
Machine Learning for Tagging of
Biomedical Literature

Caroline Persson

Kongens Lyngby 2012

IMM-BSc-2012-33

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-BSc-2012-33

Summary

Introduction:
Named entity recognition of gene terms plays a big role in the increasing chal-
lenge of extracting gene terms from literature. Gene terms exists in many vari-
ants and the amount of gene terms is growing continuously. The goal of this
project is to understand how the tagging of gene terms works, especially the
understanding of the algorithms behind the recognition systems. A good under-
standing of the learning mechanisms is a necessary part of improving existing
methods.

Methods:
The steps for training a Naive Bayes classi�er are explained in details through-
out the report. Examples of how the training compute di�erent probabilities,
and how the classi�er handles raw unlabelled text are showed and evaluated.
Furthermore a Naive Bayed classi�er is implemented in Python, and the perfor-
mance are compared to similar tasks.

Conclusion:
A Naive Bayes classi�er is de�nitely an useful tool for named entity recogni-
tion of gene terms. The performance is dependent of the selection of features,
and the �nal performance of an implementation in Python receive an f-measure
of 0.58. This is comparable, though in the lower end, of the results from the
BioCreative I challenge task 1.A.

ii Summary

Preface

This is my closing project of my bachelor degree in Mathematics and Technol-
ogy at the Technical University of Denmark (DTU) (from here denoted 'the
project'). The project was suggested by Ph.D. student Kasper Jensen from
Center for Biological Sequence Analysis (CBS) at DTU, and supervised by Finn
Aarup Nielsen from the Department of Informatics and Mathematical Modelling
(IMM).

The project digs in to the �eld of textmining of biomedical literature, with
the aim of creating a named entity recognition system (NER) used for tagging
gene and protein terms in biomedical literature.
A lot of e�ort was put into �nding relevant data and templates showing how re-
search had dealt with similar tasks. It turned out that the BioCreative [1], and
especially task 1.A from 2004, dealt with similar challenges as the formulation
of this project. Really convenient was the ability to compare the evaluation of
the implementation presented in the project with similar work using the same
data sets.
Python was used for all implementation, and in particular the package for Nat-
ural Language Processing (nltk) turned out to be helpful, including the tutorial
book [2].

iv Contents

Contents

Summary i

Preface iii

1 Introduction 1

2 Data 3

2.1 Corpus . 3

2.2 Dictionary . 6

3 Methods 9

3.1 Evaluation measure . 10

3.2 Tokenization . 12

3.3 POS-tagger . 12

3.3.1 Regular expression tagger 12

3.3.2 Unigram tagger . 13

3.3.3 N-gram tagger . 13

3.3.4 Combining taggers . 14

3.3.5 Brill tagger . 15

3.4 Naive Bayes Classi�er . 18

3.4.1 Exploring feature sets . 18

3.4.2 Bayes Theorem and additive smoothing 21

4 Implementation of NB-classi�er 25

4.1 Feature selection . 25

4.2 Evaluation . 26

5 Further work and improvements 29

vi CONTENTS

6 Conclusion 33

A Tags 35

B Annotation guidelines for GENETAG corpus 37

Bibliography 41

Chapter 1

Introduction

Unsuspected amounts of biological literature are freely accessible through online
databases mainly provided by the United States National Library of Medicine
(NLM). Due to the growing amount of literature, the need of developing and
inventing of new robust and computational e�cient algorithms for NER systems
has become an important �eld of today's research. In general for most natural
language processing tasks, supervised machine-learning methods are a kind of
state of art. This is also the case for NER tasks concerning biological literature.
For extracting gene and protein terms di�erent statistical strategies (e.g. Bayes
classi�ers, Support Vector Machines (SVM), Hidden Markov Models (HMM),
ect.), combined with rule-based orthographic features, pre- and postprocessing
of data and dictionary scannings are some of the frequently used approaches.
A problematic point of supervised learning is that the size of training data is
essential to achieve good performance, but building a training corpus by human
labeling is time consuming and expensive. Another di�culty in biological NER
is that each named entity exists in multiple variant forms. Even though if a
named entity already is de�ned in a dictionary, it is still di�cult to recognize.
The project deals with the challenge of �nding relevant and freely available
annotated data sets which can be used for training and testing, as well as �nd-
ing or creating a dictionary of good quality which can be used as a gazetteer
for looking up gene and protein terms. Here follow handling of data, selection
of NER methods, implementation of algorithms, evaluation and considerations
about modi�cations and improvements.

2 Introduction

Chapter 1 is an introduction to NER of gene and protein terms. Chapter 2
describes data set and dictionaries used for the project. Chapter 3-5 covers
the approaches used in the project. The architecture of the NER system from
raw text to labelled output are described in details. Through examples the al-
gorithms behind training of a part of speech (POS) tagger and a Naive Bayes
classi�er are described. Chapter 5 presents a �nal implementation of a Naive
Bayes classi�er for gene/protein entities. The classi�er is compared with results
from similar papers using the same data set. The results of the �nal classi�er are
presented in chapter 5, and �nally in chapter 6 a conclusion about the usability
of the implemented classi�er and its performance is stated.

During this paper there is not drawn any distinction between gene and pro-
tein terms, and they are consequently used in the same context. Meaning that
whenever any form of the word 'gene' is used in a context where it does not
refer to a speci�c gene, we do actually mean both 'gene' and 'protein'. This also
stress the fact that the project digs into the �eld of NER for gene and protein
terms.

Chapter 2

Data

2.1 Corpus

A well annotated data set is crucial for gaining a good performing NER system.
When considering gene terms in biomedical text, it's important that the data
is annotated consequently through the whole corpus following some speci�c an-
notation rules regarding how to decide whether a gene term should be tagged
or not. Di�erent types of data sets can be downloaded freely at NCBI's (Na-
tional Center for Biotechnology Information) FTP (�le transfer protocol) site.
According to [3] two annotated datasets is more frequently used for training and
testing of biomedical NER systems, respectively the corpora GENETAG [4] and
GENIA [5]. The main di�erences between the two datasets are that the GENIA
corpus is restricted to consist of 2000 MEDLINE abstracts retrieved by search-
ing for the PubMed query for the three MeSH terms 'human', 'blood cells', and
'transcription factors'. Furthermore the tags are allowed to be generic, which
means that not only speci�c tags such as 'tat dna sequence', but also non-speci�c
terms such as e.g. 'dna sequence' would be legally tagged. The GENIA corpus
was created not only for the purpose of being used for NER tasks concerning
gene entities, but for a much wider range of biologically terms. In fact the cor-
pus is tagged with 47 di�erent biologically categories, for more details see [5].
On the other hand the GENETAG corpus consists of 20K sentences selected
from unrestricted abstracts from MEDLINE, and the tags are restricted to be

4 Data

speci�c gene entities only.
Even though the two datasets seem to be equally well annotated by experts,
the GENETAG corpus has a simpler construction and a more intuitive inter-
pretation. Moreover it does not contain information which is irrelevant for the
purpose of this project, and the format of the corpus is easier to handle and
work with in Python, which favours it over GENIA in this case.

