
Adaptive Regularization in Neural Network

Modeling

Jan Larsen1, Claus Svarer2, Lars Nonboe Andersen1 and Lars Kai Hansen1

1 Department of Mathematical Modelling, Building 321

Technical University of Denmark

DK-2800 Lyngby, Denmark

emails: jl@imm.dtu.dk, lna@imm.dtu.dk, lkhansen@imm.dtu.dk

www: http://eivind.imm.dtu.dk
2 Neurobiology Research Unit

Department of Neurology, Building 9201

Copenhagen University Hospital

Blegdamsvej 9

DK-2100 Copenhagen �, Denmark

email: csvarer@pet.rh.dk

www: http://neuro.pet.rh.dk

Abstract. In this paper we address the important problem of optimiz-

ing regularization parameters in neural network modeling. The suggested

optimization scheme is an extended version of the recently presented al-

gorithm [24]. The idea is to minimize an empirical estimate { like the

cross-validation estimate { of the generalization error with respect to

regularization parameters. This is done by employing a simple itera-

tive gradient descent scheme using virtually no additional programming

overhead compared to standard training. Experiments with feed-forward

neural network models for time series prediction and classi�cation tasks

showed the viability and robustness of the algorithm. Moreover, we pro-

vided some simple theoretical examples in order to illustrate the potential

and limitations of the proposed regularization framework.

1 Introduction

Neural networks are exible tools for time series processing and pattern recogni-

tion. By increasing the number of hidden neurons in a 2-layer architecture any

relevant target function can be approximated arbitrarily close [18]. The asso-

ciated risk of over�tting on noisy data is of major concern in neural network

design, which �nd expression in the ubiquitous bias-variance dilemma, see e.g.,

[9].

The need for regularization is two-fold: First, it remedies numerical prob-

lems in the training process by smoothing the cost function and by introducing

curvature in low (possibly zero) curvature regions of cost function. Secondly, reg-

ularization is a tool for reducing variance by introducing extra bias. The overall

objective of architecture optimization is to minimize the generalization error.

The architecture can be optimized directly by stepwise selection procedures (in-

cluding pruning techniques) or indirectly using regularization. In general, one

would prefer a hybrid scheme; however, a very exible regularization may sub-

stitute the need for selection procedures. The numerical experiments we consider

mainly hybrid pruning/adaptive regularization schemes.

The trick presented in this communication addresses the problem of adapting

regularization parameters.

The trick consists in formulating a simple iterative gradient descent

scheme for adapting the regularization parameters aiming at minimiz-

ing the generalization error.

We suggest to use an empirical estimate3 of the generalization error, viz. the

K-fold cross-validation [8], [38]. In [24] and [3] the proposed scheme was studied

using the hold-out validation estimator.

In addition to empirical estimators for the generalization error a number of

algebraic estimators like FPE [1], FPER [22], GEN [20], GPE [30] and NIC [32]

have been developed in recent years. These estimates, however, depend on a

number of statistical assumptions which can be quite hard to justify. In partic-

ular, they are o(1=Nt) estimators where Nt is the number of training examples.

However, for many practical modeling set-ups it is hard to meet the large training

set assumption.

In [13] properties of adaptive regularization is studied in the simple case

of estimating the mean of a random variable using an algebraic estimate of

the average4 generalization error and [14] proposed an adaptive regularization

scheme for neural networks based on an algebraic estimate. However, experi-

ments indicate that this scheme has a drawback regarding robustness. In addi-

tion, the requirement of a large training set may not be met.

The Bayesian approach to adapt regularization parameters is to minimize the

so-called evidence [5, Ch. 10], [29]. The evidence, however, does not in a simple

way relate to the generalization error which is our primary object of interest.

Furthermore [2] and [37] consider the use of a validation set to tune the

amount of regularization, in particular when using the early-stop technique.

Section 2 considers training and empirical generalization assessment. In Sec-

tion 3 the framework for optimization of regularization parameters is presented.

The experimental section 4 deals with examples of feed-forward neural networks

models for classi�cation and time series prediction. Further, in order to study

the theoretical potential/limitations of the proposed framework, we include some

simulations on a simple toy problem.

2 Training and Generalization

Suppose that the neural network is described by the vector function f(x;w)

where x is the input vector andw is the vector of network weights and thresholds

with dimensionality m. The objective is to use the network model for approxi-

mating the true conditional input-output distribution p(yjx), or some moments

3 For further discussion on empirical generalization assessment, see e.g., [23].
4 Average w.r.t. to di�erent training sets.

hereof. For regression and signal processing problems we normally model the

conditional expectation Efyjxg.
Assume that we have available a data set D = fx(k);y(k)gNk=1 of N input-

output examples. In order to both train and empirically estimate the general-

ization performance we follow the idea of K-fold cross-validation [8], [38] and

split the data set into K randomly chosen disjoint sets of approximately equal

size, i.e., D = [Kj=1Vj and 8 i 6= j : Vi \ Vj = ;. Training and validation is

replicated K times, and in the j'th run training is done on the set Tj = D n Vj
and validation is performed on Vj .

The cost function, CTj , for network training on Tj , is supposed to be the sum

of a loss function (or training error), STj (w), and a regularization term R(w;�)

parameterized by a set of regularization parameters �, i.e.,

CTj (w) = STj (w) +R(w;�) =
1

Ntj

NtjX
k=1

` (y(k); by(k);w) +R(w;�) (1)

where `(�) measures the distance between the output y(k) and the network

prediction by(k) = f(x(k);w). In section 4 we will consider log-likelihood and

the square error loss function ` = jy � byj2. Ntj � jTj j de�nes the number of

training examples in Tj and k is used to index the k'th example [x(k);y(k)].

Training provides the estimated weight vector bwj = arg minw CTj (w).

