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Summary (English)

This thesis deals with probabilistic modelling of authors, documents, and topics
in textual data. The focus is on the Latent Dirichlet Allocation (LDA) model
and the Author-Topic (AT) model where Gibbs sampling is used for inferring
model parameters from data. Furthermore, a method for optimising hyper pa-
rameters in an ML-II setting is described.
Model properties are discussed in connection with applications of the models
which include detection of unlikely documents among scienti�c papers from the
NIPS conferences using document perplexity, and the problem of link predic-
tion in the online social network Twitter for which the results are reported as
Area Under the ROC curve (AUC) and compared to well known graph-based
methods.
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Summary (Danish)

Denne afhandling forsøger at give en beskrivelse statistiske modeller for doku-
menter, forfattere og emner i tekstdata.
Fokus er på Latent Dirichlet Allocation (LDA) og Author-Topic modellen hvori
Gibbs sampling er brugt som inferensmetode. Derudover er en metode til opti-
mering af hyperparametre blevet beskrevet.
Modellernes egenskaber bliver diskuteret i forbindelse med eksempler på brug
af modellerne. Disse eksempler omfatter detektion af usandsynlige dokumenter
i et korpus bestående af videnskabelige artikler fra NIPS konferencerne, og et
venne-anbefalingssystem i forbindelse med det sociale medie Twitter, inklusiv
sammenligning med graf-baserede metoder.
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Chapter 1

Introduction

Thanks to digitisation of old material, registration of new material, sensor data
and both governmental and private digitisation strategies in general, the amount
of data available of all sorts has been expanding and increasing for the last
decade. Simultaneously, the need for automatic data organisation tools and
search engines has become obvious. Naturally, this has lead to an increased
scienti�c interest and activity in related areas such as pattern recognition and
dimensionality reduction. The Internet has revolutionised the way people are
able to communicate and store and share information. Both in private and
public contexts.

A lot of the available data was and still is text. A typical text dataset consists
of a number of documents, which are basically lists of words. A widely used
group of models does not take the order in which the words appear in the doc-
uments into account. This assumption is often referred to as �bag-of-words�.
Many words, especially nouns and verbs that only seldom occur outside a lim-
ited number of contexts, have one speci�c meaning or at least only a few, not
depending on the position in the text. To capture the essence and describe the
topical aspects of a document collection, the bag-of-words assumption might be
acceptable. Of course, vital information about the speci�c meaning of the text
is lost in such a simpli�cation. The main advantages of bag-of-words models
are their simplicity in the description and obvious lack of dependency on word
order.
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The idea of analysing text data by deriving a representation in a lower dimen-
sional space of �topics� or �aspects� was followed by [DFL+88], who in the late
1980s proposed one of the most basic approaches to topic modelling, called LSA
or LSI. This method is based on the theory of linear algebra and uses the bag-of-
words assumption. The core of the method is to apply SVD to the co-occurrence
count matrix of documents and terms (often referred to as the term-document
matrix), to obtain a reduced dimensionality representation of the documents.

In 1999 Thomas Hofmann suggested a model called probabilistic Latent Seman-
tic Indexing (pLSI/pLSA) [Hof99] in which the topic distributions over words
were still estimated from co-occurrence statistics within the documents, but in-
troduced the use of latent topic variables in the model. pLSI is a probabilistic
method, and has shown itself superior to LSA in a number of applications, in-
cluding Information Retrieval (IR). Since then there have been an increasing
focus on using probabilistic modelling as a tool rather than using linear algebra.
According to Blei et al.[BNJ03], pLSI has some shortcomings with regard to
over�tting and generation of new documents. This was one of the motivating
factors to propose Latent Dirichlet Allocation (LDA) [BNJ03], a model that
quickly became very popular, and has since been widely used and modi�ed to
�t countless speci�c tasks within areas of IR, Data Mining, Natural Language
Processing (NLP) and related topics.

In contrast to the models relying on the bag-of-words data representation, an-
other major class of models based on speci�cally capturing the word order,
exists. These models are primarily applied within the �eld of natural language
processing, and thus focus more on the local structure and �ow of language.
Examples of such models are traditional language models based on bi- and tri-
grams and Hidden Markov Models in various forms. This �eld of research has
been very popular in the latest decades, and numerous extensions and combi-
nations of models have been developed and described. Examples of such com-
binations of traditional language models and topic models are [HG06] [Wal06]
[GH99] [GSBT05].

�Topic model� or �aspect model� are generic terms for models capable of describ-
ing data by means of discrete probability distributions over smaller components
forming the dataset. Thus it is worth mentioning that topic models are not
limited to analysis of textual data; they can and have also been used to de-
scribe various other types of data such as images, video, audio [LMD10] [WM09]
[RFE+06] [KNS09] [HGX09] ([BNJ03]). In other words, all kinds of data that
have an inherent grouping (the documents) of features (the words) having dif-
ferent statistical properties. One of the advantages of topic models over simpler
clustering models is the ability to model mixed membership of di�erent classes.

Working with topic models, there is no guarantee that the estimated topics are
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semantically meaningful to humans, and often this is not a criterion of success.
One is likely to be blinded by the desire to make the model �understand� the
data in a humanly comprehensible way even though it is most sensible that
performance is measured by the task for which the system is built.

Topic models have been applied to a huge variety of areas, and this thesis will
uncover some ground in the usage of topic models too. In the present work, I will
explore and discuss the properties of the LDA model and one of its derivatives,
the Author-Topic (AT) model [RZCG+10]. These models are fully generative,
meaning that new documents can be generated from the set of model parameters.
Multiple possible methods for parameter inference in the models exist. The most
popular are variational Bayes (VB) [BNJ03], collapsed VB [TNW07], collapsed
Gibbs sampling [GS04], expectation propagation (EP) [ML02] and belief prop-
agation [ZCL11]. In the recent years, a considerable amount of work has been
put into making the parameter estimation algorithms more e�cient, and several
papers dealing with parallelisation of existing inference techniques, and methods
for on-line inference, have been published [SN10, NASW09, YMM09, HBB10].

LDA and the AT model will be examined theoretically and tested using both
synthetic data, real world data from the NIPS conference, and data from the
on-line social network Twitter. In particular, this study will treat the AT model
in a setting of outlier-detection in document collections, i.e. discovering false
author attributions by measuring how likely it is that a particular document is
written by the stated author. A closely related task is to �nd authors that are
likely to have written a particular document. This can be used in the case of
missing author information and use of pseudonyms. Examples of this usage is
mentioned in [SSRZG04].

The other application of LDA and AT treated in this thesis is the task of link
prediction in the Twitter network. It can easily be realised that using solely topic
models for this task is inadequate and inferior to models also including overt
information such as the existing graph structure. This is particularly true for
huge networks, as there may exist many di�erent communities clearly separated
according to the graph structure, but having signi�cant topical similarities. For
the task of predicting future links, intra-community links might perform best,
whereas in the case of link recommendation systems, inter-community links will
help people to �nd and connect to people with similar interests. The data used
in this work consist of rather small sub-networks of the Twitter graph, thus
topical similarity might perform acceptably for the link prediction task as well.
Other works [PG11, PECX10] have focused on the use of LDA for link prediction
in the Twitter graph, and the contribution of this thesis will mainly be an
investigation of the usability of the AT model for this task. This is done by
augmenting the original tweet with extra author information from the tweet
itself, such as �@mention�s, �@reply�s and �retweet�.
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The analyses performed in this work should be seen as an attempt to explore
the in�uence on prediction performance, of di�erences between model structures
and settings of the models LDA and AT. This will act as a guideline to what
features are important when considering using topic models for predicting and
recommending new links, which is of considerable importance in many business
areas and in particular for on-line service providers. The results presented are
based on a quite small sample of data from Twitter, and thus this study will not
draw any conclusions regarding Twitter in general, but should merely be seen
as a pilot study.
All results presented in this thesis are generated using a basic collapsed Gibbs
sampling scheme. Section 4.1 includes exploratory analyses of the behaviour
of the Gibbs sampler for LDA under the conditions of varying sizes of training
corpora.

1.1 Related Work

As mentioned above, topic models and LDA in particular have been applied in
numerous research areas. Other work that deals with problems similar to outlier
detection includes usage examples of the AT model mentioned in [RZCG+10]
where examples of �nding unusual papers for authors in a scienti�c paper col-
lection, are given. Several papers describe methods for matching peer reviewers
to scienti�c papers by use of topic models. This includes early work using LSI
[DN92], and extensions of LDA like the author-persona-topic model [ACM07].
Another task for which topic models have been put to use is link-prediction or
network completion, i.e. the task of recovering the network structure from a
partly- or non-observed network. This �eld of research is �ourishing, as more
and more network data have been collected and also generated by means of the
Internet. Several approaches to this task use the observed part of the network
to predict the missing parts [CMN08, KL11, YHD11].
Weng et al. [WLJH10] uses LDA to show the existence of topical homophily in
Twitter user communities. This is crucial for the success of using topic models
for link prediction in the Twitter network.
[PG11] uses a pure topic model approach, using LDA to recommend new links
to users in the on-line social network Twitter. This approach is very similar to
this work, but is far less thorough.
Similar is also the work by [PECX10], studying the use of LDA for predict-
ing links in both the explicit follower graph in Twitter and a �message graph�
where edges are present if personal messages have been sent between two nodes.
[HD10] performs an empirical study of LDA and AT using Twitter data, exper-
imenting with the use of topic models for classi�cation of popular messages.
The Topic-Link LDA [LNMG09] combines information of the network structure
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and the content associated with the nodes in a single model used for predicting
links. A similar approach is taken by [NC08].
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Chapter 2

Datasets

This chapter contains information about the two real-world data sets used in
the experiments in this thesis.

2.1 NIPS Data Set

The NIPS dataset used in this work has been extracted from the Matlab data
�le nips12raw_str602.mat, obtained from http://cs.nyu.edu/ roweis/data/.
It contains 1740 documents written by 2038 di�erent authors, utilising a vocab-
ulary size of 13649 unique words. The total number of word tokens in the corpus
is 2,301,375. Sorted in descending order, the number of documents each author
has participated in writing, is shown in �gure 2.1. The dataset available is al-
ready preprocessed including removal of so called stop-words.
As there are more authors than documents the author-document assignment
matrix is quite sparse, which could make it hard to infer something about each
author.
There are minor errors in the NIPS dataset as also mentioned in [RZCG+10].
For instance, the two authors �Martin I. Sereno� and �Margaret E. Sereno� have
been mapped to the same author id �Sereno_M� (see �le: nips03/0320.txt).
This is the only error that has been corrected in the data used for this work.
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Figure 2.1: Number documents each of the authors have (co-)authored. Only
124 out of the 2038 authors have participated in writing more than
5 papers over a long period.

2.2 Twitter Dataset

The Twitter dataset used here consists of a snapshot of the graph [KLPM10],
and tweets collected in the last seven months of 2009 [YL11]. The dataset is
estimated to contain 20-30% of all tweets from that period.
Only 9447016 users that have written tweets are also present in the graph. This
means that this is the maximum number of nodes for which we have all three
types of information; tweets, graph, and userid/screenname correspondence,
and hence this is the dataset used in the thesis. The distribution of number of
tweets per user is very skewed, meaning that relatively few users have posted
thousands of tweets, while the majority have been far less active. See Figure
2.2 illustrating the distribution.
Figures 2.3 and 2.4 show all the users in a �number of followers�/�number of

followees�-coordinate system, and their corresponding number of tweets/posted
messages is given by the colour. Here the term �followee� denotes a user that is
being followed

To be able to handle, and model the data within a foreseeable time frame,
several sub-networks are extracted from the full dataset. As the data are going
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Figure 2.2: Number tweets each of the users have posted. 9078865 out of the
9447016 users have written less than 200 tweets in the time period
covered by the dataset.

to be used with topic model, to estimate di�erent authors topical preferences,
some minimum amount of data has to be available for each author. See section
2.2.1 detail about the sub graph extraction criteria.

2.2.1 Extracting Sub Graphs

Each sub-network is grown from a seed user. The seed users are limited to the
set of users ful�lling the following criteria:

1. min(cin, cout) > |cin−cout| : There has to be a some balance in the number
of inbound and outbound connections, denoted cin and cout respectively.

2. 5 ≤ cin < 500 and 5 ≤ cout < 500

3. has written more than 100 tweets.
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Each sub-network is grown from to include all nodes with a minimal link distance
to the seed node of less than 3, only including nodes that have written more
than 100 tweets and have less than 500 in- or out-bound connections. This can
be stated more formally:
Let X be a set of users and let z(X) be the union of all the sets of followers
of the users in X and all the sets of users who are followed by a user in X.
Furthermore, let κ(X,n) be a function that removes users, with less than n
published tweets, from X. An likewise, let ζ(X, c) be a function that removes
users with more than c in- or out-bound connections, from the set X. Then the
sub network N(S) grown from �seed set� S, only containing a single element
(the seed), can be de�ned as

N(S) = κ

(
ζ
(
z
(
ζ(z(S), c)

)
, c
)
, n

)
(2.1)

The cap on the number of connections c = 500 is set as an attempt to extract
networks with more personal relationships amongst the nodes. The idea of
setting a limit comes from Robin Dunbar's famous theory, that humans can only
maintain a certain number of stable social relations. [GPV11] have validated the
limiting phenomenon of Dunbar's number in the context of the social network
of twitter.
The minimum number of tweets is set to n = 100 to ensure that all nodes have
some minimal amount of data associated with it. The lenghts of the tweets of
the remaining authors are not checked, which means that there is a potential
risk that only n words are available for a speci�c author, and this will probably
produce a poor estimate of the particular author's distribution over topics, and
hence have a negative in�uence on the prediction of links to/from that particular
node. Furthermore, to be able to run the Gibbs sampling algorithm within an
acceptable time slot, only 10 networks consisting of less than 4000 nodes are
picked at random from the networks grown following the described criteria.
Table 2.1 shows information on the extracted sub-networks.

