ECG [Kowalczyk and Chapelle,
2005, Kowalczyk, 2007, Kowalczyk et al., 2007].
There is a US Patent Application by Adam Kowalczyk, Alex Smola, Cheng Soon
Ong, and Olivier Chapelle [Chapelle et al., 2005] concerning unlearnable data
sets. They propose to use a reverser to apply negative weights to predicted
labels if anti-learning is observed, whereby error rates translates directly into
accuracy. Furthermore it is described, see also [Kowalczyk et al., 2007], how
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anti-learnable data can be transformed using a non-monotonic increasing ker-
nel function to avoid anti-learning behaviour. A transformation like that can
increase the within class similarity and decrease inter-class similarities. If the
considered data set exhibit perfect anti-learning the transformation can lead
to perfect learning, but for data-sets that are not perfectly anti-learnable, the
transformation has more limited potential.
As observed in the awake data sets, see Section 6.4, where anti-learning decrease
when more (noisy) features are added to the model, [Kowalczyk et al., 2007]
also observe that addition of random noise suppresses the symmetries leading
to anti-learning. When even more features are added, anti-learning is reversed
to learning for the data recorded during wakefulness but not during sleep. This
might be another indication that the signals recorded during wakefulness are
stronger than those collected during sleep.
Anyway, the 16 subjects in the awake case of the experiment showing either
learning or anti-learning are reported to exhibit discriminative brain activity
supported. This is supported by a permutation test.
It is not possible consistently to find the structures exhibited by a perfect anti-
learning data set in the present EEG data set. However, it is possible for certain
feature subsets and certain sub samples to show a somewhat similar structure
where the intra-class distances are larger than the inter-class distance. In the
data sets exhibiting anti-learning it is generally the case that the classifier pre-
dicts approximately equally many labels in each class. Additionally some signs
of hubs can be found if a kernel matrix of the nearest neighbors are plotted.
Whether these are related to the anti-learning is still to be determined.
Though not reported very often, anti-learning is suspected to occur in many
other data sets as well. It would be interesting to make an analysis using the
same framework as presented here, but on a data set where it is possible to
move away from the low sample size setting and data set characteristics are
well known. Such data sets could e.g. be the BCI competition data sets which
are publicly available EEG data sets with well known characteristics and many
available trials [Tangermann et al., 2012].

7.3 Data Representation

The optimal spectral transform and data representation have probably not been
found. It seems that the wavelet transform generally leads to better performance
than a multitaper transform for the signals recorded during sleep. This is in
agreement with [van Vugt et al., 2007], who find that multitaper methods are
less sensitive to weak signals but very frequency-specific compared to wavelets.
Generally, the multitaper transform is more applicable for analyses of higher
frequencies as well [van Vugt et al., 2007, Raghavachari et al., 2001, Hoogen-
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boom et al., 2006].
Of the tested configurations a wavelet transform on down sampled data split
into frequency bins of 4 Hz gives good performance using 7 cycles in the trans-
form. Some subjects benefit from fewer cycles whereas some subjects benefit
from more. Likewise, both finer and more coarse frequency and temporal res-
olution leads to better performance for some subjects. Although using signals
from electrodes C3 and C4 generally leads to good performance, it is further-
more seen that some subjects benefit from a less sparse representation where 6
electrodes and even up to 18 electrodes are included. For at few subjects the
multitaper transform likewise leads to better performance, though overall the
wavelet transfer is superior.
It is beyond the scope of the present thesis to evaluate tuning of different spec-
tral transforms relative to each other. Rather it is a goal to find a feasible
transform. Hence, the significance of the claims about which spectral transform
is better was not tested.