The j'th validation set Vj consist of Nvj = N �Ntj examples and the vali-

dation error5 of the trained network reads

SVj (bwj) =
1

Nvj

NvjX
k=1

` (y(k); by(k); bwj) (2)

where the sum runs over the Nvj validation examples. SVj (bwj) is thus an esti-

mate of the generalization error, de�ned as the expected loss,

G(bwj) = Ex;yf`(y; by; bwj)g =

Z
`(y; by; bwj) � p(x;y) dxdy (3)

where p(x;y) is the unknown joint input-output probability density. Generally,

SVj (bwj) = G(bwj)+O(1=
p
Nvj) where O(�) is the Landau order function

6. Thus

we need large Nvj to achieve an accurate estimate of the generalization error. On

the other hand, this leaves only few data for training thus the true generalization

G(bwj) increases. Consequently there exist a trade-o� among the two conicting

aims which calls for �nding an optimal split ratio. The optimal split ratio7 is an

interesting open and di�cult problem since it depends on the total algorithm in

which the validation error enters. Moreover, it depends on the learning curve8

[16].

5 That is, the loss function on the validation set.
6 If h(x) = O(g(x)) then jh(x)j=jg(x)j <1 for x! 0.
7 For more elaborations on the split of data, see e.g., [2], [19], [23] and [25].
8 De�ned as the average generalization error as a function of the number of training

examples.

The �nal K-fold cross-validation estimate is given by the average validation

error estimates,

b� =
1

K

KX
j=1

SVj (bwj): (4)

b� is an estimate of the average generalization error over all possible training sets

of size Ntj ,

� = ET fG(bwj)g: (5)

b� is an unbiased estimate of � if the data of D are independently distributed9,

see e.g., [15].

The idea is now to optimize the amount of regularization by minimizing b�
w.r.t. the regularization parameters �. An algorithm for this purpose is described

in Section 3. Furthermore, we might consider optimizing regularization using the

hold-out validation estimate corresponding to K = 1. In this case one have to

choose a split ratio. Without further ado, we will recommend a 50=50 splitting.

Suppose that we found the optimal � using the cross-validation estimate.

Replications of training result in K di�erent weight estimates bwj which might

be viewed as an ensemble of networks. In [15] we showed under certain mild

conditions that when considering a o(1=N) approximation, the average general-

ization error of the ensemble network fens(x) =
PK

j=1 �j � f(x; bwj) equals that

of the network trained on all examples in D where �j weights the contribution

from the j'th network and
P

j
�j = 1. If K is a divisor in N then 8j; �j = 1=K,

otherwise �j = (N �Nvj)=N(K� 1). Consequently, one might use the ensemble

network to compensate for the increase in generalization error due to only train-

ing on Ntj = N �Nvj data. Alternatively, one might retrain on the full data set

D using the optimal �. We use the latter approach in the experimental section.

A minimal necessary requirement for a procedure which estimates the net-

work parameters on the training set and optimizes the amount of regularization

from a cross-validation set is: the generalization error of the regularized network

should be smaller than that of the unregularized network trained on the full data

set D. However, this is not always the case, and is the quintessence of various

\no free lunch" theorems [11], [43], [45]:

{ If the regularizer is parameterized using many parameters, �, there is a

potential risk of over-�tting on the cross-validation data. A natural way

to avoid this situation is to limit the number of regularization parameters.

Another recipe is to impose constraints on � (hyper regularization).

{ The speci�c choice of the regularizers functional form impose prior con-

straints on the functions to be implemented by the network10. If the prior

information is mismatched to the actual problem it might be better not to

use regularization.

9 That is, [x(k1); y(k1)] is independent of [x(k2); y(k2)] for all k1 6= k2.
10 The functional constraints are through the penalty imposed on the weights.

{ The de-biasing procedure described above which compensate for training

only on Ntj < N examples might fail to yield better performance since the

weights now are optimized using all data, including those which where left

out exclusively for optimizing regularization parameters.

{ The split among training/validation data, and consequently the number of

folds, K, may not be chosen appropriately.

These problems are further addressed in Section 4.1.

3 Adapting Regularization Parameters

The choice of regularizer may be motivated by

{ the fact that the minimization of the cost function is normally an ill- posed

task. Regularization smoothens the cost function and thereby facilitates the

training. The weight decay regularizer11, originally suggested by Hinton in

the neural networks literature, is a simple way to accomplish this task, see

e.g., [34].

{ a priori knowledge of the weights, e.g., in terms of a prior distribution (when

using a Bayesian approach). In this case the regularization term normally

plays the role of a log-prior distribution. Weight decay regularization may

be viewed as a Gaussian prior, see e.g., [5]. Other types of priors, e.g., the

Laplacian [12], [42] and soft weight sharing [33] has been considered. More-

over, priors have been developed for the purpose of restricting the number

of weights (pruning), e.g., the so-called weight elimination [41].

{ a desired characteristics of the functional mapping performed by the net-

work. Typically, a smooth mapping is preferred. Regularizers which penalizes

curvature of the mapping has been suggested in [4], [7], [31], [44].

In the experimental section we consider weight decay regularization and some

generalizations hereof. Without further ado, weight decay regularization has

proven to be useful in many neural network applications.

The standard approach for estimation of regularization parameters is more

and less systematic search and evaluation of the cross-validation error. However,

this is not viable for multiple regularization parameters. On the other hand, as

will be demonstrated, it is possible to derive an optimization algorithm based

on gradient descent.

Consider a regularization term R(w;�) which depends on q regularization pa-

rameters contained in the vector �. Since the estimated weightsbwj = arg minw CTj (w) are controlled by the regularization term, we may in

fact consider the cross-validation error Eq. (4) as an implicit function of the

regularization parameters, i.e.,

b� (�) = 1

K

KX
j=1

SVj (bwj(�)) (6)

11 Also known as ridge regression.

where bwj(�) is the �-dependent vector of weights estimated from training set

Tj . The optimal regularization can be found by using gradient descent12,

�(n+1) = �(n) � �
@ b�
@�

(bw(�(n))) (7)

where � > 0 is a step-size (learning rate) and �(n) is the estimate of the regu-

larization parameters in iteration n.

