Formal Modelling and Verification
of Railway Time Tables

Kristian Hede s062378

Kongens Lyngby 2012
IMM-MSc-2012-71

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk IMM-MSc-2012-71

Summary (English)

The goal of the thesis is to investigate how formal methods can be used to verify
and create railway timetables.

First a formal model of railway networks and timetables in RSL is created.
Based on the formal model of RSL, a model in UPPAAL is created, which is
able to verify properties of existing timetables. A model in UPPAAL CORA
is then created, which is able to generate timetables, which satisfy the same
properties as those of the UPPAAL model.

Lastly a tool written in Java is created, which provides a graphical user inter-
face for creating timetables. The tool uses UPPAAL CORA and the created
model for creating timetables, and is able to visualize results. This tool is con-
sidered a prototype, and is an example of how for methods can be used to create
timetables.

Summary (Danish)

Malet med denne thesis er at undersgge hvordan formelle metoder kan bruges
til at verificere og generere kgreplaner for jernbanedrift.

Forst bliver en formel model af jernbanenetvaerk og kgreplaner i RSL lavet.
Baseret pa den formelle model i RSL, er en model i UPPAAL blevet lavet,
som er i stand til at verificere egenskaber i eksisterende kgreplaner. En modeli
UPPAAL CORA er herefter lavet, som er i stand til at generere kgreplaner, som
kan opfylde de samme egenskaber som dem i UPPAAL modellen.

Til sidst er et vaerktgj i Java lavet, som giver en grafisk brugergraenseflade til la-
ve kgreplaner. Vaerktgjet benytter sig en UPPAAL CORA, samt den tilhgrende
model til at generere kgreplaner, og det er i stand til at visualisere resultater-
ne. Dette veerktgj betragtes som en prototype, og er et eksempel pa, hvordan
formelle metoder kan bruges til at generere kgreplaner.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Computer Science and Engineering, with the
study line of Software Engineering.

This thesis has been written during the period of January 30th 2012 to July 16th
2012, under the supervision of associate professor Anne Elisabeth Haxthausen
and associate professor Alex Landex and is worth 30 ECTS credits.

The thesis consists of the following written report, with an attached CD, con-
taining the created models, the created tool and the report and figures of the

report.

All of the figures in this thesis have been created by the author Kristian Hede,
unless otherwise noted.

Lyngby, 16-July-2012

Kristian Hede s062378

Acknowledgements

I would like to thank my supervisor Anne E. Haxthausen for choosing me
for this project, and being a great supervisor who always found the time to
guide me when a needed it. Your high motivation during the development of
this thesis had a very positive effect on me. You were always good at providing
constructive feedback and you were very structured in your role as a supervisor.
Having you as a supervisor has certainly been one of my best work experiences
at DTU.

I would also like to thank my second supervisor Alex Landex for being a
part of this thesis. You have provided a very solid foundation for knowledge
regarding railway operations, and you have skillfully provided feedback on the
railway domain.

Finally, I would like to thank my family and friends, especially my father Henrik
O. Hede for helping by proofreading the report, and Diana J. Sommer for
being supportive during the development of this thesis.

viii

Contents

Summary (English)

Summary (Danish)

Preface

Acknowledgements

1 Introduction

1.1
1.2

Goals . . e
Thesis Overview o o i v e

2 Domain Description

2.1

2.2

2.3

24

Basic Terms L
2.1.1 Station oL
2.1.2 OpenlLine.
2.1.3 Train
2.14 Route
Railway Network
2.2.1 Headway Time
2.2.2 The Open Lines
2.2.3 The Stations
Timetable
2.3.1 Passenger Timetable
2.3.2 Working Timetable
Trains Running According to a Timetable
241 Delay

2.4.2 Handling Delay L.

iii

vil

X CONTENTS

3 Formal Model in RSL 19
3.1 Utilitiesof RSL 20
311 Types . . oo e 20
3.1.2 Functions - Predicates and Auxilliary Functions 21
313 Test Cases. . . . o v v v v i 21

3.2 Model Overview 22
3.3 Model of Railway Network 22
3.3.1 Railway Network Types 24
3.3.2 Sample Railway Network 25
3.3.3 Considering a Railway Network Valid 27
3.3.4 Railway Network Auxilliary Functions 28
3.3.5 Railway Network Predicates 30

3.4 Model of Timetable., 31
3.4.1 Timetable Types 31
3.4.2 Sample Timetables 32
3.4.3 Considering Timetables Valid 34
3.4.4 Timetable Auxilliary Functions 35
3.4.5 Timetable Predicates. 38

3.5 Using Test Cases to Validate 46
4 Using UPPAAL To Verify Timetables 49
4.1 Utilities of UPPAALo o 50
411 Clocks/Time in UPPAAL 50
4.1.2 UPPAAL Description Language 50
4.1.3 UPPAAL Model-checker 53

4.2 UPPAAL Model 54
4.2.1 Validating Timetables - The Input 56
4.2.2 Global Declarations 56
4.2.3 The Hurry Template 69
4.2.4 The Train Template 69
4.2.5 System Declarations 80
4.2.6 Optimizationso 84

4.3 Getting Results Using The Model-checker 85
5 Using UPPAAL CORA To Generate Timetables 89
5.1 Cost and Remaining of UPPAAL CORA 90
5.2 Optimality in Timetables 91
5.3 UPPAAL CORA Model 93
5.3.1 Timetable Request - The Input 94
5.3.2 Global Declarations 94
5.3.3 Train Template 97
5.3.4 Optimizations0 o0 107

5.4 Getting Results Using The Model-checker - The Output 110

CONTENTS xi
6 The Tool 113
6.1 Analysis 113
6.1.1 The Scope of the Tool 114
6.1.2 Create a Railway Network 115
6.1.3 Create Timetables Requests 115
6.1.4 Visualizing Output L. 116
6.1.5 Using the model-checker of UPPAAL CORA 116
6.1.6 Limiting the UPPAAL CORA Model 116
6.1.7 Regular Features 117
6.1.8 Limiting the Complexity of the Tool 117
6.2 Design 117
6.2.1 Design Pattern 000 118
6.2.2 Generating Timetables 119
6.3 Implementation Lo 123
6.3.1 Technology 124
6.3.2 The Structure of the Tool 124
6.3.3 The Final Look of the Tool 125
7 Evaluation 131
7.1 Running Time 131
7.1.1 Running Time When Verifying Timetables 132
7.1.2 Running Time When Generating Timetables 132
7.2 The Verifications and the Generated Timetables 133
7.2.1 The Resulting Verifications 133
7.2.2 The Resulting Generated Timetables 133
7.3 Creating a Tool Which Utilizes Formal Methods 134
8 Conclusion 137
81 Further Work 138
A RSL files 141
A1 RailwayNetwork.rsl o oL oo 141
A2 Timetablersl e 145
A3 TestCases.rsl e 155
B The UPPAAL CORA models used by the final tool 161
B.1 The full UPPAAL CORA model, used by the tool 161
B.2 The UPPAAL CORA model, used by the tool, excluding station
headway times 169
B.3 The UPPAAL CORA model, used by the tool, excluding open
line headway times o 169
B.4 The UPPAAL CORA model, used by the tool, excluding both
headway times 172

xii CONTENTS

C Running Times 175
Cd Verifier 0 175
C.2 Generator e 179

D Tool User Guide 187
D.1 The Railway Network 187
D.2 Creating the Timetable Requests 189
D.3 Generating Timetables 194

Bibliography 199

CHAPTER 1

Introduction

This thesis is a part of the larger research project RobustRailS', including DTU
Transport, DTU Management, DTU Fotonik, DTU Informatics, Banedanmark
(Rail Net Denmark), Bremen University, Trafikstyrelsen (The Danish Transport
Authority), DSB S-tog and DSB. RobustRailS is charged with the purposes
of investigating methods, which can be applied to improve the reliability and
sustainability of railway operation. This thesis is written for DTU Informatics.

When planning the traffic of a railway network, timetables for every train run-
ning on the network are created. The resulting timetables specify how the trains
should perform in the railway network. Hence they have a great influence in
the reliability and sustainability of railway operations. It is therefore desirable
to devote resources towards investigating new methods of verifying and creating
these timetables.

Banedanmark is currently experiencing problems with having too many train de-
lays on a daily basis. As a result people are dissatisfied with the train operation,
and may consequently stop using public train transportation. It is therefore a
high priority of Banedanmark to create timetables, which can decrease the delay
on daily train operations. A challenging aspect of timetabling, is to create the
timetables, in such a manner that they will become robust against delays, by

IRobustRailS stands for Robustness in Railway Operations.

2 Introduction

being able to eliminate the delay as fast as possible. In order to increase the ro-
bustness of timetables, the regularity of the trains can be decreased. This trade
off between robustness and regularity should be addressed and incorporated
whenever attempting to create timetables.

Currently, there are several different tools on the market for creating and man-
aging timetables, such as RailSys [| and Train Planning System (TPS)
[|. Neither of these use formal methods in creating timetables, nor is it
common practice to apply formal methods when creating timetables for railway
networks in other tools.

The purpose of this thesis is to investigate how formal methods can be used
to verify and create timetables, and evaluate if formal methods is a practical
approach - both with regards to speed and the quality of the results. In order
to investigate this, several timetabling models are created, which can be used
to verify and create timetables, utilizing formal methods.

1.1 Goals

In order to investigate the use of formal methods in timetabling, the following
four goals were given, ending in a tool, which is able to create timetables using
formal methods.

1. Create a formal model of a railway network and a collection of timetables
in RSL| |, hereby formalising the domain of the problem, and defining
the level of details involved in the model.

2. Based of the formal model created in RSL, create a UPPAAL][| model
for verifying existing timetables in an existing railway network. The model
should take the timetables and railway network as input parameters, such
that the same model can be used to verify different timetables in different
railway networks.

3. Based on the experiences of step 2, create a model in UPPAAL CORA?
for creating a collection of timetables based on a railway network and
some requirements of the desired timetables. This model should find the
optimal collection of timetables, which also introduces the need to create
a definition of optimility in timetables.

2UPPAAL CORA is a branch of UPPAAL, the official description is found at
http://people.cs.aau.dk/ adavid/cora/index.html

1.2 Thesis Overview 3

4. Finally, create a tool, which is able to take a railway network and some
requirements for the timetables as input. Using the model created in
step 3, the tool should create the optimal timetables and produce human
readable output displaying the timetables.

After these four steps have been completed, an evaluation of the resulting models
and the final tool will be presented, discussing the advantages and disadvantages
of using formal methods in timetabling, as well as whether or not it is a practical
approach, and can be used on real systems.

1.2 Thesis Overview

In chapter 2 the basic domain of timetabling will be presented - explaining the
different terms of the domain and their technical meaning.

Chapter 3 will describe the creation of the RSL model of the domain (step 1).
Chapter 4 will describe the creation of the UPPAAL model (step 2).

Chapter 5 will describe the creation of the UPPAAL CORA model, including
what is considered an optimal collection of timetables (step 3).

Chapter 6 will describe the creation of the final tool, and how it has used the
UPPAAL CORA model, in order to create timetables (step 4).

Chapter 7 will present an evaluation of the use of formal methods in timetabling,
based on the experiences of the previous chapters.

Chapter 8 will present the conclusion of the thesis and provide suggestions for
future work.

Appendix A contains a print of the created RSL files.

Appendix B contains a print of the UPPAAL CORA model files used by the
final tool.

Appendix C contains a presentation of the running times of the final tool.

Appendix D contains a user guide of the final tool.

4 Introduction

This thesis is written on the assumptions that the reader has the following
prerequisites:

e Knowledge of formal methods.
e A basic understanding of finite state-machines.

e A basic understanding of programming.

CHAPTER 2

Domain Description

Terms in timetabling and railway theory in general, vary from place to place.
In Europe, som defintions are used, whereas in North America, other definitions
are used| |. The definitions of the terms used in this thesis are mainly based
on [| and [|, which use the european definitions.

Section 2.1 introduces the common terms basic to railway timetabling.

Section 2.2 describes the abstraction level taken when representing a railway
network.

Section 2.3 Gives a definition of what a timetable actually consists of, and the
two different kinds of timetables which are utilized.

Section 2.4 Gives a definition of what it means for a train to run according to
a timetable. This includes a definition of when a train is delayed, and how a
timetable can be constructed, in order to be more robust against delays.

Section 3.4.3 introduces what it takes for a timetable to be considered valid.

6 Domain Description

2.1 Basic Terms

Many of the terms used when discussing theory of railway timetables, are also
used in everyday speech. This can be confusing, as people might have a different
understanding of the technical terms used in this thesis. This section will present
the definitions of the basic terms of timetabling, which are used in this thesis.

2.1.1 Station

A station is an area where the trains are allowed to make a scheduled stop. The
purpose of such a stop can vary between the following:

e Embarking and disembarking passengers or freight.
e Waiting for another train to overtake'.
e Waiting for another train to pass crossing tracks.

e To reverse directions

Due to the fact that passengers should not be made aware of stops based on one
of the last three items, there are two different types of stations:

Technical Station is an area at which a train can stop and wait, be overtaken,
or reverse - passengers are not allowed to embark or disembark here. This
type of station is always accompanied by signals. A technical station
cannot also be a passenger station.

Passenger Station is an area at which a train can stop and wait, be overtaken,
or reverse - passengers are able to embark and disembark at this type of
station. A passenger station cannot also be a technical station.

Stations of both types are given a name in order to identify it. In this thesis
the term station will be used when the context does not distinguish between
a technical station and a passenger station, otherwise the specific station type
will be used.

A station has a set of platform tracks, which identifies the tracks available at a
station where a train can stop or pass through. In this thesis, only one train is
allowed at a platform track at a time.

IThis requires the station to have more than one track

2.1 Basic Terms 7

2.1.2 Open Line

In order to connect stations to the same railway network, tracks are laid between
them. A connection of tracks between two stations is called an open line. An
open line is defined by the two stations, which represent the two end points of
the open line.

It should be noted that an open line may consist of several tracks - hereby
causing the open line to be able to handle more trains, than if the open line
mere contained a single track.

2.1.3 Train

In Europe, a train is defined as a vehicle scheduled to run on the open lines of
a railway network]| |

A train is either selfpropelled or it has a locomotive. A selfpropelled train is
also called a train unit, and can be attached to other train units. A locomotive
contains the engine which drives a train which is not selfpropelled. A locomotive
is considered a train on its own, but it will most likely have several carts attached
- be they passenger coaches or freight wagons. The term train covers both the
locomotive, the train units and the carts?.

The purpose of a train is to carry passengers or freight, from one station to
another. In order to do so, they utilize the open lines between stations, which
are their means of transportation.

When generating and verifying timetables, the different train types available is
a factor. A train type dictates the maximum speed, acceleration, capacity (for
passengers or freight) and price for a train. It is out of scope for this thesis to
take the full impact of these values into account. Therefore this thesis will only
consider a single train type, which travels at a constant speed® and the train
capacity and train cost are considered irrelevant.

2Trains are also refered to as rolling stock| |

3This means no acceleration takes place, which is a simplification, as in this case, trains
will not slow down before stopping, and will not speed up when starting, it will simply start
and stop instantly.

8 Domain Description

2.1.4 Route

A route defines the open lines a train should traverse, along with the stations
where the train will stop during the journey through a route. In effect, a route
is an ordered list of stations, which a train is assigned to. Figure 2.1 shows
Nzerumbanen|[ok] displayed as a route (the x’s mark conditional stops?).

W oz

E & — o]

88 2 g S

= i)
Ezxs = £ B = B s @
2@88 ¢ S e £ ®5F B &
B o= 2 £ ¢ 7] &o € s ®
z88 &2 &8 & Z - 2 LY)
° ® ® ® ® 8 @]

15 W
Figure 2.1: Nerumbanen displayed as a route. The image is from

http://www.lokalbanen.dk, March 13. 2012

Nerumbanen has a single technical station between Jaegersborg and Ngrgaardsvej,
where the trains go for repairs or when they are idle. This station is called
Remisen. The route displayed in figure 2.1 is meant for passengers to read,
hence technical stations are omitted.

2.2 Railway Network

The Danish railway network consists of several smaller railway networks, varying
in size and usage. A company called Lokalbanen® administrates several small
railway networks, including the local railway network Neerumbanen. Naerumba-
nen consists of eight passenger stations and one technical station. These stations
are connected by eight open lines - this railway network is a real working net-
work, and has therefore acted as a sample railway network during this thesis.
In order to test more elaborate railway networks, more complicated ones have
been created and used.

A railway network consists of a set of stations, which are connected by open
lines. Both the stations and open lines utilize a value called headway time.

4A train will not stop at a conditional stop if no passengers have marked they will exit
there, and no passengers are waiting to get on.
Shttp://www.lokalbanen.dk

2.2 Railway Network 9

2.2.1 Headway Time

A station and an open line needs to have time to prepare for an incoming train,
therefore it is required that a certain amount of time passes between trains
entering a station, or entering an open line. Furthermore, it is important for
trains to be seperated by a certain time, due to the fact that they can have a
braking distance of several kilometers - which they cannot always see ahead.
This minimum time required to be between trains at all time is referred to as
the minimum headway time.

It is possible to add a buffer time to the minimum headway time, resulting in
a total headway time, simply refered to as headway time. The main reason for
adding a buffer time, is to increase the punctuality of a timetable.

Headway times can be added to either stations or open lines, and the precise
definitions can vary from country to country. The definitions presented here are
based on what is deemed as relevant within the scope of this thesis to verify.
More complex definitions exist, and are explained in []

2.2.1.1 Headway Time for Stations

The headway time of a station defines the amount of time required to pass
between any two trains arriving at the station. The motivation for this headway
time is to allow the station to prepare for incomming trains.

Figure 2.2 shows an open line from station A to station B, where two trains
travel from station A to station B. The difference in the two arrival times at
station B, is called the arrival-arrival time.

When looking at a plan on a graph like figure 2.2, the arrival-arrival time must
always be greater than or equal to the headway time.

2.2.1.2 Headway Time for Open Lines

The headway time of an open line defines the minimum amount of time required
to pass between any two trains arriving at an open line, and any two trains
leaving the open line.

5In a graph like these, the vertical line below a station, represents time, and the horizon-
tal lines connecting the vertical lines, are trains travelling between the stations. When the
horizontal line connect with the vertical lines, it means that the train is at a station.

10 Domain Description

Station A Station B

Dpen Line between Station & and Station B

L.
‘I

UDELS J0 3w
|EAL I EALLIY

'IL

Figure 2.2: The Arrival-Arrival time at a station must be greater than or equal
to the headway time of that station.

As with the station, these two times have a name - the arrival-arrival time and
the exit-exit” time of an open line. There are multiple motivational factors for
taking such a value into account:

e As with a station, the headway time of an open line makes sure that an
open line has time to prepare for a train to enter. This reason is guided
more towards the motivation for adding the arrival-arrival time.

e For this thesis, trains are assumed to run at a constant speed between
stations. This means that for a train going from station A to B, the line
representing it in a graph like figure 2.3, will never curve, and it is therefore
possible to use the arrival-arrival times and exit-exit times, to state that
the closest two trains have been to each other on an open line (meassured
in time) - is the smallest of these two times. Based on this, the headway
time of an open line, also guarantees a minimum distance between two
trains, and is therefore a safety property in this aspect as well.

Figure 2.3 shows the arrival-arrival time and exit-exit time on an open line.
Both of these times must always be greater than or equal to the headway time
of the open line.

Tt can also be called Departure-Departure time

2.2 Railway Network 11

Station A Station B

Open Line between Station A and Station B

|

auy| uado po awy
|EALLI-|2ALLEY
|
|
|
|

|
au)| usoda
40 3 3T

J

'IL

Figure 2.3: The Arrival-Arrival time and Exit-Exit time of an open line must
be greater than or equal to the headway time of that open line.

2.2.2 The Open Lines

The open lines of a railway network represent the formation in which the tracks
are laid - this can be represented in many different ways. In this thesis, an
abstraction level has been chosen, such that the actual physical tracks are ir-
relevant - it is the fact that two stations are connected, which is considered -
these are the open lines of the railway network. These open lines will then con-
tain information required to represent such a connection properly. As a result,
a track layout consists of a set of open lines, where each open line contains a
value defining whether or not it is a double track, the minumum running time,
the headway time and the capacity of the open line.

2.2.2.1 Double Tracks and Single Tracks

A track being represented in an open line of this thesis, is always either a double
track or a single track. In reality, an open line may have more tracks, but in
Denmark open lines with more than two tracks are very rare, hence open lines
in thesis this are limited to being either single tracked or double tracked.

The purpose of double tracks is to increase the flexibility of a railway network,
by allowing more trains to traverse the open line - hence a double track is most
often seen in the busiest open lines of a railway network.

12 Domain Description

A double track allows for trains to travel both directions of an open line si-
multaniously, whereas a single track can only be traversed in one direction at a
time. In some railway networks, it is possible for both tracks of a double track
to be used in the same direction, effectively doubling the capacity of an open
line.

For this thesis, it has been chosen that a train is only allowed to travel in the
right track of a double track - such that both tracks cannot be used in the same
direction. This has been chosen in order to simplify the model of the open lines,
as this is not the focus of this thesis.

2.2.2.2 Running Time

The minimum running time of an open line denotes the least amount of time
required by a train type to traverse the open line. This value is needed for all
types of trains on all open lines.

The minimum running time of an open line, is calculated from the actual length
of the track and the top speed at which a train is able and allowed to traverse
this track. The minimum running time therefore depends the length of the
track, the allowed speed on the track (which can vary from section to section),
and the maximum speed of a train type.

It is possible to extend the minimum running time, with a running time sup-
plement - resulting in a total running time. The total running time is simply
refered to as running time. The main reason for adding a running time suple-
ment, is to make timetables based on the running times more robust against
delays|]

Due to the fact that this thesis limits itself to a single train type, a single
minimum running time for each open line will be defined.

2.2.2.3 Capacity

The capacity of an open line is a value representing how many trains are allowed
to be on the open line at the same time.

An open line can be split into smaller segments called block segments. This is
done by adding signals along the open line. The capacity is based on the amount

2.3 Timetable 13

of block segments an open line contains - with room for one train in every block
segment.

For this thesis, it has been chosen that the block segments and signals along an
open line, are represented by the capacity of the open line. In effect, this means
that the amount of block sections of an open line is equal to the capacity.

2.2.3 The Stations

The stations of railway networks often contain a signalling system, and a set, of
platform tracks, where the trains are allowed to stop and take on passengers. At
large stations in Denmark®, there are possibly dependencies between platform
tracks, such as certain platform tracks are only accessible from certain open lines
and there may be several different headway times for certain sets of platform
tracks at the station.

For this thesis, a station has been simplified, such that each platform track has
room for exactly one train, each platform track is accessible from all open lines
of the station, and each station has one headway time for the entire station.

2.3 Timetable

A timetable is one of two types, it is either a passenger timetable, meant to be
read by passengers, or it is a working timetable, meant to be read by e.g. train
drivers. Both types of timetables describe the details of a route, where the detail
level is higher on working timetables than on passenger timetables.

2.3.1 Passenger Timetable

The purpose of a passenger timetable is to inform the passengers of where and
when a train will stop for embarking and disembarking on a route. It is common
to find passenger timetables either online or at a station. They typically display
the following information of a route:

e The name of the route.

8Such as "Hovedbanegarden’.

14 Domain Description

e The names of the passenger stations where the route will make a stop.
e The departure times from each station.

e Special working hours in weekends and holidays.

The timetable displayed to passengers for Neerumbanen and for the S-tog route
B, without special working hours, can be seen in figure 2.4.

) Holte 910 Nazrum - Jgersborg

Afgang Neerum Ekstra kprsel
011121314151 | Hole 5404 14243444 Hverdage 514-034 114 6.44-9.04 & 15.44-17.44
031323334353 || vinm 510212223242
051525354555 || Sorgentri 5000 1020 30 40
071727574757 | Lynavy 415707172737
031828524859 || |=gersbore 455505151535
112131415101 || Genorte 435303151333
132333435305 || Bemstorftsue 4151011137131
162636465605 || Helerup 35495508 1829
182836465808 || Svanemalien 374757071727
203040500010 f| Nordhavn 35455505 1525 Nzrum 14 34 54 14 04 24 44
233343530315 || @sterport 334353031525
253545550515 f| Narreporc 304050 00 10 20 ® Ravnholm 16 36 56 16 06 26 46
273747570717 || vesterpart 2638 4B 5B 06 1B
304050001020 || Kebenhaun H 273747570717 ® Orholm 17 37 57 17 07 27 47
314151011121 || Dybbalsbro 233343530313
334353031323 || Enehave 213141510111 ® Brede 19 39 59 19 09 29 49
364656061626 || Valby 1525 35 45 55 09
384B 5608 1828 || Danshaj 172737475707 @ Fuglevad 22 42 02 22 12 32 52
405000102030 || Huidawre 15 25 35 45 5505
41510111 21 31 avre 132333433303 ® lyngby Lokal 24 44 04 24 14 34 54
435503152533 || Brangbyaster 122232425202
455606 16 26 36 ostrup 001920394059 @ Nprgaardsve] 25 45 05 25 - - -
495909 192932 || Albertsiuna 06 16 26 36 46 56
520012223242 | Taastup 031323354353 J=gershorg 27 47 07 27 17 37 57
5505 15 25 35 45 || Haje Taastrup 011121314151
© J=gersborg 29 49 09 19 39 59
@sterport 43 03 23 33 53 13
Nerreport 45 05 25 35 55 15
Vesterport 47 07 27 37 57 17
© Kpbenhavn H 50 10 30 40 00 20

B | Hoje Taastrup

Figure 2.4: The passenger timetable for Narumbanen (right) and S-tog
route B (left). The Nerumbanen timetable is taken from
http://www.lokalbanen.dk, and the S-tog timetable is taken from
http://www.dsb.dk/

. Both images are taken March 13. 2012.

2.3.2 Working Timetable

A working timetable is what a train driver is presented with, in order to correctly
navigate a route. The information displayed in a working timetable varies from
company to company. At Naerumbanen, the working timetable includes the
information in a passenger timetable, along with:

e Technical stations.
e Arrival times at stations.

e A unique identifier for the working timetable. This identifier is also some-
times be refered to as a train.

2.3 Timetable 15

e Crosstrains - At each station, a list of identifiers of other working timeta-
bles is written. The identifiers denotes which other working timetables,
are planning for a train to be present at the specific station at the same
time. This column in the working timetables is disregarded in this thesis®.

A unique working timetable is defined for each journey through a route from the
first station to the last. This means that for every time a route is initiated, a
unique working timetable is specified for the entire journey through that route.
Figure 2.5 shows an actual working timetable for NeerumBanen.

Jaegersborg-Narum

Km Station 2350-1
An. Af. X-tog
0,5 |Remisen
0 |Jaegersborg 23:50 2337-2
1,2 |Ngrgaardsvej X 23:51
1,9 |Lyngby Lokal X 23:53
3,3 JFuglevad 23:55 23:55
4,5 |Brede X 23:57
5,5 J@rholm 23:59 00:00 2357-2
6,1 JRavnhoim X 00:01
7,8 |[Neerum 00:03
Karer Hv undt. lg

Figure 2.5: Working timetable for NeerumBanen. ’An.” is the arrival time,
where X’ marks a conditional stop, Af.” is the departure time,
'X-tog’ is the crosstrains, '2350-1" is the identifier and Hv undt.
lg’ states that this is for weekdays excluding Saturday. The image
is from [Lok]

In working timetables for S-tog, there is an additional value at each stop in the
working timetable called dwell time. For this thesis, the working timetables will
include the scheduled dwell times at each stop.

2.3.2.1 Dwell Time

When trains stop at a station, it is for a reason stated in section 2.1.3. The
least amount of time required by a train to hold at a station is referred to as
the minimum dwell time.

In addition to the minimum dwell time, there is also a dwell time supplememt.
Dwell time supplement can be added to the minimum dwell time, in order to

9Crosstrains are not defined in either [Jor|]

16 Domain Description

extend the total dwell time. The total dwell time is simply refered to as dwell
time. The main reason for wanting to add a dwell time supplement at a stop is
for a train to wait for passengers from a connecting train| I

2.4 Trains Running According to a Timetable

In order to validate or generate a timetable, it is important to understand what
it means for a train to be driven according to a timetable. The basic defi-
nition is, that a train arrives and departs at a station, at the given times of
the corresponding timetable. Practically, it is necessary to define certain al-
lowed deviations, before classifying a train as being delayed. For example, it
is not possible to foresee the exact times, passengers are done embarking and
disembarking at a station - this varies from time to time. Therefore creating
timetables with a precision level down to seconds, and expecting a train to run
according such timetables precisely, is not possible. It should be noted that
practically, a train is only classified as delayed, if it departs from a station or
arrives at a station, later than a certain time limit after the timetable has stated
it to arrive or depart.

For the scope of this thesis, it has been chosen that the verification of a timetable,
is based upon the fact that trains run exactly according the timetables. In this
thesis, when generating timetables, a certain level of robustness versus delays is
introduced, hereby allowing the collection of timetables, to be able to allow for
a certain degree of delay.

The following sections will explain the concept of delay, and the different types
of delays, and factors regarding delay. Furthermore, it will be presented how
timetables can allow for delays.

2.4.1 Delay

A train is considered to be delayed, when it either arrives at a station or departs
from a station too much later than scheduled!®. Different types of delays exist,
they are divided into two different types of delay|]:

Initial delay is when a train is delayed for a reason not involved in any other
train delays. This type of delay can be caused by passengers embarking

10The actual limit which defines when a train is delayed varies.

2.4 Trains Running According to a Timetable 17

and disembarking, a technical error in the railway network or weather
conditions|]. Figure 2.6 displays an initial delay of a train.

Consecutive delay is a delay caused by the delay of a different train in the
network. This sort of delay can happen if a train is delayed on an open line
or a platform track, occupying the open line or platform track for longer
than scheduled, forcing the next train to wait, and hereby be delayed.
Figure 2.7 displays two delayed trains, where the delay of the blue train
is a consecutive delay, caused by the inital delay of the red train.

Station A Station B

Open Line between Station A and Station B

Figure 2.6: The train is delayed for any number of reason not involving any
other trains in the railway network, this is called Initial Delay.
The dashed line is the scheduled plan for the train, the full line is
the performed plan of the train.

In this thesis, the term delay is used when the type of delay is irrelevant, else
the type will be stated.

2.4.2 Handling Delay

It is possible to create timetables which take delays into account, thus making
timetables more robust against potential delays. This robustness is achieved by
adding the values previously mentioned:

Dwell time supplement which can be added to the minimum dwell time.

18

Domain Description

Station A

Dpen Line between Station A and Station B

Station B

Figure 2.7: The red train is the cause of the initial delay. The blue train is

then delayed to the initial delay of the red train. The delay of the
blue train is called Consecutive Delay.

Running time supplement which can be added to the minimum running

time.

Buffer time which can be added to the minimum headway time.

Increasing either of these three values, allows a train to catch up on delay. The
more the values are increased, the more a train can compensate for a delay, hence
lowering the effect of consecutive delay on other trains. When increasing these
values however, the trains will become less frequent and have longer running
times, as the trains will be slowed down by increasing the values.

The process of determining the optimal value for the three parameters, is a
weighing of how robust the timetables should be against delays versus the fre-

quency of the trains.

For this thesis, when generating timetables, it is possible to specify the running
time supplement to be used in the timetables. The evaluation of the value of
the running time supplement has been discussed in [Thol2], and is concluded
to be optimal at 7% of the minimum running time of the open line.

CHAPTER 3

Formal Model in RSL

When creating a formal model of railway networks and timetables, it is possible
to take different levels of details and specific information into account, e.g.
physics in railways (such as torque in turns and abrasion of the tracks or trains),
or a country’s laws regarding the domain (such as getting permits and upholding
legal standards). In order for a model to serve best, a level of abstraction should
be chosen, such that the model will be of a size and complexity, reflecting the
purpose of the project.

A formal model for the purposes of this thesis, will reflect the railway network
and the timetables affiliated with said network. An introduction to the mod-
elling language is first given, a presentation of the model of the railway network
is then presented, followed by the model of the timetables, extending the model

of the railway network.