7.4 Computational Issues

Given that data collection itself takes hours for just one subject and days for
several subjects and the total planning time of an experiment probably is in the
order of months, a total running time of a few hours to do the data analysis is
acceptable, it is however desirable that the algorithm is as fast as possible such
that it is possible to run several analyses.
Since the full permutation test with 1,901 permutations, see Figure 6.5, takes
more than a weekend to run for one subject, the permutation tests in this thesis
are run with N = 20. 1,901 permutations seems overly conservative and the
difference between N = 20 and N = 1, 901 is not decisive. [Strother et al., 2002]
uses 10 permutations for each subject in a split-half setting.
It was assessed that 300 cross-validation iterations produced stable enough re-
sults when comparing different setups, though around 1,000 iterations are re-
quired to obtain very stable results.
Combined with the argument from Section 5.5.1, the investigation of the ker-
nel parameter found from the cross-validation indicates that non-linear decision
boundaries yield better performance than linear. This is especially the case for
very sparse models with only few input features. Hence it is worth using the
extra computational effort required to solve the non-linear version of the SVM.
The learning curves give a strong indication that the non-linear SVM could ben-
efit highly from more included examples in the training set. This also elucidate
why the test set (leave-two-out) used for cross-validation should be as small as
possible.
Since the program runs in parallel on a shared cluster system where recourses
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are distributed according to the number of users (which varies a lot), there is
no direct way of assessing exact time savings based on the adjustments made to
the stopping tolerance. Just running single parts of the program on a local com-
puter shows that during the first few iterations, the main time-consuming part
is to build the kernel matrix and not running the actual optimization. These
iterations corresponds to most of the evaluations of the SMO-algorithm since
all features are included. During later iterations time savings are considerably
above 50 % since the kernel matrix is composed of fewer features. Overall the
computational time is reduced by using a more coarse tolerance, but additional
time savings could be obtained by reducing the number of evaluations of the
kernel matrix, in the current setting there is however no direct way of doing
that.
The RFE algorithm can be changed to use the assumption that the optimal La-
grange multipliers do not change significantly with one feature left out. Hence
the algorithm should only recompute the kernel with one feature left out and
then recompute the value of the cost function. However, this does not solve the
problem of reducing the number of kernel evaluations.
In the current thesis LIBSVM [Chang and Lin, 2011], which relies on the SMO-
algorithm, is used to solve the presented QP. Nevertheless, the kernel matrix is
relatively small in the current single-subject setting and the QP could easily be
solved directly using standard QP-solvers in MATLAB. LIBSVM does however
provide a fast C++ implementation of support vector machines with a Matlab
interface, which is believed to be at least as fast. The results obtained for the
stopping tolerance in the SMO-algorithm are expected to generalize to some
degree for QP solvers in general.

7.5 Future Work - Harnessing the Machine Learn-
ing Approach

Anti-learning obviously requires a more thorough investigation, but there are
several interesting directions to follow in the described framework to further
utilize the machine learning approach.
Automatic electrode selection is on obvious improvement. The EEG-cap is
mounted manually on every participating subject, which might lead to some
inter-subject variability. Electrodes C3 and C4 may be more or less posterior
than desired and therefore other electrodes in the vicinity of C3 and C4 might
yield better classifier performance. Furthermore, the cap might move slightly
during an experiment. This obviously leads to lower intra-subject classifica-
tion performance. For all subjects it is tested in the awake condition whether
electrodes anterior or posterior to the C3 and C4 electrode pair can improve
classification accuracy. For some subjects classification results improved using
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more posterior electrodes in the awake case, but it was not consistently a good
indication of what electrodes worked best for the sleep data. Combining the
relation between the most important electrodes in the awake condition however,
could lead to additional insights and further weight could be given to the ob-
tained results if electrodes selected automatically in the awake condition could
be transferred to the sleeping condition.
Ideally, a framework where the most important electrodes for the classification
are determined automatically using the data should be built. The most informa-
tive electrodes could be selected using either a clustering algorithm or a common
spatial pattern on the full set of electrodes. This would both reduce the influ-
ence of electrode-cap placement and reduce inter-subject variability. FieldTrips
clustering algorithm was tested on the data-set, and did indeed find C3, C4,
CP3, and CP4 to be the most relevant electrodes in most cases. Hence it would
be a good path to follow.
Inspired by the presented approach to feature elimination the method can be
expanded to include a recursive channel elimination step where channels are re-
moved iteratively in a similar fashion to the recursive feature elimination. This
would reduce the inclusion of prior knowledge, which, as discussed, can be mis-
leading for new experimental paradigms. Furthermore, it would automatically
find the most relevant brain areas for the classification. This would require a
lower dimensional feature space for each channel, which could be achieved by
using e.g. autoregressive coefficients as proposed in [Lal et al., 2004].
The artifact rejection should be automatized to a higher degree to reduce human
bias and inconsistency. Using a toolbox like CORRMAP[Campos Viola et al.,
2009], would allow the identification and clustering of independent components
representing EEG artifacts. Finally, finding a good data representation is key
and there are several parameters to investigate further, likewise more advanced
methods can be adopted which can deal with variable latencies in data derived
from neural activity. Multilinear shift-invariant decompositions can handle this
to some degree [Mørup et al., 2008].
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Chapter 8

Conclusion

The results obtained in the present thesis indicate that the sleeping human brain
is responsive to external auditory input and indeed capable of processing it at
a semantic level.
Discriminative activity is found in at least 12 out of the 18 subjects during
sleep. Using the proposed method during wakefulness, it is possible to show
discriminative activity in 16 out of 18 subjects.
It remains a question whether the observation generalizes to all sleep stages,
and to elucidate the degree of motor cortex involvement. Furthermore, it is
less clear where in the process from semantic processing to actual execution the
obstruction of neural signals occur.