Suppose the regularization term is linear in the regularization parameters,

R(w;�) = �>r(w) =

qX
i=1

�iri(w) (8)

where �i are the regularization parameters and ri(w) the associated regular-

ization functions. Many suggested regularizers are linear in the regularization

parameters, this includes the popular weight decay regularization as well as reg-

ularizers imposing smooth functions such as the Tikhonov regularizer [4], [5] and

the smoothing regularizer for neural networks [31], [44]. However, there exist ex-

ceptions such as weight-elimination [41] and soft weight sharing [33]. In this case

the presented method needs few modi�cations.

Using the results of the Appendix, the gradient of the cross-validation error

equals

@ b�
@�

(�) =
1

K

KX
j=1

@SVj

@�
(bwj); (9)

@SVj

@�
(bwj) = �

@r

@w>
(bwj) � J

�1
j (bwj) �

@SVj

@w
(bwj): (10)

where J j = @2CTj=@w@w
> is the Hessian of the cost function. As an example,

consider the case of weight decay regularization with separate weight decays for

two group of weights, e.g., the input-to-hidden and hidden-to output weights,

i.e.,
R(w;�) = �I � jwI j2 + �H � jwH j2 (11)

where � = [�I ; �H], w = [wI ;wH] with wI , wH denoting the input-to-hidden

and hidden-to output weights, respectively. The gradient of the validation error

then yields,

@SVj

@�I
(bwj) = �2(bwI

j)
> � gIj ;

@SVj

@�H
(bwj) = �2(bwH

j)
> � gHj (12)

where gj is the vector

gj = [gIj ; g
H
j] = J�1j (bwj) �

@SVj

@w
(bwj): (13)

In summary, the algorithm for adapting regularization parameters consists

of the following 8 steps:

12 We have recently extended this algorithm incorporating second order information

via the Conjugate Gradient technique [10].

1. Choose the split ratio; hence, the number of folds, K.

2. Initialize � and the weights of the network13.

3. Train the K networks with �xed � on Tj to achieve bwj(�), j = 1; 2; � � � ;K.

Calculate the validation errors SVj and the cross-validation estimate b� .
4. Calculate the gradients @SVj=@� and @ b�=@� cf. Eq. (9) and (10). Initialize

the step-size �.

5. Update � using Eq. (7).

6. Retrain the K networks from the previous weight estimates and recalculate

the cross-validation error b� .
7. If no decrease in cross-validation error then perform a bisection of � and go

to step 5; otherwise, continue.

8. Repeat steps 4{7 until the relative change in cross-validation error is below

a small percentage or, e.g., the 2-norm of the gradient @ b�=@� is below a

small number.

Compared to standard neural network training the above algorithm does gen-

erally not lead to severe computational overhead. First of all, the standard ap-

proach of tuning regularization parameters by, more or less systematic search,

requires a lot of training sessions. The additional terms to be computed in the

adaptive algorithm are: 1) the derivative of the regularization functions w.r.t. the

weights, @r=@w, 2) the gradient of the validation errors, @SVj=@w, and 3) the

inverse Hessians, J�1j . The �rst term is often a simple function of the weights14

and computationally inexpensive. In the case of feed-forward neural networks,

the second term is computed by one pass of the validation examples through a

standard back-propagation algorithm. The third term is computationally more

expensive. However, if the network is trained using a second order scheme, which

requires computation of the inverse Hessian15, there is no computational over-

head.

The adaptive algorithm requires of the order ofK�itr��itr� weight retrainings.
Here itr� is the number of iterations in the gradient descent scheme for � and

itr� is the average number of bisections of � in step 7 of the algorithm. In the

experiments carried out the number of retrainings is approx. 100{300 times K.

Recall, since we keep on retraining from the current weight estimate, the number

of training epochs is generally small.

The number of weight retrainings is somewhat higher than that involved

when optimizing the network by using a pruning technique like validation set

based Optimal Brain Damage (vOBD) [24], [26]. vOBD based on K-fold cross-

validation requires of the order of K �m retrainings, where m = dim(w). The

adaptive regularization algorithm is easily integrated with the pruning algorithm

as demonstrated in the experimental section.

13 In Sec. 4.1 a practical initialization procedure for � is described.
14 For weight decay, it is 2w.
15 Often the computations are reduced by using a Hessians approximation, e.g., the

Gauss-Newton approximation. Many studies have reported signi�cant training speed-

up by using second order methods, see e.g., [21], [34].

4 Numerical Experiments

4.1 Potentials and Limitations in the Approach

The purpose of the section is to demonstrate the potential and limitations of

the suggested adaptive regularization framework. We consider the simple linear

data generating system, viz. estimating the mean of a Gaussian variable,

y(k) = w� + "(k) (14)

where w� is the true mean and the noise "(k) � N (0; �2").

We employ 2-fold cross-validation, i.e., D = T1[T2, where Tj , j = 1; 2 denote

the two training sets in the validation procedure containing approximately half

the examples16. The linear model y(k) = w + e(k) is trained using the mean

square cost function augmented by simple weight decay, as shown by

CTj (w) =
1

Ntj

NtjX
k=1

(y(k)� w)2 + � � w2 (15)

where k runs over examples of the data set in question. The estimated weights

are bwj = �yj=(1 + �) where �yj = N�1
tj

PNtj

k=1 y(k) are the estimated mean. For

this simple case, the minimization of the cross-validation error given by,

b� (�) = 1

2

2X
j=1

SVj (bwj(�)); SVj (bwj(�)) =
1

Nvj

NvjX
k=1

(y(k)� bwj)
2; (16)

can be done exactly. The optimal � is given by

�opt =
�y21 + �y22
2�y1�y2

� 1: (17)

Assuming N to be even, the ensemble average of the estimated weights17,bwj(�opt), leads to the �nal estimate

bwreg =
1

2
(bw1(�opt) + bw2(�opt)) =

�y1�y2(�y1 + �y2)

�y21 + �y22
: (18)

Notice two properties: First, the estimate is self-consistent as limN!1 bwreg =

limN!1 bwD = w� where bwD = N�1
PN

k=1 y(k) = (�y1 + �y2)=2 is the

unregularized estimate trained on all data. Secondly, it is easy to verify that

�yj � N (w�; 2�2"=N). That is, if the normalized true weight � � w�=A where

A =
p
2=N � �" is large then �yj � w� which means, bwreg � bwD.