In this chapter, section 3.1 will present the utilities of RSL, and their connection
with the created model.

Section 3.2 will briefly present a model overview of the final model.
Section 3.3 will present the final railway network model.

Section 3.4 will present the final timetable model.

20 Formal Model in RSL

Finally section 3.5 will explain how the models are validated in RSL.

3.1 Utilities of RSL

This formal model has been developed using RSL| |*. RSL contains types,
which reflect the terms explained in the domain description (section 2). In
RSL, it is also possible to create functions. In this thesis, functions are used to
create predicates of the values, and auzilliary functions used by the predicates.
Predicates are the functions used to state the conditions under which values
of the types are considered valid. The formal model in RSL can be seen in
appendixes A.2 and A.1.

After the types and predicates were created, test cases were created in RSL,
in order to test the predicates. A test case can instantiate a value and call a
function, with said value. The return value of the function is then calculated,
where it is then possible to see if a function returns the expected value. The
test cases of the formal model can be seen in appendix A.3.

3.1.1 Types

A type is defined as a collection of logically related values|], where basic
types, such as integers and texts, already exists. Based on the existing basic
types, as well as the type operators (set, list, etc.), it is possible to declare
new types. These new types can in turn be utilized by other new types, hereby
providing the foundation of defining the set of logically related values of a formal
model.

When defining types, it is important to have a well defined domain, as the
purpose of the types is to reflect the terms of a domain description as much as
possible - within the scope of the project. As a result, the types will become more
intuitive, often making the formal model less complex and more understandable
in general.

IR AISE Specification Language

3.1 Utilities of RSL 21

3.1.2 Functions - Predicates and Auxilliary Functions

A function in RSL, is defined as a mapping from values of one type to values
of another type[| - meaning that a function will take certain types as
parameters, and will return certain types, independent of the parameter types.
This thesis uses functions for two different purposes - to state a predicate and
to create an auxilliary function.

To create properties of values in the formal model, functions refered to as pred-
icates are used. Stating predicates is a method of stating requirements for the
values of the defined types|]. An example predicate could be The capacity
of a station must be greater than zero. When creating predicates, it is often an
effective approach to make a statement of the domain in plain English?, and
then proceed to converting said statement into RSL?. In this thesis, a predi-
cate function will always return a boolean value, indicating whether or not the
predicate is satisfied.

In order to limit the complexity of the predicate functions, auxilliary functions
can be created. These functions serve to split complex functions, into more, less
complex functions, effectively making all of the functions easier to understand.

In the RSL descriptions of a railway network and a timetable (appendixes A.1
and A.2), the predicates are prepended with pred, whereas the auxilliary func-
tions are not.

3.1.3 Test Cases

Once the types and functions have been created, it is possible to instantiate
values to test the predicates by invoking them and checking whether or not they
return true. Such an invokation is called a test case. In this thesis, test cases
are provided for each of the predicates as well as for the auxilliary functions.

The main motivation for having test cases for auxilliary funtions is to ease the
debugging of the auxilliary functions during development. In order to get a
quick overview of the results of the test cases, it is a possibility to have all
the functions return a boolean value, where false would indicate an error. The
predicates are defined to always return a boolean, but the auxilliary functions
can return any type. Therefore, when a test case is defined for an auxilliary
function, an expected result is defined. If the returned value is equal to the

20r any other spoken language
30r any other modelling language

22 Formal Model in RSL

expected result, it will show as true, else false. This gives the viewer a quick
overview of any detected errors or unexpected results.

When running a test case, it is done by translating the model of the test case
into SML][|*, and then invoking the functions in SML. Further technical
investigation of the process of translating to SML, is not a purpose of this thesis.

3.2 Model Overview

This section will give an overview of the final model in RSL.

The final model consists og two main types and a set of test cases. The two
main types are:

RailwayNetwork which represents the railway network, the timetables are
operating within. This type is defined in the file RailwayNetwork.rsl, and
is explained in section 3.3.

TimetableSet which represents the set of timetables to be verified. This type
is defined in the file Timetable.rsl, and is explained in section 3.4.

The predicates and auxilliary functions for the TimetableSet, utilize the Rail-
wayNetwork type, which result in the fact that the file containing the Timeta-
bleSet type, extends the file of RailwayNetwork.

The test cases are used to instantiate the predicates, in order to validate timeta-
bles in RSL. The RSL file containing the test cases extends the TimetableSet
(which also provides it with the RailwayNetwork type). The figure 3.1 shows
the general structure of the model.

3.3 Model of Railway Network

The development of a formal model of a railway network, was based on the
necessity to verify and generate timetables. In order for a collection of timetables
to be verified or generated, information regarding the open lines, the stations,
and the connection of these is required. Based on the domain description, the
followng items are required to be known of each open line:

4Standard ML

3.3 Model of Railway Network

23

-dillisey Turctions
Predicate functions

Railway Network

Type yMetwark

Test Cazes
Type ingtantiationy
Precicate function
invacatians

i ¥ hanctian

Inwacationg

Collection of
Timetablas

Sudlliary functions
-Predicate funchons

Type: Timetablset

Figure 3.1: The general overview of the RSL model.
collection of timetables use the railway network, and the test cases
uses the collection of timetables (which also provides the test cases
with the RailwayNetwork type).

The following items of a station is required:

The functions of the

The two stations which it connects, which can also act as an identifier.

The minimum running time.

The capacity.

The headway time.

e An identifier - preferably a name.

Whether or not it is double or single tracked.

e The capacity of the station, which is a result of the amount of platform

tracks present at the station.

Based on these values, it is possible to see which stations are connected through
which open lines, and it is possible to verify properties regarding the different
information associated with the open lines and stations. It should be noted that
the two end stations of an open line is used as an identifier - this results in the
fact that it is not possible to have several different open lines between the same

24 Formal Model in RSL

two stations. This is justifiable, due to the fact that to have two independent
open lines between the same two stations, is very rarely seen, and is therefore
disregarded for the purposes of this thesis.

The platform tracks of a station, are replaced by a capacity value, which repre-
sents the amount of platform tracks in the station. With this abstraction level,
a station can be considered a single entity, where all the platform tracks can be
accessed from all of the open lines of the station. This abstraction level has been
chosen, due to the fact that the internal structure of a station, and movement
inside of a station, is out of scope for this thesis.

The following types are used to define a railway network and is also written in
appendix A.1.

3.3.1 Railway Network Types

The types of the railway network are defined based on the domain description
(section 2). The following is the RSL specifications of the types of a railway
network:

type
Time = Nat,
Name = Text,
Capacity = Nat,
DoubleTrack = Bool,
MinimumRunningTime = Time,
HeadwayTime = Time,
Station = Name,
OpenLine = Station x Station,
StationTable =
Station » (Capacity x HeadwayTime),
OpenLineTable =
OpenLine
(DoubleTrack x MinimumRunningTime x Capacity x
HeadwayTime),
RailwayNetwork = StationTable x OpenLineTable

The following is a description of each of the types:

3.3 Model of Railway Network 25

Name is used as identification. A name consists of a text.

Time is a necessary concept in this abstraction level, as both the length of
the open lines and the speed of the train types are implicitly defined in
the time it takes to traverse an open line in minutes. Time is a natural
number.

Capacity is the capacity of an open line. Capacity is an natural number.

DoubleTrack indicates whether or not an open line is double tracked. It is a
Bool value - true if the open line is a double track, false otherwise.

MinimumRunningTime is the minimum running time of an open line, mean-
ing the least amount of time it takes for a train type to traverse the open
line. The minimum running time is a Time.

HeadwayTime is the headway time of an open line or a station. A headway
time is a Time.

Station is a station of the railway network, both a passenger station and a
technical station. A station is a Name.

OpenLine is the identifier of an open line in the railway network. An OpenLine
is defined as two stations - the order of which is insignificant.

StationTable is the collection of the stations, their headway times and their
capacity. The StationTable maps a Station to a Capacity and a Headway-
Time.

OpenLineTable is the collection of the open lines present in the railway net-
work. The OpenLineTable maps an OpenLine to a DoubleTrack, a Mini-
mumRunningTime, a Capacity and a HeadwayTime.

RailwayNetwork is the representation of a railway network. It consists of a
StationTable and an OpenLineTable.

The depency of the types are depicted in figure 3.2.

3.3.2 Sample Railway Network

Figure 3.3 depicts an example railway network, consisting of three passenger
stations (A, B and C) and one technical station (D). Stations A and D and
stations D and B are connected by a double tracked open line, and stations D
and C are connected by a single tracked open line. Stations A, B and C are not
directly connected. Each station has two platforms.

26 Formal Model in RSL

RallwayNetwork

1 1

A
|—| StationTable

Figure 3.2: The types of the RailwayNetwork

A B
— —

D

Figure 3.3: A sample railway network of three connected passenger stations
(A, B and C) and a technical station (D)

3.3 Model of Railway Network 27

The railway network presented in figure 3.3 is equivalent to the open lines of
table 3.1 combined with the station table 3.2

Capacity Double Tracks? Minimum Running Time Headway Time
A—-D 1 true 3 2
D—A 1 true 3 2
B—D 1 true 4 2
D—B 1 true 4 2
C—D 1 false 3 2
D—-C 1 false 3 2

Table 3.1: Table containing the open lines of figure 3.3 - their capacity, whether
or not it is a double track, their minimum running time and their
headway time.

Station | Capacity Headway Time

A 2 2
B 2 2
C 2 2
D 2 2

Table 3.2: Table containg stations of the railway network from 3.3

The following RSL specifications is the railway network presented in figure 3.3,
modelled as the values of the RSL model:

test StationTable : StationTable =
J:////A/// — (2’ 2),
B" = (2, 2),
Qs (2, 2)
"D (2, 2)]
openLineTable : OpenLineTable =
[("A","D") + (true, 3, 1, 2),
("B","D") > (true, 4, 1, 2),
("c”,"D") s (false, 3, 1, 2)]
railwayNetwork : RailwayNetwork =

(stationTable, openLineTable)

3.3.3 Considering a Railway Network Valid

Now that the types are in order, it is time to consider how to formalize, whether
or not a railway network is considered valid. For this thesis, a railway network

28 Formal Model in RSL

is considered valid, if the following two properties hold:

e All of the stations used to define the open lines in the open lines table,
must also be defined in the station table.

e All of the stations defined in the station table, must be connected in the
same railway network, i.e. it has to be possible to reach any station from
any other station, by utilizing the open lines.

If these properties hold, a railway network is considered valid. It should be
noted that the example in section 3.3.2 is valid based on these two properties.

Now that the predicates have been expressed in a natural language, they should
be translated into RSL, by creating auxilliary functions and predicate functions.

3.3.4 Railway Network Auxilliary Functions

When defining the predicates of the RSL model, several auxilliary functions
were developed. The purpose of the these functions is to make the predicates
more intuitive and smaller, hence most of the auxilliary functions are used by
the predicates.

The auxiliary functions not used by the predicates, are used by other auxiliary
functions. The purpose for such a function can vary from having to iterate
through a collection® and having to prepare a variable for use (often a list or
set). The following is a list of the auxilliary functions affiliated with the RSL
model of a railway network.

get OpenLine This is used to retrieve the open line between two stations
from the railway network.
e Station stationl - One station in the desired open line.
e Station station2 - The other station in the desired open line.
e RailwayNetwork (stationTable, openLineTable) - The railway net-

work.

This function checks whether or not (stationl, station2) is in the domain
of the openLineTable, if so, this is returned as the open line, else (station2,

5This is done by recursive functions

3.3 Model of Railway Network 29

stationl) is returned. It should be noted that this function is dependant on
pred4 _all_routes of timetables can_ be_traversed, because it relies on
the fact that the open line between stationl and station2 actually exists.
This is reflected in the precondition stating that either (stationl, station2)
or (station2, stationl) is in the domain of the openLineTable.

connect omne station Connects a station from a set of unconnected stations
to a set of connected stations if possible. It has the following parameters:

o Station-set unconnected - Is the set of unconnected stations.
o Station-set connected - Is the set of connected stations.

o RailwayNetwork (stationTable, openLineTable) - The railway net-
work.

The function takes the head of the unconnected stations, tries to connect
to the connected stations, based on the railway network. If a station
could be connected, it adds the station to the connected set of stations
and returns the new connected stations. If no station could be connected,
it returns the empty set.

are_all stations connected Checks whether or not a set of stations is con-
nected in a railway network. It has the following parameters:

o Station-set unconnected - Is the set of stations yet to be connected.
Initiated with every station except one.

e Station-set connected - Is the set of stations successfully connected
so far. Initiated with the station not in unconnected initially.

e RailwayNetwork (stationTable, openLineTable) - The railway net-
work.

The function uses connect_one_ station to connect a station from uncon-
nected to connected one at a time, until the set of connected stations is
equal to the domain® of the StationTable of the RailwayNetwork. It re-
turns the boolean value true, if all stations could be connected successfully,
else false.

It should be noted that the model for the railway network also contains functions,
which return information regarding the station or the open lines. A function
exists to get each of the capacity, the headway time, the double track value,
and the two stations of an open line. A function for each of the the station
capacity and station headway time also exists. These functions are trivial and
are therefore not explained here, they can be seen in appendix A.1.

6The domain of a map in RSL is equivalent to the set of keys of a map

30 Formal Model in RSL

3.3.5 Railway Network Predicates

The following predicates are taken from section 3.3.3, and are translated into
RSL in the following predicate functions:

pred All stations are defined The stations used to define the Open-
Lines must also be defined as a Station.

In the RSL model, this is done by saying that all of the OpenLines in the
domain of the OpenLineTable consists of two stations - both being present
in the domain of StationTable.

pred All stations are defined :
RailwayNetwork — Bool
pred All stations are defined(
(stationTable, openLineTable)) =
(V (stationl, station2) : OpenLine
(stationl, station2) € dom (openLineTable) =
stationl € dom (stationTable) A
station2 € dom (stationTable)),

pred All stations are connected It must be possible to reach any sta-
tion in the network, from any other station in the network. This means
that all of the stations must be connected in the same network.

In the RSL model, this means there must be OpenLines connecting all
of the stations defined in the StationTable. This is checked by using the
auxilliary function are all stations connected.

pred All stations are connected :
RailwayNetwork — Bool
pred All stations are connected(
(stationTable, openLineTable)) =
let initial station = hd (dom (stationTable)) in
are_all stations connected(
dom (stationTable) \ {initial station},
{initial _station}, (stationTable, openLineTable)

A consequence of this predicate is also that all stations have to be part of
at least one open line.

3.4 Model of Timetable 31

If these predicates are upheld, the railway network in this formal model is con-
sidered to be valid.

3.4 Model of Timetable

The development of a formal model for a timetable, was based on the necessity
to verify and generate timetables. In this case, it is a priority to make the
timetables reflect as many of the details as possible, which is needed when a
train driver has to utlize a timetable. As a result, the abstraction level of the
formal model developed of a timetable is quite low, and the model almost stores
the same level of details as |]

The model stores a name of the timetable, which can be set to the name of the
train assigned to the timetable. This has value does not present any theoretical
restrictions within the scope of this thesis, other than it must be unique.

The specific platform track which the train is supposed to arrive at, at the
station, is not represented in this model. As explained in the domain description
(section 2), the platform tracks of a station has been simplified, to be represented
by a capacity of a station instead, hence the platform tracks in the timetable is
ommitted.

3.4.1 Timetable Types

The types of a timetable are based on the terms presented in the domain de-
scription (section 2). The following is the RSL specifications of the types of a
Timetable:

type
ArrivalTime = Time,
DepartureTime = Time,
DwellTime = Time,
Route = Station™,
Stop =
Station x ArrivalTime x DepartureTime x DwellTime,
Timetable = Name x Stop*,
TimetableSet = Timetable-set

32 Formal Model in RSL

The following is a list describing each of the types:

ArrivalTime is the time a train arrives at a station.
DepartureTime is the time a train departs from a station.
DwellTime is the scheduled dwell time at a station.

Route is a route through a railway network, denoting the stations a train will
pass. A route is an ordered list of Stations.

Stop is the information regarding a particular entry in a timetable. A stop
consists of a Station, an ArrivalTime, a DepartureTime and a DwellTime.

Timetable is a representation of a timetable, denoting the name of the timetable
along with the information regarding the stops related to the timetable
- it is currently the full representation of a working timetable and not a
passenger timetable. A Timetable is a Name and an ordered list of Stops.

TimetableSet is the collection of all the timetables for each train affiliated
with the railway network. This type is created to ease the development of
predicates concerning multiple timetables.

The depency of the types are depicted in figure 3.4.

TimetableSet
Timetable

DepartureTime

Figure 3.4: The types of the Timetable

3.4.2 Sample Timetables

Tables 3.3 and 3.4, depcits two example timetables, based on figure 3.3.

3.4 Model of Timetable 33

A-B | Arrival Time DepartureTime Dwell Time
A 0 1 0
D 4 4 0
B 14 17 0
D 21 21 0
A 24 24 0

Table 3.3: Sample timetable going from station A to B and back to A, passing
through station D, made for the railway network of figure 3.3

C-A | Arrival Time DepartureTime Dwell Time
C 0 1 0
D 4 4 0
A 7 10 0
D 13 13 0
C 16 16 0

Table 3.4: Sample timetable going from station C to A and back to C, passing
through station D, made for the railway network of figure 3.3

The following is the RSL specifications of the two sample timetables of tables
3.3 and 3.4, which run on the sample railway network of section 3.3.

test TimetableList : TimetableSet =
{(//A_B//
1 //’ 1
<(A ? 07 ? 0)7
(”D" 4,4, 0),
("B", 14, 17, 0),
(’D” 21, 21, 0),
("0 24, 24, 0))),
(//A /

<(/ CI

1

I’ 7 70)
("D", 4, 4, 0),
("a", 7, 10 0),
('D", 13, 13, 0),
("c ” , 16, 16, 0)))}

34 Formal Model in RSL

3.4.3 Considering Timetables Valid

For this thesis, when dealing with safety in timetables, aspects such as signal
handling, abrasion and human error are not considered. When a collection of
timetables is considered valid, it is done based on the fact that trains are running
according to the timetables. This means that the validated safety properties
considered when generating or verifying a timetable, can only be considered
valid, if the trains actually run according to the scheduled times. If for some
reason they do not run according to schedule, it will be the safety properties
of the signal system, or human influence, which will guarantee the safety of the
trains.

There are many different possible properties, which can contribute to the quality
of a validation of a collection of timetables. For this thesis, the following eight
properties all have to hold, in order for a collection of timetables to be considered
valid:

e Trains cannot overtake another train on an open line.

e Trains have to satisfy the minimum running times of the open lines.
e Trains have to satisfy the dwell times at the stations.

e The headway times of stations must be upheld.

e The capacity of stations must never be exceeded.

e The headway times of open lines must be upheld.

e The capacity of the open lines must never be exceeded.

e Single track open lines cannot be utilized in both directions simultaniously.

It should be noted that breaking any of these properties does not necessarily
cause an accident to happen. But if any of these properties are broken, it cannot
be guaranteed that an accident will not occur. The lack of this guarantee is
therefore cause to classify a collection of timetables as invalid.

The sample timetables of section 3.4.2 are valid, based on these properties.

Now that the predicates have been expressed in a natural langiage, they should
be translated into RSL, by creating auxiliary functions and predicate functions.

3.4 Model of Timetable 35

3.4.4 Timetable Auxilliary Functions

The motivations and purposes of the auxilliary functions of the timetable model,
are the same as described in the beginning of section 3.3.4. The following is a
list of the auxilliary functions developed for the formal model of a timetable in
RSL:

get Route from Timetable Constructs the route of a Timetable in an
ordered list of Stations. It has one parameter:

e Timetable (timeTableName, stops) - Is the Timetable from which a
route should be constructed.

The function returns the concatenated list containing the head of the stops
in the timetable, with a recursive call to itself - where the tail of stops is
the stops of the new timetable parameter - hereby removing the head from
the recursive call. The function terminates when there are no more stops
left. It returns an ordered list of stations.

get movements of Timetable Constructs the set of every consecutive pair
of stops in a Timetable. It has one parameter:

e Timetable (timeTableName, stops) - Is the Timetable from which the
consecutive pair of stops should be constructed.

The function returns the union between the head of the stops in the
timetable and the head of the tail of the stops in the timetable, with
a recursive call to itself. The timetable of the recursive call is given the
tail of stops of the old timetable - hereby removing the head from the re-
cursive call. The function terminates when there the tail of stops is empty.
It returns a set of pair of stops.

is Route possible Checks whether or not a route is connected in a railway
network. It has the following parameters:

o Route route - The route to validate.

e RailwayNetwork (stationTable, openLineTable) - The railway net-
work.

This function goes through each consecutive pairs of stations in the route,
and checks whether or not the station pair is defined as an open line in
the railway network. It returns false if a check fails, and true if all checks
succeed.

36 Formal Model in RSL

are_travel times possible Checks whether or not the scheduled running
" times of the open lines of a timetable are too small. It has the following
parameters:

e Timetable (timetableName, stops) - The timetable to validate.

e RailwayNetwork railwayNetwork - The railway network.

This function goes through each consecutive pairs of stations in the timetable.
For each pair, it checks whether or not the difference between the depar-
ture time of the first stop, and the arrival time of the second stop exceeds
the minimum running time of the open line. If all of the pairs exceed the
minimum running time, the function returns true, else false.

does timetable occupy open line in time period DIRECTED
Determines whether or not at a train followmg a certain timetable will oc-
cupy a specific open line in the stated direction in a certain time period.
It has the following parameters:

o Timetable timetable - The timetable to potentially occupy the open
line.

e OpenLine openLine - The open line to check if occupied.
e Time from - The beginning of the time period.

e Time to - The end of the time period.

This function goes through each pair of consective stops of the timetable,
and checks whether or not the open line of the two stops is equal to
the openLine paramater (seeing if the two stops utilize the open line in
question). If it is the relevant open line, then it checks whether or not the
departure time of the first stop, or the arrival time of the second stop is
between the from and to parameters - meaning that it either departed or
arrived in the relevant time period. It also checks if the departure of the
first stop is before the from parameter, and the arrival time of the second
stop is later than the to parameter. If any of these checks are true for any
of the consecutive pairs of stops - it means that the open line is occupied
and it will return true, else false.

is open line occupied in time period DIRECTED Determines whether
or not at least one train occupies an open line in a certain time period. It
has the following parameters:
e OpenLine openLine - The open line to check if occupied.
e Time from - The beginning of the time period.
e Time to - The end of the time period.

TimetableList timetableList - The list of timetables to potentially
occupy the open line.

3.4 Model of Timetable 37

This function goes through each Timetable in the timetableList recur-

sively, and invokes does timetable occupy open_line in_time_period DIRECTED.
It returns the intersection of the return values to the invokes of
does_timetable _occupy open_line_in_time_ period_ DIRECTED.

add timetable to trains at station count Checks whether or not a
timetable will schedule a train to be present at a station at a point in
time, if so, it adds one to a counter, else it does not add anything. It has
the following parameters:

o Station station - The station to check for a train at.

o Time time - The time to check for a train.

o Timetable timetable - The timetable to check for a train.

e Int count - The variable keeping track on the amount of trains.
This function goes through each stop in the timetable recursively, and
adds 1 to count and returns count if the train is present at the relevant

station at the given point in time. If the train is not present at the given
station at the given point in time, it returns count unchanged.

all trains at station count Gets the amount of trains present in a sta-
tion at a certain time. It has the following parameters:
o Station station - The station to count the trains at.
o Time time - The time to count trains.

o TimetableList timetableList - All of the timetables to count the trains
from.

e Int count - The variable keeping track on the amount of trains.
This function goes through each Timetable in the timetableList recur-
sively, and returns the summation of invoking

add_timetable _to_trains_at_station_count for each timetable, and the
same station and time.

add_timetable to trains at open line count Checks whether or not
a timetable will schedule a train to be present at an open line at a point
in time, if so, it adds one to a counter, else it does not add anything. It
has the following parameters:
e OpenLine openLine - The open line to check for a train at.
e Time time - The time to check for a train.

o Timetable timetable - The timetable to check for a train.

e Int count - The variable keeping track on the amount of trains.

38 Formal Model in RSL

This function goes through each consecutive pairs of stops in the timetable
recursively, and adds 1 to count and returns count if the train is present
at the relevant open line at the given point in time. If the train is not
present, at the given open line at the given point in time, it returns count
unchanged.

all trains at open line count Gets the amount of trains present in an
open line at a certain time. It has the following parameters:

e OpenLine openLine - The open line to count the trains at.

o Time time - The time to count trains.

o TimetableList timetableList - All of the timetables to count the trains
from.

e Int count - The variable keeping track on the amount of trains.

This function goes through each Timetable in the timetableList recur-
sively, and returns the summation of invoking
add_timetable to trains_at_open_line count for each timetable, and
the same open line and time.

3.4.5 Timetable Predicates

When defining the timetables of a railway network, this model considers two
different types of predicates - namely the predicates concerning the conditions
of a single timetable, and the predicates concerning the conditions of multiple
timetables (when the timetables are interleaving). The items of the list of prop-
erties required to be satisfied in section 3.4.3 is included in these predicates -
along with the additional predicates:

e The journey of a timetable should be possible in the railway network.

e All timetable names must be unique.

These two items are only considered for the model in RSL, and are disregarded
for the remainder of the thesis.

3.4.5.1 Predicates for a Single Timetable

When taking a single timetable into consideration, the following predicates are
considered:

3.4 Model of Timetable 39

pred all routes of timetables can be traversed A timetableisbased
on a route through multiple stations in the railway network. This predicate
states that the route of a timetable has to exist in the railway network.

In the RSL model, this means that all of the stations in the route of
the timetable, must be connected in the railway network the correct or-
der. For all the timetables, the route is found with the auxilliary function
get_ Route_ from_ Timetable, and the auxilliary function is Route possible
has to return true.

pred all routes of timetables can be traversed :
TimetableSet x RailwayNetwork — Bool
pred all routes of timetables can be traversed(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable e
(timetableName, stops) € timetableSet =
if (stops = ()) then true
else
is_ Route_possible(
get Route from Timetable(
(timetableName, stops)), railwayNetwork)
end),

pred minimum_ running times upheld When a train travels from one
station to another based on a timetable, the departure station has a sched-
uled departure time, and the destination station has a scheduled arrival
time. Furthermore, each open line has a time it takes to traverse the open
line - the running time. This predicate states that the running time of
an open line in a timetable must not exceed the scheduled running time
(ArrivalTime — DepartureTime) of two consecutive stops in a timetable.

In the RSL model, this is done by stating that the auxilliary function
are_travel times possible has to return true for all timetables.

pred _minimum _running times upheld :
TimetableSet x RailwayNetwork — Bool
pred minimum running times upheld(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable »
(timetableName, stops) € timetableSet =
if (stops = ()) then true
else
are_travel times possible(

40 Formal Model in RSL

(timetableName, stops), railwayNetwork)
end),

pred dwell times upheld This predicate states that the dwell times de-
fined in the stops of a timetable are upheld. This means that the de-
fined dwell time of a stop, must not exceed the scheduled dwell time
(DepartureTime — ArrivalTime) of a stop in a timetable.

In the RSL model, this is done by stating that for all stops of all timetables
(DepartureTime — ArrivalTime) >= DwellTime.

pred dwell times upheld : TimetableSet — Bool
pred dwell times upheld(timetableSet) =
(V (timetableName, stops) : Timetable ¢
(timetableName, stops) € timetableSet =
(V (station, at, dt, dwt) : Stop
(station, at, dt, dwt) € stops =
(dt — at) > dwt)),

3.4.5.2 Predicates for a Collection of Timetables

When taking a collection of timetables into consideration, the following prediates
are considered:

pred stations never exceed capacity All stations are defined with a
set of platform tracks. This predicate states there can never be more
trains present at a station, than there are platform tracks.

In the RSL model, this is actually done by stating that for all arrival times
of all stops of all timetables, the amount of trains scheduled to be present
(found by using the auxilliary function all_trains_at _station_count) can-
not exceed the number of platform tracks of the station.

pred stations never exceed capacity :
TimetableSet x RailwayNetwork — Bool
pred stations never exceed capacity(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable »
(timetableName, stops) € timetableSet =

3.4 Model of Timetable 41

(V (station, at, dt, dwt) : Stop *
(station, at, dt, dwt) € stops =

let
capacity =
get Station Capacity(
station, railwayNetwork)
in

all trains at_station count(
station, at, timetableSet, 0) <
capacity
end)),

pred open lines never exceed capacity All open lines are defined with
a capacity. This predicate states there can never be more trains present
at an open line, than the capacity dictates.

In the RSL model, this is actually done by stating that for all arrival
times of all pairs of consecutive stops of all timetables, the amount of
trains scheduled to be present cannot exceed the capacity value of the
open line of the consectutive pair of stops. The consecutive pairs of stops
are found by the function get _movements of Timetable, and the amount
of trains present at the open line at a point in time is found by the function
all_trains_at_open_line_ count.

pred open lines never exceed capacity :
TimetableSet x RailwayNetwork — Bool
pred open lines never exceed capacity(
timetableSet, railwayNetwork) =
(V timetable : Timetable ¢
timetable € timetableSet =
(v
((stationl, atl, dt1, dwt1),
(station2, at2, dt2, dwt2)) : (Stop x Stop)

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetable) =
let
capacity =
get OpenLine Capacity(
get OpenLine(
stationl, station2,
railwayNetwork), railwayNetwork)

42 Formal Model in RSL

in
all trains at open line count(
get OpenLine(
station1, station2, railwayNetwork),
dt1, timetableSet, 0) < capacity
end)),

pred stations headway times wupheld This predicate states that the head-
way time has to be upheld for all stations at all times. This means that
the time of arrival at a station and the time of arrival of the next train
at the same station, must, at least, be seperated by the headway time of
said station.

In the RSL model, this is done by stating that for all pairs of consecutive
stops, originating from different timetables, if they arrive at the same
station, the difference between the arrival time of the first train and the
arrival time of the second train, must be greater than or equal to the
headway time.

pred stations headway times upheld :
TimetableSet x RailwayNetwork — Bool
pred stations headway times upheld(
timetableSet, railwayNetwork) =
(V (timetableNamel, stopsl) : Timetable «
(timetableNamel, stopsl) € timetableSet =
(V (timetableName2, stops2) : Timetable ¢
(timetableName2, stops2) € timetableSet =
(V (stationl, atl, dt1, dwtl) : Stop *
(stationl, atl, dt1, dwtl) € stopsl =
(v
(station2, at2, dt2, dwt2) : Stop

(station2, at2, dt2, dwt2) €

stops2 =
((stationl, atl, dt1, dwtl) #

(station2, at2, dt2, dwt2) A
stationl = station2) =

let

headwayTime =

get Station HeadwayTime(
stationl, railwayNetwork

)

in

3.4 Model of Timetable 43

(abs (atl — at2)) >
headwayTime
end)))),

pred open lines headway times upheld This predicate states that the
headway time has to be upheld for all open lines at all times. This means
that the time any two trains enter the same open line, must be seperated
by at least the headway time. The time two trains exit the same open line,
must also at least be seperated by the headway time of said open line.

In the RSL model, this is done by stating that for all two pairs of consec-
utive stops, originating from different timetables and using the same open
line, the difference between the departure times of each of the first stops
and the arrival times of each the second stops, must be greater than or
equal to the headway time.

pred open lines headway times upheld :
TimetableSet x RailwayNetwork — Bool
pred open lines headway times upheld(
timetableSet, railwayNetwork) =
(V timetablel : Timetable »
timetablel € timetableSet =
(V timetable2 : Timetable ¢
timetable2 € timetableSet =
(v
((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) :
(Stop x Stop)

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetablel) =
(v
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) :
(Stop x Stop)
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) €
get _movements of Timetable(
timetable2) =
(timetablel # timetable2 A
(stationl, station2) =

44 Formal Model in RSL

(station3, stationd)) =
let
headwayTime =
get OpenLine HeadwayTime(
get OpenLine(
stationl, station2,
railwayNetwork),
railwayNetwork)
in
(abs (dt1 — dt3)) >
headwayTime A

(abs (at2 — at4)) >
headwayTime
end)))),

pred trains do not attempt to overtake This predicate states that
trains are not scheduled to overtake each other on the open lines. This
means that if two trains depart from the same station, and arrives at the
same station, the train departing first, must also be the first train to arrive.

