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Abstract (English)

Development of a GPU-accelerated MIKE 21 Solver for Water Wave
Dynamics

With encouragement by the company DHI are the aim of this B.Sc. thesis to
investigate, whether if it is possible to accelerate the simulation speed of DHIs
commercial product MIKE 21 HD, by formulating a parallel solution scheme
and implementing it to be executed on a CUDA-enabled GPU (massive parallel
hardware).

MIKE 21 HD is a simulation tool, which simulates water wave dynamics in lakes,
bays, coastal areas and seas by solving a set of hyperbolic partial differential
equations called shallow water equations. The solution scheme is the Alternating
Direction Implicit (ADI) method, which results in a lot of tri-diagonal matrix
systems, which have to be solved efficiently.

Two different parallel solution schemes are implemented. The first (S1) solves
each tri-diagonal in parallel using a single CUDA thread for each system. This
approach use the same solution algorithm as MIKE 21 HD, Thomas algorithm.
The other solution schemes (S2) adds more parallelism into the system by using
several threads to solve each system in parallel. In order to do this efficient are
several parallel solution algorithms investigated. The focus have been on the
Parallel Cyclic Reduction (PCR) algorithm and a hybrid algorithm of Cyclic
Reduction (CR) and PCR.

We discover that S2 are beneficial to use for small problems, while S1 yields
better results for larger systems. We have obtained 42x and 80x speedup in
double-precision for S1 and S2 respectively, compared to a representative se-
quential C implementation of MIKE 21 HD. Furthermore, the impact of switch-
ing to perform calculation in single-precision been investigated. This resulted
in 145x and 203x speedup for S1 and S2, respectively. However, this had some
precision lost when using single-precision. All test throughout the project is
performed on the graphics card NVIDIA GeForce GTX 590.



Resumé (Danish)

Udvikling af en GPU-accelereret MIKE 21 løser for
vandbølgedynamik

Formålet med denne afhandling er på opfordring af virksomheden DHI, at un-
dersøge, hvorvidt det er muligt at accelerere simuleringshastigheden af DHI’s
kommercielle produkt MIKE 21 HD, ved at formulere en parallel løsningsmetode
og implementere denne på en CUDA-enabled GPU (massivt parallel hardware).

MIKE 21 HD er et simuleringsværktøj, der simulerer vandbølgedynamik i søer,
bugter, kystområder og hav ved at løse hyperbolske partielle differentialligninger
kendt som lavvande ligningerne (shallow water equations). Løsningsmetoden der
avendes er kendt som Alternating Direction Implicit (ADI), hvilket resulterer i
et stort antal tri-diagonale matrix systemer der skal løses effektivt.

Der er implementeret to parallelle løsningsmetoder. Den ene (S1) løser hvert tri-
diagonal system parallelt ved brug af én CUDA tråd per system. Her anvendes
samme løsningsalgoritme som i MIKE 21 HD, Thomas algoritmen. Den anden
metode (S2) tilføjer yderligere parallelitet i systemet ved at lade flere tråde lø-
se hvert system parallelt. For at gøre dette effektivt, er parallelle tri-diagonale
løsningsmetoder blevet udforsket. Der er tager udgangspunkt i algoritmerne Pa-
rallel Cyclic Reduction (PCR) og en hybrid algoritme imellem Cyclic Reduction
(CR) og PCR.

Vi har fundet frem til at S2 er fordelagtig for små problemstørrelser, mens S1
giver gode resultater for større problemer. Der er opnået 42x og 80x speedup for
henholdsvis S1 og S2 i double præcision, sammenlignet med en repræsentativ
sekventiel C implementering af MIKE 21 HD. Det er desuden undersøgt, hvordan
køretiden influeres ved at udføre beregningerne i single præcision. Dette resultere
i helt op til 145x og 203x hurtigere end den sekventielle C applikation. Dog med
en reduktion i nøjagtighed. Alle test igennem projektet er udført på grafikkortet
NVIDIA GeForce GTX 590.
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Chapter 1

Introduction

In today’s world the focus on environment and climate is higher than ever.
Especially the changes in rivers and coastal areas have crucial impact on peoples
lives all over the world [11]. The world saw in 2004 the devastating effect of a
tsunami killing over 230,000 people in fourteen countries bordering the Indian
Ocean. The tsunami had waves up to 30 meters high and the world donated
more than $14 billion U.S. dollars in humanitarian aid [43]. Having efficient
tools to try and predict such events has potential to save hundreds of thousands
of lives and billions of dollars. It is therefore essential in today’s modern society.

DHI have developed a 2D free-surface flow numerical engine called MIKE 21
HD (hydrodynamic module) in order to simulate water movements [9]. MIKE
21 HD was first developed back in the 1980s and has since then gone though a
lot of improvements regarding precision, ability and simulations speed to com-
bine different variations, according to DHI. The application can simulate wa-
ter movement in lakes, estuaries, bays, coastal areas and seas, based on rain,
tidal variation, wind etc, but also including prediction of tidal hydraulics, wind
and wave generated currents, storm surges, waves in harbours, dam-breaks and
tsunamis (see project description provided by DHI in Appendix C page 133).

MIKE 21 HD uses a set of hyperbolic partial differential equations called
shallow water equations, which describe the flow below a pressure surface in a
fluid. These equations are solved numerically on a uniform rectangular grid,
using a finite difference method (FDM). The solution scheme is the Alternating
Direction Implicit (ADI) method. The ADI method split the finite difference
equations into two stages per time step, treating one operator implicitly at each
stage, for which the equations are solved in both of the stages. The system
of equations introduce a tri-diagonal coefficient matrix, which can be solved
efficiently.
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The simulation speed of the program is very important, because it determines
how big and how many problems can be solved in a given amount of time.
Sometimes in order to get accurate understanding of the changes in a given area,
hundreds of simulations have to be run. Therefore, improving the execution
speed has the potential to increase type and size of optimization problems,
where MIKE 21 HD is applicable and thereby open new market segments for
DHI. For this reason the focus of the project will be on improving the simulation
speed, while maintaining the accuracy of the program. This will be performed
by implementing the program to run on a graphics processing unit (GPU) to
exploit the massively parallelism of the architecture. Using the GPU to perform
scientific calculations can be beneficial to problems (such as this), where the
calculations are independent of each other and therefore can be performed in
parallel. The technology for doing this is relatively new. In 2006 NVIDIA
published CUDA to run on NVIDIA CUDA-enabled GPUs as the world’s first
solution for general-computing on GPUs [22].

In this project will the parallel programs be implemented in CUDA C and
thereby only be executable on CUDA-enabled GPUs. Further will the programs
be optimized to GPUs based on the Fermi architecture, which is optimized for
scientific applications and was the latest CUDA architecture, when the project
started. On March 23 2012 was the Kepler architecture launched, but unfortu-
nately we did not have the chance to test on this architecture.

The strength of GPGPUs lies in the many-core architecture, wide SIMD paral-
lelism1 and scalability.

Figure 1.1: Illustrations of GPU Computing [23].

The idea of GPU computing is to utilize the available high-performance re-
sources by using the central processing unit (CPU) and GPU together in a

1NVIDIA call it Single Instruction, Multiple Threads (SIMT), but it is essentially Single
Instruction, Multiple Data (SIMD).
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heterogeneous co-processing computing model. That is to use the GPU as an
accelerator for an application. The sequential part of the application is runs on
the CPU, while the parallel computationally-intensive part is accelerated by the
GPU [23]. Consequently, the available resources will be exploited in a manner of
what their force are. The CPU in general has a higher clock frequency, but can
only perform a couple of operations simultaneously, which is good for serial com-
putations. The GPU have a lower clock frequency, but can perform thousands
of tasks at the same time, which is good for parallel computationally-intensive
computations (massive parallel). This is exactly how we intend to utilize the
GPU in this project to speedup the heavy independent computations in MIKE
21 HD and throughout improve the simulation speed.

1.1 Validation of Scientific Computing
Using computers to simulate the real world is the main task in scientific com-
puting. Figure 1.2 illustrate the workflow from having a scientific problem to
developing a mathematical model which describes the phenomenon. For then
to discretize to a numerical formulation, which can be solved on a computer.

idealization discretization simulation

Verification

Validation

”Real”
World

Mathematical
Model

Numerical
Method Results

Figure 1.2: Flowchart over workflow for scientific computing from ideal-
ization through discretization to simulation.

To insure that the discretization of the mathematical model behave as expected
and desired should a verification of the numerical method be performed. Fur-
ther, to insure that the numerical model simulates the ”real” world problem, as
desired, should the obtained solution be validated against the scientific problem.

In this project will the obtained solutions frequently be compared to MIKE
21 HD to make sure the programs always obtain the same results. MIKE 21 HD
has gone through a lot of development since the 1980s. The aim of this project is
therefore not to change or improve on the numerical formulation or correctness
of MIKE 21 HD, but on the request of DHI to develop a parallel solution scheme
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that obtain the same solution as MIKE 21 HD. Thereby is our obtained results
validated by comparison to the result returned by MIKE 21 HD. Since we need
to obtain the same solution as MIKE 21 HD will the mathematical model and
numerical discretization used in MIKE 21 HD also be used in this project.
However, we have discretizated the mathematical model and formulated the
problem that shall be solved ourself, analogue to the discretization by DHI, to
insure correctness and better understanding. A verification will be applied just
to verified that the truncation error embedded by the approximations behave
as expected. Consequently, since the primary task of the project is to develop a
fast parallel solution scheme will focus throughout the report be on this, while
maintaining the same solution as MIKE 21 HD.

1.2 Proposal from DHI
The original project description provided by DHI can be found in Appendix C
page 133.

The project is proposed by DHI in order to investigate the potential of
moving the existent MIKE 21 HD implementation form the CPU to the GPU.
Consequently, to research whether it is beneficial to formulate a parallel solution
scheme of the current numerical algorithm used in MIKE 21 HD or if other
algorithms, there better utilize the resources on a GPU, should be used.

DHI present following approach for the project; first the central subroutines
of MIKE 21 HD must be implemented in a sequential C version. Second shall a
parallel solution scheme, based on the sequential C version, be implemented in
CUDA C. All performed calculations and all used data types shall be in double-
precision. The sequential version serves the purpose of having a correct base
code, which always produces the same result as MIKE 21 HD, and thereby to
verify the correctness of the different GPU implementations. Additionally to
compare performance of the CPU and the GPU implementations. The perfor-
mance comparison is performed on the C implementation, since the MIKE 21
HD FORTRAN implementation is more complex and therefore does not pro-
vide a fair comparison. However, a profiling of the MIKE 21 HD FORTRAN
implementation will be conducted to make sure that it has the same bottlenecks
as the C implementation. Furthermore is it important that the developed pro-
grams obtain the same result as MIKE 21 HD. This means that the validation
of the implemented applications will be obtained through comparison to MIKE
21 HD.

DHI have also states in the project description, that a drastic improvement in
simulation speed has the potential to change the type of optimization problems,
where MIKE 21 HD is applicable, and thereby open new market segments for
DHI. The project is therefore highly relevant.
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1.3 Thesis Statement
This project has the purpose to examine and improve the simulation speed of
the central algorithm of the hydrodynamic model in MIKE 21 Flow Model by
DHI. The focus will be on utilizing that the algorithm can be performed in
parallel and thereby increase the simulation speed by solving it on a GPU.

The primary objective of the project is:

• How can shallow water fluid flow equations be solved efficiently
in parallel using a GPU and how much can this improve the
performance of MIKE 21 HD?

In order to answer this question it is necessary to answer the following:

• How can the existing MIKE 21 HD FORTRAN code be converted into a
sequential C program?

• How can this algorithm efficiently be solved in parallel using CUDA C?

• How can we find an improved strategy to solve the problem by utilizing
the GPU architecture?

• Are there other numerical algorithms, which are more beneficial in order
to utilize the GPU architecture when solving the problem?

The result of the project will be C and CUDA C programs which correspond to
the core structure of MIKE 21 HD FORTRAN code. Throughout the project
will profiling of the implementations be used to deduce performance studies in
order to locate bottlenecks and document change in performance.

The focus on the sequential C implementation is mainly on the correctness of
the program compared to MIKE 21 HD, so the obtained results from the parallel
solutions can be validated against the serial. It is also used for comparison of
the simulations speed.
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1.4 Scope of the Project
The subject of this report is far more extensive than the scope of this project.
The areas that the report will focuses on is therefore confined and will not be
discussed further. Listed below are the areas that fall outside the scope of this
report.

MIKE 21 HD. The implemented programs will not correspond to the full
MIKE 21 HD, since this will be too extensive a task. However, the most
important parts and the most intensive computations in the MIKE 21 HD
will be implemented, why the outcome in this project will be realistic and
useful in manner of a fully CUDA C implementation of MIKE 21 HD. The
CUDA C application will only be implemented to handle a set up with
coast along the boundary and water in all inner points.

Parallel programming. The parallel solutions schemes will only be imple-
mented and optimized to NVIDIA Fermi architecture using NVIDIA par-
allel computing architecture CUDA (Compute Unified Device Architec-
ture). The focus will especially be on the NVIDIA GeForce GTX 5902,
since this card nearly have same specifications as NVIDIA GeForce GTX
580, which DHI are in possession of. Thereby will the obtained results be
comparable an feasible for them too. In fact, since only one of the GF110
chips on the GTX 590 are used will DHI be able to obtain even better
results using the GTX 580.
Notice that the implementations should also be able to be executed on
newer models of NVIDIA CUDA-enabled GPUs.

OpenCL. The parallel solutions schemes will not be implemented in OpenCL,
by which there will not be performance studies of the difference between
using OpenCL or CUDA. This implies that the differences with hardware
platforms such as ATI vs. NVIDIA not will be investigated.

Optimization on CPU. The goal of the project is mainly the parallel imple-
mentation of MIKE 21 HD. Therefore the sequential implementation will
be performed reasonably, but the main optimization will be on the parallel
program.

Applied optimization techniques will be how to utilizing the capacity of NVIDIA
CUDA-enabled GPU hardware in a cleaver way, but also to investigate whether
there are other numerical algorithms that can solve the shallow water equations
and perform better parallelism than the used solution scheme in MIKE 21 HD.

2Test environment specifications is available in Appendix B page 131
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1.5 Learning Objectives
The learning objectives for the project are listed in the following

• In qualified manner formulate, analyze and solve problems within a limit
project.

• Solve a relevant engineering problem, where acquired knowledge and skills
are used.

• Evaluate and summarize results, and account for the results in a logical
and structured technical report.

• Apply principles for numerical discretization and approximation.

• Implement and verify numerical algorithms for solving partial differen-
tial equations, in particular solving the shallow water fluid flow equations
(hyperbolic PDE).

• Make a performance study that documents the obtained experiences, and
clarifies changes in the simulation speed.

• Apply obtained theoretical knowledge and experiences to optimize a "real
world" engineering problem.

• Investigate opportunities for utilizing the massive parallel computations
that the GPU architecture provide.

• Skillfully analyze, design and implement parallel programs for Scientific
Computing problems and use modern architectures and tools to achieve
efficient programs. In particular a parallel solution scheme for MIKE 21
HD using a GPU (graphics card).

We will through the project obtain these competencies.
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1.6 Thesis Structure
In this thesis will the needed theory first be described. It will then be used to
solve the problems throughout the thesis and at last will the results be shown
and discussed. The systems on which the tests are performed can be seen in
Appendix B Table B.1.

Here is an overview of what the individual chapters will contain.

Chapter 2 Investigates the potential performance gain by developing a parallel
solution scheme.

Chapter 3 Describes parallel programming in CUDA, how to optimize appli-
cations and the functionality of the Fermi architecture.

Chapter 4 Derives a discretization of the shallow water equations and formu-
lates the systems that needs to be solved.

Chapter 5 Describe the different tri-diagonal solution algorithms, which will
be used in the project.

Chapter 6 Describe the functionality of MIKE 21 HD and the sequential C
implementation and compare the performance of this two.

Chapter 7 Gives an overview of the parallel CUDA C implementations.

Chapter 8 Goes through the optimization steps of the parallel CUDA C im-
plementations.

Chapter 9 Investigate and discusses the results obtained throughout the project.

Chapter 10 Summing up the thesis and makes a conclusion of the work and
results.

Chapter 11 Describes what aspects would be interesting to analyse and inves-
tigate further.

Appendix Contain nomenclature used in the thesis, the specifications for the
different test systems used in the project, key values about the Fermi
architecture and the original project description provided by DHI.



Chapter 2
Scalability and Expectations

of Speedup

What benefit can we expected by parallelizing the sequential MIKE 21 HD
application? Before impelemting a given problem on a GPU is it recommend
to have some prior knowledge about how well the problem can be parallelized,
since tasks that cannot be sufficiently parallelized never should be executed on
a GPU. Therefore, to state expectations for speedup from a parallel CUDA
implementations are there commonly distinguished between scalability with

Strong scaling Theoretical upper bound of decreasing the solution time as
more processors are used for a fixed problem size (speed-up).

Weak scaling Theoretical upper bound of keeping the solution time constant
as problem size increases by adding more processors with a fixed problem
size (scale-up).

This chapter is based on knowledge which can be obtained by [32, sec. 2.1.3].

2.1 Strong Scaling
Normally, strong scaling is equated with Amdahl’s law. Amdahl’s law state the
expected speedup by parallelizing a fraction of a sequential program. Assume
the program has a parallel fraction f . This implies that the execution time can
be split into

T (1) = f · T (1) + (1− f) · T (1)
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and with p processors available

T (p) = f

p
· T (1) + (1− f) · T (1)

We then have Amdahl’s Law

S(p) = T (1)
T (p) = 1

(1− f) + f

p

(2.1.1)

where S(p) is the maximum expected speedup. We see from Amdahl’s Law
(2.1.1) that the larger the parallelizable fraction f is, i.e., f is close to 1, the
greater speedup can be expected. However, increasing the number of processors
p does also have an impact on the performance. Figure 2.1 illustrate Amdahl’s
Law for different parallel fraction f of a code
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Figure 2.1: Amdahl’s Law for parallel fraction f of a program.

This implies that parallelizing that part of the code, where the majority of the
time is spent, is very important to gain a beneficial performance of the GPGPU.
For instance, if a large number of processors are available and the sequential
fraction is 20%, the maximum speedup is only 5.
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2.2 Weak Scaling
Usually, weak scaling is equated with Gustafson’s Law. Gustafson’s Law state
how much the problem size can increases by adding more processors with fixed
work, keeping constant execution time. Thus the maximum speedup of a pro-
gram is

S(p) = p+ (1− f)(1− p) (2.2.1)

where p again is the number of processors and f the parallel fraction. Note, it
is assumed that the parallel fraction remains constant.

2.3 Applying Strong and Weak Scaling
Having some kind of understanding on how the application will scale can give
an expectation of attained speedup when parallelizing a sequential application.

To enable the opportunity for DHI solve larger problems and/or increase
accuracy will demand the possibility to increase the problem size and thereby
fill the available processors. This exhibit that the application has weak scaling
qualities. Thus applying Gustafson’s Law to determine an upper bound for
speedup. Additional, one could conceive that DHI also would be interested
in knowing how the application will scale if one execute the same problem on
different hardware, thus apply Amdahl’s Law could determine an upper bound
for the speedup.

In the grid are each row or column independent on the others. So, for
instance, if each thread calculate one row/column in the grid and that the
system is big enough such as there are sufficiently work to do, one can say that
the parallel fraction are one. Consequently, this will, cf. Gustafson’s Law, result
in a parallel application, which will scale linear. Thus one doubling the problem
size will double the speedup. However, one should note that additional overhead
due by parallelization and speedup caused by cache effects are not taken into
account. The same applies to memory bandwidth limitation and sufficiently
work and processors available.

These theoretical laws verify two fundamental conditions for parallel computing,
since they roughly can be summarize to

• The extent of the parallelism in the application need to be sufficiently to
utilize the available resources.

• The problem need to be sufficiently large, so more processors can be uti-
lized.



Chapter 3

CUDA Theory

The motivation for using the GPU to perform scientific computing lies in the
power of the massively parallel architecture. While a modern CPU commonly
has 4-16 cores the GPU have hundreds. Even though the cores of a CPU often
is individually faster the volume and the intelligent memory architecture means
that there are huge processing power available in the GPU to solve parallel
problems.

In this chapter will the CUDA and Fermi architecture be explained. Further
more will different optimization techniques that are beneficial CUDA programs
be described. The chapter will be based on knowledge which can be obtained
by [29], [32], [33] and [12], where also more detailed descriptions can be found.



3.1 Processing Flow for GPGPU 13

3.1 Processing Flow for GPGPU
It is important to be aware of the processing flow when programming GPGPU
for scientific computing. The flow is illustrated in Figure 3.1.

Figure 3.1: Flowchart for GPGPU programming, [44].

The flow can be divided into following steps

1 Copy data from host (CPU memory) to device (GPU memory).
2 Send instructions from host to device.
3 Execute calculations in parallel on the GPU.
4 Copy result from device to host.

Especially step 1 and 4 can be very slow because of the low bandwidth between
host and device. For this reason data transfers between host and device should
be minimized. In fact, there are three general suggestion when creating high-
performance GPGPU programs [12, chap. 1]

• Get the data on the GPGPU and keep it here.
• Give the GPGPU enough work to do.
• Focus on data reuse within the GPGPU to avoid memory bandwidth lim-

itations.
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3.2 CUDA C
CUDA (Compute Unified Device Architecture) is the architecture that enables
NVIDIA GPUs to execute parallel programs. CUDA C works as an extension of
C, where additional functions are added, e.g., functions to allocate arrays on the
GPU cudaMalloc() and copy data from the CPU to the GPU cudaMemcpy().

Parallel CUDA applications are called kernels, which are executed in the host
code. A kernel describes the work that a given thread shall perform based on
a uniquely assigned thread index organizes in thread blocks and grids of thread
blocks. In order to control the parallel executions are a virtual layout with
three layers used; threads, blocks and grids. A thread is the core element that
performs the calculations in parallel. Threads are divided into groups called
blocks (or thread blocks) which again are divided into grids, see Figure 3.2 for
the relation between threads, blocks and grids.

Figure 3.2: Illustration of relation between threads, blocks and grids [29,
fig. 2-1].

All threads within a block is processed in parallel on the same multiprocessor and
all has access to the same shared memory, see Section 3.6. This allows threads
to cooperate within the block and efficiently share data with each other. Since
blocks are distributed to different multiprocessors can they on the other hand
not easily cooperate. For this reason is it important that blocks can be executed
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independently. Additionally, one should keep in mind that even though threads
can be viewed as being performed in parallel they are physically calculated in
groups of 32 in so called warps. For this reason should the size of the block be
a multiple of 32 and threads within a warp should have the same code path and
access memory addresses close together.

The size and dimension of the grids and blocks are decided by the program-
mer with some restrictions, see Appendix B.2. This allows for a given application
to be optimized based on block and grid sizes and dimensions.

3.3 Fermi Architecture
In order to develop efficient parallel GPGPU applications is it important to
have knowledge about the hardware and architecture it is executed on. This
will give an indication and comprehension on how the application will gain
performance in parallel on the GPU. Therefore, a brief description will be given
of the architecture.

CUDA computing graphic architecture Fermi is the second line of architectures
developed by NVIDIA. In this project will code be optimized for and tested on
the NVIDIA GeForce GTX 590 (2x GF110 chip), with have Compute Capability
2.0. The graphic card consists of 16 streaming multiprocessors with 32 CUDA
cores each with gives a total of 512 parallel processing cores. Each CUDA pro-
cessor can perform integer arithmetic logic and simple floating point operations
such as addition, subtraction, multiplication. The architecture use now the full
IEEE 754-2008 32-bit and 64-bit floating-point standard, so for instance the
multiply-add instruction (FMA) can be performed without losing precision in
the addition. Further are there four special function units per multiprocessor
(SFU), which executes special instructions such as sin, reciprocal and square
roots. See Figure 3.3 for an overview of the architecture.
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Figure 3.3: Overview of the Fermi GF110 architecture [2].

The hardware also consists of different memory types located both on- and
off-chip as illustrated in Table 3.1.

Memory Location Scope Lifetime Latency
Register On-chip Thread Thread 1 cycle
Shared Memory On-chip Block Block 2-4 cycles
Global Memory Off-chip Global Application 400-800 cycles

Table 3.1: Overview of device memory. Note that all outlined memory
types can be read from and written to.

Further description of the different memory types that are available on the
hardware see Section 3.5-3.7.

