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ABSTRACT  
We examine theoretically the dynamics of the rolling motion of the loaded Cooperrider bogie model running on 

a straight and horizontal track with laterally sinusoidal irregularities. Both lateral and vertical degrees of freedom 

are included in the bogie model in order to allow for a coupling between the horizontal motion and roll, pitch and 

vertical motion.  The car body, however, can only move horizontally and roll.  

The wavelengths of the irregularities vary between 2.5 and 50 m with amplitudes up to 10 mm. The wavelengths 

are the same in both rails. We have investigated the two situations when the disturbance of the two rails are in 

phase and when they are half a wavelength out of phase. These cases correspond to a centre line and a gauge 

variation respectively. 

The results show that there is a high correlation between the lateral motion of the wheel sets and the 

centre line irregularities in most cases. They also demonstrate that only certain selected choices of forcing 

wavelengths and amplitudes of the gauge irregularities make the bogie oscillate for a fixed speed. In the other 

cases the bogie follows the centre line. 

The bogie oscillations are in the most cases symmetric, but we have also found many asymmetric motions, 

including phase locked synchronized oscillations with a period, which is an integer sub-multiple of the period of 

the forcing. In a few cases we find aperiodic motions that are presumably chaotic. 

Statistical methods are applied for the investigation. In the case of sinusoidal oscillations they provide 

information about the phase shift between the different variables, and they yield the amplitudes of the 

oscillations. In the case of aperiodic motion the statistical measures indicate some non-smooth transitions. 
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1. INTRODUCTION 

It is desirable to investigate the correlation between the disturbances of the railway 

track geometry and the response of a vehicle. Due to the nonlinear and non-smooth 

character of the dynamics a general answer to the problem probably does not exist. 

There are, however, apart from the scientific curiosity, economic interests connected 

with an investigation of this problem. As an example we mention the method of 

characterization of the track standard by dynamic measurements in regular trains 

instead of the measurements of the track geometry by special cars or trains. These last 

measurements are expensive as well in capital investments as in use. The test vehicles 

are operated by a highly professional crew and occupy time slots on the railway line, 

whereby the test runs interfere with the profitable use of the railway line. 

Since the answer to the general problem is elusive, we suggest to begin with an 

investigation of the correlation between deterministic disturbances and the vehicle. 

Lieh and Hague [1] write that the behaviour of their wheel set is similar to a single  

degree-of-freedom system and that parametric resonance occurs when the frequency of 

excitation is twice or some multiple of the kinematic or Klingel frequency. However 

time varying systems with multiple degrees-of-freedom may experience resonance for 
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some combinations of their natural frequencies. Therefore it is possible that the natural 

frequencies of the car body and the bogies will influence the parametrically excited 

behaviour of the vehicle dynamical system. The objective of this work is to investigate 

that possibility. 

The aim of our investigation is to find out whether the response of a moving 

railway vehicle to well-defined laterally sinusoidal track disturbances yields a reliable 

characterization of the laterally sinusoidal disturbance. 

This article is an abstract of Christiansen's thesis [2]. The complete version is 

available on the web.  

 

 2. THE DYNAMICAL SYSTEM 

We investigate a theoretical model of a half passenger car on a Cooperrider bogie 

(see Fig. 1) running on a straight and horizontal railway line. Both lateral and vertical 

degrees of freedom are included in the bogie model in order to allow for a coupling 

between the horizontal motion and roll, pitch and vertical motion. The car body can, 

however, only move horizontally and roll. The rail profile is a standard UIC60 profile 

with an inclination of 1/40, and the gauge is standard 1435 mm. The wheel profile is 

the DSB97-1 profile, which is a S1002 standard profile that is modified for use on 

tracks with gauges, which are narrower than the standard 1435 mm.  

 

All elements in the model are rigid with exception of the elements in the suspension, 

which have linear characteristics. The deformations in the wheel-rail contact surface 

are elastic and Hertz's theory applies. The wheel-rail contact geometry is calculated 

numerically using the routine RSGEO [3] and tabulated. The tangential force in the 

contact plane – the creep force – is calculated step by step using the Shen-Hedrick-

Elkins model.  