16 That is, Nt1 = bN=2c and Nt2 = N �Nt1. Note that these training sets are also the

two validation sets, V1 = T2, and vice versa.
17 The ensemble average corresponds to retraining on all data using �opt. The weighting

of the two estimates is only valid for N even (see Sec. 2 for the general case).

The objective is now to test whether using bwreg results in lower generalization

error than employing the unregularized estimate bwD. The generalization error

associated with using the weight w is given by

G(w) = �2" + (w � w�)2: (19)

Further de�ne the generalization error improvement,

Z = G(bwD)�G(bwreg) = (bwD � w�)2 � (bwreg � w�)2: (20)

Note that Z merely is a function of the random variables �y1, �y2 and the true

weight w�, i.e., it su�ces to get samples of �y1, �y2 when evaluating properties of

Z. De�ne the normalized variables

eyj = �yj

A
� N

w�

�"
�

r
N

2
; 1

!
= N (�; 1): (21)

It is easily shown that the normalized generalization error improvement Z=A2

is a function of ey1, ey2 and �; hence, the distribution of Z=A2 is parameterized

solely by �.

As a quality measure we consider the probability of improvement in general-

ization error given by ProbfZ > 0g. Note that ProbfZ > 0g = 1=2 corresponds

to equal preference of the two estimates. The probability of improvement de-

pends only on the normalized weight � since ProbfZ > 0g = ProbfZ=A2 > 0g.

Moreover, we consider the relative generalization error improvement , de�ned

as

RGI = 100% �
Z

G(bwD) : (22)

In particular, we focus on the probability that the relative improvement in gen-

eralization is bigger than18 x, i.e., Prob(RGI > x). Optimally Prob(RGI > x)

should be close to 1 for x � 0% and slowly decaying towards zero for 0% < x �
100%. Using the notation ewreg = bwreg=A, ewD = bwD=A, RGI can be written as

RGI = 100% �
(ewD � �)2 � (ewreg � �)2

N=2 + (ewD � �)2
: (23)

Thus, the distribution of RGI is parameterized by � and N .

The quality measures are computed by generatingQ independent realizations

of ey1, ey2, i.e., fey(i)1 ; ey(i)2 gQi=1. E.g., the probability of improvement is estimated

by Pimp = Q�1
PQ

i=1 �(Z
(i)) where �(x) = 1 for x > 0, and zero otherwise.

The numerical results of comparing bwreg to the unregularized estimate bwD is

summarized in Fig. 1.

18 Note that, Prob(RGI > 0) = Prob(Z > 0).

0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

θ

P
im

p

(a)

N=2
N=8
N=20

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ=0

x (%)

P
ro

b(
R

G
I>

x)

(b)

N=2
N=8
N=20

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ=2

x (%)

P
ro

b(
R

G
I>

x)

(c)

N=2
N=8
N=20

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ=10

x (%)

P
ro

b(
R

G
I>

x)

(d)

Fig. 1. Result of comparing the optimally regularized estimate bwreg of the mean of a

Gaussian variable to the unregularized estimate bwD. The results are based on Q = 105

independent realizations. The probability of improvement Pimp, shown in panel (a), is

one for when the normalized true weight � =
p
N=2 � w�=�" = 0, and above 0:5 for

� <
� 0:8. That is, when the prior information of the weight decay regularizer is correct

(true weight close to zero), when N is small or when �" is large. As � becomes large

Pimp tends to 0:5 due to the fact that ew � bwD. Panel (b){(d) display Prob(RGI > x)

for � 2 f0; 2; 10g. The ideal probability curve is 1 for x < 0 and a slow decay towards

zero for x > 0. The largest improvement is attained for small � and small N . Panel

(c) and (d) indicate that small N gives the largest probability for x > 0; however,

also the smallest probability for negative x. That is, a higher chance of getting a good

improvement also increases the change of deterioration. Notice, even though Pimp < 0:5

for � = 2; 10 there is still a reasonable probability of getting a signi�cant improvement.

4.2 Classi�cation

We test the performance of the adaptive regularization algorithm on a vowel

classi�cation problem. The data are based on the Peterson and Barney database

[35]. The classes are vowel sounds characterized by the �rst four formant frequen-

cies. 76 persons (33 male, 28 female and 15 children) have pronounced c = 10

di�erent vowels (IY IH EH AE AH AA AO UH UW ER) two times. This results

in a data base of totally 1520 examples. The database is the veri�ed database

described in [40] where all data19 are used, including examples where utterance

failed of unanimous identi�cation in the listening test (26 listeners). All examples

were included to make the task more di�cult.

The regularization was adapted using a hold-out validation error estimator,

thus the examples were split into a data set, D, consisting of N = 760 examples

(16 male, 14 female and 8 children) and an independent test set of the remaining

760 examples. The regularization was adapted by splitting the data set D equally

into a validation set of Nv = 380 examples and a training set of Nt = 380

examples (8 male, 7 female and 4 children in each set).

We used a feed-forward 2-layer neural network with hyperbolic tangent neu-

rons in the hidden layer and modi�ed SoftMax normalized outputs, byi, see e.g.,
[5], [17], [3]. Thus, the outputs estimates the posterior class probabilities p(Cijx),
where Ci denotes the i'th class, i = 1; 2; � � � ; c. Bayes rule (see e.g., [5]) is used to

assign Ci to input x if i = argmaxj p(Cj jx). Suppose that the network weights

are given by w = [wI ;wI
bias;w

H ;wH
bias] where w

I , wH are input-to-hidden and

hidden-to-output weights, respectively, and the bias weights are assembled in

wI
bias and w

H
bias. Suppose that the targets yi(k) = 1 if x(k) 2 Ci, and zero oth-

erwise. The network is optimized using a log-likelihood loss function augmented

by a weight decay regularizer using 4 regularization parameters,

C(w) =
1

Nt

NtX
k=1

cX
i=1

yi(k) log(byi(k;w))

+�I � jwI j2 + �Ibias � jw
I
biasj

2 + �H � jwH j2 + �Hbias � jw
H
biasj

2: (24)

We further de�ne unnormalized weight decays as � � � � Nt. This regularizer

is motivated by the fact that the bias, input and hidden layer weights play a

di�erent role, e.g., the input, hidden and bias signals normally have di�erent

scale (see also [5, Ch. 9.2]).