3.4 Data Transfer Between Host and Device
The peak theoretical bandwidth between host and device memory is very slow,
especially compared to the peak theoretical bandwidth internal on the device.
The graphic card is connected through a CPI-E 2.0 x16 bus speed. In NVIDIA
CUDA C/C++ SDK Code Samples are there bandwidthTest, which test the
bandwidth internal, host to device and device to host. The test result for the
GTX 590 see Appendix D on page 135.
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To achieve higher bandwidth between the host and the device one could using
pinned memory instead of the commonly pageable memory. CUDA C Runtime
API provides functions to pinned host memory. This has several benefits, e.g.,
bandwidth between host and device memory is higher and is used when data
transfer between host and device is performed concurrently with kernel execu-
tion. Since the device can access the memory directly, it can read and writhe
with higher bandwidth. So instead of using malloc() there allocate pageable
host memory can one use cudaHostAlloc() to allocate and cudaFreeHost()

to free pinned host memory.
One should keep in mind that excessive use of pinned memory can have

a negative impact on the system performance, because of the less available
memory to the system.

3.5 Global Memory
Global memory is a read/write off-chip DRAM, available to all threads in the
grid. Global memory access has a low memory throughput (163.87 GB/s for
GTX 590) compared to faster on-chip memory and should be minimized. This
can be done using the faster on-chip memory rather than slower global memory,
see Section 3.6.

Accessing global memory are cached in either L1 and/or L2, which can be
configured in compile time. Using the compiler flag −Xptax −dlcm=ca will re-
sult in caching both in L1 and L2, compiler flag −Xptax −dlcm=cg will lead to
L2 caching only. If both the L1 and L2 cache is activated then global memory
requests are serviced with 128 byte memory transactions. If only L2 cache is
activated then memory requests can be serviced with 32 byte memory transac-
tions. Thus only caching in L2 can reduce over-fetch in case of scattered memory
access.

For most applications will some global memory access be necessary. It is
therefore important that global memory accesses are done as efficiently as pos-
sible to minimize wasted bandwidth. Hence, all global memory accesses should
be performed coalesced.

3.5.1 Coalesced memory access
Since the global memory requests are serviced with 128 byte memory transac-
tions would it obviously be most efficient if all those 128 byte was needed by the
threads. Therefore, in order to achieve efficient global loads, the accesses should
be coalesced such that the threads in a warp request values in global memory
that are located next to each other and falls into as few 128 byte transactions
as possible.

If a single thread requests an element from a different segment than all
the other threads, a whole 128 byte segment must be transferred to answer that
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single thread request. Thereby will bandwidth be wasted. So in order to achieve
high efficiency and few memory transfers the accesses must be coalesced, which
implies threads request aligned data which fall into full 128 byte segments. In
order to obtain this is it very important that the threads access correctly in the
memory layout which is row-wise when programming in C.

Alternatively the global load efficiency can in some cases be improved by
turning off the L1 cache, since smaller memory transactions then can be per-
formed. This will improve global load efficiency if the access pattern is scattered,
since less unnecessary data has to be transferred. However, this means that the
fast and often very useful L1 cache can not be used, which can result in longer
execution times even though a higher global load efficiency is achieved.

3.6 L1 Cache and Shared Memory
The same 64 kB on-chip memory on each multiprocessor is used for L1 cache
and shared memory. All threads in the same thread block has access to the
same elements in shared memory. The size of these two is either that L1 has
16 kB and shared memory 48 kB or vice versa. This can be configured from
the host with the CUDA API routine cudaFuncSetCacheConfig(myKernel,
cacheConfig) where myKernel is the name of the kernel and the cacheConfig
options are

• cudaFuncCachePreferShared: shared memory is 48 kB and L1 16 kB
• cudaFuncCachePreferL1: shared memory is 16 kB and l1 48 kB
• cudaFuncCachePreferNone: no preference

While caching in L1 happens automatic can shared memory be viewed as a
user-managed cache. Shared memory is especially beneficial when data has to
be used and/or modified several times, while L1 cache is great at reducing traffic
to global memory, smooth out some misaligned, scattered access patterns and
helps with registers spilling.

Shared memory has 32 memory banks, where successive 32-bit words are
assigned to successive banks. Each bank has a bandwidth of 32 bits per two
clock cycles. When using shared memory one should be aware of bank conflicts.

3.6.1 Shared memory bank conflicts
A bank conflict occurs when two or more treads in a warp accesses different 32-
bit words in the same bank. When bank conflicts occurs shared memory accesses
is serialized and the throughput is decreased by a factor equal to the number of
separate memory requests. For 64-bit access a bank conflict only occurs if there
is a bank conflict in either of the half warps. This is an improvement compared
to Compute Capability 1.x where 64-bit shared memory accesses normally would
occur with a two-way bank conflict.
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3.7 Registers
Registers are on-chip automatic memory and are the fastest memory on the
GPU. There are 32,768 32-bit registers available per multiprocessor on devices
with Compute Capability 2.x. Registers are private to each thread and data
cannot be read by other threads.

A thread is limited to a maximum of 63 registers per thread, but this limit
can be decreased for all kernels at compile time with the compile option −
maxregcount=N, or for a given kernel with the __launch_bounds__() qualifier
in the definition of a __global__ function. However, if threads need more
registers that are available can this result in register spilling.

3.7.1 Register spilling
If a thread needs more memory to store automatic variables than the available
registers, then register spilling will occur. This means that the threads will use
local memory to store the excess data. This can be very inefficient, since the
local memory space resides in device memory. Thus register spilling can have an
impact on the performance by increasing memory traffic or instruction count.

Register spilling might not always be a problem, since it might be partly or
entirely contained in the L1 cache and if the application is not compute/instruc-
tion bounded, this does not so much. Also it might account for an insignificant
amount of global memory transfers. It should therefore always be investigated
how significant the spilling are and based on that act correctly; if register spilling
is problematic one could try increasing the limit of registers per thread, non-
caching loads for global memory and/or increase L1 cache size to 48 kB.

3.8 Latency Hiding
The number of clock cycles it takes for a warp to be ready to execute its next
instructions is called latency. In order to fully utilize the hardware should the
multiprocessor perform work every clock cycle. This implies that all latency
should be ”hidden” with instructions from other warps that are ready to execute.
Obviously, longer latencies are more difficult to hide and the more warps that are
available on the multiprocessor the easier it is to hide latency. This motivates
further to use fast memories, where latency will be lower and to achieve high
occupancy see section 3.9.

The way to hide latency is, however, not always to run more threads per
multiprocessor or to have more threads per thread block (Thread Level Paral-
lelism (TLP)). One could try hid arithmetic and/or memory latency using fewer
threads (Instruction Level Parallelism (ILP)).
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Arithmetic latency. Generally we know that accessing registers costs no extra
cycles. However, read-after-write latency is ≈ 24 cycles and 400-800 cycles for
memory. A example is given in Listing 3.1

Listing 3.1: Example of hiding register dependencies.
1 x = a + b; // take approx 24 cycles to execute
2 z = x + d; // dependent, must wait for completion
3 y = a + c; // independent

We see that line 2 is dependent and can first be executed when line 1 is finish.
However, line 3 is independent and can start anytime. Therefore, one could
maybe obtain better performance by interchange line 2 and 3, such that the
latency for line 1 can be hidden by doing other operation in the meantime.

Overall, it is usually recommended to apply more threads to supply the
needed parallelism (TLP). Additional, one can use parallelism among the in-
struction for each single thread (ILP).

3.9 Occupancy
Occupancy is the ratio of the number of resident warps per multiprocessor to
the number of theoretically possible. For devices of Compute Capability 2.x are
the maximum number of resident warps per multiprocessor 48. Occupancy is
therefore a measure for how well the multiprocessor can hide latencies and keep-
ing the hardware busy, see Section 3.8. Thus one can calculate the occupancy
by

Occupancy = Resident blocks per SM · Threads per block
Maximum threads per SM (3.9.1)

The occupancy can be limited by a number of factors like block size, regis-
ters used per thread, shared memory. The limits on all of these factors is
depended of Compute Capability and can be seen in Appendix tab:cudaspecs.
The occupancy and the limiters can easily be identified using CUDA Occupancy
Calculator, which is a tool in CUDA Toolkit provided by NVIDIA [27].

It should be mentioned that high occupancy does not necessarily equal high
performance, but low occupancy will properly equal low performance.

3.10 nvcc Compiler
The source code can be a mix of host and device code, thus NVIDIA compiler
nvcc separate the .cu code, such that host code is compiled on the available
C/C++ compiler on the host platform and the device code is compiled by
NVIDIA assembler or binary instruction.
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The NVIDIA CUDA Driver API is a low-level C API, provide to link to
options as −ptx and −cubin. Linking with these will control specific phases
of the compilation. −ptx is intermediate assembler code for NVIDIA GPU
standing for Parallel Thread eXecution. −cubin is a CUDA binary. These
linker options can be useful when investigating what really happens behind the
scene and thereby make it possible to optimize the application very specific and
determined [7].

nvcc provide some useful compiler options, like

• −arch=sm_20 define Compute Capability to 2.0, insuring double precision.
• −maxrregcount=N specifies the maximum number of registers per thread.
• −−ptxas−options=−v or −Xptxas=−v return register, shared and con-

stant memory usage per kernel.

nvcc supports restricted pointers via the keyword __restrict__. This key-
word is used to tell the compiler that the pointers do not overlap. Notice that
it is your own responsibility that this never will be violated. Thus the compiler
can optimize the code by reordering and do common sub-expression elimination
at will. Consequently, this can reduce memory accesses and number of com-
putations. However, this can increase the register pressure, thus it can have a
negative impact on the performance.

3.11 NVIDIA Visual Profiler
The NVIDIA Visual Profiler is a very useful tool to evaluate an optimize imple-
mented kernels. It can measure many different events and calculate metrics as
runtime, warp divergence, shared memory bank conflicts etc.

For this reason it is very efficient tool. Thus one can locate bottlenecks
an problems in a kernel. Use the different provided events and metrics to in-
vestigate how well a given kernel performance compared to the hardware, but
most important to compare kernels to see if implemented improvements has
been successful and behave as expected. A screenshot of a kernel investigated
in NVIDIA Visual Profiler is given in Figure 3.4
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Figure 3.4: Screenshot of one of the implemented kernels run in NVIDIA
Visual Profiler.

In Section 3.12 are shown, how useful performance metrics are calculated. The
used counters can NVIDIA Visual Profiler provide.

3.12 Calculation of Performance Metrics
3.12.1 Identifying performance limiters: Memory or

compute bound
It is beneficial to have some knowledge of what performance limiters the ap-
plication has, simply to focus the optimization, but also to know how well one
can expect the application to perform. Usually, there is differentiated between
bandwidth or arithmetic limitations. A way to determine this one can determine
the ratio comparisons instructions and memory bandwidth for the application
and set it against the perfect balance for the given graphic card. The ratio
instruction to bytes can be determined, cf. [48, p. 7], by

32 · instruction issued
128 bytes ·Global store transaction + L1 global load miss (3.12.1)

Thus if we are higher than the perfect ratio (for the used graphic card) the
application is likely arithmetic/compute bounded, lower it is memory bounded.
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3.12.2 Theoretical bandwidth calculation
One can calculate the theoretical bandwidth for a given graphic card by using
its hardware specifications, [32, sec. 5.2.1]

Theoretical [GB/s] = Clock [MHz] · 106 · (Interface [Bits]/8) · Rate
109 (3.12.2)

3.12.3 Effective bandwidth
The effective bandwidth is determined by the number of bytes the application
efficient reads and writes over time, hence cf. [32, sec. 5.2.2]

Effective bandwidth = (Readsbytes + Writesbytes) /10243

Times
(3.12.3)

The effective bandwidth can also be obtained by the NVIDIA Visual Profiler
metrics: The Requested Global Load Throughput and The Requested Global
Store Throughput. This metric is a very useful, since it can be used to investigate
how a kernel perform and to see how well it utilize the hardware. Additional,
it can be used to compare with the actual bandwidth to estimate how much
bandwidth is wasted, see Section 3.5.1.

3.12.4 Divergent branches
The ratio of divergent branches is simply determined by the ratio of divergent
branches and total branches. Since divergence within a warp causes serialization
in execution should it obviously be avoided.

Ratio of divergent branches = Number of divergent branches
Number of total branches · 100% (3.12.4)

3.12.5 Control flow divergence
The control flow divergences measure the percentage of thread instruction, which
was not executed by all thread within the warp

Control flow div. = 32 · inst. executed− threads inst. executed
32 · inst. executed · 100%

(3.12.5)

3.12.6 Replayed instructions
Replayed instruction measure the number of instruction that are issued by the
hardware to the number of instructions that are to be executed by the kernel
(percentage)

Replayed Inst. = instructions issued− instruction executed
instruction issued · 100% (3.12.6)
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3.13 Performance Optimization Strategies
In practice will some optimization steps have far greater impact than others
depending on the type of problem. The key aspects that should always be
taken into consideration is

• Maximizing parallel execution.

• Optimizing memory usage to achieve maximum memory bandwidth.

• Optimizing instruction usage to achieve maximum instruction throughput.

Which as a rule of thumb can be obtained by following optimization steps.

• Implement kernels with as much parallelism as possible.

• Make use global memory transactions are coalesced when possible.

• Minimize use of global memory, use faster on chip memory instead.

• Avoid warp divergence.

• Avoid bank conflicts.

• Achieve high occupancy.

• Make block sizes a multiple of warp size.

If these optimization step is performed can it be assumed that most crucial
performance issues has been solved and the result should be a decent optimized
kernel. It should be mentioned that it is important to compare performance to
what is theoretically possible and use tools as the CUDA Occupancy Calculator
and NVIDIA Visual Profiler.



Chapter 4

Numerical Formulation

This chapter contain a description of the shallow water equations, which are
the equation used by MIKE 21 Flow Model to simulate flow and water level
variations, see Section 4.1. These equation will be discretized and the derivation
of the coefficients used to set up the system of equations will be described in
detailed in Section 4.2.

4.1 Shallow Water Equations
The hydrodynamic model in the MIKE 21 Flow Model (MIKE 21 HD) is a nu-
merical modelling system for simulation of water movements in lakes, estuaries,
bays, coastal areas and seas. It simulates unsteady two-dimensional flows in one
layer vertically homogeneous fluids.

The shallow water equations are a set of hyperbolic partial differential equa-
tions which model the propagation in incompressible fluids, under the condition
that the vertical length scale is small compared to the horizontal length scale.
I.e., the depth of the fluid are much smaller than the wave length, as we, e.g.,
see in lakes, bays and coastal areas, but also in the oceans when modelling the
catastrophic tsunamis.

The equations are constructed from the theory of conservation of mass and
momentum, and the partial differential equations that describe the flow and
water level variations are as follows, (see Appendix A Table A.1 on page 130 for
symbol description and unit specification.)
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The time, t, in seconds and the two space coordinates, x and y, in meters are
independent variables. The dependent variables are the surface elevation, ζ, in
meters and the two-dimensional flux densities, p and q in m3/s/m.

Figure 4.1 illustrate the interaction between the bathymetry (ground eleva-
tion), water surface elevation and water depth.

water surface

reference plane

bathymetry

Figure 4.1: Overview of the bathymetry, water surface elevation and
depth.
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4.2 Introduction to Derivation of Discretization
In the following will we derive the numerical discretization of the inner points
in the grid (points away from the coast) for the two-dimensional shallow water
equations (4.1.1)-(4.1.3) described in Section 4.1.

The discretization is derived closely to the scientific documentation by DHI [21,
chap. 3, 4 and 6], such that we obtain the same equations as used in MIKE 21
HD. However, the discretization will be explained in far greater details here. DHI
has stated that their standard hydrodynamic simulations shall be implemented
in the scheme. Therefore, some high order terms to obtain higher accuracy
for short wave applications of the scheme have been neglected in this project.
The truncation errors embedded in the finite difference approximation can be
determined by the use of Taylor series expansions. Thus, we expect the error
to be of 2nd order in ∆x, i.e., O(∆x2). To clarify how the order of accuracy
is obtained will a small example be given, which illustrates the approach, when
analyzing the error in finite different approximation [16, chap. 1].

Assume we will approximate the first derivative of u(x) using forward differ-
ence approximation. Applying Taylor series at point x̄ we get

u(x̄+ h) = u(x̄) + hu′(x̄) + 1
2h

2u′′(x̄) + 1
6h

3u′′′(x̄) +O(h4) (4.2.1)

Thus applying (4.2.1) in forward difference approximation

D+u(x̄) = u(x̄+ h)− u(x̄)
h

= u′(x̄) + 1
2hu

′′(x̄) + 1
6h

2u′′′(x̄) +O(h3) (4.2.2)

u′′(x̄) and u′′′(x̄) are fixed constant, since x̄ is a fixed point. We see for suf-
ficiently small h, that the error contribution will be dominated by the term
1
2hu

′′(x̄). Hence, the truncation error is expected to be of first order in h, O(h).

We will derive the discretization of the mass and momentum equation in the x-
direction. However, because the y-mass equation has influence on the centering
of the x-mass equation will this derivation be considered too. Regarding the mo-
mentum equation will only x-momentum (4.1.2) be shown, since discretization
of the y-momentum equations is performed in a similar manner.

4.2.1 Methods for discretization and solution scheme
MIKE 21 HD solves the shallow water equation on a staggered grid (see Figure
4.2) using several finite difference approximations schemes. Finite difference
methods is used to obtain the numerical solution of the differential equations,
which theory are assumes to be known. The used solution scheme is the Al-
ternating Direction Implicit (ADI) method to solve the equations for mass and
momentum conservation in the time domain for one row or column at a time,
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in an alternating order. The resulting system of equations for each direction,
respectively, a row or a column in the grid, result in a tri-diagonal matrix (see
Section 4.5).

The ADI method is a finite difference method used for time discretization.
The ADI method splits the finite difference equations into two stages, so-called
sweeps (x- and y-sweep), per time step, where only one operator is taken im-
plicitly at each stage. The equations are solved in both of the stages, i.e. first
sweep the x-derivative is taken implicitly and y-derivative is taking explicitly
and vice versa in the next sweep. In each sweep the equations are solved to
update the flow and water level.

An advantage of using the ADI method is that the resulting system of equa-
tions, that needs to be solved for each row and column in the grid, are sym-
metric with nonzero elements only on the sub-, main- and super-diagonal, thus
it is a sparse matrix. This special structure can be solved efficiently with tri-
diagonal matrix algorithms like the Thomas algorithm. A further description of
tri-diagonal solution algorithms can be found in Chapter 5.

4.2.2 Staggered grid in (x, y)-space
In Figure 4.2 is the staggered grid in (x,y)-space shown.

Figure 4.2: Staggered grid in (x,y)-space, [21, fig. 3.1].

The water depth, h, and water surface elevation, ζ, are located in-between the
flux densities p and q.

This grid is used to derive the expression for the difference terms.
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4.2.3 Time centering
The equations (4.1.1)-(4.1.3) are solved in one-dimensional sweeps in x- and
y-direction. An x-sweep solves x-mass and x-momentum equations and conse-
quently ζ is taken from n to n+ 1/2, p from n to n+ 1 and for terms involving q
are values at n−1/2 and n+1/2 used. An y-sweep solves y-mass and y-momentum
equations and consequently ζ is taking from n+ 1/2 to n+ 1, q from n+ 1/2 to
n+ 3/2 and for terms involving p are the values at n and n+ 1 used.

Thereby is one time step achieved after one x- and one y-sweep, which solve
the three equations (4.1.1)-(4.1.3). By adding the two sweeps we achieve a time
centering of the various terms in the equations. The computational cycle is
illustrated in Figure 4.3

Figure 4.3: Time centering overview of computation cycle, [21, fig. 6.1].

We see that time centering at n + 1/2 cannot be obtained by an x-sweep only.
The y-mass has to be introduced before the centering is at n+ 1/2. In this way
we obtain a computational cycle, where the sweeps together maintain the time
centering.
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4.3 Discretization of Mass Equations
We will derive the discretization of the mass equation from (4.1.1). Due to the
time centering, described in Section 4.2.3, will both x- and y-mass equations be
discretized, hence an x-sweep together with a y-mass equation will time centre
the terms at n+ 1/2.

As shown in Table A.1 on page 130 is d constant over time in this project.
Therefore is ∂d/∂t = 0, since the derivative of a constant is zero. Thus following
mass equation of the 2D shallow water equations needs to be solved

∂ζ

∂t
+ ∂p

∂x
+ ∂q

∂y
= 0 (4.3.1)

With the ADI method, backward finite difference approximation and the desired
time centering at n + 1/2 in mind, we have the discretization of (4.3.1) in the
x-direction, for which the grid notation is illustrated in Figure 4.2.
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where ζn+1/2
j,k , pn+1

j,k and pn+1
j−1,k are the unknowns and the rest are known values

from previews time steps.
In the same manner we have the discretization of the mass equation in the
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where ζn+1
j,k , qn+3/2

j,k and qn+3/2
j,k−1 are the unknowns and the rest are known values

from previews time steps.
The water depth is updated after each sweep, based on the water surface

elevation and bathymetry, thus after an x-sweep: hn+1/2 = ζn+1/2 − d and after
an y-sweep: hn+1 = ζn+1 − d.
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4.4 Discretization of Momentum Equations
In this section we will derive the discretization of the x-momentum equation
from (4.1.2). The discretization of the y-momentum equations is performed in
a similar manner and is therefore not shown.

As shown in Table A.1 on page 130 are some of the terms in (4.1.2) neglect
in this project, thus following x-momentum equation is solved
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We will deduce the discretization by approximating the derivatives using finite
difference approximations by considering each term one at a time.

Note that all terms in (4.4.1) are time centered at n+ 1/2 and space centered
at pj,k in the staggered grid.

4.4.1 Discretization of the time derivation term
Applying forward finite difference approximation to the time derivative term,
we have
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≈
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j,k − pn
j,k

∆t (4.4.2)

4.4.2 Discretization of the convective momentum term
The difference form for the convective momentum term is based on taking one
of the p at time n and the other one at n + 1. Performing central difference
approximation using step size ∆x/2, we define

D̂0u(x) = 1
∆x

[
u

(
x+ ∆x

2

)
− u

(
x− ∆x

2

)]
Thus we obtain the discretization in the x-direction, with reference to the grid
notation illustrated in Figure 4.4, as
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Figure 4.4: Grid notation for the convective term in the x-momentum
equation, [21, fig. 4.5].
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In order to obtain an approximation to, e.g., pj+1/2 are following expression used

pj+1/2 ,
1
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Hence we can rewrite (4.4.3) to
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where pn+1
j−1,k, p

n+1
j,k and pn+1

j+1,k are the unknowns and the rest is known. Note
that (4.4.4) results in a penta-diagonal matrix system of difference equations,
since we now have three unknown flux densities and later will get two unknown
water surface elevations. Therefore, we reduce the system to a tri-diagonal form
by local substitution before applying a tri-diagonal matrix solver. A description
on how the local substitution is performed can be found in Section 6.3.1.

Furthermore are the difference form in (4.4.4) used for flow at low Froude
numbers1. The MIKE 21 HD solution procedure to maintain robustness of

1The Froude numbers is defined as the water velocity divided by the water wave propagation
velocity.
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the numerical solution for flow at high Froude numbers, is simply to introduce
a weighting scalar in (4.4.4) which is dependent of the Froude number. The
weighting scalar, which is determined for each time step for each grid point,
is applied to the convective momentum terms. Thus the numerical dissipation
is only used at grid points where flows at high Froude numbers are present.
However, this will not be implemented in our project.

4.4.3 Discretization of the cross momentum term
The cross momentum term is approximated by the same approach as the con-
vective momentum term in 4.4.2. However, there will be some variation in the
indexing, since the grid points for the flux densities p and q do not overlap.

Figure 4.5: Grid notation for the cross term in the x-momentum equa-
tion, [21, fig. 4.6].

Thus we have the discretization in the x-direction, with referring to the grid
notation illustrated in Figure 4.5, as
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ĥ1 and ĥ2 are the interior points of the water depth approximated by the arith-
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metic average of the four influence surrounding points, thus
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4.4.4 Discretization of the gravity term
By applying forward finite difference approximation to the gravity term and
approximating h as the arithmetic average, we have
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Recalling that hn
j,k = ζn

j,k − dj,k. Thus the terms have been linearized and
discretized. In this project are g = 9.81 m/s2 used.

4.4.5 Discretization of the resistance term
The bed shear stress is approximated using the Chézy formula. The Chézy
coefficient is in MIKE 21 HD determined by using the Manning coefficient.
Using this coefficient, the stress in x-direction is expressed as
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Hence when linearizing the resistance term the approximation becomes
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j+1,k−1

)
ĥ =

√√√√√√
2(

1
hn

j,k

)2

+
(

1
hn

j+1,k

)2

The Chézy coefficient, C, is determined as mentioned above from the Manning
coefficient, M , as

C = M · ĥ1/6
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4.5 Setting Coefficients for an x-sweep
In this section will the coefficients for an x-sweep be determined and the ma-
trix system, which is determined and solved in each row in the grid, will be
constructed, by using the performed discretization of the mass and momentum
equation in x-direction. Notice that the construction of the system of equations
for the y-direction is performed in a similar manner.