 

Figure 1. The Cooperrider bogie model 



The imposed lateral track variations are all sinusoidal. The wavelengths vary between 

2.5 and 50 m with amplitudes up to 10 mm. The wavelengths are the same in both 

rails. We have investigated the two situations when the disturbances of the two rails 

are in phase and when they are half a wavelength out of phase. These cases correspond 

to an alignment and a gauge variation respectively. Newton's laws of motion are used 

for the mathematical formulation of the vehicle dynamical model. The model is 

formulated in a Cartesian coordinate system that moves along the undisturbed track 

centre line with the speed of the vehicle, V. The vehicle dynamical model consists of 

14 second order ordinary differential equations plus 2 first order ordinary differential 

equations for the calculation of the differences between the actual speed of rotation of 

the wheels and the theoretical value Ω = V/r0, where r0 is the nominal rolling radius of 

the wheel. The dynamical system can be found in [2]. 

The integrator is an explicit Runge Kutta method with variable step size. The method 

is of order five and uses a Cash-Karp-Butcher tableau. We checked the accuracy of the 

solver with different values for the tolerance. It turns out that a convergence problem 

appears, when the tolerance is set to be less than 10
-9

. A comparison with the 

performance of a Runge Kutta solver of order four, which is slower, gave the same 

result, and the tolerance was therefore chosen to 10
-9

.  

 

4. SIMULATION RESULTS 

In the case of centre line disturbances we find a good correlation between the track 

disturbance and the displacement of the leading wheel set when the wavelengths are 

larger than 20 m and the amplitudes are larger than 4 mm. The amplification rate of 

the response depends, however, on as well the wavelength as the amplitude of the 

track disturbance. If the disturbance amplitude is smaller than 4 mm, then the 

amplification rate becomes large and a phase lag appears. It is therefore impossible to 

determine the amplitude of the track disturbance even at a fixed wavelength by a 

measurement of the displacement of the wheel set. When the speed is higher than the 

critical speed, then it is not possible to determine even the wavelength of the track 

disturbance, because the transients of the wheel set oscillations become very long and 

the period may differ from the period of the track disturbances. At a speed of 60 m/s 

we found cases where a transient of 100 s was needed. In 100 s the bogie travels 6 

km(!) 
 

When the wavelengths of the centre line disturbances are shorter than 20 m, then the 

amplification rate still depends on as well the wavelength as the amplitude of the track 

disturbance. In addition phase lags of one half or one quarter of the wavelength are 

found. An example of the results are shown on Fig. 2. For sufficiently large amplitudes 

of the track disturbance a symmetry breaking bifurcation apparently takes place (see 

plot d), so the oscillations of the wheel sets are off-set towards one of the rails. For 

disturbance amplitudes larger than 4 mm the oscillation of the wheel sets is far from 

sinusoidal and may even become aperiodic (see plot e).  
 



 

Figure 2. Time series of the front wheel set and the track disturbance. The speed is 30 

m/s and the wavelength is 10 m. The bold line is the track position, the unbroken line 

shows the lateral position and the dashed line the yaw angle of the leading wheel set. 

In (e) a longer transient was needed, and the shown time interval is larger than that of 

the other plots. 



Figure 3. Illustration of the result of a positive correlation between the yaw angle and 

the track displacement 

 

For disturbance wavelengths of the order of the wheel base or twice the wheel base of 

the bogie we find that the oscillations of the wheel sets are damped and with phase lag,  

 

Figure 4. Time series of the motion of the leading wheel set and the left rail with gauge 

variations under it. The speed is 30 m/s and the forcing amplitude is 5 mm. The bold 

line is the position of the left rail, the full line is the lateral position and the dashed line 

the yaw angle of the leading wheel set. Notice the period doubling of the response on 

(a) and (b), the lack of response on (c) and asymmetric motion on (d). 



and the oscillation becomes non-sinusoidal for sufficiently large disturbance  

amplitudes. 

 

In the case of sinusoidal gauge disturbances we only find a domain with a good 

correlation for short wavelengths less than 5 m and forcing amplitudes less than 6 mm. 

It is, however, a domain with a very small wheel set response, so it is not interesting 

for practical applications. For certain wavelengths of the disturbance the amplitude is 

even indistinguishable from zero(!) An example of the results is shown on Fig. 4. 

 

When the speed of the vehicle is higher than the critical speed then the transients are 

very long in the case of centre line variations, and for wavelengths smaller than 10 m 

the response differs from the forcing. In the case of gauge variations the response 

remains periodic, but again it differs from the sinusoidal forcing. Some examples are 

shown on Fig. 5. 