2.2.2 Text Pre-processing

As all other natural language, to the computer tweets are just lists of characters,
and thus have to be preprocessed to become available for models relying on a
representation of texts as word tokens. This process is called tokenisation. The
tweets used in this theses are passed through a tokeniser written by Christo-
pher Potts [Pot11]. The tokeniser recognises a number of entity types including
�emoticons� (multiple kinds of smileys), URLs, phone numbers, and dates.
To take up the least amount of characters in a tweet, URLs are often available
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Name Seed id NA Ncon
Ncon

Ncon+Nopen
Ntweets Ntokens

N1 46582416 869 18845 0.049967 526948 9077788
N2 32345729 874 10668 0.027963 363282 6434665
N3 46159288 822 12412 0.036784 475541 8411009
N4 16178300 1370 24689 0.026327 870147 16156280
N5 25770884 654 4952 0.023191 365288 6396972
N6 48242051 1522 30965 0.026752 848638 14454282
N7 56095948 604 1986 0.010906 611028 10775981
N8 34655473 1152 22866 0.034490 544111 9843801
N9 17915633 3193 89485 0.017560 1695477 29563299
N10 24557123 1179 24344 0.035056 673233 11913903

Table 2.1: Speci�c Sub-data-sets. �Seed id� is the o�cial Twitter user id of
the seed node from which the network is grown. All connections are
followed up to a distance of two levels of separation from the seed
node, excluding nodes with less than 100 tweets or more than 500
in- or out-bound connections. Ncon is the number of (undirected)
edges in the graph, and Nopen is the number of non-existing edges.
The number of possible connections in the graph is Ncon+Nopen =
Na∗(Na−1)

2 . Ntweets is the total number of tweets in the dataset,
and Ntokens is the total number of tokens in the tweets.

through shorter link-aliases, ending some kind of hash-code e.g. http://t.co/OKXHq3IH.
Everything after the top level domain-name of URLs is removed to avoid having
a lot of URLs appearing only once in the corpus. The top level domain-name
is kept e.g. http://t.co, as it might contain some information on the usage of
di�erent link-shortening-services.
All tokens appearing only once in the dataset are removed, and tweets that
have become empty in this process are removed from the corpus. Thus there is
no guarantee that all authors have at least 100 tweets in the corpus when the
pre-processing step is �nished.

2.2.3 Dataset Peculiarities

Most user names are shorter than 16 characters, but some user names are up to
20 characters in lenght even though the current limit for username length is 15
characters.
At least two user names contain a blank space character (�adam cary� and
�marie äilyñ�) although the current rules for username creation does not allow
this [Twi12].



12 Datasets

Figure 2.3: Each point in the plane corresponds to a speci�c user's number
of followers (horizontal axis) and the number of people the user is
following (the user's followees)(vertical axis). The colour denotes
the number of tweets posted by the user, thus it can be seen as a
measure of activity. Note that the colour scale is logarithmic. It
seems there are two characteristic modes in the data; people who
are extremely popular and are followed by thousands of people,
but who are only themselves following relatively few others. One
theory explaining this could be that these users are celebrities and
news media pro�les. The other obvious group of users have a
very well balanced follower/followee ratio, and a lot of the users
in this group have far more connections than could possibly be
maintained in a personal manner. Thus the user pro�les in the
upper part of this group are probably managed automatically in
some way, and programmed to follow back everybody who follows
them.
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Figure 2.4: Each point in the plane corresponds to a speci�c user's number of
followers (horizontal axis) and followees (vertical axis). The colour
denotes the number of tweets posted by the user, thus it can be
seen as measure of activity. Note that all scales are logarithmic.
Comparing to �gure 2.3, this �gure indicates that the density of
user pro�les with a balanced follower/followee ratio is higher than
in the �celebrity�-cluster along the horizontal axis. This e�ect is
seen even clearer in �gure 2.5.
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Figure 2.5: Small segment of a �ne grained 2D histogram of the number of
followers and number of followees. The bin size is 10. The colour
denotes the density of users in each bin (log scale). In this �gure,
one can still make out the diagonal cluster of user pro�les, but only
vaguely the horizontal. Furthermore, also a nearly vertical cluster
and a horizontal one, corresponding to users following 2000 others,
catch the eye. The horizontal cluster is supposedly people/robots
who have reached Twitter's follow limit, while the vertical is harder
to account for. One guess is that these users follow more people
than just their friends (for example news media and politicians)
but are themselves, to a large extent, only followed by their friends.



Chapter 3

Topic Model Theory

3.1 Latent Dirichlet Allocation

As mentioned in the introduction, topic models for text have been under con-
tinuous development for the past 20 years. And numerous di�erent types and
variations of models have been proposed. This section will present one very pop-
ular method, namely the Latent Dirichlet Allocation (LDA). It was proposed
by Blei et al. [BNJ03] as a fully generative alternative to the well known pLSI
[Hof99]. The term �fully generative� refers to the fact that in contrast to pLSI,
the description of LDA allows for generation of new documents.

Before describing the model itself, it is convenient to de�ne the notion of a
corpus. In the present work, a corpus W is a collection of D documents. The
order of the documents in the corpus is assumed to be insigni�cant. Each
document d consists of Nd word tokens, where the ith word is denoted wd,i.
As the �bag-of-words� assumption is used, also the order of the words in each
document is neglected. The vocabulary size of the corpus is denoted J .

The LDA model assumes that each document d can be described as a mixture of
T topics represented by multinomial distribution parametrised by θd. All these
individual document-topic distributions are assumed to be independent samples
from a Dirichlet distribution parametrised by α = [α1, α2, · · · , αT ]. Likewise,
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each of the T topics is assumed to be representable by a multinomial distribution
over J words parametrised by φt. These topic-word distribution parameters are
assumed to be independent samples from the a Dirichlet distribution with pa-
rameters β = [β1, β2, · · · , βJ ].
Each document d in a corpus is assumed to be generated in the following way.
For each word token wd,i, a corresponding latent topic variable zd,i is sampled
(independently) from the categorical distribution parametrised by θd. The sam-
pled topic decides which topic-word distribution to sample the actual word from:
wd,i ∼ Cat(φzd,i).
With the probability distributions for the variables de�ned as described above,
LDA can be represented using a probabilistic graphical model as shown in �g-
ure 3.1. This representation conveniently shows the conditional dependence
relations in the model in a compact way.
When using LDA one has to decide on a value for the number of topics T . This
choice will in most cases depend on the corpus analysed and the intentions of
the researcher. Also one has to decide on values for the hyper parameters α and
β. This choice should re�ect the assumptions about the data, as smaller values
will tend to express the document-topic and the topic-word distributions less
smoothly, thus approaching the maximum likelihood solution. In section 3.2.2,
a method for optimisation of the hyper parameters is described. The procedure
of performing maximum likelihood estimation of hyper parameters in an other-
wise Bayesian framework is commonly known as ML-II.

Figure 3.1: Graphical representation of the Latent Dirichlet Allocation model.
The model is represented using plates, describing the presence of
multiple instances of the variables shown in the plate. The number
in the corner of each plate denotes the number of instances of the
variables in the plate. The dark nodes represent variables that
are observed. φt ∼ Dir(β), θd ∼ Dir(α), zd,i ∼ Cat(θd), and
wd,i ∼ Cat(φzd,i)

3.1.1 Parameter Inference in LDA

This section will only brie�y cover the inference process of LDA, and the reader
is referred to section 3.2 where the Author-Topic model is treated in more
detail. The process is very similar, therefore only key results will be men-
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tioned here. The goal of applying LDA is often to infer the model parameters
Φ = [φ1,φ2, · · · ,φt] andΘ = [θ1,θ2, · · · ,θD] that best describe a given corpus.
Thus the target for the inference process is the following posterior distribution.

p(Φ,Θ|W,α,β) (3.1)

There is a variety of methods available for estimating (3.1). The original de-
scription by Blei et al. [BNJ03] uses Variational Bayes (VB) for making an
approximation the desired distribution. Minka and La�erty [ML02] propose a
method based on Expectation Propagation (EP) as a less biased alternative to
VB. The experiments in this thesis rely on a third technique called (collapsed)
Gibbs sampling. It is widely used in the literature regarding LDA and related
models [MWCE07, RZCG+10, GS04]. Gibbs sampling is a Markov chain Monte
Carlo algorithm where the chain is designed to converge to a particular joint dis-
tribution of interest. It does so by sampling from the conditional distributions of
each of the variables in turn, given all the remaining variables. An un-collapsed
Gibbs sampler would sample directly from the distribution p(Φ,Θ, z|W,α,β),
and then sum over the latent variables z. This would be a tedious job because
of the amount of variables to sample each iteration of the Gibbs sampler. The
trick to reduce the complexity of the sampling process is to integrate out Φ and
Θ and just sample to approximate∫ ∫

p(Φ,Θ, z|W,α,β)dΦdΘ = p(z|W,α,β) (3.2)

This is relatively simple because the Dirichlet distribution is conjugate to the
categorical/multinomial distribution. Details of the derivation (for AT) are
shown in section 3.2.1. The Gibbs sampling algorithm is now used to estimate
(3.2) by repeatedly sampling from the conditional

p(zdi = k|z−d,i,Wdi = w,W−di,α,β) (3.3)

This expression can be shown to be proportional to the following very simple
fraction

∝
(c−di

kw + βw)(v
−di
kd + αk)

(
∑J

j=1 c
−di
kj + βj)

(3.4)

where c−di
kw is the number of times the word w has been assigned to topic k,

excluding the count from the current sample (di). Likewise, v−di
kd is the number

of word tokens in document d assigned to topic k, again without including the
current sample in the count. (3.4) can be normalised to become proper discrete
probability distribution by dividing by the sum over k, and then a sample of the
topic of the ith word token in the dth document can be drawn. Again the user
is referred to section 3.2.1 for details of the derivation, although the presented
equations describe Gibbs sampling in the AT model which is very similar to
LDA.
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After having iterated through the corpus a reasonable number of times (see sec-
tion 4.1) a sample of the latent topic variables zs can be regarded as a sample
from the joint distribution of all the latent topic variables p(z|W,α,β). Be-
cause the Dirichlet distribution is conjugate to the categorical distribution, and
after observing the sample zs, the posterior distributions of φt and θd are also
Dirichlet distributions with parameter vectors ct + β and vd + α respectively.
Thus samples of φt and θd can be obtained using for instance the expected
values of the Dirichlet distributions:

E(θtd|zs,W,α) =
vstd + αt∑T

k=1 v
s
kd + αk

(3.5)

E(φtw|zs,W,β) =
cstw + βw∑J
j=1 c

s
tj + βj

(3.6)

where the superscript s denotes that the quantity is derived from the sample zs.

3.2 The Author-Topic Model

The Author-Topic model (AT) as described by [RZCG+10] is a modi�cation to
LDA, thus all the principles are the same, but are combined to have di�erent
meanings and descriptive capabilities. The topic-word distributions as presented
for LDA play the same role in AT. Instead of letting each document have a
distribution over topics, the AT model describes each author a as a categorical
distribution over topics parametrised by θa. Thus in LDA and the AT model,
documents and authors play similar roles.
The AT model assumes the following document generation process:
Each document has one or more observed (co-)authors, and each word in the
document is generated by picking a random author a, uniformly from the set of
coauthors, and picking a random topic t from Cat(θa), and a random word w
from Cat(φt). Figure 3.2 shows the probabilistic graphical model describing the
dependencies in the AT model. Looking at the structure of the model, we see
that a corpus where some authors have written multiple documents is equal to
a corpus where all documents with identical coauthor sets are concatenated, as
the words in these documents will all be generated from the same distributions.
This also means that LDA can be regarded as a special case of the AT model,
where every document has a single unique author, i.e the author is equal to the
document.
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Figure 3.2: Graphical representation of the Author-Topic model. The model
is represented using plates, describing the presence of multiple
instances of the variables shown in the plate. The number in
the corner of each plate denotes the number of instances of the
variables in the plate. The dark nodes represent variables that are
observed.