Performing an x-sweep results in a penta-diagonal matrix

apn+1
j−1,k + bζ

n+1/2
j,k + cpn+1

j,k = d (4.5.1)

l∗pn+1
j−1,k + a∗ζ

n+1/2
j,k + b∗pn+1

j,k + c∗ζ
n+1/2
j+1,k + r∗pn+1

j+1,k = d∗ (4.5.2)

where the coefficients a,b,c,d and l∗, a∗,b∗,c∗,r∗,d∗ are known expressions from
x-mass and x-momentum respectively.

Notice that only every other element in the penta-diagonals have values and
therefore the matrix can be efficiently reduced to a tri-diagonal matrix.

4.5.1 Coefficient for mass equation
The expressions for a,b,c and d will be derived in the following by isolating the
unknown pn+1

j−1,k, ζ
n+1/2
j,k and pn+1

j,k in the x-mass equation (4.3.2), thus

2
ζ

n+1/2
j,k − ζn

j,k

∆t + 1
2

(
pn+1

j,k − p
n+1
j−1,k

∆x +
pn

j,k − pn
j−1,k

∆x

)

+1
2

(
q

n+1/2
j,k − qn+1/2

j,k−1

∆y +
q

n−1/2
j,k − pn−1/2

j,k−1

∆y

)
= 0

By extending with 2∆x, we obtain

4∆x
∆t

(
ζ

n+1/2
j,k − ζn

j,k

)
+ pn+1

j,k − p
n+1
j−1,k + pn

j,k − pn
j−1,k

+∆x
∆y

(
q

n+1/2
j,k − qn+1/2

j,k−1 + q
n−1/2
j,k − qn−1/2

j,k−1

)
= 0

Rearranging, we obtain

−pn+1
j−1,k + 4∆x

∆t ζ
n+1/2
j,k + pn+1

j,k

= pn
j−1,k − pn

j,k −
∆x
∆y

(
q

n+1/2
j,k − qn+1/2

j,k−1 + q
n−1/2
j,k − qn−1/2

j,k−1

)
+ 4∆x

∆t ζ
n
j,k
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Thus we have the expressions for a,b,c and d as

a = −1

b = 4∆x
∆t

c = 1

d = pn
j−1,k − pn

j,k −
∆x
∆y

(
q

n+1/2
j,k − qn+1/2

j,k−1 + q
n−1/2
j,k − qn−1/2

j,k−1

)
+ 4∆x

∆t ζ
n
j,k

(4.5.3)

4.5.2 Coefficient for momentum equation
The expressions for l∗, a∗,b∗,c∗, r∗ and d∗ will be derived in the following by
inserting the discretized terms and isolating the unknown pn+1

j−1,k, ζ
n+1/2
j,k , pn+1

j,k ,
ζ

n+1/2
j+1,k and pn+1

j+1,k in the x-momentum equation (4.1.2), thus will be derived to

pn+1
j,k − pn

j,k

∆t + 1
∆x

(
pn+1

j+1,k + pn+1
j,k

2 ·
pn

j+1,k + pn
j,k

2 · 1
hn

j+1,k

−
pn+1

j,k + pn+1
j−1,k

2 ·
pn

j,k + pn
j−1,k

2 · 1
hn

j,k

)

+ 1
∆y

(
pn

j,k+1 + pn
j,k

2 v
n+1/2

j+1/2,k −
pn

j,k + pn
j,k−1

2 v
n+1/2

j+1/2,k−1

)
+g

hn
j,k + hn

j+1,k

2
ζ

n+1/2
j+1,k − ζ

n+1/2
j,k

∆x +
gpn+1

j,k

√
p̂2 + q̂2

C2ĥ2
= 0

The 1st and 4th term (time derivation term and the gravity term) are split,
while the 2nd term (convective momentum term) is factored into groups for,
respectively, pn+1

j−1,k, p
n+1
j,k and pn+1

j+1,k, thus

1
∆tp

n+1
j,k −

1
∆tp

n
j,k +

pn
j+1,k p

n
j,k

4∆xhn
j+1,k

pn+1
j+1,k

+
(
pn

j+1,k p
n
j,k

4∆xhn
j+1,k

−
pn

j,k p
n
j−1,k

4∆xhn
j,k

)
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j,k −
pn

j,k p
n
j−1,k

4∆xhn
j,k

pn+1
j−1,k

+ 1
∆y

(
pn

j,k+1 + pn
j,k

2 v
n+1/2

j+1/2,k −
pn

j,k + pn
j,k−1

2 v
n+1/2

j+1/2,k−1

)
+ g

2∆x
(
hn

j,k + hn
j+1,k

) (
ζ

n+1/2
j+1,k − ζ

n+1/2
j,k

)
+ g

√
p̂2 + q̂2

C2ĥ2
pn+1

j,k = 0
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Further factoring and rearranging the different terms, we obtain

−
pn

j,k p
n
j−1,k

4∆xhn
j,k

pn+1
j−1,k −

g

2∆x
(
hn

j,k + hn
j+1,k

)
ζ

n+1/2
j,k

+
[

1
∆t + g

√
p̂2 + q̂2

C2ĥ2
+
(
pn

j+1,k p
n
j,k

4∆xhn
j+1,k

−
pn

j,k p
n
j−1,k

4∆xhn
j,k
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pn+1

j,k

+ g

2∆x
(
hn

j,k + hn
j+1,k

)
ζ

n+1/2
j+1,k +

pn
j+1,k p

n
j,k

4∆xhn
j+1,k

pn+1
j+1,k

= 1
∆tp

n
j,k −

1
∆y

(
pn

j,k+1 + pn
j,k

2 v
n+1/2

j+1/2,k −
pn

j,k + pn
j,k−1

2 v
n+1/2

j+1/2,k−1

)

Thus we have the expressions for l∗, a∗,b∗,c∗,r∗ and d∗ as

l∗ = −
pn

j,k p
n
j−1,k

4∆xhn
j,k

a∗ = − g

2∆x
(
hn

j,k + hn
j+1,k

)
b∗ = 1

∆t + g
√
p̂2 + q̂2

C2ĥ2
+
pn

j+1,k p
n
j,k

4∆xhn
j+1,k

−
pn

j,k p
n
j−1,k

4∆xhn
j,k

c∗ = g

2∆x
(
hn

j,k + hn
j+1,k

)
r∗ =

pn
j+1,k p

n
j,k

4∆xhn
j+1,k

d∗ =
pn

j,k

∆t −
pn

j,k+1 + pn
j,k

2∆y v
n+1/2

j+1/2,k +
pn

j,k + pn
j,k−1

2∆y v
n+1/2

j+1/2,k−1

(4.5.4)
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4.5.3 Set up the penta-diagonal matrix system
The derived coefficients for mass and momentum in x-direction (see above Sec-
tion 4.5.1 and 4.5.2) are set up in following manner



b1 c1
a∗1 b∗1 c∗1 r∗1

a2 b2 c2
l∗2 a∗2 b∗2 c∗2 r∗2

a3 b3 c3
l∗3 a∗3 b∗3 c∗3 r∗3

. . . . . . . . . . . . . . .
an−1 bn−1 cn−1
l∗n−1 a∗n−1 b∗n−1 c∗n−1

an bn





ζ
n+1/2
1
pn+1

1
ζ

n+1/2
2
pn+1

2
ζ

n+1/2
3
pn+1

3
...

ζ
n+1/2
n−1
pn+1

n−1
ζ

n+1/2
n


=
[
d1 d∗1 d2 d∗2 d3 d∗3 . . . dn−1 d∗n−1 dn

]T
This system of equations is set up for each row in the grid of an x-sweep and
each column in the grid of an y-sweep. A local elimination will be performed to
reduce it from a penta- to a tri-diagonal matrix system. Hereafter, a tri-diagonal
matrix algorithm will be applied to obtain the solution of the system. How this
is done will be described in Chapter 5.



Chapter 5

Tri-diagonal Solver Algorithms

In this chapter will three different tri-diagonal matrix solver algorithms used in
this project be described. The algorithms are the Thomas algorithm, Parallel
Cyclic Reduction (PCR) and a hybrid version combining Cyclic Reduction and
Parallel Cyclic Reduction (CR-PCR) as presented in [47]. All three algorithms
will be examined from a general theoretical point of view and will later be
modified and optimized to the specific problem presented by DHI. For simplicity,
when illustrating matrices, will empty spaces represent values that are zero.
Throughout the Chapter will modified equations and coefficients be labelled
with ′, hence e′ represents a modified e.

5.1 Tri-diagonal matrix
A tri-diagonal matrix is a matrix which only has values in the sub-, main- and
super-diagonal. The tri-diagonal matrix is very interesting for this project, since
each row or column in the grid will return a system that has to be solved of the
form

Ax = d (5.1.1)
where A is a tri-diagonal matrix. Hence the system will look like

b1 c1
a2 b2 c2

a3 b3
. . .

. . . . . . cn−2
an−1 bn−1 cn−1

an bn





x1
x2
x3
...

xn−1
xn


=



d1
d2
d3
...

dn−1
dn


(5.1.2)
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The tri-diagonal matrix contains very few non-zero elements, thus it is a sparse
matrix. Therefore, one should take advantage of this special structure. For
instance, is it a good idea only to store a sparse representation of the matrix.
Normally this would involve four vectors; one for each of the diagonals and one
for the right hand side of the system. However, in this project will the vectors
be split up even more. Every other element will be stored in separate vectors,
hence we have 8 vectors of half the system size. The reason for this will be
described further in Section 6.2.

MIKE 21 HD solves a lot of tri-diagonal systems. Consequently, it is im-
portant to investigate different solver algorithms to have effective applications.
The different algorithms used in this project will be described in the following.

5.2 The Thomas Algorithm
The solution algorithm used by DHI in MIKE 21 HD is the Thomas algorithm.
It is a very efficient serial algorithm that requires 2n steps to solve a n × n
tri-diagonal system. The algorithm is serial in that sense that all computations
depends on the previous calculations. This implies that in the standard version
as implemented by DHI no computations can be performed in parallel.

The algorithm is divided into two phases; a forward elimination phase, where
all the values in the sub-diagonal are eliminated and a backwards substitution
phase, where the solution is obtained.

5.2.1 Forward elimination
In the forward elimination phase the system is updated as follows

c′i =


ci

bi
if i = 1,

ci

bi − c′i−1ai
if i = 2,3,...,n− 1

(5.2.1)

and

d′i =


di

bi
if i = 1,

di − d′i−1ai

bi − c′i−1ai
if i = 2,3,...,n

(5.2.2)

It is clear that all updates (except the initial step) are directly dependent on the
preceding calculation. Thus this part of the algorithm is serial and must take n
steps, where only a single c and d are updated in each step. In each update the
element in the sub-diagonal are eliminated and the row is divided by bi to obtain
one in the main-diagonal. This means that the updating is basically sparse row
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operations which makes the updating a lot more efficient than normal Gaussian
elimination. A half way reduced system is illustrated in (5.2.3).

1 c′1
1 c′2

. . . . . .
1 c′n−2

an−1 bn−1 cn−1
an bn





x1
x2
...

xn−2
xn−1
xn


=



d′1
d′2
...

d′n−2
dn−1
dn


(5.2.3)

It should be noticed that the denominator in (5.2.1) and (5.2.2) when updating
ci and di are identical, thus one of the divisions can be avoided. Pseudo code
for the forward elimination is given as We see that only one division is needed

Algorithm 1 : Forward elimination

1: tmp = 1
b1

2: c′1 = c1 · tmp
3: d′1 = d1 · tmp
4: for i = 2 to n do
5: tmp = 1

bi − c′i−1 · ai

6: c′i = ci · tmp
7: d′i =

(
di − d′i−1 · ai

)
· tmp

8: end for

for each step in the loop. Clearly, very few operations have to be done in each
step, which shows how simple, yet effective, the algorithm is.

5.2.2 Backwards substitution
After the forward elimination the resulting system is a matrix with only a main-
diagonal consist of ones and an super-diagonal as shown in (5.2.4).

1 c′1
1 c′2

. . . . . .
1 c′n−2

1 c′n−1
1





x1
x2
...

xn−2
xn−1
xn


=



d′1
d′2
...

d′n−2
d′n−1
d′n


(5.2.4)

It is clear that xn directly can be read, since it is equal to dn. Hereafter, it is
trivial to deduced the renaming unknowns. Formally the resulting solution is
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obtained by
xi =

{
d′n if i = n,
d′i − c′i · xi+1 if i = n− 1,n− 1...1 (5.2.5)

Which easily can be calculated by following pseudo code. Again it is clear that

Algorithm 2 : Forward elimination
1: xn = d′n
2: for i = n− 1 to 1 do
3: xi = d′i − c′i · x′i+1
4: end for

all updates (except the initial step) are directly dependent on the preceding
calculation. Therefore, the algorithm is serial and will take n steps to determine
all the unknowns. Further we see that the algorithm is very simple and very few
instructions have to be performed in each step. Hence the Thomas algorithm is
a very efficient serial algorithm performing only 2n steps and O(n) operations.
The only drawback is that it is only possible to use a single processor to solve
the system, when running the algorithm as described. This indicate that if only
a single system has to be solved this might be the best solution scheme to run on
a CPU, since only few processors are available. Unlike on a GPU, this method
is not the fastest, since there would be a lot of processors idle. Nevertheless,
a scenario there the algorithm may be preferred on a GPU would be if many
systems had to be solved simultaneously, which is the case in the project. Thus
it will be investigated further.

5.3 Parallel Cyclic Reduction
Parallel Cyclic Reduction (PCR) is another algorithm that solves tri-diagonal
systems. It does much more work than the Thomas algorithm, but the compu-
tations can be calculated in parallel. Thereby, it has fewer algorithmic steps if
enough processors are available. The algorithm is chosen, because it is found to
be the fastest of the standard algorithms presented in [47].
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In each step of the algorithm all elements in both the sub- and super-diagonal
are eliminated simultaneously. However, due to the structure of the matrix this
results in a new sub- and super-diagonal, just moved further away from the
main-diagonal as illustrated in (5.3.1).



b1 c1
a2 b2 c2

a3 b3 c3
a4 b4 c4

a5 b5 c5
a6 b6 c6

a7 b7


⇒



b′1 c′1
b′2 c′2

a′3 b′3 c′3
a′4 b′4 c′4

a′5 b′5 c′5
a′6 b′6

a′7 b′7


⇒



b′′1 c′′1
b′′2 c′′2

b′′3 c′′3
b′′4

a′′5 b′′5
a′′6 b′′6

a′′7 b′′7


⇒



b′′′1
b′′′2

b′′′3
b′′′4

b′′′5
b′′′6

b′′′7


(5.3.1)

In the first step the diagonals are moved one element away from the main-
diagonal. In the second step they are moved two elements further away. In
the third step four elements further and so on. For each step, the distance the
diagonals are moved, is doubled. Until they are completely removed from the
system. This results in log2(n) steps with n operations in each step, which can
be performed in parallel. So even though the algorithm performs much more
work than the Thomas algorithm, it can run faster given that there are enough
parallel processing power available.

The elements are updated in the following manner

a′i = −ai−s · k1 (5.3.2)
c′i = −ci+s · k2 (5.3.3)
b′i = bi − ci−s · k1 − ai+1 · k2 (5.3.4)
d′i = di − di−s · k1 − di+1 · k2 (5.3.5)

k1 =
{ 0 if i is the first equation of a system,

ai

bi−s
otherwise (5.3.6)

k2 =
{ 0 if i is the last equation of a system,

ci

bi+s
otherwise (5.3.7)

where s is the stride, which is equal to one in the first step, is doubled in each
step. As it was the case for the Thomas algorithm the updating in PCR is just
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sparse row operations, where the row above is used to eliminate a and the row
below is used to eliminate c. This means that for each row to be updated values
from two other rows are used (except from the first and last row, where only
one other row are used). The workflow of the algorithm is illustrated in Figure
5.1.

Figure 5.1: Workflow of PCR algorithm in the 8-unknown case, [47,
fig. 2]. Equations are labelled e1-e8. Equations in a yellow
rectangle form a independent system. Arrows are omitted in
step 2 for clarity.

It can be realized that updating in the described way, actually reduces the tri-
diagonal system into two new tri-diagonal systems of half the size in each step.
After the first iteration, every other element is an independent system. After
the second iteration every fourth element is an independent systems and so on,
as illustrated in Figure 5.1. This can also be illustrated by rearranging the rows
and columns of the matrix as shown in (5.3.8).

b′1 c′1
b′2 c′2 0

a′3 b′3 c′3
a′4 b′4 c′4

a′5 b′5 c′5
0 a′6 b′6

a′7 b′7


⇒



b′1 c′1
a′3 b′3 c′3 0

a′5 b′5 c′5
a′7 b′7

b′2 c′2
0 a′4 b′4 c′4

a′6 b′6


(5.3.8)

b′′1 c′′1
b′′2 c′′2

b′′3 0 c′′3
b′′4

a′′5 0 b′′5
a′′6 b′′6

a′′7 b′′7


⇒



b′′1 c′′1
a′′5 b′′5 0

b′′2 c′′2
a′′6 b′′6

b′′3 c′′3
0 a′′7 b′′7

b′′4


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This algorithm is a lot more complicated than the Thomas algorithm and as
mentioned it performs a lot more work. However, it could be more beneficial to
run on a GPU, since it allow more threads to work simultaneously.

5.4 Cyclic Reduction + Parallel Cyclic Reduc-
tion Hybrid

The last tri-diagonal matrix solver algorithm, that will be used, is a hybrid
version of Cyclic Reduction (CR) and PCR. The algorithm is chosen partly
because it is found to be the fastest algorithm presented in [47]. Furthermore it
is expected to be especially useful for this assignment, which will be discussed
further in Section 8.4.2.

CR is very similar to PCR. The only difference is that PCR produces more
smaller tri-diagonal systems and solves these simultaneously, while CR focuses
on solving only one of the resulting systems from each step. Hence the updating
is exactly the same as in PCR, but CR halves the work that has to be com-
puted in each step, thus the resulting system is of half the system size. This
implies that the algorithm needs a backwards substitution phase, where the so-
lution to the remaining systems are obtained. The updating in the backwards
substitution phase is given as

xi = d′i − a′i · xi−1 − c′i · xi+1

bi
(5.4.1)

It takes CR 2 log2(n) algorithmic steps to finish, because of the backwards sub-
stitution phase. This is twice as many as PCR, but each step requires a lot less
work; the first step takes only n/2 operations, the second step take n

4 operations
and so on, while PCR makes n operations for all the steps. The workflow of CR
is shown in Figure 5.2.
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Figure 5.2: Workflow of CR algorithm in the 8-unknown case, [47, fig. 1].
Equations are labelled e1-e8.

In Table 5.1 are the algorithmic operations and algorithmic steps for all the
algorithms shown.

Algorithm Total arithmetic operations Algorithmic steps Parallelism
TA 2n 2n 1
PCR 12n log2(n) log2(n) n
CR 17n 2 log2(n)− 1 n/2k

CR-PCR 17(n−m) + 12m log2(m) 2 log2(n)− log( m)− 1 n/2k or m

Table 5.1: Algorithmic operations and algorithmic steps for the different
algorithms where n is the system size, m is the intermidiate
system size and k represænts the step. Both n and m is as-
sumed to be a power of 2.

It is clear that the CR performs much less work than PCR but that PCR takes
fewer steps which is why it is reasonable to think that the hybrid version is a
good compromise.

In a perfect setting, where unlimited parallel processing power is available, it is
oblivious that PCR will outperform CR by a factor of 2. However, in almost
all cases, there will be some restrictions. Therefore, it is likely that it could
be beneficial to run a few CR steps to reduce the size of the system, before
switching to PCR to solve the smaller system. This approach is the so called
CR-PCR hybrid. The workflow of the hybrid algorithm can be seen in Figure
5.3.
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Figure 5.3: Workflow of CR-PCR hybrid algorithm in the 8-unknown
case, [47, fig. 4]. Equations are labelled e1-e8. Details about
PCR are omitted see Figure 5.1.

When using the hybrid approach it should be clear that every other element
in the original system only will be used for the first and the last step of the
backwards substitution in CR. Thus these elements are not modified throughout
the algorithm. This is a very attractive quality, when considering the system
that needs to be solved in this project, which will be shown later in Section
8.4.2.



Chapter 6

Sequential C Implementation

This chapter contains the outline of MIKE 21 HD and a description of our
sequential C implementation, developed to maintain same structure as MIKE 21
HD. The C implementation will be used as a comparison for the parallel CUDA C
implementations in terms of correctness and performance. Therefore, in Section
6.5 will we investigate whether the C application is representative for MIKE 21
HD programmed in the programming language FORTRAN. Additional will the
C application be verified and validated.

The entire C application with and without inflow can be found in Part II in
the Source Code Booklet.

6.1 Comprehension into MIKE 21 HD
MIKE 21 HD was first developed in the 1980s and has since then gone though
a lot of improvements. It is implemented in FORTRAN, which neither of us
has any experience with. The application is very complex, with more over
than 8,000 lines of code. Furthermore, is a lot of the performed approxima-
tions/discretization of the mathematical expressions in the code (especially on
the boundaries) based on experience rather than exact mathematical approxi-
mations. This means it was difficult to derive the discretization of the shallow
water equations, since our C implementation shall obtain an identical solution
given the same input as MIKE 21 HD. An internal scientific documentation for
MIKE 21 HD, provided by DHI, was incomprehensible for extraneous and unfor-
tunately contained mistakes and errors. For these reasons, just understanding
the existing program for not to mention implementing an identical version, was
a very extensive task. Hence a lot of the time in the project was going with
that.
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6.1.1 Outlining the MIKE 21 HD flow operate
The main tasks in MIKE 21 HD is to

• Build the tri-diagonal matrix for a given system (a row or column) in the
grid.

• Solve the system and return the solution.
When referring to a system is it either one row or column in the grid as illustrated
in Figure 6.1.

X-sweep Y-sweep

System 1
System 2
System 3

System 0

System
 0

System
 1

System
 3

System
 2

Inner point

Boundary point

Figure 6.1: Explansion of a system in the grid.

Hence a lot of tri-diagonal systems need to be build and solved for each time
step. Notice that for a sweep, are each systems independent of each other.
Further are the calculations of the coefficients independent of each other when
building the tri-diagonal matrix. However, solving each element in the system
depend on the solution of the other elements.

As illustrated in Figure 6.1 are all points/cells in the grid not equal. Thus
inner points refer to water points and outer-points/boundary point refer to
points in the boundary which can either be a land point of contain inflow. The
handling of these special cells is described in Section 6.4.

6.2 Data Structures
In order to run the application is it obviously necessary to have access to the ζ,
p, q and bathymetry for all grid points to different time steps. In MIKE 21 HD
are these values stored in 2-dimensional arrays, but in our C application will we
store them in a linear memory structure. Since we still want to access the grid
based on coordinates are a simple 2D↔ 1D mapping used as shown in (6.2.1).

(x,y)→ idx : idx = x+ y · n (6.2.1)

where n is the dimension of the grid. Notice that the mapping is chosen based
on memory access in C/C++ style (row-wise).
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MIKE 21 HD uses a unique way of storing the tri-diagonal system. It is
common that a tri-diagonal system is represented as only four vectors; one to
store each of the diagonals and one for the right hand side. However, DHI
have chosen a different approach, where the mass and momentum equations are
stored in separated vectors. This means they store the system in 8 vectors each
of half the system size. The reason for this lies in the building of the system,
since mass and momentum equations is set up in very different ways. Thus we
have the vectors: ama, amo, bma, bmo, cma, cmo, dma and dmo which stores the
tri-diagonal system as shown in (6.2.2).

bma1 cma1
amo1 bmo1 cmo1

ama2 bma2 cma2
amo2 bmo2 cmo2

. . . . . . . . .
aman−1 bman−1 cman−1

amon−1 bmon−1 cmon−1
aman bman


x

=
[
dma1, dmo1, dma2, dmo2, · · · , dman−1, dmon−1, dman

]T
(6.2.2)

Thereby are every other element in the diagonals stored in the vectors labelled
ma (mass equations) and the other elements are stored in the vectors labelled
mo (momentum equations). From the derivation of the terms, we have that ama,
bma and cma are all defined as constant independent of the sweep.