In the RSL model, this is done by stating that for all two pairs of consec-
utive stops, originating from different timetables and using the same open
line with the same departure and destination station (same direction), the
train with the first departure time, must also have the first arrival time.
If the two trains are running in opposite direction (has opposite departure
and destination stations), they will not attempt to overtake - hence in
such a situation this predicate does not fail.

pred trains _do_not attempt to overtake :
TimetableSet — Bool
pred trains do_not_attempt to_overtake(timetableSet) =
(V timetablel : Timetable e
timetablel € timetableSet =
(V timetable2 : Timetable o
timetable2 € timetableSet =
(v
((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) :
Stop x Stop

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €

get _movements of Timetable(timetablel) =
(v

3.4 Model of Timetable 45

((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) :
Stop x Stop

((stationd, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) €
get _movements of Timetable(
timetable2) =
((timetablel # timetable2 A
(stationl, station2) =
(station3, stationd)) =
((dt1 < dt3 A at2 < atd) V
(dt3 < dtl A atd < at2))))))

pred no_ single track open lines utilized in both directions simultaniously
This predicate states that an open line defined as a single track, cannot
be used by two trains going in opposite directions at the same time.

In the RSL model, this is done by stating that for all pairs of consecutive

stops of all timetables, the function is open_line occupied in_time period DIRECTED
has to return true, in the time period between the departure time of the

first stop and the arrival time of the second stop, and the open line is

defined as station of the second stop to the station of the first stop.

pred _no_single track open lines utilized in both directions simultaniously :
TimetableSet x RailwayNetwork — Bool
pred no_single track open lines utilized in_ both directions simultaniously(
timetableSet, railwayNetwork) =
(V timetable : Timetable e
timetable € timetableSet =
(v
((stationl, atl1, dt1, dwtl),
(station2, at2, dt2, dwt2)) : Stop x Stop

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetable) =
(let
doubleTrack =
get OpenLine DoubleTrack(
(stationl, station2),
railwayNetwork)

46 Formal Model in RSL

in
doubleTrack V
~is_open line occupied in time period DIRECTED(
station2, stationl, dt1, at2,
timetableSet)
end))),

pred timetable names are unique This predicate states that there can-
not be two timetables with the same name.

In the RSL model, this is done by stating that for all pairs of timetables,
their names are different.

pred timetable names are unique :
TimetableSet — Bool
pred timetable names are unique(timetableSet) =
(V (timetableNamel, stopsl) : Timetable ¢
(timetableNamel, stopsl) € timetableSet =
(V (timetableName2, stops2) : Timetable e
(timetableName2, stops2) € timetableSet =
(timetableNamel, stopsl) #
(timetableName2, stops2) =
timetableNamel # timetableName2))

3.5 Using Test Cases to Validate

This section will describe how test cases of RSL are used to test the predicates
of railway networks and timetables.

In order to specify test cases in RSL, some instantiations of the types are re-
quired. As an example, the sample railway network of section 3.3.2, and the
sample timetables of section 3.4.2 can be created as values in RSL.

Test cases are then defined in RSL, which are comprised of a single invocation
of a function. Using SML, it is then possible to determine the return value of
each of the test cases. When the predicates of either a railway network or a
set of timetables are tested, they all need to return true for either the railway
network or the set of timetables to be considered valid.

All of the predicates of the railway network and the set of timetables are tested
in the RSL file of appendix A.3. The following is a single test case, testing the

3.5 Using Test Cases to Validate 47

predicate of a railway network, that all stations must be connected. This sample
uses the railway network of figure 3.3.

pred All stations are connected(test RailwayNetwork)

When this test case is run in SML, the following output is printed:

[pred_All_stations_are_connected] true

Similar test cases exist for the remaining predicates, which all return true for
the stated railway network and timetable instantiations.

48

Formal Model in RSL

CHAPTER 4

Using UPPAAL To Verity
Timetables

UPPAALJ | is a tool able to model, simulate and verify real-time systems,
which can be expressed as a network of timed finite-state machines. With this in
mind, UPPAAL seems well suited to model trains running on a railway network
according to a pre-defined collection of timetables, as this can be considered a
real-time system, and it is possible to model such a system using timed finite-
state machines. Previous applications of UPPAAL include verifying communi-
cation protocols and multimeda applications|]. No work has been found to
suggest that UPPAAL has been used to verify timetables prior to this thesis.

In this chapter, section 4.1 will introduce UPPAAL, by presenting the utilities
available in UPPAAL, and how it works in general.

Section 4.2 will present the model created in UPPAAL, which can be used to
verify timetables.

Section 4.3 will end the chapter by presenting how results can be extracted,
using the created model.

50 Using UPPAAL To Verify Timetables

4.1 Utilities of UPPAAL

UPPAAL is divided into three main parts - a description language, a simulator
and a model-checker. For this thesis the simulator is solely used for debugging
purposes, and is therefore not discussed in this thesis. The following sections
provides a short introduction to the time aspect, the description language and
the model-checker of UPPAAL.

4.1.1 Clocks/Time in UPPAAL

A unique feature of UPPAAL, is that it handles timed finite-state machines.
The fact that time is included, is one of the main motivation points for using
UPPAAL in this thesis. Time is included in UPPAAL as clock variables, which
allow for the finite-state machines to spend time in a state, and create conditions
based on time. When time passes in the system, all of the clocks will know of
this and they will all perform the same increase in time.

Time in UPPAAL is represented as a real number, and clocks can be set at any
time. When a clock is defined, they are initialized to zero by default - and it is
possible to assign any clock any positive value at any time. Setting a clock, will
not have any direct effect on any other clocks in the system.

Clocks in UPPAAL are also able to show intervals of time. This happens if the
system is in a valid state, and it is possible to remain in that state for a period
of time, or pass on to another valid state in that period of time (before being
forced to leave or deadlock the system). UPPAAL will detect this possibility,
and state that the clock is in a time interval, rather than at a specific point
in time, i.e. if no restrictions of time exist in the system, all of the clocks will
simply show as being greater than zero.

4.1.2 UPPAAL Description Language

The UPPAAL description language is used to describe the model. The model
consists of three different parts:

e A collection of templates, which are used to describe the finite-state ma-
chines of the model, as well as functions and variables, local to each tem-
plate.

4.1 Utilities of UPPAAL 51

e A collection of global declarations, which are used to define global functions
and variables.

e The system declarations, which is where the templates are instantiated.

Section 4.1.2.1 gives a description of how templates work in UPPAAL.
Section 4.1.2.2 gives a description of how the global declarations are used.

Finally, section 4.1.2.3 presents how the system declarations instantiate the
templates.

4.1.2.1 Templates

Templates are the finite-state machines of the model, including local declarations
only accessible from the template. A finite-state machine consists of a set of
states, and a set of directed edges, connecting the states'. In order to express
a model as a finite-state machine in UPPAAL, four different types of labels can
be added to edges of the finite-state machines:

Selections A selection can bind a non-deterministic value, in a given range, to
an identifier, which can be accessed by the other three types of labels of
that edge. Selections are not used in the final models created for this thesis.
Some intermediate models contained selections, but as they were quite
expensive (increased running time), they were removed when optimizing
the models.

Guards A guard is a boolean expression, which must be evaluated to true, if
the edge is to be traversed at a given time. If no guard is present, or if
the guard evaluates to true - the edge is said to be enabled.

Synchronisation Different processes can synchronize with each other using
channels, meaning that two edges in different templates can be dependant
on each other, and can be traversed in the same action. Synchronisations
are only used rarely in the models of this thesis, in the form of an urgent
channel. The effect of an urgent channel is, that whenever an enabled edge
is able to synchronize over an urgent channel - this edge must be traversed
without delay. The reason non-urgent channels are not used in the final
models of this thesis, is that the model consist of a single main template,
and it is not possible to synchronize the same template.

IThe reader is assumed to have knowledge of the basic theory of finite-state machines.

52 Using UPPAAL To Verify Timetables

Updates An update on an egde, is an expression with side effects. Whenever
an edge with an update is traversed, the side effects of the expression
change the state of the system.

It is also possible to add an invariant to a state in UPPAAL, which reflects the
condition which must be satisfied for the system to be that state. The states
of a finite state-machine of a template in UPPAAL, can be declared as being a
committed state. When a system is in a committed state, the next edge taken,
must be an outgoing edge of the committed state, and no time is allowed to
pass. If no outgoing enabled edges exists from a committed state after it is
entered, the system is deadlocked.

4.1.2.2 Declarations

Declarations of UPPAAL have similarities to Java, C and C++ | |, with
the functionality of creating variables, constants, datatypes and functions. All
of these different types of declarations are meant to be used by the templates
of the model. They could for example be used in state invariants or as one of
the labels on an edge. Many of the labels of the edges in the final models of
this thesis, use functions in order to keep the finite-state machines as human
readable and small as possible. The guard labels use functions which return a
boolean value, and the update labels use functions which are able to mutate the
system.

It should be noted that when defining an integer, it is possible to define the
range, which the integer is will never exceed. The point of defining such a
range, is to decrease the number of states, needed to be searched by the model-
checker of UPPAAL, when attempting to verify conditions. An integer in the
range of zero to 10 is defined as follows:

int[0,10] example;

4.1.2.3 System Declarations

When creating a model to be verified or simulated in UPPAAL, the final step
is to instantiate templates. The instantiations of templates are called processes,
and they run in parallel. A single template can be instantiated into any number
of processes, where each process gets their own set of local declarations from
the local declarations of the template. It is also possible to add parameters to
the templates - which are then included in the local scope of said process.

4.1 Utilities of UPPAAL 53

4.1.3 UPPAAL Model-checker

The model-checker of UPPAAL is used to specify and verify conditions for a
model. In order to specify conditions, a query language exists, which is a subset
of timed computation tree logic (TCTL)[]. The query language is used for
simple conditions, hence for a detailed description of the language, the reader
is refered to [|-

The model-checker is capable of the following set of actions:

e Verify a single condition.

If successfully verified, and the condition allows it?, a diagnostic trace
can be produced, showing an example of a diagnostic trace where the
condition is true.

If the condition failed to verify, a diagnostic trace can be produced,
to show an example of the condition failing.

o Verify a set of conditions, no diagnostic trace can be produced when ver-
ifying more than one condition.

e When producing a diagnostic trace, the fastest (with least time spent) can
be produced.

e When producing a diagnostic trace, the shortest (with least steps taken)
can be produced.

e When producing a diagnostic trace, a random trace can be produced.

Besides choosing what kind of diagnostic trace UPPAAL should generate, it
is possible to set certain options, determining how the model-checker should
proceed when checking conditions, for example what type of algorithm to use
when verifying - breadth first, depth first etc. The possibilities and details of
these options are explained in | |, and the best options for the created model
for verifying timetables, are discussed in section 4.3.

2If it is a condition stating that a certain state is never reached, a diagnostic trace is not
able to show that, however, if the condition states a certain state is reached at some time, a
diagnostic trace, showing how to reach the state, will be possible.

54 Using UPPAAL To Verify Timetables

4.2 UPPAAL Model

This section will present the model created for verifying timetables. When creat-
ing the UPPAAL model for verifying timetables, many of the desired properties
have already been defined in the formal model in RSL, section 3. The prop-
erties used to define when a collection of timetables is valid in RSL, is carried
over to the model in UPPAAL. The methods used to check these properties in
RSL, cannot be directly translated into this model, but they have been used as
guidelines towards how it could be done.

The purpose of this model is not to be used to validate railway networks. It
should therefore be noted that the model created here, assumes that the provided
railway networks, are valid according to the RSL specifications of section 3.3.

The RSL model has also acted as inspiration when defining the datatypes, which
should hold the information of the railway network and timetables. The types
defined in RSL can more or less be carried over to this model, hence they share
similarities.

During the development of the model, it was a high priority for the model to be
reconfigurable, meaning it should be able to be used to verify any colletion of
timetables for any railway network, without having to change the templates of
the model, but only the data representing the railway network and the timeta-
bles.

Another priority of the model, is in case of a property failing during validation,
you should be able to see which property has failed, where it failed and when it
failed.

The final model for verifying timetables consists of the following three parts:

e The global declarations, which store the global data, including the input
of a railway network and a collection of timetables.

e Two templates, a Train template and a Hurry template. A process of
the Train template represents a single train, running according to one of
the timetables in the global declarations. The Hurry template is there to
provide an urgent channel, and initialize the system.

e The system declarations, which creates a single Hurry process and a num-
ber of Train processes, equal to the number of timetables to be verified.

Figure 4.1, shows a sketch of the contents of the model.

4.2 UPPAAL Model

const int STATIONS =..,

Input is stored in the global

declarations, together with
Global declaratians functions, variables and clocks

| |

The templates utilize the

global declarations, and are
not altered by input
Train Hurry

The system declarations

instantiate a number of Train
system Train, Hurry; _ R
processes depending on the input,
System declarations and a single Hurry process

__________________ 1
G

Tram[D} Train(1) Train(..) Hurry

Processes of system instantiation

Figure 4.1: The general structure of the final model.

56 Using UPPAAL To Verify Timetables

In this section, section 4.2.1 describes the input required, in order to use the
model for verifying timetables.

Section 4.2.2 introduces the datatypes, clocks, variables, constants and functions
of the global declarations. It should be noted that the usage for some of these
declarations will first appear in the next sections of 4.2.3, 4.2.4 and 4.2.5.
Section 4.2.3 provides a short description of the Hurry template.

Section 4.2.4 will explain the Train template in detail.

Section 4.2.5 will explain the system declarations.

Section 4.2.6 will end the model description, by presenting the different aspects
of optimizations performed, during the development of the model.

4.2.1 Validating Timetables - The Input

In order to use the model for validating a collection of timetables, it requires
some input from the user:

A railway network including an open line table and a station table is needed.

A collection of timetables which should be the collection of timetables to
be verified. Each timetable should be an ordered list of stops, where a
stop consists of a station, an arrival time, a departure time, and a desired
dwell time.

All of these values are to be specified by the user of the model, and are declared
in the global declarations.

4.2.2 Global Declarations

The global declarations are used by all of the Train processes, as well as the
Hurry process. The global declarations are used to handle the following five
aspects of the model:

e Datatypes are defined for two things; storing the input of section 4.2.1,
and creating a queue.

4.2 UPPAAL Model 57

e The input of section 4.2.1 is stored as constants.

Variables, representing the states of the open lines and the stations are
declared.

Clocks and Channels used by the templates are declared.

Functions are declared, including accessor functions and functions with
sideeffects, altering the state of the system.

The following sections will describe these five types of declarations, in the listed
order.

4.2.2.1 Datatypes

In order to store information as other datatypes than the primitive datatypes
of UPPAAL, new datatypes are defined. These datatypes are used to express
the following;:

e A station table entry given as input. This datatype is converted from the
RSL model, section 3.3.1.

e An open line table entry given as input. This datatype is also converted
from the RSL model, section 3.3.1.

e A timetable given as input. This datatype is converted from the RSL
model, section 3.4.1.

e A FIFO? queue structure, for which the purpose is clarified in section
4.2.4.

e The id of a Train process is defined as a, integer between zero and the
amount of trains defined by the amount of timetables. The purpose for
this datatype is explained in section 4.2.5.

The following are the defined datatypes in UPPAAL. As the instantiations of
these datatypes are actually constants, sample values are presented in section
4.2.2.2.

3'First In First Out’

58 Using UPPAAL To Verify Timetables

//An open line
typedef struct{
int stationl;
int station2;
} OpenLine;

//An open line in the open line table
typedef struct{

OpenlLine openLine;

bool doubleTrack;

int MRT; //Minimum Running Time

int capacity;

int HWT; //Headway Time
}OpenLineTableEntry;

//A station in the station table
typedef struct{

int station;

int capacity;

int HWT; //Headway Time
}StationTableEntry;

//An entry in a timetables
typedef struct {

int stationId;

int AT; //Arrival Time

int DT; //Departure Time
int DWT; //Dwell Time
}StopEntry;

/*A queue for each open line denoting the order in which trains enter,
and when they are expected to leave the open line againx*/
typedef struct{
int train;
int expectedExit;
} queueEntry;

//t_id is the datatype of the id parameter of the Train template
typedef int[0, TRAINS-1] t_id;

It should be noted that a difference between this datatype and the types in RSL,
is that a station is represented by an integer in UPPAAL, and a text in RSL.
The reason for this is that strings or texts does not exist in UPPAAL. Due to the

4.2 UPPAAL Model 59

fact that reading station names as integers, can lessen the readability notably,
a workaround for this is presented in section 4.2.2.2.

4.2.2.2 Constants

The constants declared in this model, all originate from the input of the railway
network and collection of timetables. The constants here, are defined with
sample values of the railway network of Lokalbanen. Two timetables are given
to be verified in these sample values:

//Number of Stations
const int STATIONS = 9;

//Number of Open Lines
const int OPENLINES = 8;

//Number of Trains
const int TRAINS = 2;

//Number of stops on the routes for each train
const int TRAINSTOPS[TRAINS] = {8,9};

/*The largest amount of stops in a timetable.
This is used to create the timetables array*/
const int MAXLENGTH = 9;

/*Lokalbanen stations, these constants are created to increase
the readability of the other constants*/

const int remisen = 0;

const int jagersborg = 1;

const int norgaardsvej = 2;

const int lyngbylokal = 3;

const int fuglevad = 4;

const int brede = 5
const int orholm =
const int ravnholm
const int narum = 8;

s

I Oy w-

7

//0pen line table for Lokalbanen
const OpenLineTableEntry openLineTable[OPENLINES] =
{{{jagersborg,norgaardsvej},false,1,1,0},

60

Using UPPAAL To

Verify Timetables

//

const StationTableEntry stationTable[STATIONS] =

//

{{norgaardsvej,lyngbylokal},false,1,1,0},
{{1lyngbylokal,fuglevad},false,1,1,0},
{{fuglevad,brede},false,2,1,0},
{{brede,orholm},false,2,1,0},
{{orholm,ravnholm},false,1,1,0},
{{ravnholm,narum}, false,2,1,0},
{{jagersborg,remisen},false,2,1,0}};

Station table for Lokalbanen

{{remisen, 6, 1},
{jagersborg, 2, 1},
{norgaardsvej, 1, 1},
{lyngbylokal, 1, 1},
{fuglevad, 2, 1},
{brede, 1, 1},
{orholm, 2, 1},
{ravnholm, 1, 13},
{narum, 2, 1}};

Timetables

const StopEntry stops[TRAINS][9] = {

//Train 630-1 of Lokalbanen
{{jagersborg,30,30,0},
{norgaardsvej,31,31,0},
{lyngbylokal,33,33,0},
{fuglevad,35,35,0},
{brede,37,37,0%},
{orholm,39,40,0},
{ravnholm,41,41,0},
{narum,43,43,0},
{-1,-1,-1,-13}},

//Train 640-1 of Lokalbanen
{{remisen, 34, 34,0},
{jagersborg,36,40,0},
{norgaardsvej,41,41,0},
{lyngbylokal,43,43,0},
{fuglevad,45,45,0},
{brede,47,47,0%},
{orholm,49,50,0%},
{ravnholm,51,51,0},
{narum,53,53,0}}};

4.2 UPPAAL Model 61

4.2.2.3 Variables

The variables of the model, are used to represent the stations and the open
lines of the railway network, as well as keeping track on how far each train has
travelled at any given time.

When defining a queue for each open line, and the trains present at each open
line, it is done for each direction in the open line. The result, being an additional
dimension of size two, in the relevant arrays. This dimension represents the two
different directions available to traverse on the open line - namely the direction
of value 0 and of value 1. In order to distinguish the two directions, the datatype
of the open line is used. Even though an open line is not directed, it is defined
by two stations - stationl and station2 (see section 4.2.2.1). The direction of
value 0, represents the direction going towards stationl from station2, and the
direction of value 1 is the direction going towards station2 from stationl.

The following are the variable declarations of the model:

/*

The FIF0 queue, a queue exists for each open line(first dimension of array)
in both directions (the second dimension of the array), with room for

all of the trains (the third dimension of the array).

*/

queueEntry queue [OPENLINES] [2] [TRAINS];

//The current position of each train, 0 is the first stop in the timetable
int currentStop[TRAINS] = {0, 0};

//The amount of trains present in each direction on each open line
int [0, TRAINS] trainsAtOpenLine [OPENLINES] [2];

//The amount of trains present at each station
int[0, TRAINS] trainsAtStation[STATIONS];

As an example trainsAtOpenLine[3][0], would be the number of trains currently
going from fuglevad to brede, and trainsAtOpenLine[3][1] would be the number
of trains going from brede to fuglevad, according the sample constants of section
4.2.2.2.

It should be noted that the amount of trains present at an open line, could
be derived from the queue, hereby eliminating the need for the variable train-
sAtOpenLine. Both arrays have been kept, in order to keep a simulation of

62 Using UPPAAL To Verify Timetables

the model as readable as possible. Keeping and maintaining both arrays has a
negligable impact on the running time.

4.2.2.4 Clocks and Channels

The clocks in the model are used to incorporate the time aspect of the timetables
into the model. The clock time is never reset, and is used to read the time of
the system.

The following are the declarations of the clocks and the urgent channel of the
model:

//Global time, this clock is never reset
clock time;

/*Trainclocks, used by each train to determine
how much time has been spent in different statesx*/
clock TrainClock[TRAINS];

//The time elapsed since a train last entered each open line
clock openLinelLastEntered[0PENLINES] ;

//The time elapsed since a train last exited each open line
clock openLinelLastExit [OPENLINES];

//The time elapsed since a train last entered each station
clock stationLastEntered[STATIONS];

//The urgent channel

urgent chan hurry;

4.2.2.5 Functions

The functions of the model can be split up into three different categories:

e Accessor functions, which retrieve information from the constants, and
does not have cause sideeffects.

e Updating functions, which mutate the variables of the model, causing the
state of the system to change.

4.2 UPPAAL Model 63

e Initializers, which are used to initialize certain variables.

The functions of the model are now described, in the order of the stated cat-
egories. Descriptions of each individual function is given as comments in the
code snippets.

Accessor Functions

The following function is an accessor function for getting the headway time of
a station:

//Get headway time of a station
int GetStationHWT(int stationId)
{
return stationTable[stationId].HWT;
}

Similar functions exist for open line headway time, minimum running time,
capacity, the double track value and a station capacity.

Some of the remaining accessor functions dealing with open lines, use a parame-
ter dir. This parameter represents the relevant direction, for which the function
is called. dir is a station in the open line, and is interpreted as described in sec-
tion 4.2.2.3 - meaning that if dir equals stationl of the open line, the direction
value of 0 is used, and if dir equals station2 of the open line, the direction value
of 1 is used.

The following functions are the remaining accessor functions of the model:

/*Get an open line

openLineld is the id of the open line.*/
OpenLine GetOpenLine(int openLineId)
{

return openLineTable[openLineld].openLine;

}

/*Get the id of the open line between the two station parameters.
stationl of the parameters, is not necessarily stationl of the open line,
and station2 of the parameters is not necessarily station2 of the open line
stationl is one of the stations of the open line.
station2 is the other of the stations of the open linex/

64 Using UPPAAL To Verify Timetables

int GetOpenLinelId(int stationl, int station2)

{
for (i : int[0,0PENLINES-1])
{
if ((openLineTable[i] .openLine.stationl == stationl &&
openLineTable[i].openLine.station2 == station2) ||
(openLineTable[i] .openLine.stationl == station2 &&
openLineTable[i].openLine.station2 == stationl))
return i;
}
return -1;
}

/*Get the total amount of trains present at an open line - regardless of direction.
Used when checking for the capacity of a single tracked open line, in which one
of the directions will always be 0
openlLineld is the id of the open line.*/
int GetTrainsAtOpenLine(int openLineId)
{
return trainsAtOpenLine[openLineId] [0] + trainsAtOpenLine[openLineId][1];

/*Get the amount of trains present in a direction on an open line
openlLineld is the id of the open line.
dir is the relevant direction of the open line.x*/

int GetTrainsAtOpenLineDir(int openLineld, int dir)

{
if (openLineTable[openLineld].openline.stationl == dir)
return trainsAtOpenLine[openLineId] [0];
else
return trainsAtOpenLine[openLineId][1];
}

/*Determines whether or not an open line
is occupied in the opposite direction of dir
openlLineld is the id of the open line.
dir is the relevant direction of the open line.x*/
bool IsOpenLineOccupiedOppositeDirection(int openLineld, int dir) {
OpenlLine openlLine = openLineTable[openLineld].openLine;
if (openLine.stationl == dir)
return GetTrainsAtOpenLineDir (openLineld, openLine.station2) > 0;
else
return GetTrainsAtOpenLineDir (openLineld, openLine.stationl) > 0;

4.2 UPPAAL Model 65

/*Get the expected exit of the train at the head of the queue of an open line
openlLineld is the id of the open line.
dir is the relevant queue of the open line.x*/
int GetQueueExpectedExit(int openLineld, int dir)
{
if (IsOpenLineDoubleTrack (openLineld))
if (openLineTable[openLineld].openlLine.stationl == dir)
return queue[openLineld] [0] [0].expectedExit;
else
return queuelopenLineId][1][0].expectedExit;
else
return queue[openLineId][0] [0].expectedExit;
}

/*Get the train at the head of the queue of an open line
openlLineld is the id of the open line.
dir is the relevant queue of the open line.*/
int GetQueueLatestTrain(int openLineld, int dir)
{
if (IsOpenLineDoubleTrack (openLinelId))
if (openLineTable[openLineld].openlLine.stationl == dir)
return queuelopenLineld][0][0].train;
else
return queue[openLineId][1][0].train;
else
return queue[openLineId][0] [0].train;

Updating Functions

The updating functions of the model, are the functions increasing and decreasing
the amount of trains in a direction of an open line, and entering and leaving
the queues of the open lines. It should be noted that no functions exist to
increase or decrease the amount of trains present at each station, as this action
is trivial, because no direction is included. Therefore increasing and decreasing
the number of trains at stations is done directly in the template.

The following declarations are the updating functions of the model, with corre-
sponding comments to describe each function:

/*Increase the amount of trains present in a direction on an open line.

66 Using UPPAAL To Verify Timetables

openlLineld is the id of the open line.
dir is the relevant direction of the open line.*/
void IncreaseTrainsAtOpenLineDir(int openLineld, int dir)
{
if (openLineTable[openLineld].openLine.stationl == dir)
trainsAtOpenLine [openLineId] [0]++;
else
trainsAtOpenLine [openLineId] [1]++;

/*Decrease the amount of trains present in a direction on an open line.

openlLineld is the id of the open line.
dir is the relevant direction of the open line.*/
void DecreaseTrainsAtOpenLineDir(int openLineld, int dir)
{
if (openLineTable[openLinelId].openLine.stationl == dir)
trainsAtOpenLine [openLineId] [0]--;
else
trainsAtOpenLine [openLineId] [1]--;

/*Enter the queue of an open line.
openlLineld is the id of the open line.
trainld is the train entering the queue.

latestExit is the time the train is expected to leave the open line.

dir is the direction the train traverses the open linex*/
void EnterQueue(int openLineId, int trainId, int latestExit, int dir)
{

queueEntry entry = {trainld, latestExit};

if (IsOpenLineDoubleTrack (openLineld))

if (openLineTable[openLinelId].openLine.stationl == dir)
queue [openLineId] [0] [GetTrainsAtOpenLineDir(openLineld, dir)] =
else

queue [openLineld] [1] [GetTrainsAtOpenLineDir (openLineld, dir)] =
else
queue [openLineId] [0] [GetTrainsAtOpenLine(openLineld)] = entry;

/*Exit the queue of an open line.

openlLineld is the id of the open line.

dir is the direction the train traverses the open linex*/
void ExitQueue(int openLineld, int dir)
{

for (i : int[0,TRAINS-1])

entry;

entry;

4.2 UPPAAL Model

{
//1f open line is a double track
if (IsOpenLineDoubleTrack (openLineld))
//Find the correct direction
if (openLineTable[openLineld].openline.stationl == dir)
{
queueEntry empty = {-1, -1};
if (i !'= TRAINS-1)
{
queue [openLineId] [0] [i] = queue[openLineId] [0][i+1];
queue [openLineId] [0] [i+1] = empty;
}
else
queue[openLineId] [0] [i] = empty;
}
else
{
queueEntry empty = {-1, -1};
if (i !'= TRAINS-1)
{
queue [openLineId] [1][i] = queue[openLineId] [1][i+1];
queue [openLineId] [1] [i+1] = empty;
}
else
queue [openLineId] [1][i] = empty;
}
//If open line is single track
else
{
queueEntry empty = {-1, -1};
if (i != TRAINS-1)
{
queue [openLineId] [0] [i] = queue[openLineId] [0] [i+1];
queue [openLineId] [0] [i+1] = empty;
}
else
queue [openLineId] [0] [i] = empty;
}
}

Initializers

68 Using UPPAAL To Verify Timetables

The last functions remaining are the initializers, which initializes the queues
of the open lines, and the clocks related to the stations and open lines of the
system. The clocks are initialized to 1000000000, as they represent the time
elapsed since a train last entered each station and open line, and a train last
left an open line. At the beginning of a simulation - this should theoretically
be infinity, but this is not possible in UPPAAL, and the largest value possible
is chosen instead.

The following declarations are the initializers of the model:

//Initialize the queue
void initQueue()
{
for (i : int[0, OPENLINES-1])
{
for (j : int[0,TRAINS-1])
{
int empty = -1;
queue[i] [0][j] = empty;
queue[i][1][j] = empty;

3
3
X

//Initialize the station clocks and open line clocks used for headway times
void initEnterExitClocks()
{

//Station headway clocks

for (i :int[0, STATIONS-1])

{
stationLastEntered[i] = 1000000000;
}
for (i :int[0, OPENLINES-1])
{

openLinelLastEntered[i] = 1000000000;
openLinelLastExit[i] = 1000000000;
}
}

All of the global declarations have now been presented, and the Hurry template
will be introduced.

4.2 UPPAAL Model 69

4.2.3 The Hurry Template

The Hurry template initializes the global declarations which needs to be initial-
ized, and it provides an urgent channel. The initial state is committed, making
the outgoing edge of the initial state, the first action taken in the system. This
edge invokes the functions to initialize the queues and the clocks of the stations
and open lines.

The resulting state has one outgoing edge, which awaits a synchronization on
an urgent channel.

The template can be seen in figure 4.2.

initQueue(),
initEnterExitClocks()

hurry?

Figure 4.2: The Hurry template, which initializes the system, and provides an
urgent channel

4.2.4 The Train Template

The Train template represents a single train running according to one of the
timetables given as input on the railway network also given as input (as ex-
plained in section 4.2.1).

It has a single id parameter, which is used to access the variables and constants
regarding the variables associated with the specific instantiation of the template
(such as the currentStop variable). The timetable assigned to an instantiation
of the Train template, is the timetable at the index of the id of the Train, i.e.
the train with id 1, will be associated with the timetable of stops[1][..], where
the second dimension of the array, is the stops in the timetable.

70 Using UPPAAL To Verify Timetables

The template is able to handle any railway networks, which can be defined as
defined in the railway network of the formal model in RSL, section 3.3. Figure
4.3 shows a simplified version of the Train template, where some states and
edges are left out in order to clarify the concept of the model. For the model
to be able to handle an arbitrary railway network, four states are introduced,
where they are split into three different categories, as stated by their color:

Inactive - Gray When a train is inactive, it is not yet time for it to stop at
the first designated stop in its timetable.

Active - Blue When a train is in one of the active states, it means that it is
currently journeying through a timetable expressed in the input. When a
train is in AtStation, it reflects the fact that according to the timetable,
it is currently waiting at a station. When the train has departed from
the station, and is travelling on to the next stop, it enters the EnRoute
state. When the train is stated to arrive at the next stop, it will enter
the AtStation state again. This will continue untill every stop has been
traversed, and the train will then enter the Complete state.