3.2.1 Parameter Inference in AT

Just as for LDA, it is possible to use choose between several di�erent inference
techniques with the AT model. Just as for LDA, Gibbs sampling has been
chosen, and the sampling equations turn out to be very alike.
The method can be characterised as a collapsed, block-Gibbs sampling scheme,
as we integrate out Φ and Θ and sample both topic zdi and author xdi at once.
The goal is to sample from the conditional distribution of the author- and topic-
assignment of the ith word token in the dth document, given all the other tokens
and their assignments.

p(zdi, xdi|w, z−di,x−di,α,β,A) (3.7)

Iterating through all the word tokens in a corpus, the gibbs sampling chain is
lead towards its stationary distribution: the joint distribution of the author and
topic assignments for all words.
We begin with the joint distribution of the random variables in the AT model
for a corpus of D documents, which can in accordance to the structure in the
model (also see. �gure 3.2) be written as

p(w,x, z,Φ,Θ|α,β,A)

= p(w|z,Φ)p(z|x,Θ)p(x|A)p(Φ|β)p(Θ|α)

=
N∏
i=1

φziwi

N∏
i=1

θzixi

D∏
d=1

(
1

NAd

)Nd K∏
t=1

Dir(φt|β)
NA∏
a=1

Dir(θa|α)

where A represents the author assignments of the documents (NA is the total
number of authors and NAd

is the number of coauthors of document d), N is
the number of word tokens in the corpus, and Nd is the number of words in
document d.
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Using the de�nition of the probability density function of the Dirichlet distri-
bution

=

 T∏
t=1

J∏
j=1

φ
ctj
tj

[ T∏
t=1

NA∏
a=1

θvta
ta

][
D∏

d=1

1

(NAd
)Nd

] T∏
t=1

C(β)

J∏
j=1

φ
βj−1
tj

[NA∏
a=1

C(α)

T∏
t=1

φαt−1
ta

]

where ctj denotes the number of times the jth word in the vocabulary is assigned
to topic t. Likewise, vta denotes the number of word tokens written by author
a, assigned to topic t.

C(q) =
Γ(
∑R

r=1 qr)∏R
r=1 Γ(qr)

where q = [q1, q2, · · · , qR] (3.8)

= C(β)TC(α)NA

[
D∏

d=1

1

(NAd
)Nd

] T∏
t=1

J∏
j=1

φ
ctj
tj φ

βj−1
tj

[ T∏
t=1

NA∏
a=1

θvta
ta θαt−1

ta

]

For convenience, a constant is de�ned as

G = C(β)TC(α)NA

D∏
d=1

1

(NAd
)Nd

p(w,x, z,Φ,Θ|α,β,A) = G

 T∏
t=1

J∏
j=1

φ
ctj+βj−1
tj

[ T∏
t=1

NA∏
a=1

θvta+αt−1
ta

]

Integrating out Φ and Θ we obtain the marginal conditional probability of the
words, the author- and the topic-assignments, given the hyper parameters and
the authors.

p(w,x, z|α,β,A) (3.9)

= G

∫∫  T∏
t=1

J∏
j=1

φ
ctj+βj−1
tj

[ T∏
t=1

NA∏
a=1

θvta+αt−1
ta

]
dΘdΦ (3.10)

= G

∫ T∏
t=1

J∏
j=1

φ
ctj+βj−1
tj dΦ

∫ T∏
t=1

NA∏
a=1

θvta+αt−1
ta dΘ (3.11)

= G

T∏
t=1

∫ J∏
j=1

φ
ctj+βj−1
tj dφ

NA∏
a=1

∫ T∏
t=1

θvta+αt−1
ta dθ (3.12)
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Now the integrals are proportional to integrals over the Dirichlet pdf, and by

multiplying by
(

C(ct+β)
C(ct+β)

)T (
C(va+α)
C(va+α)

)NA

= 1, (3.12) simpli�es to

= G
T∏

t=1

1

C(ct + β)

NA∏
a=1

1

C(va +α)
(3.13)

=
D∏

d=1

1

(NAd
)Nd

T∏
t=1

C(β)

C(ct + β)

NA∏
a=1

C(α)

C(va +α)
(3.14)

Observe that via Bayes' rule we can reformulate the conditional probability of
a single token:

p(zdi = k, xdi = u|w, z−di,x−di,α,β,A) (3.15)

=
p(zdi = k, xdi = u,wdi = h|z−di,x−di,w−di,α,β,A)

p(wdi = h|z−di,x−di,w−di,α,β,A)
(3.16)

where the denominator obviously is a constant with respect to (3.15), thus it
can be removed and the equality is changed to a proportionality:

∝ p(zdi = k, xdi = u,wdi = h|z−di,x−di,w−di,α,β,A) (3.17)

using Bayes' rule once again, (3.17) can be reformulated to

=
p(z,x,w|α,β,A)

p(z−di,x−di,w−di|α,β,A)
(3.18)

which in turn means that the conditional distribution that we seek, (3.15), is
proportional to (3.18). The numerator and the denominator are both of the
form (3.14) and the denominator only di�ers from the numerator by excluding
the current sample (zdi, xdi).
We denote the topic-word counts and the author-topic counts without the cur-
rent sample c−di

t and v−di
a respectively. See (3.19) for details.

c−di
tj =

{
ctj − 1 if (t = k ∧ j = h)

ctj otherwise

v−di
ta =

{
vta − 1 if (t = k ∧ a = u)

vta otherwise

(3.19)

The terms C(β)T and C(α)NA conveniently cancel out. Note that also the num-
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ber of tokens in the current document is decreased by one in the denominator.

p(w, z,x|α,β,A)

p(z−di,x−di,w−di|α,β,A)
(3.20)

=

∏D
d=1

1
(NAd

)Nd

∏T
t=1

1
C(ct+β)

∏NA

a=1
1

C(va+α)∏D
d=1

1
(NAd

)Nd−1

∏T
t=1

1

C(c−di
t +β)

∏NA

a=1
1

C(v−di
a +α)

(3.21)

=
1

NAd

T∏
t=1

C(c−di
t + β)

C(ct + β)

NA∏
a=1

C(v−di
a +α)

C(va +α)
(3.22)

Using (3.8) we obtain

=
1

NAd

T∏
t=1

Γ(
∑J

j=1 c
−di
tj + βj)

∏J
j=1 Γ(ctj + βj)

Γ(
∑J

j=1 ctj + βj)
∏J

j=1 Γ(c
−di
tj + βj)

×
NA∏
a=1

Γ(
∑T

t=1 v
−di
ta + αt)

∏T
t=1 Γ(vta + αt)

Γ(
∑T

t=1 vta + αt)
∏T

t=1 Γ(v
−di
ta + αt)

(3.23)

Keeping in mind that we only need to maintain proportionality to (3.15), the
fraction 1

NAd
in the above equation can be eliminated. Now the products are

split up into parts that do not depend on k and u, and the ones that do.

∝
Γ(
∑J

j=1 c
−di
kj + βj)

∏J
j=1 Γ(ckj + βj)

Γ(
∑J

j=1 ckj + βj)
∏J

j=1 Γ(c
−di
kj + βj)

∏
t6=k

Γ(
∑J

j=1 c
−di
tj + βj)

∏J
j=1 Γ(ctj + βj)

Γ(
∑J

j=1 ctj + βj)
∏J

j=1 Γ(c
−di
tj + βj)

×
Γ(
∑T

t=1 v
−di
tu + αt)

∏T
t=1 Γ(vtu + αt)

Γ(
∑T

t=1 vtu + αt)
∏T

t=1 Γ(v
−di
tu + αt)

∏
a6=u

Γ(
∑T

t=1 v
−di
ta + αt)

∏T
t=1 Γ(vta + αt)

Γ(
∑T

t=1 vta + αt)
∏T

t=1 Γ(v
−di
ta + αt)

(3.24)

Using (3.19) the two products over t 6= k and a 6= u disappear.

=
Γ(
∑J

j=1 c
−di
kj + βj)

∏J
j=1 Γ(ckj + βj)

Γ(
∑J

j=1 ckj + βj)
∏J

j=1 Γ(c
−di
kj + βj)

×
Γ(
∑T

t=1 v
−di
tu + αt)

∏T
t=1 Γ(vtu + αt)

Γ(
∑T

t=1 vtu + αt)
∏T

t=1 Γ(v
−di
tu + αt)

(3.25)

We proceed by splitting the remaining products over t and j and using the
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de�nition of the counts (3.19):

=
Γ(
∑J

j=1 c
−di
kj + βj)

Γ(1 +
∑J

j=1 c
−di
kj + βj)

Γ(ckh + βh)

Γ(c−di
kh + βh)

∏
j 6=h

Γ(ckj + βj)

Γ(c−di
kj + βj)

×
Γ(
∑T

t=1 v
−di
tu + αt)

Γ(1 +
∑T

t=1 v
−di
tu + αt)

Γ(vku + αk)

Γ(v−di
ku + αk)

∏
t6=k

Γ(vtu + αt)

Γ(v−di
tu + αt)

(3.26)

=
Γ(
∑J

j=1 c
−di
kj + βj)

Γ(1 +
∑J

j=1 c
−di
kj + βj)

Γ(c−di
kh + βh + 1)

Γ(c−di
kh + βh)

×
Γ(
∑T

t=1 v
−di
tu + αt)

Γ(1 +
∑T

t=1 v
−di
tu + αt)

Γ(v−di
ku + αk + 1)

Γ(v−di
ku + αk)

(3.27)

Using the recurrence relation Γ(z + 1) = zΓ(z) [BM22] the expression can be
further simpli�ed:

=
Γ(
∑J

j=1 c
−di
kj + βj)

(
∑J

j=1 c
−di
kj + βj)Γ(

∑J
j=1 c

−di
kj + βj)

(c−di
kh + βh)Γ(c

−di
kh + βh)

Γ(c−di
kh + βh)

×
Γ(
∑T

t=1 v
−di
tu + αt)

(
∑T

t=1 v
−di
tu + αt)Γ(

∑T
t=1 v

−di
tu + αt)

(v−di
ku + αk)Γ(v

−di
ku + αk)

Γ(v−di
ku + αk)

(3.28)

=
(c−di

kh + βh)(v
−di
ku + αk)

(
∑J

j=1 c
−di
kj + βj)(

∑T
t=1 v

−di
tu + αt)

(3.29)

To obtain the probability of a single sample rather than the derived proportional
expression (3.29), it has to be normalised resulting in the following probability

p(zdi = k, xdi = u|w, z−di,x−di,α,β,A)

=

(c−di
kh +βh)(v

−di
ku +αk)

(
∑J

j=1 c−di
kj +βj)(

∑T
t=1 v−di

tu +αt)∑NAd
a=1

∑T
t=1

(c−di
tj +βj)(v

−di
ta +αt)

(
∑J

j=1 c−di
tj +βj)(

∑T
t=1 v−di

ta +αt)

(3.30)

The presented derivations are heavily inspired by various sources [Hei04, Wan08,
Car10, RZCG+10, MWCE07].

3.2.2 Maximum Likelihood II: Estimating Hyper Param-

eters

This section shows an example of how to estimate the hyper parameters using
maximum likelihood II. Generally speaking, this is a way to let the data control



24 Topic Model Theory

the parameters of the prior distribution in a bayesian setting. It relies on the
assumption that the number of estimated hyper parameters is small compared
to the amount of data, so that over�tting is avoided as much as possible. For
the LDA, Wallach et al.[WMM09] argue that a con�guration with a symmetric
Dirichlet prior on the topic-word distributions and an asymmetric Dirichlet dis-
tribution as prior for the document-topic distributions provides the best results,
and adds an appropriate amount of �exibility to the model, compared to using
only symmetric priors. This con�guration, denoted AS, provides the possibility
for some topics to be more likely than others.
In this section update rules for the Dirichlet hyper parameters in the case of
the AT model are derived. With D as the number of documents in the corpus,
Nd as the number of word tokens in document d, we start by formulating the
model evidence, where z and x contain the topic and author assignments for all
words in the corpus respectively:

p(z,x|α, NA) =

∫
p(z,x,Θ|α, NA)dΘ (3.31)

=

∫
p(z|x,Θ,α, NA)p(x|Θ,α, NA)p(Θ|α, NA)dΘ (3.32)

=

∫ [ D∏
d=1

Nd∏
i=1

T∏
t=1

θ
δ(zdi=t)
t,xdi

][
D∏

d=1

Nd∏
i=1

1

NAd

][
NA∏
a=1

C(α)
T∏

t=1

θαt−1
t,a

]
dΘ

(3.33)

using the de�nition from (3.8).
Move out the constant terms, and reformulate the products to make use of the
author-topic counts vta.

=

[
D∏

d=1

1

NNd

Ad

]
C(α)NA

∫ NA∏
a=1

T∏
t=1

θvta
t,a

NA∏
a=1

T∏
t=1

θαt−1
t,a dΘ (3.34)

=

[
D∏

d=1

1

NNd

Ad

]
C(α)NA

∫ NA∏
a=1

T∏
t=1

θvta+αt−1
t,a dΘ (3.35)

Now exploit that each θa is drawn independently from a Dirichlet distribution
with parameter vector α

=

[
D∏

d=1

1

NNd

Ad

]
C(α)NA

NA∏
a=1

∫ T∏
t=1

θvta+αt−1
t,a dθ (3.36)

=

[
D∏

d=1

1

NNd

Ad

]
NA∏
a=1

C(α)

C(va +α)

∫
C(va +α)

T∏
t=1

θvta+αt−1
t,a dθ (3.37)

=

[
D∏

d=1

1

NNd

Ad

]
NA∏
a=1

 Γ
(∑T

t=1 αt

)
Γ
(∑T

t=1(αt + vta)
) T∏

t=1

Γ(αt + vta)

Γ(αt)

 (3.38)



3.2 The Author-Topic Model 25

Now we take the logarithm of the model evidence:

log p(z,x|α, NA) =
D∑

d=1

−Nd logNAd

+

NA∑
a=1

(
log Γ(α∗)− log Γ(v∗a + α∗) +

T∑
t=1

log Γ(vta + αt)− log Γ(αt)

)
(3.39)

Where α∗ =
∑T

t=1 αt and v∗a =
∑T

t=1 vta to increase readability.
This quantity can be optimised iteratively by maximising a lower bound, fol-
lowing [Wal08] and [Min00]. The result of this method is often referred to as
�Minka's �xed point iteration�.
With n ∈ N+ and z, ẑ ∈ R+, the following two inequalities hold

log Γ(z)− log Γ(z + n)

≥ log Γ(ẑ)− log Γ(ẑ + n)− (Ψ(ẑ)−Ψ(ẑ + n))(ẑ − z) (3.40)

log Γ(z + n)− log Γ(z)

≥ log Γ(ẑ + n)− log Γ(ẑ) + ẑ(Ψ(ẑ + n)−Ψ(ẑ))(log z − log ẑ) (3.41)

where Ψ(a) =
d

da
log Γ(a) is called the digamma function.