Notice that for each row or column the resulting tri-diagonal system are
build and solved before the next system is build. This means that it is only
necessary to allocate memory for a single tri-diagonal system and reuse those
vectors throughout the application. Because we want our implementation to
relate to MIKE 21 HD and since this seem like a fairly efficient data structure
will it be implemented in exactly the same manner in the C implementation.
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6.3 Development of the Sequential C
Implementation

Implementing the entire MIKE 21 HD would be an impossible task given the
time frame of this project. Thus the programs developed in this project only
contain the core functionalities of MIKE 21 HD. In the best possible manner
we have maintained the same structure, call tree and chosen data structures
to insure the most identical code compared to MIKE 21 HD. The reason it is
interesting to implement a sequential version of MIKE 21 HD in C, is to gain a
fair comparison and to verify the correctness of the parallel CUDA C implemen-
tations. This means that it will be used to verify the correctness of the CUDA
implementation and to indicate how much time the CUDA implementation takes
compared to a serial version.

6.3.1 Implementation details
The implemented C application is divided into subroutines to maintain the same
workflow as MIKE 21 HD, but also to obtain a robust and good code. The
workflow of the program is illustrated in Figure 6.2. The y-sweep is performed
in exactly same manner as the x-sweep (only transposed), thus it will not be
described further.

x-sweep

One time step

y-sweep

SetXMA

SetXMO

LcElim

TDMASolver

Loop column

Loop row

Subroutines in an x-sweep

Figure 6.2: Workflow of the C application.
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The application is called by the routine ShallowWater_gold.c. Here are first
the vectors ama, amo, bma, bmo, cma, cmo, dma, dmo, rmo, lmo and x allocated to
contain the mass and momentum equations for the penta-diagonal matrix and
to store the determined solution. The x- and y-sweeps are called through the
subroutines xsweepGold and ysweepGold inside a for-loop, which run over the
specified number of time steps.

The x-sweep contain a nested for-loop; the outer loop run through all rows
and the inner loop run through all columns in the system. In the inner loop are
the subroutines SetXMAGold and SetXMOGold called, which sets up the mass
and momentum equations, respectively. The coefficients for these equations can
be seen in Section 4.5 in (4.5.3) and (4.5.4).

When all mass and momentum equations for one row is set up, i.e., when
the inner loop terminates, the subroutine LcElimGold is executed. LcElimGold
reduces the penta-diagonal system into a tri-diagonal system. This is done by
running a for-loop eliminating all coefficient in the sub-diagonal and then an-
other loop eliminating the super-diagonal. The eliminations are performed by
sparse row operations. After this are the TDMASolverGold subroutine called.
This routine uses the Thomas algorithm to solve the tri-diagonal system, as
described in Section 5.2. This is done by first running a for-loop, which elim-
inates the sub-diagonal and then a for-loop that performs a back-substitution
and stores the solution in the vector x. At last the solution is written from x
to ζ and p in a for-loop. When all rows in the system have been handled this
way is the outer loop terminated and an x-sweep is performed on the system.

An pseudo code is provided to give further overview of the program.

Algorithm 3 : Fluid Simulation
Input bathymetry and initial water surface elevation and flux in x- and y-
direction.
1: for i = 1 to number of time steps do
2: for k = 1 to number of rows do
3: for j = 1 to number of columns do
4: Build the penta-diagonal system by set up the mass and momentum

equations for the kth row.
5: end for
6: Reduce the penta-diagonal matrix into a tri-diagnoal matrix by local

elimination.
7: Solve the tri-diagonal matrix system.
8: Return the calculated solution to the water surface elevation, ζn+1/2,

and flux densities in x-direction, pn+1.
9: end for
10: . . .
11: Run an y-sweep, similar to the above x-sweep.
12: end for



6.4 Handling of Boundary Conditions 53

6.3.2 Complexity of C application
As described, a sweep contain an outer loop with 6 loops inside, which runs over
all rows/columns. The two sweeps are called for each time step, thus we end up
with a complexity (disregarding any of the actual work done in the loops) of

T (n,t) = t · 2 · n · 6 · n = 12 · t · n2

= O
(
t · n2)

Hence the complexity is quadratic in terms of the system size n and linear in
the number of time steps t. Therefore, solving a large system over many time
steps can quickly become a very extensive task.

6.4 Handling of Boundary Conditions
We have first developed a simple version of the program. It is simple in the sense
that it can only calculate grids with coast around the boundary and where all
inner grid points are water, like a swimming pool. Obviously, the grid points
near the boundary has to be handled differently than grid points surrounded
entirely by water. This implies the need of boundary conditions.

MIKE 21 HD handles boundary conditions by having several 2-dimensional
arrays, where the element value represent what the surrounding grid points
are. Thereby they can get the boundary value and though some if-statements
change the parameter and expression as desired. A simple example is given in
Listing 6.1, where the fraction of code handles west end of chain, specially if it
is near a land point.

Listing 6.1: Example of how MIKE 21 HD handle boundary conditions
with land.

1 ...
2

3 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 c −− One−point wide chain
5 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 c treated above (east end of chain !!)
7

8 if (side.ne.1) call ehndle(−18,jfst,k,area)
9

10 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 c −− Get hand on the boundary value
12 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 bndv = bndval(no,k,2)
14

15 . . .
16

17 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 c −− Update boundary at full time step
19 c −− for yfab
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20 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 bndval(no,k,1) = bndval(no,k,1) − xbnd
22

23 ama(jfst) = 0.0
24 bma(jfst) = 1.0
25 cma(jfst) = 0.0
26 dma(jfst) = bndv
27 bmo(jfst) = bmo(jfst) + lmo(jfst)
28 lmo(jfst) = 0.
29 c west end finished
30 return
31

32 elseif (irr .eq. 7) then
33 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 c −− Open flux boundary
35 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 if (no .eq. 0) call ehndle(−18,jfst,k,area)
37 amo(jfst) = 0.0
38 bmo(jfst) = 1.0
39 cmo(jfst) = 0.0
40 dmo(jfst) = bndval(no,k,1)
41 lmo(jfst) = 0.0
42 rmo(jfst) = 0.0
43 c dummy mass.
44 ama(jfst) = 0.0
45 bma(jfst) = 1.0
46 cma(jfst) = 0.0
47 dma(jfst) = 0.0
48 else
49 if (no .ne. 0) call ehndle(−13,jfst,k,area)
50 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 c −− If we arrive here we have an west boundary
52 c −− problem.
53 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 endif
55 c else
56 c open boundary in subarea:
57 c call ehndle(−18,jfst,k,area)
58 endif
59

60 . . .

The way that we handle boundary conditions is also by applying if-statements
that makes sure that flux and water levels is never read from the boundary. So
when calculating the point (j,k) and ζj,k+1 is in the boundary then the value
should not be used. DHI have instead arbitrarily chosen to use the value in ζj,k.
This is illustrated in Listing 6.2, where bL is the bathymetry which is equal to
lh if the element is a land point.
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Listing 6.2: Example of how the C application handles boundary condi-
tion with land.

1 f1 = (qNp05[j+km1] + qNp05[jp1+km1]);
2 if (bL[j+km1]==lh)
3 {
4 f1 /= (zetaN[jk] + zetaN[jp1+nY] + zetaN[jk] + zetaN[jp1+km1]
5 − bL[jk] − bL[jp1+nY] − bL[jk] − bL[jp1+km1]);
6 }
7 else if (bL[jp1+km1]==lh)
8 {
9 f1 /= (zetaN[jk] + zetaN[jp1+nY] + zetaN[j+km1] + zetaN[jp1+nY]

10 − bL[jk] − bL[jp1+nY] − bL[j+km1] − bL[jp1+nY]);
11 }
12 else
13 {
14 f1 /= (zetaN[jk] + zetaN[jp1+nY] + zetaN[j+km1] + zetaN[jp1+km1]
15 − bL[jk] − bL[jp1+nY] − bL[j+km1] − bL[jp1+km1]);
16 }

The implementation, where the fraction of code is from, can be seen in Section
5.4 in the Source Code Booklet.

The complexity of the program has been extended further to allow inflow from
the boundary. This add more conditions into the program, since a boundary
with inflow again should be handled specially. This is because the boundary is
not considered to change in the same way as the inner points in the grid.

A simple example of how MIKE 21 HD handles this, is given in Listing
6.3, which are continuation code from Listing 6.1. We see, as mention, how
they take care of the boundary value by using the 2-dimensional array, thus the
integer value represent both what kind of element it is and what the surrounding
elements are.

Listing 6.3: Example of how MIKE 21 HD handles boundary condition
with flux.

1 ...
2

3 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 c −− One−point wide chain
5 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 c treated above (east end of chain !!)
7

8 if (side.ne.1) call ehndle(−18,jfst,k,area)
9

10 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 c −− Get hand on the boundary value
12 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 bndv = bndval(no,k,2)
14

15 . . .
16

17 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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18 c −− Update boundary at full time step
19 c −− for yfab
20 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 bndval(no,k,1) = bndval(no,k,1) − xbnd
22

23 ama(jfst) = 0.0
24 bma(jfst) = 1.0
25 cma(jfst) = 0.0
26 dma(jfst) = bndv
27 bmo(jfst) = bmo(jfst) + lmo(jfst)
28 lmo(jfst) = 0.
29 c west end finished
30 return
31

32 elseif (irr .eq. 7) then
33 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 c −− Open flux boundary
35 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 if (no .eq. 0) call ehndle(−18,jfst,k,area)
37 amo(jfst) = 0.0
38 bmo(jfst) = 1.0
39 cmo(jfst) = 0.0
40 dmo(jfst) = bndval(no,k,1)
41 lmo(jfst) = 0.0
42 rmo(jfst) = 0.0
43 c dummy mass.
44 ama(jfst) = 0.0
45 bma(jfst) = 1.0
46 cma(jfst) = 0.0
47 dma(jfst) = 0.0
48 else
49 if (no .ne. 0) call ehndle(−13,jfst,k,area)
50 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 c −− If we arrive here we have an west boundary
52 c −− problem.
53 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 endif
55 c else
56 c open boundary in subarea:
57 c call ehndle(−18,jfst,k,area)
58 endif
59

60 . . .

We handle the inflow in the same manner as before, thus we extended the
program with if-statements, which handle the special conditions. An example
is given in Listing 6.4, which illustrate the way we handle inflow from west.
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Listing 6.4: Example of how C application handels boundary condition
with flux.

1 . . .
2

3 if (k == 0 || k == sizeY+1) // calculate on bnd, in case of water
level inflow

4 {
5 for(j=1; j<sizeX; j++)
6 {
7 ama[j] = 0.0;
8 bma[j] = 1.0;
9 cma[j] = 0.0;

10

11 if (bL[j+nY] < lh)
12 {
13 dma[j] = wlbnd;
14 } else {
15 dma[j] = zetaN[j+nY];
16 }
17 amo[j] = 0.0;
18 bmo[j] = 1.0;
19 cmo[j] = 0.0;
20 dmo[j] = 0.0;
21 }
22 ama[j] = 0.0;
23 bma[j] = 1.0;
24 cma[j] = 0.0;
25

26 if (bL[j+nY] < lh)
27 {
28 dma[j] = wlbnd;
29 } else {
30 dma[j] = zetaN[j+nY];
31 }
32 }
33 else // calculate on "water grid"
34 {
35 if (bL[nY] < lh) // if inflow from west
36 {
37 bcs = 1;
38 ama[0] = 0.0;
39 bma[0] = 1.0;
40 cma[0] = 0.0;
41 dma[0] = wlbnd;
42

43 // Set x momentum equations.
44 }
45

46 . . .

The implementation, where the fraction of code is from, can be seen in Section
6.2 in the Source Code Booklet.
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6.5 Investigating Performance of MIKE 21 HD
and C Application

In the following will MIKE 21 HD and the developed C application be profiled to
investigate performance bottlenecks. This is done to check if the C application
is representative for MIKE 21 HD. The profiling and performance comparison
are performed on DHIs system1.

6.5.1 Profiling MIKE 21 HD
It is interesting to investigate what the performance bottlenecks of MIKE 21
HD are to better understand the program and get an idea of what might become
problem later on. For this reason has a profiling of MIKE 21 HD been performed
by DHI for a 512×512 grid over 1000 time steps. It is done using the AQtime
profiler and a screen shot from the result can be seen in Figure 6.3.

Figure 6.3: Profiling using AQtime of MIKE 21 HD on a 512×512 grid
with 1000 time steps performed by DHI. Specification of the
test system is given in Appendix B Table B.3 page 132.

From the screen shot is two things immediately clear; the y-sweep is twice as slow
as the x-sweep and building the system takes up ∼84% of the total runtime.
Solving the system takes approximately the same time for both sweeps, but

1System specification is available in Appendix B Table B.3 page 132
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setting up the systems is a lot slower for the y-sweep. Since the x- and y-
sweep must be assumed to perform roughly the same work is it likely that the
y-sweep does not utilize the cache lines properly when accessing elements in the
memory. It turns out that we will see a similar phenomenon in our parallel
CUDA C implmentation, as described in section Section 8.2.2 and 8.3.1.

6.5.2 Profiling the C implementation
For a comparison to the MIKE 21 HD profiling have we also profiled our C
implementation. A screen shot can be seen in Figure 6.4

Figure 6.4: Profiling using AQtime Standard vers. 7 of the C implemen-
tation on a 512×512 grid with 1000 time steps. Specification
of the test system is given in Appendix B Table B.3 page 132.

From our implementation, we see that the two sweeps take roughly the same
amount of time which differs from MIKE 21 HD. However, building the system
like MIKE 21 HD by far take the longest, with ∼70% of the compute time.

6.5.3 Performance comparison of MIKE 21 HD and C
implementation

It is important that our C implementation is representative for MIKE 21 HD,
since we later want to compare it to the time of our parallel CUDA C imple-
mentations. MIKE 21 HD is a lot more complex than our sequential version,
so from that it would seems that our version would be faster. On the other
hand MIKE 21 HD has been optimized a lot more. To make sure that our C
implementation is representative for MIKE 21 HD, is a comparison between the
runtime for different system sizes performed, see Table 6.1.
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System size 128×128 256×256 512×512
MIKE 21 HD 1.030 s 4.290 s 17.784 s
C implementation 1.060 s 4.352 s 17.580 s

Table 6.1: Execution time of MIKE 21 HD and the C implementation for
different system sizes over 100 time steps. Specification of the
test system is given in Appendix B Table B.3 page 132.

From this it is clear that they perform very similar. In fact, they are almost
identical. As expected, the time scales whit O(n2) of system size.

Thus our implemented sequential C implementation is representative for
MIKE 21 HD and the obtained performance results will be a realistic measure
for what DHI can expect to achieve.

6.6 Verification
It is expected that the solution obtained by the numerical approximation will
converge to the analytical solution when decreasing the step size, ∆x. Thus the
accuracy will increase for lowering the step size. In fact, from the derivations
described in Section 4.2, it is expected that the truncation errors embedded in
the finite difference approximation should be described by

‖ε‖∞ ≤ O
(
∆x2) (6.6.1)

where ε is the error of the approximation. Hence the discretization approxi-
mation has 2nd order of accuracy. In order to verify whether it holds for the
application, can we compare the obtained results with an analytical solution to
the equations

∂ζ

∂t
+ h · ∂p

∂x
=0 (6.6.2)

∂p

∂t
+ g · ∂ζ

∂x
=0 (6.6.3)

given as

ζ(x,t) = H

2 · cos(k · x) · cos(ω · t) (6.6.4)

p(x,t) = H

2 ·
ω

k · h
· sin(k · x) · sin(ω · t) (6.6.5)

where the water depth is assumed constant to h = 0.05, the wave height and
length is H = 0.01 and L = 8, respectively. Thus the wave amplitude is H/2
and the wave has h/L = 0.00625 and wave number k = 2π/L.

The verification cannot cover all the terms in the numerical approximation,
since the solution is one-dimensional and does not cover flat bottom. For this
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reason, when testing how the error converges, will a simpler and only one-
dimensional numerical approximation be used. In Figure 6.5 is the truncations
error as function of discretization parameter ∆x for a small ∆t shown
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Figure 6.5: Convergence test. The truncation error follow 2nd order of
convergent.

As expected, we see that the truncation error decreases as step size, ∆x, de-
crease. The numerical model is convergent when ∆x / 10−1.18 and hereafter
follow the line for second order convergence perfectly. Thereby the truncation
error behave as expected.

6.7 Validation
For validation, we make use of the results return by MIKE 21 HD, since DHI
have required that we develop a parallel solution scheme which obtain the same
result as MIKE 21 HD. However, as mention, MIKE 21 HD is an old and very
worked through application which is why we can assume that it simulates the
”real” world correctly.

The validation is applied throughout the development to insure that the
sequential C implementation always calculate the same solution as MIKE 21
HD. The validation is performed by comparing all elements in both water sur-
face elevation, ζ, and flux density in both direction, p and q by taking ‖e‖∞,
where e is the error vector for the difference between the solution obtained by
MIKE 21 HDand the one from the C implementation [16, sec. A.3]. Thus the C
implementation return the same results as MIKE 21 HD given the same input.



6.7 Validation 62

Figure 6.6-6.9 show a simulation of a wave started at the center of the grid. The
simulation is run with dx = 10, dy = 10 and dt = 2.
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Figure 6.6: Illustration of the initial wave and how it has spread after 10
time steps.

Figure 6.7: Illustration of the wave after 20 and 30 time steps respectively.

Figure 6.8: Illustration of the wave after 40 and 50 time steps respectively.

Figure 6.9: Illustration of the wave after 60 and 70 time steps respectively.
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It is clear to see that the simulations behave as expected and since we are have
landboundaries all around the grid are the waves rebound on the edge and return
back towards the center.



Chapter 7
Parallel CUDA C
Implementation

In this chapter there will be given an overview of the parallel CUDA C im-
plementations. This involves an overview of the developed parallel approaches,
the optimization strategy and an investigating of the limiting factors for the
applications. Additional will the test environment be outlined and it will be
explained how the massive parallel applications are validated.

The entire CUDA C application can be found in Part I in the Source Code
Booklet.

It is important for DHI that the parallel CUDA C implementation bears some
resemblance to the original C implementation and thereby also to MIKE 21 HD.
This is because it makes it easier for DHI to incorporate the parallel CUDA C
application into the existing MIKE 21 HD, cf. the original project description
provided by DHI (see Appendix C page 133). For this reason the originally
used workflow of the C application and the way of handling the data structures
will be used in the CUDA implementation too. Thus the 10 vectors (ama, amo,
bma, bmo, cma, cmo, dma, dmo, lmo and rmo) will be used to store the penta-
diagonal matrix system. See Figure 6.2 for illustration of workflow at which
some for-loops will be removed in the parallel CUDA C applications.

The application, like MIKE 21 HD, will be divided into the subroutines
(device functions) SetMA, SetMO, LcElim and TDMASolver, which sets up mass-
and momentum equations, reduce the penta-diagonal to a tri-diagonal matrix
system and in the end solve the system and store the obtained results. However,
since the purpose of this project is to investigate performance bottlenecks and
optimize these to obtain a faster parallel solution scheme, are the application
divided into 4 kernel calls per simulation time step. This is done to make it
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easier to determine where the bottlenecks are located. The 4 kernels are called
xBuild, xSolve, yBuild and ySolve, where x and y determines whether it is
an x- or an y-sweep. The Build kernels contain the device functions SetMA

and SetMO, which sets up the mass and momentum equations. The Solve

kernels contain the device functions LcElim and TDMASolver, which reduce the
penta-diagonal matrix system into a tri-diagonal matrix system in preparation
for subsequently solving the system of equations.

7.1 Parallel Approaches
In Section 6.1, we have that each tri-diagonal system can be build and solved
independently. Furthermore, can all coefficients for a given system can be calcu-
lated independently. This gives two different levels of parallelism to the system.
The second one clearly has more parallelism, but since solving each equation
in the system cannot be done independently, this might not be the best ap-
proach. This motivates to investigate how they both perform. Therefore, we
have formulated two parallel approaches each with their pros and cons. Thus the
disadvantage of one approach is the advantage of the other. The two approaches
are referred to as S1 and S2.

S1 uses one thread to build and solve the penta/tri-diagonal system (one
thread per line in the grid).
S2 uses one block to build and solve one penta/tri-diagonal system. Each
block contains as many threads as there are rows in the grid (one thread
for each cell in the grid).

Thus in the S1 method each thread does a lot more work compared to S2

, where each thread only calculate a single element in the grid and thereby
more parallelism is added. Throughout the report the described convention will
be used when referring to the different versions. For instance; S12 stands for
2nd version of solution approach S1 and SetXMOS23 stands for 3th version of
calculating x-momentum in solution approach S2.

Both approaches will map all data to linear memory and use their
threadIdx.x to index what elements should be loaded. Hence the x-sweep in
S1 will index the rows in the grid by

k = threadIdx.x + blockIdx.x * blockDim.x + 1;

and run though the columns in a for-loop. S2 on the other hand will index the
rows and columns by

k = blockIdx.x + 1; // row
j = threadIdx.x + 1; // column

Notice that all arrays needed for the applications will be stored and kept on the
GPU to reduce the amount of the expensive memory transfers between the host
and device.
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7.2 Optimization Strategy
For each parallel approach we have a naive implementation. This is done simply
to have an initial version that calculates the correct solution. Furthermore it
is used to investigate bottlenecks, such that these can be optimize and thereby
utilize the available resources. The optimization is done in steps following the
prioritized list in Section 3.13.

Prior to the optimization steps, we will use the NVIDIA Visual Profiler v4.1
tool to identify current performance bottlenecks. The profiler provide metrics
and events, that will be used to investigate how the different kernels utilize the
hardware and how they perform compared to each other. In this manner we
can verify that a optimization step has achieved what was desired.

It shall be mentioned, that the NVIDIA Visual Profiler can report some
impracticable memory throughputs. The profiler counts all transfers of the
application, i.e., including all instructions and resulting overhead in perform-
ing useful operations and not transfer requested by the kernel, which are the
minimum and necessary data transfer dictated by the algorithms. Therefore,
we calculate our own effective bandwidth using (3.12.3) and compare this with
the theoretical bandwidth to get a measurement of utilization of the available
resources on the GPU.

7.2.1 Compute vs. memory bound
When optimizing is it always good to have some knowledge about which per-
formance bounds the application have. This also makes it easier to measure
how well a kernel performs on the GPU. There is usually distinguished between
a compute or memory bound kernel. A compute bounded kernel is limited by
the arithmetic and the instructions that has to be performed and a memory
bounded kernel, by the memory that has to be transferred and therefore the
memory bandwidth of the GPU.

To identify whether the application is compute or memory bound will we first
investigate the source code. Since the same calculations is conducted in xBuild

and yBuild and likewise in xSolve and ySolve are these for know considered
to be identical. The build device function comprise of good combination of
many memory load/stores and heavy arithmetic instruction, especially there
are some very expensive function calls like power and square root functions and
some if-statements. The solve device function comprise of nearly no arithmetic
instruction, but a lot of memory load/stores. This indicate that building of
the system is both memory and compute bounded. In fact, there are some
places where there are poor memory/math overlap, which indicate that latency
can affect performance. In contrast, solving the system seems to be memory
bounded, and therefore limited by the memory bandwidth.



7.3 Test Environment 68

However, one could also determine the instruction per byte ratio to identify,
whether the two kernels are compute or memory bounded. The perfect fp32
instructions per byte ratio is defined by the theoretical specifications (see Section
7.3), thus the used GPU, NVIDIA GeForce GTX 590, have ∼ 1.22 : 1 with ECC
off. By using NVIDIA Visual Profiler we profile the two kernels to get the desired
events in Table 7.1

Method Build Solve
Instruction issued 312,426,738 26,797,120
Global store transaction 1,580,540 9,958,464
L1 global load miss 135,874,672 4,586,088

Table 7.1: Profiling the naive application S1 in single-precision to calcu-
late the instruction to byte ratio.

Using (3.12.1), we obtain for building the system ∼ 0.57 : 1 and for solving
the system ∼ 0.46 : 1. Hence both kernels are memory bounded. As expected,
solving the system is more memory bounded than building the system. Never-
theless, one shall keep in mind, that the source code for building the system use
some very heavyweight function and have a poor memory/math overlap.

Consequently, in order to measure the effectiveness of the application, is the
appropriate performance metric the effective memory bandwidth to investigate
how well the kernels utilize the GPU.

7.3 Test Environment
The optimization and test of the parallel CUDA C applications are performed on
the CUDA computing graphic architecture Fermi, with compute capability 2.0.
The GPU is an NVIDIA GeForce GTX 590 (2x GF110 chip), with 1,536 MB
of GDDR5 memory connected width 384-bit interface. The GPU is connected
to the host via PCI-E 2.0 x16. The host comprising an Intel Xeon E5620 (12
MB cache, 2.40 GHz) CPU, with 12 GB memory and a maximum memory
bandwidth of 25.6 GB/s. The serial C implementation is executed on one core.

The test system runs Ubuntu 10.04.4 LTS and the CUDA driver/runtime
version is 4.1. For further details on the used system see Appendix B page 131.