The GENETAG corpus was used for the BioCreative (Critical Assessment of
Information Extraction systems in Biology) challenge, which is a still on-going
community-wide e�ort for evaluating text mining and information extraction
systems applied to the biological domain [1]. The free version of the GENE-
TAG corpus is the version used for the �rst BioCreative competition, Task 1.A,
in 2004. The corpus has been updated since but it's not possible to download
the latest version for free.
To ensure the heterogeneity in the GENETAG corpus, 10K of the sentences were
chosen randomly among sentences from MEDLINE having a low score for term
similarity to documents with known gene names, and 10K sentences were chosen
randomly among sentences having a high score. This ensures that the corpus
consisted of sentences with respectively many and few occurrences of gene en-
tities. The data is divided into 4 subsets called train set, test set, round1 and
round2. The train set consist of 7500 sentences, the test set of 2500 and the
round1 and round2 of 5000 sentences each. Only the train, test and round1 set
is public, the round2 set is kept secret in case of new tasks or competitions.
This results in an available dataset of a total of 15000 sentences for training and
testing.
Table 2.1 shows some statistics of the GENETAG corpus.

train set test set round1 round2 total

sentences 7,500 2,500 5,000 5,000 20,000
words 204,195 68,043 137,586 137,977 547,801
tagged genes/proteins (G) 8,935 2,987 5,949 6,125 23,996
alternatives to G 6,583 2,158 4,275 4,505 17,531
genes/proteins in G with alternatives 4,675 1,522 3,057 3,186 12,440

Table 2.1: Statistics of the di�erent parts of the data

All gene entities in the corpus are tagged with 'NEWGENE'. To distinguish two
di�erent entities adjacent to each other in a sentence, the tag 'NEWGENE1' is
used. The rest of the tokens are tagged with their POS tag. A list of all POS
tags is in appendix 1. Each set of the data comes with two �les 'Gold.format'
and 'Correct.Data'. 'Gold.format' contains the true gene tags also called the
golden standard for the data. 'Correct.Data' contains alternative acceptable

2.1 Corpus 5

tags. A typical example for a tagged sentence in the corpus containing both
'NEWGENE' and 'NEWGENE1' tags:

@@76576683396 TH-SH3/NEWGENE binding/JJ in/IN vitro/FW is/VBZ

abolished/VBN by/IN specific/JJ ,/, single/JJ amino/JJ acid/NN

substitutions/NNS within/IN the/DT Btk/NEWGENE TH/NEWGENE1

domain/NEWGENE1 or/CC the/DT Fyn/NEWGENE SH3/NEWGENE1

domain/NEWGENE1 ./.

The gene tags in the above sentence are represented in 'Gold.format' as:

1. @@76576683396 | 0 0 | TH-SH3

2. @@76576683396 | 15 15 | Btk

3. @@76576683396 | 16 17 | TH domain

4. @@76576683396 | 20 20 | Fyn

5. @@76576683396 | 21 22 | SH3 domain

and the alternatives in 'Correct.Data' are represented as:

1. @@76576683396 | 15 16 | Btk TH

2. @@76576683396 | 16 16 | TH

3. @@76576683396 | 20 21 | Fyn SH3

4. @@76576683396 | 21 21 | SH3

The numbers in between the pipe characters represent the index numbers of
the �rst and last token of the tag in the sentence. '@@76576683396' is the
unique identi�cation number of the sentence. The example does really stress
the ambiguity of gene tags. E.g. in the part of the sentence saying [...within

the Btk TH domain or...], the golden standard would be [...within the

Btk/NEWGENE TH/NEWGENE1 domain/NEWGENE1 or...], but the variations [...within
the Btk/NEWGENE TH/NEWGENE domain or...] and [...within the Btk/NEWGENE

TH/NEWGENE1 domain or...] are acceptable alternatives according to 'Cor-
rect.Data'. Notice how the tag [...within the Btk/NEWGENE TH/NEWGENE

domain/NEWGENE or...] is not acceptable. The sentences were �rst tagged
using an automated classi�er, and afterwards corrected by experts using the

6 Data

guidelines in appendix 2 [4].

It is a general problem that there is no syntactic or contextual di�erence be-
tween the two tags 'NEWGENE' and 'NEWGENE1'. To deal with this problem
all gene tags are changed to 'B' for tokens being the �rst token of a gene tag,
and 'I' for tokens being a part of a gene tag, but not the �rst, in cases where
the gene tag consists of multiple tokens. The sentence from before would now
be:

@@76576683396 TH-SH3/B binding/JJ in/IN vitro/FW is/VBZ

abolished/VBN by/IN specific/JJ ,/, single/JJ amino/JJ acid/NN

substitutions/NNS within/IN the/DT Btk/B TH/B domain/I or/CC

the/DT Fyn/B SH3/B domain/I ./.

This corresponds to the IOB-format, which is widely used in natural language
processing. In NLP tokens syntactic belonging to each other, so called chunks,
will be tagged with I (inside), O (outside), or B (begin). A token is tagged as B
if it marks the beginning of a chunk. Subsequent tokens within the chunk are
tagged I. All other tokens are tagged O [6].

2.2 Dictionary

To build a gazetteer useful for the purpose of this project di�erent online gene
and protein databases are considered. An obvious choice was to use the UniProt
Knowledgebase (UniProtKB), which is a protein database partially curated by
experts and automated extracting systems. The database consists of two sec-
tions: UniProtKB/Swiss-Prot (containing reviewed, manually annotated en-
tries) and UniProtKB/TrEMBL (containing unreviewed, automatically anno-
tated entries). Meanwhile it turned out that working with dictionaries in Python
with much more than 10,000,000 entries was too challenging for the memory of
a standard laptop. The TrEMBL part of UniProtKB consisted of more than
20,000,000 entries, and it was not convenient to work with a dictionary of that
size.
Another possibility was Georgetown University (Washington D.C.), who pro-
vides the web-based system 'BioThesaurus', which is designed to map a com-
prehensive collection of protein and gene names to UniProtKB protein entries.
It covers all UniProtKB protein entries, and consists of several millions of names
extracted from multiple resources based on database cross-references from more
than 30 di�erent sources. It is possible to download a list of all the protein terms

2.2 Dictionary 7

in 'BioThesaurus'. From year 2005 to 2010 there have been released yearly up-
dates of the list. The �rst version from 2005 consists of around 4.6M entries, with
2.9M of them being unique terms, and the rest being alternatives/synonyms.
The list from 2005 was extracted from 13 di�erent data sources. The last, and
7th, version from 2010 consists of more than 40M entries with around 16.6M of
them being unique terms, and the terms are extracted from 34 di�erent data
sources. Due to the fast increasing size of the amount of known gene and protein
terms over the past decade, only the �rst three versions of the 'BioThesaurus' are
considered as gazetteers. The latest versions are again too big and causes trouble
in the implementation. For more details about 'BioThesaurus' see http://pir.
georgetown.edu/pirwww/iprolink/biothesaurus/statistics.shtml#dh.
Finally two lists created by automated extracting systems of gene and protein
terms from MEDLINE abstracts were considered. The �rst one called 'Sem-
Cat' consists of a large number of semantically categorized names relevant to
genomics. The entities of the database are divided into more than 70 di�er-
ent biological categories, and the category 'DNA molecule' turned out to be
the most frequent category containing gene tags from the GENETAG corpus.
Because SemCat contains entities extracted by automated systems the data
is by no means a comprehensive set of biomedical entities in MEDLINE, and
we have to assume that 'SemCat' contains some wrong or too generic entities
[7]. The other list of automatically generated entities is 'Gene.Lexicon', ac-
cording to [8] 'Gene.Lexicon consists of 82% (+/-3%) complete and accurate
gene/protein names, 12% names related to genes/proteins (too generic, a valid
name plus additional text, part of a valid name, etc.), and 6% names unrelated
to genes/proteins. Both 'SemCat' and 'Gene.Lexicon' is created by Tanabe et
al., which also created the data set 'GENETAG' used for the BioCreative tasks
and this project.