Using 3.40 and 3.41, a lower bound on the (3.39) can be constructed as

log p(z,x|α, NA) ≥ B(α?, NA)

=
D∑

d=1

−Nd logNAd

+

NA∑
a=1

(
log Γ(α∗)− log Γ(v∗a + α∗)− (Ψ(α∗)−Ψ(v∗a + α∗)) (α∗ − α?

∗)

+
T∑

t=1

(
log Γ(vta+αt)− log Γ(αt)+αt(Ψ(vta+αt)−Ψ(αt))(logα

?
t − logαt)

))
(3.42)

To �nd the values α?
t that maximises the lower bound B, we di�erentiate it

with respect to α?
t and set it equal to zero. All the terms not depending on α?

t

disappear and leave us with just

∂B(α?
t , NA)

∂α?
t

=

NA∑
a=1

(
Ψ(α∗)−Ψ(v∗a + α∗) +

αt(Ψ(vta + αt)−Ψ(αt))

α?
t

)
= 0

⇐⇒ α?
t = αt

∑NA

a=1(Ψ(vta + αt)−Ψ(αt))∑NA

a=1 Ψ(v∗a + α∗)−Ψ(α∗)
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Following [Wal08], the digamma recurrence relation Ψ(1 + z) − Ψ(z) = 1
z ⇒

Ψ(n+ z)−Ψ(z) =
∑n

f=1
1

f+z−1 can be used to simplify the calculations

α?
t = αt

∑NA

a=1

∑vta

f=1
1

f−1+αt∑NA

a=1

∑v∗a
f=1

1
f−1+α∗

(3.43)

This update rule is then applied a number of times until convergence is (almost)
obtained. In practise for the experiments in this thesis, a �xed number of up-
date iterations are performed every time a certain number of Gibbs sampling
iterations have �nished. This is mainly due to the simplicity of implementation
and because it seems that when the Markov chain converges to its stationary
distribution, the hyper parameters do too, making the result more accurate each
time we perform an update of the hyper parameters.
The derivations for the update rules for β are very similar to the ones presented
above, and result in an evidence function of the same form. Thus for an asym-
metric prior on the topic-word distributions, the following update rule can be
used.

β?
j = βj

∑T
t=1

∑ctj
f=1

1
f−1+βj∑T

t=1

∑ct∗
f=1

1
f−1+β∗

(3.44)

where ct∗ =
∑J

j=1 ctj , i.e. the total number of word tokens assigned to topic t.
For a symmetric prior, it is convenient to decompose the hyper parameter into
a base measure m describing the mixing proportions and a concentration pa-
rameter s controlling the peakiness of the distribution. I.e. β = sm, where∑J

j=1 mj = 1 and mj > 0. For a symmetric prior we just have a uniform vec-
tor with elements m = 1

J . With this distinction we can now di�erentiate the
lower bound on the log evidence only with respect to the optimal concentration
parameter s?, and the update rules become

s? = sm

∑T
t=1

∑J
j=1

∑ctj
f=1

1
f−1+sm∑T

t=1

∑ct∗
f=1

1
f−1+s

(3.45)

3.2.3 Hyper Parameter Optimisation: An Example

To illustrate the in�uence of the hyper parameter optimisation using the AS
con�guration described in the previous section, a synthetic corpus is generated
from known hyper parameters. Then the model parameters are inferred via
Gibbs sampling and the optimised hyper parameters are validated against the
true ones.
The synthetic dataset is produced with the settings shown in table 3.1. The true
base measure for α is shown, elements sorted in decreasing order, in �gure 3.3.



3.2 The Author-Topic Model 27

Figure 3.4 shows the result of performing Gibbs sampling and hyper parameter
optimisation using the correct number of topics (T = 20), while �gure 3.5 shows
the result of using the same data as for �gure 3.4, but with too many topics
(T = 25). In both cases, the hyper parameters are estimated satisfactorily, and
in the latter case even the unused topics are identi�ed. This �ts with the results
regarding topic stability reported by [WMM09].

NA K J Nd D sβ sα
50 20 500 200 600 25 10

Table 3.1: Details of the synthetic data set used for illustration of the hyper
parameter optimisation. sβ and sα are the concentration parame-
ters for the two Dirichlet distributions. As the AS con�guration is
used we have: α = sαm

α with
∑T

t=1 m
α
t = 1 and βj = sβm

β
j with

mβ
j = 1

J ∀j. The mα used for generation of the data is illustrated
in �gure 3.3
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Figure 3.3: True base measure for the author-topic distributions, mα
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(a) Concentration parameters for the prior distributions and the log-model-

evidence as a function of the number of iterations of Gibbs sampling of

the synthetic corpus generated from the parameter values in table 3.1.

2000 iterations were performed optimising the hyper parameters every

20 iterations. The estimates approach the true values quite rapidly and

only �uctuate slightly.
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torily, with only small �uctuations.

Figure 3.4: These �gures illustrate how the hyper parameter optimisations
work when the correct number of topics, T = 20, is used for infer-
ence.
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2000 iterations were performed optimising the hyper parameters every

20 iterations. The estimates approach the true values quite rapidly.
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Figure 3.5: These �gures illustrate how the hyper parameter optimisations
work when the number of topics used for inference is higher (T =
25) than the true number of topics that generated the data (Same
data as used for �gure 3.4).
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3.3 Evaluation of Topic Models

To evaluate the topic models, one often look at the likelihood (or perplexity) of a
test dataset Wtrain given the training data Wtrain and the model parameters.
In the AT case, the likelihood for a single test word token wtest = v in a
document with the coauthors Ad can be formulated as

p(wtest = v|α,β, Ad,W
train)

=

∫
φ

∫
θ

p(wtest = v,Φ,Θ|α,β, Ad,W
train)dΘdΦ

=

∫
φ

∫
θ

p(wtest = v|Φ,Θ,α,β, Ad,W
train)p(Φ,Θ|α,β, Ad,W

train)dΘdΦ

This integral is in most cases intractable to compute exactly, and consequently
an approximation is needed. With multiple samples of Φ and Θ, the integral
expression can be approximated by the sample mean:

p(wtest = v|α,β, Ad,W
train) ≈ 1

S

S∑
s=1

p(wtest = v|Φs,Θs,α,β, Ad,W
train)

(3.46)

This word-likelihood conditioned on a single sample ofΦ andΘ can be expressed
as

p(wtest = v|Φs,Θs,α,β, Ad,W
train) (3.47)

=

T∑
t=1

NAd∑
a=1

p(wtest = v, z = t, x = a|Φs,Θs,α,β, Ad,W
train) (3.48)

=

T∑
t=1

NAd∑
a=1

p(wtest = v|z = t,Φs,β,Wtrain)p(z = t|x = a,Θs,α,Wtrain)p(x = a|Ad)

(3.49)

=

T∑
t=1

NAd∑
a=1

φs
tvθ

s
ta

1

NAd

(3.50)

=
1

NAd

T∑
t=1

φs
tv

NAd∑
a=1

θsta (3.51)

=
1

NAd

(φs
v)

>(

NAd∑
a=1

θs
a) (3.52)
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Thus, combining (3.46) and (3.52) using multiple samples of Φ and Θ the word
likelihood can be approximated by

p(wtest = v|α,β, Ad,W
train) ≈ 1

S

S∑
s=1

1

NAd

(φs
v)

>(

NAd∑
a=1

θs
a)

Asuncion et al. [AWST09] (although it is in the case of LDA) approximate the
likelihood of a full document using multiple samples from the Gibbs sampler by
multiplying together the word likelihoods. This approach leads to the following
log-likelihood of a document wtest

ln p(wtest|α,β, Ad,W
train) ≈ ln

Nd∏
i=1

1

S

S∑
s=1

1

NAd

(φs
wtest

i
)>(

NAd∑
a=1

θs
a)

=

Nd∑
i=1

ln

S∑
s=1

(φs
wtest

i
)>(

NAd∑
a=1

θs
a)− ln (SNAd

)


(3.53)

This is contrasted by the method used by Rosen-zvi et al. [RZCG+10], where
the joined probability of all the words in a document is calculated for each
sample from Gibbs sampler:

p(wtest|α,β, Ad,W
train)

=

∫
φ

∫
θ

Nd∏
i=1

1

NAd

(φwtest
i

)>(

NAd∑
a=1

θa)

 p(Φ,Θ|α,β, Ad,W
train)dΘdΦ

≈ 1

S

S∑
s=1

Nd∏
i=1

1

NAd

(φs
wtest

i
)>(

NAd∑
a=1

θs
a)

 (3.54)

The question is whether to integrate out Φ and Θ at word level or at document
level. The expression in (3.54) seems to be the most correct when calculating
a document likelihood, but one might need to take care to avoid arithmetic
under�ow. The expression (3.53) is computationally convenient because the
logarithm can be used on the terms corresponding to individual words, thus
avoiding the risk of arithmetic under�ow in the calculations. For the work in this
thesis a python library called python library Decimal was used for calculation
of (3.54). However, it should be noted that the higher precision comes at the
cost of increased computational overhead.

Another thing that has to be considered when dealing with the notion of �held-
out� or test set likelihood is the fact that the author-topic distributions (document-
topic in case of LDA) appear in the expressions. This has consequences for LDA
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and the AT model. In the AT case, one needs to have estimates of the topic
proportions associated with every single author appearing in the test set. This
can be handled by ensuring that all authors in the test set also appear in the
training set.
For LDA the problem is a little di�erent, and there seem to be no obvious solu-
tion; knowledge of the topic proportions for each test document has to be known
in advance, which makes the term �held-out� inadequate. One way to handle
the situation is to split all test documents in half, and then infer the topic pro-
portions on one of the halves (keeping the original topic-word distributions) and
�nally calculate the perplexity on the other half. However, this procedure has
the often undesired e�ect that the borders between training and test set become
somewhat muddy.

3.3.1 A Word on Perplexity

Perplexity is a commonly used measure of the quality of language models in
general. For topic models, a measure of the predictive performance is often
provided as the perplexity of a held-out set of documents (test set) [BNJ03].
The perplexity of a test set wtest consisting of N words is de�ned as the inverse
of the geometric mean value of the likelihoods of the words in the set and is often
calculated using the following expression using the logarithm to avoid numerical
problems (When using multiple samples of the model parameters, this is only
bene�cial in the case of (3.53))

perp(wtest|M) = p(wtest|M)−
1
N = exp

(
− log p(wtest|M)

N

)
(3.55)

where M is shorthand notation for the trained model in question. The perplex-
ity can loosely be interpreted as the mean uncertainty of the model for predicting
a word correctly in the test set [Hei04]. This also means that perplexity scores
can only be compared within the same corpus because they depend on the size
of the vocabulary. Thus when comparing di�erent models using perplexity as
a performance measure, the comparison is only valid if exactly the same cor-
pus is used. Furthermore, it is important to remember that perplexity does
not say anything about the actual quality and interpretability of the produced
document/author and topic distributions, but is merely a convenient statistical
measure often used as a guideline in lack of extrinsic evaluation [CBGG+09].
By extrinsic evaluation is meant the performance in an actual application in
which a topic model is used, such as information retrieval or link prediction.