The theoretical peak memory bandwidth of the device is 163.87 GB/s, since we
have from (3.12.2)

Theoretical bandwidth = 1707 · 106 · (384/8) · 2
109 = 163.87 GB/s

The theoretical performance is 1244.15 Gflops in single-precision. NVIDIA have
not published how GeForce GTX 590 perform in double-precision. Therefore,
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we make use of the benchmark result from [3], which have tested the graphic
card together with others for general purpose processing in both single- and
double-precision, to find how the floating-point performance scales with single-
and double-precision. We see that it scales with ∼ 6.2x. To verify the scaling
for the peak computation rate in single- and double-precision, is a simple source
code used, which executes a large number of multiply-add operations (FMA),
(the source code is attached in Appendix E). The results are shown in Table 7.2
for two different GPUs.

GPU Single-precision Double-precision Ratio
GeForce GTX 590 900.79 GFlops 141.46 GFlops 6.4x
Tesla C2070 858.53 GFlops 407.54 GFlops 2.1x

Table 7.2: Measurement the ratio of peak performance between single-
and double-precision on GeForce GTX 590 and Tesla C2070.

We see that we nearly obtain the same scaling of performance from single- to
double-precision as [3]. The reason why we execute the test on the Tesla C2070 is
to verify our test. NVIDIA provide Tesla C2070 peak floating point performance
in both single- and double-precision; cf. NVIDIA [25], it perform 1030 GFlops
in single-precision and 515 GFlops in double-precision. Hence it scales with 2x,
as verified by our small test.

This means that the theoretical performance for double-precision is 1244.2/6.2 =
200.68 GFlops, which will be used to compare with the achieved Gflops in the
applications.

7.3.1 Test configurations
All experiments are performed for the same set of initial test cases and same
parameters: ∆x = ∆y = 100 [m], ∆t = 20 [s], the acceleration due to gravity
g = 9.81 [m/s2] and the Manning coefficient M = 32 which are unit less.
Furthermore, are all representations of arrays, performed computations and used
math functions performed in double-precision. This and the used parameters
are desired by DHI.

For method S1 are all tests performed on a 2048 × 2048 system with 64
threads per block, thus there are 2 blocks on each multiprocessor. For method
S2 are all tests performed on a 256 × 256 system with 256 threads per block,
thus there are 16 blocks available for each multiprocessor. In both test systems
is the simulations run over 100 time steps. These execution configurations are
chosen such that a minimum blocks on each multiprocessor on the GPU to, i.a.,
insure as robust result from NVIDIA Visual Profiler as possible.

Notice that the outlined system size is the number of inner grid points in
x- and y-direction. Thus each line in the system is 2 grid points larger due to
keeping additional cells to impose boundary conditions. We have chosen that
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the inner grid points shall be a multiple of 32, such that the number of threads
is a multiple of 32. However, this can in some cases give problems with load
and store effectiveness of global memory.

7.3.2 Time measuring
In all experiments CUDA event API has been used to measure the execution
time. The two implemented functions startTiming() and stopTiming() are
attached in Section 4.2 in the Source Code Booklet.

CUDA events has a resolution of approximately half a microsecond. The
timings are measured on the GPU clock, such that the resolution is operation
system independent [32, sec. 5.1.2].

7.3.3 Execution safety
Throughout the application are checks for CUDA errors performed to catch er-
rors close to the possible error in the source code. All CUDA Runtime API
returns an error code of type cudaError_t;, thus error handling is perform
on every CUDA API and kernel calls. One can use cutil.h, but this do
not follow with CUDA Toolkit. Therefore, we have implemented the functions
checkCudaErrors and getLastCudaError, which will output a proper CUDA
error string. The two implemented functions are attached in Section 4.2 in the
Source Code Booklet.

7.3.4 Validation
The correctness of the serial C implementation has been validate by comparison
to MIKE 21 HD. Therefore, the C implementation will be used to validate the
results returned from the GPU. All elements in both water surface elevation,
ζ, and flux density in both direction, p and q, will be compared to the results
of the C implementation. This is done by the ‖·‖∞ norm of the error vector;
e = a− â, where a is the obtained solution from the GPU and â is the solution
from the CPU [16, sec. A.3],

‖e‖∞ = max
1≤i≤n

|ei|

where n is number of elements in the grid. If the difference between the results is
less than ε = 10−12 will we consider them as identical and consequently we know
that the parallel CUDA C implementation is correct. Thus we know that every
component of the error vector between the parallel CUDA and the sequential C
application cannot be greater than the ‖·‖∞.



Chapter 8

CUDA C Optimization

In this chapter will different massive parallel CUDA C implementation of MIKE
21 HD be described. The optimization will be an iterative process of implement-
ing the application, investigating bottlenecks, optimize the applications and
evaluating the results. The performed optimization steps will be documented
by using theory of parallel programming on GPGPU, especially in CUDA, and
by using the tools provided by NVIDIA. Optimization of method 1 and 2 is
given in Section 8.2 and 8.3, respectively. Additional, a brief study on the
performance of data transfer between host and device will be given in Section
8.1. All tests are performed with the test configurations described in 7.3.1 and
double-precision is used for all applications.

8.1 Data Transfer Between Host and Device
Before we start to optimize the application will the cost of data transfer from
the host to device and back again be briefly investigated. This is because if
the time of data transfer is significant compared to the execution time for the
application it might be useless to implement a parallel solution scheme to the
GPGPU.

As described in Section 3.1 we know that host/device transfers are expen-
sive, thus minimizing data transfers and to keep transferred data on the device
is important. For this reason will all needed arrays, when simulation, be trans-
ferred and stored on the GPU. In Table 8.1, the data transfer of all needed
arrays from host to device and back again is shown, respectively, for pageable
and pinned memory host allocation.
For paged memory allocation the PCI-E 2.0 x16 bus speed is utilized, since we
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Method HtoD DtoH

Paged Duration (ms) 41.968 51.149
Avg. throughput (GB/s) 5.22 1.84

Pinned Duration (ms) 38.68 15.417
Avg. throughput (GB/s) 5.66 6.09

Table 8.1: Runtime for the combined data transfer for host-device and
devise-host for respectively pageable and pinned memory allo-
cation.

peak with same bandwidth as bandwidthTest1, but device to host only utilized
44%. For pinned memory allocation we utilize the effective bandwidth for both
host to device and device to host, cf. bandwidthTest. In fact, we obtain a 3.31x
better bandwidth for the device to host transfer only by using pinned memory
instead of paged memory allocation. Thus we exploit the available resources for
data transfer between host and device. However, the application is not limited
by the PCI-E bus speed, because at a normal simulation the number of time step
will be 100-100,000. Thus the duration time for data transfer between host and
device is insignificant compared to the application time, see Figure 8.1. Thus
we know with experience from the following sections that data transfer between
host and device will not be an important bottleneck for the application, at least
as long only one GPU can be utilized.

1bandwidthTest is provided by NVIDIA CUDA C/C++ SDK Code Samples, see Ap-
pendix D on page 135.
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8.2 Method 1
All source code used for method 1 can be found in Section 2 in the Source Code
Booklet.

8.2.1 Naive
In the first naive approach is mainly the correctness of the program in focus.
However, we insure that access in global memory, when we load and store the
10 vectors; ama, amo, bma, bmo, cma, cmo, dma, dmo, lmo and rmo is performed
coalesced to optimize memory bandwidth.

The execution time for an x- and y-sweep is illustrated in Figure 8.1
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Figure 8.1: Execution time overview for method S1N.

The total GPU runtime is clearly dominated by the xBuild kernel, in fact the
kernel is 4.3x slower than yBuild although same calculation is performed. The
is also xSolve slower than the ySolve. Already after the naive implementation
we have 18.6x speedup compared to the C implementation over 100 time steps
(see Table 8.4).

In the following will the needed memory as function of problem size for S1N be
determine. Assume the same number of grid points in x- and y-direction and
let n be the number of inner grid points, thus we have

3(n+ 2)2 (8.2.1a)
4(n+ 2)(n+ 1) (8.2.1b)
10n(n+ 2) + n(2n+ 3) (8.2.1c)
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The naive approach make use of two surface elevation for different time and
a bathymetry (8.2.1a), four flux densities is needed for two different time in
both x- and y-direction (8.2.1b). Further are the 10 vectors for the mass and
momentum equations and the solution vector, x, needed (8.2.1c). Hence

NS1N = 3(n+ 2)2 + 4(n+ 2)(n+ 1) + 10n(n+ 2) + n(2n+ 3) (8.2.2)
= 19n2 + 47n+ 20 (8.2.3)

Thus the memory use scale asymptotically with n2 under the above assumption.
The maximum number of elements that are achievable for the naive approach
on the NVIDIA GTX 590 with 1,536 MB of total mount of global memory is
then given by (

19n2 + 47n+ 20
)
· sizeof(type) = 1,536 MB (8.2.4)

where type is ether double or float size 8 bytes and 4 bytes, respectively.
Thus systems size can approximately be 3253×3253 for double and 4601×4601
for float. However, this is a theoretical value so it is not likely to achieve
exactly these system sizes. Figure 9.3 illustrate how far we can come with the
different approaches on the test environment.

8.2.2 Naive version 2
To investigate the performance difference in the sweeps and how the naive ap-
proach perform in general on the GPGPU we gatherers metrics/events from the
NVIDIA Visual Profiler shown in Table 8.2.

Method xBuild xSolve yBuild ySolve

Duration (ms) 126.394 30.86 27.62 27.922
Requested gld throughput (GB/s) 13.35 37.44 49.76 41.38
Requested gst throughput (GB/s) 2.97 14.17 13.57 15.66
gld throughput (GB/s) 53.38 37.46 96.45 41.4
gst throughput (GB/s) 2.97 20.24 13.58 16.22
gld efficiency (%) 25 100 51.3 100
gst efficiency (%) 100 70 100 96.6
L1 gld hit rate (%) 0 5.1 80.2 5.2
IPC 0.083 0.155 0.352 0.17

Table 8.2: Metrics and events from NVIDIA Visual Profiler for the naive
approach S1N.

We see that the global memory load efficiency is low for xBuild and yBuild

. The global memory load/store efficiency shows the ratio of requested global
memory load/store throughput to the actual global memory load/store through-
put. Thus bandwidth is being wasted if the efficiency is not 100%. xBuild only
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has 25% global load efficiency and yBuild 51.3%.Therefore, the access patterns
of xBuild is likely scattered and in concerned with yBuild the access patterns
could be scattered or misaligned.

The L1 global load hit rate shows that the cache is being relatively utilized
for the yBuild kernel, especially compared to xBuild which do not at all make
use of the fast cache. At the same time, we see that IPC i relative low and
the memory throughput relative high, which indicate that the application is
memory bounded as described in Section 7.2.1.

Hence x-direction have a poor performance compared to y-direction, because
memory access is uncoalesced. When examining how an x- and an y-sweep
accesses the elements in the grid the reason becomes immediately clear. The
threads in an x-sweep load elements with a stride of sizeX in parallel, thus
accessing to global memory are not coalesced and thereby a lot of elements in
the transaction are not used, which results in wasted bandwidth. Illustration of
the different access are shown in Figure 8.2

Thread 0 Thread 1

X-sweep

Uncoalesced access pattern Coalesced access pattern

Y-sweep

System 1
System 2
System 3

System 0

System
 0

System
 1

System
 3

System
 2

Figure 8.2: Access pattern for S1N for a x- and y-sweep.

In order to obtain better coalesced access to global memory will the x-sweep
be modified, so we first transpose the grids then execute a normal y-sweep and
then transpose again as illustrated on Figure 8.3. The transposing is performed
massive parallel on the GPGPU. We make use of CUDA C/C++ SDK Code
Samples2

2CUDA C/C++ SDK Code Samples follows with CUDA TOOLKIT [24].
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x-sweep y-sweep

Tranpose
input
arrays

y-sweep

Tranpose
output
arrays

Figure 8.3: Flowchart through one simulation time step in the naive S1
approach shown in gray and the modified x-sweep in blue.

This simple optimization step is implemented in S1N2. The implementation
results in the execution times illustrated together with the old x-sweep in Figure
8.4.
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Figure 8.4: Execution time overview for S1N and S1N2.

We see that transposing the grids (in fact 7 arrays twice per sweep) and applying
yBuild is 3.6x faster than the original xBuild. In Table 8.3 some gathered
performance metric is shown for transposing one array of size 2048 × 2048.
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Method One transposing
Duration 0.534 ms
Bandwidth 120 GB/s
IPC 1.111
Achieved Occupancy 0.92
Shared Bank conflicts 0

Table 8.3: Gather performance metric for one transposing of one array
with size 2048 × 2048.

The effective bandwidth is calculated by using equation (3.12.3), thus

Effective =
(
(2048 + 2)2 · 8 · 2

)
/10242

0.534 = 120GB/s

Hence the transpose kernel obtain 73% of the theoretic bandwidth and 92%
of the bandwidth achieved by bandwidthTest (see Appendix D on page 135).
Consequently, the transpose kernel utilize the available resources pretty good.

Additional we see that the achieved occupancy is 0.92, i.e., the opportunity
to hiding memory latencies is there and thereby keep the multiprocessors on the
GPU busy.

Performance evaluation

Comparing the execution time of the two GPGPU versions S1N and S1N2 to the
CPU version, we achieve the results shown in Table 8.4.

Method Duration Speedup Bandwidth Gflops
CPU 398.191 s - - -
S1N 21.391 s 18.6x 23.9 GB/s 8.3 Gflops
S1N2 11.898 s 33.5x 43.0 GB/s 9.9 Gflops

Table 8.4: Comparing execution time of the seqential C implementation
on the CPU against S1N and S1N2 on a 2048×2048 system for
100 time step in double-precision.

We see that a simple transposing arrays and thereby insure to access global
memory coalesced result in almost halve the execution time of the entire appli-
cation and is therefore very significant.

The naive parallel implementation is already 18.6x faster than the C im-
plementation, which indicate that using massive parallelism to solve the shal-
low water equations is advisable, and that we after simple optimization have a
speedup on 33.5x compared to the C implementation. However, the obtained
bandwidth indicate that we do not utilize the available resources.
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8.2.3 Version 2
Even though yBuild performs a lot better than xBuild due to the more coa-
lesced pattern, it still only has a 51.3% global load efficiency. This is because
that even though the threads load the data aligned, each thread has to load
several values that are placed right next to each other in global memory as
illustrated on Figure 8.5.

ζn+1/2

k

k + 1

j − 1 j j + 1

qn−1/2

k − 1

k

k + 1

j − 1 j j + 1

pn/pn+1

k

k + 1

j − 1 j

Figure 8.5: Needed values for calculation of a mass and momentum equa-
tion at (j,k) for respectively ζn+1/2, qn−1/2 pn/pn+1 in an y-
sweep.

We see, e.g., for ζn+1/2 and qn−1/2 that they need the values (j,k), (j − 1,k) and
(j+ 1,k) for place (j,k). When each thread has to access three values right next
to each other in global memory they will have an access pattern similar to the
ones illustrated in Figure 8.6, 8.7 and 8.8.

Figure 8.6: Missaligned access pattern where the first thread accesses val-
ues in a separate 128 byte segment.
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Figure 8.7: Perfectly coalesced access pattern

Figure 8.8: Missaligned access pattern where the last thread accesses val-
ues in a separate 128 byte segment.

The 1st and 3th misalignment access pattern results in caching two 128 byte
segment, where only a single element in one of the 128 byte segment is to be
used. This is of course very inefficient.

To improve this a solution could be to use non-caching loads, see Section
8.2.3, or to load the data into shared memory and then do all the reads from
there. We try two different approaches of loading data into shared memory

1. Loading all values into shared memory using the entire thread block, but
use two threads less to do the calculations. This is necessary since other-
wise they would request values that has not been loaded into shared.

2. Loading only the ”center” values ζn+1/2
j,k , ζn+1/2

j,k+1 and q
n−1/2
j,k into shared

memory. Using this approach all threads can work, but all other values
have to be loaded from L1/L2. This approach might be beneficial since
the other values only are read a limited amount of times and therefore
does not need to be specific handled to obtain good performance.

These two approaches are implemented. Performance results from the NVIDIA
Visual Profiler are shown in Table 8.5, where shared memory method all refer
to the 1st approach described and ”center” to the 2nd approach.

On top of that reducing overall reads and writes to global memory is always
relevant. Since the vectors ama, bma and cma are all just defined as constant,
and cma is the only values that ever change (which first happens in the solver)
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it would be smarter to just store them as a constant and in that way reducing
global memory transactions. Further there is no reason to have a separate
solution vector x, since the values easily can be stored in dma and dmo. All this
is done for both methods described above, see Section 2.6 in the Source Code
Booklet.

We get the following performance specifications from the NVIDIA Visual
Profiler.

Method yBuild yBuild ySolve

Shared memory method all ”center”
Duration (ms) 28.171 25.807 21.379
Requested gld throughput (GB/s) 24.58 36.31 39.44
Requested gst throughput (GB/s) 9.98 10.89 20.45
gld throughput (GB/s) 48.81 68.11 39.43
gst throughput (GB/s) 11.25 10.89 21.18
gld efficiency 50.1% 52.7% 100%
gst efficiency 88.7% 100% 96.6%
L1 gld hit rate 62.3% 74.6% 3.7%
IPC 0.355 0.371 0.128

Table 8.5: Metrics/Events from NVIDIA Visual Profiler for S12.

It is clear that the two approaches are very similar in performance, but the
approach where only the ”central” values are loaded into shared memory does
outperform the other. In fact, loading all values into shared memory decreases
performance compared to the naive yBuild. This is most likely because the
GPU are able to use the L1 cache more efficiently than our shared memory
approach. For this reason we will focus on the ”central” value approach.

The biggest performance boost is actually in the solver due to the reduced
global memory access. Even though most memory throughputs falls including
the L1 global load hit rate, the time goes from 27.922 ms for the naive solver to
21.379 ms which gives 1.3x speedup.

Overall the new kernels gives 38.7x speedup over 100 time steps compared
to the C implementation.

L1 cache

From the results in Table 8.5 it is clear that L1 cache has an influence on the
performance, since loading more values to shared memory actually made the
performance worse. It is therefore interesting to investigate the influence and
optimal settings for the L1 cache.

The yBuild still has a pretty low global load efficiency. This could be
improved by non-caching in L1 cache, such that smaller segments sizes can be
transferred and thereby better utilization of the available bandwidth can be
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obtained. Also since the ySolve only has a 3.7% L1 global load hit rate it
might be more efficient to not even try to hit in L1, but always load directly
from L2. To investigate this we use the compiler flag −Xptxas −dlcm=cg to
turn off the L1 cache and thereby only cache in L2. The results can be seen in
Table 8.6

Method yBuild ySolve

Duration (ms) 28.611 21.374
gld efficiency 85.1% 100%
gst efficiency 100% 96.6%

Table 8.6: Metrics from NVIDIA Visual Profiler for S12 when caching
and non-caching in L1.

As expected, we see that the global load efficiency has increased significantly
for yBuild. This is because when a warp requests a single element, that before
would have been answered with a 128 byte segment, now can be answered with
a 32 byte segment and thereby increasing efficiency (utilize bus). However,
this does unfortunately not decrease the running time of yBuild. In fact, it
increases with 11%! So even though more unnecessary data is transferred the
higher bandwidth to the L1 cache yields a better performance.

When looking at ySolve it is clear that non-caching in L1 has changed
absolutely nothing. This is not that surprising, since the load and store efficiency
already was very high and could not be improved much.

Overall it is clear that caching in L1 does improve the performance so maybe
increasing L1 cache size gives even better performance. In the application we do
not use that much shared memory, it is therefore also interesting to investigate
what impact it will have to increase the size of L1 cache from 16 kB to 48
kB. This can be done by adding the function calls cudaFuncSetCacheConfig(
yBuildS12,cudaFuncCachePreferL1); and cudaFuncSetCacheConfig(

ySolveS12,cudaFuncCachePreferL1); into the host code. The results are
shown in Table 8.7
Again we see that L1 has a positive effect on yBuild. It decreases the runtime
by 7%, gives a better load throughput and gives a higher L1 hit rate. However
since we still do not reuse a lot of element in the solver the impact here is
insignificant.

Overall we find that L1 has a substantial impact on the performance of
yBuild. The execution time goes from 28.611 ms when non-caching in L1 to
24.043 ms when fully utilizing the possible L1 cache size. A performance gap of
19%!
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Method yBuild ySolve

Duration (ms) 24.043 21.339
Requested gld throughput (GB/s) 38.98 39.51
Requested gst throughput (GB/s) 11.69 20.49
gld throughput (GB/s) 73.95 39.52
gst throughput (GB/s) 11.64 21.22
gld efficiency 52.7% 100%
gst efficiency 100% 96.6%
L1 gld hit rate 86.4% 3.8%

Table 8.7: Metrics from NVIDIA Visual Profiler for S12 with 48 kB L1
cache size.

Performance evaluation

Comparing the execution time of the GPGPU version S12 to the CPU version,
we achieve the results shown in Table 8.8.

Method Duration Speedup Bandwidth Gflops
CPU 398.191 s - - -
S12 9.870 s 40.3x 51.9 GB/s 17.9 Gflops

Table 8.8: Comparing execution time of the CPU against S12 on a
2048×2048 system for 100 time step in double-precision.

We see that S12 obtain the same solution 40.3x faster than the C implementa-
tion. Further that we utilize 32% of the theoretic bandwidth. It is not the best,
but acceptable for now.



8.2 Method 1 83

8.2.4 Version 3
The memory usage has now been improved to a satisfiable level and it is time
to optimize the instructions. Again we use the NVIDIA Visual Profiler to dis-
cover potential performance bottlenecks. The results can be seen in Table 8.9
where divergent branches, control flow divergence and replayed instruction are
calculated based on the obtained values.

Method yBuildS12 ySolveS12

Duration (ms) 24.043 21.339
Inst. issued 99,378,225 26,732,961
Inst. executed 92,673,121 26,470,336
Threads inst. exec. 2,964,085,109 847,050,752
Branch 6,159,781 1,572,864
Div. branch 8,214 0
IPC 0.396 0.128
Shared bank conflict 0 0
Ratio Div. branches 0.13% 0%
Control flow div. 0.05% 0%
Replayed inst. 6.75% 0.98%

Table 8.9: Events from NVIDIA Visual Profiler for S12.

Overall it is clear that there are no big instruction problems with the programs.
Both kernels show very little divergent branches, control flow divergence and re-
played instructions. The approach is therefore not to try to improve any of those
but simply to bring down overall issued instructions and simplify calculations.

Simplify calculation of momentum equation bmo

First we investigate the device function SetYMO, where the calculation of bmo in
particular seems complicated. The code is shown in Listing 8.1.

Listing 8.1: Calculation of bmo
1 hr0 = 1.0/hjk[thid];
2 hr1 = 1.0/hjkp1[thid];
3 hres = sqrt(2.0/(hr0*hr0+hr1*hr1));
4 C = M * pow(hres,1.0/6);
5 ...
6 bmo[idx] = ddt + (g * sqrt(qjk[thid]*qjk[thid]+pst*pst))/(C*C*hres*hres

) − cvl + cvr;

So alone to calculate the denominator in bmo a square root operation, a power
operation, five divisions, six multiplications and four different variables are used.
That does not seem very effective, especially considering that power and square
root are very expensive operations.
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In order to improve this, we want to simplify the expression by first expand-
ing the term to understand it better

1
C · C · hres · hres

= 1(
M · hres1/6

)2 · hres2

= 1(
M ·

√ 2
hr2
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1

1/6
)2
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(√ 2

hr2
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This clarify, that the calculation is quite complex, but it is also obvious that
some of the instructions, as for instance the square roots, are unnecessary. We
will now reduce the complexity a bit.
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Thus we end up with a much simpler expression and since M is just a constant,
we can pre-calculate 1

M·M . We then have the code shown in Listing 8.2

Listing 8.2: Improved calculation of bmo
1 hr0 = hjk[thid]*hjk[thid];
2 hres = hjkp1[thid]*hjkp1[thid];
3 hres = (hres+hr0)/(2*hres*hr0);
4 hres *= pow(hres,1.0/6) * M * M;
5 ...
6 bmo[idx] = ddt + (g * sqrt(qjk[thid]*qjk[thid]+pst*pst))* hres − cvl +

cvr;
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This simplification results in only a power operation, two divisions, 7 multipli-
cations and 2 different variables. Hence the calculations are much simpler and
less expensive.

Removing if-statements

In the device function SetYMO are if-statements with exactly the same condi-
tions used when defining f1, f2 and dmo. Thus it is unnecessary to have them
all. An example of the if-statements can be seen in Listing 6.2. On top of
that the small number of divergent branches that exists for yBuild properly
originate from these if-statements. So both the number of instructions issued
and the divergent branches can potentially be brought down by having only one
simpler if-statement.