gene entries/Mbytes % train set % test set year

'Gene.Lexicon' 1,145,391/45.2 0.489 0.486 2003

'SemCat' (DNA molecule) 891,656/26.7 0.629 0.640 2006

'SwissProt' 705,800/23.2 0.417 0.419 2012

'BioThesaurus3' 9,941,868/357.2 0.681 0.685 2007

'BioThesaurus2' 8,606,914/309.9 0.680 0.683 2006

'BioThesaurus1' 4,646,029/171.8 0.661 0.665 2005

Table 2.2: Showing size of dictionaries, how many percent of the gene entities
from respectively the train and test set are contained in the di�erent
dictionaries and what year the dictionary were updated.

Table 2.2 shows the size of each of the considered dictionaries, respectively the

http://pir.georgetown.edu/pirwww/iprolink/biothesaurus/statistics.shtml#dh
http://pir.georgetown.edu/pirwww/iprolink/biothesaurus/statistics.shtml#dh

8 Data

number of gene terms and the size of the dictionary in python in Mbytes. Each
gene entry from the train set and the test set was looked up, and the percentages
shows how many of them were present in the dictionaries, only exact matches
were allowed. A gene entry was counted to be present if either the entry from
'Gold.format' or one of its alternatives from 'Correct.Data' were present. Fi-
nally the table shows the year of release for each dictionary.
It turned out that the two dictionaries created by automated extraction from
MEDLINE abstracts ('SemCat' and 'Gene.Lexicon') supplemented each other
very well, and in any combinations of dictionaries including 'SemCat' and 'Gene.Lexicon'
the percentages of gene match increased signi�cantly. These two dictionaries are
created by the same author, who created the data set, so most probably some
similar annotation guidelines have been applied, and explains the good coverage.
'SemCat'+'Gene.Lexicon' covers 76.5% of the gene from the train set and 76.3%
from the test set. Including 'BioThesaurus2' results in respectively 79.3% and
79.1%. Including the 'SwissProt' results in respectively 77.3% and 77.1%.
Based on testing di�erent combinations of the dictionaries in 2.2. The conclu-
sion is that 'SemCat'+'Gene.Lexicon' should be su�cient enough in this project,
and the size of the combined dictionary of 'SemCat' and 'Gene.Lexicon' is easy
and fast to load in python as well. The list below shows the sites from where
the di�erent dictionaries can be downloaded freely.

'Gene.Lexicon': ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/Gene.Lexicon.gz
'SemCat': ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/SemCat.tar.gz
'SwissProt': ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/uniprot_sprot.dat.gz

'BioThesaurusX': ftp://ftp.pir.georgetown.edu/databases/iprolink/
'TrEMBL': ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/uniprot_trembl.dat.gz

ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/Gene.Lexicon.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/SemCat.tar.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz
ftp://ftp.pir.georgetown.edu/databases/iprolink/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.dat.gz

Chapter 3

Methods

The NER system is a constructed in 2 steps. The �rst step is to train a POS-
tagger that is able to recognize gene tags, as well as standard POS-tags. The
second step is to generate a feature set for training a NB classi�er, which clas-
si�es tokens to be 'B' for tokens being the �rst part of a gene/protein tag, 'I'
for tokens following a 'B' in cases where the gene/protein tag consists of more
than one token, and �nally 'O' for tokens not being gene tags.
Everything is implemented in Python using the 'natural language tool kit' pack-
age (nltk). The 7500 sentences from the train set is used for training of a POS-
tagger and a NB classifer, such that the performance is comparable with related
NER tasks using the same data. The test set consisting of 2500 sentences is used
for testing and improving of the classi�er, while the performance on the round1
set consisting of 5000 sentences is used for �nal testing and comparing. The
performance of the round1 set was the deciding factor for choosing the winner
of the BioCreAtIvE tasks.

10 Methods

test - tokenize - POS-tag -

Brill

Tagger

?
6

6
?

feature
extraction

-

Naive
Bayes

?
6

6
?

classify -

train - tokenize - train
POS-tag

-
extraction
feature - train

classi�er

labelled
text

Figure 3.1: Overview of the NER system

Figure 3.1 shows the architecture of the NER system. The raw text is �rst
tokenized, then tagged by a POS-tagger and analysed such that a feature set is
generated. A NB classi�er is fed with the feature set and determines the �nal
classi�cation of the tokens.

Evaluation is carried out relative to the tags that an expert would assign. Since
we do not usually have access to an expert and impartial human judge, we make
do instead with the gold standard and the alternatives for the test data repre-
sented in the �les 'Gold.format' and 'Correct.Data'. The tagger is regarded as
being correct if the tag it guesses for a given word is the same as the gold stan-
dard or one of the alternative tags.
Of course, the humans who designed and carried out the original gold standard
annotation were only human. Further analysis might show mistakes in the gold
standard, or may eventually lead to revised tag sets and more elaborate guide-
lines. Nevertheless, the gold standard is by de�nition "correct" as far as the
evaluation of an automatic tagger is concerned.

3.1 Evaluation measure

For evaluation we count the true positives (tp), false positives (fp) and false
negatives (fn), such that the recall, the precision and the f-measure can be
determined.
The true positives are correctly classi�ed gene entities. The false positive are
non-gene entities which incorrectly are being classi�ed as being genes. The false
negatives are gene entities which are classi�ed as not being a gene. Knowing

3.1 Evaluation measure 11

the counts of the tp, fp and fn it is possible to calculate the three measures:

recall =
tp

tp+ fn
(3.1)

precision =
tp

tp+ fp
(3.2)

f-measure = 2 · precision · recall
precision+ recall

(3.3)

The recall is the fraction of the gene entities from the whole corpus which are
retrieved by the classi�er. On the other hand the precision is the fraction of
correct gene entities among the retrieved ones. The F-measure is a weighted
average of the precision and the recall, or more precisely denoted as the harmonic
mean of the recall and the precision. Table 3.2 shows how the harmonic mean
of the recall and the precision di�ers from a normal arithmetic mean.

Figure 3.2: The graphical di�erence between the harmonic mean and the
arithmetic mean of the precision and the recall.

The advantage of the harmonic mean is its availability to penalize the f-measure
when the di�erence between the recall and the precision increases. If the recall
and the precision are equal, then the f-measure will equal the arithmetic mean
of the recall and the precision, which is desirable. If the recall and precision are
subject to a mean-preserving spread, which means that they are "spread apart"
from each other while leaving the arithmetic mean unchanged, then the har-
monic mean will always decrease. A high f-measure ensures that both the recall

12 Methods

and precision are high as well. Throughout this project, recall and precision are
weighted equally.