Complete - Green When a train is complete, it means that it has successfully
journeyed through its given timetable - if all trains are completed, it means
a collection of timetables has been successfully validated.

Inactive

AtStation EnRoute

Complete

Figure 4.3: The basic concept of how the Train template is able to handle a
dynamic railway network.

The properties to validate the collection of timetables against, are now intro-
duced. Looking at the formal model in RSL, there are the following eight prop-
erties which should hold:

1. Trains cannot overtake another train on an open line.

4.2 UPPAAL Model 71

2. Trains have to satisfy the minimum running times of the open lines.
3. Trains have to satisfy the dwell times at the stations.

4. The headway times of stations must be upheld.

5. The capacity of stations must never be exceeded.

6. The headway times of open lines must be upheld.

7. The capacity of the open lines must never be exceeded.

8. Single track open lines cannot be utilized in both directions simultaniously.

All of these properties can be checked for in the transitions between entering
an open line, or entering a station. Two additional committed states are intro-
duced as evaluating states, one as an intermediate state on the edge AtStation-
EnRoute, and the other as an intermediate state on the edge EnRoute-AtStation.
Furthermore nine error states are introduced - one for each property and one
extra for the headway time of open lines. These error states can be reached
either from the two new evaluating states, and some can also be reached from
the inactive state. An error state can be entered from the inactive state, if a
train is stated to enter a station, which will cause a property to fail, such as
station capacity or station headway time.

Figure 4.4 shows all of the states and edges in the final model, the edge labels
and state invariants have been removed to ease the readability of the basic
structure in the template.

For the purpose of presenting the final model, the edge labels and state invariants
will be introduced to the template of figure 4.4 in small steps, untill the final
model is reached.

The next thing introduced, is edge labels and state invariants responsible for
making sure that the trains travel through the railway network, based on the
associated timetable, in the stops constant. In order for this to happen, invari-
ants and edge guards are placed, forcing the system to enter the AtStation state,
when the arrival time has been reached, and to enter the EnRoute state when
the departure time has been reached. Furthermore guards are added, such that
whenever AtStation is entered and the train has reached its final stop, it will go
to the complete state. Finally, when leaving AtStation and the final stop is not
yet reached, the variable currentStop for the Train is incremented. Figure 4.5
shows the model, with the added invariants and edge labels.

72 Using UPPAAL To Verify Timetables

ERROR_OpenLineCapacity

ERROR_DwellTime ERROR_OpenLineHWTEnter

ERROR_OpenLineOccupiedBothDirections

Inactive evaluatingStationToOpenLine

AtStation

EnRoute .

evaluatingOpenLineToStation

Complete

A

A

ERROR_OvertakeAttempt
ERROR_MinimumRunningTime

ERROR_StationCapacity .
L _

ERROR_StationHWT o ERROR_OpenLineHeadwayTimeExit

Figure 4.4: The Train template of the UPPAAL model, with all edge labels
and state invariants removed

4.2 UPPAAL Model 73

ERROR_OpenLineCapacity

ERROR_DwellTime ERROR_OpenLineHWTEnter

time >= stops{id]jcurrentStop[id]]. DT && ERRCR_OpenLineOccupiedBothDirections

TRAINSTOPSJid] != (currentStop[id]+1)
currentStoplid]++

G/evaIuatingStationToOpenLine
Inactive
time <= stops[id][C].AT

time == stops[id][0].AT

AtStation
time == stops[id][currentStop[id]].DT

TRAINSTOPSJid] ==
(currentStop[id]+1)
hurry

EnRoute
time <= stops[id][currentStop[id]] AT

evaluatingOpenLineToStation
. ©
ERROR_OvertakeAtternpt

Complete

time == stops[id][currentStop[id]] AT

ERRCOR_MinimumRunningTime

ERROR_StationCapacity .

ERROR_StationHWT ,
. ERROR_OpenLineHeadwayTimeExit

Figure 4.5: The Train template, with the added edge labels (showing green)
and state invariants (showing red), guiding the train through a
timetable correctly

74 Using UPPAAL To Verify Timetables

When introducing the check, to validate whether or not a train attempts to over-
take another train on an open line*, the queue variable is used. Upon entering
an open line, the train enters the queue, and when the train leaves the open line
to enter a station, the train must be at the front of the queue - if not, another
train was scheduled to be overtaken, and an error has occurred. Figure 4.6 has
added the property of checking whether or not trains are scheduled to overtake
one another. The functions AttmptedOvertake() and GetCurrentOpenLine()
are declared in the template of Train, and consists of:

/*Determines whether or not a train is currently attempting
to overtake another train, by advancing in the queuex/
bool AttemptedOvertake() {

return GetQueuelLatestTrain(GetCurrentOpenLine(),

stops[id] [currentStop[id]].stationId) != id;

//Gets the id of the open line in the openlinetable
int GetCurrentOpenLine() {
return GetOpenLineId(
stops[id] [currentStop[id]-1].stationId,
stops[id] [currentStop[id]].stationId);
}

When adding the checks for the minimum running time property®, and the dwell
time property®, invariants and edge guards were added, stating the train must
have spent at least the dwell in the AtStation state, and must have at least spent
the minimum running time of the open line in the EnRoute state. In order to
achieve this, a the TrainClock is used to check how much time was spent in the
relevant states. Figure 4.7 has added the properties of minimum running times
and dwell times.

When adding the check for the property of capacity for stations”, the train-
sAtStation variable is used. The variable is incremented when a train enters
the station, and decremented when a trains leaves the station. A set of guards
is added on two different sets of edges, the edges between Inactive and AtSta-
tion, and Inactive and ERROR _StationCapacity, and the edges between evalu-
atingOpenLineToStation and AtStation, and evaluatingOpenLineToStation and
ERROR _StationCapacity. The guards state that if the amount of trains present

4Property 1
5Property 3
SProperty 2
"Property 5

4.2 UPPAAL Model 75

ERROR_Dwell Time

time == stops[id][currentStop[id]].DT &&
(currentStop[id]+1)

TRAINSTOPS]id] !=
currentStop[id]++

Inactive
time <= stops[id][0].AT

time == stops[id][0].AT

TRAINSTOPS[id] ==
(currentStoplid]+1)
hurry

Complete

ERROR_OpenLineCapacity

ERROR_OpenLineHWTEnter

ERROR_OpenLineOccupiedBothDirections

=
evaluatingStationToOpenLine

EnterQueue(GetCurrentOpenLine(),

id,
stops[id][currentStop(id]] stationid)

AtStation
time <= stops[id][currentStop[id]].DT

EnRoute
r =
\AttemptedOvertake() time <= jops[id][currentStop[id]] AT
ExitQueue(GetCurrentOpenLine(),

\sLops[id][currenLSlop{id}].stationld) VE‘UEFUQQOPEHUF‘ETOSEUD

ERROR_OvertakeAtternpt

c

time >= stops[id][currentStop[id]] AT

ERROR_MinimumRunningTime

ERROR_StationCapacity .

ERROR_StationHWT

ERROR_OpenLineHeadway TimeExit

Figure 4.6: The train template, with the added check for overtaking. The red
circles represent the additions made to the model

TrainClock[id] < stops]id][currentStop(id]-1].DWT

ERROR_OpenLineCapacity

ERROR_OpenLineHWTEnter

ERROR_DwellTime .

time >= stops[id]icurrentStop[id]].DT 8&
TRAINSTOPSIid] = (currentStop(idj+1)
currentStop[id]++ <

Inactive

hurry

Complete

time <= stops[id][0].AT opsfid rentStop[id]].stationld),
rainClock[i
time == stops[id][0. AT | AtStation

TrainClock[id] = 0

TRAINSTOPS]id] ==
(currentStop(id]+1)

ERROR_OvertakeAttempt

ERROR_OpenLineOccupiedBothDirections

TrainClock[id] >= stops[id][currentStop[id]-1].DWT
EnterQueue(GetCurrentOpenLine(),
id,

evaluatingStationToOpenLine

time <= stops]id][currentStop[id]].DT

EnRoute
time <= stops[id][currentStop[id]] AT ()

time >= stops[id][currentStop[id] AT
ExitQueue(GetCurrentOpenLine().

stanslidllenrantStop(id]] stationld),

TrainClock[id] = 0 evaluatingOpenLineToStation

€

rainClocklid] < G
(GetCurrentOpenLi

AttemptedOvertake()

ERROR _StationCapacity ERROR_MinimumRunningTime

ERROR_StationHWT .

ERROR_OpenLineHeadway TimeExit

Figure 4.7: The Train template, with the added properties of validating dwell

times

and minimum running times. The red circles represent the

addition for the minimum running time property, and the yellow
circles represent the addition for the dwell time property.

76 Using UPPAAL To Verify Timetables

at the station would exceed the capacity of the station upon entering, the error
state should be entered.

When adding the check for the property of headway times for a station®, the
stationLastEntered clock is used, representing the time elapsed since a train last
entered a station. This clock is reset to zero, each time a train enters the station.
A set of guards is added on the same two sets of edges as explained with the sta-
tion capacity property, only this time, the error state is ERROR__ StationHWT.
The guards state that if the time elapsed since the last train entered a sta-
tion is less than the headway time of the station, the error state should be
entered. Figure 4.8 has added the two station properties, where the StationCa-
pacityError() guard label, the EnterStation(int stationld) and LeaveStation (int
stationId) update labels have been created as the following functions:

//Determine whether or not a station capacity error has incurred
bool StationCapacityError()
{
return trainsAtStation[stops[id] [currentStop[id]].stationId] >=
GetStationCapacity(stops[id] [currentStop[id]].stationId);

/*Make the appropriate updates when entering a station
stationId is the entered station.*/

void EnterStation(int stationId) {
trainsAtStation[stationId]++;
stationLastEntered[stationId] = 0;

}

/*Make the appropriate updates when leaving a station
stationId is the station to leave from*/

void LeaveStation(int stationId)

{
trainsAtStation[stationId]--;

}

It should be noted that UPPAAL is not able to create the guard

stationLastEntered[stops[id] [currentStop[id]].stationId] <
GetStationHWT (stops[id] [currentStop[id]].stationId)}

8Property 4

4.2 UPPAAL Model 77

as a bool function - when attempting to do so, an error reporting incompatible
types occur. If it was possible, this would also have been incorporated in the
StationCapacityError() function, to lessen the complexity of reading the finite-
state machine.

When adding the check for the property of capacity for open lines®, the variable
trainsAtOpenLine is used. It is incremented when a train enters the open line,
and decremented when a train leaves. For a single tracked open line, it is not
necessary with a counter in each direction for this property, but the last property
can utilize this, which is the reason for counters in both directions of an open
line being utilized - regardless of the open line being single or double tracked.
In addition to the counters, guards are added on the two outgoing edges of eval-
uatingStationToOpenLine reaching EnRoute and ERROR,_ OpenLineCapacity,
stating that there must be room for at least one more at that open line, and in
that direction, if not, go to the error state.

When adding the check for the property of headway time for open lines'®, the
two clocks openLineLastEntered and openLineLastLeft are used. The first rep-
resents the time elapsed since a train last entered the open line, and the second
represents the time elapsed since a train last left the open line. These clocks
are set to zero when a train enters the open line and when a train leaves the
open line, respectively. Two sets of guards are added, one set of guards on the
outgoing edges from evaluatingStationToOpenLine reaching EnRoute and ER-
ROR_OpenLineHWTEnter, stating that if the time elapsed since a train last
entered the open line, is less then the headway time of the open line - then enter
the error state. The other set of guards are added on the outgoing edges of
evaluatingOpenLineToStation reaching ERROR_OpenLineHWTExit and At-
Station, stating that if the time elapsed since a train last exited the open line,
is less then the headway time of the open line - then enter the error state.

When adding the check for the final property of not allowing a single tracked
open line to be utilized in both directions simultaniously'!, the variable train-
sAtOpenLine used for the capacity property of an open line is enough. A set of
guards is added on the outgoing edges from evaluatingStationToOpenLine reach-
ing ERROR_ OpenLineOccupiedBothDirections and EnRoute, stating that if
the open line is single tracked, trainsAtOpenLine of the opposite direction must
be zero.

Figure 4.9 has added the three open line properties. It should be noted that
some of the prior updates and guards have been moved to some of the following
new functions:

9Property 6
0Property 7
Uproperty 8

Using UPPAAL To Verify Timetables

78

. ERROR_OpenLineCapacity

ERROR_DwellTime

. TrainClock[id] = stops[id][currentStop[id]-1].DWT

Inactive time == stops(id][currentStop[id]].DT &&

. ERROR_OpenLineHWTEnter

©) time <= stops[id][0.AT TRAINSTOPS[id] I= (currentStop[id]+1)
time == stopsid)[0]AT && currentStoplid]++

. ERROR_OpenLineOccupiedBothDirections

IStationCapacityError() && -
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)
EnterStation(stops[id][0].stationld)
TrainClock[id] = 0

@ evaluatingStationToOpenLine

AtStation
time == stops[id][currentStop[id]].DT

=0

TrainClock[id] >= GetMRT(GetCurrentOpenLine()) &&
IAttemptedOvertake() &&

IStationCapacityError() &&
stationLastEntered[stops[id][currentStop(id]] stationld] >=
GetStationHWT (stops[id][currentStop[id]] stationld)
EnterStation(stops|id][currentStop[id]].stationld),

TRAINSTOPSIid] == (currentStop[id]+1)
hurry!
LeaveStation(stops[id][TRAINSTOPS[id]-1].station|d)

ExitQueue(GetCurrentOpenLinela(),
stops[id][currentStop(id]].station|d),
@) TrainClock[id] = 0

evaluatingOpenLineToStation

TrainClock[id] >= stops[id][currentStop[id]-1].DWT
TminClocklidl =0
LeaveStation(stops[id][currentStop[id}-1].stationld),

mc.u ps[id][currentStop(id]].stationld)

EnRoute
time <= stops[id][currentStop[id]] AT V

time == stops[id][currentStop[id]] AT

Complete

©

ERROR_OvertakeAttempt . AttemptedOvertake()

time == stops[id][0].AT &&
StationCapacityError()

TrainClock[id] = GetMRT
(GetCurrentOpenLine()) .

ERROR_MinimumRunningTime

ERROR_StationCapacity .

tationCapacityError()

time == stops[id][0].AT &&
ationLastEntered|sto [currentStop[id]] stationld] <
L GetStationHWT (stops[id][currentStop[id]].station|d)

7

ERROR_StationHWT .

stationLastEntered[stops[id][currentStop[id]] stationld] =] ERROR_OpenLineHWTExit

GelStationHWT(stopslid][currentStop[id]].station|d)

The Train template, with the added checks for the properties of
station capacity and station headway time. The red circles repre-

sent the additions.

Figure 4.8

4.2 UPPAAL Model 79

//Determine whether or not the capacity of the current open line is exceeded
bool OpenLineCapacityError ()
{
int openLineld = GetCurrentOpenLine();
int dir = stops[id] [currentStop[id]].stationId;
//1f doubletrack and the capacity in the direction has room for no more
if (IsOpenLineDoubleTrack (openLineld))
return GetTrainsAtOpenLineDir(openLineld, dir) >=
GetOpenLineCapacity (openLineId))
//If singletrack and the capacity has room for no more
else
return GetTrainsAtOpenLine(openlLineId) >=
GetOpenLineCapacity(openLineId)));
}

/*Determine whether or not the open line is occupied
in both directions and is single trackedx*/
bool OccupiedOppositeError ()

{
return
(IsOpenLineOccupiedOppositeDirection
(GetCurrentOpenLine(), stops[id] [currentStop[id]].stationId) &&
! IsOpenLineDoubleTrack (GetCurrentOpenLine()));
}

/*Make the appropriate updates when leaving an open line
openlLineld is the open line to leave.
dir is the direction which the trains leaves.*/

void LeaveOpenLine(int openLineId, int dir) {
ExitQueue(openLineld, stops[id][currentStop[id]].stationId);
DecreaseTrainsAtOpenLineDir(openLineId, dir);
openLinelastExit[openLineId] = 0;

}

/*Make the appropriate updates when entering an open line
openlLineld is the open line to enter.
dir is the direction which the trains enters.x*/

void EnterOpenLine(int openLineld, int dir) {
EnterQueue(GetCurrentOpenLine(), id, stops[id][currentStop[id]].AT,

stops[id] [currentStop[id]].stationId);

IncreaseTrainsAtOpenLineDir(openLinelId, dir);
openLinelastEntered[openLineId] = 0;

}

80 Using UPPAAL To Verify Timetables

As with the guard regarding the headway time of stations, the guards of the
headway times of open lines cannot be created as boolean functions, otherwise
they would have.

All of the properties are now included, and the model is close to the final model.
The last thing missing, is that currently, if one train is set to leave a station, and
another train is set to enter the same station at the same time - two different
diagnostic traces are checked, as illustrated in figures 4.10 and 4.11

In figure 4.10, the number of trains at station x reaches three (assuming station
x already has two trains present), while the number of trains at station x only
reaches two in figure 4.11. As the model-checker checks all traces, the trace of
figure 4.10 will cause an error. This in itself can be a correctly defined error,
however this is not desirable, due to the fact that the actual working timetables
of Neerumbanen|[l.ok] would be invalid, if this was the case. As the working
timetables of Neerumbanen are real practical working timetables, this thesis
works towards a validation tool, which is able to validate these timetables as
well.

To solve this, a priority is added, where the train entering the station is forced
to act first, hereby enforcing the course shown in figure 4.11. This is why the
expectedExit value of a queueEntry exists. When a train is designated to leave
a station, a guard is added, stating that no other train should be designated to
enter this station at the same time, without already having entered. This guard
is placed on the edge between AtStation and evaluatingStationToOpenLine, and
the ExitQueue and EnterQueue functionss have an added parameter, namely the
expected time of exit, which is the time of arrival at the station. Figure 4.12
shows the final Train template.

4.2.5 System Declarations

The system declarations of the UPPAAL model has the following single line
written in it:

system Train, Hurry;

This creates a single Hurry process, and a number of Train processes equal to the
TRAINS constant in the global declaration. All of these processes are created
in parallel.

81

4.2 UPPAAL Model

Inactive

i

ERROR_DwellTime

OpenLineCapacityError()

. ERROR_OpenLineCapacity

GetOpenLineHWT (GetCurrentOpenLine())

maum:r,jmrmmﬁmjﬁmﬁm&OmﬁOc_._.m:ﬁOumj_._jm:_ nw

time <= stops[id][0.AT

time == stops[id][0].AT &&

IStationC apacityError() 88

stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0]. stationld)

EnterStation(stops[id][0].stationld),
TrainClock[id] = 0

currentStop[id]++

TRAINSTOPS]id]
hurry!
LeaveStation(stops[id][TRAINSTOPS[id]-1].stationld)

== (currentStopl[id]+1)

Complete

time == stops[id][0].AT &&
StationCapacityError()

. TrainClock[id] < stops[id][currentStop[id]-1].DWT

time >= stops[id][currentStop[id]].DT &&
TRAINSTOPS[id] I=

OccupiedOppositeErmror)

(currentStop[id]+1)

ERROR_OpenLineHWTEnter

. ERROR_OpenLineOccupiedBothDirections

. —=Q

TrainClock[id] = 0
p.

evaluatingStationToCpenLine

AtStation
time <= stops[id][currentStop[id]].DT

TrainClock(id] >= GetMRT (GetCurentOpenLine()) &8
IAttemptedOvertake() &&

IStationCapacityError() &8
mwmzaj_rmmﬁmjwm_.mn—mEUm—_&_.n::.mjﬁm top(id]] stationld] >=
ationld) &&

evaluatingOpenLineToStation

&
Oum.__u__._mOmumn_S.__mﬂS_.: &&
openLinelastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLine()) &&
|OccupiedOppositeError)

TrainClock[id] = 0.
nterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]]. stationld
LeaveStation(stops[id][currentStop[id}-1].stationld)

EnRoute
time <= stops[id][currentStop[id]] AT .

time >= stops[id][currentStop[id]] AT

ERROR_OvertakeAttempt . AttemptedOvertake()

TrainClock[id] = GetMRT
(GetCurrentOpenLine())

ERROR_MinimumRunningTime

A

time == stops[id][0].AT &&
stationLastEntered[stops[id][currentStop[id]] stationld] <

GetStationHWT (stops[id][currentStop[id]].stationld)

ERROR_StationCapacity .

ERROR_StationHWT

StationCapacityError()

openLineLastExi{GetCurrentOpenLine()] <
GetOpenLineHWT (GetCurrentOpenLine())

stationLastEntered[stops[id][currentStop[id]] stationld] <

ERROR_OpenLineHWTExit

GetStationHWT (stops[id][currentStop[id]].stationld)

The Train template with all of the properties added, the new ad-
ditions are the open lines headway time, capacity and the fact
that single tracked open lines cannot be utilized in both directions

Figure 4.9

Itaniously. The red circles represent the additions.

simu

82 Using UPPAAL To Verify Timetables

Timne = t, Time=t, Time =t+1,
trainsAtStation[x] = 2 trainsAtttation[x] = 3 tramsAtStation[x] = 2
- trainsAtStation[x]+«+)
Train(d) . # AtStation

Trainl] Atstation |—rAnsAtEtionix- -

Figure 4.10: Train(0) first enters station x, where there are already two
present - resulting in three trains present at station x during
a diagnostic trace.

Timne = t, Time=t, Time = t+1,
trainsAtStation[x] = 2 trainsAtttation[x] = 1 tramsAtStation[x] = 2

. rrainsarstation[x]++
Train(d) . = AtStation

trainsAtStation[x]--

Train(1} ° | AtStation

Figure 4.11: Train(1) first leaves station x, where there are already two present
- resulting in station x never exceeding two trains present during
a diagnostic trace.

83

4.2 UPPAAL Model

ERROR_Dwell Time

OpenLineCapacityError()

. ERROR_OpenLineCapacity

openLinelastEntered[GetCurrentOpenLine()] <
GelOpenLineHWT(GetCurrentOpenLine())

. ERROR_OpenLineHWTEnter

Inactive
time <= stops[id][0.AT

time == stops[id][0].AT &&

. TrainClock[id] = stops[id][currentStop[id]-1].DWT

time == stops(id][currentStop[id]]. DT &&
i I=

(QueueExpectedExit() = time ||
QueueExpectedExit() =

[id]+1) && OccupiedOppositeError)

. ERROR_OpenLineOccupiedBothDirections

=-1)

!StationCapacityError() && currentStop[id]++ ~
stationLastEntered[stops|id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)
EnterStation(stops[id][0].stationld),

\ TrainClock[id]= 0

. —=0

TRAINSTOPS(id] == (currentStop[id]+1)
hurry!
LeaveStation(stops[id][TRAINSTOPS[id]-1].stationld)

@ L

AtStation
time <= stops[id][currentStop[id]].DT

evaluatingStationToOpenLine TrainClock[id] > = stops[id][currentStop[id]-1]. DWT &&

!OpenLineCapacityError() &&
openLinelLastEntered[GetCurrentOpenLine(]] >=
GetOpenLineHWT(GetCurrentOpenLine()) &&
10ccupledCppositeError()

TrainClock[id] = 0,
EnterOpenLine(GetCurrentOpenLine().
stops[id][curentStop(id]].stationld),
LeaveStation(stops[id][currentStop[id}-1].stationld)

TrainClock[id] == GetMRT(GetCurrentOpenLine()) &&
IAttemptedOvertake() &&
IStationCapacityError() &&
stationLastEntered[stops[id][currentStopl[id]].stationld] ==
GetStationHWT (stopslid][currentStoplid]] stationld) &&
openLinelastExi{GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLine())
LeaveOpenLine(GetCurrentOpenLine(),
stops(id][currentStop[id]].stationld),
EnterStation(stops|id][currentStop(id]].stationld),
TrainClock[id] = 0

EnRoute
time <= stops[id][currentStop[id]] AT .

time == stops[id][currentStop[id]] AT

evaluatingOpenLineToStation

p.

time == stops[id][0].AT &&
stationLastEntered[stops[id][currentStop[id]].stationld] <
\ GelStationHWT (stops]id][currentStop[id]].stationld)

Complete
ermor oot @ T« oy
time == stops[id][0].AT && P J) .
i)
SerentEpaeEren) ERROR_StafionCapacily) ERROR_MinimumRunningTime
StationCapacityError()

openLineLastExi{GetCurrentOpenLine()] <
GelOpenLineHWT(GetCurrentOpenLine())

ERROR_StationHWT .

stationLastEntered[stops(id][currentStop(id]] stationld] <
GetStationHWT(stops[id][currentStoplid]] stationld)

ERROR_OpenLineHWTExit

The final version of the Train template. The red circle represents

the additions.

Figure 4.12

84 Using UPPAAL To Verify Timetables

Multiple Train processes are created this way, as a result of the parameter of
the Train template being a ¢ _id, and a ¢_id is an integer in the range between
zero and TRAINS-1.

The motivation for creating the Train processes in this manner, is to avoid having
to alter the system declarations, when different input is provided to the model.
This way, the correct amount of Train processes will be created automatically,
based on the TRAINS constant, which is provided as input.

4.2.6 Optimizations

During the development of this model, it was discovered that running time could
be an issue, for validating large railway networks with many simultanious trains.
Therefore an effort was put into optimizing the running time of the model, and
certain guidelines have been followed in order to secure a fast and still correct
model:

Use as few clocks as possible Whenever a single clock can be used for dif-
ferent purposes, while the model is still correct, this should be done. The
state space needed to be searched will increase with the amount of clocks
added to the system - hence fewer clocks mean faster running time.

Avoid large select statements if possible Large select statements will cause
the evaluation of an edge to increase in complexity, and because edges
might need to be evaluated a great number of times, when using the veri-
fication tool of UPPAAL, large select statements can increase the running
time notably.

Define variables within a range Whenever a variable is defined, it should
be determined whether or not a range can be defined with it. When
defining a range for a variable, it reduces the state space needed to be
searched when using the verification tool of UPPAAL, thus increasing the
running time.

When following these guidelines, the final model is able to verify an accept-
able number of trains in a fairly complex railway network - the running time
limitations will be presented further in section 7.

4.3 Getting Results Using The Model-checker 85

4.3 Getting Results Using The Model-checker

When using the created model to verify timetables, the model-checker of UP-
PAAL is used. In order to use the model-checker, a set of queries are created,
one query for each of the error, and one query for each timetable to be verified.
Figure 4.13 shows the nine queries of the error states, and four queries for the
timetables.

Fil Rediger Vis Funktioner Indstillinger Hjzlp

LaEaeefewe
m Simulator | Verifikator

QOversigt

A[] forall{i: t_id) not Train(i).ERROR OpenLine0ccupiedBothDirections o ol

A[] forall{i: t_id) not Train(i).ERROE_OpenlineCapacity o

A[] forall{i: t_id) not Train(i).ERROER OpenlineHeadwayTimeEnter o

A[] forall{i: t_id) not Train({i) .ERROR OpenLineHeadwayTimeExit o

R[] forall{i: t_id) not Train(i).ERROR_CvertakeAttempt o =
4[] forall{i: t_id) not Train(i).ERROR_MinimumRunningTime o
B[] forall{i: t_id) not Train(i).ERROR_DwellTime O =

4[] forall{i: t_id) not Train(i).ERROR_StationHeadwayTime o |
B[] forall{i: t_id) not Irain(i).ERROR_StationCapacity O
Train(0).Inactive --> Train(0) .Complete o

Train(l).Inactive —--> Train(l).Complete o

Train(2).Inactive --> Train(2).Complete o

Train(3).Inactive —--> Train(3).Complete o -

Figure 4.13: The queries, used by the model-checker to verify four timetables.

The top nine queries of figure 4.13, regarding the error states can be read as
follows: ’For all states of all Train processes Train(i), Train(i) is not in the state
ERROR _...". This effectively means that no Train process ever enters an error
state. The remaining queries can be read as follows: ’Once Train(n) enters the
state InActive, it will eventually enter the state Complete’. Due to the fact that
InActive is the initial state, these conditions state that each Train process will
eventually enter the Complete state. It should be noted that a query of this
kind should be made for each timetable to be verified.

In order to verify these, it is important to choose the correct options for verifi-
cations in UPPAAL. The options is set under Indstillinger’ (Settings), and the

following options should be chosen'?:

S¢georden (Search Order) Bredde fgrst (Breadth First) - The model-checker

12These decisions are based on the explanations of the options, in the Help section of
UPPAAL.

86 Using UPPAAL To Verify Timetables

needs to search all states, to verify that the error states are never entered,
and breadth first is the most efficient option when the complete state space
must be searched.

Tilstandsrumsreduktion (State Space Reduction) Ingen (None) - The mem-
ory size used by the model-checker is not considered a problem, therefore
in order to obtain the greatest speed, no state space reduction should be
performed. Choosing None has a notable effect on the running time.

Tilstandsrumsreprasentation (State Space Representation) DBM - Again
the memory used by the model-checker is not considered a problem, and
this option is stated to work fast, but may require a lot of memory.

Diagnostisk spor (Diagnostic Trace) This choice of this option varies, de-
pending on the use of the model-checker. When wanting to validate all of
the queries, the option "Ingen’ (None) should be chosen, as this allows the
user to select and verify all of the queries simultaniously. If a condition
was found to be invalid, this option should be ’En eller anden’ (Some),
allowing the user to select the a single property, and generate a diagnostic
trace which shows the state invalidating the condition.

Ekstrapolation (Extrapolation) Automatisk (Automatic) - This options deals
with the regard of termination, and UPPAAL has the possibility of deter-
mining the best way of doing this automatically.

Stgrrelse pa hashtabel (Hash table Size) Is irrelevant, as it is stated to
have no effect unless under "Underapproksimering’ (Under Approximation)
has been selected as the option for extrapolation.

Genbrug (Reuse) Should be checked, as this allows the model-checker to
reuse a generated portion of the state space, when several queries are
checked.

In order to check the conditions of figure 4.13, they are all marked and the
button ’Verificer’ (Verify) is pressed. Once the model-checker has completed,
a successful will be shown as seen in figure 4.14, where all the conditions are
validated, which can be seen by the green lamp next to each query.

If a condition fails, it will be marked by the lamp next to the query appearing as
red. In figure 4.15, the capacity of a station has been exceeded in the provided
collection of timetables, and it can be seen to be the process Train(2) which
has caused it. Once this error has been detected, it is possible to identify how,
where and when it occurred by choosing the ’Some’ option of the Diagnostic
Trace. Then the station capacity query should be chosen and verified by itself,
resulting in a diagnostic trace, which will provide the entire diagnostic trace up
until the state of the error.

4.3 Getting Results Using The Model-checker 87

m C:.I'Knshaan-LngmrmnerfUPPAAUuppaalM.Bﬂ'hm—Wm?anFﬂﬂALMODELm - UPPAAL

Ernk

Fil Rediger Vis F ti Indstillinger Hjzslp

BaE|e Qe [{@ e
Editor | Simulator | Verifikator

Train{i). o
Train{i).
Train{i). nlLineHeadwayTimeEnter
i i
| Train{i).) penlineHeadwayTimeExit (|
i Train(i).
! o !
Train{i).
- Lo | |
| Train{i).
! Train(i). meenigy| ||
i
: -Inactive \
| -Inactiwv f

Figure 4.14: All of the queries are successfully checked, represented by a green
lamp next to each query. In this case, the collection of timetables
has been validated.

C\Kristian\P UPPAAL I-4.0. Wi LMODELxml - UPPAAL
13 an\-r?grammel’\ \uppaal 13\bin-Win32\FINA/

Ernk

Fil Rediger Vis F ti Indstillinger Hjzslp

Da@ae e[
o s Vit |

Qversigt
Af] (i: t_id) Train{i) .
B[] forall{i: t_id) Train{i).
Af] (i: t_id) Train{i) .
I Al] t_id) Train{i). nlineHeadwayTimeExit i
il Af] (i: t_id) Train({i) . R takeAttempt
i A[] forall(i: T.'._:i.dJ Il:'a:i.nlz:i.J . . Mi : A ingTime
Al] (i: t_id) Train{i). WOR 11Time
| Al] t_id) Train{i). tationHeadwayTime i
Al] all{i: t_id) Train{i).) tationCapacity |
Train(0).Inactive -
I Train(l).Inactive
Train({2).Inactive
i Train(3) .Inactive

Figure 4.15: A station capacity error has been detected in the collection of
timetables.