 

In the case of gauge variations frequency locking dominates the response in such a 

way that the wheel set oscillates with a period between 1.5 and 3 Hz with most 

frequencies a little less than 2 Hz. These frequencies are the primary frequencies. 

 

The primary frequency, f, is found by dividing the speed by the wavelength and 

multiply the result by the inverse of the period ratio. As an example we find in the 7.5 

m wavelength case, which is a period 2:1 solution, Fig. 4b: 

 f = (30 m/s / 7.5 m) · ½ = 2 Hz. 

For wavelengths larger than 27.5 m the wheel set does not respond at all. It follows the 

track centre line. Therefore the wheel set response  cannot be used as a sensor for 

neither the wavelength nor the amplitude of the disturbance of the gauge. 

 

The Klingel frequency of our model is 1.005 Hz for V = 30 m/s, so another frequency 

locking than one with the Klingel frequency must be active in our case. We must 

therefore look for  possible sources for  frequency locking. 

We have therefore calculated the eigenvalues of the Jacobian for the fix point solution 

on the undisturbed track at V = 30 m/s. Four of them have frequencies between 1Hz 

and 10 Hz, and for these eigenvalues we calculated the corresponding eigenvectors. In 

this short article we only point out one remarkable example of the influence of the 

parametric resonance. In the case of gauge irregularities with a wavelength of 10 m 

and an amplitude of 5 mm at 30 m/s (see Fig. 4c) the bogie does not respond with a 

lateral motion, but it rolls! 

 

Both eigenvalues f10 with 2.644 Hz and f11 with 1.728 Hz have eigenvectors with a roll 

motion. They are the only eigenvalues with frequencies in the interval (1.5 , 3.0) Hz. 

The eigenvector corresponding to f11 has three components with a positive real part. 

They represent bogie frame roll, leading wheel set roll and trailing wheel set roll 

respectively. The eigenvalue f12 with 1.206 Hz has an eigenvector with positive real  



Figure 5. (a)-(e): Some cases with gauge irregularities at a speed of 60 m/s, which is 

larger than the critical speed. The forcing amplitude is 5.5 mm. The bold line is the 

position of the left rail, the unbroken line shows the lateral position and the dashed line 

the yaw angle of the leading wheel set. (f) is a phase portrait of the periodic oscillation 

on (d). 



parts representing the  vertical motion of the leading and trailing wheel sets and the 

bogie frame. Due to the nonlinear couplings in the dynamical model they together can 

produce a parametric resonance at the value ½(1.728 + 1.206) Hz = 2.934 Hz ~ 3 Hz, 

which equals the forcing frequency 30/10 Hz. 

The rolling response of the bogie due to resonance coupled with a vanishing lateral 

response,  is remarkable. The response clearly demonstrates how the interaction with 

the natural frequencies of the bogie will influence the parametrically excited behaviour 

of the vehicle dynamical system and 'falsify' the response as suggested by Lieh and 

Haque [1]. 

5. CONCLUSIONS 

In this work we have investigated the dynamical effects of a sinusoidal disturbance of 

the track centre line and the dynamical effects of a sinusoidal gauge variation. The 

results of the work show that it is impossible in general to extract accurate information 

about the track geometry from measurements of the motion of a wheel set or a bogie. 

Lie and Haque [4] predicted in their conclusion “that the natural frequences of the car 

body and the bogies will influence the parametrically excited behaviour of the vehicle 

dynamical system". It turned out to be true! The full thesis with many more results and 

more detailed explanations is available, see reference [2]. 

6. DISCUSSION 

In this work we have demonstrated through numerical examples that certain  

deterministic variations of the track geometry cannot be detected correctly by  the 

dynamical response of a wheel set. The result should not, however, be perceived as a 

basis for arguments against Hehenberger's proposition [4],[5] to apply the dynamical 

response of a railway vehicle to the diagnosis of the track. 

It is important to define the target of a characterization of the standard of a track. 

Hehenberger [10] writes: “It is not the track geometry that is crucial for the track 

maintenance but rather the dynamic influence of the track on the vehicles that run over 

it” (authors' translation). The statement moves  the target of a characterization of the 

standard of a track from the conventional measurements of the track geometry to 

measurements of the dynamical response of the vehicles that run on the track. 