3.2 Tokenization

The raw text (train/test) are tokenized before used it can be as train/test data.
Tokenizing of the text has the purpose of identifying each element in a sentence.
Each element is called a token and will be assigned a POS-tag, and later classi-
�ed as being a gene or not. Hyphens "-" and the genetiv marker, "'s", are the
only cases where signs are not individual tokens. The sentence

'A man's world, but it would be nothing without a woman.'

would be tokenized into the following 14 tokens:

A man 's world , but it would be nothing without a woman .

3.3 POS-tagger

The tools available in Pythons nltk-package have been used for training of a
POS-tagger with the train set form GENETAG. To start with three di�erent
kinds of taggers are considered:

3.3.1 Regular expression tagger

The regular expression tagger, determines the tag of a given token from some
user de�ned orthological rules. As an example we implement a regular expression
POS-tagger with the following determining rules. If the token:

• consists of only numbers eventually with some symbols attached: 'CD'

• is 'The', 'the', 'A', 'a', 'An' or 'an': 'DT'

• ends on 'able', 'ible', 'esque', 'less', 'ive', 'ish', 'ous', 'ic', 'ical', 'ful': 'JJ'

• ends on 'ness', 'ity', 'ship', 'tion', 'sion', 'ment', 'ist', 'ism', 'dom', 'ence',
'ance', 'al', 'acy', 'er', 'or': 'NN'

3.3 POS-tagger 13

• ends on 'ly': 'RB'

• ends on 's': 'NNS'

• ends on 'ing': 'VBG'

• ends on 'ed': 'VBD'

• is not obeying any of the above rules: 'NN'

This means that a lot of tokens will just be assigned as 'NN', but the advantage
of this tagger is its ability to tag every token, including tokens which has never
seen before.
See appendix 1 for a list of the di�erent POS-tags in the train set.

3.3.2 Unigram tagger

The unigram tagger is based on a simple statistical algorithm. It simply assigns
the most likely tag to a given token based on the counts of tags of that given
token in the train set. Taking a closer look at the word 'function', shows that the
distribution of the tags of 'function' in our train set are 'NN' 6826 times, 'VB'
403 times, 'VBP' 101 times and 'MIDGENE' 33 times. The unigram tagger will
tag 'function' as 'NN' everytime it occurs with no concerns about the words
context.

3.3.3 N-gram tagger

The N-gram tagger is a generalization of the unigram tagger, instead of only
considering a single isolated token, N=1, the N-gram tagger considers every
token in the context of N-1 preceding tags. This means that the tagger is still
not able to tag tokens not being present in the train data, and furthermore an
N-gram tagger will not able to tag tokens occuring in a context not present in
the train data. Figure 3.3 shows the concept of a 3-gram tagger also known as
a trigram tagger.

tn−1

wn−1

tn−2

wn−2

tn

wn

tn+1

wn+1

tags:

tokens:

Figure 3.3: The concept of an trigram tagger

14 Methods

3.3.4 Combining taggers

As mentioned above the N-gram taggers are not able to tag tokens if the context
they appear in have not been present in the train data. Assuming a bigram
tagger (N=2) and the word 'function' occurring after a token tagged as 'JJ'. If
'function' never appeared in the train data with a preceding 'JJ' tag, then a
bigram tagger will fail to assign 'function' in this context, and 'function' will
be assigned the tag 'None'. The word following 'function' will then have the
preceding tag 'None'. It is most probably that this following word has never
occurred in the context with a preceding 'None' tag in the train data, and again
the bigram tagger will fail to assign the word any tag but 'None'. This goes on
throughout the sentence, and results in a very poor performance of the N-gram
taggers. As N gets bigger the performance gets worse, due to the increasing
speci�city of the context.
Biomedical literature are often characterized as sparse text, because of many
technical and speci�c terms, which occurs very seldom in common literature.
This is a problem because as soon as an N-gram tagger meets a word not present
in train data, the tagger is unable to assign it any tag, and a chain-reacting of
'None' tags throughout the sentence will begin.
To solve this problem it is possible to add one or more backo�-taggers to a given
tagger, such that if e.g. a bigram tagger is not able to assign a tag to a given
token, then it will try with a unigram tagger instead. In case the unigram tagger
should fail as well, a regular expression tagger could be a backo�-tagger for the
unigram tagger, such that 'None' tags are avoided.
After POS-tagging text, the tags are corrected such that an 'I' tag having neither
a preceding 'I' or 'B' tag are changed to 'B', while no entities can start with an
'I' tag.

Table 3.1 shows the performances of di�erent combinations of a regular expres-
sion, unigram, bigram and trigram tagger on the test set. The accuracy are the
fraction of tokens in the test set, which are tagged with the correct POS-tag.
The accuracy then tells us something about how well a given tagger performs
not only on gene/protein tags but for all POS-tags. On the other hand the
recall, precision and f-measure do only concern the gene/protein tags. Notice
the poor performance of the N-gram taggers without any backo�-taggers, and in
particular the poor ability to recognize gene/protein terms. Table 3.1 also shows
that # 7 receives the best accuracy, while # 15 receives the best f-measure for
the gene/protein tags. Tagger # 7 and # 15 are picked out and analysed further
throughout this chapter.

3.3 POS-tagger 15

tagger backo� 1 backo� 2 backo� 3 accuracy recall precision f-measure

1 reg. expr. 28.750% - - -

2 unigram 80.944% 38.768% 40.632% 39.678%
3 unigram reg. expr. 84.188% 38.768% 40.632% 39.678%

4 bigram 15.251% 4.720% 58.506% 8.736%
5 bigram reg. expr. 84.188% 19.417% 58.943% 29.212%

6 bigram unigram 82.811% 39.873% 52.769% 45.423%
7 bigram unigram reg. expr. 85.774% 39.839% 58.419% 47.373%

8 trigram 8.950% 1.440% 44.330% 2.788%
9 trigram reg. expr. 73.385% 7.800% 47.648% 13.406%

10 trigram unigram 82.555% 40.074% 48.092% 43.718%
11 trigram unigram reg. expr. 85.531% 40.074% 52.500% 45.453%

12 trigram bigram 15.177% 4.720% 58.506% 8.736%
13 trigram bigram reg. expr. 81.025% 19.652% 58.119% 29.372%

14 trigram bigram unigram 82.837% 40.308% 52.691% 45.675%
15 trigram bigram unigram reg. expr. 85.661% 40.241% 58.208% 47.585%

Table 3.1: Performance of di�erent combinations of pos-taggers on the test set

3.3.5 Brill tagger

The Brill tagger is another type of POS-tagger, which improves a given initial
tagger. Using a Brill tagger makes it possible to improve the N-gram taggers.
The Brill tagger works the way that it starts out with a corpus tagged by a given
initial POS-tagger. It looks up the mistakes in the tagged corpus, and given the
mistake it tries to come up with some correction rules that repairs the mistakes.
The tagged corpus gets updated with every new correction rule. This continues
until a certain user speci�c number of correction rules have been applied to the
POS-tagger or a user speci�ed minimum score is reached. The Brill tagger has
the advantage over the N-gram taggers that it is capable of looking up preceding
and following words as well as tags. The user creates a template for the Brill
tagger that tells it which patterns and sequences of preceding and following
tags and words to take into account. The correction rules are of the structure
"replace T1 with T2 in the context C" e.g. "replace 'NN' with 'I' if the tag of