88

Using UPPAAL To Verify Timetables

CHAPTER 5

Using UPPAAL CORA To
Generate Timetables

This chapter will introduce UPPAAL CORA, present the optimality definition
used in this thesis, it will present the model created in UPPAAL CORA, and
lastly the chapter will present how output is created.

Regular UPPAAL can search for the shortest (least steps) or the fastest (least
time) diagnostic trace - but it does not have any regular means of searching for an
optimal diagnostic trace based on custom parameters. For this, a branch of UP-
PAAL exists, called UPPAAL CORA' (Cost Optimal Reachability Analysis).

In this chapter, section 5.1 will introduce the extra features available in UPPAAL
CORA.

Section 5.2 will explain the considerations taken, when defining optimality in
timetables in this thesis.

Section 5.3 will present the model created in UPPAAL CORA, which can be
used to create a set of timetables.

Section 5.4 will end the chapter, by presenting how results can be extracted,
using the created model.

Thttp://people.cs.aau.dk/ adavid/cora/index.html

90 Using UPPAAL CORA To Generate Timetables

5.1 Cost and Remaining of UPPAAL CORA

UPPAAL CORA is an extension of UPPAAL. Therefore, any valid models cre-
ated in UPPAAL, are also valid in UPPAAL CORA. UPPAAL CORA intro-
duces the notion of cost to the templates, by introducing a predefined variable
cost.

In order to utilize the costs defined in a model, the model-checker of UPPAAL
CORA has been extended with the possibility of getting the best diagnostic
trace based on the cost value, i.e. the diagnostic trace with least cost, see figure
5.1.

-

[£] UPPAAL ——
File Edit View Tools [Options| Help

@ Search Order 4

=
- State Space Reduction »
EditorISimuIator Verifi -

State Space Representation *

Overview Diagnostic Trace * Mone
Extrapolation ! Some .
Hash table size) @ Best
v Reuse

Figure 5.1: The best diagnostic trace option of UPPAAL CORA

Based on the cost, it is therefore possible to guide the diagnostic trace towards
an optimal trace, where the optimality is expressed through cost in a template.
Cost can either be included in the invariant of a state, or in the update label of
an edge:

e When a cost is declared as an invariant in a state, the cost defines the rate
at which the cost variable grows, for each time unit spend in said state. If
several different processes are in a state, which has a cost, the rate is the
sum of these costs.

e When a cost is declared as an update on an edge, it acts as an incremen-
tation of the cost variable, when that edge is taken.

As a small example, figure 5.2, shows a template with two states A and B and
a clock z. Tt costs nothing to spend time in state A, it has a cost 1 for each

5.2 Optimality in Timetables 91

time unit spent in B, and the selfloop in A increments the cost with 3. Table
5.1 shows an example simulation, where seven edges are taken, and the cost is
shown for each transition.

cost += 3

Figure 5.2: Cost defined in a state invariant, and as an update on an edge, x
is a clock.

Transition Taken Current State Cost
0

A—A
A—A
A—B
B—A
A—B
B—A
A—A

P gl oe B ive e s
0~ 1D W

—_

1

Table 5.1: Sample simulation trace of figure 5.2

UPPAAL CORA also introduces the notion of remaining. The purpose of the
remaining variable of UPPAAL CORA, is to improve the performance of the
model-checker. It is used by declaring remaining as a meta integer variable.
The value stored in remaining should be an estimate of the remaining cost to
reach a goal in the model-checker. It must always be admissable, meaning that
it should always be equal to, or less then the actual minimum cost for reaching
the goal.

5.2 Optimality in Timetables

This section will briefly present the considerations taken, when deciding which
factors to take into account in determining whether or not a collection of timeta-
bles is optimal.

In order to determine whether or not a collection of timetables is optimal, several

92 Using UPPAAL CORA To Generate Timetables

factors are relevant to take in consideration. The following list presents the four
factors used in this thesis:

Short travel times between stations.

Short dwell time at stations.

Robustness against delays.

Timetables should be prioritized equally.

The first two items present factors which aims at timetables to schedule for
trains to run as fast as possible all of the time. If these were the only criteria in
determining an optimal collection of timetables, the resulting timetables would
handle delay poorly, as they would have no chance of eliminating delay without
rescheduling. The third criteria represents the fact that an optimal collection
of timetables should also have a degree of robustness against delays. Methods
for increasing robustness against delays were introduced in section 2.4.2.

The methods presented in section 2.4.2, will all decrease the regularity of a
collection of timetables, hence the two first items and the third item counteract
each other. In order to establish the techincal criteria for an optimal collection
of timetables, a trade-off must be established.

In this thesis, robustness is introduced, by adding a running time supplement
to each open line. As a result, the summation of the following values are kept
as close to zero as possible in an optimal collection of timetables:

e The dwell time at stations exceeding the desired dwell time (additional
dwell time).

e The travel time between stations exceeding the minimum running time +
the running time supplement (additional running time).

It is important to note that optimality is defined for a collection of timetables.
If the first three items were to be the final definition of optimality, a collection
of timetables could have all of the addition dwell time and additional running
time collected on a single timetable, severely reducing the quality of a single
timetable compared to the rest of the timetables.

In order to avoid this, the fact that timetables should be prioritized equally
is introduced. This represents the fact that the additional dwell time and the

5.3 UPPAAL CORA Model 93

additional running time of a collection of timetables, should be equally dis-
tributed out on all of the timetables whenever possible, hereby avoiding the
scenario where a few timetables are of severely poorer quality than the rest of
the timetables.

5.3 UPPAAL CORA Model

When creating the UPPAAL CORA model for generating timetables, inspiration
was mainly drawn from two related models; The UPPAAL model for verifying
timetables of chapter 4, and a model presented on the UPPAAL CORA website?,
called Aircraft Landing Problem (ALP).

The UPPAAL model for verifying timetables, which is described in section 4,
was used as a starting point on how the different information should be stored
in datastructures, as much of the same type of information is required for this
model. The basic idea of the generic template was also reused, making it pos-
sible to create a custom railway network, and any amount of trains. Both of
these attributes contribute to the fact that the UPPAAL model for verifying
timetables, and the UPPAAL CORA model for generating timetables, share
certain similarities.

The case study presented on the website of UPPAAL CORA, called Aircraft
Landing Problemn (ALP), simulates a number of aircrafts needing to land on
a number of runways at an airport. The aircrafts are designated to land at a
certain time. If the aircraft lands earlier, a penalty is issued by the airport -
hereby increasing the total cost of the landing sequence. If the aircraft lands
later, the cost is increased both by a penalty as well as cost of fuel. The goal of
the ALP model, is then to present the cheapest sequence of landing the planes,
by utilizing the cost feature of UPPAAL CORA. The concept of aircrafts being
required to land at runways at a certain time, as well as the notion of introducing
penalties when arriving earlier or later than a designated time, both have certain
similarities to the process of generating timetables, as trains are set to arrive
at stations at certain time, and passenger dissatisfaction, and errors following
delays can be considered penalties - hence inspiration in utilizing the cost feature
of UPPAAL CORA, was drawn from this model.

The model for generating timetables consists of one main Train template, which
is a template, capable of generating timetables, based on the railway network
information, as well as the timetable requests stated in the global declarations.

2http://people.cs.aau.dk/ adavid/cora/casestudies.html

94 Using UPPAAL CORA To Generate Timetables

It should be noted that a second template exists, called Hurry, which is similar
to the Hurry template of the model for verifying timetables (seen in figure 4.2).

5.3.1 Timetable Request - The Input

In order for the model to generate a collection of timetables, it requires some
input from the user:

A railway network including an open line table and a station table is needed?®.

A running time supplement (RTS) for each of the open lines of the railway
network. This is based on a percentage, and should be calculated for each
open line in the network, based on their minimum running times. This
value exists to increase robustness against delays in the created collection
of timetables.

A route for each train in the desired collection of timetables. This should be
an ordered list of stations, representing the stops of the desired timetable.
For each stop, a desired dwell time should be indicated.

A start time interval for each route stating a time period for the arrival
time of the first stop of the route to be placed in.

Four cost rates related to the cost utility of UPPAAL CORA. Theeir usage
is presented in section 5.3.3.

Two time threshold values used to distribute the addition running time and
additional dwell time in the created timetables. Their usage is also pre-
sented in section 5.3.3.

All of these values are to be specified by the user of the model, and are declared
in the global declarations.

5.3.2 (Global Declarations

The global declarations of the UPPAAL CORA model, are almost identical
to the global declarations of the global declarations in the model for verifying
timetables, which are presented in section 4.2.2. The following list introduces
the changes in the global declarations.

3Same as for the model in chapter 4

5.3 UPPAAL CORA Model 95

e The stopEntry datatype has been altered.

e More constants were added in order to accomodate new input associated
with this model.

The need for ezpectedExit in queueEntry has been removed, hence the
datatype queueEntry has been removed.

The queue variable has been altered.

It should be noted that no new clocks, channels or functions have been added.

5.3.2.1 New Datatypes

The queueEntry datatype has been removed, and the stopEntry datatype has
been altered to accomodate the request input, storing a station of a desired stop
and a desired dwell time:

typedef struct {
int[-1,STATIONS-1] stationId;
int DWT; //Dwell Time
}StopEntry;

5.3.2.2 New Constants

All of the existing constants of the global declarations of the UPPAAL Model
for verifying timetables are still present, and can be seen in section 4.2.2.2.

The new constants of this model, store the new input of the model, as described
in section 5.3.1, for which the purposes are clarified in section 5.3.3.

The stopEntry datatype has also been altered, hence the constant stops have
been altered. It is displayed below with with an example request for two timeta-
bles in the railway network Lokalbanen[Lok]. The following are the new con-
stants with sample values, and the new stops constant, with sample values for
two timetable request in the railway network of Lokalbanen:

//The costs for waiting in the non-expensive states
const int WaitingAtStation = 1;

96 Using UPPAAL CORA To Generate Timetables

const int WaitingAtOpenLine = 1;

//The costs for waiting in the expensive states
const int WaitingAtStationExp = 3;
const int WaitingAtOpenLineExp = 3;

//Threshold for cost increase, expressed as time
const int StationCostThreshold = 3;
const int OpenLineCostThreshold = 3;

//Start time intervals for each train (2 trains)
const int intervals[TRAINS][2] = {{0,3}, {4,4}};

//The running time supplement for each open line
const int RTS[OPENLINES] = {0,0,0,0,0,0,0,0};

//The timetable requests
const StopEntry stops[TRAINS][9] = {
{{jagersborg,0},
{norgaardsvej,0},
{lyngbylokal,O},
{fuglevad,0},
{brede, 0},
{orholm,0},
{ravnholm,0},
{narum, 0},

{-1,-1}},

{{remisen,0},
{jagersborg,0},
{norgaardsvej,0},
{lyngbylokal,O},
{fuglevad,0},
{brede, 0},
{orholm,0},
{ravnholm, 0},
{narum,0}}};

5.3.2.3 New Variables

The only change to the variables of the model, has been to the queue, which no
longer stores the expectedExit value, hence the queue variable stores the order,

5.3 UPPAAL CORA Model 97

in which the trains entered an open line:

/*A queue for each direction of an open
line denoting the order in which trains enter.x*/
int queue[OPENLINES] [2] [TRAINS];

5.3.3 Train Template

The Train template represents a train given one of the routes of the request
explained in section 5.3.1. The Train template of this model, has the same
parameter as the Train template for the model of section 4.2.4 - an id of datatype
t_id.

In order to gain an overview of the general structure of the template, figure
5.3 displays the template without guards, updates, synchronizations and state
invariants (selects are never used). A train has three types of states, which are
similar to the corresponding types of states in the model for verifying timetables
(section 4.2.4):

Inactive - Gray When a train is inactive, it has not yet been placed in the
railway network. This can be for one of the three following reasons:

e It is earlier than the earliest time in the start time interval, for that
train.

e The current time is within the start time interval, but it is not yet
possible to enter the first station.

e It is passed the latest time in the start time interval, and the train
will never be allowed to enter the system. If this is the reason, the
current diagnostic trace is not valid.

Active - Blue When a train is in one of the active states, it means that it is
currently trying to complete a route expressed in the request.

Complete - Green When a train is complete, it means that it has success-
fully journeyed through its given route - if all trains are completed, it
means a collection of timetables has been successfully created, although
not necessarily an optimal collection of timetables.

When comparing with the template used to verify timetables (seen in figure
4.4), it can be seen that there are four similar states:

98 Using UPPAAL CORA To Generate Timetables

WaitingAtStationExp

. WaitingAtStation
Inactive

L
—

HoldingAtStation EnRoute

=

ReducingSpeedAtOpenLine
Complete

ReducingSpeedAtOpenLineExp

Figure 5.3: The Train template, stripped of everything except state names
and edges. The color coding is explained in section 5.3.3

Inactive The train has not yet entered the railway network.
Complete The train has completed its route.
HoldingAtStation The train is currently holding at a station.

EnRoute The train is currently travelling on an open line.

All of these states have the same meaning as the corresponding states of the
verification model. In addition to these four states, the model for generating
timetables contains four other states. These four states are all related to the
cost functionality, and their purpose is to construct diagnostic traces, optimal
in regards to section 5.2 - these four states are:

WaitingAtStation When a train spend time in this state, it means that the
train is holding at a station for longer time than is defined as necessary
by the dwell time of the request. The reason for spending time in this
state, is that the open line has restrictions, which prohibit the train from
entering the open line at the moment.

The motivation for introducing this state, is the fact that spending addi-
tional time at a station, should be avoided if possible. Therefore spending
time in this state increases the cost of the diagnostic trace - hence it is

5.3 UPPAAL CORA Model 99

desirable to pass through this state and on to the EnRoute state as fast
as possible.

WaitingAtStationExp When a train has spent a certain amount of time in
WaitingAtStation, it is forced to enter this state. Being in this state is
more expensive than being in WaitingAtStation.

The motivation for this state, is to distribute the additional dwell time
for trains. This is achieved because after a certain amount of time has
passed, it will become more expensive to wait at the station. Therefore it
is cheaper to have two trains in WaitingAtStation for amount of time,
than to have one train in this state for 2z amount of time - assuming that
2z causes the Train process to enter this state.

ReducingSpeedAtOpenLine When a train spend time in this state, it is
because the train is not able to enter the destination station. The reason
for spending time in this state, is that the station has restrictions, which
prohibit the train from entering the station at the moment.

The motivation for introducing this state, is much the same as for Waitin-
gAtStation. The fact that spending additional time at an open line, should
be avoided if possible. Therefore spending time in this state increases the
cost of the diagnostic trace - hence it is desirable to pass through this state
and on to the station as fast as possible.

ReducingSpeed AtOpenLineExp Is the same to ReducingSpeed AtOpenLine,
as WaitingAtStationFExp is to WaitingAtStation. When a certain amount
of time has been spent at ReducingSpeedAtOpenLine, the train goes to this
state, with a higher cost - effectively spreading out the additional running
time between stations in the collection of timetables.

As aresult of this cost structure, the cost rate of a diagnostic trace, will increase
whenever a train enters either WaitingAtStation or ReducingSpeedAtOpenLine.
The cost rate will increase even further, if a train enters one of the expen-
sive states - WaitingAtStationExp or ReducingSpeed AtOpenLineExp, figure 5.4
shows the basic idea of the cost model.

The general differences between this model, and the model used to verify timeta-
bles of section 4 can be summized in the following list:

e There are no evaluating states.
e There are no arrival times or departure times.

e There is a start interval for each requested timetable, which must be com-
plied with.

100

Using UPPAAL CORA To Generate Timetables

Cost

expensive costing state

Time

Entered an
expensive state

Entered an non-

Figure 5.4: The cost of a diagnostic trace increases when entering a costing
state, and the cost rate increases even further when entering an
expensive state.

e The situation illustrated in figures 4.10 and 4.11 is disregarded for this

model.

As with the model for verifying timetables, and as dictated by the formal model
in RSL, there are the following eight properties to hold for a collection of timeta-
bles to be valid - the first three properties are affiliated with trains, the next
two are affiliated with stations, and the last three are affiliated with open lines:

. Trains cannot overtake another train on an open line.

. Trains have to satisfy the minimum running times of the open lines.

Trains have to satisfy the dwell times at the stations.

The headway times of stations must be upheld.

. The capacity of stations must never be exceeded.

The headway times of open lines must be upheld.

The capacity of the open lines must never be exceeded.

Single track open lines cannot be utilized in both directions simultaniously.

5.3 UPPAAL CORA Model 101

In order to introduce these properties into the model, a different approach is
taken, than the approach of the UPPAAL model of section 4. In the previous
model evaluation states exist, which lead to error states, in case a property
has been broken due to the running of the trains. In this model, there are no
evaluating states leading to error states. In this model, the conditions leading
to error states in the model of section 4, are used to prevent the system from
entering an erroneous state at all. This effectively ensures that the system only
allows diagnostic traces, in which all of the properties hold.

The presentation will follow the same pattern as section 4.2.4. The edge labels
and state invariants will be introduced to the template of figure 5.3 in small
steps, untill the final model is reached.

The method used to prevent trains from overtaking one another on an open line*
is much the same as in the verification model - the queue variable is used. Upon
entering EnRoute, the train enters the queue, and when attempting to enter
AtStation, the train must be at the front of the queue. Figure 5.5 has added
the property of trains not being able to overtake one another. The methods
AttemptedOvertake() and GetCurrentOpenLine are declared in the template of
Train, and they are identical to those of section 4.2.4.

EnterQueus(
GetCurrentOpenLine(), id,

WaitingAtStationExp stops[id][currentStop(id]].stationld)

EnterQueue(
) . : GetCurrentOpenLine(), id,
Inactive WaitingAtStation stops[id][currentStop(id]].stationld)

oy
HoldingAtStation

EnRoute

AttemptedOvertake()

ExitQueue(

GetCurrentOpenLine(),
stops[id][currentStop[id]].stationid)

ReducingSpeedAtOpenLine
Complete

AttemptedOvertake() ReducingSpeedAlOpenLineExp

ExitQueue(
GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld)

Figure 5.5: Trains cannot overtake has been incorporated into the model

In order to use the model to create timetables where trains satisfy the minimum

4Property 1

102 Using UPPAAL CORA To Generate Timetables

running times of open lines® and the dwell times at stations® - the same approach
as section 4.2.4 is used; TrainClock is reset to zero upon entering AtStation or
EnRoute, the invariants of these states and the guards of the outgoing edges
prevent the Train process from leaving the state, before the dwell time has
passed for stations, and the minimum running time has passed for open lines.
For the open line, an addition has been made of RTS", in order to incorporate
robustness versus delays in timetables, as discussed in section 5.2. Figure 5.6 has
added the properties of satisfying dwell times at stations and minimum running
times of open lines. The red circles are the additions regarding the dwell times,
the yellow circles are the additions regarding the minimum running time.

EnterQueue(

GelCurrentOpenLine(), id,

WaitingAtStationExp stopslidilcurrentStop(id]].stationld),
TrainClock[id] = 0

EnterQueue(

GetCurrentOpenLine(). id,
WaitingAtStation stops[idifcurrentStop(id]].stationld),

TrainClock[id] = 0

Inactive (T\m C\:_\:.Rﬁ{] == stops[id][currentStopl[id]] DWT)

rainClock[id] = O

EnRoute

TrainClock[id] <= GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLine()]
ck[id] >= GetMRT(GetCurrentOpenLine()) +

RTS[GetCurrentOpenLine()]

ReducingSpeedAtOpenLine

HoldingAtStation
Gramcluck[ld] <= stops[id][currentStop[id]] DWT)

AttemptedOvertake()
Complete ; R

ExitQueue(
GetCurrentOpenLine(),
apsfid)[enrentStop|id]].stationld),

TrainClock[id] = 0

AttemptedOvertake()
ExitQueue(
GetCurrentOpenLine(),

stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

Figure 5.6: The three train properties are included in this figure, the red circles
represent the additions for satisfying dwell time at stations, and
the yellow circles represent the additions for satisfying minimum
running times of open lines

ReducingSpeedAtOpenLineExp

When adding the property of capacity for stations®, the trainsAtStation vari-
able is used in the same manner as section 4.2.4. It is incremented when a train
enters AtStation, and decremented when a trains enters EnRoute. A guard
stating that there must be at least room for one more at the station, for a train
to be able to enter, is then added on the edges between ReducingSpeed AtOpen-
Line/ReducingSpeed AtOpenLineExp and HoldingAtStation.

When adding the property of headway times for a station®, the clock sta-
tionLastEntered is used, representing the time elapsed since a train last en-

5Property 2
SProperty 3
"Running Time Supplement
8Property 5
9Property 4

5.3 UPPAAL CORA Model 103

tered a station. This clock is reset to zero, each time a train enters AtSta-
tion. A guard is then added on the edge between ReducingSpeedAtOpen-
Line/ReducingSpeed AtOpenLineExp and HoldingAtStation and on the edge
between Inactive and Station, stating that the value of said clock is equal to or
greater than the headway time for the station. Figure 5.7 has added the two sta-
tion properties, where the updating functions EnterStation(int stationId) and
LeaveStation(int stationld) are identical to the same functions in section 4.2.4.
The guard StationHasRoom() is declared as follows:

//Determine whether or not station has room for more
bool StationHasRoom()
{
return trainsAtStation[stops[id] [currentStop[id]].stationId] <
GetStationCapacity(stops[id] [currentStop[id]].stationId);

It should be noted that in the function EnterStation, a variable called cur-
rentStation is updated - this variable only used to parse the diagnostic trace
in the tool presented in section 6, and does therefore not have any theoretical
influence in the model.

When adding the property of capacity for open lines'®, the variable train-
sAtOpenLine is used, as in section 4.2.4. It is incremented when a train enters
the open line, and decremented when a train leaves. For a single tracked open
line, it is not necessary with a counter in each direction for this property, but the
last property can utilize this, which is the reason for counters in both directions
of an open line being utilized - regardless of the open line being single or double
tracked. In addition to the counters, a guard is added on the edge between
WaitingAtStation/WaitingAtStationExp and EnRoute, stating that there must
be room for at least one more at that open line, and in that direction. This
function is called OpenLineHasRoom() and is declared as follows:

// Determines whether or not an open line ras room for one more
bool OpenLineHasRoom() {
int openLineld = GetCurrentOpenLine();
int dir = stops[id] [currentStop[id]].stationId;
//1f doubletrack and the capacity in the direction has room for more
if (IsOpenLineDoubleTrack (openLineld))
return GetTrainsAtOpenLineDir(openLineld, dir) <
GetOpenLineCapacity(openLineld);

10property 6

Using UPPAAL CORA To Generate Timetables

104

Inactive

©

EnterQueue(
GelC c:m_JﬁOum:CJm

LeaveStation(stops[id][currentStop[id}-1].stationld).
CIoTRImT="0

WaitingAtStationExp

EnterQueue(
GetCurrentOpenLine(), id,

(StationHasRoom() &&

stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)
| EnterStation(stops|id][0].stationld).

LeaveStation(stops[id][currentStop[id}-1
TENCIOCK(1a] = U

)

WaitingAtStation .stationld),

ﬁ%m_:n_cr id] == stops[id][curentStop[id]].DWT

TramCloek[ia] = 0
A

EnRoute

-

WG HoldingAtStation
TrainClock[id] <= stops[id][currentStop[id]].DWT

Hrm aveStation

(stops[id][TRAINSTOPS[id]-1].stationld)

RTS[GetCurrentOpenLine()])
TrainClock[id] == (GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLin

Complete

ionHasRoom() &&

ionLastEntered[stop

GetStationHWT (stops]i
TAttemptedOvertake()
ExitQueue(
GetCurrentOpenlLine(), stops[id][currentStop[id]].stationld),

(EnterStation(stopslid][currentStop(id]].stationld),)
TranCIocka] =

ReducingSpeedAtOpenLine

ReducingSpeedAtOpenLineExp

ﬁ _cj_.mimjﬁm_mc_?g_u
GetStationHWT (stops[id][l
IAttemptedQvertake()

ExitQueue(

ionHasRoom() && w

0] mE:D:_E &8

.stationld).

nterStation(stopsid][currentStop[id]].stationld),
TAMCIOCK[Ia] = U

TrainClock[id] == (GetMRT(GetCurrentOpenLine()) +

The three train properties and the two station properties are in-

Figure 5.7

cluded in this figure. The red circles represent the additions for

the two new station properties.

5.3 UPPAAL CORA Model 105

//1f singletrack and the capacity has room for more
else
return GetTrainsAtOpenLine(openLineld) < GetOpenLineCapacity(openLineld);

When adding the property of headway time for open lines'!, the two clocks open-
LineLastEntered and openLineLastLeft are used. The first one representing the
time elapsed since a train last entered the open line, and the second one repre-
senting the time elapsed since a train last left the open line. These clocks are set
to zero when a train enters EnRoute and when a train enters AtStation, respec-
tively. In addition to these clocks, two guards are added, the first is added on
the edge between WaitingAtStation/WaitingAtStationExp and EnRoute, which
states that the time since the last train entered the open line, must be equal to or
greater than the headway time of the open line. The second guard is added on
the edge between ReducingSpeedAtOpenLine/ReducingSpeedAtOpenLineExp
and HoldingAtStation, stating that the time since the last train left the open
line, must be equal to or greater than the headway time of the open line.

When adding the final property of not allowing a single tracked open line to
be utilized in both directions simultaniously'?, no new variable is added - the
variable trainsAtOpenLine is sufficient. A guard is added on the edge between
WaitingAtStation/WaitingAtStationExp and EnRoute, stating that if the open
line is single tracked, the capacity counter of the opposite direction must be
zero. Figure 5.8 has added the three open line properties, and the functions
LeaveOpenLine() and EnterOpenLine() are identical to those of section 4.2.4
and OpenLineNotOccupiedOpposite() is declared as follows:

/*Determine whether or not the open line is occupied
in both directions and is single trackedx*/
bool OpenLineNotOccupiedOpposite()

{
return
! (IsOpenLineOccupiedOppositeDirection
(GetCurrentOpenLine(), stops[id] [currentStop[id]].stationId) &&
! IsOpenLineDoubleTrack (GetCurrentOpenLine()));
}

Now all the properties are in place, and it is time to add the cost functionality
of the model. A cost is added to each of the four states WaitingAtStation, Re-

HProperty 7
12property 8

Using UPPAAL CORA To Generate Timetables

106

Inactive

StationHasRoom() &&

GetStationHWT (stops[id][0].stationld)
EnterStation(stops[id][0].stationid),
r.:.m_jo_c_u_%& =0

stationLastEntered[stops[id][0].stationld] ==

WaitingAtStationExp

OpenLineNotOccupiedOpposite() &&
OpenLineHasRoom() &&
openLinelastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentOpenLine())
LeaveStation(stops[id]lcurrentStoplid]-1].stationld).
EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld)
TrainClock[id] = 0

WaitingAtStation

,\
TrainClocklid] == stops[id][currentStop[id]].DWT

HoldingAtStation

,\
LeaveStation

Complete

(stops[id] TRAIN STOPS[id]-1].stationd)

TrainClock[id] <= stops[id][currentStop[id]].DWT
StationHasRoom() &&

stationLastEntered[stops[id][currentStop[id]] stationld] ==
GetStationHWT (stops[id][currentStop[id]] stationld) &&
IAttemptedOvertake() &&
openLinelastExi[GetCurrentOpenline(j] ==
GetOpenLineHWT(GetCurrentOpenLine())

LeaveOpenLine(GetCurrentOpenLine(),
stops(id][currentStop[id]].stationld),
EnterStation(stops[id][curentStop[id]].stationld),
__TrainClock[id] = 0

OpenLineNotOccupiedOpposite() &&
OpenLineHasRoom() &&

openlinelastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentOpenLine())

1].stationld),
EnterOpenLine(GetCurrentOpenLine().
stops[id][currentStopl[id]].stationld),
TrainClock[id] = 0

EnRoute
TrainClock[id] <= (GetMRT(GetC urrentOpenLine()) +
RTS[GetCurrentOpenLine()])

TrainClock[id] >= (GetMRT(GetC urrentOpenLine(}) +
RTS[GetCurrentOpenLine()])

StationHasRoom() &&
stationLastEntered[stops[id][currentStop[id]] stationld] ==
GetStationHWT (stops[id][currentStop[id]] stationld) &&
IAttemptedOvertake() 8&
openLinelastExifGetCurentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLine())

LeaveOpenLine{GetCurrentOpenLine(),
stops[id][currentStopl[id]].stationld),

nie
__ TrainClock[id]= 0

ReducingSpeedAtOpenLine

ReducingSpeedAtOpenLineExp

The three train properties, the two station properties and the three

open line properties are included in this figure.

Figure 5.8

The red circles

represent the additions for the three new open line properties.

5.3 UPPAAL CORA Model 107

ducingSpeedAtOpenLine, WaitingAtStationExp and ReducingSpeedAtOpenLi-
neExp - the cost of the two latter should be greater than the first two. In order
to force the model to enter the expensive states, the TrainClock is reset to zero
when entering these states, and when a period of time has elapsed, and they
are still not able to advance (either to AtStation or to EnRoute), the model is
forced into the expensive state due to an invariant in the least expensive state,
and a guard between the two states. Figure 5.9 has added the cost properties,
where the cost values as well as the timelimits in the least expensive states are
declared as variables.

Two things remain to be added in order to achieve the finished template. The
first is the same pattern of increasing the currentStop of the trains whenever
they travel from one station to the other, and when the last stop is reached, the
train will enter the Complete state - this is similar to the model for verification
of timetables.

The second thing required is the fact that trains need to be inserted into the
system in a certain time interval. This is achieved by adding a guard on the edge
between Inactive and HoldingAtStation, stating that the current time must be
between to two edges of the interval. The final template can be seen in figure
5.10.

5.3.4 Optimizations

All of the optimizations considered in the model for verifying timetables using
regular UPPAAL (as explained in section 4.2.6), also applies to this model cre-
ated in UPPAAL CORA. As a result, this model was created following the same
guidelines as section 4.2.6 - reusing clocks, avoiding large select statements on
edges and applying ranges to variables. With this in mind, the most effective op-
timization performed during the development of this model, has been reducing
the number of templates, edges and states. Previous versions contained several
templates, with more states and more edges. The evaluation complexity of the
guards, has roughly remained the same - only spread out on more edges. Reduc-
ing these templates into a single template (disregarding the Hurry template),
reduced both the state space and the size of a stored state - which effectively
reduced the search time for the best diagnostic trace.

An optimization available only to UPPAAL CORA, is the remaining feature
discussed in section 5.1. With this model however, it is difficult to provide
an admissible evaluation of the remaining variable during a simulation. This
is due to the fact that it is not easily derived whether or not a request of
timetables, will actually result in any incrementation of the cost value at all.