The simulation set-up is:

{ Network: 4 inputs, 5 hidden neurons, 9 outputs20.

{ Weights are initialized uniformly over [�0:5; 0:5], regularization parameters

are initialized at zero. One step in a gradient descent training algorithm (see

e.g., [28]) is performed and the weight decays are re-initialized at �max=10
2,

where �max is the max. eigenvalue of the Hessian matrix of the cost function.

This initialization scheme is motivated by the following observations:

� Weight decays should be so small that they do not reduce the approxi-

mation capabilities of the network signi�cantly.

19 The database can be retrieved from ftp://eivind.imm.dtu.dk/dist/data/vowel/

PetersonBarney.tar.Z
20 We only need 9 outputs since the posterior class probability of the 10th class is given

by 1�
P9

j=1
p(Cjjx).

� They should be so large that the algorithm is prevented from being

trapped in a local optimum and numerical instabilities are eliminated.

{ Training is now done using a Gauss-Newton algorithm (see e.g., [28]). The

Hessian is inverted using the Moore-Penrose pseudo inverse ensuring that

the eigenvalue spread21 is less than 108.

{ The regularization step-size � is initialized at 1.

{ When the adaptive regularization scheme has terminated 3% of the weights

are pruned using a validation set based version of the Optimal Brain Damage

(vOBD) recipe [24], [26].

{ Alternation between pruning and adaptive regularization continues until the

validation error has reached a minimum.

{ Finally, remaining weights are retrained on all data using the optimized

weight decay parameters.

Table 1. Probability of misclassi�cation (pmc) and log-likelihood cost function (with-

out reg. term, see Eq. (24)) for the classi�cation example. The neural network averages

and standard deviations are computed from 10 runs. In the case of small �xed regu-

larization, weight decays were set at initial values equal to �max=10
6 where �max is the

largest eigenvalue of the Hessian matrix of the cost function. Optimal regularization

refers to the case of optimizing 4 weight decay parameters. Pruning refers to validation

set based OBD. KNN refers to k-nearest-neighbor classi�cation.

Probability of Misclassi�cation (pmc)

NN NN KNN

small �xed reg. opt. reg.+prun. (k = 9)

Training Set 0.075 �0:026 0:107 � 0:008 0:150

Validation Set 0:143� 0:014 0:115 � 0:004 0:158

Test Set 0:146� 0:010 0:124 � 0:006 0:199

Test Set (train. on all data) 0:126� 0:010 0:119 � 0:004 0:153

Log-likelihood Cost Function

NN NN

small �xed reg. opt. reg.+prun.

Training Set 0:2002 � 0:0600 0:2881 � 0:0134

Validation Set 0:7016 � 0:2330 0:3810 � 0:0131

Test Set 0:6687 � 0:2030 0:3773 � 0:0143

Test Set (train. on all data) 0:4426 � 0:0328 0:3518 � 0:0096

Table 1 reports the average and standard deviations of the probability of

21 Eigenvalue spread should not be larger than the square root of the machine precision

[6].

misclassi�cation (pmc) and log-likelihood cost function over 10 runs for pruned

networks using the optimal regularization parameters. Note that retraining on

the full data set decreases the test pmc slightly on the average. In fact, improve-

ment was noticed in 9 out of 10 runs. The table further shows the gain of the

combined adaptive regularization/pruning algorithm relative to using a small

�xed weight decay. However, recall, cf. Sec. 4.1, that the actual gain is very de-

pendent on the noise level, data set size, etc. The objective is not to demonstrate

high gain for a speci�c problem, rather to demonstrate that algorithm runs fairly

robust in a classi�cation set-up. For comparison we used a k-nearest-neighbor

(KNN) classi�cation (see e.g., [5]) and found that k = 9 neighbors was optimal

by minimizing pmc on the validation set. The neural network performed signi�-

cantly better. Contrasting the obtained results to other work is di�cult. In [36]

results on the Peterson-Barney vowel problem are reported, but their data are

not exactly the same; only the �rst 2 formant frequencies were used. Further-

more, di�erent test sets have been used for the di�erent methods presented. The

best result reported [27] is obtained by using KNN and reach pmc = 0:186 which

is signi�cantly higher than our results.

Fig. 2 shows the evolution of the adaptive regularization as well as the prun-

ing algorithm.

4.3 Time Series Prediction

We tested the performance of the adaptive regularization schemes on the Mackey-

Glass chaotic time series prediction problem, see e.g., [21], [39]. The goal is to pre-

dict the series 100 steps ahead based on previous observations. The feed-forward

net con�guration is an input lag-space x(k) = [x(k); x(k�6); x(k�12); x(k�18)]

of 4 inputs, 25 hidden hyperbolic tangent neurons, and a single linear output

unit by(k) which predicts y(k) = x(k+100). The cost function is the squared er-

ror, N�1
t

PNt

k=1(y(k)� by(k;w))2, augmented by a weight decay regularizer using

4 di�erent weight decays as described in Section 4.2.

The simulation set-up is:

{ The data set, D, has N = 500 examples and an independent test has 8500

examples.

{ The regularization parameters are optimized using a hold-out validation er-

ror with an even split22 of the data set into training and validation sets each

having 250 examples.

{ Weight decays are initialized at zero and one Gauss-Newton iteration is

performed, then weight decays were re-initialized at �max=10
6, where �max

is the max. eigenvalue of the Hessian matrix of the cost function.