The reduction is done by having an initial if-statement where we define a few
binary variables and use those to control the calculations instead, see Listing
8.3. In this manner we avoid scenarios where threads have to load different
values depending on which branch they take in the if-statement.

Listing 8.3: Improved control flow; branching and divergence.
1 if (bL[jm1+nY]==lh)
2 {
3 bin1 = 0;
4 bin2 = 1;
5 ...
6 }
7 else if (bL[jm1+kp1]==lh)
8 {
9 bin1 = 1;

10 bin2 = 0;
11 ...
12 }
13 else
14 {
15 bin1 = 1;
16 bin2 = 1;
17 ...
18 }
19

20 f1 = (pNp1[jm1+nP] + pNp1[jm1+pkp1]);
21 f1 /= (hjk[thid]*(2−bin1) + hjkp1[thid]*(2−bin2) + (zetaNp05[jm1+nY] −

bL[jm1+nY])*bin1 + (zetaNp05[jm1+kp1] − bL[jm1+kp1])*bin2);

Hereby are line 21 calculated differently depending on the outcome of the if-
condition.

Optimizing LcElim

When investigating the device function LcElim in ySolve we also find that
improvements can be made. Recall that the function eliminates the values in



8.2 Method 1 86

the penta-diagonal to a tri-diagonal matrix system by two for-loops. The first
for-loop eliminates the values in the sub-diagonal and the second eliminates
the super-diagonal.

The system matrix is a penta-diagonal matrix because of the values in the
vectors lmo and rmo from the momentum equation. Since in the penta-diagonals
there are only value for every other elements (momentum equations) these are
eliminated using the mass equations. This means that all the calculations in
the loops are independent of each other. Therefore, there is no reason to use
two for-loops. Instead we implement a for-loop that eliminates both diagonals
simultaneously. Thereby, less instructions are issued and less global writes are
performed, since we only update each element once.

It is done by having an initial step then the optimized for-loop and at last
a final step as shown in Listing 8.4.

Listing 8.4: Optimized LcElim.

1 __device__ void
2 LcElimS13(Td dydt, Td *dma, ...)
3 {
4 int i, ii, s, e;
5 Td l, r;
6

7 s = 1−bcs;
8 e = sizeX+bce−1;
9

10 ii = s*sizeX+idx;
11 r = rmo[ii];
12 bmo[ii] += r;
13 cmo[ii] −= dydt*r;
14 dmo[ii] −= dma[ii+sizeX]*r;
15

16 for (i=s+1; i<e−1; i++)
17 {
18 ii += sizeX;
19

20 l = −lmo[ii];
21 amo[ii] −= dydt*l;
22

23 r = rmo[ii];
24 cmo[ii] −= dydt*r;
25 bmo[ii] += r−l;
26 dmo[ii] −= dma[ii]*l
27 +dma[ii+sizeX]*r;
28 }
29 ii += sizeX;
30 l = −lmo[ii];
31 amo[ii] −= dydt*l;
32 bmo[ii] −= l;
33 dmo[ii] −= dma[ii]*l;
34 }

Listing 8.5: Original LcElim.

1 __device__ void
2 LcElimS12(Td dydt, Td *dma, ...)
3 {
4 int i, ii, s, e;
5 Td dd = 0.0f;
6

7 s = 1−bcs;
8 e = sizeX+bce−1;
9

10 ii=s*sizeX+idx;
11 for (i=s; i<e; i++)
12 {
13 ii += sizeX;
14 if (lmo[ii] == 0.0f)
15 { continue; }
16

17 dd = −lmo[ii];
18 amo[ii] −= dydt*dd;
19 bmo[ii] −= dd;
20 dmo[ii] −= dma[ii]*dd;
21 }
22 for (i=s; i<e; i++)
23 {
24 ii−=sizeX;
25 if (rmo[ii] == 0.0f)
26 { continue; }
27

28 dd = rmo[ii];
29 bmo[ii] += dd;
30 cmo[ii] −= dydt*dd;
31 dmo[ii] −= dma[ii+sizeX]
32 *dd;
33 }
34 }
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Optimizing Thomas algorithm

As mentioned the Thomas algorithm consists of a forward elimination and a
backward substitution phase. As implemented now the backward substitution
phase runs a for-loop, where the solution is obtained and stored in dma and
dmo. Immediately after are the solution from dma and dmo written into zetaNp1
and qNp05, respectively, also in a for-loop. There is no good reason why the
solution should be written temporarily to dma and dmo first. Therefore, we
modify the backward substitution phase so that it stores the elements directly
into zetaNp1 and qNp05 as shown in Listing 8.6.

Listing 8.6: Improved backward substitution from ySolveS13.
1 double dma1, dmo1;
2 idx = threadIdx.x + blockIdx.x * blockDim.x;
3

4 ...
5

6 // Store the determined solutions
7 jk = j+sizeY*sizeGx;
8 idx += sizeY*(sizeY);
9

10 dma1 = dma[idx];
11 zetaNp1[jk] = dma1;
12

13 for(i=1; i<sizeY; i++)
14 {
15 jk −= sizeGx;
16 idx −= sizeY;
17

18 dmo1 = dmo[idx]−cmo[idx]*dma1;
19 qNp05[jk] = dmo1;
20

21 dma1 = dma[idx]−cma[idx]*dmo1;
22 zetaNp1[jk] = dma1;
23 }

The solution is temporarily stored in the register variables dma1 and dmo1 to
reduce even more global loads. In this way a for-loop less have to be executed,
which means a reduction in instructions (counter overhead) and in global data
transfers.
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Performance evaluation

By the optimization steps described above, we obtain the values shown in Table
8.10 from the profiler.

Method yBuildS12 ySolveS12 yBuildS13 ySolveS13

Duration (ms) 24.043 21.339 17.953 14.576
Inst. issued 99,378,225 26,732,961 86,881,283 20,967,449
Inst. executed 92,673,121 26,470,336 80,840,198 20,704,896
Threads inst.exec. 2,964,085,109 847,050,752 2,586,837,366 662,556,672
Branch 6,159,781 1,572,864 3,275,542 1,048,896
No. div. branch 8,214 0 0 0
IPC 0.396 0.128 0.465 0.147
Bank conflicts 0 0 0 0
Ratio div. branch 0.13% 0% 0% 0%
Control flow div. 0.05% 0% 0% 1.25%
Replayed inst. 6.75% 0.98% 6.98% 1.25%

Table 8.10: Events from NVIDIA Visual Profiler for S12 and S13.

The performed optimization steps had a significant influence on the performance
of the kernels. Comparing the execution time for building the system, we see
that yBuild13 obtain the same 1.3x faster than yBuild12 and as expected,
we see that the ratio of divergent branches has dropped to zero due to the
simplification of the if-statements. The percentage of replayed instructions
seems to have increased a bit, but this is only due to the 13% fall in issued
instructions. The solver perform 1.5x speedup compared to ySolve12 execution
time. This is of course partly due to the 22% fewer instructions issued, but also
due to the fewer global writes that followed by the optimization.

Performance evaluation

Comparing the execution time of the GPGPU version S13 to the CPU version,
we achieve the results shown in Table 8.11.

Method Duration Speedup Bandwidth Gflops
CPU 398.191 s - - -
S13 7.325 s 54.4x 69.9 GB/s 24.2 Gflops

Table 8.11: Comparing execution time of the CPU against S13 on a
2048×2048 system for 100 time step.

We see that S13 obtain the same solution 54.4x faster than the C implementa-
tion. Further that we utilize 43% of the theoretic bandwidth.
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8.2.5 Version 4
We have now performed the most crucial performance steps. In this section
will different kinds of optimization steps be performed in order to utilize the
available resources as must as possible .

Occupancy

In the test system with 2048 × 2048 grid points we have 64 threads per block,
thus there are 2 blocks on each SM. From [29, Table F-2] we know that Compute
Capability of 2.0 has a maximum of 1536 resident threads per SM. Hence from
(3.9.1) we have that

Occupancy = 2 · 64
1536 = 0.083

This is likely to be a performance bottleneck, since it will be hard to hide
memory and instruction latencies and keep the GPU busy using multi-threading.
However, in order to increase the resident threads per SM is it necessary to
increase the system size, because of the chosen solution method. This means
with this method occupancy can not be improved without changing the system
size. There is also a limit to the possible system size due to the DRAM on the
GTX 590 and therefore we are limited on the size of possible simulations, as
described in Section 8.2.5.1.

Using CUDA Occupancy Calculator3, where we, i.a., can see the trade-offs
between thread count and register use. Compiling S13 with the compiler option
−−ptxas−options=−v to nvcc we achieve Listing 8.7

Listing 8.7: Register count for S13
1 ptxas info : Compiling entry function '

_Z9yBuildS13PdS_S_S_S_S_S_S_S_S_S_S_S_iiiiddddddddd' for 'sm_20'
2 ptxas info : Function properties for

_Z9yBuildS13PdS_S_S_S_S_S_S_S_S_S_S_S_iiiiddddddddd
3 16 bytes stack frame, 16 bytes spill stores, 24 bytes spill loads
4 ptxas info : Used 63 registers, 1536+0 bytes smem, 224 bytes cmem

[0], 16 bytes cmem[14], 48 bytes cmem[16]
5 ptxas info : Compiling entry function '

_Z9ySolveS13PdS_S_S_S_S_S_S_S_S_iiid' for 'sm_20'
6 ptxas info : Function properties for

_Z9ySolveS13PdS_S_S_S_S_S_S_S_S_iiid
7 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
8 ptxas info : Used 38 registers, 136 bytes cmem[0], 16 bytes cmem

[14], 32 bytes cmem[16]

Here we see that yBuild use 63 registers and 1536 bytes shared memory. Paste
this values into CUDA Occupancy Calculator we achieve Figure 8.9a illustrating
the impact of varying block size and Figure 8.9b illustrating the impact of
varying register count per thread.

3Provided tool in CUDA Toolkit [27].
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Figure 8.9: Impact on occupancy when varying block size 8.9a and reg-
isters per thread 8.9b for S13.

The theoretical occupancy of each multiprocessor is 33%, since the total number
of 32-bit registers per multiprocessor is 32,768 for Compute Capability 2.0 [29,
Table F-2], this imply that there maximum can be 8 blocks per multiprocessor.
Hence we have from (3.9.1)

Occupancy = 8 · 64
1536 = 0.333

However, decreasing register count will not change the warp occupancy (see
Figure 8.9b), because we are limited by not having enough threads. As men-
tioned increasing the number of threads will decrease the number of blocks per
multiprocessor with this solution method, S1, since we are limited by the size
of DRAM on the GPU. Therefore the theoretical occupancy is not obtainable.

Register spilling

In Listing 8.7, we see that kernel yBuild use 63 register there is register spilling
register spilling. We will therefore investigate whether local memory usage has
an impact on performance for memory and/or instructions. Profiling S13, par-
ticularly yBuild kernel, we obtain the counters listed in Table 8.12
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Method yBuild13

L1 local load hit 1,168,552
L1 local load miss 10,720
L1 local store hit 200
L1 local store miss 393,280
instruction issued 86,881,283
L2 query read 7,007,489
L2 query write 7,337,988
gld request 3,013,960
gst request 917,120

Table 8.12: Profile counters for yBuild in S13.

The L1 local load hit is 99.09%, which indicate that L1 contains most of the
spills.

Impact on memory Estimated L2 queries of all 16 multiprocessor due to local
memory is 2 · 4 · #SM · L1 local load miss = 1,372,160. We multiplied with
2 because a load miss implies that a store happened first and with 4 because
a local memory transaction is 128 byte which is equal to 4 L2 transactions.
The percentage of all L2 queries due to local memory is 1,372,160/(7,007,489 +
7,337,988) = 0.096. In other words only 9.6% of memory traffic between the
multiprocessor and L2/DRAM is due to local memory.

The impact on memory throughput is investigated by comparing L1 lo-
cal load miss count to global load and store memory count: (gld request +
gst request)/(2 ·L1 local load miss). We see that hardly any bus traffic to global
memory is due to spills, since the ratio of global memory to local memory bus
traffic is approximately 183 : 1.

Impact on instruction The percentage of instructions due to local memory is
simply the total instructions due to local memory over the number of instruc-
tions issued, hence (10,720 + 1,168,552 + 393,280 + 200) /86,881,283 = 0.018.
Thus only 1.8% of instructions are due to local memory.

Consequently, these percentages tell that register spilling does not have a sig-
nificant impact on the performance. Removing spilling completely will improve
performance no more than 9.6% or 1.8% if the kernel is memory- or instruction
bounded respectively.

The kernel uses a lot of registers, but this does not have any significant impact on
the performance and reducing it will not increase occupancy. Besides, registers
is the fastest memory on the GPU and using registers will reduce other kinds
of memory traffic. Additional in NVIDIA’s next generation of CUDA compute
architecture named Kepler will it be possible to have up to 255 registers per
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thread! This means that the maximum of 32-bit registers per multiprocessor is
65,536, and register spilling will no longer be a problem [34] for this system.

Latency hiding

In respect to Section 8.2.5, how do we obtain better performance at lower oc-
cupancy? We do not, as mentioned, have enough threads per multiprocessor to
exploit Thread Level Parallelism (TLP) and by that getting higher occupancy.
Additional Instruction Level Parallelism (ILP) can be used to hide latency and
by that achieve higher efficiency at lower occupancy.

Therefore, we go through the code to obtain as many independent instruc-
tions after each other as possible simple to add more ILP and by that hiding
register dependencies and hiding global memory latency, see example in Section
3.8.

Change of calculation flow

We have maintained the same calculation flow as in MIKE 21 HD, see Figure
6.2. This approach imply unnecessary global memory loads and stores of values
in the vectors dma, amo, bmo, cmo, dmo, lmo and rmo. Therefore, we remove the
elimination device function LcElim and instead build the tri-diagonal system in
the build function yBuild. Thereby we can remove vectors lmo and rmo and
reduce global memory transaction by six loads and six stores per thread per
column.

Further optimization

The last optimization step is introducing the keyword __restrict__ in all
kernel calls, such that the compiler can reorder and do common sub-expression
elimination at will. Further are the compiler forced to inline device function in
the kernel with the qualifier __forceinline__.

It has also been investigated if unrolling for-loops using #pragma unroll

can improve performance by reducing counter overhead. This however turned
out to be insignificant for the performance so the #pragma unroll is not used
in the following applications.

In the code we make use of a square root and a power function. These two
functions are very expensive because of the double-precision (Full IEEE 754-
2008 64-bit precision). We tried to use a CUDA double-precision floating-point
square root function __dsqrt_rd(x), but this had almost no effect. However,
to show how expensive the power function in double-precision is, will a single-
precision floating-point power function powf(x,y) be applied together with the
compiler option −use_fast_math. This simple switch improve the performance
by 16% and 19% improvement is obtained when a single-precision floating square
root function sqrtf(x) also is used. Be aware that the performed calculation
is not in double-precision any more and thereby we get an error compared to
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the double-precision CPU version on the 10−8 position after 100 time steps.
Therefore, this will not be implemented now, since we want an exact solution
compared to MIKE 21 HD. Nevertheless, this huge impact on the performance
when so little changes is applied, motivate to further investigate the performance
impact of calculating in single-precision against double-precision in return of less
precision, see Section 9.4.

8.2.5.1 Performance evaluation

The described optimization step is implemented in S14. These steps have not
increase register spill, in fact it has now been removed. Comparing the execution
time of the GPGPU versions S13 and S14 to the CPU version, we achieve the
results shown in Table 8.13.

Method Duration Speedup Bandwidth Gflops
CPU 398.191 s - - -
S13 7.325 s 54.4x 69.9 GB/s 24.2 Gflops
S14 6.095 s 65.3x 84.0 GB/s 29.0 Gflops

Table 8.13: Comparing execution time of the CPU against S13 and S14
on a 2048×2048 system for 100 time step in double-precision.

The execution time performance have improved by 16% or about 1.20x speedup
compared with S13 on a 2048× 2048 with 100 time step. Thus S14 obtain the
same solution as the C implementation, but 65.3x faster! The achieved effective
bandwidth is 51% of the theoretic bandwidth. The reason why the bandwidth
is not that high can be found in the system size as described in Section 7.3.1.
In Table 9.4 are the performance as a function of the system size illustrated.

The profiler state that the IPC for yBuildS14 and ySolveS14 is 0.488 and
0.182 out of 2.0, respectively, while the memory throughput is 84.0 GB/s out
of 163.87 GB/s. Hence the entire application is memory bounded (limited by
the hardware bandwidth), as expected. Which also can be seen of the small
performed flops, thus comparing with theoretic flop is not an appropriate per-
formance metric for this application.

Besides better performance are obtained from the naive version to S14 have
we also reduced the amount of used vectors. With (8.2.1) in mind will we in
the following determine the used memory as function of problem size for S14.
Assume the same number of grid points in x- and y-direction and let n be the
number of inner grid points, thus we have

3(n+ 2)2 (8.2.5a)
4(n+ 2)(n+ 1) (8.2.5b)
(n+ 2)2 + (n+ 2)(n+ 1) (8.2.5c)
6n(n+ 2) (8.2.5d)
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The different between S1N and S14 is that only 6 vectors to mass and momen-
tum equations are needed and that the solution vectors, x, is removed (8.2.5d).
Additional, two extra vector are needed when transposing between each sweep
(8.2.5c). Hence

NS14 = 3(n+ 2)2 + 4(n+ 2)(n+ 1) + (n+ 2)2 + (n+ 2)(n+ 1) + 6n(n+ 2)
(8.2.6)

= 15n2 + 43n+ 26 (8.2.7)

Considering (8.2.2) one can approximately see a factor on 15/19. Hence S14

can simulate systems with 21% more elements than S1N without using more
memory. This is significant, since the memory space on graphic cards (GPU)
is finite and very small compared to the host memory. This implies that on
the test set up S14 can approximately simulate systems sizes on 3661×3661 for
double and 5179×5179 for float. Again, keep in mind that this is theoretic so
it likely not possible to achieve exact this system size.

Assigning attention to the transpose kernel, which transpose 7 arrays twice
per sweep, we see that it is responsible for 12% of the total application execution
time (see performance metric for transpose kernel in Table 8.3), but this is well
spent especially compared to accessing elements in global memory uncoalesced.
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8.3 Method 2
The second approach aims to add more parallelism to the system and thereby
improve Thread-Level Parallelism (TLP). This means instead of using just one
thread to set up and solve each tri-diagonal system we will use one block con-
taining as many threads as there are points is the grid.

8.3.1 Naive version
In the naive approach we simply start by letting each thread execute two device
functions, SetMA and SetMO. This means that there is no longer need for a
for-loop in the build kernels. Since the device functions in the solve kernels are
a bit more complicated to parallelize they will in the naive implementation still
be serial, meaning the first thread in each block performs all the calculations.

Some of the key values obtained by running the naive application through
the NVIDIA Visual Profiler are shown in Table 8.14

Method xBuild xSolve yBuild ySolve

Duration (ms) 0.359 11.914 1.546 11.955
Requested gld throughput (GB/s) 73.16 1.5 13.81 1.51
Requested gst throughput (GB/s) 16.25 0.57 3.77 0.57
gld throughput (GB/s) 87.36 23.4 223.14 23.35
gst throughput (GB/s) 20.32 2.05 4.73 2.28
gld efficiency (%) 53.2 6.4 6.2 6.4
gst efficiency (%) 80 27.8 80 25
L1 glb hit rate (%) 71.7 25.1 16.4 25.2
IPC 0.581 0.157 0.118 0.157

Table 8.14: Metrics and events from NVIDIA Visual Profiler for the naive
approach S2N.

It is clear that there is a huge difference in the performance of the kernels.
In particular the solvers are performing horribly, see Figure 8.10. This is not
surprising, since only one thread in each block is solving the system. Obviously,
more parallelism have to be added to increase performance.
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Figure 8.10: Execution time overview for method S2N.

In the build kernels, we see some similarity to Section 8.2.2 for S1 method. The
xBuild actually performs pretty good with high global load and store efficiency
and high requested global load throughput on 87.92 GB/s. The yBuild on
the other hand is not performing very well. It is 3.9x slower than xBuild even
though they perform the same calculations. As it was the case for S1N this is due
to uncoalesced global memory reads, which is clear given the very low requested
global load throughput and the unrealistic high global load throughput4. This
can also be realised when looking at the way the threads access the data, as
shown in Figure 8.11

4Compared to the theoretical possible bandwidth the global load throughput is way to
high. An explanation of this i given in Section 7.2.
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Figure 8.11: Access pattern for S2N for an x- and y-sweep.

Even though the kernels have a lot of issues they still outperform the C imple-
mentation by a 2.2x speedup over 100 time steps.

8.3.2 Version 2
The solver has to be added more parallelism to improve the overall simulation
time. As discovered in Section 8.2.4, the calculation in the device function
LcElim can be performed independently. Therefore, it is possible to go from a
complexity of O(n) for a single thread to O(1) for n threads by adding more
parallelism. Consequently, it is an obvious place to let more threads work si-
multaneously. On the contrary the Thomas algorithm, described in Section 5.2,
is a serial algorithm and cannot be parallelized. Therefore, will this part of the
kernel remain serial for now.

The uncoalesced access due to yBuild does not seem like an important
bottleneck right now, since the solver is taking up most of the time. However,
we foresee that it will be a bottleneck later on so it will be fixed as we did in
Section 8.2.2. Thus the same sweep is used twice with a transpose in-between.
The only difference is that now the x-sweep is loading coalesced and therefore
we end up with the flowchart as illustrated in Figure 8.12
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Figure 8.12: Flowchart through one simulation time step in the naive
S2N and modified S22 approach.

Implementing this we get from NVIDIA Visual Profiler the data shown in Table
8.15

Method xBuild xSolve

Duration (ms) 0.359 5.224
Requested gld throughput (GB/s) 73.16 3.44
Requested gst throughput (GB/s) 16.25 1.3
gld throughput (GB/s) 87.36 32.47
gst throughput (GB/s) 20.32 3.17
gld efficiency (%) 53.2 10.8
gst efficiency (%) 80 41.6
L1 glb hit rate (%) 71.7 33.7
IPC 0.581 0.155

Table 8.15: Metrics and events from NVIDIA Visual Profiler for the S22
approach.

It should be mentioned that transposing all 7 vectors twice has a total runtime
of 0.2 ms, but even through transposing nearly take the same amount of time as
building the system (xBuild) it is definitely worth doing when considering the
time saved on the yBuild. However, transposing the 7 vectors could later on
become a performance limit. The execution times for the naive and optimized
version S22 are shown in Figure 8.13
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Figure 8.13: Execution time overview for S2N and S22.

We see that the optimized xBuild (yBuild and transpose) is 2.8x faster than
the naive xBuild. By parallelizing the LcElim function the solver got a 2.3x
speedup.

Performance evaluation

As shown in Table 8.16 the optimization results in a 5x speedup compared to
the C implementation over 100 time steps.

Method Duration Speedup Bandwidth Gflops
CPU 5.534 s
S2N 2.552 s 2.2x 3.13 GB/s 1.08 Gflops
S22 1.117 s 5.0x 7.16 GB/s 2.48 Gflops

Table 8.16: Comparing execution time of the CPU against S2N and S22
on a 256 × 256 grid over 100 time steps in double-precision.

When looking at both Table 8.15 and Figure 8.13 it is clear that the largest
performance impact is the improvement of xSolve. However, xSolve still have
the greatest performance issues with only 10.8% global load efficiency and 3.44
GB/s requested global load throughput. This is also why we only get an effective
bandwidth of 7.16 GB/s which is only 4.37% of the theoretical value.
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8.3.3 Version 3
To optimize further it is crucial to add more parallelism into solving each tri-
diagonal system matrix. Unfortunately, this is not possible with the Thomas
algorithm, since it is a serial algorithm as described in Section 5.2. Therefore, we
have to use a different solution algorithm to increase performance. In [47] they
found that the Parallel Cyclic Reduction (PCR) algorithm was the fastest of the
standard algorithms tested. For that reason this algorithm will be implemented.
The PCR algorithm is described in details in Section 5.3.

The special data structure, where mass and momentum equations are split
in each vector, means that the first elimination is special compared to the rest
of the eliminations. The first iteration has to use values from the mass equation
vectors to perform elimination in the momentum equation vectors and vice versa.
In all the other iterations are values from the same vector used to perform the
eliminations. See Section 5.3 for further description of the work flow.