Using UPPAAL CORA To Generate Timetables

108

Inactive

StationHasRoom() &&
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)
EnterStation(stops[id][0].stationld),
r._._.m_jo_cn_»:& =0

\
LeaveStation
(stops[id][TRAINSTOPSid]-1].stationld)

Complete

co

st' == WaitingAtStationExp

OpenLineMotOccupiedOpposite() && h
OpenLineHasRoom() &&
openLinelLastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentCpenLine())
ﬁ._.ﬁm_jo_onr:& == StationCostThreshal nu LeaveStation(stops[id]lcurrentStop[id]-1].stationld),
EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),
TrainClock[id]= 0
WaitingAtStatinn
cost' == WaitingAtStation &&
. TrainClock[id] == StationCostThreshold
. .) OpenLineMotOccupiedOpposite() && h
RInClock(id] >= stopsid]currentStop{id]. DWT ObenLinetiasRoom &8 0
TrainClock(id] = 0 openLinelLastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentOpenLine())
.) LeaveStation(stops[id][currentStop[id}-1].stationld),
Io_.aimbﬁwﬁ.m:c_u)) EnterOpenLine(GetCurrentOpenLine(),
TrainClock[id] <= stops[id][currentStop[id]].DWT stops[id][currentStopid]].stationld),
StationHasRoom() && TrainClock[id] = 0
stationLastEntered[stops[id][currentStop(id]].stationld] >= EnRoute
GetStationHWT (stops[id tStop(id]].stationld) &&
_»mmawﬁ_wa_JQm:wxmmm%w:ncqmj plid) stationid) TrainClock[id] <= (GetMRT(GetCurrentOpenLine()) +
openLinelastExif{GetCurrentOpenLine()] == RTS[GetCurrentOpenLine()])
GetOpenLineHWT (GetCurrentCpenLine())
LeaveOpenLine(GetCurrentOpenLine(), . 1 e . .
stops[id][currentStop[id]].stationld),) ._.*_.Nm._._“_,won_wc_w.ﬁ_m_mm_.mjﬁmo Nﬂmﬂﬂ%% {CurrentOpenLine())
EnterStation(stops[id][currentStop[id]].stationld), P
TrainClock[id] = 0)

StationHasRoom() &&
stationLastEntered[stops[id][currentStop[id]].stationld] ==
GetStationHWT (stops[id][currentStop[id]] stationld) &&
|AttemptedOvertake() &&

cost' == WaitingAtOpenLine &&
TrainClock[id] == OpenLineCostThreshold

openLinelLastExi{GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLine())

LeaveOpenLine(GetCurrentOpenLine(),

stops[id][currentStop[id]].stationld),
EnterStation(stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

Qa_:o_anza_ — o%:::mo%::amja_&

cost' == WaitingAtOpenLineExp

All of the properties as well as the cost functionality of the model

Figure 5.9

as been added. The red circles represent the additions for the cost

functionality.

109

5.3 UPPAAL CORA Model

Waiting AtStationExp
cost' == WaitingAtStationExp

. OpenLineNotOccupiedOpposite() &&
OpenLineHasRoom() &&
openLinelLastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentOpenLine())
LeaveStation(stops[id][currentStop[id}-1].stationld),
TrainClock[id] == StationCostThreshold EnterOpenLine{GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

WaitingAtStation
time <= intervals[id][1] cost' == WaitingAtStation 8&
. TrainClock[id] <= StationCostThreshold
ime <= intervals[id][1] && Iy - - -
time >= intervals[id][0] && (TRAINSTOPSid] = (currentStop(id]+1) &&) OpenLineNotOccupiedOpposite() &&

OpenLineHasRoom() &&
openLinelastEntered[GetCurrentOpenLine()] >=
GetOpenLineHWT(GetCurrentCpenLine())

LeaveStation(stops[id][currentStop[id}-1].stationld),

stationHaskoom() s TTainClocK[1d] == stops[idJlcurrentsiop[ia].DWT
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)

EnterStation(stops[id][0].stationld),

TrainClock[id] = 0 HoldingAtStation EnterOpenLine(GetCurrentOpenLine(),
_ TrainClock[id] <= stops[id][currentStop[id]].DWT qmﬁumm_&Wﬂqm:mwaz_é.mﬁ_osauv
rainClock[id] =
's StationHasRoom() && fid]
o ; stationLastEntered[stops[id][currentStop[id]] stationld] == EnRoute
mhmb__zw.ﬁovw_a_ == ﬁncqmawauﬁa_:m GetStationHWT (stops[id][currentStop[id]] stationld) && TrainClock[id] <= (GetMRT(GetCurrentOpenLine()) +
umy” |AtternptedOvertake () && RTS[GetCurrentCpenLine()])
LeaveStation)) openLineLastExifGetCurrentOpenLine()] ==
(stops[id][TRAINSTOPS[id]-1].stationld) GetOpenLineHWT(GetCurrentOpenLine())
LeaveCOpenLine(GetCurrentOpenLine(), TrainClock[id] >= (GetMRT(GetCurrentOpenLine()) +

stops[id][currentStop[id]].stationld), .
EnterStation (stopsJid][currentStop[id]].stationld), RTS[GetCurrentOpenLine()])

. _ TrainClock[id]= 0 D,

StationHasRoom() && ReducingSpeedAtCpenLine
stationLastEntered[stops[id][currentStop[id]].stationld] == | cost' == WaitingAtOpenLine &&
GetStationHWT (stops[id][currentStop[id]].stationld) && | TrainClock[id] <= OpenLineCostThreshold
|AttemptedQOvertake() &&
openLineLastExif{GetCurrentOpenLine()] == .) .
GetOpenLineHWT(GetCurrentOpenLine()) TrainClock[id] == OpenLineCostThreshold
LeaveOpenLine(GetCurrentOpenLine(),

stops[id][currentStop[id]].stationld),
EnterStation(stops(id][currentStop[id]].stationld),
__ TrainClock[id] = 0 ReducingSpeedAtOpenLineExp
cost' == WaitingAtOpenLineExp

Complete

The final Train template of the UPPAAL CORA model

Figure 5.10

110 Using UPPAAL CORA To Generate Timetables

This would most likely require a custom analysis of the request, based on the
railway network. Such an evaluation could in itself cause the model to become
even slower, because it would have to be done very often. In further attempts
to optimize this model, it could be very benificial to investigate the possibilities
of evaluating the remaning value during a simulation of the model.

5.4 Getting Results Using The Model-checker -
The Output

When getting output from the model, there are two different ways of getting it
- both ways require a query to be satisfied, opposed to the verification model,
which contained several queries. The single query required for this model is
stating that a state exists, in which all of the trains are in the complete state.
In a model requiring to generate three timetables, the query would look like
this:

E<>(Train(0) .Complete && Train(1l).Complete && Train(2).Complete)

One way of getting a result, is using the ’verifier’ tab of UPPAAL CORA, which
is somewhat similar to the ’verifikator’ tab of regular UPPAAL - it simply
contains different options. The options settings providing the fastest way to
generate the best diagnostic for this thesis, is the following:

Search Order Best first - Due to the fact that it is looking for the best di-
agnostic trace. This option is important, and does provide significant
improvement in the evaluation time.

State Space Reduction None or Conservative - One of these should be cho-
sen, as memory limitations is not considered a problem, due to the fact
that input large enough for the memory to become an issue, will most
likely not be able to finish within a reasonable time anyway. The last
option (Aggresive) slows the evaluation time noticably. Whether None or
Conservative is chosen, has not had any measurable effect during tests.

State Space Representation DBM - The other option (Compact Data Struc-
ture) is targeted for models with a large amount of clocks™®, in order to
reduce memory consumption. Again - memory consumption is not consid-
ered an issue, therefore DBM is chosen, which is faster, but requires more
memory. During testing, it did have a noticable impact choosing DBM.

13Stated in the *Help’ section of UPPAAL CORA

5.4 Getting Results Using The Model-checker - The Qutput 111

Diagnostic Trace Best - This is one of the main points for using UPPAAL
CORA.

Extrapolation None or Automatic - This option is to help the model guarantee
termination. As this current model can never continue indefinitely, no
extrapolation is needed, and it is stated that extrapolation is ’relatively’
expensive in the help section of UPPAAL CORA. In tests, it made no
measurable difference between choosing None or Automatic.

Hash table size This option is stated to have no effect unless under approxi-
mation has been chosen in the state space representation option - as this
particular option is not available in UPPAAL CORA, the hash table size
option is apparently irrelevant. During tests, no measurable difference was
noted between any of the available hash table sizes.

Reuse This option enables the verifier to reuse some of the state space, when
verifying several properties - as only one property is verified in this case,
this option is irrelevant. In tests, no measurable difference was noted when
turning this on or off.

With these options selected, the user clicks the ’Check’ button and, if possible,
a diagnostic trace will appear in the simulator.

The second way, and the one used by the final tool of this thesis, is to use the
command line:

verifyta -t3 -C model.xml query.q 2> diagnostictrace.txt

This command line produces a diagnostic trace in a text file. The options have
the following meaning;:

-t3 This option is equivalent to choosing the option Diagnostic Trace - Best,
the option Search Order - Best First and disables reuse.

-C This option disables most memory reduction techniques.'*.
model.xml This is the model file.
query.q This is the query file.

2> diagnostictrace.txt This prints the diagnostic trace from standard error
output to the file diagnostictrace.txt.

14This is quoted from the 'Help’ of the command line option, the precise meaning of the
word ’most’ is unknown.

112 Using UPPAAL CORA To Generate Timetables

As the most crucial options of the model-checker are included in these options -
this produces the best diagnostic trace, the fastest way possible. The final tool
of this thesis parses the produced text into the final output of the tool.

CHAPTER 6

The Tool

This chapter will describe the tool created in Java, for using the model of chapter
5 to generate timetables.

The final tool is stored in the physical CD, attached to the thesis, along with
the source code.

Section 6.1 will provide an analysis of the requirements of the tool.
Section 6.2 will present the design decisions of the tool.

Section 6.3 will briefly present the technology used to create the tool, the struc-
ture of the tool, and the resulting look of the tool.

6.1 Analysis

The formal model of chapter 5 can be used to generate timetables, by using the
model-checker of UPPAAL CORA. However, the process of providing input to
the model, and the process of interpreting the output produced by UPPAAL
CORA is quite complex.

114 The Tool

In order to provide a greater foundation, to base an evaluation of using formal
methods for timetabling on - a tool to use the model of chapter 5 to create
timetables, is created. As a result, the complexity of providing input and inter-
preting output is reduced.

In this chapter, section 6.1.1 will present the general scope of the tool.

Section 6.1.2 will present the requirements of the tool, when creating a railway
network.

Section 6.1.3 will present the requirements of the tool, when creating timetable
requests.

Section 6.1.4 will present how the tool should visualize results.

Section 6.1.5 will present the requirements of the tool, in order to use the model-
checker of UPPAAL CORA.

Section 6.1.6 will present the desired feature to decrease the running time of the
tool, by limiting the complexity of the UPPAAL CORA model.

Section 6.1.7 will present required features of the tool, which are not necessarily
specific for timetabling.

Section 6.1.8 will present limitations chosen to keep the development of the tool
simple.

6.1.1 The Scope of the Tool

The purpose of this tool, is to act as the final step, in using formal methods to
generate timetables. It has been created to present an example of how a formal
model created in UPPAAL CORA, can be used to generate timetables, which
are presented in a human readable fashion.

The scope of this tool is to act as a prototype, meaning that the basic desired
functionality of the tool should be present, but it will not be able to detect or
handle all types of errors, which can be introduced by users.

The existing tools TPS[| and RailSys| | both provide several fea-
tures, which are out of scope for this tool, such as editing existing timetables,
and visualizing railway networks. This tool focuses mainly on the creation of

6.1 Analysis 115

timetables and visualizing the results, additional features of timetabling tools
can be added in further work with the tool.

6.1.2 Create a Railway Network

The user should be able to create a railway network, using the tool. For the
scope of this tool, this should be incorporated as two different lists:

e One list containing the open lines of the railway network, where each open
line contains the same information as that of the model of chapter 5 (name,
capacity and headway time).

e One list containing the stations of the railway network, where each station
contains the same information as that of the model of chapter 5 (two end
stations, capacity, headway time, minimum running time and whether or
not it is a double track).

It should be possible to add, remove and edit open lines and stations in their
respective lists. Furthermore it should only be possible to create open lines
between stations which have already been created in the list of stations.

The graphical representation of the lists should be textual to keep it simple.

6.1.3 Create Timetables Requests

The user should be able to create timetable requests, using the tool. Each
request should contain the same information as a request in chapter 5 (name,
list of stops and start interval). These timetable requests should be in a list, and
it should be possible to add, remove and edit timetable requests in the list. It
should be noted that this also means editing the stops in the timetable request.

In a timetable request, it should only be possible to create stops at stations,
which are already defined in the list of stations.

The graphical representation of the list should be textual to keep it simple.

116 The Tool

6.1.4 Visualizing Output

In order to visualize the generated timetables, the tool should be able to print
a textual representation of the generated timetables, stating the station, arrival
time and departure time of each stop.

The tool should also be able to make graphs, as the graph in figure 2.2.

6.1.5 Using the model-checker of UPPAAL CORA

One of the points of this tool, is to provide an example of how a model created
in UPPAAL CORA, can be used to generate timetables. This should be done by
utilizing the model-checker of UPPAAL. As a result, the need for the following
features are introduced:

e The tool should be able to create a model file and a query file of UPPAAL
CORA, similar to those of chapter 5, where the constants of the model file
are based on the user input of the tool.

e The tool should be able to interpret the output of the model-checker.

e The tool needs a reference to an installation of UPPAAL CORA.

6.1.6 Limiting the UPPAAL CORA Model

The time used by the model-checker of UPPAAL CORA to generate a diagnostic
trace can be very long. In order to generate a greater amount of timetables, the
tool should be able to remove certain properties of the model. This will decrease
the complexity of the model, and therefore also decrease the running time. By
adding this functionality to the tool, it is possible to create timetables, which
interleave more, but are not guaranteed to preserve all of the properties defined
in chapter 5.

The main motivation of being able to limit the UPPAAL CORA model, is to
generate graphs containing more timetables, hereby also showing more of what
the visualization part of the tool is capable of.

6.2 Design 117

6.1.7 Regular Features

The tool should incorporate the following general features:

e It should be possible to save and load a railway network and timetable
requests created in the tool.

e Due to the fact that generating timetables, by using the model-checker of
UPPAAL CORA might take a long time, a cancel functionality should be
incorporated, allowing the user to cancel the process of creating timetables.

e Once the reference to the install directory of UPPAAL CORA has been
provided, the tool should be able to restore this after the tool has been
closed.

6.1.8 Limiting the Complexity of the Tool

In order to keep the tool simple, and within the scope of the thesis, the following
limitiations are introduced:

e When attempting to generate timetables, the railway network must be
valid, according to the RSL specifications of section 3.3.

e When attempting to generate timetables, the stops in the timetable re-
quests must be traversable on the railway network.

Basically, this means that the tool will not check whether or not the railway
network and timetable requests created by the user are valid.

6.2 Design

This section will present the design decisions made, when developing the tool.

When designing the structure of the tool, there are two main aspects to consider:

e The design pattern to use for the tool.

118 The Tool

e How the tool should utilize the model-checker of UPPAAL CORA, to
generate timetables.

The following sections will present these two items.

6.2.1 Design Pattern

The tool should be able to represent a model of a railway network, and a model
of timetable requests. These models should be visualized in a graphical user
interface (GUI), and the user should be able to edit these models through the
GUL

For a program with such a structure, the design pattern of model-view-controller
(MVC)| | is generally used a lot, and it is therefore chosen as the main
design pattern of this tool.

The basic idea of MVC, is to seperate the GUI (the view) from the data and
business rules of the data model (the model). In order to have this seperation,
there needs to be an element which mediates the input of the GUIL, to the model,
and in turn updates the view to display the model correctly. Basically the three
following components form the MVC design pattern:

Model This is where all of the data and business logic is stored, it should have
no knowledge of the view.

View This is the GUI part of the program, providing the user with the possi-
bility of providing input, and viewing the state of the model. The view
should not have a direct reference to the model, but instead have the
controller perform the necessary actions based on the input of the user.

Controller This is the link between the view and the model. The controller
should provide methods to the view for retrieving information from the
model and alter the model. The controller needs knowledge of both the
view and the model.

There are many different variations of the MVC design pattern. Figure 6.1
shows the chosen MVC design pattern for this thesis. As figure 6.1 displays,
the controller has a view and a model, and the model and the view each have
a reference back to the controller. The only direct connection between the view
and the model, is that the view may some times use the data types of the model

6.2 Design 119

to display the elements, but in order to access the acutal data, the view goes
through the controller.

Control

Figure 6.1: The MVC design pattern chosen for this thesis

6.2.2 Generating Timetables

In order to generate timetables, the tool will have to use the model-checker of
UPPAAL CORA. As explained in section 6.1.5, a model file and a query file
should be generated based on the user input, and the output should be parsed.

When generating a model file and a query file for UPPAAL CORA, the informa-
tion of the data model of the tool is used. As both the model and the controller
have direct access to the model, this functionality could be placed in either. Due
to the fact that the model and query files of UPPAAL CORA are not actually
a part of the data model of the tool, it has been placed in the controller.

When the controller has created the model and query files of UPPAAL CORA,
based on the data model, the controller uses them as a parameter for the com-
mand line options of the model-checker of UPPAAL CORA (as explained in
section 5.4, and stores the resulting diagnostic trace. In order to parse the diag-
nostic trace, the package TraceParser has been created, and the controller uses
this package to parse the trace, after which the parsed trace is given to the view,
which then visualizes it.

Figure 6.2 shows the steps taken by the tool when a user prompts the tool
to generate timetables. It should be noted that the view (GUI) is blocked
throughout the entire sequence. To accomodate this, a cancel box appears,
providing the opportunity of cancelling the sequencel.

The following two sections will describe how the model file and the query file
of UPPAAL CORA are created for each specific request to generate timetables,
and how the resulting diagnostic trace is interpreted.

120 The Tool

View Contraller UPPAAL CORA TraceParser

Generate Timetables I

reats moce! file

Create query file Generate Timetables

N

Gerarate '.iagmwir
trace
Magnostic Trace

|
|
|
|
|
|
|
|
|
|
|
- |
Parse Diagnostic Trace |
ul
Parsed Dlaﬁ'znmtlc Trace u.a;.-.'l,r:t:‘me
[i
| |
|
|

Figure 6.2: A sequence diagram showing the process of happening when a user
asks the tool to generate timetables.

6.2.2.1 Creating the model and query file of UPPAAL CORA

As mentioned earlier, the model file and the query file of UPPAAL CORA are
created for each request for timetables, are created based on the data stored in
the tool. In order to do this, it is important to remember that the constants of
the UPPAAL CORA model, represents the input of the model.

The tool does not create a new UPPAAL CORA model from scratch, instead,
the existing model of UPPAAL CORA from chapter 5 is copied into a resources
package in the tool, where the input constants of the UPPAAL CORA model
are replaced by unique strings, which can be identified by the tool. For example
the declaration of the TRAINS constant, is replaced by the string:

const int TRAINS = ##TRAINS##;

and the declaration of the constant stops, is replaced by the string:

const Stops stops[TRAINS] [##MOSTSTOPS##] = ##STOPS##;

The tool identifies all of these replacement strings, and based on the data model
of the tool, the correct values are inserted, such as the number of trains (re-
places ##TRAINS#+#), the most amount of stops in the timetable requests

6.2 Design 121

(replaces ##MOSTSTOPS#4), and the stops of each timetable request (re-
places ##STOPSH##).

The query file is created in the same manner. The query file of the UPPAAL
CORA model of chapter 5 is copied into the resources package. The single query
in the query file of the tool looks like this:

E<> (##TRAINS##)

Where ##TRAINS## is then replaced by:

Train(0) .Complete && Train(l).Complete && ... &% Train(n).Complete

Where n is the number of timetable requests.

The UPPAAL CORA model files used in the tool, can be seen in appendices
B.1, B.2, B.3 and B.4.

6.2.2.2 The Trace Parser

In order to understand the parsing of a diagnostic trace, the simple template of
figure 6.3 is used to generate a diagnostic trace, validating the condition that
the process of the template can enter state C:

E<>(Process.C)

Figure 6.3: A simple template to generate a small diagnostic trace.

The diagnostic trace is as follows:

State:
(Process.A)

122 The Tool

Process.x=0 rate=0 cost=0

Transitions:
Process.A->Process.B { 1, tau, x := 0 }

State:
(Process.B)
Process.x=0 rate=0 cost=0

Delay: 1

State:
(Process.B)
Process.x=1 rate=0 cost=0

Transitions:
Process.B->Process.C { x == 1, tau, 1 }

State:
(Process.C)
Process.x=1 rate=0 cost=0

From this diagnostic trace, one is able to read each state of the diagnostic trace.
For each state, the state of each process is provided, as well as the values of all
of the variables and clocks.

It is also possible to read each transition and time delay of the diagnostic trace.
For each transition, the original state of the firing process and the destination
state of the firing process is shown.

The Trace Parser utilizes this knowledges and uses reguar expressions to identify
each state and each transition or delay. For each state the values of the variables
and clocks are stored. For each transition, the process firing, the original state
and the destination state are stored.

Figure 6.4 shows the UML structure of the Trace Parser, showing that a State
has a list of templates and a list of declarations. The templates list represents
each process in the system and their current state, while the declarations list
represents each variable and clock, associated with their values in the given
state.

Based on this information, the Trace Parser is able to generate the timetable
structure also shown in figure 6.4 (in this case the timetable is called a train).

6.3 Implementation 123

Template Declaration TimetableEntry
-name : string -name : string -station : string
-state - string value ; string ~dwellTime : int

-departureTime - int

~arrivalTime @ int

L‘ .
Train
-timetable - List=TimetableEntry=

State

-declarations : List<Declarations
termplates : List<Templates

[.

TraceParser

-states ; List<States
-transitions : List<hap=string, string==
-trains ; List<Traln=

Figure 6.4: The structure of the TraceParser

This is done by going through all transitions and all states, and noting whenever
a train enters or leaves station.

For further details, the source code is located on the attached CD.

6.3 Implementation

This section will present the technology used to create the tool, it will present
the final structure of the tool, and it will briefly show the final look of the tool.

Technicalities of the Java programming language is not a priority in this the-
sis, therefore, detailed implementation issues regarding details of Java specific
implementations are ommitted. The source code of the tool is available on the
attached CD.

124 The Tool

6.3.1 Technology

In order to create the tool, Java is used with the NetBeans platform[B12]. Net-
Beans has a graphical editor for creating user interfaces in Java using Swing'.
As much of the work of this tool lies with the user interface, the graphical editor
for creating user interfaces was the main reason for choosing NetBeans.

In order to visualize the output of the tool in a graph, the external library
JFreeChart? is used. This library allows the tool to create charts similar to
those of figure 2.2.

6.3.2 The Structure of the Tool

The UML diagram in figure 6.5, depicts the structure of the tool. It is possible
to see the model of the tool, the view of the tool and the controller of the tool:

The model of the tool is grouped in a dashed box marked Model, and the class
TimetablesToolData is the main class of the model. The model should be
able to represent a railway network and timetable requests, as stated in
the previous models of chapters 3, 4 and 5. The railway network can
be seen in the class TimetablesToolData, in the list of Stations and a
set of OpenLines, which together form the railway network. As for the
timetable requests, it can also be seen that TimetablesToolData has a list
of TimetableRequests.

The view consists of the single class TimetablesToolGUI, which presents the
user interface. It uses the JFreeChart library to create a graph for visual-
izing results. The view also uses some of the data types of the model to
present the GUIL

The controller is also a single class, it has a reference to both the view and
the model. The controller also uses the resources package, which contains
the model files and query file explained in section 6.2.2.1. Furthermore
the controller uses the parser to parse the diagnostic trace, created by the
model-checker of UPPAAL CORA, and passes the parsed diagnostic trace
on to the view.

LA Java library used to create user interfaces.

2JFreeChart is a free Java chart library, used to display charts. It is distributed under
the terms of the GNU Lesser General Public License (LGPL), which allows for its use in this
thesis. http://www.jfree.org/jfreechart/

6.3 Implementation 125

The class containing the main function of the tool is TimetablesTool, which is
also where and object of the model (TimetablesToolData), the view (Timeta-
blesToolGUI) and the controller (Controller) is created.

It should be noted that the structure of the program, enables a quick and easy
way of implementing saving and loading. All of the data is stored in the Timeta-
blesToolData object, and as a result, the classes used by TimetablesToolData
and the class itself, simply needs to implement the interface Serializable of Java.
Then the TimetablesToolData object is the only object which needs to be saved
to a file or loaded from a file.

6.3.3 The Final Look of the Tool

This section will show the visual results of the requirements stated in section
6.1. It should be noted that appendix D provides a complete guide to the tool.

Figure 6.6 shows the tool, where the railway network of Lokalbanen has been
created. This part of the tool is the result of the requirements stated in section
6.1.2

Figure 6.7 shows the tool, where four timetable requests have been created
for the railway network of Lokalbanen, and the tool is currently working on
generating timetables. This part of the tool is the result of section 6.1.3 and
partly the results of section 6.1.7.

Figures 6.8 and 6.9 show the results of the generated timetables. Figure 6.8
shows the generated graph and figure 6.9 shows the text representations of the
timetables. It should be noted that time is increased going up the vertical axis
(not down as in figure 2.2. This part of the tool is the result of section 6.1.4.

For a full tour of the tool, the user is referred to appendix D.

The Tool

126

Station

-name : string
-capacity @ int 2
-headwayTime - int

7T

Openline

StopRequest
Fstation : Station
Fname : string
FdwellTirme - int

-ctationl : Station
-station2 : Station
-capacity ©int

-minimumBRunningTime ; int
-headwayTime : int
-doubleTrack : bool

L

TimetableRequest

-=tops : List<StopReguest=
-riarme ; string
-startinterval : string

wUSESH

Control

 [timetablesTosiData : TimetableToolsData |
metablesToolGLI : TimetablesToalGUI

TimetableToolsData

-UPPAALDIr ; string
-stations : List<Station>
-openLines : Set<Openlinegs=

-timetableRequests @ ListTimetable Request>

TftraceParser : TraceParser
| [properties

| [rereatelIPPAALCORAMEde File])
: [rereateUPPAALCORACUeryF

TimetablesTool

Fdata : TimetableToolsData
[gui - TimetablesToolGLI
tcontraller | Controller

: Template Declaration TimetableEntry
oy -niame : string -niame - string -station @ string
|_ msesy -state ! string -value : string -dwed I Time - int
UPPAAL OORA query file : | | -departureTime : int
UPPAAL CORA mode files | | -arrival Time - int
. [B -
1 | |
. TimetablesToolGUI I .
: : State Train
 [decharations : List<Declaration= | |[imetable ; List<TimetableEntry>
Resources ..|_ -templates : List<Template>
: 1
T -
wusesn I »
'
_ N
| 1 . TraceParser
J : I_ -states : List<State
Cantroller H : ListzMapstiing, string=>

1 -trains : List<Train>

A UML diagram, depicting the structure of the tool, which follows

the MVC design pattern.

Figure 6.5

6.3 Implementation

127

,
& Timetables Tool 0 =] B S

File

| Generate Timetables | Railway Network | Settings|

Stations

H Move Up]

’ Mowve Downi]

Capacity: 2
Headway Time: 0

Open lines

[Add |
jagersborg-remisen r

fuglevad-brede

Capacity: i

Headway Time:]
Minimum Running Time: 2
Double Track: falzse

b =

Figure 6.6: Using the tool to create a railway network.

128

The Tool

|&] Timetables Tool

A T (c(e] =g

File

Generate Timetables | Railway Network | Settings|

Timetable Requests

Remove

Edit

Name: Trainl

Options for the wverification:
Generating shortest trace
Search order is random optimal depth fi
Using no space optimisation
Seed i3 1342210443

State space representation uses differe

-

Start interval: 0-0 Cancel Dialeg

b5

perty 1 at line 14

Working on the request...
Stop Reguests

jagersborg, 0

t: 137 states/sec Load: 15 =
t: 2123 states/sec Load: 103
t: 1684 states/sec Load: 213
t: 1577 states/sec Load: 347
t: 1243 states/sec Load: 490

norgaardsvej, 0

Running Time Supplement {(hover here for infa)
i

t: 1090 states/sec Load: 587
—- Throughput: 1163 states/sec Load: &71
—— Throughput: 1114 states/sec Load: 769

< | m | r

»

Lo

Figure 6.7: Four timetable requests have been created and the tool is currently

generating the requested timetables.

6.3 Implementation 129

B

Timetables graph

225

200

175

150

125

Time

100

7.5

50

25

0.0

remisen jagersborg norgaardsvej lyngbylokal fuglevad brede arholm ravnholm narum

Station

|—Train1 — Train2 Train3 Train4|

Figure 6.8: The finished graph of the generated timetables.

130 The Tool

(o TmetlesToot T R (o=

File

Generate Timetables | Railway Nemqkl Settings|
Timetable Requests

Trainl (Station, Arrival time, Departure t *
jagersborg, 0, 0O

norgaardsvej, 1, 1
lyngbylokal, 2, 2
fuglevad, 3, 3

m

brede, 5, 5
MNarme: Trainl orholm, 7, 7
e T
Startinterval: 0-0 ravnholm, &, &
narum, 10, O
Stop Reguests Traind (Station, Arrival time, Departure t
remisen, 0, 0O
[Add][Maove Up] jagersborg, 2, 2
norgaardsvej, 0 El norgaardsvej, 3, 3
lyngbylokal, 0 [Remove][Mave Down] lyngbylokal, 4, 4
Eng;\-'ad,U [T] fuglevad, 5, 5
o -
rede, brede, 7, 7 2
<] +
B
I
e —— — _——

Figure 6.9: The text representation of the finished timetables.

CHAPTER 7

Evaluation

This section will discuss relevant points when evaluating the use of formal meth-
ods in timetabling.

Section 7.1 will discuss the running times of the processes of verifying and gen-
erating timetables.

Section 7.2 will discuss how useful the resulting verifications and timetables are.

Section 7.3 will discuss the process of creating a tool, to utilize formal models
when generating timetables.

7.1 Running Time

In order to evaluate whether or not the use of formal methods is practical
in timetabling, it is important to consider the running time of validating and
creating collections of timetables.

The following two sections will present the practical running time when verifying
and generating timetables, using the models of chapter 4 and 5 respectively.

132 Evaluation

7.1.1 Running Time When Verifying Timetables

The amount of time it takes to verify timetables is highly dependent on how
many timetables are active at the same time. The timetables of Lokalbanen have
at most four different timetables active at the same point in time. Increasing
the amount of active trains will increase the running time.

The tests performed in appendix C.1 show that using the model-checker of UP-
PAAL to verify existing timetables, can be done for the actual working timeta-
bles of Lokalbanen [Lok] - and that it can be done within an acceptable time
limit. When looking at the graph of figure C.4, the time spent on verifying
timetables for Lokalbanen can be expressed in a polynomial curve.

The graph in figure C.5 shows the continued tendency curve of the running times
when verifying timetables. Based on this graph, it would take approximately
12 minutes to verify all of the 72 working timetables in [Lok], using the model
of chapter 4 with the model-checker of UPPAAL.

Using 12 minutes to validate the entire set of timetables representing the railway
operations of Lokalbanen in 2003, is not a long time. Therefore using the model-
checker of UPPAAL CORA to validate timetables, is highly applicable, when
considering the running times.

7.1.2 Running Time When Generating Timetables

The tests performed in appendix C.2 have shown that the final tool for creat-
ing timetables, is severely hindered by the running times. As when verifying
timetables, the amount of active timetables at the same time is crucial to the
running time.

Figure C.6 shows a graph of the generated timetables for 12 different trains,
which was created almost instantly. In this collection of timetables however,
there is only a single timetable active at a time.

When having several timetables active at the same time, the running time is
greatly increased. Appendix C.2 shows, if two timetable requests have opposite
journeys in Lokalbanen, and have identical start intervals, the tool will take
longer than 10 minutes to generate the two timetables'. However, if the start
intervals of the timetable requests are displaced, the tool is able to generate up

1The test request was cancelled after 10 minutes.

7.2 The Verifications and the Generated Timetables 133

to four interleaving timetables (as seen in figure C.12) within a little under two
minutes.

Based on these results, using the model-checker of UPPAAL CORA to generate
timetables, is not advisable. The running times are too long, even when there
are only two interleaving timetables.

7.2 The Verifications and the Generated Timeta-
bles

In order to evaluate whether or not the use of formal methods is practical in
timetabling, it is important to consider the quality of the results, when validating
and creating collections of timetables.

The following two sections will discuss the quality of the resulting verifications
and generated timetables, using the models of chapter 4 and 5 respectively.

7.2.1 The Resulting Verifications

When using the model-checker of UPPAAL to verify timetables (as explained
in section 4.3, the results will first and foremost display whether or not the
collection of timetables can be considered valid.