Another question regarding the measurement of test set perplexity is how to
handle �out-of-vocabulary� (OOV) words in the test dataset. If not taken into
consideration at inference time, such words will give rise to probabilities of zero
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resulting in in�nite perplexity if included in the perplexity calculation. One way
to handle a OOV word is to simply ignore it. This however implicitly means that
it is assigned a probability of one, which probably does not re�ect the fact very
well that the word is so unlikely that it is not even present in the vocabulary. Of
course this problem will be reduced by meticulously selecting the analysed data
so that it is reasonably representative of the context it is attempted to model.
Another way to deal with the problem is to include all words from both the
training and the test dataset used into the vocabulary used for training the
model. This will cause the probabilities of OOV words to be determined by
the hyper parameters α and β because these function as pseudo-counts in the
estimates of Θ and Φ, see (3.5). If the test data is unknown at the time
of the training, another approach could be to add a OOV-substitute word to
the vocabulary, and then calculate perplexity of a test set interpreting all OOV
words as this arti�cial word. If one is relying on the hyper parameters to account
for the OOV words, it might be bene�cial to let their values be guided by an
estimate of the amount of OOV words likely to occur in a test set. This has not
been treated in the present work, however.
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Chapter 4

Experiments and Example
Applications of Topic

Models

4.1 Gibbs Sampling Analysis

This section describes some simple experiments providing a small scale ex-
ploratory analysis of Gibbs sampling applied to Latent Dirichlet Allocation
[BNJ03][GS04]. The goal is to investigate the behaviour of the quality of the
estimated topic-word and document-topic distribution as well as the speed of
convergence while varying the size of the corpus. The experiments are performed
using synthetic data generated according to the LDA model as described in sec-
tion 3.1. All the models in this section are trained on small synthetic data sets
and should be regarded as �toy examples�. All corpora used for the experiments
contain D = 100 documents. The number of topics is �xed at T = 6 and each
of the corresponding multinomial distributions φt over words are �xed as well.
The vocabulary size is J = 100, and the hyper parameters for the symmetric
Dirichlet priors generating the data are set to α = 0.1 and β = 0.3. For train-
ing, no hyper parameter optimisation is applied, and the values are set to the
generating values. Figure 4.1 illustrates the categorical distributions over the
J = 100 words for each of the six topics. In the following it will be investigated
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Figure 4.1: Illustration of the parameters for the �xed topic-word probability
distributions used for generating all data used in this section.

how the training document lengths (the number of words) a�ect the quality of
the inferred model parameters in terms of both training and test set perplexity.
This will be done by generating training corpora all consisting of D = 100 doc-
uments, but with di�erent document lengths. For convenience, all documents
in each corpus has the same number of words Nd.
The perplexity of a set of D documents W = {w1,w2, · · · ,wD} (all of length
Nd) can be calculated using only a single sample Φs and Θs from a Gibbs
sample chain using (4.1) (cf. section 3.3)

perp(W) = exp

(
−
∑D

d=1

∑Nd

i=1 log p(wdi)

DNd

)
(4.1)

To obtain estimates of the perplexity for each value of Nd and the associated un-
certainties, multiple pairs of training and test sets are synthesised. For each pair,
D = 100 document-topic distributions are drawn from Dir(θ;α) and words for
the training and test documents are sampled using these. Note that the same
topic proportions are used for both training and test documents. Thus each
training document of length Nd has a corresponding test document of length
1000, generated from the exact same distribution over topics as the training
document. This is a simple way to ensure that the perplexity of the test doc-
uments is well de�ned without having to estimate Θ �rst. This approach can
be criticised for the strong connection between the training and test set which
might lead to biased results. However, as also mentioned in section 3.3 this is
a general problem for the validity of the evaluation of topic models, and in this
particular case the chosen method can be justi�ed because the perplexity values
are only used for relative comparisons within the same experiment.
Model parameters are then estimated using each of the training sets and each
corresponding test set is used to calculated the perplexity. The results presented
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later in the section are reported as the mean value and the standard deviation
of these perplexities. Note that the only parameters that vary from corpus to
corpus are the D = 100 document-topic distributions θd.

Figure 4.2 shows the perplexity of both the training and the test data as a func-
tion of Nd. As mentioned above, each point on the curve represents the mean
value of the perplexities calculated using samples from multiple independent
Gibbs chains, and the error bars denote one standard deviation σ. For small
Nd the training set perplexities are quite low and the corresponding test set
perplexities are quite high compared to the values for larger Nd. This shows
that the amount of training data is too small to make reasonable estimates of
the model parameters; one of the many face of over�tting. As the amount of
training data is increased, the perplexities level out. For large Nd the di�erence
is negligible which is to be expected because of the way the training and test
documents were generated from the same distributions. The fact that the val-
ues of the training set perplexity level out before Nd = 1000 suggests that the
length of the test documents is more than long enough to provide the amount of
data necessary to represent the generating model parameters. One could argue
that this is also the reason for the variances of the two perplexities almost being
equal. Please note that the perplexities presented in these graphs, are mean
values of end-point values of di�erent runs of the Gibbs sampler, therefore, the
error bars in the �gures are underestimations of the real standard deviation, as
they disregard any variance of the obtained samples.

The above deals with the perplexities calculated from samples taken from con-
verged Gibbs samplers. The following will try to illustrate how the perplexities
evolve during the process of Gibbs sampling. Figure 4.3 shows the perplexity
curves for the testing data for each value of Nd as a function of Gibbs sam-
pling iterations. The perplexities presented in the �gures are, like in the above,
mean values over a number of repetitions of each con�guration. Note that the
number of iterations presented in these graphs are iterations through the full
training corpus and not individual samples of words. It seems that all it take
more or less the same number of iterations to reach the supposedly stationary
distribution of the Markov chain. This �gure is however a poor indication of the
actual computational complexity of the system, as one has to remember that
some of the corpora contain far more words to be sampled at each iteration
than others. To visualise the di�erences, �gure 4.4 shows the perplexities of the
di�erent con�gurations as a function of individual word samples. The curves
show an enormous di�erence in the e�ciency of the di�erent samplers. Looking
at the Gibbs sampling algorithm and the equations derived in section 3.2.1, this
is not surprising; the in�uence of each word is inverse proportional to the total
number of word tokens in the corpus. Thus the models being trained using large
corpora are inherently �heavier�.
Furthermore, many of the �heavy� models reaches approximately the same lower
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limit of perplexity (48), but the convergence rates di�er signi�cantly. This ef-
fect is the same as seen on �gure 4.2 where the training and test set perplexities
both approximately level out at a common value where Nd = 500. An obvi-
ous conclusion of the experiment is that one should never include too much
redundant data, because it will only result in slower convergence of the Markov
chain in the Gibbs sampler, but provide the same level of performance. The
usability of this statement is however debatable, as it is very unlikely that one
possesses that kind of knowledge before doing the actual model training. One
case where it might become useful, is in a situation where time is short. Thus
performing more iterations through a subset of the a corpus might result in a
better test set perplexity than running only a few iterations with the full cor-
pus. Another possible use of the result is to investigate the performance of a
�soft-start� Gibbs sampler, where the a subset of the full corpus is used to make
a rough but fast approximation to the stationary distribution of the Markov
chain. The distribution could then be re�ned using more and more of the data.
This could potentially speed up Gibbs sampling, but a theoretical validation of
such method would be appropriate to ensure the validity of the algorithm.
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Figure 4.2: Perplexities for the training and test data as functions of Nd.
Each of the points on the curves represents the mean value of per-
plexities calculated from end-samples of multiple Gibbs sampling
chains. As expected, the model �ts the training data very well for
small amounts of training data, but the inferred model parameters
are not likely to match the parameters used for generation of the
data, hence the high test set perplexity. This is a classical example
of over�tting and is caused by the lack of representative data in
the training set. As more data is used for parameter estimation
both the training and the test set perplexities stabilise at a level
of approximately 48. This indicates that the estimated parame-
ters match the model parameters that generated the data quite
closely. The error bars on the curves represent ±1σ of the sample
perplexities
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Figure 4.3: Test set perplexities as functions of full iterations through the
corpus during Gibbs sampling. The di�erent curves represent dif-
ferent values of Nd. The small corpora are not representative for
the distributions that generated then, hence the worse perplex-
ity scores. The curves level out approximately equally fast, but
one has to note that the computation time besides the number of
iterations also depends on the size of the corpus (See �gure 4.4).
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Figure 4.4: Test set perplexities as functions of the number of individual word
samples obtained during Gibbs sampling. The di�erent curves
represent di�erent values of Nd. Models inferring parameters from
smaller corpora tend to have higher test set perplexities. Concur-
rently they are also much �lighter� which reduces the number of
individual word samples before convergence is reached.
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4.2 Example Applications of the Author-Topic

Model

The author-topic model provides a method to characterise and describe the
authors of the documents. In terms of perplexity, AT does not perform as well
as LDA [RZCG+10] (at least not on the NIPS dataset). This is probably because
the assumption that the authors' distribution over topics is independent of the
document (and thus the context in which the document appears), does not hold
entirely. Nevertheless, the AT model provides a relatively simple representation
of author preferences in terms of subjects/topics, a feature that LDA does not
have. Furthermore, as mentioned in section 3.3.1, perplexity is not necessarily
the best way to evaluate topic models, and the usefulness of each individual
model of course depends on the speci�c application.

For author-less documents in collections where most of the documents have
authors assigned, a possible application of the AT model could be authorship
attribution. Similarly, one could imagine teh AT model being used as a tool
in investigation of the correctness of a claimed authorship in case of potential
forgery. Thus the AT model could for instance be a useful tool, complementing
other methods, for analysis of historical documents.
The model provides a simple way to compare authors to each other with regard
to similarity in topical interests. In a simple setting, the individual authors'
distributions over topics can be directly compared to one another. This might
be used as a tool for exploring the use of pseudonyms in a corpus.
The following sections provide two examples of applications of the AT model;
The �rst is outlier detection in document collections. I.e. discovering documents
that are unusual for the claimed author. Experiments regarding this use of the
AT model are described in depth in section 4.3.
Combined with the knowledge of groups of people frequently coauthoring pa-
pers, the information about authors' preferred topics might also be used for
discovering sub-groups of authors within a larger group of authors, all acting
within the same research �eld. Such information can for instance help �nd qual-
i�ed, unbiased reviewers for scienti�c papers. Extensive work has been done in
this area as the matching task is often a time consuming process, and this thesis
will not deal further with the problem. Some examples of approaches to this
application of topic models are [ACM07, KZB08, DN92].

The other application of the AT model is treated in section 4.4, and deals with
the task of link prediction in the online social network Twitter, by comparing
the users' interest via their inferred topic proportions.
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4.3 Outlier Detection Using the Author-Topic Model

This section gives illustrative examples of detection of documents that are un-
usual/unlikely for the stated authors using the Author-Topic model. The applied
method is conceptually very simple and is very similar to experiments performed
in [RZCG+10].
First, the model is trained using data that is known to be correct, or at least
it is known which author attributions are incorrect. This part of the data is
referred to as the training set. The training consists of inferring the topic-word
and author-topic distributions. After the training stage, it is possible to mea-
sure how likely the training documents are in terms of perplexity. Now an upper
threshold on the perplexity can be set to split the �good� documents from the
�bad�. Of course, the optimal value of the threshold depends heavily on both
the data and the application.
To measure the performance of the system, a test data set consisting of unseen
documents written by authors represented in the training data needs to be de-
�ned. Using the threshold from the training data, the test data can then be split
and the performance be evaluated. Because the model parameters are inferred
using the training data, the measured perplexities of these documents are often
lower than what one would expect to get from unseen data. Consequently the
threshold will be unrealistically low, producing poor results in the test set. To
circumvent this problem, if enough data is available, a third data set is de�ned.
This is in the following called the validation set, and consists of a set documents
for which the correctness is known, but has not been used in the training pro-
cess. This data set is more likely to produce a useful threshold, which can then
be used to measure the performance on the test set. This setup is very common
within machine learning.
In the following, synthetically generated data is used for illustration of the
method, and in section 4.3.2 it is applied to a real world data set consisting
of scienti�c papers from the NIPS conferences.
All experiments with the AT model performed in the following assume �xed
symmetric Dirichlet priors on the topic-word and author-topic distributions.
Thus the hyper parameters are reduced to scalars αt = α∀t and βj = β∀j. Per-
plexities are calculated using multiple independent Gibbs sampling chains with
di�erent starting points according to (3.54) [RZCG+10].

4.3.1 Synthetic Outlier Detection Example

This section illustrates the procedure described above using arti�cial data. The
synthetic documents are generated with the model parameters shown in table
4.2, and the sizes of the data sets are summarised in table 4.1. Note that in 10%
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of the documents in the test set, the text is generated from another author's
distribution over topics.
As proposed in the above, the threshold can conveniently be chosen as some
percentile of the perplexity of the validation documents. For simplicity, the
most extreme value from the validation set is used for this exemplar analysis
(the 100th-percentile). Figure 4.5 shows histograms of the log-likelihoods of the
three datasets. The �gure shows that some of the test documents are (as ex-
pected) indeed very unlikely to have been written by the authors they claim.
Examining how the set of unlikely documents matches the set of corrupted doc-
uments reveals a recall of 0.850 and a precision of 0.966. This result is an
indication that the method works, but it should be noted that this experiment
is carried out under arti�cially advantageous circumstances; the model param-
eters are inferred using the exact number of topics T = 5 and values of hyper
parameters α = 0.1 and β = 0.01 with which the data was generated.
The results presented in this section are produced using samples of Φ and Θ
after 2000 iterations, from seven parallel Gibbs sampling chains with di�erent
random starting points.

Quantity training validation test
NA 10
T 5
J 500
D 200 200 1000
Nd 200 200 200
Ncorrupt 0 0 100

Table 4.1: Values of quantities used for generation of the synthetic data in sec-
tion 4.3.1. Note that 10% of the test documents have been �author-
corrupted�

Parameter Value
α 0.1
β 0.01
T 5

Table 4.2: Model parameters used for generating the synthetic data used in
the outlier detection example in section 4.3.1. The same values are
used for inference. No hyper parameter optimisation is performed
during inference, and both Dirichlet priors are symmetric.
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Figure 4.5: Normalized histograms of the log-likelihood of synthetic docu-
ments. 10% of the training documents (red) have false author-
ship information, which is why some of the documents seem very
unlikely compared to the training, validation and the remaining
majority of the test documents. The log-likelihoods are compared
rather than the perplexities for illustrative purposes. As the num-
bers of tokens in all documents are the same, the presented values
can be compared directly.
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4.3.2 Identifying Unusual NIPS Papers

This next example makes use of the NIPS data set described in section 2.1,
still with the purpose of detecting unlikely documents (outliers). The data
was divided into three parts, as described above with the following number of
documents in each set: training:1360, validation:190, test:190. The documents
were chosen semi-randomly, as all authors represented in the validation or test
set also have to appear in the training set, to produce valid results. [RZCG+10]
tries to identify unusual papers for a given author, and therefore chooses to
measure perplexity for each document as if it were written by only that speci�c
author. The approach taken in this section is a little di�erent in the sense that
it uses the full author-list when comparing perplexities amongst documents.
Figure 4.6 shows the distribution of the document perplexities for the three data
sets. 95% of the validation documents have a perplexity lower than 5151. This
value is used as the threshold for outliers in the test set, and table 4.3 shows
the unlikely test documents detected. The two documents in the list are written
by David Wolpert. The reason that they are listed as outliers is that another
person abbreviated �Wolpert_D�, namely Daniel Wolpert, exists in the data set.
David has authored 4 of the 7 papers attributed to Wolpert_D, while Daniel
has written the remaining 3. That David ended up on the list is probably due
to the particular partitioning of the data set. There seems to be nothing wrong
with the entry for �Dietterich_T�, but Thomas Dietterich has coauthored quite
di�erent papers, such as �High-performance Job-Shop Scheduling with a Time-
delay� and �Locally Adaptive Nearest Neighbor Algorithms� and this might be
the reason for his rank in the table. Also, all papers attributed to �Tenorio_M�
are written by Manoel Tenorio, so the conclusion of the experiment must be that
the method is useful and that irregularities can indeed be discovered. However,
it should be noted that in this NIPS data set most authors appear very few
times. This sparsity together with the partitioning of the data set into training,
validation and test make it hard to infer useful topic proportions for the authors.
The lack of more extensive data from the authors could also be the reason for
the quite high validation and test perplexities obtained, and experiments in less
�author-sparse� data sets would be interesting subject for further analysis in this
topic.