16 Methods

the following word is 'I'" or "replace 'NNP' with 'B' if the preceding tag is 'JJ'
and the following word is 'gene'", ect.
To correct a wrong tag, t0, of a word, w0, the Brill tagger is told to look at the
speci�c tags t−2, t−1, t1 and t2 and the speci�c words w−2, w−1, w1 and w2.
Additional the tagger is able to create correction rules based on occurrences
of particular words or tags surrounding the wrong tag, e.g. a rule could be
"replace T1 with T2 if the the tag/word x occurs among the following/preceding
ith tags/words". The Brill tagger are initiated such that i can take the values
2 and 3.
The Brill tagger outputs a score for every generated correction rule. The score,
s, is de�ned as s = fixed− broken, where fixed is the number of times the rule
changes an incorrect tag to a correct tag, and broken is the number of times
the rule changes a correct tag to an incorrect tag. The Brill tagger was trained
with a limit of maximum of 1000 rules and a minimum score of 2.

tagger initial tagger 1 accuracy recall precision f-measure

7 - 85.774% 39.839% 58.419% 47.373%
15 - 85.661% 40.241% 58.208% 47.585%
Brill # 7 87.010% 42.250% 62.599% 50.450%
Brill # 15 86.593% 42.417% 61.297% 50.139%

Table 3.2: Performance of Brill taggers compared to the best N-gram taggers
from table 3.1

The Brill taggers in table 3.2 were trained on the train set, which was initial
tagged by respectively tagger # 7 and tagger # 15 from table 3.1. The accuracy,
recall, precision and f-measure are equivalent to 3.1 and based on the test set
as well. The Brill tagger initiated by tagger # 7 receives the best f-measure for
the gene/protein tags, this tagger will be used in the further implementation of
a NER system.

The 10 correction rules having the highest score for tagger # 7 are shown in
table 3.3. Comparing with the 5 rules having the smallest score in 3.4, it is clear
how the rules get more concerned about particular words, whereas the rules in
table 3.3 in particular concern the gene tags, 'B' an 'I', and tags in general.

3.3 POS-tagger 17

S
c
o
re

F
ix
e
d

B
ro
k
e
n

O
th
e
r

Rule

153 153 0 153 NN -> I if the tag of the following word is 'I'

148 149 1 8 IN -> RB if the text of words i+1...i+2 is 'as'

147 164 17 35 JJ -> B if the tag of the following word is 'I'

93 95 2 0 (-> I if the tag of the following word is 'I'

91 99 8 99 . -> CD if the tag of words i+1...i+3 is 'CD'

65 67 2 0 I -> B if the tag of the preceding word is 'DT', and the tag
of the following word is 'I'

57 64 7 14 NN -> VB if the text of the preceding word is 'as', and the
text of the following word is 'as'

50 57 7 40 NN -> B if the tag of the following word is 'I'

46 46 0 3 SYM -> I if the tag of the following word is 'I'

40 41 1 1 DT -> IN if the tag of the preceding word is 'VBD', and
the tag of the following word is 'DT'

Table 3.3: The 10 correction rules with the highest score from the training of
the Brill tagger

S
c
o
re

F
ix
e
d

B
ro
k
e
n

O
th
e
r

Rule

2 2 0 0 VBP -> VB if the text of the preceding word is 'others'

2 2 0 0 VBZ -> NNS if the text of words i-2...i-1 is 'spirochaete'

2 2 0 0 WDT -> IN if the text of the preceding word is ')', and the
text of the following word is 'encodes'

2 2 0 0 WDT -> IN if the text of words i-2...i-1 is 'cluster'

2 2 0 0 WDT -> IN if the text of the following word is 'on'

Table 3.4: The 5 correction rules with the lowest score from the training of
the Brill tagger

18 Methods

3.4 Naive Bayes Classi�er

To do the �nal classi�cation a Naive Bayes (NB) classi�er is trained to dis-
tinguish genes from non-gene entities. The classi�er distinguish between three
classes; 'B', 'I' and 'O', which are initiated by the Brill tagger from previous
section. The NB classi�er is trained on a set of features, which are meant to
identify the gene entities, and in particular the entities not found by the POS-
tagger. A feature could e.g. be the POS-tag of the token, whether the token is
a word consisting of both lower and upper case letters, whether the token is a
digit or not, ect.

A NB classi�er is trained in Python, using the nltk package. The classi�er
works such that a set of features relevant to the di�erent classes are speci�ed
by the user. The main purpose is to determine the class of a token, t, given
the feature set, ft, belonging to the particular token by computing the posterior
probability P (class|ft). Using Bayes theorem:

P (class|ft) =
P (ft|class) · P (class)

P (ft)
(3.4)

3.4.1 Exploring feature sets

To demonstrate how Python's NB classi�er works an example is provided. The
example is a simpli�ed version of the �nal implementation. Considering the
following three features:

feature 1: token's POS-tag is 'B' or 'I'

feature 2: token occurs in the dictionary & POS-tag is not present in {IN, DT, CC,
PRP, WDT, MD, PDT, WP, TO, EX, WRB, RP }

feature 3: token consists of at least one upper case letter and one digit

The NB classi�er is trained separately on each of the 7500 train sentences, and
to each token in each sentence belongs a feature set. Table 3.5 shows how the
classi�er handles an input sentence for training. The sentence are �rst POS-
tagged by the previous trained brill tagger, and then a feature set for each of
the tokens are generated. The brill tagger has an overall accuracy on the train
set of 0.97, and evaluation measures for the gene/protein tags are: recall =
0.917, precision = 0.908 and f-measure = 0.912. The fact that not 100% of
the gene/protein entities are recognized correctly in the train set, will result in

3.4 Naive Bayes Classi�er 19

some wrongly generated features for the features depending on the POS-tags.
E.g. it will be possible to have a token which truely should have a gene tag, but
has been assigned a wrong POS-tag by the brill tagger. The beginning of the
following sentence is used to exemplify how the feature sets for the train data
are generated and used for training.

The LMW FGF-2 up-regulated the PKC epsilon levels by 1.6-fold

; by contrast the HMW isoform down-regulated the level of this

PKC isotype by about 3-fold and increased the amount of PKC

delta by 1.7-fold .

token The LMW FGF-2 up-regulated the PKC epsilon levels by

true class O B I O O B I O O

brill tag DT B I IN DT B I NNS IN

feature set

feature 1 False True True False False True True False False

feature 2 False True True True False True True False False

feature 3 False False True False False False False False False

Table 3.5: The feature sets for the �rst nine tokens of the sentence.

For this particular train sentence the NB classi�er would get the train input as
tuples representing each token, see �gure 3.4.

[(
feature 1: False
feature 2: False
feature 3: False

,'O'),(
feature 1: True
feature 2: True
feature 3: False

,'B'),(
feature 1: True
feature 2: True
feature 3: True

,'I')· · ·
Figure 3.4: The �rst three tuples of the sentence from table 3.5.