A novel framework for analyzing EEG-recordings has been presented in a chal-
lenging context of low sample high dimensional data. The challenge is magnified
by the low signal-to-noise ratio from the unexplored experimental paradigm in-
vestigating the degree of semantic processing during sleep. The proposed frame-
work gives a way of analyzing whether discriminative patterns are present in the
recorded EEG signals, and where the information is located at a single-subject
level. The method succeeds regardless of effective behavioral response which is
generally absent during sleep.
The engine of the proposed framework is a non-linear SVM with a RBF kernel
combined with an RFE algorithm. The presented implementation is a modi-
fied and improved algorithm, where parameters are re-estimated during every
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iteration according to a heuristic based on the structure of the feature subset.
Even in the low sample size setting, the non-linear capabilities are utilized and
non-linear decision boundaries are found to improve classification.
In addition to improved classification performance, the RFE algorithm gives
the possibility to investigate a reduced subset of features driving the classifier.
This makes the method especially powerful in new paradigms with no or few
certain priors established. The results obtained from the feature selection show
a large degree of inter-subject variability regarding latency and morphology of
brain activity. Anyhow, the results are somewhat similar to what is found in
classical ERP and ERD studies of EEG in awake motor-studies. This indicates
that the brain prepares a relevant response all the way up to motor preparation
during light sleep though execution is clearly suppressed. Since classification
was possible using other electrode pairs than those of motor areas, this needs
further investigation of source localization. Superior classification performance
was however obtained in motor areas indicating a relation to the origin of the
signal.

In contrast to the full spectral transform obtained for all channels, a very sparse
representation giving good performance is found using a more coarse Morlet
wavelet transform only including channels C3 and C4.
Compared to classical statistical analysis, the method excels by the fact that
even for the low sample size setting multivariate analysis is possible at the indi-
vidual subject level where classical analysis can only be done at a group level.
Along with the sparse data representation, computational tractability was im-
proved by adjusting the stopping tolerance of the SMO algorithm during the
RFE-loop. This was shown to improve speed without jeopardizing accuracy.
From the classifier learning curves found in the single-subject analyses, it is clear
that classification performance in general would benefit from more experimental
trials.
Anti-learning was observed, especially in the data obtained from the visual cor-
tex, but plausible explanations have been given. For the awake condition it has
been shown how addition of features can reduce anti-learning, and in some cases
even change anti-learning to learning.

SVMs combined with embedded feature selection schemes show some general
encouraging characteristics in relation to interpretation of EEG recorded neuro-
scientific data collected in new as well as well-known experimental paradigms.
Using a margin-based recursive feature elimination algorithm, it is possible to
classify and characterize discriminative brain activity based on full spectrograms
at a sensor level for single subjects.
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Figure A.1: Subject 105. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 105. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.2: Subject 107. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 107. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.3: Subject 109. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 109. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.4: Subject 111. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 111. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.5: Subject 113. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 113. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.6: Subject 122. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 122. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.7: Subject 127. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 127. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.8: Subject 134. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 134. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.9: Subject 137. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 137. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.10: Subject 138. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 138. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.11: Subject 144. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 144. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.12: Subject 147. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 147. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.13: Subject 149. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 149. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.14: Subject 150. Top 50 time-frequency features selected during
each leave-two-out iteration for subject 150. The number of times a feature is
selected gives an indication of how important the single features are.
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Figure A.15: Subject 134. Top 6 time-frequency features selected during
each leave-two-out iteration for subject 134.
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(a) Learning curve for subject 105.
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(b) Learning curve for subject 107.

Figure B.1: Learning curves (dashed line indicates that artifact rejected data
is used).
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(a) Learning curve for subject 111.
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(b) Learning curve for subject 113.

Figure B.2: Learning curves (dashed line indicates that artifact rejected data
is used).
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(a) Learning curve for subject 117.
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(b) Learning curve for subject 122.

Figure B.3: Learning curves (dashed line indicates that artifact rejected data
is used).
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(a) Learning curve for subject 129.
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(b) Learning curve for subject 134.

Figure B.4: Learning curves (dashed line indicates that artifact rejected data
is used).
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(a) Learning curve for subject 138.
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(b) Learning curve for subject 139.

Figure B.5: Learning curves (dashed line indicates that artifact rejected data
is used).
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(a) Learning curve for subject 144.
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(b) Learning curve for subject 150.

Figure B.6: Learning curves (dashed line indicates that artifact rejected data
is used).
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Awake Classifier
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(a) Subject 113.
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(b) Subject 118.

Figure C.1: Classifier performance with up to 1,000 features included in the
model.
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(a) Subject 137.
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(b) Subject 149.

Figure C.2: Classifier performance with up to 1,000 features included in the
model.
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