Figure 4.7 shows how the perplexity of the training, validation and test set
evolves, as the number of iterations of the Gibbs samplers increase. The �rst
data point is recorded at iteration 50, and the validation and test set perplexities
do not seem to decrease signi�cantly from this point. Thus the model does not
get any better at describing the unseen data. As mentioned already, this might
be because the data is not homogeneous enough, i.e. the training set di�ers
too much from the test and validation sets. The author-document assignment
matrix is very sparse (see section 2.1), which could give rise to �uctuations
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Figure 4.6: Normalized histograms of the perplexities of the training-,
validation- and test documents in the NIPS data. Ideally it would
be better to have three separate data sets (training validation and
test) as descibed in the text.
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Perplexity Title Postulated
authors

9629.48 "Bayesian Backpropagation over I-O Func-
tions Rather Than Weights"

Wolpert_D

9480.17 "On the Use of Evidence in Neural Net-
works "

Wolpert_D

8736.82 "State Abstraction in MAXQ Hierarchical
Reinforcement Learning,"

Dietterich_T

8248.28 "Using Neural Networks to Improve
Cochlear Implant Speech Perception"

Tenorio_M

7192.46 "The Computation of Sound Source Eleva-
tion in the Barn Owl"

Pearson_J,
Spence_C

5511.47 "Learning from Demonstration," Schaal_S
5900.76 "Illumination and View Position in 3D Vi-

sual Recognition"
Shashua_A

5837.53 "Visual Grammars and their Neural Nets" Mjolsness_E
5406.32 "A Mathematical Model of Axon Guidance

by Di�usible Factors,"
Goodhill_G

Table 4.3: Outliers in the NIPS test set

in the results from di�erent partitionings of the data into training, test and
validation sets. One way to deal with the inhomogeneity, to get more level
results from run to run, would be to split every document into a number of
smaller documents, spreading the information about the authors more equally
in the di�erent dataset parts. This approach however, is problematic because
is does not re�ect reality as well as the full documents, as di�erent parts of
the same documents can be found in all three parts of the data set. In some
applications this might be just �ne, but regarded as invalid in others, like this
outlier detection application where it is essential that the documents remain
intact.
The results presented in this section were generated using 6 independent Gibbs
sampling chains with di�erent random starting points. The perplexities were
calculated using samples obtained from the Gibbs samplers after 2000 iterations.
The number of topics was set to T = 100 and the hyper parameters were �xed
at α = 0.5 and β = 0.01.

Ideally, there are no errors in the training data, and the method described above
could be applied. Unfortunately, this is not always the case. One way to handle
outliers in the training data, is to use a two-step method. First all training
data is used for inference in the model. Then the a documents with the highest
perplexity scores, where a corresponds to some percentage p of the number of
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Figure 4.7: Training, validation and test set perplexity as a function of the
number of Gibbs sampling iterations. The perplexities presented
here are the mean values of the document perplexities each cal-
culated using samples from six independent Markov chains with
di�erent random starting points as described by (3.54). That the
test and validation set perplexities seem not to decrease at all,
stems from the fact that the �rst recorded point on the curves
are recorded after 50 iterations. Thus these perplexities have al-
ready settled. The values are however quite high compared to the
training set perplexity indicating that all the documents in the
combined dataset are very inhomogeneous.



50 Experiments and Example Applications of Topic Models

documents, are discarted as outliers. Inference in the model is then performed
again using only the accepted part of the data. Using this method, we implicitly
assume that we have enough data and that the data is redundant enough to be
able to infer the correct distributions after discarding the most unlikely part of
the data. If too much is removed, the inferred distributions will probably not
model the intended data very well, but if too little is removed, the distributions
will be disturbed by noise and hence drop in quality as well. This procedure is
heavily inspired by [HSK+00]. As mentioned above, this procedure is applied
only as an attempt to minimise the in�uence of errors in the training set, with
regard to author attributions.

To investigate the e�ect of the described procedure on the NIPS data set, it
is split into a training and a test set. The test set consist of 190 documents
chosen randomly from the full data set. Note that in the following, the test set
is kept untouched for all evaluations. A histogram of the document perplexities
of the training set is shown in �gure 4.8. From the histogram we observe that
there seem to be no obvious outliers in the training set.
When discarding documents from the training set, information about certain
authors disappear. It might even happen that authors are eliminated from the
training set. This causes potential trouble with the test set, which is kept �xed,
if some of the authors featured in the test set are not represented in the training
set, because all authors present in the test set must also be represented in the
training set to be able to evaluate the inferred model parameters in meaningful
way (see section 3.3).
Removing invalidated documents from the test set is not an option, as compar-
ing perplexities across the models trained on the di�erent data is key to the
validity of the analysis. Changing the test set, would render the comparison
useless. To keep the test set valid, a criterion for a document to be an outlier
in the training set is introduced; For a speci�c value of p, a document is only
regarded as an outlier if all of its authors are also represented in the remaining
documents. This seems to be the most reasonable approach as we wish to retain
the diversity of topics in the data set. This implies that if the only document
of an author is very unlikely, it is probably not due to an error in the author
attribution, but rather a sign that the inferred word distributions does not de-
scribe that single document very well.
Figure 4.9 shows the training and test set perplexities as a function of the amount
of data removed from the training set. The training set perplexity decreases a
little, as the training set gets smaller. This behaviour is expected because the
most unlikely documents are removed from the set. Furthermore, there is a pos-
sibility that the vocabulary recognised by the model is reduced when reducing
the training set. This leads to incomparable values of perplexity, see section
3.3.1.
If the method works, the ideal shape of the curves would be that the minimum
on the test-set curve was located at somewhere above zero, indicating that there
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could be outliers present in the original training set, and that when these were
removed, the inferred model parameters constituted a more accurate descrip-
tion of the test data. The �gure does not show this kind of behaviour at all.
One of the reasons for this behaviour might be that there are no errors in the
original training set. Thus removing documents will only reduce the data basis
for the model, probably leading to a less useful model. Another possibility is
that there are errors in the test set. As the test documents are chosen randomly
from the full data set, there is a possibility that documents with false author-
ship information is present in the test set, which would only lead to higher test
perplexity when excluding other documents with the same �defect� from the
training data. These are merely guesses, and further investigations and experi-
ments with other (less sparse) data sets will have to be performed to be able to
evaluate the proposed method satisfactorily. Furthermore, a clearer picture of
the usability of the method might be given be using an extrinsic performance
measure and repeated experiments (possibly with cross validation), rather than
a single experiment with usage of perplexity which is merely provides an indi-
cation.
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Figure 4.8: Normalised histogram of the perplexities of the documents of the
full NIPS training set (used for outlier detection). There is a little
probability mass above 3000, but there seem to be no extreme
outliers in the training set.
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Figure 4.9: This plot shows the mean document perplexities of the training
and test NIPS set as a function of amount documents removed
from the original training set. There is no sign of improvement in
the test set perplexity, and the only noticeable feature of the plot is
the classical example of over�tting: increasing test set perplexity
as the training set size is reduced.

4.4 Link Prediction in the Twitter Network

Twitter is a large on-line social media platform used by millions of people from
all around the world to communicate, share thoughts and have fun.
Some celebreties, companies and organisations use twitter as a communications
and marketing tool. They probably have no strong social relation to the ma-
jority of the followers. Furthermore, some people might follow a celebrity to go
along with the mainstream despite not having a particular interest in the person
they are following. These kinds of relationships are likely to be harder to predict
from the contents of the posted tweets than relationships of more personal char-
acter. On the other hand, if the goal of the link prediction system is to propose
new �friends�, the topic model approach might be feasible. To be able to run
the inference algorithms within an acceptable time frame only smaller networks
with fewer interconnections are analysed. The networks are speci�cally chosen
to ful�l certain criteria discussed in section 2.2. One might imagine that users
with relatively few connections are likely to display a more social and personal
behaviour, thus having more well de�ned topical pro�les. If this is the case, the
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network selection criteria might bias the results in favour of the topic models,
but this hypothesis has not been tested in the current work. As a consequence
of the few and small networks analysed, the results of this pilot study will not
necessarily generalise to larger networks, but will still serve as a useful tool for
understanding user interactions. Information about the particular datasets used
is summarised in table 2.1 in section 2.2.

Link prediction or graph completion is the task of predicting future or miss-
ing links between nodes in a graph. In social media, it is commonly used for
recommendation and promotion of new �friends� to the users. A key question
to ask is whether the people you are interested in are similar to or very di�erent
from you, and in which ways. [WLJH10] contributes to this answer by showing
that a topical homophily phenomenon exists in the context of Twitter. This is
an important and necessary (but of course not su�cient) condition for being
able to predict links successfully, using topic models.

The main idea in this topic model approach to link prediction is to use each
user's topic distribution θ as an indicator of the users taste and interests. The
similarity of di�erent users is then assessed by comparison of their respective
distributions. See section 4.4.2 for a discussion of similarity measures. As the
chosen similarity measures are symmetric, all the inherently directed links in
the Twitter graph are interpreted as undirected in this analysis. The estimated
similarities are then used as scores for pairs of nodes in the graph, and in sorted
order, they represent the ranks of all possible connections in the graph.

[PG11] and [PECX10] uses LDA for link prediction in the same manner as done
here. Namely concatenating all tweets written by each user into a �super-tweet�
and using it to estimate a document-topic distribution for each user. This work
will, however, go further and investigate if presence of user names within the
tweets can be used to improve performance of topic models for link prediction.
Natively, a twitter message has a single author, but it often contains informa-
tion related to other people in the network, such as �replys� or �mentions� using
the @username notation. This information can be extracted and exploited by
expanding the author list of this type of tweets. The author-topic model is ideal
for handling this situation, as it is capable of modelling joint authorships. Note
that the extracted user names are removed from the tweet text.
This procedure is suggested based on the assumption that if you reply to a mes-
sage, that message will probably contain some information that is of interest
and value to the recipient. For the same reason, original authors of messages
that are re-tweeted should also be included in the author-list of the particular
message. The question is, however, if this approach will show a signi�cantly
better performance than LDA, and an important factor in this question is of
course how many @usernames are mentioned in the analysed tweets. See table
4.4.
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In the Twitter data, the amount of text written by each user varies immensely.

Name Proportions of tweets
with multiple authors

N1 12.60%
N2 6.96%
N3 11.26%
N4 7.63%
N5 6.10%
N6 10.92%
N7 2.15%
N8 15.87%
N9 5.89%
N10 6.03%

Table 4.4: This table shows the proportions of the tweets in the individual
data sets that have more than a single author. This is the result
from the extraction of extra authors from the tweets for use with
the AT model.

Figure 2.2 in section 2.2 shows the distribution of the number of tweets per user
in the full Twitter data set. The �rst precaution taken, so we do not end up with
poor descriptions of some users' topic pro�les, is to remove users with less than
100 posted tweets (see section 2.2). At the other end of the scale, a few users have
posted several thousands of tweets, leaving them very well-documented. This is
another potentially harmful factor for the LDA/AT approach to link prediction,
as these few users might impact the inferred word-topic distributions more than
users with less data. That being said, if the topics by coincidence �t with the
interests of users with few tweets, these might also be described pretty well, but
there are no guarantees. This problematic issue is discussed further in section
4.4.1.
To summarise, the main goals for the work presented in this section are to make
a small scale comparison of LDA and AT using extra author information ex-
tracted from tweets, and to investigate the in�uence of the amount of available
data per user.

4.4.1 Varying the Maximum Number of Tweets per Au-

thor

The LDA and AT models model strive to represent the given data (a corpus) in
the best possible way, resulting in a low perplexity for the full corpus. Thus all
the individual document perplexities are not necessarily low. Very short docu-
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ments might have a high perplexity, while long documents have a low one. This
behaviour can cause trouble if it is the goal, or at least an important property
of a given analysis, that all documents/authors are described equally well.
To explore the e�ect of this phenomenon, experiments where a maximum num-
ber of tweets tmax are allowed per user are performed. Users with an abundance
of tweets are not excluded, but a subset of tweets of the maximum allowed size
is picked from the full set of the respective authors' tweets.
In the case of LDA, the included tweets for each author are selected uniformly
at random from the author's set of tweets. In the case of the AT model, only
the messages with a single author are considered for removal. This approach
only ensures that authors not �collaborating� with others have a hard limit of
tmax tweets, thus it is possible that some authors exceed the limit if the have
�co-authored� more than tmax tweets. This procedure is used to emphasise the
possible impact of including multi-author information.
In this section, the e�ect of performing such a thinning of the tweets will be
explored and measured using �author perplexity�. The �author perplexity� is
estimated by collecting all tweets written by each author into a single document
and calculating the per-word perplexity of that document.