To save time only the �rst 10 sentences of the train set is used for this example.
The 10 sentences consist of 239 tokens and 13 gene entities. Most of the gene
entities consist of more than one word, so the total number of 'B' tags is 13
and the total number of 'I' tags is 25, leaving 201 tokens with 'O' tags. Figure

20 Methods

3.5 shows the contingency tables of the counts for each feature. The posterior
probability, P (class|ft) for the three classes are based upon the counts from the
contingency tables in �gure 3.5.

True False
O 1 200 201
B 12 1 13
I 22 3 25

35 204 239

(a) Counts for feature 1

True False
O 50 151 201
B 11 2 13
I 23 2 25

84 155 239

(b) Counts for feature 2

True False
O 16 185 201
B 9 4 13
I 7 18 25

32 207 239

(c) Counts for feature 2

Figure 3.5: Counts for the features

Three features with each two outcomes, True and False, results in a total of 8
feature sets. Table 3.6 shows how tokens will be classi�ed according to what
feature set they match. The probabilities are computed in Python simply using
the command below for each of the classes, here shown with the class 'B':

>>> classifier.prob_classify({'feat1':True, 'feat2': True, ...

'feat3': True}).prob('B')

0.5253238661014447

feature 1 feature 2 feature 3 B I O classi�cation
True True True 0.5253 0.4720 0.0026 B
True True False 0.1725 0.8070 0.0205 I
True False True 0.6627 0.2914 0.0459 B
True False False 0.2027 0.4642 0.3330 I
False True True 0.1290 0.1503 0.7207 O
False True False 0.0072 0.0434 0.9494 O
False False True 0.01271 0.0072 0.9800 O
False False False 0.0005 0.0016 0.9978 O

Table 3.6: Classi�cations of the di�erent feature sets, and the posterior prob-
abilities for each class

Table 3.6 shows the di�erent feature sets, and the posterior probabilities of the
classes for each of the sets. The class with the biggest posterior probability
is assigned to the token. Let us assume that the sentence from table 3.5 was

3.4 Naive Bayes Classi�er 21

not one of the 10 train sentences, and using the feature sets from table 3.5, the
classi�cation according to table 3.6 would be:

token The LMW FGF-2 up-regulated the PKC epsilon levels by

true class O B I O O B I O O

alternative O O B O O B O O O

assigned class O I B O O I I O O

corrected O B B O O B I O O

Table 3.7: The classes assigned to the sentence from table 3.5

Table 3.7 shows the classes assigned to the sentence from table 3.5. In the �rst
try the classi�er is wrong for both gene entities. Apparently the distinction
between 'B' and 'I' is not that good, but it is irrelevant, while this is only meant
as a demonstration explaining how the system works. The 'I' assigned to the
token 'LMW' and 'PKC' is changed to B, because the preceding class is 'O',
and a gene entity can not start with 'I'. This corrects the classi�cation such
that the gene entity 'PKC epsilon' is correct. The entity 'LMW FGF-2' is now
classi�ed as two separate gene entities 'LMW' and 'FGF-2'. Both 'LMW FGF-
2' and 'FGF-2' alone will be considered as true positive, while the 'FGF-2' is
a legal alternative to 'LMW FGF-2'. But 'LMW' can not stand alone. After
correction of 'I' to 'B' the classi�cation results in 2 true positives ('FGF-2' and
'PKC epsilon'), 1 false positive ('LMW') and 0 false negatives. Repeating the
evaluation measure from chapter 3 we get:

recall =
tp

tp+ fn
=

2

2
= 1.0

precision =
tp

tp+ fp

2

3
= 0.67

f-measure = 2 · precision · recall
precision+ recall

=
2

5
= 0.80

3.4.2 Bayes Theorem and additive smoothing

Given the feature set and the counts from �gure 3.5, the probabilities for the
di�erent classes are computed using equation 3.4:

P (class|ft) =
P (ft|class) · P (class)

P (ft)

22 Methods

Because the denominator is the same for each of the three classes given a par-
ticular feature set, it is only necessary to compute the numerator. The token
will be assigned the class that results in the largest numerator in equation 3.4.
The Naive Bayes classi�er assumes that the features are independent, such that
the posterior probability for a feature set f = {f1, f2, f3}, given a class, C, is:

P (f |C) = P (f1|C)P (f2|C)P (f3|C) (3.5)

Using equation 3.5 it is now possible to calculate the numerator of equation 3.4:

pCnum = P (f |C)P (C) = P (f1|C)P (f2|C)P (f3|C)P (C) (3.6)

To �nd the most likely class given a feature set, we calculate pCnum for each class
C = { 'B', 'I', 'O' } . pCnum is normalized by

∑(
pBnum, p

I
num, p

O
num

)
, such that

the probabilities sum to one.

To ensure that equation 3.6 will not equal zero, which will happen in the case
where one of the counts in �gure 3.5 is zero, additive smoothing with parame-
ter α is applied when computing the probabilities. This means that instead of

computing the likelihood
c

N
, with c being the count and N being the marginal

totals for the given classes, the likelihoods are modi�ed such that:

P (f |C) = P (f1|C)P (f2|C)P (f3|C) =
∏

i=1..C

(
ci + 0.5

N +B · 0.5

)
(3.7)

for C being the number of classes and α = 0.5.

Back to the example, we want �nd the most likely class given the feature set
f = {True, True, True}. The pCnum, is calculated for each class, C ={B,I,O},
and normalized by the sum

∑
C p

C
num.

3.4 Naive Bayes Classi�er 23

P (B|f) = P (f1 = True|B)P (f2 = True|B)P (f3 = True|B)P (B)

=
12.5

14.5
· 11.5
14.5

· 9.5
14.5

· 13.5
240.5

· 1

Psum
= 0.5253

P (I|f) = P (f1 = True|I)P (f2 = True|I)P (f3 = True|I)P (I)

=
22.5

26.5
· 23.5
26.5

· 7.5
26.5

· 25.5
240.5

· 1

Psum
= 0.4720

P (O|f) = P (f1 = True|O)P (f2 = True|O)P (f3 = True|O)P (O)

=
1.5

202.5
· 50.5
202.5

· 16.5
202.5

· 201.5
240.5

· 1

Psum
= 0.0026

Psum =
12.5 · 11.5 · 9.5 · 13.5

14.53 · 240.5
+

22.5 · 23.5 · 7.5 · 25.5
26.53 · 240.5

+
1.5 · 50.5 · 16.5 · 201.5

202.53 · 240.5
≈ 0.04787

This is how the NB-classi�er in Python works and the results agree with the
probabilities in table 3.6. 'B' is the most likely class, and 'B' is assigned to
tokens with the feature set {True, True, True}.