{ The network is trained using a Gauss-Newton training scheme. The Hes-

sian is inverted using the Moore-Penrose pseudo inverse ensuring that the

eigenvalue spread is less than 108.

{ The regularization step-size � is initialized at 10�2.

22 The sensitivity to di�erent splits are considered in [24].

Train
Validation
Test

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ITERATION

E
R

R
O

R

(a)

Train
Validation
Test

10 20 30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NO. OF WEIGHTS

E
R

R
O

R

(d)

Train
Validation
Test

2 4 6 8 10 12 14 16 18 20
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

ITERATION

C
LA

S
S

IF
IC

AT
IO

N
 E

R
R

O
R

(b)

Train
Validation
Test

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NO. OF WEIGHTS

C
LA

S
S

IF
IC

AT
IO

N
 E

R
R

O
R

(e)

Input − Hidden
Input bias − Hidden
Output
Hidden bias − Output

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ITERATION

W
E

IG
H

T
 D

E
C

AY
 V

A
LU

E

(c)

Input − Hidden
Input bias − Hidden
Hidden − Output
Hidden bias − Output

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

RUN NO.

W
E

IG
H

T
 D

E
C

AY
 V

A
LU

E

(f)

Fig. 2. Classi�cation example. Panels (a), (b) and (c) show the evolution of the adap-

tive regularization algorithm in a typical run (fully connected network). The weight

decays are optimized aiming at minimizing the validation error in panel (a). Note that

also the test error decreases. This tendency is also evident in panel (b) displaying pmc

even though a small increase noticed. In panel (c) the convergence unnormalized weight

decays, � = � � Nt, are depicted. Panels (d) and (e) show the evolution of errors and

pmc during the pruning session. The optimal network is chosen as the one with mini-

mal validation error, as indicated by the vertical line. There is only a marginal e�ect of

pruning in this run. Finally, in panel (f), the variation of the optimal (end of pruning)

�'s in di�erent runs is demonstrated. A clear similarity over runs is noticed.

{ Alternation between adapting the 4 weight decays and validation set based

pruning [24].

{ The pruned network is retrained on all data using the optimized weight decay

parameters.

Table 2 reports the average and standard deviations of the normalized squared

error (i.e., the squared error normalized with the estimated variance of x(k), de-

noted b�2x) over 10 runs for optimal regularization parameters. Retraining on the

full data set decreases the test error somewhat on the average. Improvement was

noticed in 10 out of 10 runs. We tested 3 di�erent cases: small �xed regulariza-

tion, small �xed regularization assisted by pruning and combined adaptive reg-

ularization/pruning. It turns that pruning alone does not improve performance;

however, supplementing by adaptive regularization gives a test error reduction.

We furthermore tried a exible regularization scheme, viz. individual weight

decay where R(w;�) =
Pm

i=1 �iw
2
i and �i � 0 are imposed. In the present case

it turned out that the exible regularizer was not able to outperform the joint

adaptive regularization/pruning scheme; possibly due to training and validation

set sizes.

Table 2.Normalized squared error performance for the time series prediction examples.

All �gures are in units of 10�3b�2x and averages and standard deviations are computed

from 10 runs. In the case of small �xed regularization, weight decays were set at initial

values equal to �max=10
6 where �max is the largest eigenvalue of the Hessian matrix

of the cost function. Optimal regularization refers to the case of optimizing 4 weight

decay parameters. Pruning refers to validation set based OBD.

NN NN NN

small �xed reg. small �xed reg.+prun. opt. reg.+prun.

Training Set 0:17 � 0:07 0:12� 0:04 0:10 � 0:07

Validation Set 0:53 � 0:26 0:36� 0:07 0:28 � 0:14

Test Set 1:91 � 0:68 1:58� 0:21 1:29 � 0:46

Test Set (train. on all data) 1:33 � 0:43 1:34� 0:26 1:17 � 0:48

Fig. 3 demonstrates adaptive regularization and pruning in a typical case

using 4 weight decays.

5 Conclusions

In this paper it was suggested to adapt regularization parameters by minimizing

the cross-validation error or a simple hold-out validation error. We derived a sim-

ple gradient descent scheme for optimizing regularization parameters which has

a small programming overhead and an acceptable computational overhead com-

pared to standard training. Numerical examples with a toy linear model showed

Train
Validation
Test

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

ITERATIONS

N
O

R
M

A
LI

Z
E

D
 S

Q
U

A
R

E
D

 E
R

R
O

R

(a)

Train
Validation
Test

20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

NO. OF WEIGHTS

N
O

R
M

A
LI

Z
E

D
 S

Q
U

A
R

E
D

 E
R

R
O

R

(c)

Input − Hidden
Input bias − Hidden
Hidden − Output
Hidden bias − Output

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

ITERATIONS

W
E

IG
H

T
 D

E
C

AY
 V

A
LU

E

(b)

Input − Hidden
Input bias − Hidden
Hidden − Output
Hidden bias − Output

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

NO. OF WEIGHTS

W
E

IG
H

T
 D

E
C

AY
 V

A
LU

E

(d)

Fig. 3. Time series prediction example. Panels (a) and (b) show a typical evolution of

errors and unnormalized weight decay values � when running the adaptive regulariza-

tion algorithm using 4 weight decays. The normalized validation error drops approx. a

factor of 2 when adapting weight decays. It turns out that some regularization of the

input-to-hidden and output bias weights are needed whereas the other weights essen-

tially requires no regularization23 . In panel (c) and (d) it is demonstrated that pruning

reduces the test error slightly. The optimal network is chosen as the one with minimal

validation error, as indicated by the vertical line.

limitations and advantages of the adaptive regularization approach. Moreover,

numerical experiments on classi�cation and time series prediction problems suc-

cessfully demonstrated the functionality of the algorithm. Adaptation of regu-

larization parameters resulted in lower generalization error; however, it should

be emphasized that the actual yield is very dependent on the problem and the

choice of the regularizers functional form.