This makes our implementation of PCR special in two ways. First it has a
special first iteration and secondly each thread will perform elimination in both
the mass and the momentum equation vectors in each iteration. Consequently
the work load is double for each thread, but only half the number of threads
are needed to solve the system. However, this fits perfectly with the threads
already available, since we have sizeX threads available to solve a 2·sizeX
×2·sizeX system and therefore only the algorithm has to be changed. When
the PCR algorithm as implemented in Section 3.7 in the Source Code Booklet is
used instead of the Thomas algorithm we get the results shown in Table 8.17
from the profiler.

Method xBuild xSolve

Duration (ms) 0.359 0.767
Requested gld throughput (GB/s) 73.16 117.63
Requested gst throughput (GB/s) 16.25 47.09
gld throughput (GB/s) 87.36 234.8
gst throughput (GB/s) 20.32 58.59
gld efficiency (%) 53.2 52.1
gst efficiency (%) 80 80.4
L1 glb hit rate (%) 71.7 48.5
IPC 0.581 0.739

Table 8.17: Memory metrics and events from NVIDIA Visual Profiler for
the S23 approach.

The PCR algorithm clearly improved the performance of the solver dramatically!
It went from 5.224 ms to 0.767 ms, resulting in 6.8x speedup.
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Performance evaluation

The application is now 22.7x faster than the C implementation as shown in
Table 8.18.

Method Duration Speedup Bandwidth Gflops
CPU 5.534 s
S23 0.242 s 22.9x 20.16 GB/s 5.69 Gflops

Table 8.18: Comparing execution time of the CPU against S24 on a 256
× 256 grid over 100 time steps in double-precision.

We also now achieve 20% utilization of the theoretical available bandwidth.
Further we see that IPC has increased from 0.155 to 0.739 instructions per
clock, which indicate that we do more instructions in less time. We see that even
though the runtime has been improved a lot we still only get a 13% utilization of
the theoretical bandwidth. So we expect that more performance can be gained.

8.3.4 Version 4
The solver is still taking up around 2

3 of the execution time, so in order to
achieve faster application runtime it is important to look at the solver. This
will be done in Section 8.4. For now, however we will make sure that the the
xBuild is performing satisfactorily.

In order to increase the performance of xBuild, we look at the following

• Reduce global memory stores by not storing ama, bma and cma.

• Perform LcElim immediately when building the system, so we do not have
to read and write to lmo and rmo.

• Improve the calculations for bmo.

• Remove unnecessary if-statements.

• Perform the calculations so we improve ILP (latency hiding/register de-
pendencies)

This is all steps that has been described throughout optimization of method S1

in Section 8.2, so we will not describe it further here.
An optimization step we also perform is to investigate whether or not we

could increase global load efficiency by loading the global values to shared mem-
ory, registers or just cache the values by using the L1 cache, similar to what is
done in Section 8.2.3. The results here differs a bit from what we experienced
then. When trying the different approaches we get the execution times shown
in table 8.19 for 100 time steps.
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Method Before opt. Shared mem. Registers 48 kB L1 No L1
Duration 218.17 ms 222.78 ms 218.6 ms 207.95 ms 235.96 ms

Table 8.19: Different approaches to achieve better global load efficiency
for S24.

We see that all the efforts with introducing shared memory and registers for
trying to improve performance actually makes the kernel slower. Yet caching in
L1 is important. Using 48 kB L1 instead of 16 kB decrease the execution time by
5% for the entire application and turning L1 cache off increases the execution
time by 8.2%. Thus one simple function call return a 5% free performance
boost. Consequently, we do not try to improve the global load efficiency by
using shared memory or registers, but simply increase the L1 cache size to
maximize performance.

In general we notice that all our performance optimizations have less impact
than in S1. Especially latency hiding gives almost no performance boost. How-
ever, this is not totally surprising, since we for this kernel achieve an occupancy
of 31%. Thereby the GPU have more freedom to perform latency hiding it self.

With all this optimization steps implemented, we get the results shown in
Table 8.20 and 8.21 from the profiler.

Method xBuild xSolve

Duration (ms) 0.231 0.693
Requested gld throughput (GB/s) 69.55 111.12
Requested gst throughput (GB/s) 10.53 47.86
gld throughput (GB/s) 135.66 219.12
gst throughput (GB/s) 13.13 59.78
gld efficiency (%) 50.9 50.6
gst efficiency (%) 80.2 80.1
L1 glb hit rate (%) 84.4 68.4
IPC 0.635 0.831

Table 8.20: Memory metrics and events from NVIDIA Visual Profiler for
the S24 approach.

We see a quite significant performance increase, especially in xBuild where we
get a 1.6x speedup. Looking at the metrics/events received from the profiler in
Table 8.20 we see that only L1 global hit rate and instructions per cycle have
improved. The other values decrease and that is simply because we read/write
less and perform less instructions.

For instance, we see in Table 8.21 that 27% less instructions is issued for
xBuild. We also see that replayed instructions and the ratio of divergent
branches both drop for xBuild24 due to the optimized if-statements.
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Method xBuildS23 xSolveS23 xBuildS24 xSolveS24

Inst. issued 1,943,856 6,092,051 1,416,018 5,417,627
Inst. executed 1,697,758 5,240,255 1,281,817 4,815,039
Threads inst. exec 54,034,986 161,692,925 40,814,580 148,143,869
Branch 101,238 276,224 63,630 261,888
Div branch 793 2085 256 2341
Ratio div branch 0.8% 0.7% 0.4% 0.9%
Control flow div 0.5% 3.6% 0.5% 3.9%
Replayed inst 12.7% 14.8% 9.5% 11.2%

Table 8.21: Instructions metrics and events from NVIDIA Visual Profiler
for the S23 and S24 approach.

Performance evaluation

We have now reached more than 33x speedup compared to the C implementation
as shown in Table 8.22. The utilization of the bandwidth still seems a bit
low with only 30% of the theoretical value so it is possible that even higher
performance can be obtained.

Method Duration Speedup Bandwidth Gflops
CPU 5.534 s - - -
S23 0.164 s 33.62x 29.66 GB/s 8.37 Gflops

Table 8.22: Comparing execution time of the CPU against S24 on a 256
× 256 grid over 100 time steps in double-precision.

It should be said that xBuildS24 uses 49 registers per thread. Since there are
only 32 K 32-bit registers available per multiprocessor this means that only a
system of size 668× 668 can be run unless the compiler option −maxrregcount
is used to control the number of registers used per thread. This is also shown
in Figure 8.14a.
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Figure 8.14: Impact on occupancy when varying block size 8.14a and
registers per thread 8.14b for S24.

The compile option might however cost some performance which will be inves-
tigated in Section 9.2.

The many used threads also means that we can only achieve an occupancy
of 33%. Even though this is a lot higher than for S1 it still could have an impact
of how well the GPU can latency hide. In Figure 8.14b it is shown that we could
increase the occupancy to 50% if we could get the registers per tread down to
42. We where however not able to decrease the number of used registers without
losing performance.

xBuild has now been satisfactorily optimized. In order to achieve higher
performance it is therefore necessary to focus on the solver, as previously men-
tioned. This will be done in Section 8.4.
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8.4 Solver
In Section 8.3.4 we saw that the performance of the solver was crucial for the
overall run time. In fact, even with a parallel solver it is responsible for 65% -
75% of the execution time! For this reason, we will investigate how the imple-
mented PCR solver can be improved and implement a hybrid CR-PCR solver.
See Chapter 5 for more detailed overview of the different algorithms and their
workflow. The source code is attached in Section 3.7 and 3.8 for PCR and
CR-PCR, respectively, in the Source Code Booklet

8.4.1 Parallel cyclic reduction
The PCR solver which was naively implemented in Section 8.3.3 has several dif-
ferences compared to the Thomas algorithm solver. The thing that immediately
springs to mind is of course that it is a parallel algorithm, thus more threads
can work simultaneously. The disadvantage is that the elements in the vectors
are updated a lot more times and therefore a lot more work is performed. In
fact, for n unknown, the Thomas algorithm require O(n) operations and steps
compared to PCR that require O(n log2(n)) operations but O(log2(n)) steps to
finish, if n processors are available.

We have seen that the GPU (Fermi architecture) is very efficient at opti-
mizing global loads and stores by caching in L1 cache. Nevertheless, in this
case, it might be beneficial to load the vectors into shared memory to do all the
updates there and hereafter return the result back to global memory. Although
simply increasing the L1 cache size might also have a positive impact on the
performance. We try both approaches and the results from the NVIDIA Visual
Profiler can be seen in Table 8.23.
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Method PCR PCR w. PCR w.
naive 48 kB L1 shared mem.

Duration (ms) 0.767 0.614 0.506
Requested gld throughput (GB/s) 117.63 125.56 4.82
Requested gst throughput (GB/s) 47.09 54.08 1.92
gld throughput (GB/s) 234.8 253.58 2.34
gst throughput (GB/s) 58.59 67.55 9.64
gld efficiency (%) 52.1 50.4 50
gst efficiency (%) 80.4 80.1 82
L1 glb hit rate (%) 48.5 67.6 45.6
Shared memory bank conflicts - - 0
Shared memory load - - 328,704
Shared memory store - - 145,408
IPC 0.739 0.839 1.044

Table 8.23: Memory metrics and events from NVIDIA Visual Profiler for
the different PCR solver optimizations.

It is clear that both optimization steps has a big impact on the performance of
the solver. Increasing the L1 cache to 48 kB gives 1.25x speedup and using 48
kB shared memory gives 1.52x speedup compared to the naive implementation.
Further we see that the instructions per clock is rather good. As expected,
the global memory throughputs are a lot smaller for the shared memory imple-
mentation, since a lot less data are transferred to and from global memory. It
should be mentioned that the low global load efficiencies does not correspond
to uncoalesced global memory access, but is simply due to the system size as
described in Section 7.3.1.

We now see that shared memory really has a positive impact compared
to just increased L1 cache size. However, using shared memory does have its
downsides. For instance, we can only allocate 48 kB of shared memory, which
corresponds to 6,144 elements of data type double. Because we need to store 8
vectors in shared memory the maximum possible system size contain only 768
elements. This is a 25% smaller system than the method normally would be
able to solve.

To improve this we would have to not use some of the 8 vectors, which
is not possible with this algorithm, since elements in all vectors are updated
throughout the algorithm. This however motivates to use the CR-PCR hybrid
algorithm presented by [47].



8.4 Solver 107

8.4.2 Cyclic reduction + parallel cyclic reduction hybrid
We will now investigate how the Cyclic Reduction - Parallel Cyclic Reduction
hybrid algorithm can be beneficial to use on this system. The algorithm and its
workflow is described in detail in Section 5.4.

As previously described the CR-PCR algorithm only uses every other ele-
ment in the system for the first and the last iteration. This implies that when
using this algorithm, there is no reason to use vectors to store ama, bma and cma,
since they are defined as constant and never changes though the algorithm.

On top of that, for each of the CR steps of the algorithm, we halve the work
that has to be done. Performing just a single CR step will halve the work of all
future steps only at the cost of a single iteration more at the end. Hence each
thread will only eliminate a single element in each iteration instead of two. The
problem with performing CR steps is that for each iteration the bank conflicts is
increased by a factor 2 due to the larger stride. In [13], they find that a pure CR
algorithm can almost perform as well as the CR-PCR hybrid approach by [47].
This is done by allocating a new shared array of smaller size in each iteration to
store the intermediate systems in order to avoid bank conflicts. However, since
our vectors are divided into mass and momentum equations, we have already
allocated an array for the intermediate system for the first iteration. For this
reason we can perform a single CR step without having to worry about bank
conflicts.

All together it looks very attractive to implement the CR-PCR Hybrid. This
is due to the smaller amount of vectors that has to be used, the less work per
thread, and (at least for the first step) no bank conflicts in the CR steps. We
will implement this version and test how it performs when using 16 kB L1 cache,
48 kB L1 cache and with shared memory as we did for the PCR algorithm.

The implemented solver takes a single CR step before switching to PCR.
The results from the three different versions can be seen in Table 8.24.
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Method PCR PCR w. PCR w.
Naive 48 kB L1 shared mem.

Duration (ms) 0.430 0.404 0.275
Requested gld throughput (GB/s) 123.4 131.22 7.93
Requested gst throughput (GB/s) 45.29 48.16 3.17
gld throughput (GB/s) 238.28 247.11 15.85
gst throughput (GB/s) 56.41 59.99 3.86
gld efficiency (%) 52.8 52.4 50.1
gst efficiency (%) 80.3 80.3 82
L1 glb hit rate (%) 66 78.9 32.1
Shared memory bank conflicts - - 0
Shared memory load - - 223,232
Shared memory store - - 88,064
IPC 0.74 0.784 0.921

Table 8.24: Memory metrics and events from NVIDIA Visual Profiler for
the different CR-PCR solver optimizations.

It is immediately clear that the CR-PCR hybrid algorithm significantly outper-
forms the PCR algorithm. In fact, the naive CR-PCR uses 15% less time than
the fastest PCR implementation. Again we see that using shared memory is
the fastest approach with a 1.84x speedup compared to the fastest PCR imple-
mentation. This is because the algorithm simply performs less work compared
to the PCR approach, which also is clear from the fact that 32% less shared
memory loads and 39% less shared memory stores are performed.

8.4.3 Performance evaluation
The speedup for the entire application when using the fastest PCR and the
fastest CR-PCR implementations are shown in Table 8.25.

Method Duration Speedup Bandwidth Gflops
CPU 5.534 s
S24 PCR 0.168 s 32.9x 47.62 GB/s 16.46 Gflops
S24 CR-PCR 0.130 s 42.6x 61.54 GB/s 21.27 Gflops

Table 8.25: Comparing execution time of the CPU against S24PCR with
shared memory and S24CR−PCR with shared memory on a
256×256 grid over 100 time steps.

Clearly, this is a significant speedup for such a small system even though the
effective bandwidth when using the CR-PCR solver is only 37.6% of the theo-
retical value.

The reason why we for the 2nd method (S2) is capable of achieving such
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high speedups for small system sizes compared to the 1st method (S1), is simply
because we have added more parallelism and thereby divided the work into much
more threads. Hence we can better utilize the TLP and thereby increase the
performance. The execution time for all the different parallel solvers is shown
in Figure 8.15.
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Figure 8.15: Effective bandwidth for all the different parallel solvers.

It is clear that the CR-PCR hybrids outperform the PCR and that using
shared memory is very beneficial. It should also be noticed that the CR-PCR
implementation is not limited by the shared memory size like the PCR approach.
This is due to the smaller amount of vectors we allocate, because we now only
have to allocate 5 vectors (amo, bmo, cmo, dma and dmo). Thus each vector can
contain 48 kB/(8 · 5) = 1,228 double elements per vector. So we are back to the
limit of a 1024 × 1024 system size, since the maximum amount of threads per
block is 1024. In figure 8.16 is the effective bandwidth for the different solvers
shown.
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Figure 8.16: Effective bandwidth for all the different parallel solvers.

We see that the solvers peak in performance already on a 256×256 system. This
is not that surprising because of the algorithms used. Since the PCR algorithm
(and CR-PCR because we only take a singe CR step) requires O (n log(n)) work
to be done and since it has to be performed n times for a sweep we end up
with a O

(
n2 log(n)

)
work per sweep. However, since we can solve the systems

in parallel the runtime is only O (log(n)) given we have n2 processors available.
This means that the bigger the system gets the more will our algorithm suffer
from lack of processors. This however could be made better for the hybrid
algorithm if it took some additional CR steps reducing the system to a size
where we would have enough processors to efficiently run the PCR algorithm.
This will, however, start causing a 2k way bank conflicts, where k is the number
of additional CR steps, if the updating for the elements are done in place. This
implies that even though we halve the work to do in each step, we double the
bank conflicts and no additional performance would be gained. Therefore, to
achieve the better performance it would be necessary to find a way to remove
those bank conflicts.

In [47], they simply choose to disregard the occurring bank conflicts in the
CR steps. Then to avoid bank conflict in the PCR steps they load the inter-
mediate system into a new array. In [13], they use a new array to store the
results from each CR steps and thereby avoid bank conflicts but at the cost of
more shared memory. These are both approaches that could be used to make
additional CR steps beneficial, but this will not be investigated further in this
project.



Chapter 9

Performance Results

In this chapter will the performance of the developed kernels be investigated in
further detail. This involves investigating the performance as a function of the
problem size, the optimal size of thread blocks for S1, the performance of the
two parallel methods and finally the impact in performances, when switching
from double- to single-precision on the two most optimized kernels. All tests are
performed with the test configurations described in 7.3.1 and in double-precision
when nothing else is stated.

9.1 Method 1
9.1.1 Block sizes
For S1 we have the option of varying the block size. Increasing the block size
will (if the system is large enough) allow for more resident threads on the mul-
tiprocessor, achieving better occupancy. However, when increasing the number
of threads per block one needs to solve a larger system to maintain enough
blocks to distribute over all multiprocessors. It is therefore not obvious what
the optimal block size is for a given problem size, but the size should always
be a multiple of 32 to achieve maximum warp utilization. To investigate the
performance differences for different block sizes is the optimized kernel, S14,
executed for different block and system sizes, see Figure 9.1
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Figure 9.1: The execution time for different block and system sizes.

Clearly varying the block size has very little impact on the performance. How-
ever, we see that smaller block sizes performs slightly better compared to the
larger blocks for all the system sizes. This is because we never hit the limit
of 8 resident blocks per multiprocessor even when our block size is only 32.
Thus increasing the block size does not imply better occupancy before we have
a larger system. Furthermore, smaller block sizes will give the GPU more free-
dom to distribute the blocks over the streaming processor array and thereby
even out the workload on each multiprocessor to insure that the GPU is as busy
as possible.

The block size of 32 and 64 threads performs almost identically. This means
auto tuning the device for optimal performance based on block size becomes
very easy. A block size of 64 can simply be used for all system sizes and achieve
high performance, since it is assumed to be the best for lager systems. For this
reason will all results from now be achieved using 64 threads per block.
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9.1.2 Performance test
For S1 is the problem size very important for the performance of the application.
Even if a block size of 32 is used, we still need at least a 512×512 system to
just have a single block per multiprocessor. For this reason, the application
clearly will perform better for larger systems. However, we are limited on the
problem size simply by the limited available DRAM memory on the hardware.
In Section 8.2.5.1 (8.2.6), we found that the optimized application, S1, could
calculate a 21% larger system without using more memory compared to the naive
application. For that reason will S14 be tested on larger systems compared to
the other; to verify that S14 can simulate larger systems and to illustrate that
the performance still increases for larger systems,

Figure 9.2 illustrates the execution time for all the S1 versions for three
chosen systems sizes and the C implementation.
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Figure 9.2: Execution time for three chosen systems sizes 2048×2048,
2560×2560 and 3008×3008 using approach S1 and the C im-
plementation.

We see that the CPU execution time is extremely high compared to all the
different parallel implementations. In fact, the difference is so large that we al-
most cannot see the executions time of the parallel implementations. For better
illustration are the speedups for the different optimization steps as function of
the problem size shown in Figure 9.3.
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Figure 9.3: Speedup of all S2 implementations.

As expected, we see that the speedup increases as the problem size increases and
that each performed optimization step have resulted in a performance increase.
We achieve a speedup of more than 80x compared to the C implementation for
problem size 3008×3008 for S14. Thus we can run a simulation in one hour,
where before it was necessary to wait 80 hour to obtain the same results. Or
put in another way, we can solve a 3008×3008 system twice as fast as the CPU
can solve a 512×512 system. For S14 we also see that one can simulate larger
systems compared to naive versions.

In Figure 9.4 is the achieved effective bandwidth illustrated as a function of
the system size.
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Figure 9.4: Effective bandwidth of all S2 implementations.

We obtain better bandwidth utilization as the system size is getting larger.
E.g., for a problem size of 3008×3008 we achieve 103 GB/s, which is about
63% utilization of the theoretic bandwidth, while the bandwidthTest obtain
80% utilization. Thus we utilize the available bandwidth on the GPU fairly
good and it is obviously the available bandwidth which limits the performance.
The drop in performance for S14 around system size 3072×3072 is due to the
non-uniform work distribution, as described later.

For the CPU, one can see a plain effective bandwidth. In fact, it drops for
larger systems due to the memory hierarchy on the host.
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Figure 9.5 illustrates the scaling of the execution time for the CPU and S14

in a log-log plot together with O(n) and O(n2). Recall that the gradient of a
polynomium is the slope in a log-log plot. As expected, we see that the CPU
scales quadratic and S14 scales linearly. This is expected, since the sequential
C implementation run through all grid points one by one by using a nested for

-loop. On the other hand the parallel solution scheme, S14, run through all the
grid points in linear time given n processor, where n is either the number of rows
or column in the system. This is analogue to what is seen in both Figure 9.3 and
9.4 for S14. For systems size 32×32 to 1024×1024, are not all multiprocessors
doing work, because there are not enough blocks/threads. Therefore, when
increasing the system size in this interval, we actually just distribute more work
to processors that before did not work. This verifies that it should scale linearly,
since only the increased workload per block will influence the execution time.

For system size 1024×1024 and up to 2048×2048 we see the slope decreases
a bit and again from 2048×2048 and so forth. However, we still obtain linear
scaling, although we cannot add the more work to new processors. The reason
why this is possible is due to one of the many advantages with parallel program-
ming on the GPU, namely latency hiding. It is simply possible for the GPU (the
multiprocessors), with more work, to hide the latency and thereby maintain the
linear scaling.

It is obviously not possible for the GPU to keep this forever. There is a
limit to the amount of work, which can be performed at no extra cost. This
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is also why we see the slope decreasing more and more for both the effective
bandwidth and speedup and thereby it starts scaling ”less linearly” as shown in
the end of Figure 9.5. When S14 simulates the largest systems one can also see
that it is difficult for the GPU to hide the extra work. We get a performance
drop at 3200×3200. The difference between that system size and 3072×3072
is the non-uniform work distribution over the streaming processor array. For a
3072 system all multiprocessors have 3 blocks each, but for a 3200 system there
are 2 more blocks. Thereby there are two multiprocessors which have 33% more
work than the others. Thus at some point in time the available resources on
the GPU will not be fully utilized. Consequently, the drop in performance will
happen when the work is not evenly distributed over the streaming processor
array and the impact will be more significant for larger system sizes. However,
the performance still increases, which indicates that we have not peaked yet,
but after all will the performance increasing be less compared to the smaller
system sizes.

The performance limit for this application was found in Chapter 2 and Sec-
tion 7.2.1. Here we saw that the application was memory bounded, rather than
compute bounded or bounded by a low parallel fraction. Thus we cannot con-
tinue with linear scaling, since the threads cannot calculate faster than they
transfer data. Hence it behave as expected.
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9.2 Method 2
For S2 the block size is always equal to the system size and therefore it cannot
be varied for a given system. This method has also a limit on the problem sizes
which can be solved, yet it is not due to the memory size as it was for S1, but
the fact that the maximum block size on the Fermi architecture is 1,024 threads
per block.

9.2.1 Performance test
Running the different S2 versions we achieve the speedups shown on Figure 9.6
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Figure 9.6: Speedup of all S2 implementations.

We see that the naive version and S22 have almost no speedup, especially when
the problem size just gets a little larger. This shows how important it is to
have a parallel implementation of the LcElim and the solver. The two other
versions achieve quite high performance and S24crpcr achieve a peak of 42x
speedup and an effective bandwidth of 66 GB/s, which is 41% of the theoretical
bandwidth.
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Figure 9.7: Effective bandwidth of all S2 implementations.

We see a performance drop when testing for systems larger than 512×512. As
described in Section 8.3.4, we have to use the compiler option −maxrregcount
when solving systems larger than 668×668, because of the large amount of
registers used by xBuild. This however turns out to limit the performance due
to register spilling into local memory. When profiling xBuild24 for a 756×756
system, we get the counters shown in Table 9.1

Method xBuild24

L1 local load hit 378,268
L1 local load miss 297,276
L1 local store hit 29,032
L1 local store miss 703,664
instruction issued 15,119,170
L2 query read 3,903,097
L2 query write 3,049,300
gld request 598,928
gst request 90,720

Table 9.1: Profile counters for xBuild in S24.

From these values we can calculate the impact on the memory throughput by
comparing L1 local load miss count to global load and store memory count:
(gld request + gst request)/(2 · L1 local load miss). This implies a lot of traffic
to global memory is due to spills, since the ratio of global memory to local
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memory bus traffic is approximately 1.16 : 1. Thus almost half the traffic to
global memory is due to register spills. On top of that, half of the spilling can
not be contained in the L1 cache due to the 56% local L1 hit rate. Unfortunately
there are not much to do about this, since we have not been able to reduce the
number of registers used by each thread, non-caching by turning off the L1
cache does not help and we have already increased the L1 cache to 48 kB. The
performance of xBuild24 is shown in Figure 9.8
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Figure 9.8: Effective bandwidth for xBuild24.

But even with the register spill, we still get a decent performance. Further
with the new Kepler architecture from NVIDIA are there a lot more registers
available per thread so this will no longer be an issue.