24 Methods

Chapter 4

Implementation of

NB-classi�er

4.1 Feature selection

A good choice of features is important for receiving a good performance. Be-
cause the number of non-gene terms in data ('O'-tagged tokens) are many times
bigger than the number of gene terms ('B' and 'I' tags), it is hard to �nd fea-
tures which do favour the 'B' and 'I' tags over 'O'. An exceptions are the features
'POS-tag == 'B� and 'POS-tag == 'I�, where 'POS-tag' refer to the tag as-
signed by the brill tagger prior to the classi�cation. The features resulting in
the best classi�cation were features aimed to identify gene terms.
Only boolean features were considered, table 4.1 shows a list of the orthographic
features used for classi�cation. To supplement the orthographic features a dic-
tionary of generic high frequent gene tokens were extracted from the train set.
The list contained words such as 'gene', 'mutant', 'factor', 'dna', 'receptor',
'protein', ect. which can never be tagged as individual entities, but often occur
somewhere inside an entity, e.g. 'p53 gene', 'mutant EphB1 receptor', ect. The
dictionary, D, from chapter 3 and this generic dictionary, d, were used as part
of the features as well, e.g. 'tn exists in D and tn+1 exists in d' would be true
for 'p53 gene', where tn = 'p53'.
Features were generated for one sentence at a time, which made it possible to
include previous tokens and their POS-tags. Each token is represented as a

26 Implementation of NB-classi�er

fetaure example

All caps RXR, AE, YREA,..

Mix caps DNase, CopG, apoB,..

Alpha + digit CPA1, p53, Rat7p,..

Natural number 0,1,2,..

Real number 0.05, 23.5, 1,345

Roman VIII, ix, II,..

Contain dash COUP-TFII, c-fos, 5-HT2C-R,..

Sequence TTACTA, GGGCTA, UGCAA,..

Table 4.1: List of the orthographic features.

tuple (wn, ptn), where wn is the word/token and ptn is the POS-tag. A possible
feature could be "wn is a roman number and ptn == 'B'", which would be true
for roman numbers following a 'B' POS-tag.

4.2 Evaluation

Table 4.2 shows the performance of the classi�er for the test set and round1:

precision recall f-measure

test set 0.561 0.594 0.577

round1 0.565 0.613 0.588

Table 4.2: Evaluation measure of NB-classi�er

Figure 4.1 shows how our �nal f-measure would have been ranked in the BioCre-
ative task 1.A, where the same data set was used for training a NER system for
extracting genes and protein terms.

4.2 Evaluation 27

Figure 4.1: Graphical view of the f-measures received by the teams partici-
pating in BioCreative task 1.A (blue) [9], and the NB-classi�er
(red).

28 Implementation of NB-classi�er

Chapter 5

Further work and

improvements

The NB classi�er is a fast an e�cient learning algorithm, and it is just a few
seconds for training with Python. A NB classi�er has the advantages that it is
robust to irrelevant features, which will be uniformly distributed over all classes,
and the conditional distribution for the given feature will have no impact on the
computation of the posterior probabilities.
The learning algorithms showing best results in the BioCreative tasks have been
conditional random �elds. Using more advanced statistical algorithm will most
likely improve performance. Also a more comprehensive feature selection and
extraction will as well show improvements. The NB classi�er is not suited for
dependent features, and it can be hard in practise to ensure independence among
all features.
During the project di�erent values were tried for the probability limit trying
to catch some false positives. E.g. a token would only be assigned 'O' if
P (O|ft) > 0.7, if P (O|ft) < 0.7 the token would be assigned to either 'B' or 'I'
dependent on which of P (B|ft) and P (I|ft) had the biggest value. It turned
out that the increase of catching false negatives did not match the decrease of
getting false positives.

The following shows some of the sentences from the �nal classi�cation of the test
set which have terms not classi�ed correctly. It is worth noticing that the classi-

30 Further work and improvements

�er manage to recognize most of the terms, but have some trouble determining
the borders of the terms. The second output shows a typical mistake where the
classi�er tags the beginning of the term 'Factor VIII' but fails to get the rest
'related antigen' (notice the misspelled word 'antigen'). The third output shows
a more crucial mistake, the classi�er has tagged 'Raf-independent', words end-
ing on -dent, -able, -ible, ... are adjectives and will never be legal stand-alone
gene terms, so there is de�nitely some improvement to be done here. The last
output shows a case where 'mutant' has been tagged as gene term, this is against
the annotation guidelines for not tagging generic terms such as 'mutant', 'dna',
'peptide'..ect. To �x some of these problems some lexical rules or some post-
processing could be a solution. Mistakes are also seen in tagging of parentheses
and other signs.

index: @@7969135416
genes: '|6 6|Cln2', '|7 8|PEST domain'
gold: '|6 8|Cln2 PEST domain',
alt: '|6 6|Cln2', '|6 7|Cln2 PEST'

index: @@94233104179
genes: '|3 3|cystic', '|17 17|CD34', '|19 20|Factor VIII'
gold: '|17 17|CD34', '|19 22|Factor VIII related antigen',

index: @@110058084808
genes: '|5 5|Raf-independent', '|6 7|ERK MAPK'
gold: '|6 7|ERK MAPK',
alt: '|6 6|ERK'

index: @@18424982266
genes: '|16 16|phytohemagglutinin', '|18 18|PHA'
gold: '|16 18|phytohemagglutinin (PHA',

index: @@94306612817
genes: '|3 3|mutant', '|4 4|EphB1', '|10 10|Nck',

'|13 13|EphB1', '|17 17|JNK'
gold: '|3 5|mutant EphB1 receptors, '|7 7|Y594F', '|10 10|Nck',

'|13 13|EphB1', '|17 17|JNK'
alt: '|3 4|mutant EphB1', '|4 4|EphB1','|4 5|EphB1 receptors' ,

'|4 8|EphB1 receptors (Y594F)','|3 8|mutant EphB1 receptors (Y594F)',
'|13 13|EphB1'

Improving of features and applying of some more robust postprocessing rules,
that could ensure that adjectives tagged alone would be �ltered out. Carefulness

31

is important, while changing a gene tagged adjective to a non-gene tag, would
maybe not solve the problem. Maybe the adjective does belong to some bigger
context of a gene entity, and the change would not improve anything.
Misspellings and wrong annotations in the data set does exist, e.g. the missing
parenthesis in output number three in the tags from the golden standard: '|16
18|phytohemagglutinin (PHA'. A closing parenthesis does de�nitely miss here.
The standard of the data can be discussed. This is the �rst version of the data
set, and the GENETAG data has been updated and modi�ed multiple times
since the publications of the �rst version, but these up-to-date version are not
freely accessible.

32 Further work and improvements

Chapter 6

Conclusion

The learning algorithm for a Naive Bayes classi�er has been explained in details
through examples. The understanding of how the training and classi�cation
steps works for the learning algorithm is an important part of applying and
improving the classi�er. It has been shown that a NB classi�er can be used
for NER of gene terms. The performance does not equal the more advanced
statistical methods, but the performance does show some signi�cant skills of ex-
tracting gene terms. A well chosen feature set combined with some lexical rules
for �ltering out false negatives and false positives are important for receiving a
good performance.
A �nal f-measure of 0.58 ranks in the lower end of the submitted NER solutions
from the participating teams of the BioCreative I challenge task 1.A. A more
comprehensive investigation of features and their in�uence, and maybe consid-
erations about using a more advanced statistical learning algorithm would help
improving the performance. Furthermore many of the false positives are actu-
ally true gene tags having a wrong parenthesis, missing a terminating word or
a generic term. Application of some robust correcting rules after classi�cation
could probably be a solution to helping out in this gene border problem.