23 Recall that if a weight decay � is below �max=10
8 it does not inuence the Moore-

Penrose pseudo inversion of the Hessian.

Acknowledgments

This research was supported by the Danish Natural Science and Technical Re-

search Councils through the Computational Neural Network Center. JL fur-

thermore acknowledge the Radio Parts Foundation for �nancial support. Mads

Hintz-Madsen and Morten With Pedersen are acknowledged for stimulating dis-

cussions.

Appendix

Assume that the regularization term is linear in the regularization parameters,

i.e.,

R(w;�) = �>r(w) =

qX
i=1

�iri(w) (25)

The gradient of the cross-validation error Eq. (4) is

@ b�
@�

(�) =
1

K

KX
j=1

@SVj

@�
(bwj(�)) (26)

Using the chain rule the gradient vector of the validation error, SVj , can be

written as
@SVj

@�
(bwj(�)) =

@w>

@�
(bwj(�)) �

@SVj

@w
(bwj(�)) (27)

where @w>=@� is the q � m derivative matrix of the estimated weights w.r.t.

the regularization parameters and m = dim(w). In order to �nd this derivative

matrix, consider the gradient of the cost function w.r.t. to the weights as a

function of � and use the following expansion around the current estimate �(n),

@CTj

@w
(�) =

@CTj

@w
(�(n)) +

@2CTj

@w@�>
(�(n)) � (�� �(n)) + o(j� � �(n)j): (28)

Requiring bw(�(n+1)) in the next iteration to be an optimal weight vector, i.e.,

@CTj=@w(�(n+1)) = 0 implies

@2CTj

@w@�>
(bw(�(n))) = 0: (29)

Recall that @CTj=@w(�(n)) = 0 by assumption. Eq. (29) can be used for deter-

mining @w>=@�. Recognizing that the cost function CTj (bw(�)) = STj (bw(�)) +

R(bw(�);�) depends implicitly (thorough bw(�)) and explicitly on � it is possible,

by using Eq. (25), to derive the following relation24:

@w>

@�
(bwj) = �

@r

@w>
(bwj) � J

�1
j (bwj) (30)

24 For convenience, here bw's explicit �-dependence is omitted.

where J j = @2CTj=@w@w
> is the Hessian of the cost function which e.g., might

be evaluated using the Gauss-Newton approximation [28]. Finally, substituting

Eq. (30) into (27) gives

@SVj

@�
(bwj) = �

@r

@w>
(bwj) � J

�1
j (bwj) �

@SVj

@w
(bwj) (31)

@SVj=@w is found by ordinary back- propagation on the validation set while

@r=@w> is calculated from the speci�c assumptions on the regularizer.

References

1. H. Akaike: Fitting Autoregressive Models for Prediction. Annals of the Institute

of Statistical Mathematics 21 (1969) 243{247

2. S. Amari, N. Murata, K.R. M�uller, M. Finke & H. Yang: Asymptotic

Statistical Theory of Overtraining and Cross-Validation. Technical report

METR 95-06 (1995). Accepted for IEEE Transactions on Neural Networks.

Available via ftp://archive.cis.ohio-state.edu/pub/neuroprose/amari.

overtraining.ps.Z

3. L. Nonboe Andersen, J. Larsen, L.K. Hansen & M. Hintz-madsen: Adaptive Regu-

larization of Neural Classi�ers. In J. Principe et al. (eds.), Proceedings of the IEEE

Workshop on Neural Networks for Signal Processing VII, Piscataway, New Jersey:

IEEE, (1997) 24{33

4. C.M. Bishop: Curvature-Driven Smoothing: A Learning Algorithm for Feedforward

Neural Networks. IEEE Transactions on Neural Networks 4(4) (1993) 882{884

5. C.M. Bishop: Neural Networks for Pattern Recognition. Oxford, UK: Oxford Uni-

versity Press (1995)

6. J.E. Dennis & R.B. Schnabel: Numerical Methods for Unconstrained Optimization

and Non-linear Equations. Englewood Cli�s, NJ: Prentice- Hall, (1983)

7. H. Drucker & Y. Le Cun: Improving Generalization Performance in Character

Recognition. In B.H. Juang et al. (eds.), Neural Networks for Signal Processing:

Proceedings of the 1991 IEEE-SP Workshop, Piscataway, New Jersey: IEEE (1991)

198{207

8. S. Geisser: The Predictive Sample Reuse Method with Applications. Journal of the

American Statistical Association 50 (1975) 320{328

9. S. Geman, E. Bienenstock & R. Doursat: Neural Networks and the Bias/Variance

Dilemma. Neural Computation 4 (1992) 1{58

10. C. Goutte & J. Larsen: Adaptive Regularization of Neural Networks using Conju-

gate Gradient, in Proceedings of ICASSP'98, Seattle USA 2 (1998) 1201-1204

11. C. Goutte: Note on Free Lunches and Cross-Validation. Neural Computation 9(6)

(1997) 1211{1215

12. C. Goutte: Regularization with a Pruning Prior. To appear in Neural Networks

(1997)

13. L.K. Hansen and C.E. Rasmussen: Pruning from Adaptive Regularization. Neural

Computation 6 (1994) 1223{1232

14. L.K. Hansen, C.E. Rasmussen, C. Svarer & J. Larsen: Adaptive Regularization. In

J. Vlontzos, J.-N. Hwang & E. Wilson (eds.), Proceedings of the IEEE Workshop

on Neural Networks for Signal Processing IV, Piscataway, New Jersey: IEEE (1994)

78{87

15. L.K. Hansen & J. Larsen: Linear Unlearning for Cross-Validation. Advances in

Computational Mathematics 5 (1996) 269{280

16. J. Hertz, A. Krogh & R.G. Palmer: Introduction to the Theory of Neural Compu-

tation. Redwood City, California: Addison-Wesley Publishing Company (1991)

17. M. Hintz-Madsen, M. With Pedersen, L.K. Hansen, & J. Larsen: Design and Eval-

uation of Neural Classi�ers. In S. Usui, Y. Tohkura, S. Katagiri & E. Wilson (eds.),