When using this approach however, it is also possible to identify exactly where,
when and how something went wrong, allowing the user to quickly identify the
problem. This feature of identifying problems, is very usable, and is considered
to be an important point when verifying timetables, using the model-checker of
UPPAAL. This is also an important reason, for choosing the model-checker of
UPPAAL to verify timetables, rather than the test cases of RSL, which are not
able to be as specific as UPPAAL in showing errors.

7.2.2 The Resulting Generated Timetables

When using the model-checker of UPPAAL CORA to generate timetables (as
explained in section 5.4), the resulting timetables are guaranteed to satisfy the
desired properties in collections of timetables.

134 Evaluation

The existing tools of TPS[| and RailSys| |, do not create timetables
in the same manner. When timetables are created in these tools, they are
manually created, in the sense that timetables are created by the user, and
then the tools will point out errors, which the user must then manually fix. The
created tool in this thesis automatically creates timetables, which are guaranteed
to be valid (based on the provided properties).

The resulting timetables, when using the model-checker of UPPAAL CORA
to generate timetables, can therefore be said to be easier applied to railway
operations, as there will be little need of adjusting the timetables after they
have been created (assuming the model of UPPAAL CORA has the desired
properties incorporated). It should be noted that the existing tools of RailSys
and TPS do provide a far greater level of detail in planning, such as rolling stock
restrictions (speed, capacity, cost etc.).

7.3 Creating a Tool Which Utilizes Formal Meth-
ods

The last step in using formal models for verifying and generating timetables,
is to create a tool, which is usable by people with no knowledge of the formal
models.

It should be noted that the tool for this thesis cannot verify existing timeta-
bles, it can only generate timetables. A tool for verifying timetables could be
created in much the same manner as the tool created in this thesis for creating
timetables.

When creating a tool to generate timetables based on a formal model, the type
of formal model, is highly influencial. In this case the formal model is created
in UPPAAL CORA, and the tool should therefore utilize the model-checker of
UPPAAL CORA, which introduces the need for a connection between the tool
and the model-checker of UPPAAL CORA.

The final tool of this thesis is an example of how a custom tool could be created,
such that it generates timetables, using formal methods. Once the formal model
of chapter 5 was created, the process of creating this tool has mostly been limited
to two following items:

e Creating a GUI and a data model.
e Having the tool utilize the model-checker of UPPAAL CORA.

7.3 Creating a Tool Which Utilizes Formal Methods 135

Due to the fact that neither of these subjects are complex, and the need for
programmatically generating timetables has been removed - the process of cre-
ating a custom tool, utilizing formal methods in timetabling is concluded to be
a viable approach.

136 Evaluation

CHAPTER 8

Conclusion

The main goal of this thesis has been to investigate how formal methods can
be used to verify and generate timetables. This investigation has been based on
four steps: (1) A formal model of the timetabling domain in RSL was created.
(2) A formal model in UPPAAL, to be used for verifying timetables was created.
(3) A formal model in UPPAAL CORA, to be used for generating timetables
was created (4) A tool which is able to generate timetables, by utilizing the
model created in UPPAAL CORA was created.

The created formal model in RSL, provides the necessary technical definitions
of the terms used in timetabling. Many of the terms used in timetabling have
varying definitions, depending on the country. Therefore this type of model is
a practical way of formalizing and specifying terms, in a manner and language
which can be read by anyone with knowledge of formal models.

The formal model created in UPPA AL, can be used to verify timetables provided
by the user, in a railway network provided by the user. When using the model-
checker of UPPAAL with the created model, it has been argued in section 7.1.1
that it is possible validate the 72 timetables of Lokalbanen (provided in [Lok]),
in approximately 12 minutes'. Furthermore, in case of an invalid collection of
timetables, it is possible to identify where, when and how the error occurs.

11t has been tested up to 12 timetables, and based on those results, 72 timetables would
take 12 minutes.

138 Conclusion

The formal model created in UPPAAL CORA, can be used to generate timeta-
bles in a railway network provided by the user. A tool has been created, which
allows a user to generate timetables. The tool generates timetables by utilizing
the created model in UPPAAL CORA along with the model-checker of UP-
PAAL CORA, effectively providing an example of a tool using formal methods
in generating timetables.

The timetables created by the tool, are guaranteed to be valid according to the
properties stated in the formal model of UPPAAL CORA. The existing tools
of TPS| | and RailSys| |, do not provide a similar guarantee. The
timetables generated by the created tool can therefore be said to be more com-
plete than the timetables created by the existing tools, as no manual adjustment
is needed once they are generated. The time it takes for the tool to generate the
timetables however, is far too long. It cannot create timetables for more than
four interleaving trains in under 10 minutes?, and if the requested timetables
are too intertwined, it cannot even do two timetables in 10 minutes®. In an
attempt to use the tool to reproduce 4 timetables of Lokalbanen, the tool was
stopped after five hours, which suggests that in order for the tool to generate
the 72 timetables of lokalbanen, the formal model of UPPAAL CORA should
be improved significantly or another type of model should be investigated.

Based on the experiences gathered in in this thesis, it must be concluded that
although using formal methods for generating timetables, can produce high
quality timetables, it simply takes too long to be a viable approach.

Using formal methods for verifying timetables seems to show promise. The
verification results have been shown to be generated within a viable time limit,
and they are of a quality, which enables the user to pinpoint the source of a
potential error. The conclusion for using formal methods for verifying timetables
must therefore be it is a viable approach, and should be investigated further.

8.1 Further Work

This section will present possibilities for advancing the work done by this thesis.

The most pressing matter of the work done in this thesis, is the fact that using
the formal model of UPPAAL CORA to generate timetables is slow. A way
of increasing the speed of generating timetables, is to improve the model of
UPPAAL CORA, in such a manner that the model-checker can work faster. A

2The test was cancelled after 10 minutes.
3 Again the test was cancelled after 10 minutes.

8.1 Further Work 139

number of optimizations have already been performed (as explained in sections
5.3.4 and 4.2.6), but there is still an unexplored point of optimization - the
remaining variable of UPPAAL CORA. The most promising way of optimizing
the model of UPPAAL CORA, is most likely to investigate a method of evalu-
ating the remaining value. An explanation of the remaining variable is given in
section 5.1, or it can be found on the website of UPPAAL CORA*.

Another relevant work item to improve the thesis, would be to increase the detail
level of the formal models. Including more aspects of timetabling, will provide
a more complete foundation, both for verifying and generating timetables. An
improvement could be made to the formal model of a railway network, where
stations are probably one of the most simplified elements of the formal model.
The stations could have platform tracks included, along with which platform
tracks are connected to which open lines. Rolling stock are also one of the more
simplified elements. The rolling stock could be included more in the model, by
adding information such as maximum speed, acceleration and cost.

Finally more work can be put into the created tool, in order to make it a more
complete tool for generating timetables. The main point of improvement to the
tool at the moment would be to add user input validation. Currently, there is
nothing to validate the railway network or timetable requests, which is provided
by the user. Inspiration for this, could be drawn from the formal model in
RSL (chapter 3), which already contains some conditions for existing railway
networks.

4http://people.cs.aau.dk/adavid /cora/language.html

140 Conclusion

APPENDIX A

RSL files

A.1 RailwayNetwork.rsl

scheme RailwayNetwork =
class
type

Time = Nat,

Name = Text,

Capacity = Nat,

DoubleTrack = Bool,

MinimumRunningTime = Time,

HeadwayTime = Time,

Station = Name,

OpenLine = Station x Station,

StationTable = Station + (Capacity x HeadwayTime),

OpenLineTable =

OpenLine

(DoubleTrack x MinimumRunningTime x Capacity x
HeadwayTime),

RailwayNetwork = StationTable x OpenLineTable

value

142 RSL files

get OpenLine :
Station x Station x RailwayNetwork — OpenLine
get OpenLine(
stationl, station2, (stationTable, openLineTable)) =
if ((stationl, station2) € dom (openLineTable))
then (stationl, station2)
else (station2, stationl)
end
pre
(stationl, station2) € dom (openLineTable) V
(station2, stationl) € dom (openLineTable),

get OpenLine DoubleTrack :
OpenLine x RailwayNetwork — DoubleTrack
get OpenLine DoubleTrack(
(stationl, station2), (stationTable, openLineTable)) =
let
(doubleTrack, mrt, cap, hwt) =
openLineTable(
get OpenLine(
stationl, station2,
(stationTable, openLineTable)))
in
doubleTrack

end,

get OpenLine MinimumRunningTime :
OpenLine x RailwayNetwork — MinimumRunningTime
get OpenLine MinimumRunningTime(
(stationl, station2), (stationTable, openLineTable)) =
let
(doubleTrack, mrt, cap, hwt) =
openLineTable(
get OpenLine(
stationl, station2,
(stationTable, openLineTable)))
in
mrt
end,

get _OpenLine Capacity :
OpenLine x RailwayNetwork — Capacity
get OpenLine Capacity(
(stationl, station2), (stationTable, openLineTable)) =

A.1 RailwayNetwork.rsl

143

let
(doubleTrack, mrt, cap, hwt) =
openLineTable(
get OpenLine(
stationl, station2,
(stationTable, openLineTable)))
in
cap
end,

get OpenLine HeadwayTime :
OpenLine x RailwayNetwork — HeadwayTime
get OpenLine HeadwayTime(
(stationl, station2), (stationTable, openLineTable)) =
let
(doubleTrack, mrt, cap, hwt) =
openLineTable(
get OpenLine(
stationl, station2,
(stationTable, openLineTable)))
in
hwt
end,

get _Station Capacity :
Station x RailwayNetwork — Capacity
get Station Capacity(
station, (stationTable, openLineTable)) =
let (capacity, hwt) = stationTable(station) in
capacity
end
pre station € dom (stationTable),

get Station HeadwayTime :

Station x RailwayNetwork — HeadwayTime
get Station HeadwayTime(

station, (stationTable, openLineTable)) =

let (platforms, hwt) = stationTable(station) in

hwt

end

pre station € dom (stationTable),

connect _one _station :
Station-set x Station-set x RailwayNetwork —

144 RSL files

Station-set
connect one _station(
unconnected, connected,
(stationTable, openLineTable)) =
if (unconnected = {}) then {}
else
let unconnected station = hd (unconnected) in
if
(3 connected _station : Station «
connected _station € connected A
((unconnected _station, connected _station) €
dom (openLineTable) V
(connected _station, unconnected _station) €
dom (openLineTable)))
then {unconnected _station}
else
connect _one_station(
unconnected \ {unconnected station},
connected, (stationTable, openLineTable))
end
end
end,

are_all stations connected :
Station-set x Station-set x RailwayNetwork — Bool
are_all stations connected(
unconnected, connected,
(stationTable, openLineTable)) =
if (connected = dom (stationTable)) then true
else
let
connected _station =
connect _one_station(
unconnected, connected,
(stationTable, openLineTable))
in
if (connected _station = {}) then false
else
are_all stations connected(
unconnected \ connected _station,
connected U connected _station,
(stationTable, openLineTable))
end
end

A.2 Timetable.rsl 145

end,

pred All stations are defined : RailwayNetwork — Bool
pred All stations are defined(
(stationTable, openLineTable)) =
(V (stationl, station2) : OpenLine e
(stationl, station2) € dom (openLineTable) =
stationl € dom (stationTable) A
station2 € dom (stationTable)),

pred All stations are connected :
RailwayNetwork — Bool
pred All stations are connected(
(stationTable, openLineTable)) =
let initial station = hd (dom (stationTable)) in
are_all stations_connected(
dom (stationTable) \ {initial station},
{initial station}, (stationTable, openLineTable)

end
end

A.2 Timetable.rsl

context: RailwayNetwork
scheme Timetable =
extend RailwayNetwork with
class
type
ArrivalTime = Time,
DepartureTime = Time,
DwellTime = Time,
Route = Station*,
Stop =
Station x ArrivalTime x DepartureTime x DwellTime,
Timetable = Name x Stop*,
TimetableSet = Timetable-set

value
get _Route from Timetable : Timetable — Route

146 RSL files

get Route from Timetable(timetableName, stops) =
if (stops = ()) then ()
else
let (originStation, oat, odt, odwt) = hd (stops) in
(originStation) ~
get Route from Timetable(
(timetableName, t1 (stops)))
end
end,

get _movements of Timetable :
Timetable — (Stop x Stop)-set
get _movements of Timetable((timetableName, stops)) =
if (tl (stops) = ()) then {}
else
{(hd (stops), hd (tl (stops)))} U
get _movements of Timetable(
(timetableName, t1 (stops)))
end,

is_Route possible : Route x RailwayNetwork — Bool
is_ Route_ possible(route, (stationTable, openLineTable)) =
if (t1 (route) = ()) then true
else
let stationl = hd (route) in
let station2 = hd (tl (route)) in
if
((stationl, station2) €
dom (openLineTable) V
(station2, stationl) €
dom (openLineTable))
then
is_Route_possible(
tl (route), (stationTable, openLineTable))
else false
end
end
end
end,

are_travel times possible :

Timetable x RailwayNetwork — Bool
are_travel times possible(

(timetableName, stops), railwayNetwork) =

A.2 Timetable.rsl 147

if (t1 (stops) = ()) then true
else
let (originStation, oat, odt, odwt) = hd (stops) in
let
(destinationStation, dat, ddt, ddwt) =
hd (tl (stops))
in
if
(get _OpenLine MinimumRunningTime(
(originStation, destinationStation),
railwayNetwork) < dat — odt)
then
are_travel times possible(
(timetableName, t1 (stops)),
railwayNetwork)
else false
end
end
end
end,

does_timetable occupy open line in time period DIRECTED :
Timetable x Station x Station x Time x Time —
Bool
does timetable occupy open line in_time period DIRECTED(
(timetableName, stops), departureStation,
destinationStation, from, to) =
if (t1 (stops) = ()) then false

else
let (stationl, atl, dt1, dwt1l) = hd (stops) in
let
(station2, at2, dt2, dwt2) = hd (t1 (stops))
in
if

((stationl, station2) =
(departureStation, destinationStation) A
((from < dt1 A dtl < to) V
(from < at2 A at2 < to) V
(dt1 < from A to < at2)))
then true
else
does_timetable occupy open line in_time period DIRECTED(
(timetableName, t1 (stops)),
departureStation, destinationStation,

148 RSL files

from, to)
end
end
end

end,

is open line occupied in time period DIRECTED :
Station x Station x Time x Time x TimetableSet —
Bool
is_open_line occupied in_time period DIRECTED(
departureStation, destinationStation, from, to,
timetableSet) =
if (timetableSet = {}) then false
else
let headTT = hd (timetableSet) in
does_timetable occupy open line in time period DIRECTED(
hd (timetableSet), departureStation,
destinationStation, from, to) V
is_open line occupied in_ time period DIRECTED(
departureStation, destinationStation, from,
to, timetableSet \ {headTT})
end

end,

add _timetable to trains at station count :
Station x Time x Timetable x Int — Int

add_timetable to trains at_station count(
station, time, (timetableName, stops), count) =
if (stops = ()) then count

else
let (check station, at, dt, dwt) = hd (stops) in
if
(station = check station A at < time A
time < dt)
then count + 1
else
add_timetable to trains at station count(
station, time, (timetableName, tl (stops)),
count)
end
end
end

)

all trains at_station count :

A.2 Timetable.rsl 149

Station x Time x TimetableSet x Int — Int
all trains at_station count(

station, time, timetableSet, count) =

if (timetableSet = {}) then count

else
let timetable = hd (timetableSet) in
let
count =
add_timetable to trains at station count(
station, time, timetable, count)
in
all trains at_station count(
station, time, timetableSet \ {timetable},
count)
end
end
end,

add _timetable to trains at open line count :
OpenLine x Time x Timetable x Int — Int
add_timetable to_ trains at open line count(
openlLine, time, (timetableName, stops), count) =
if (t1 (stops) = ()) then count
else
let (stationl, atl, dt1, dwt1l) = hd (stops) in
let
(station2, at2, dt2, dwt2) = hd (t1 (stops))
in
if
((openLine = (stationl, station2) V
openLine = (station2, stationl)) A
dt1l < time A time < at2)
then count + 1
else
add _timetable to_trains at open line count(
openlLine, time,
(timetableName, t1 (stops)), count)
end
end
end
end,
all trains at open line count :
OpenLine x Time x TimetableSet x Int — Int

150 RSL files

all trains at open line count(
openLine, time, timetableSet, count) =
if (timetableSet = {}) then count

else
let timetable = hd (timetableSet) in
let
count =
add_timetable to_trains at_ open_line count(
openLine, time, timetable, count)
in
all trains at open line count(
openLine, time, timetableSet \ {timetable},
count)
end
end
end,

pred all routes of timetables can_be traversed :
TimetableSet x RailwayNetwork — Bool
pred all routes of timetables can be traversed(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable «
(timetableName, stops) € timetableSet =
if (stops = ()) then true
else
is_Route possible(
get Route from Timetable(
(timetableName, stops)), railwayNetwork)
end),

pred minimum running times upheld :
TimetableSet x RailwayNetwork — Bool
pred minimum _running times upheld(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable »
(timetableName, stops) € timetableSet =
if (stops = ()) then true
else
are_travel times possible(
(timetableName, stops), railwayNetwork)
end),

pred dwell times upheld : TimetableSet — Bool
pred dwell times upheld(timetableSet) =

A.2 Timetable.rsl 151

(V (timetableName, stops) : Timetable ¢
(timetableName, stops) € timetableSet =
(V (station, at, dt, dwt) : Stop *
(station, at, dt, dwt) € stops =
(dt — at) > dwt)),

pred stations never exceed capacity :
TimetableSet x RailwayNetwork — Bool
pred stations never exceed capacity(
timetableSet, railwayNetwork) =
(V (timetableName, stops) : Timetable °
(timetableName, stops) € timetableSet =
(V (station, at, dt, dwt) : Stop *
(station, at, dt, dwt) € stops =

let
capacity =
get _Station Capacity(
station, railwayNetwork)
in

all trains at station count(
station, at, timetableSet, 0) <
capacity
end)),

pred open_ lines never exceed capacity :
TimetableSet x RailwayNetwork — Bool
pred open lines never exceed capacity(
timetableSet, railwayNetwork) =
(V timetable : Timetable ¢
timetable € timetableSet =
(v
((stationl, atl1, dt1, dwtl),
(station2, at2, dt2, dwt2)) : (Stop x Stop)

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetable) =
let
capacity =
get OpenLine Capacity(
get OpenLine(
stationl, station2,
railwayNetwork), railwayNetwork)
in

152

RSL files

all trains at open_line count(
get OpenLine(

stationl, station2, railwayNetwork),
dt1, timetableSet, 0) < capacity
end)),

pred stations headway times upheld :
TimetableSet x RailwayNetwork — Bool
pred stations headway times upheld(
timetableSet, railwayNetwork) =
(V (timetableNamel, stopsl) : Timetable °
(timetableNamel, stopsl) € timetableSet =
(V (timetableName2, stops2) : Timetable «
(timetableName2, stops2) € timetableSet =
(V (stationl, atl, dt1, dwtl) : Stop *
(stationl, atl, dt1, dwtl) € stopsl =
(v
(station2, at2, dt2, dwt2) : Stop

(station2, at2, dt2, dwt2) €
stops2 =
((stationl, atl, dt1, dwtl) #

(station2, at2, dt2, dwt2) A

stationl = station2) =
let

headwayTime =

get Station HeadwayTime(
stationl, railwayNetwork
)
in
(abs (atl — at2)) >
headwayTime
end)))),
pred open lines headway times upheld :
TimetableSet x RailwayNetwork — Bool
pred open lines headway times upheld(
timetableSet, railwayNetwork) =
(V timetablel : Timetable e
timetablel € timetableSet =
(V timetable2 : Timetable »

timetable2 € timetableSet =
(v

((stationl, atl, dt1, dwtl),

A.2 Timetable.rsl 153

(station2, at2, dt2, dwt2)) :
(Stop x Stop)

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetablel) =
(v
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwt4)) :
(Stop x Stop)
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) €
get _movements of Timetable(
timetable2) =
(timetablel # timetable2 A
(stationl, station2) =
(station3, stationd)) =
let
headwayTime =
get OpenLine HeadwayTime(
get OpenLine(
stationl, station2,
railwayNetwork),
railwayNetwork)
in
(abs (dt1 — dt3)) >
headwayTime A
(abs (at2 — at4)) >
headwayTime

end)))),

pred trains _do not attempt to overtake :
TimetableSet — Bool
pred trains do_not attempt to_overtake(timetableSet) =
(V timetablel : Timetable o
timetablel € timetableSet =
(V timetable2 : Timetable e
timetable2 € timetableSet =
(v
((stationl, at1, dt1, dwtl),
(station2, at2, dt2, dwt2)) :
Stop x Stop

154 RSL files

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetablel) =
(v
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) :
Stop x Stop
((station3, at3, dt3, dwt3),
(stationd, at4, dt4, dwtd)) €
get _movements of Timetable(
timetable2) =
((timetablel # timetable2 A
(stationl, station2) =
(station3, stationd)) =
((dt1 < dt3 A at2 < atd) V
(dt3 < dt1 A at4d < at2))))))

);

pred no_single track open lines utilized in both directions simultaniously :
TimetableSet x RailwayNetwork — Bool
pred no_single track open lines utilized in_ both directions simultaniously(
timetableSet, railwayNetwork) =
(V timetable : Timetable e
timetable € timetableSet =
(v
((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) : Stop x Stop

((stationl, atl, dt1, dwtl),
(station2, at2, dt2, dwt2)) €
get _movements of Timetable(timetable) =

(let
doubleTrack =
get OpenLine DoubleTrack(
(stationl, station2),
railwayNetwork)
in

doubleTrack V
~is_open line occupied in time period DIRECTED(
station2, stationl, dt1, at2,
timetableSet)
end))),

A.3 TestCases.rsl 155

pred timetable names are unique : TimetableSet — Bool
pred timetable names are unique(timetableSet) =
(V (timetableNamel, stopsl) : Timetable e
(timetableNamel, stopsl) € timetableSet =
(V (timetableName2, stops2) : Timetable e
(timetableName2, stops2) € timetableSet =
(timetableNamel, stopsl) #
(timetableName2, stops2) =
timetableNamel # timetableName2))
end

A.3 TestCases.rsl

Timetable

scheme TestCases =
extend Timetable with
class
value
test2 TimetableList : TimetableSet =
{(Na—b”,
(("a",0,1,0), (", 25, 32, 0),
("a", 57, 60, 0))),
("b-a", (("a", 2, 4, 0), ("", 17, 65, 0)))},
test2 OpenLineTable : OpenLineTable =
[("a","b") s (false, 12, 2, 1)],
test2 StationTable StationTable =

[= (2,2), " = (2,2)],
test_TlmetableLlst : TimetableSet =
{(I/A_BII

<(”A”, 0,1, 0), (// //, 4, 0),
("B", 14,17, 0), ("D, 21, 21, 0),
("A", 24, 24, 0))),

C//

(" c’ 0,1, 0), ("D", 4, 4, 0), ("A”, 7, 10, 0),

("n”, 13,13, 0), ("c”, 16, 16, 0)))},
test_OpenLlneTable OpenLineTable =
(087, "D 5 (true, 3, 1, 2),
'‘B”,"D") > (true, 4, 1, 2),
c” "D") + (false, 3, 1, 2)],

(//A
(

(‘
(I/

156

RSL files

test StationTable : StationTable =
N> (2, 2), "B > (2, 2), "¢ s (2, 2),
s (2,2))
test RailwayNetwork : RailwayNetwork =
(test StationTable, test OpenLineTable),
test lokalbanen TimetableList : TimetableSet =
{(//tlll
{(jagersborg", 30, 30, 0),
(" norgaardsvej , 31, 31, 0),
(" 1yngbyloka1 33, 33, 0)
("fuglevad”, 35, 35, 0), (“brede”, 37, 37, 0),
("orholm”, 39, 40, O) ("ravnholm”, 41, 41, 0),
; (”narum", 43, 43, 0))),
£,
(("remisen”, 34, 34 0),
("3 agersborg 36, 40, 0),
(”norgaardsvej , 41,41, 0),
("1yngbylokal”, 43, 43, 0),
("fuglevad”, 45, 45, 0), ("brede”, 47, 47, 0),
("orholm”, 49, 50, 0), (“ravnholm”, 51, 51, 0),
. (”narum”, 53, 53, 0))),
("3,

(("narum”, 47, 47, 0), ("ravnholm”, 49, 49, 0),
("orholm”, 50, 50, 0), (“brede”, 52, 52, 0),

" "
fuglevad”’, 54, 55, 0),
("1yngbylokal”, 56, 56, 0),
("norgaardsvej”, 57, 57, 0),
"jagersborg”, 59, 59, 0))),
(Nt4",

(("narum”, 57, 57, 0), ("ravnholm”, 59, 59, 0),
("orholm”, 60, 60, 0), (“brede”, 62, 62, 0),
("fuglevad”, 64, 65, 0),

("1yngbylokal”, 66, 66, 0),

("norgaardsvej”, 67, 67, 0),
("jagersborg”, 69, 69, 0)))},

test lokalbanen OpenLineTable : OpenLineTable =

[(Jagersborg", ”norgaardsvej ") s (false, 1, 1, 0),
norgaardsvej’, "lyngbylokal”) ~ (false, 1, 1, 0),

"

"

lyngbylokal” "fuglevad”’) — (false, 1, 1, 0),

(

(

("fuglevad”, "brede”) — (false, 2, 1, 0),
("brede”, ”orholm”) — (false, 2, 1, 0),
(
(
(

" "1

orholm”, "ravnholm”) — (false, 1, 1, 0),
ravnholm”, "narum”) — (false, 2, 1, 0),

jagersborg”, "remisen”) — (false, 2, 1, 0)],

"

"

A.3 TestCases.rsl 157

test lokalbanen StationTable : StationTable =
["remisen” — (6, 1), "jagersborg” — (2, 1),
"norgaardsvej”’ — (1, 1), "lyngbylokal” ~ (1, 1),
"tuglevad” — (2, 1), "brede” — (1, 1),
"orholm” + (2, 1), "ravnholm” — (1, 1),
"narum” — (2, 1)],

test lokalbanen RailwayNetwork : RailwayNetwork =
(test lokalbanen StationTable,
test lokalbanen OpenLineTable)

"

test case
[pred All stations are defined]
pred All stations are defined(test RailwayNetwork),
[lokalbanen1 |
pred All stations are defined(
test lokalbanen RailwayNetwork),
[pred All stations are connected]
pred All stations are connected(test RailwayNetwork),
[lokalbanen2]
pred All stations are connected(
test lokalbanen RailwayNetwork),
[pred all routes of timetables can be traversed]
pred all routes of timetables can be traversed(
test TimetableList, test RailwayNetwork),
[lokalbanen4]
pred all routes of timetables can be traversed(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred minimum running times upheld |
pred minimum_running times upheld(
test TimetableList, test RailwayNetwork),
[lokalbanen5 |
pred minimum _running times upheld(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred dwell times upheld]
pred dwell times upheld(test TimetableList),
[lokalbanens |
pred dwell times upheld(
test lokalbanen TimetableList),
[pred stations never exceed capacity |
pred stations never exceed capacity(
test TimetableList, test RailwayNetwork),
[lokalbanenT |

158

RSL files

pred stations never exceed capacity(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred open lines never exceed capacity |
pred open lines never exceed capacity(
test TimetableList, test RailwayNetwork),
[lokalbanen8 |
pred open lines never exceed capacity(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred stations headway times upheld]
pred stations headway times upheld(
test TimetableList, test RailwayNetwork),
[lokalbanen9 |
pred stations headway times upheld(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred _open lines headway times upheld |
pred open lines headway times upheld(
test TimetableList, test RailwayNetwork),
[lokalbanen10 |
pred open lines headway times upheld(
test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred trains do_not_attempt to_overtake]
pred trains do_ not_attempt to overtake(
test TimetableList),
[lokalbanenl11]
pred trains do_not_attempt to overtake(
test lokalbanen TimetableList),

[pred no_single track open lines utilized in_ both directions simultaniously]
pred no_single track open lines utilized in_ both directions simultaniously(

test TimetableList, test RailwayNetwork),
[lokalbanen12]

pred no_single track open lines utilized in_ both directions simultaniously(

test lokalbanen TimetableList,
test lokalbanen RailwayNetwork),
[pred timetable names are unique]
pred timetable names are unique(test TimetableList),
[lokalbanel3]
pred timetable names are unique(
test lokalbanen TimetableList),
[trains _at_station |
all trains at_station count(

A.3 TestCases.rsl 159

end

"a" 59, test _TimetableList, 0),
[all trains at open line]
all trains at open line count(
("a"”,"v"), 12, test _TimetableList, 0),
[get _Route from Timetable]
get Route from Timetable(
hd (test lokalbanen TimetableList)),
[get _movements of Timetable |
get _movements of Timetable(
hd (test lokalbanen TimetableList)),
[is_ Route_possible]
is_Route possible(
("jagersborg’, "norgaardsvej”’, "lyngbylokal”),
test lokalbanen RailwayNetwork),
[is_Route possible negative test]
is_Route possible(

("jagersborg’, "norgaardsvej”’, "fuglevad”),
test lokalbanen RailwayNetwork) = false,
[is_open_line occupied in_time period DIRECTED]
is_open_line occupied in_time period DIRECTED(

"N "D", 2, 5, test_ TimetableList)

160 RSL files

APPENDIX E3

The UPPAAL CORA
models used by the final
tool

B.1 The full UPPAAL CORA model, used by the
tool

The declarations stated here, and figure B.1 shows the template of the model
used in the final tool for creating the temporary model files. It should be noted
that a lot of the edge labels and state invariants are marked as red. This happens
because of syntax errors, caused by the string preprended and appended with
#4. The template is identitcal to that of figure 5.10.

//Global time
clock time;

meta int[-100000000000,100000000000] remaining;

//COSTS
const int WaitingAtStation = 1;

The UPPAAL CORA models used by the final tool

162

Inactive
time <= intervals[id][1]

time <= intervals[id][1] &&

time >= intervals[id][0] &&
StationHasRoom() &&
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)

EnterStation(stops[id][0] stationid),
TrainClock[id] = 0

L

_.\
TRAINSTOPS[id] == (currentStop[id]+1)
hurry!

LeaveStation

(stops[id][TRAIN STOPS[id]-1].stationld)

Complete

WaitingAtStationExp
cost' == WaitingAtStationExp

TrainClock[id] == StationCostThreshold

OpenLineMotOccupiedOpposite() &&
OpenLineHasRoom() &&
openlinelastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLina())

LeaveStation(stops[id]fcurrentStop[id}-1].stationld),
EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop(id]].stationld),
TrainClock[id]= 0

WaitingAtStation
cost' == WaitingAtStation &&
TrainClock[id] <= StationCostThreshold

w O
TRAINSTOPSJid] != (currentStop[id]+1) &&

TrainClock[id] == stops[id][currentStop[id]]. DWT
currentStop[id]++,

TrainClock[id] = 0

HoldingAtStation

TrainClock[id] == stops[id][currentStop[id]]. DWT

StationHasRoom() &&
stationLastEntered[stops[id][currentStop[id]].stationld] ==
GetStationHWT (stops[id][currentStop[id]] stationld) &&

IAttemptedOvertake() &&
openLinelastExit{GetCurrentOpenLine()] >=
GetOpenLineHWT (GetCurrentOpenLine())

_ TrainClock[id]= 0

OpenLineMotOccupiedOpposite() &&
OpenLineHasRoom() &&
openlinelastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLina())

LeaveStation(stops[id]fcurrentStop[id}-1].stationld),
EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop(id]].stationld),
TrainClock[id]= 0

EnRoute
TrainClock[id] <= (GetMRT{GetCurrentOpenLine(}) +
RTS[GetCurrentOpenLine()])

TrainClock[id] == (GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLine()])
TrainClock[id] = 0

StationHasRoom() &&
stationLastEntered[stops[id][currentStop[id]].stationld] ==
GetStationHWT (stops[id][currentStop[id]] stationld) &&

IAttemptedOvertake() &&
openLinelastExit{GetCurrentOpenLine()] >=
GetOpenLineHWT (GetCurrentOpenLine())

__TrainClock[id]=0

ReducingSpeedAtOpenLine
cost' == WaitingAtOpenLine &&
TrainClock[id] <= OpenLineCostThreshold

TrainClock[id] == OpenLineCostThreshold

ReducingSpeedAtOpenLineExp
cost' == WaitingAtOpenLineExp

The template used by the tool to create temporary model files.