34 Conclusion

Appendix A

Tags

36 Tags

entry de�nition examples

NN noun, common, singular or mass cabbage thermostat investment
IN preposition or conjunction, subordinating astride among into if beside
JJ adjective or numeral, ordinal third oiled battery-powered
NEWGENE
DT determiner all them these this those
NNS noun, common, plural undergraduates scotches muses jobs
CD numeral, cardinal mid-1890 nine-thirty 271,124 dozen
. sentence terminator . ! ?
, comma ,
CC conjunction, coordinating & 'n and both but either vs.
VBN verb, past participle multihulled experimented desired
RB adverb occasionally swiftly pitilessly
VBD verb, past tense dipped pleaded soaked
NNP noun, proper, singular Escobar Kreisler CTCA Liverpool
SYM symbol % & ' � �.)). * + ,. < = > @
VBZ verb, present tense, 3rd person singular bases pictures emerges seduces
(opening parenthesis ([
VBP verb, present tense, not 3rd person singular predominate wrap
VB verb, base form ask bless boil bomb
PRP pronoun, personal hers himself hisself me myself
VBG verb, present participle or gerund stirring angering judging stalling
: colon or ellipsis : ;
WDT WH-determiner that what whatever
MD modal auxiliary can cannot could dare may
JJR adjective, comparative busier calmer clearer closer
FW foreign word gemeinschaft K'ang-si oui
NEWGENE1
PDT pre-determiner all both half many quite such
WP WH-pronoun that what whosoever
TO "to" as preposition or in�nitive marker to
JJS adjective, superlative calmest cheapest darkest deadliest
NNPS noun, proper, plural Americans Andalusians Andes
EX existential there there
WRB Wh-adverb how however whence whenever
CELL
RBR adverb, comparative further higher however larger
CHEM
ORG
RP particle around at back behind for from
RBS adverb, superlative best hardest most nearest
) closing parenthesis)]
POS genitive marker ' 's

Table A.1: A simple table

Appendix B

Annotation guidelines for

GENETAG corpus

The following are some rules about which words are considered as part of a
single gene/protein entity.

1. Mutants
p53 mutant

2. Parentheses at start or end when embedded in the name

(IGG) receptor

3. Motifs, elements, and domains with a gene name

POU domain
src domain
RXR-responsive element
Ras-responsive enhancer
but not
serum response element
AC element
B-cell-speci�c enhancer element

38 Annotation guidelines for GENETAG corpus

dioxin responsive transcriptional enhancer

4. Plurals and families

immunoglobulins

5. Fusion proteins

p53 mdm2 fusion

6. The words light/heavy chain, monomer, codon, region, exon, orf, cdna, re-
porter gene, antibody, complex, gene, product, mrna, oligomer, chemokine,
subunit, peptide, message, transactivator, homolog, binding site, enhancer,
element, allele, isoform, intron, promoter, operon, etc. with a gene
name.

7. Particular quali�ers such as alpha, beta, I, II, etc. with a gene name.

For example, topo is not an allowable alternative to topo II.

8. If the context suggests that a word is necessary, require that word in the
allowable alternatives, even if it is still a name without the word.

rabies immunoglobulin (RIG) (immunoglobulin)
designated HUG1, for Hox11 Upstream Gene (not Hox11)

9. Viral promoters, LTRs and enhancers with speci�c virus name.

HIV long terminal repeat
Simian virus 40 promoter
HPV 18 enhancer

10. Antigen receptor region gene segment genes

C genes
Tamarin variable region genes

11. Peptide hormones

Vasopressin, prolactin, FSH

12. Embedded names � tag only the gene/protein part of the name

p53-mediated

The following generally do not qualify as gene/protein entities:

39

1. Generic terms
zinc �nger alone (but zinc �nger protein is an accepted gene/protein

entity)

2. Mutations
p53 mutations

3. Parentheses at start and end which 'wraps' the whole gene/protein name
(IGG)

4. TATA boxes

5. Receptors: if a receptor is speci�ed, the gene name without "receptor" is
not considered to be a valid alternative.

6. Synonyms: if a synonym is given in the sentence which implies certain
words are necessary to the gene name, they will be required in the alter-
natives

For rabies immunoglobin (RIG), "immunoglobin" alone will not
be a valid alternative because RIG implies that "rabies" is part of the
name in this context.

7. Non-peptide hormones

8. DNA and protein sequences

40 Annotation guidelines for GENETAG corpus

Bibliography

[1] The BioCreative Organizing Committees. Critical assessment of information
extraction in biology. http://www.biocreative.org/about/background/

description/, August 2012.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O'Reilly,
Beijing, 2009.

[3] Tomoko Ohta, Jin-Dong Kim, Sampo Pyysalo, Yue Wang, and Jun'ichi Tsu-
jii. Incorporating genetag-style annotation to genia corpus. In Proceedings of
the Workshop on Current Trends in Biomedical Natural Language Process-
ing, BioNLP '09, pages 106�107, Stroudsburg, PA, USA, 2009. Association
for Computational Linguistics.

[4] L. Tanabe, N. Xie, L. H. Thom, W. Matten, and W. J. Wilbur. Genetag:
a tagged corpus for gene/protein named entity recognition. BMC bioinfor-
matics, 6 Suppl 1, 2005.

[5] Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun ichi Tsujii. Genia corpus
- a semantically annotated corpus for bio-textmining. In ISMB (Supplement
of Bioinformatics), pages 180�182, 2003.

[6] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit, chapter 7.
O'Reilly, Beijing, 2009.

[7] L. Tanabe, L.H. Thom, W. Matten, D.C. Comeau, andW.J. Wilbur. Semcat:
Semantically categorized entities for genomics. AMIA Annu Symp Proc,
2006.

http://www.biocreative.org/about/background/description/
http://www.biocreative.org/about/background/description/

42 BIBLIOGRAPHY

[8] L. Tanabe and W. J. Wilbur. Generating of a large gene/protein lexicon by
morphological pattern analysis. J Bioinform Comput Biol., Jan;1(4):611�
626, 2004.

[9] Alexander Yeh, Alexander Morgan, Marc Colosimo, and Lynette Hirschman.
BioCreAtIvE Task 1A: gene mention �nding evaluation. BMC Bioinformat-
ics, 6(Suppl 1):S2+, 2005.

	Summary
	Preface
	1 Introduction
	2 Data
	2.1 Corpus
	2.2 Dictionary

	3 Methods
	3.1 Evaluation measure
	3.2 Tokenization
	3.3 POS-tagger
	3.3.1 Regular expression tagger
	3.3.2 Unigram tagger
	3.3.3 N-gram tagger
	3.3.4 Combining taggers
	3.3.5 Brill tagger

	3.4 Naive Bayes Classifier
	3.4.1 Exploring feature sets
	3.4.2 Bayes Theorem and additive smoothing
	4 Implementation of NB-classifier
	4.1 Feature selection
	4.2 Evaluation

	5 Further work and improvements

	6 Conclusion
	A Tags
	B Annotation guidelines for GENETAG corpus

	Bibliography