Proceedings of the IEEE Workshop on Neural Networks for Signal Processing VI,

Piscataway, New Jersey: IEEE, (1996) 223{232

18. K. Hornik: Approximation Capabilities of Multilayer Feedforward Networks. Neu-

ral Networks 4 (1991) 251{257

19. M. Kearns: A Bound on the Error of Cross Validation Using the Approximation

and Estimation Rates, with Consequences for the Training-Test Split. Neural Com-

putation 9(5) (1997) 1143{1161

20. J. Larsen: A Generalization Error Estimate for Nonlinear Systems. In S.Y. Kung

et al. (eds.), Neural Networks for Signal Processing 2: Proceedings of the 1992

IEEE-SP Workshop, Piscataway, New Jersey: IEEE (1992) 29{38

21. J. Larsen: Design of Neural Network Filters, Ph.D. Thesis, Electronics Institute,

Technical University of Denamrk (1993). Available via ftp://eivind.imm.dtu.dk/

dist/PhD_thesis/jlarsen.thesis.ps.Z

22. J. Larsen & L.K. Hansen: Generalization Performance of Regularized Neural Net-

work Models. In J. Vlontzos et al. (eds.), Proceedings of the IEEE Workshop on

Neural Networks for Signal Processing IV, Piscataway, New Jersey: IEEE (1994)

42{51

23. J. Larsen & L.K. Hansen: Empirical Generalization Assessment of Neural Network

Models. In F. Girosi et al. (eds.), Proceedings of the IEEE Workshop on Neural

Networks for Signal Processing V, Piscataway, New Jersey: IEEE (1995) 30{39

24. J. Larsen, L.K. Hansen, C. Svarer & M. Ohlsson: Design and Regularization of

Neural Networks: The Optimal Use of a Validation Set. In S. Usui, Y. Tohkura,

S. Katagiri & E. Wilson (eds.), Proceedings of the IEEE Workshop on Neural

Networks for Signal Processing VI, Piscataway, New Jersey: IEEE, (1996) 62{71

25. J. Larsen et al. : Optimal Data Set Split Ratio for Empirical Generalization Error

Estimates. In preparation.

26. Y. Le Cun, J.S. Denker & S.A. Solla: Optimal Brain Damage. In D.S. Touretzky

(ed.), Advances in Neural Information Processing Systems 2, Proceedings of the

1989 Conference, San Mateo, California: Morgan Kaufmann Publishers (1990) 598{

605

27. D. Lowe: Adaptive Radial Basis Function Nonlinearities and the Problem of Gen-

eralisation. Proc. IEE Conf. on Arti�cial Neural Networks, (1989) 171{ 175

28. L. Ljung: System Identi�cation: Theory for the User. Englewood Cli�s, New Jersey:

Prentice-Hall (1987)

29. D.J.C. MacKay: A Practical Bayesian Framework for Backprop Networks. Neural

Computation 4(3) (1992) 448{472

30. J. Moody: Prediction Risk and Architecture Selection for Neural Networks. In V.

Cherkassky et al. (eds.), From Statistics to Neural Networks: Theory and Pattern

Recognition Applications, Berlin, Germany: Springer-Verlag Series F 136 (1994)

31. J. Moody, T. R�ognvaldsson: Smoothing Regularizers for Projective Basis Function

Networks. In Advances in Neural Information Processing Systems 9, Proceedings

of the 1996 Conference, Cambridge, Massachusetts: MIT Press (1997)

32. N. Murata, S. Yoshizawa & S. Amari: Network Information Criterion | Deter-

mining the Number of Hidden Units for an Arti�cial Neural Network Model. IEEE

Transactions on Neural Networks 5(6) (1994) 865{872

33. S. Nowlan & G. Hinton: Simplifying Neural Networks by Soft Weight Sharing.

Neural Computation 4(4) (1992) 473{493

34. M. With Pedersen: Training Recurrent Networks. In Proceedings of the IEEE

Workshop on Neural Networks for Signal Processing VII, Piscataway, New Jer-

sey: IEEE, (1997)

35. G.E. Peterson & H.L. Barney: Control Methods Used in a Study of the Wowels.

JASA 24 (1952) 175{184

36. R.S. Shadafan &M. Niranjan: A Dynamic Neural Network Architecture by Sequen-

tial Partitioning of the Input Space. Neural Computation 6(6) (1994) 1202{1222

37. J. Sj�oberg: Non-Linear System Identi�cation with Neural Networks, Ph.D. The-

sis no. 381, Department of Electrical Engineering, Link�oping University, Sweden,

(1995)

38. M. Stone: Cross-validatory Choice and Assessment of Statistical Predictors. Jour-

nal of the Royal Statistical Society B 36(2) (1974) 111{147

39. C. Svarer, L.K. Hansen, J. Larsen & C. E. Rasmussen: Designer Networks for Time

Series Processing. In C.A. Kamm et al. (eds.), Proceedings of the IEEE Workshop

on Neural Networks for Signal Processing 3, Piscataway, New Jersey: IEEE (1993)

78{87

40. R.L. Watrous: Current Status of PetersonBarney Vowel Formant Data. JASA 89

(1991) 2459{ 2460

41. A.S. Weigend, B.A. Huberman & D.E. Rumelhart: Predicting the Future: A Con-

nectionist Approach. International Journal of Neural Systems 1(3) (1990) 193{209

42. P.M. Williams: Bayesian Regularization and Pruning using a Laplace Prior. Neural

Computation 7(1) (1995) 117{143

43. D.H. Wolpert & W.G. Macready: The Mathematics of Search. Technical Report

SFI-TR-95-02-010, Santa Fe Instute (1995)

44. L. Wu & J. Moody: A Smoothing Regularizer for Feedforward and Recurrent Neu-

ral Networks. Neural Computation 8(3) 1996

45. H. Zhu & R. Rohwer. No Free Lunch for Cross Validation. Neural Computation

8(7) (1996) 1421{1426

This article was processed using the LATEX macro package with LLNCS style