It is also important to be specific about the properties of the inputs. In this paper we 

only consider deterministic inputs to the dynamical systems. A single isolated 

irregularity is defined as an irregularity with a dynamical response that does not 

interfere dynamically neither with a preceding nor with a successive irregularity. An 

isolated irregularity is defined as an irregularity with a dynamical response, which is 

measurably larger than the dynamical response in a sufficiently small neighbourhood 

of the irregularity. A track irregularity, which is not an isolated irregularity is a  non-

isolated irregularity. A non-isolated irregularity may be a couple of single 

irregularities, which are not isolated in the sense defined above, but it may also be a 



continuous function of the track centre line  like in this paper. Our irregularities are 

laterally periodic, but in a real life situation the irregularities are more general. 

Dynamical measurements of the standard of a track are applied worldwide today 

mainly on high-speed railway lines. They furnish information about the general state 

of the track and about the occurrence of isolated irregularities. The measurements are 

an important tool for the track maintenance departments in the decision-making 

process. The in-time repairs of isolated track irregularities stop the growing 

degradation of the track in between the periodic surveillance of the track quality. 

Thereby money is saved, the intervals between the regular track re-alignments 

extended, and the disturbance of the traffic on the line is thereby reduced. Three main  

problems with the dynamical measurements are: i) the determination of the location of 

a fault, ii) the determination of the type of a fault and iii) the influence of the state of 

the measuring vehicle on the results of the measurements. 

The location can today be determined accurately by a GPS system. At a test on the 

Copenhagen s-train system the wheel revolutions and the passage between the track 

circuit zones were monitored and used for the localization of the fault. The uncertainty 

was ± 5 m. An inspector then had to find the accurate position and the type of fault. 

DSB then had conventional s-trains with München-Kassel bogies and Linke-

Hoffmann-Busch train sets with Professor Friedrich's steered single-axle bogies. The 

measurements of the accelerations in three mutually orthogonal directions were 

performed in the car body above a bogie. The results were qualitatively independent of 

the type of the vehicle and the mileage covered since the last revision. Only vehicles 

that satisfied the safety and comfort requirements were used. 

Hehenberger [4],[5] described a method for a fast and cheap evaluation of the standard 

of a track by measurements of the dynamics of a vehicle. The standards must then of 

course be expressed in limits of the horizontal and vertical accelerations at the points 

of measurement. Hehenberger [4] suggested safety values for the accelerations, but 

they are not acceptable for the passenger trains on a railway line. Instead comfort 

values must be used, such as was the case on the Copenhagen s-train system. 

The problem with the determination of the type of fault is still unsolved. Either a 

visual inspection or some track measuring equipment is still needed for that purpose, 

but the inspection can be limited to the few fault positions and therefore be performed 

much faster than the conventional all-over track inspection. 

The common practice today is to measure the accelerations of an axle box or a bogie 

frame. We do not believe that such measurements yield more information about the 

track standard than measurements in the car body do. The main reason is that it is the 

dynamical reaction of the car body to the track irregularities, which is wanted. The 

axle box measurements contain a large proportion of high frequency input, which is 

unimportant for the characterization of the track and therefore must be filtered out. It 

complicates the instrumentation and add to the costs. The results of this article 



demonstrate that measurements of the displacement of the axle boxes do not help to 

solve the problem with the determination of the type of the track irregularity. Another 

question is, if the dynamical measurements are helpful in a vehicle diagnosis system, 

but it is beyond the scope of this article. 

The track irregularities are in general neither isolated nor purely periodic nor only 

lateral. This work is limited in scope and should only illustrate the problems that arise 

through the nonlinear interactions between the parametric track excitation on the 

vehicle and the dynamics of the vehicle. It may be considered as an investigation of 

the influence of the periodic component of a more general track irregularity on the 

vehicle, but this is a dangerous interpretation. The nonlinearity of the dynamical 

problem makes it impossible to separate the influences of the single modes of 

excitation, because the principle of  superposition does not hold for nonlinear 

operators. It is very obvious from the results of this article. The problem of 

understanding the reaction of a railway vehicle to general disturbances acting in space 

and consisting of a combination of different periodic and aperiodic excitations is 

therefore still open. 
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