As an exploratory indicative test of the in�uence on the inferred model pa-
rameters, the �author perplexity� of all the authors in the sub-network N2 (see
section 2.2) is monitored as tmax is reduced. This test is performed using LDA,
i.e. no extra author information has been extracted from the tweets, and thus
tmax limits the number of tweets for every author. The model parameters have
been inferred using four di�erent cuto� values tmax ∈ {∞, 3200, 800, 200}. The
mean value of the perplexity of all the authors' documents cannot be compared
across corpora, as the perplexity measure is dependent on the vocabulary size,
which is changed when removing tweets. A corpus with a limited vocabulary
will in general show better perplexity than a corpus richer in words. What
can be done instead is to compare perplexity for the di�erent authors within a
speci�c corpus. Figures 4.10 and 4.11 show how the author perplexities vary
with the number of written tokens (log scale). The lines in the plots are least
squares �ts of degree one polynomials corresponding to the di�erent values of
tmax (the di�erent colours). We can observe that the slopes of the lines de-
crease slightly as the numbers of tokens per author become more equal. This
indicates that all authors become more equally described by the model. This
experiment is of course very small and non-conclusive, but it contributes to the
understanding of the e�ect of skewness in the amount of available data for the
authors/documents. The result does not in itself say anything about the e�ect
on link prediction performance (also see section 3.3.1), but merely suggests that
this factor is taken into consideration and studied further.
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Figure 4.10: Full plot including all authors for all tmax. See �gure 4.11 for a
detailed view and more information.

4.4.2 Similarity Measures

After discovering topics in the data, and estimating the users' topic mixing
proportions, the question is how to compare these distributions. Being proba-
bility vectors (parametrising multinomial distributions), all elements et ≥ 0 and∑T

t=1 et = 1. All these vectors correspond to points on the (T − 1)-dimensional
simplex de�ned by the topic-word vectors (parametrising the di�erent topics'
distributions over words). There are numerous possible ways to assess the sim-
ilarity or distance between such two vectors. In this work, only a few are con-
sidered. The Euclidean distance is one very easily comprehensible possibility
for measuring the distance between two points on the simplex. Also, cosine
similarity, e�ectively measuring the angle between the vectors will be consid-
ered. The two last measures, the Manhattan/�Taxi driver� distance (`1) and the
Jensen-Shannon divergence are furthermore investigated. The Jensen-Shannon
divergence is also used as a similarity measure in [WLJH10] and [SG05] and
is a symmetric measure derived from the KL-divergence; it is the mean of the
KL-divergences of two distributions from the mean of the two distributions, and
is conveniently bounded to lie in the interval [0, 1]. The Jensen-Shannon diver-
gence is not a metric although a real metric can be derived from it if necessary
[WLJH10]. This is not a problem in the context of link prediction de�ned here,
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Figure 4.11: Magni�ed segment from the plot in �gure 4.10, emphasising the
slope change. Perplexity dependence of the amount of data per
author/document. Four subsets, corresponding to the di�erent
values of tmax, of the data set N2 have been used in this analysis.
The numbers in the legend denote tmax; the maximum number
of tweets allowed per author (0 denotes usage of the unabridged
data set). For each colour (data set), each point represents an
author, and the corresponding "author perplexity" and logarithm
of the number of tokens written by the author. For each data set,
a least squares �t of a degree 1 polynomial (note log-transformed
number of tokens) is plotted, to indicate the general trend. As
suspected, users with a lot of data, are better described by the
model than users with less data. This might be because the word-
topic distributions have been biased to better �t the productive
users. Furthermore, we observe that the mean perplexity across
all documents in each data set is reduced when reducing the
corpora size. This might be caused by a better description of
each author, but, more likely, it is due to the reduced vocabulary
resulting from removal of a considerable amount of tweets. The
model parameters were inferred using T = 100, optimised hyper
parameters as described in section 3.2.2 and 5 parallel Gibbs
sampling chains were run in parallel (see section 3.3).
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because only the ranking of possible connections matter.

4.4.3 Graph Based Methods

As the networks analysed here are quite small compared to the full twitter graph,
the results may not be as signi�cant for other sub-networks or the full twitter
graph. To see how much information is contained in the graph itself and to be
able to relate the results obtained by the topic models to other work on this task,
we compare to two commonly used graph-based link prediction methods, the
Jaccard coe�cient and the Adamic/Adar predictor. Both methods associate a
similarity score to each pair of nodes in the graph, based on knowledge of all the
other edges, and thus the evaluation can be seen as a leave-one-out framework.
Together, the scores form a similarity matrix which can be evaluated just as for
the topic models as described in section 4.4.4.
A common setup for the link prediction task is to hide some fraction, f , of
the existing connections and score all possible connections in the network using
either (4.2) or (4.3), the AUC can be estimated from the resulting ranking of
connections. The estimated value of AUC is of course dependent on f , and the
choice of this value varies in the literature. In cases where the data contains
temporal information and the goal is to predict future links, one can take a
more realistic approach by splitting the data into separate time intervals and
using the links present in the end of the �rst, as the �observed� and the new
connections formed in the second, as �hidden� [LNK07]. Then the performance
becomes dependent on the evolution of the network from one time period to
another. Thus f is e�ectively determined by the chosen time periods.
As no temporal information of the graph structure is available in the examined
twitter data set, we settle for f = 0; we thus have a fully observed network.
Liben-Nowell and Kleinberg [LNK07] reformulate the measure originally pre-
sented by Adamic and Adar [AA03] to �t the problem of link prediction. The
score is de�ned by (4.2) where z(x) is the set of nodes connected to the node
x. As mentioned above, the other graph-based method used for comparison is
the widely known Jaccard coe�cient given by (4.3).

score(x, y) =
∑

z∈z(x)∩z(x)

1

log |z(z)|
(4.2)

score(x, y) =
|z(x) ∩z(x)|
|z(x) ∪z(x)|

(4.3)

Note that this is not an attempt to compare the performance of the models in
order to �nd and promote the best link prediction method, as the topic models
and graph based method are obviously very di�erent and operate on completely
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di�erent features for the prediction task. Nevertheless, it is interesting how the
two di�erent approaches compare on the same data.

4.4.4 Evaluating Link Prediction Performance

Given the ranking of all possible connections in the graph and the knowledge of
the true graph i.e. the existing connections, there are several di�erent ways to
evaluate the performance. One very simple and commonly used measure is the
number of true links amongst the k highest ranking possible connections. This
practice �t well with the purpose of link recommendation as it focuses solely
on the most probable connections, and incorrectly ranked true connections fur-
ther down the list are less relevant. This procedure is closely related to the
notion of precision, often used in IR. The precision de�ned as the proportion of
true edges in the set of claimed edges (top-k). The recall or true positive rate
(TPR), de�ned as the proportion of true edges, correctly classi�ed out of the
total number of true edges is often combined with the precision into a single
number; the F-measure. These quantities are often used when a classi�er has
a speci�c operating point. Using a ranking classi�er as in the current case, the
operating point can be determined arbitrarily by setting a threshold. To get a
more complete picture of the performance, the threshold can be varied and the
classi�er can be evaluated in the corresponding di�erent operating points. A
common way to illustrate the performance is then to plot corresponding values
of the false negative rate and the TPR (stemming from the di�erent thresholds).
The resulting curve is called the receiver operating characteristic (ROC) curve
and can be used to graphically inspect the performance for di�erent thresholds.
It is often desirable to be able to compare performance using a single number,
and thus a summary statistic of the performance at all possible operating points
can be calculated. For this work, the area under the ROC curve (AUC) has been
chosen. A value of 0.5 corresponds to a random ranking of the samples, thus
the closer to a value of 1 the better. This measure is used extensively in the
literature [KL11, LLC10, CMN08].
The AUC is equivalent to the Wilcoxon-Mann-Whitney statistic, and can be in-
terpreted as the probability of correctly ranking a random pair of samples (pos-
sible edges) consisting of a positive and a negative sample [HM82]. The value
can be calculated using (4.4) also taking rank ties into consideration [AGH+05].

AUC(f,X,Y) =
1

nnnp

np∑
i=1

nn∑
j=1

I(f(xi) > f(yj)) +
1

2
I(f(xi) = f(yj)) (4.4)

where f is the ranking function, and X and Y are the np positive and nn

negative examples, respectively. I is an indicator function evaluating 1 if the
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argument-condition is true and 0 otherwise.
To be able to compare model performances one also has to assess the uncertainty
of estimated AUC value. [HM82] provides the formula (4.5) to calculate the
standard error of the estimated AUC.

SE(AUC) =

√
AUC(1−AUC) + (np − 1)(Q1 −AUC2) + (nn − 1)(Q2 −AUC2)

npnn

(4.5)
where np and nn are the numbers of existing and non-existing edges, respec-
tively. Q1 and Q2 are quantities that depend on the distributions of the positive
and negative examples, and [HM82] argues that the approximation (4.6) pro-
vides conservative estimates of SE(AUC). These expressions are used when
calculating con�dence intervals for the estimated AUC values in section 4.4.5.

Q1 =
AUC

2−AUC
Q2 =

2AUC2

1 +AUC
(4.6)

4.4.5 Experiment Setup and Results

All results in this section stem from topic model parameters inferred with
T = 100 topics. The similarity scores are calculated as mean values of the
similarities stemming from six parallel Gibbs sampling chains, each with ran-
dom initialisation.
Instead of removing stop-words which is a popular heuristic method that often
works well in practise, the hyper-parameters of the prior distributions are opti-
mised by �nding a maximum likelihood estimate. Following the arguments of
[WMM09] a symmetric Dirichlet distribution is used as a prior for the word-topic
distributions, while the author-topic distributions have an asymmetric Dirichlet
as the prior. See section 3.2.2. The value T = 100 is in the high end of what
is often seen in the literature. This choice was made to avoid having far too
few topics to describe the diversity in the corpora. Increasing the number of
topics too much would most likely lead to over�tting, and the link-prediction
performance would su�er. However, [WMM09] shows that using the asymmet-
ric prior on the author-topic distributions generates much more stable topics,
than using an asymmetric prior. Therefore, in the ideal case for a given data
set and using a large T , the model is able to adjust and only use the necessary
topics. This e�ect is illustrated in section 3.2.3 using synthetic data. The ta-
bles 4.5a, 4.5b and 4.5c are created using LDA with the three di�erent values
of tmax ∈ {∞, 1000, 300} (maximum number of tweets per author). The tables
show the estimated values of the area under the ROC curve and the correspond-
ing 95% con�dence intervals for the four di�erent similarity measures: cosine,
euclidean, manhattan/taxi-driver and the Jensen-Shannon divergence. See sec-
tion 4.4.2. The con�dence intervals rely on the assumption that the AUC is
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normally distributed, which is reasonable due to the high number of samples
(links) in all the cases studied here [HM82].
Likewise, tables 4.6a and 4.6b show the results obtained from using the AT
model with tmax ∈ {∞, 1000}.
Table 4.7 shows the results obtained using the graph-based link prediction me-
thods discussed in section 4.4.3. For a discussion of the results presented here,
see section 4.4.6.

4.4.6 Discussion and Further Work

Looking at just the results from the graph based methods, Adamic/Adar signi-
�cantly outperforms the Jaccard coe�cient in the link prediction problem in all
the data sets used here. This is consistent with the results reported from other
experiments using Twitter data [LNK07]. These methods operate using features
of the local graph structure, and from the results obtained here, it is evident
that the graph around a user contains a lot of information about who each user
is likely to connect to. Both graph methods signi�cantly outperform the topic
models, which is not that surprising since they are fed with information that is
more closely related to the prediction task than the topic models are. Therefore,
they compete on completely di�erent terms and a direct comparison seems re-
dundant. It is much more interesting to look at the two methods' characteristics,
forces and weaknesses and investigate how they might be combined to supple-
ment each other. An analysis of the type of mis-classi�cations/mis-predictions
made by the di�erent methods might reveal a strong independence, and in that
case a combination of the topic models could provide an even stronger classi�er.
This analysis has not been treated here and remains a possible future work.

Both LDA and the AT model perform signi�cantly better than random pre-
diction. This shows that the tweets do indeed contain valuable information
about the Twitter users' preferences and interests, and who they are likely to
follow. In the tables in section 4.4.5, there seem to be a strong tendency that the
Jensen-Shannon divergence produces the most favourable ranking of the possi-
ble connections, but studying the uncertainty of the estimated AUCs reveals
that the di�erences are far from always statistically signi�cant at the speci�ed
level (95%). This result is a good indication that the similarity measure is not
the important factor in the fairly good performance of the topic models. This
emphasises the conclusion from [WLJH10] that the notion of topical homophily
exists in the Twitter context.