Another reason for the performance decrease for systems larger than 512×512
is the complexity of the solver as described in Section 8.4.3. Thus we see that
the little performance drop for building the system due to the register spills is
not the main issue of the lower performance for the application.
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9.3 Merged Methods
It is clear that the performance of S1 and S2 peak in very different places. S1
performs well for large systems and S2 for small systems. This motivates to
compare how the performance curve would look if we merged the two methods
and thereby made it possible to simply switch between these two methods when
it is beneficial. The speedup compared to the C implementation for the fastest
S1 and S2 application is shown in Figure 9.9.
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Figure 9.9: Speedup for S14 and S24 against the CPU.

The figure shows how well the two methods compliment each other. Just when
S2 reaches the system size limit, S1 almost continuously takes over. This means
that all system sizes between 128 and 3584 can be computed with these two
methods with a speedup of minimum 35x and a maximum of 82x. This il-
lustrates that developing these two different parallel approaches have not been
for nothing, since one can apply the most suitable approach depending on the
system size.

The quality that we can obtain good performance on all system sizes, is
a very nice feature, that makes the application more robust. Notice that all
these speedups are obtained with an error less than 10−12 compared to the C
implementation and thereby compared to MIKE 21 HD.
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9.4 Brief study of performance with single-
precision

As motivated in Section 8.2.5, we will briefly investigate how the applications
perform when all calculations are done in single- instead of double-precision
floating point operations. Thus investigating the impact on GPGPU program-
ming with these two data types.

To enable the opportunity of switching between single- and double-precision
for either the host or device code in compile time, we have specified a macro
identifier by using #define. On a modern CPU, calculation in single- or double-
precision will almost take the same processing time. On a GPU are there still
a big performance difference. Furthermore, float takes up only half the space
compared to doubles, which implies that S1 can compute even larger systems.
In fact, we can compute a system of size 5179×5179, as described in Section
8.2.5.1. In Figure 9.10 the speedup for both float and double of the two
methods are illustrated.
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Figure 9.11: Effective bandwidth of S14 and S24 in single- and double-
precision.

When using the data type float, it is important to switch the pow() and
sqrt() functions in SetMO to single-precision functions instead, otherwise a lot
of the performance would be lost. In fact, calling the heavyweight function
pow() is more expensive than calling two sqrt() functions! Further are the
application compiled with the following compiler options and flags

−use_fast_math fast, but less precise math functions.
−ftz=true flush denormalize numbers to zero.
−prec−div=false fast, but less precise division.
−prec−sqrt=false fast, but less precise square root.

We see that switching to float really has an impact on the performance! We
now reach a maximum speedup for S1 of 203x and for S2 of 145x, and S14 can
solve much larger system sizes. S14 can now solve problems that before took
7 days with MIKE 21 HD in less than 50 min! We also utilize the available
bandwidth a lot better with a peak for S1 of 130 GB/s and for S2 101 GB/s,
which is 81% and 62% of the theoretical bandwidth on the NVIDIA GeForce
GTX 590.

We see that the impact when solving in single- and double-precision is huge.
For S14 we see that for a 3072×3072 system size it goes from a speedup of
82x to 150x, i.e., nearly twice as fast. The single-precision version of S24 reach
145x speedup compared to 42x for a 512×512 system, i.e., 3.5x faster. We do
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not obtain 6x faster code due to the single- and double-precision floating point
performance (see Section 7.3), as mentioned, because the application are limited
by the bandwidth. The reason the speedup is higher than 2x is that the kernel
benefit from more than just the reduced size of global transfers though lower
register pressure, smaller amount of shared memory needed etc..

For S1 it still seems to be able to get even higher speedups if more memory
were available. Even though S2 now uses a lot less registers and therefore no
longer spills into local memory, we still see a drop at the end. This is due to the
solver as described in Section 8.4.3. Now there is a performance gab between
the two approaches. Thus if a system is slightly larger than 1024×1024 will only
a speedup of 65x be achieved compared to 133x speedup, when a system smaller
than 1024×1024 is executed. This is unfortunate, but we will not further try to
improve this in this project.

Even though this really is an amazing performance boost it comes with a price.
Obviously, when switching to float the precision drops simply because float
is less accurate. In our tests the maximal error that has been recorded was on
the 10−5 position. However, the error must be assumed to accumulate for more
time steps, which also is what we experience. On the other hand, the error
seems to be independent of the system size.

If DHI are interested in achieving this higher performance at the cost of some
precision, a more thorough study of the error must be accomplished. Further,
applying mixed-precision iterative refinement, as described in [13], could be
performed, to achieve better performance and more accuracy on the GPU. Than
executing the application implemented entirely in double- or single-precision,
respectively. This implies that it is up to the user if it would be reasonable to
sacrifice some precision to achieve better performance.



Chapter 10

Conclusion

In this project it has been shown that an efficient parallel solution scheme can
be formulated for MIKE 21 HD and that the simulation speed can be dras-
tically improved by using a GPU to accelerate the application. Two different
approaches have been used to parallelize the solution scheme of MIKE 21 HD.
The 1st method utilize that each tri-diagonal system can be build and solved in-
dependently, while the 2nd method also build and solve each tri-diagonal system
in parallel.

Both approaches showed great performance increase compared to the se-
quential C implementation of MIKE 21 HD with a maximum of 42x and 80x
speedup in double-precision and 145x and 203x speedup in single-precision for
the two approaches respectively. For comparison can a 3072×3072 system be
solved in double-precision on the GPU twice as fast as a 512×512 system on the
CPU.

As a result of the two different approaches it is possible to obtain high perfor-
mance even for small system sizes. However, for small systems it was necessary
to apply a different solver algorithm than the Thomas algorithm in order to
add enough parallelism and thereby utilize the hardware. We found that the
hybrid approach of taking a single cyclic reduction step before switching to
parallel cyclic reduction resulted in the highest performance of the investigated
algorithms.

It is shown that the two developed approaches complement each other nicely,
since the 2nd method is beneficial for small systems, while the 1st method is
beneficial for larger system. Hence it is possible to apply the most advantageous
method depending on problem size and thereby obtain a robust auto tuning of
the application.
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All results in the project can be obtained with a GPU which costs around 500$
and therefore no expensive hardware is necessary.

All results are validated against a sequential representative C implementation
of MIKE 21 HD. Developing the C application turned out to be a very extensive
task due to the size and complexity of MIKE 21 HD. For this reason has a larger
part of the project, than estimated, been spend on understanding MIKE 21 HD
and implementing the C application.

Conclusively, DHI will without a doubt be able to achieve a significant improve-
ment in simulation speed and solve much larger systems in a reasonable amount
of time, by using the applications developed in the project. The results are in
fact far greater than expected by DHI at the beginning of the project. Hence
we have developed an efficient GPU-accelerated MIKE 21 HD solver for shallow
water fluid flow equations, which can be incorporated into the existing MIKE
21 HD application.



Chapter 11

Further Research

The subject of this report is far more extensive than the scope of the project.
Therefore, there is a lot of interesting possibilities for further research. Some of
these aspects are described in this chapter.

As mentioned, MIKE 21 HD is a large and complex application, thus it was not
possible to implement all the features of MIKE 21 HD in this project. An obvious
next step would therefore be to add more of this complexity and investigate how
it will affect the performance of the parallel application.

To have the opportunity to follow the water movements through all the inter-
mediate time steps one will need to transfer data between host and device a
lot of times. Because of the low bandwidth this would increase the execution
time. However, using asynchronous transfers should make it possible to transfer
all the intermediate time steps without increasing execution time. This means
simply calculating next step while previous time steps is transferred back to the
host memory.

In Section 9.4 it was shown how significant a performance increase could be
obtained by switching from double- to single-precision. It would be interesting
to further investigate how the decrease in precision influences the error of the
application and if this could be minimized by applying mixed-precision iterative
refinement.

The parallel CUDA C application is implemented such that the host (CPU) runs
a for-loop over the time steps calling; two build, two solve and 14 transpose
kernels each time step. The overhead from calling these kernels could be sub-
stantial. Therefore, it would be interesting to investigate how the application



128

will perform if only one kernel, execute the entire simulation. This means that
calling both sweeps and loop over the time steps, will all be performed on the
device (GPU). This will additionally make it possible to reduce global memory
transfers by using shared memory to store the intermediate tri-diagonal system.

The hybrid CR-PCR algorithm showed significantly speedups compared to the
other implemented solvers. However, this application could be further optimized
as discussed in Section 8.4.2.

On the Fermi architecture it is possible to launch multiple kernels simultane-
ously. This implies that different systems could be simulated on the GPU si-
multaneously and in that way better utilize the hardware. It could therefore be
interesting to investigate how fast multiple systems could be handled compared
to MIKE 21 HD.

The two parallel approaches, developed in this project, have their different pros
and cons. Therefore, combining these two approaches into a hybrid version and
investigating how it would perform could be very interesting. This could involve
building the system using one approach and solving it using the other.

When DHI realises how large systems can be simulated in a short amount of
time, it would be reasonable to expect, that they want to simulate even larger
systems. The two developed approaches are limited by the system size on the
device memory, since all arrays are needed to be located on the device, which
are very small compared to the host memory. Therefore, approaches where not
all values are needed at once or where several GPUs are used to execute the
application would be interesting to investigate further.



Appendix A

Nomenclature

Symbol Decription In this project
h(x,y,t) water depth, i.e. h = ζ − d, [m]
d(x,y,t) ground surface elevation (bathymetry),

[m]
is constant

ζ(x,y,t) water surface elevation, [m]
p(x,y,t),q(x,y,t) flux densities in x- and y-directions,

[m3/s/m]. Basically fluid velocity in
the given direction times water surface
elevation

C(x,y) Chezy resistance, [m1/2/s]
M Manning coefficient, unit less set to 32
g acceleration due to gravity, [m/s2] 9.81
f(V ) wind friction factor set to zero
V, Vx, Vy(x,y,t) wind speed and components in x- and

y-directions, [m/s]
set to zero



130

Ω(x,y) Coriolis parameter, latitude dependent,
[s−1]

set to zero

pa(x,y,t) atmospheric pressure, [kg/m/s2] set to constant
τxx, τxy, τyy components of effective shear stress set to constant
x, y Cartesian coordinates, [m]
t time, s
∆x, ∆y grid distance in x- and y-direction, [m]
j, k index in x- and y-direction, thus j is the

jth column and k is the kth row

Table A.1: Nomenclature
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Platforms Specification

Here are listed specifications of the used test environments. The key values are
taking from the platforms, deviceQuery from NVIDIA CUDA SDK C/C++
and from [29, tab. F-2], where further Fermi architecture specifications can be
found.

Test Environment
CPU Intel(R) Xeon(R) E5620 @ 2.40GHz
Cache size 12288 kB
Cores 4
Max Memory Bandwidth 25.6 GB/s
RAM 12 GB
GPU NVIDIA GeForce GTX 590 (2x GF110 chip)
Operating system Ubuntu 10.04.4 LTS (x86_64 GNU/Linux)
CUDA Driver/Runtime Version 4.1/4.1
NVIDIA Visual Profiler Version 4.1
CUDA Occupancy Calculator Version 2.4

Table B.1: Specifications of test environment.
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NVIDIA GeForce GTX 590
Chip 2x GF110
Compute Capability 2.0
RAM (GDDR5) 1,536 MB
Multiprocessors 16
CUDA Cores 512
GPU Clock Speed 1.22 GHz
Memory Clock rate 1707.00 Mhz
Memory Bus Width 384-bit
Memory bandwidth 163.87 GB/s
Performance(single-precision) 1244.15 Gflops
Support host page-locked memory mapping Yes
Device has ECC support enabled No
L2 Cache Size 768 kB
Maximum amount of shared memory per multiprocessor 48 kB
Number of 32-bit registers per multiprocessor 32,768
Maximum dimensionality of grid of thread blocks 3
Maximum dimensionality of thread block 3
Maximum x-, y-, or z-dimension of a grid of thread blocks 65535
Maximum x- or y-dimension of a block 1024
Warp size 32
Maximum number of resident blocks per multiprocessor 8
Maximum number of resident warps per multiprocessor 48
Maximum number of resident threads per multiprocessor 1536
Number of shared memory banks 32

Table B.2: Specifications of GPU NVIDIA GeForce GTX 590 used in
tests.

DHI Test Environment
CPU Intel(R) Core(TM) i3-2120 @ 3.30 GHz
Cache size 3072 kB
Cores 2
Max Memory Bandwidth 21 GB/s
RAM 8 GB
Operating system Windows 7 (64-bit)
Profiler AQtime Standard, Version 7.40.800.647

Table B.3: Specifications of DHI test environment.



Appendix C
Project Description Provided

by DHI

Here are given the original project description provided by DHI.



 

DHI – Water Environment Health – www.dhigroup.com  

 

 

WATER WAVE DYNAMICS: 2D FLOW EQUATIONS ON A GPU 

DHI uses a 2D free-surface flow numerical engine to simulate water movement in lakes, 

estuaries, bays, coastal areas and seas, based on rain, tidal variation, wind etc. Applications 

include prediction of tidal hydraulics, wind and wave generated currents, storm surges, waves 

in harbours, dam-breaks and tsunamis. The DHI product used for these simulations is called 

MIKE 21. 

 
Figure: Map, bathymetry and flow field from a MIKE 21 model 

 

Project 
MIKE 21 solves the shallow water equation on a rectangular grid, using a finite difference 

method. The solution scheme is ADI (Alternating Direction Implicit), which solves the equations 

for one column or row at a time, in an alternating order. 

 

The goal of the project is to formulate a parallel solution scheme for MIKE 21 and implement it on a 

GPU. The expected outcome is an improvement in simulation speed.  

 

The impact will be significant, especially for optimization settings where it is necessary to run several 

hundred simulations. A drastic improvement in simulation speed has the potential to change the type of 

optimization problems where MIKE 21 is applicable and thereby open new market segments for DHI. 

 

Prerequisites 
DHI will provide  

1) a detailed problem description, 

2) the shallow water equations, the discretization scheme and the current solution algorithm, 

3) the existing FORTRAN implementation, 

4) a skeleton code in c with data structures that follow the FORTRAN implementation. 

 

Based on the skeleton c code, a parallel solution must be implemented in c and converted to CUDA. At 

the end of the project it should be possible to incorporate the c/CUDA code into the existing MIKE 21  

FORTRAN code. 

 

Therefore, it is required that the student has c and CUDA skills. However, knowledge of water wave 

dynamics or FORTRAN is not required. 



Appendix D

Bandwidth Test

Here are listed results from executing the bandwidthTest provided by NVIDIA
CUDA C/C++ SDK Code Samples, with pageable and pinned memory alloca-
tion.

Listing D.1: Execution of bandwidthTest
1 s093053@gpulab04:/usr/local/cuda−4.1/sdk/C/bin/linux/release$ ./

bandwidthTest −−memory=pageable
2 [bandwidthTest] starting...
3

4 ./bandwidthTest Starting...
5

6 Running on...
7

8 Device 0: GeForce GTX 590
9 Quick Mode

10

11 Host to Device Bandwidth, 1 Device(s), Paged memory
12 Transfer Size (Bytes) Bandwidth(MB/s)
13 33554432 5310.4
14

15 Device to Host Bandwidth, 1 Device(s), Paged memory
16 Transfer Size (Bytes) Bandwidth(MB/s)
17 33554432 4218.4
18

19 Device to Device Bandwidth, 1 Device(s)
20 Transfer Size (Bytes) Bandwidth(MB/s)
21 33554432 132865.6
22

23 [bandwidthTest] test results...
24 PASSED
25

26 > exiting in 3 seconds: 3...2...1...done!
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27

28 s093053@gpulab04:/usr/local/cuda−4.1/sdk/C/bin/linux/release$ ./
bandwidthTest −−memory=pinned

29 [bandwidthTest] starting...
30

31 ./bandwidthTest Starting...
32

33 Running on...
34

35 Device 0: GeForce GTX 590
36 Quick Mode
37

38 Host to Device Bandwidth, 1 Device(s), Pinned memory
39 Transfer Size (Bytes) Bandwidth(MB/s)
40 33554432 5797.3
41

42 Device to Host Bandwidth, 1 Device(s), Pinned memory
43 Transfer Size (Bytes) Bandwidth(MB/s)
44 33554432 6237.4
45

46 Device to Device Bandwidth, 1 Device(s)
47 Transfer Size (Bytes) Bandwidth(MB/s)
48 33554432 132841.8
49

50 [bandwidthTest] test results...
51 PASSED
52

53 > exiting in 3 seconds: 3...2...1...done!



Appendix E
Source Code to Performance

Test

Here are listed the source code, which is used when testingthe peak computa-
tion rate in single- and double-precision. The code test a lot of multiply-add
operations.

Listing E.1: Source code used when testing performance
1 /*
2 * Copyright 1993−2007 NVIDIA Corporation. All rights reserved.
3 *
4 * NOTICE TO USER:
5 *
6 * This source code is subject to NVIDIA ownership rights under U.S. and
7 * international Copyright laws. Users and possessors of this source

code
8 * are hereby granted a nonexclusive, royalty−free license to use this

code
9 * in individual and commercial software.

10 *
11 * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
12 * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
13 * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
14 * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE.
16 * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT,

INCIDENTAL,
17 * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS
18 * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE
19 * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
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USE
20 * OR PERFORMANCE OF THIS SOURCE CODE.
21 *
22 * U.S. Government End Users. This source code is a "commercial item"

as
23 * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
24 * "commercial computer software" and "commercial computer software
25 * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT

1995)
26 * and is provided to the U.S. Government only as a commercial end item.
27 * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202−1 through
28 * 227.7202−4 (JUNE 1995), all U.S. Government End Users acquire the
29 * source code with only those rights set forth herein.
30 *
31 * Any use of this source code in individual and commercial software

must
32 * include, in the user documentation and internal comments to the code,
33 * the above Disclaimer and U.S. Government End Users Notice.
34 */
35

36 /*
37 This sample is intended to measure the peak computation rate of the

GPU in GFLOPs
38 (giga floating point operations per second).
39

40 It executes a large number of multiply−add operations, writing the
results to

41 shared memory. The loop is unrolled for maximum performance.
42

43 Depending on the compiler and hardware it might not take advantage
of all the

44 computational resources of the GPU, so treat the results produced by
this code

45 with some caution.
46 */
47

48 #include <stdlib.h>
49 #include <stdio.h>
50 #include <string.h>
51 #include <math.h>
52

53 #include <cutil.h>
54

55 #define NUM_SMS (24)
56 #define NUM_THREADS_PER_SM (384)
57 #define NUM_THREADS_PER_BLOCK (192)
58 #define NUM_BLOCKS ((NUM_THREADS_PER_SM / NUM_THREADS_PER_BLOCK) *

NUM_SMS)
59 #define NUM_ITERATIONS 32
60

61 // 128 MAD instructions
62 #define FMAD128(a, b) \
63 a = b * a + b; \
64 b = a * b + a; \
65 a = b * a + b; \
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66 b = a * b + a; \
67 a = b * a + b; \
68 b = a * b + a; \
69 a = b * a + b; \
70 b = a * b + a; \
71 a = b * a + b; \
72 b = a * b + a; \
73 a = b * a + b; \
74 b = a * b + a; \
75 a = b * a + b; \
76 b = a * b + a; \
77 a = b * a + b; \
78 b = a * b + a; \
79 a = b * a + b; \
80 b = a * b + a; \
81 a = b * a + b; \
82 b = a * b + a; \
83 a = b * a + b; \
84 b = a * b + a; \
85 a = b * a + b; \
86 b = a * b + a; \
87 a = b * a + b; \
88 b = a * b + a; \
89 a = b * a + b; \
90 b = a * b + a; \
91 a = b * a + b; \
92 b = a * b + a; \
93 a = b * a + b; \
94 b = a * b + a; \
95 a = b * a + b; \
96 b = a * b + a; \
97 a = b * a + b; \
98 b = a * b + a; \
99 a = b * a + b; \

100 b = a * b + a; \
101 a = b * a + b; \
102 b = a * b + a; \
103 a = b * a + b; \
104 b = a * b + a; \
105 a = b * a + b; \
106 b = a * b + a; \
107 a = b * a + b; \
108 b = a * b + a; \
109 a = b * a + b; \
110 b = a * b + a; \
111 a = b * a + b; \
112 b = a * b + a; \
113 a = b * a + b; \
114 b = a * b + a; \
115 a = b * a + b; \
116 b = a * b + a; \
117 a = b * a + b; \
118 b = a * b + a; \
119 a = b * a + b; \
120 b = a * b + a; \
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121 a = b * a + b; \
122 b = a * b + a; \
123 a = b * a + b; \
124 b = a * b + a; \
125 a = b * a + b; \
126 b = a * b + a; \
127 a = b * a + b; \
128 b = a * b + a; \
129 a = b * a + b; \
130 b = a * b + a; \
131 a = b * a + b; \
132 b = a * b + a; \
133 a = b * a + b; \
134 b = a * b + a; \
135 a = b * a + b; \
136 b = a * b + a; \
137 a = b * a + b; \
138 b = a * b + a; \
139 a = b * a + b; \
140 b = a * b + a; \
141 a = b * a + b; \
142 b = a * b + a; \
143 a = b * a + b; \
144 b = a * b + a; \
145 a = b * a + b; \
146 b = a * b + a; \
147 a = b * a + b; \
148 b = a * b + a; \
149 a = b * a + b; \
150 b = a * b + a; \
151 a = b * a + b; \
152 b = a * b + a; \
153 a = b * a + b; \
154 b = a * b + a; \
155 a = b * a + b; \
156 b = a * b + a; \
157 a = b * a + b; \
158 b = a * b + a; \
159 a = b * a + b; \
160 b = a * b + a; \
161 a = b * a + b; \
162 b = a * b + a; \
163 a = b * a + b; \
164 b = a * b + a; \
165 a = b * a + b; \
166 b = a * b + a; \
167 a = b * a + b; \
168 b = a * b + a; \
169 a = b * a + b; \
170 b = a * b + a; \
171 a = b * a + b; \
172 b = a * b + a; \
173 a = b * a + b; \
174 b = a * b + a; \
175 a = b * a + b; \
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176 b = a * b + a; \
177 a = b * a + b; \
178 b = a * b + a; \
179 a = b * a + b; \
180 b = a * b + a; \
181 a = b * a + b; \
182 b = a * b + a; \
183 a = b * a + b; \
184 b = a * b + a; \
185 a = b * a + b; \
186 b = a * b + a; \
187 a = b * a + b; \
188 b = a * b + a; \
189 a = b * a + b; \
190 b = a * b + a; \
191

192 __shared__ float result[NUM_THREADS_PER_BLOCK];
193

194 __global__ void gflops()
195 {
196 float a = result[threadIdx.x]; // this ensures the mads don't get

compiled out
197 float b = 1.01f;
198

199 for (int i = 0; i < NUM_ITERATIONS; i++)
200 {
201 FMAD128(a, b);
202 FMAD128(a, b);
203 FMAD128(a, b);
204 FMAD128(a, b);
205 FMAD128(a, b);
206 FMAD128(a, b);
207 FMAD128(a, b);
208 FMAD128(a, b);
209 FMAD128(a, b);
210 FMAD128(a, b);
211 FMAD128(a, b);
212 FMAD128(a, b);
213 FMAD128(a, b);
214 FMAD128(a, b);
215 FMAD128(a, b);
216 FMAD128(a, b);
217 }
218 result[threadIdx.x] = a + b;
219 }
220

221 int
222 main(int argc, char** argv)
223 {
224 CUT_DEVICE_INIT(argc,argv);
225

226 // warmup
227 gflops<<<NUM_BLOCKS, NUM_THREADS_PER_BLOCK>>>();
228 CUDA_SAFE_CALL( cudaThreadSynchronize() );
229
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230 // execute kernel
231 unsigned int timer = 0;
232 CUT_SAFE_CALL( cutCreateTimer( &timer));
233 CUT_SAFE_CALL( cutStartTimer( timer));
234

235 gflops<<<NUM_BLOCKS, NUM_THREADS_PER_BLOCK>>>();
236

237 CUDA_SAFE_CALL( cudaThreadSynchronize() );
238 CUT_SAFE_CALL( cutStopTimer( timer));
239 float time = cutGetTimerValue( timer);
240

241 // output results
242 printf( "Time: %f (ms)\n", time);
243 const int flops = 128 * 2 * 16 * NUM_ITERATIONS * NUM_BLOCKS *

NUM_THREADS_PER_BLOCK;
244 printf("Gflops: %f\n", (flops / (time / 1000.0f)) / 1e9 );
245

246 CUT_SAFE_CALL( cutDeleteTimer( timer));
247 CUT_EXIT(argc, argv);
248 }
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