The general trend in the results is that the di�erences between LDA and the
AT model are unremarkable. In most cases the there is no signi�cant di�erence.
Only in a few cases (for example N9-10, tmax = 300) LDA seems to perform
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slightly better than the AT model. This indicates that the extra author infor-
mation does not result in a better prediction of links in the graph. A point of
critique of the analysis is that the amount of tweets with multiple authors varies
a lot between the data sets and is generally quite low. This might hide a poten-
tial di�erence between the method, i.e. it is possible that the data di�erences
between LDA and AT are simply too small to produce di�erent results. The
conclusion from the experiments must be that the AT model and LDA produce
very similar results when used with Twitter data. Another possible source of
the indi�erence and even slightly worse performance of AT might in a few cases
also stem from the way the model handles the multiple authors. As described
in section 3.2, each word token gets assigned to only a single author from the
set of coauthors. This means that it is possible that the AT model actually
obstructs the whole purpose of the experiment slightly: calculating meaningful
similarities between authors, because each tweet is better described by authors
with di�erent topical preferences than if they were very similar. This promotes
di�erences rather than similarities in a multi-author situation, which possibly
leads to an underestimation of the diversity of the individual authors.

In the current work, the user names extracted from the tweets have only been
used for expanding the author-lists of the tweets. This means that the extra
information has only an indirect in�uence on the link prediction, and one might
argue that these observed user names could be used much more directly and
e�ciently because they provide very reliable information about the local graph
structure. Work in this direction has not been the primary interest of the
approach to link prediction taken in this chapter. The main focus has been on
the use of pure topic models to provide an analysis of in�uential parameters,
which will hopefully be useful for further research.

One of the other interesting results obtained here is that the number of tweets
written by each individual user does not seem to a�ect the results remarkably.
There is no clear tendency in the results that suggests that performance should
depend on tmax. A possible explanation could be that Twitter users in general
tend to post messages within very few topics and thus are easy to characterise
even from quite few observed tweets. This is however an untested hypothesis.
Another factor that could in�uence the results is the number of topics T chosen
for the system. Using a di�erent value of T might change the picture, as this will
change the premises for the description of the topical user pro�les. This is an
important question to investigate, but a proper analysis has not been conducted
in the current work.

The results are in general very consistent both from method to method and
dataset to dataset. This indicates that the analysed networks are neither un-
dersized nor too randomly composed, and this increases the credibility of the
analysis. Still we have to remember that the networks were selected using cer-
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tain criteria, and thus the results only really say something about the particular
kind of networks that have been extracted and analysed here; they are quite
small and may not be representative for the full Twitter network.

To summarise; topic models can indeed be used for predicting links in the Twit-
ter graph using only the tweets posted by the users, but they are not as precise as
methods taking the surrounding graph structure into account. This makes topic
models a very interesting subject for further work in network analysis, where
no parts of the graph can be explicitly observed, and only the material emitted
from the nodes is available. Also the possibility to include sentiment features
in the analysis seems to form an interesting research topic. To mention an ex-
ample use case, such a model might be able to infer the strengths and valences
of the interconnections between national politicians to illustrate the variations
within the de�ned political parties. The textual data is often publicly available
through sources such as Twitter, published parliament transcripts, websites and
newspaper features. This could even be combined with time information to see
how similarities change at elections etc.

Another interesting subject for investigation, which is closer to the work per-
formed here, would be to model each Twitter user with two topical pro�les,
one de�ned by the tweets posted by the user and another de�ned by all tweets
posted by the people that the user follows. In this case it would be possible
to test the hypothesis that people themselves tweet about di�erent (and maybe
more narrow) subjects than what they like to read from others. Furthermore,
such an approach permits prediction in the directed graph of Twitter as opposed
to the simpli�ed undirected graph used in the present work.
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Name cos euc taxi jen-sha
N1 0.6686± 0.00432 0.6495± 0.00435 0.6788± 0.00431 0.6928± 0.00428
N2 0.6763± 0.00569 0.6627± 0.00572 0.6924± 0.00565 0.7032± 0.00561
N3 0.7968± 0.00475 0.7812± 0.00485 0.7918± 0.00478 0.8016± 0.00471
N4 0.6612± 0.00376 0.6417± 0.00377 0.6662± 0.00375 0.6776± 0.00374
N5 0.622± 0.00843 0.6188± 0.00844 0.6349± 0.00842 0.6485± 0.00841
N6 0.7262± 0.00324 0.7089± 0.00328 0.7369± 0.00322 0.7462± 0.00319
N7 0.6701± 0.0131 0.6663± 0.0132 0.6765± 0.0131 0.6813± 0.0131
N8 0.6467± 0.00393 0.6239± 0.00394 0.6621± 0.00391 0.6715± 0.0039
N9 0.6235± 0.00198 0.6181± 0.00198 0.6333± 0.00198 0.6413± 0.00198
N10 0.5931± 0.00382 0.5995± 0.00382 0.61± 0.00382 0.6137± 0.00382

(a) All tweets posted by the users in the network have been used for estimating the users topic

proportions.

Name cos euc taxi jen-sha
N1 0.664± 0.00433 0.6469± 0.00435 0.677± 0.00431 0.6913± 0.00428
N2 0.6731± 0.0057 0.6599± 0.00572 0.6903± 0.00565 0.7019± 0.00562
N3 0.7962± 0.00475 0.7795± 0.00486 0.7917± 0.00478 0.8012± 0.00472
N4 0.6597± 0.00376 0.6382± 0.00378 0.6684± 0.00375 0.6801± 0.00373
N5 0.6199± 0.00843 0.6168± 0.00844 0.6373± 0.00842 0.6495± 0.0084
N6 0.7275± 0.00324 0.7109± 0.00328 0.7365± 0.00322 0.7458± 0.00319
N7 0.6672± 0.0132 0.665± 0.0132 0.68± 0.0131 0.6856± 0.0131
N8 0.6475± 0.00393 0.6254± 0.00394 0.6613± 0.00391 0.6711± 0.0039
N9 0.6376± 0.00198 0.6257± 0.00198 0.6422± 0.00198 0.6486± 0.00197
N10 0.5983± 0.00382 0.6039± 0.00382 0.6164± 0.00382 0.622± 0.00382

(b) At most tmax = 1000 tweets have been included per user.

Name cos euc taxi jen-sha
N1 0.6664± 0.00433 0.6498± 0.00435 0.6781± 0.00431 0.6922± 0.00428
N2 0.6712± 0.0057 0.6623± 0.00572 0.6874± 0.00566 0.7005± 0.00562
N3 0.7957± 0.00476 0.7821± 0.00485 0.7886± 0.00481 0.7998± 0.00473
N4 0.6668± 0.00375 0.6496± 0.00377 0.6744± 0.00374 0.6853± 0.00372
N5 0.6151± 0.00844 0.615± 0.00844 0.6297± 0.00843 0.6438± 0.00841
N6 0.723± 0.00325 0.7108± 0.00328 0.7339± 0.00322 0.7445± 0.00319
N7 0.6724± 0.0131 0.6575± 0.0132 0.6852± 0.0131 0.6912± 0.013
N8 0.6402± 0.00393 0.6295± 0.00394 0.6588± 0.00392 0.6695± 0.0039
N9 0.6329± 0.00198 0.6241± 0.00198 0.6409± 0.00198 0.6488± 0.00197
N10 0.6096± 0.00382 0.6106± 0.00382 0.6243± 0.00382 0.6293± 0.00382

(c) At most tmax = 300 tweets have been included per user.

Table 4.5: AUC of sub-networks using LDA with optimised hyper-parameters.
The stated intervals are 95% con�dence intervals.
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Name cos euc taxi jen-sha
N1 0.6654± 0.00433 0.6419± 0.00436 0.6729± 0.00432 0.6862± 0.00429
N2 0.6719± 0.0057 0.6581± 0.00572 0.6886± 0.00566 0.6992± 0.00563
N3 0.7816± 0.00485 0.7671± 0.00494 0.7806± 0.00486 0.7904± 0.00479
N4 0.6586± 0.00376 0.6366± 0.00378 0.6646± 0.00375 0.6762± 0.00374
N5 0.6216± 0.00843 0.6153± 0.00844 0.6342± 0.00843 0.6465± 0.00841
N6 0.72± 0.00326 0.7053± 0.00329 0.7325± 0.00323 0.7427± 0.0032
N7 0.6691± 0.0131 0.6658± 0.0132 0.6751± 0.0131 0.6798± 0.0131
N8 0.6409± 0.00393 0.6174± 0.00394 0.6572± 0.00392 0.6672± 0.00391
N9 0.6301± 0.00198 0.6247± 0.00198 0.6377± 0.00198 0.6438± 0.00198
N10 0.5874± 0.00382 0.5967± 0.00382 0.6071± 0.00382 0.6136± 0.00382

(a) All tweets posted by the users in the network have been used for estimating the users topic

proportions.

Name cos euc taxi jen-sha
N1 0.6612± 0.00433 0.6413± 0.00436 0.6716± 0.00432 0.6854± 0.00429
N2 0.6699± 0.0057 0.6559± 0.00573 0.688± 0.00566 0.6991± 0.00563
N3 0.7844± 0.00483 0.7643± 0.00496 0.7796± 0.00486 0.7895± 0.0048
N4 0.66± 0.00376 0.6346± 0.00378 0.6659± 0.00375 0.6768± 0.00374
N5 0.6248± 0.00843 0.6156± 0.00844 0.6378± 0.00842 0.6517± 0.0084
N6 0.7268± 0.00324 0.7084± 0.00328 0.7345± 0.00322 0.7442± 0.0032
N7 0.6693± 0.0131 0.6575± 0.0132 0.68± 0.0131 0.6858± 0.0131
N8 0.6432± 0.00393 0.6172± 0.00394 0.6587± 0.00392 0.6678± 0.00391
N9 0.6297± 0.00198 0.6182± 0.00198 0.6355± 0.00198 0.6445± 0.00198
N10 0.5952± 0.00382 0.5984± 0.00382 0.6098± 0.00382 0.6165± 0.00382

(b) At most tmax = 1000 tweets have been included per user.

Table 4.6: AUC of sub-networks using the AT model with optimised hyper-
parameters. The stated intervals are 95% con�dence intervals.

Name Jaccard Adamic/Adar
N1 0.8796± 0.003198 0.9156± 0.002756
N2 0.8798± 0.004235 0.9168± 0.003632
N3 0.9156± 0.003392 0.9357± 0.003007
N4 0.8921± 0.002665 0.9263± 0.002265
N5 0.862± 0.006556 0.9195± 0.005255
N6 0.9008± 0.002298 0.9306± 0.001969
N7 0.8793± 0.009813 0.921± 0.00822
N8 0.8468± 0.003177 0.8949± 0.002742
N9 0.8923± 0.001397 0.9332± 0.001138
N10 0.9039± 0.002559 0.931± 0.002216

Table 4.7: AUC of sub-networks using the methods of the Jaccard coe�cient
and Adamic/Adar. The entries in the table are 95% con�dence
intervals for the estimated AUC.
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Chapter 5

Thesis Conclusion

This master thesis has treated a variety of applications of the Latent Dirichlet
Allocation model and one of its derivatives, the Author-Topic model. Model
parameter inference has been performed by collapsed Gibbs sampling for which
the sampling equations have been derived.

Some insight to the functionalism and behaviour of the collapsed Gibbs sampler
for LDA has been gained through experiments with synthetic corpora of varying
sizes. The main results indicate that it might be computationally bene�cial to
start the Gibbs sampling on a subset of the data rather than the full dataset to
obtain faster initial convergence of the Markov Chain. However, further analysis
is needed to make a conclusion.

Furthermore, a method for hyper parameter optimisation using maximum like-
lihood has been applied to the AT model. The optimisation deals with a con-
�guration of the topic model where a symmetrical Dirichlet distribution is used
as prior for each topic's distribution over words, and each author's/document's
mixing proportions of topics is provided with an asymmetric Dirichlet prior.

The thesis has presented setups and results of experiments with speci�c use
cases of topic models such as document outlier detection and social network
link prediction. The experiments were conducted using both real and synthetic
data.
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The Author-Topic model proved to be able to detect documents in the NIPS
dataset containing incorrect authorship information. The AT model parameters
were inferred using a set of training documents, and by means of perplexity each
document in a separate test dataset was classi�ed as either normal or abnormal.
Also a method for removing in�uence of possible errors in the training set was in-
vestigated but showed no sign of improved performance measured on perplexity.
However, a more thorough study using an extrinsic evaluation of performance,
and possibly cross validation, would be appropriate.

Last, a pilot study of the use of topic models in the link prediction problem
in the Twitter network was carried out, and performances of LDA and the AT
model were compared to the two well known graph-based approaches: the Jac-
card coe�cient and the method of Adamic/Adar. On the Twitter subgraphs
used in the study, LDA and AT showed very similar performances but they
were not nearly as accurate as the graph based methods. Thus the pure topic
model approach to prediction of links seems to have its limits in a context where
the notion of a link exists explicitly. Nevertheless, with Areas Under the ROC
curves lying in the interval between 0.61 and 0.79 on the di�erent datasets, the
topic models perform signi�cantly better than random prediction. This means
that it is possible to extract some information about the graph structure using
author and topic modelling, which might prove useful for inferring relations in
contexts with a latent link structure.



Appendix A

Software

A python implementation of both LDA and AT with constant hyper parameters
have been developed and can be obtained upon personal request.
Most of the computations using the author-topic model, was carried out utilis-
ing a modi�ed version of source code from the GibbsLDA++ [PN07] project.
The source modi�ed source code implements the AT model including means to
optimise hyper parameters.
Python tools for extracting and processing tweets from the SNAP twitter data
set (no longer available) have been developed as well. The tweets were organised
using the Kyoto Cabinet dbm software tools and libraries for python and C++.
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