Figure B.1

The red markings are caused by syntax errors in the global dec-

larations.

B.1 The full UPPAAL CORA model, used by the tool 163

const int WaitingAtOpenLine = 1;

const int WaitingAtStationExp = 3;
const int WaitingAtOpenLineExp = 3;

//Threshold for cost increase, expressed as time
const int StationCostThreshold = 3;
const int OpenLineCostThreshold = 3;

//Number of Stations
const int STATIONS = ##STATIONS##;

//Number of Open Lines
const int OPENLINES = ##0PENLINES##;

//Number of Trains
const int TRAINS = ##TRAINS##;
typedef int[0, TRAINS-1] t_id;

/*A queue for each direction of an open
line denoting the order in which trains enter.*/
int queue[OPENLINES] [2] [TRAINS];

//Trainclocks used by the trains to time various actions
clock TrainClock[TRAINS];

//Denotes the current stop of the trains
int [0, ##MOSTSTOPS##-1] currentStop[TRAINS];

//Channels
urgent chan hurry;

//Timetable request
//Start time intervals for each train
const int intervals[TRAINS][2] = ##STARTINTERVALS##;

//Amount of stops on the routes
const int TRAINSTOPS[TRAINS] = ##TRAINSTOPS##;

//stations
##STATIONCONSTS##

typedef struct {
int[-1,STATIONS-1] stationId;

164 The UPPAAL CORA models used by the final tool

int DWT; //Dwell Time
}Stops;

const Stops stops[TRAINS] [##MOSTSTOPS##] =
##STOPS##;

typedef struct{
int stationl;
int station2;
} OpenLine;

typedef struct{
OpenlLine openline;
bool doubleTrack;
int MRT; //Minimum Running Time
int capacity;
int HWT; //Headway Time
}OpenLineTable;

//0pen line table
const OpenLineTable openLineTable[OPENLINES] =
##OPENLINETABLE##;

//The running time supplement for each open line
const int RTS[OPENLINES] = ##RTS##;

//The amount of trains present in a direction on an open line
int [0, TRAINS] trainsAtOpenLine[0PENLINES] [2];

//The time a train last entered an open line

clock openLinelastEntered[0PENLINES] ;

//The time a train last exited an open line

clock openLineLastExit [OPENLINES] ;

typedef struct{
int [0,STATIONS-1] statiom;
int capacity;
int HWT; //Headway Time
}StationTable;

//Station table
const StationTable stationTable[STATIONS] =
##STATIONTABLE##;

//The amount of trains present at a station

B.1 The full UPPAAL CORA model, used by the tool

165

int[0, TRAINS] trainsAtStation[STATIONS];
//The time a train last entered a station
clock stationLastEntered[STATIONS];

//Get minimum running time of open line
int GetMRT(int openLineId)
{

return openLineTable[openLineld].MRT;
}

//Get capacity of open line
int GetOpenLineCapacity(int openLineId)
{
return openLineTable[openLineld].capacity;

}

//Get headway time of open line
int GetOpenLineHWT(int openLineId)
{
return openLineTable[openLineId] .HWT;
}

//Get double track value of open line
bool IsOpenLineDoubleTrack(int openLineld)
{

return openLineTable[openLineld].doubleTrack;

3

//Get headway time of a station
int GetStationHWT(int stationId)
{
return stationTable[stationId].HWT;
}

//Get capacity of a station
int GetStationCapacity(int stationId)
{

return stationTable[stationId].capacity;

}

//Get the id of an open line
int GetOpenLineId(int stationl, int station2)
{

for (i : int[0,0PENLINES-1])

166 The UPPAAL CORA models used by the final tool

{
if ((openLineTable[i] .openLine.stationl == stationl &&
openLineTable[i].openLine.station2 == station2) ||
(openLineTable[i] .openLine.stationl == station2 &&
openLineTable[i] .openlLine.station2 == stationl))
return i;
}
return -1;
}

//Increase the amount of trains present in a direction on an open line
void IncreaseTrainsAtOpenLineDir(int openLineld, int dir)
{
if (openLineTable[openLineld].openlLine.stationl == dir)
trainsAtOpenLine[openLineId] [0]++;
else
trainsAtOpenLine[openLineId] [1]++;

//Decrease the amount of trains present in a direction on an open line
void DecreaseTrainsAtOpenLineDir(int openLineld, int dir)
{
if (openLineTable[openLineld].openlLine.stationl == dir)
trainsAtOpenLine[openLineId] [0]--;
else
trainsAtOpenLine[openLineId] [1]--;

//Get the total amount of trains present at an open line - regardless of direction
//Used when checking for the capacity of a single tracked open line, in which one of
int GetTrainsAtOpenLine(int openLineId)
{

return trainsAtOpenLine[openLineId] [0] + trainsAtOpenLine[openLineId] [1];
3

//Get the amount of trains present in a direction on an open line
int GetTrainsAtOpenLineDir(int openLineld, int dir)
{
if (openLineTable[openLineld].openlLine.stationl == dir)
return trainsAtOpenLine[openLineId] [0];
else
return trainsAtOpenLine[openLineId][1];

B.1 The full UPPAAL CORA model, used by the tool 167

//Determines whether or not an open line is occupied in the opposite direction of
bool IsOpenLineOccupiedOppositeDirection(int openLineld, int dir) {
Openline openLine = openLineTable[openLineId].openLine;
if (openLine.stationl == dir)
return GetTrainsAtOpenLineDir (openLineld, openLine.station2) > 0;
else
return GetTrainsAtOpenLineDir(openLineld, openLine.stationl) > 0;

}

//Get the train in front of the queue
int QueueGetFront(int openLineld, int dir)
{
if (IsOpenLineDoubleTrack (openLinelId))
if (openLineTable[openLineld].openlLine.stationl == dir)
return queue[openLineId] [0][0];
else
return queue[openLineId][1][0];
else
return queue[openLineId] [0][0];
}

//Have a train enter the queue of a direction of an open line
void EnterQueue(int openLineld, int trainId, int dir)

{
if (IsOpenLineDoubleTrack (openLineld))
if (openLineTable[openLineld].openlLine.stationl == dir)
queue [openLineId] [0] [GetTrainsAtOpenLineDir(openLineld, dir)] = trainId;
else
queue [openLinelId] [1] [GetTrainsAtOpenLineDir (openLineld, dir)] = trainld;
else
queue [openLineId] [0] [GetTrainsAtOpenLine(openLineId)] = trainId;
}

//Have a train exit the queue of a direction of an open line
void ExitQueue(int openLineld, int dir)
{
int empty = -1;
for (i : int[0,TRAINS-1])
{
if (IsOpenLineDoubleTrack (openLineld))
if (openLineTable[openLineld].openline.stationl == dir)
{
if (i !'= TRAINS-1)
{

168

The UPPAAL CORA models used by the final tool

queue [openLineId] [0][i] =
queue [openLineId] [0] [i+1]

queue [openLineId] [0] [i+1];
= empty;

}
else
queue [openLineId] [0] [i] = empty;
}
else
{
if (i !'= TRAINS-1)
{
queue [openLineId] [1][i] = queue[openLineId] [1][i+1];
queue [openLineId] [1][i+1] = empty;
}
else
queue [openLineId] [1][i] = empty;
}
else
{
if (i !'= TRAINS-1)
{
queue [openLineId] [0] [i] = queue[openLineId] [0] [i+1];
queue [openLineId] [0] [i+1] = empty;
}
else
queue[openLineId] [0] [i] = empty;
}

}
}

//Initialize the queue
void initQueue()
{
for (i :
{
for (j
{
int empty = -1;
queue[i] [0] [j]
queue[i] [1][j]
}
}
}

int [0, OPENLINES-1])

: int[0,TRAINS-11)

= empty;
empty;

//Initialize the

station clocks and open line clocks used for headway times

B.2 The UPPAAL CORA model, used by the tool, excluding station
headway times 169

void initEnterExitClocks()

{
//Station headway clocks
for (i :int[0, STATIONS-1])
{
stationLastEntered[i] = 1000000000;
}
for (i :int[0, OPENLINES-11)
{
openLinelLastEntered[i] = 1000000000;
openLineLastExit[i] = 1000000000;
}
}

B.2 The UPPAAL CORA model, used by the
tool, excluding station headway times

Figure B.2 shows the template of the model used in the final tool for creating
the temporary model files without headway times for stations. The global dec-
larations are identical to those of appendix B.1. It should be noted that a lot of
the edge labels and state invariants are marked as red. This happens because
of syntax errors, caused by the string preprended and appended with ##.

B.3 The UPPAAL CORA model, used by the
tool, excluding open line headway times

Figure B.3 shows the template of the model used in the final tool for creating
the temporary model files without heaway times for open lines. The global
declarations are identical to those of appendix B.1. It should be noted that
a lot of the edge labels and state invariants are marked as red. This happens
because of syntax errors, caused by the string preprended and appended with

HHE-

The UPPAAL CORA models used by the final tool

170

Inactive
time <= intervals(id][1]

time <= ntervals[id][1] &&

time >= ntervals[id][0] &&
StationHasRoom() &&
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)

EnterStation(stops[id][0].stationld),
TrainClock[id] = 0

L.

-

TRAINSTOPSJid] == (currentStop[id]+1)
hurry!

LeaveStation

(stops[id][TRAIN STOP S[id]-1].stationld)

Complete

TrainClock[id] == StationCostThreshold

WaitingAtStationExp
cost' == WaitingAtStationExp

OpenLineMotOccupiedOpposite() &&
OpenLineHasRoom() &&
openLineLastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT({GetCurrentOpenLine())

LeaveStation(stops[id][currentStop[id]-1].stationld).
EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),
TrainClock[id]= 0

WaitingAtStation
cost' == WaitingAtStation &&
TrainClock[id] <= StationCostThreshold

,\
TRAINSTOPS[id] != (currentStop[id]+1) &&
TrainClock[id] == stops[id][currentStop[id]]. DWT
currentStop[id]++,

TrainClock[id] = 0

HoldingAtStation

JTrainClock[id] <= stops[id][currentStop[id]]. DWT

StationHasRoom() &&
|AttemptedOvertake() &&
openLinelastExifGetCurrentOpenLine()] >=
GetOpenLineHWT(GetCurrentOpenLine())

LeaveOpenLine(GetCurrentCpenLine(),
stops[id][currentStop[id]].stationld),
EnterStation(stops[id]lcurrentStop[id]].stationld),
__TrainClock[id] = 0

OpenLineMNotOccupiedOpposite() &&
OpenLineHasRoom() &&
openLineLastEntered[GetCurrentOpenLine()] ==
GetOpenLineHWT (GetCurrentOpenLine())

LeaveStation(stops[id][currentStop[id}-1].stationld),

EnterOpenLine(GetCurrentOpenLine(),
stops[id][currentSto

id]].stationld),
TrainClock[id]= 0

EnRoute
TrainClock[id] <= (GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLine()])

TrainClock[id] == (GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLine()])
TrainClock[id] = 0

StationHasRoom() &&
IAttemptedOvertake() &&

openLinelastExif GetCurrentOpenLine()] ==
GetOpenLineHWT(GetCurrentOpenLinea())

LeaveOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),
EnterStation(stops[id][currentStop[id]]. stationld),
TrainClock[id]= 0

ReducingSpeedAtOpenLine
cost' == WaitingAtOpenLine &&
TrainClock[id] <= OpenLineCostThreshold

TrainClock[id] == OpenLineCostThreshold

ReducingSpeedAtOpenLineExp
cost' == WaitingAtOpenLineExp

The template used by the tool to create temporary model files,

excluding station headway times.

Figure B.2

The red markings are caused

by syntax errors in the global declarations.

B.3 The UPPAAL CORA model, used by the tool, excluding open line

headway times

171

O Inactive

time <= intervalsid][1]

time <= intervals[id][1] &&

time == intervals[id][0] &&
StationHasRoom() &&
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)

EnterStation(stops[id][0] stationid),
TrainClock[id] = 0

L.

-

TRAINSTOPS[id] == (currentStop[id]+1)
hurry!

LeaveStation

(stops[id][TRAIN STOPS[id]-1].stationld)

Complete

o

TrainClock[id] == StationCostThreshold

WaitingAtStationExp
cost' == WaitingAtStationExp

OpenLineMotOccupiedOpposite() &&
OpenLineHasRoom()
LeaveStation(stops[id]fcurrentStop[id]-1].stationld),
EnterOpenLine(GetCurrentCpenLine(),

stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

WaitingAtStation
cost' == WaitingAtStation &&
TrainClock[id] <= StationCostThreshold

,\
TRAINSTOPS][id] != (currentStop[id]+1) &&
TrainClock[id] == stops[id][currentStop[id]].DWT
currentStoplid]++,

TrainClock[id] = 0

HoldingAtStation

TrainClock[id] == stops[id][currentStop[id]].DWT

StationHasRoom() &&

GetStationHWT (stops[id][currentStop[id]] stationld) &&
IAttemptedOvertake()
LeaveOpenLine(GetCurrentOpenLine(),
stops[id][currentStop(id]].stationld),
EnterStation(stops[id][currentStop[id]].station|d),

_ TrainClock[id]= 0

stationLastEntered[stops[id][currentStop[id]] stationld] ==

o
A

OpenLineMotOccupiedOpposite() &&
OpenLineHasRoom()
LeaveStation(stops[id]fcurrentStop[id]-1].stationld),
EnterOpenLine(GetCurrentCpenLine(),

stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

m:IoE.m
TrainClock[id] <= (GetMRT(GetCurrentOpenLine()) + m
RTS[GetCurrentOpenLine()])

TrainClock[id] == (GetMRT(GetCurrentOpenLine()) +
RTS[GetCurrentOpenLine()])

P TrainClock[id] = 0)

StationHasRoom() &&

stationLastEntered[stops[id][currentStop[id]].stationld] ==

GetStationHWT (stops[id][currentStoplid]] stationld) &&
IAttemptedOvertake()

LeaveOpenLine(GetCurrentOpenLine(),
stops(id][currentStop(id]].stationld),
EnterStation(stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

ReducingSpeedAtOpenLine
cost' == WaitingAtOpenLine &&
TrainClock[id] <= OpenLineCostThreshold

TrainClock[id] == OpenLineCostThreshold

ReducingSpeedAtOpenLineExp

cost' == WaitinaAtOpenLineExp

The template used by the tool to create temporary model files,

Figure B.3

excluding open line headway times. The red markings are caused

by syntax errors in the global declarations.

172 The UPPAAL CORA models used by the final tool

B.4 The UPPAAL CORA model, used by the
tool, excluding both headway times

Figure B.4 shows the template of the model used in the final tool for creating the
temporary model files without heaway times for eitjer open lines or stations. The
global declarations are identical to those of appendix B.1. It should be noted
that a lot of the edge labels and state invariants are marked as red. This happens
because of syntax errors, caused by the string preprended and appended with

i

B.4 The UPPAAL CORA model, used by the tool, excluding both headway

173

times

O Inactive

time <= intervals[id][1]

time == intervals[id][1] &&

time == intervals[id][0] &&
StationHasRoom() &&
stationLastEntered[stops[id][0].stationld] ==
GetStationHWT (stops[id][0].stationld)

EnterStation(stops[id][0] stationld),
TrainClock[id] = 0

L.

-

TRAINSTOPS[id] == (currentStopl[id]+1)
hurry!

LeaveStation

(stops[id][TRAINSTOP S[id]-1].stationld)

Complete

TrainClock[id] == StationCostThreshold

O

)

WaitingAtStationExp
cost' == WaitingAtStationExp

OpenLineHasRoom()
LeaveStation(stops[id]fcurrentSto

stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

WaitingAtStation
cost' == WaitingAtStation &&
~ TrainClock[id] <= StationCostThreshold

OpenLineNotOccupiedOpposite() &&

id}-1].stationld),
EnterOpenLine(GetCurrentOpenLine(),

,\
TRAINSTOPS(id] != (currentStop[id]+1) &&
TrainClock[id] == stops[id][currentStop[id]].DWT
currentStop[id]++,

TrainClock[id]= 0

HoldingAtStation

U._._.m_jo_on_%& <= stops[id][currentStop[id]]. DWT

StationHasRoom() &&

|AttemptedOvertake()

LeaveOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),

EnterStation(stops[id][currentStop[id]].stationld),

_ TrainClock[id]= 0

Ny

T

OpenLineHasRoom()
LeaveStation(stops[id]fcurrentSto

stops[id][currentStop[id]].stationld),
TrainClock[id] = 0

TrainClock[id] <= (GetMRT(GetCurrentOpenLine()) +

OpenLineNotOccupiedOpposite() &&

EnRoute

RTS[GetCurrentOpenLine()])

id}-1].stationld),
EnterOpenLine(GetCurrentOpenLine(),

¢

TrainClock[id] == (GetMRT{GetCurrentOpenLine(}) +

RTS[GetCurrentOpenLine()])
TrainClock[id] = 0

StationHasRoom() &&

|AttemptedOvertake()

LeaveOpenLine(GetCurrentOpenLine(),
stops[id][currentStop[id]].stationld),

EnterStation(stops[id][currentStop[id]].stationld),

TrainClock[id] = 0

ReducingSpeedAtOpenLine
cost' == WaitingAtOpenLine &&
TrainClock[id] <= OpenLineCostThreshold

TrainClock[id] == OpenLineCostThreshold

ReducingSpeedAtOpenLineExp
cost' == WaitingAtOpenLineExp

The template used by the tool to create temporary model files,

Figure B.4

The red markings are caused by

syntax errors in the global declarations.

excluding all headway times.

174 The UPPAAL CORA models used by the final tool

APPENDIX C

Running Times

The tests were done on an Acer TravelMate 5530, with the following specifica-
tions:

e Processor: AMD Athlon(tm) X2 Dual-Core QL-64 2.10GHz
e Ram: 4,00GB (3,50 usable)

e Operating System: Windows 7 Professional (64-bit)

Time was measured manually by using a stopwatch.

C.1 Verifier

In order to test the running times of the model-checker of UPPAAL, using the
model created in chapter 4, 12 timetables have been taken from the real working
timetables of Lokalbane[l.0k]!, and put into the UPPAAL model.

IThe timetables 630-1, 640-1, 647-2, 650-1, 657-2, 700-1, 707-2, 710-1, 717-2 720-1, 727-2
and 737-2

176 Running Times

The model-checker was then used to verify all of the required properties of the
model, by adding one timetable at a time, measuring how long it took to verify,
and how many states were searched during the verification.

Figure C.1 shows the running times of the UPPAAL model-checker when veri-
fying between four and twelve timetables.

Figure C.2 shows the amount of states when verifying between one and twelve
timetables.

Figure C.3 shows the amount of states searched per second (on average), when
verifying between four and twelve timetables.

Figures C.4 and C.5 has added a polynomial tendency curve to the running time
graph of figure C.1. Figure C.4 shows how well it it fits at the measured values,
and figure C.5 continues the tendency curve.

Running Time

20

15

10

Seconds

1 2 3 4 5 86 7 8 9 1011 12

Number Timetahles

Figure C.1: The running times of the verifier, based on the amount of timeta-
bles. The running times under one second are ommitted due to
uncertainties.

C.1 Verifier 177

States Searched

14000
12000
10000 //_

2000
o -

States Searched

1 23 4 5 6 7 8 9101112
Mumber Timetahles

Figure C.2: The amount of states searched, based on the amount of timetables
to verify.

States Searched per
Second

1000

800 ‘,-=—-"=-T

States per Second

o —/r—1T—7—7"—7T"—"T"—"T—T"—"T—"T—"T"

1 2 3 4 5 6 7 8 9 101112
Number of Timetables

Figure C.3: The amount of states search per second, based on the amount of
timetables to verify

178 Running Times

Running Time

20

15

10

Seconds

1 2 3 4 5 6 7 8 9 1011 12
Number Timetahles

Figure C.4: A polynomial tendency curve of the running time graph (figure
C.1), added to illustrate how well it fits the pattern.

Running Time
800
700 4
500 /
= 500 /
2 yd
g 400 /
@ 300
200 -
.F/
100
o ._—-'“"/’
1 7 1319 2531 37 43 49 55 61 67
Number Timetables

Figure C.5: The polynomial tendency curve of figure C.4 continued.

C.2 Generator 179

C.2 Generator

In order to test the running times of the tool, Lokalbanen is used as railway
network, and the following different scenarios are measured:

1. Timetable requests with start intervals completely displacing them from
each other.

2. Timetable requests running in the opposite direction, not displaced from
each other.

3. Timetable requests running in opposite both directions, slightly displaced
from each other.

(1) When the timetable requests run completely displayed of each other, the tool
is able to create timetables for a large amount of trains in Lokalbanen. Figure
C.6 shows the generated graph for 12 timetables, running in both directions.
The tool created this plan instantly.

(2) When the timetable requests run opposite each other, and with start inter-
vals, forcing them to interleave - the running time increases drastically. Figures
C.7, C.8 and C.9, show the graphs of the generated timetables for two timetable
requests going in opposite direction in the railway network.

e In figure C.7, the timetable requests were created with a fixed starting
interval, seperating the requests by 4 time units. This was created almost
instantly.

e In figure C.8, the timetable requests were created with a fixed starting
interval, seperating the requests by 3 time units. This took approximately
4 seconds.

e In figure C.9, the timetable requests were created with a fixed starting
interval, seperating the requests by 2 time units. This took approximately
150 seconds.

The running time is increased drastically for each time unit the requests close
in on each other. A test was also performed when they both had the same fixed
start interval - this was cancelled after 10 minutes.

(3) When the timetable requests are just slightly displaced from each other, the
tool is able to create a few more timetables than in the situation of (2). Figures

Running Times

180

|2 Timetables Tool R

narum

Timetables graph

225

200 D

176

150 — -
g 128
=

100

75 - L

50

25 = ——

0 I
remisen jagershorg norgaardsvej Iynghbylokal fuglevad brede orhalm ravnhalm
Station

— Train1 — Train2 Train3 Traind — Trains Traing Train? — Train8 — Train® — Train10 — Train11

Train12 |

The timetables for 12 trains, with start intervals completely dis-

placing them of each other. The tool created this instantly.

Figure C.6

C.2 Generator 181

m@ﬂ

| £| Timetables Tool

Timetables graph
14 -
T
—
13 —
—
—
12 —
11
10
a
o B
£
= 7
8
5
4 -
a .
2
1
o
remisen jagersborg norgaardsvej lyngbylokal fuglevad brede arholm ravnhalm narum
Station
— Train1 — Train3

Figure C.7: Generated timetables for two trains running opposite each other.
Train1 has a start interval of 0-0, and Trainl has a start interval
of 4-4. This was generated instantly.

182 Running Times

_
o] Timetables Tool i S— O oo O

Timetables graph
14 —
T—

- \

12

11

10 -

~
P

] -
o B -
E
=

o I

5 e

4 -

~
-

3 -

2 -

o

remisen jagerssborg norgaardsvej lyngbylokal fuglevad brede arhalm ravnhaolm narum
Station
— Train1 —Train3

Figure C.8: Generated timetables for two trains running opposite each other.
Trainl has a start interval of 0-0, and Trainl has a start interval
of 3-3. This took approximately 4 seconds.

C.2 Generator 183

-— (= O |
| £| Timetables Tool —
Timetables graph
14 —
13 T
-\-H'".

12 T

11 -

10

a
o B
£
= 7

—
: 1
5
..
.

4 .

3 \

2

1

o

remisen jagersborg norgaardsvej lyngbylokal fuglevad brede arholm ravnhalm narum
Station
— Train1 — Train3

Figure C.9: Generated timetables for two trains running opposite each other.
Train1 has a start interval of 0-0, and Trainl has a start interval
of 2-2. This took approximately 150 seconds.

184 Running Times

C.10, C.11 and C.12 show the graphs of the generated timetables for two, three
and four timetables timetable requests interleaving in opposite directions, with a
slight displacement - causing only two trains to be active in the railway network
simultaniously. The start intervals of the timetable requests of figures C.10,
C.11 and C.12 are fixed and displaced by 8 time units. The following list shows
the time it took to generate these:

e In figure C.10 was generated almost instantly.
e In figure C.11 took approximately 80 seconds to generate.

e In figure C.12 took approximately 100 seconds to generate.

A test with five timetable requests was also done with this pattern - this was
cancelled after 10 minutes. This also shows a sudden drastic increase in running
time.

r@ Timetables Tool . Elﬂlﬂ—hJ
Timetables graph

20,0
175 “““-““-““
: """"-\-\..

125 s

10,0 : _j

Time
!
/

7.5

50

25

oo -
remisen jagersborg norgaardsvej lyngbylokal fuglevad brede wrhalm ravnhalm narum

Station

| — Train1 — Train3

Figure C.10: Two trains interleaving, the start intervals are fixed and they are
displaced by 8 time units. This was generated almost instantly.

C.2 Generator

185

| £| Timetables Tool

e e Y

300

275

250

225

200

175 [

15.0

Time

125

100

75

50

EE

0.0

Timetables graph

remisen

jagershaorg

norgaardsvej lynghbylokal fuglevad

Station

brede orholm ravnholm narum

|— Train1 — Train2 Train3|

Figure C.11: Three trains interleaving, the start intervals are fixed and they

are displaced by 8 time units. This took approximately 80 sec-
onds to generate.

186 Running Times

| %) Timetables Tool T (o[B e
Timetables graph

350
325
30,0 -
275 e

250 e
225 _—
20,0 =

17.5

Time
A\

15,0
12,5
10.0
7.5 -__"-_--"“--
5.0 |

25 S

0.0 —
remisen jagersborg norgaardswej lyngbylokal fuglevad brede orholm ravnhaolm narum

Station

|—Train1 — Train2 Train3 Train4|

Figure C.12: Four trains interleaving, the start intervals are fixed and they are
displaced by 8 time units. This took approximately 100 seconds
to generate.

APPENDIX D

Tool User Guide

This chapter will provide screenshots, present the functionality of the tool and
act as a guide showing how to use the tool. A file called ’'Lokalbanen.ttt’ is
available on the CD, and can be loaded into the model, and act as an example.
Figure D.1 shows the tool immediately after it has been started.

Section D.1 will explain how to create a railway network in the tool.

Section D.2 will explain how to create timetable requests in the tool.

Section D.3 will end the chapter, by explaining how to generate timetables in
the tool.

D.1 The Railway Network

The first thing to do when starting the tool, is to create a railway network. This
is done by choosing the 'Railway Network’ tab.

Here it is possible to add stations and open lines, by pressing one of the *Add’
buttons, once they are pressed, a dialog appears, prompting the user to input

188 Tool User Guide

(L Treies o ST =S|

File

{ Generate Timetables | Railway Networkl Settings|

Timetable Requests
Add
[e | |
Mame: |
Startinterval:

Stop Requests

[Add] [Move Up]

[Remove][Move Down]

L

Running Time Supplement (haver here for info)

N
W

Figure D.1: The tool as it looks when it has just been started.

D.2 Creating the Timetable Requests 189

the required information. The dialogs can be seen in figures D.2 and D.3, and
figure D.4 shows the tool after the railway network of Lokalbanen has been
created.

It should be noted that it is possible to sort the list of stations, by moving them

up or down, using the "Move Up’ and 'Move Down’ buttons. The motivation
for this sorting is presented in section D.3.

Add a station ﬁ

Marme:

Capacity:

0

Headway Time:
0

Create | ’ Cancel]

L

Figure D.2: When pressing the ’Add’ button at the stations, this dialog ap-
pears.

Both the open lines and the stations can be edited and deleted by selecting
either a station or an open, and then press either the corresponding "Edit’ or
corresponding "Delete’ button.

D.2 Creating the Timetable Requests

When wanting to create the timetable requests in the tool, the ’Generate Timeta-
bles’ tab should be chosen.

Here a list of timetable requests and a list of stop requests are shown. The list of
stop requests reflects the stops of the selected timetable request, if no timetable
request is selected, this list will be empty.

In order to add a timetable request, the ’Add’ button next to the timetable
requests list should be pushed, which will bring up a dialog. When wanting to
add a stop the a timetable request, a timetable request needs to be selected, and

190 Tool User Guide

s ™
Add an open line ﬁ

Station1:

:jagersburg -
Station2:

[norgaa.rdsuej - J
Capacity:

N |0

Minirmum Running Time:

1]

Headway Time:

1]

Double Track:

true -

r | Create | | Cancel |

Figure D.3: When pressing the ’Add’ button at the open lines, this dialog
appears. The available stations in the station dropdown menus,
are the stations created in the railway network

D.2 Creating the Timetable Requests

191

.
| £| Timetables Tool RS

File

Stations

Generate Timetables | Railway Network | settings

Add H Move Up]

Capacity: 2
Headway Time; 0

Open lines

norgaardsvejdyngbylokal
ravnholm-narum
jagersborg-remisen
fuglevad-brede

Capacity:

Headway Time:
Minimum Running Time:
Double Track:

L =

Figure D.4: The railway network of Lokalbane has been created.

false

192 Tool User Guide

then the ’Add’ button next to the stop requests list should be pushed, which
will also bring up a dialog (if a timetable request was selected). The dialogs
can be seen in figures D.5 and D.6. and figure D.7 shows the tool after four
timetable requests has been added, with the railway network of Lokalbanen.

It should be noted that the list of stop requests of the timetable requests is
sorted, meaning that the displayed order, is the actual order in which the timeta-
bles requests should schedule a journy. This order can be rearranged by using
the 'Move Up’ and 'Move Down’ buttons. The number next to the station name
in the stop requests, is the desired dwell time.

Add a timetable request @

Mame:

Start Interval - Start:
0

Start Interval - End:
0

Create | [Cancel]

A

Figure D.5: When pressing the ’Add’ button at the timetable requests, this
dialog appears.

[Add a stop @

Station:

:?jagersburg e

Dweell time:
0

| Create | | Cancel |

L

Figure D.6: When pressing the ’Add’ button at the stop requests, and a
timetable request is selected, this dialog appears. The available
stations in the dropdown menu, are the stations created in the
railway network.

D.2 Creating the Timetable Requests 193

| & Timetables Tool [E=NEE >

File

Generate Timetables | Raiway Networkl Settings

Timetable Requests

Mame: Trainl
Startinterval: 0-0

Stop Requests
[A |[Moveup | I
[Remove |[MoveDown | |
Edit

Running Time Supplement (hover here for info)

D L

L= ——

Figure D.7: Four timetables requests have been created, with the railway net-
work of Lokalbanen.

194 Tool User Guide

Both the timetables requests and the stop requests can be edited or deleted, by
selecting either a timetable request or a stop request, and then pressing either
the corresponding "Edit’ or the corresponding ’'Delete’ button.

D.3 Generating Timetables

When wanting to generate timetables, the ’Settings’ tab should be consulted
first. Here it is necessary to specify the installation directory of UPPAAL
CORA. Figure D.8 shows the settings, where the UPPAAL CORA directory
has been chosen, and no properties have been excluded in the model.

-

r
| &/ Timetables Taol = | B S

File

| Generate Timetables | Railway Network| Settings |

Exdude features to decrease running time
(@ Excude Mothing
() Exdude Station Headway Times
() Excude Open Line Heady Times

() Exclude All Headway Times

The chosen directory of UPPAAL:
C:\Kristian \Programmer \UPFAAL Yuppaal-cora-060910

L

Figure D.8: The settings tab of the tool. The path of UPPAAL CORA has
been chosen, and the full model is used.

Once this has been taken care of, the ’Generate Timetables’ tab should be chosen
again. If both a railway network and at least one timetable request (with at least
one stop request) exists, a running time supplement should be chosen. The slider
representing the running time supplement, reflects a percentage between 0 and
20, where 7% is the default value'. If a graph should be displayed, the checkbox
next to the ’Generate’ button should be checked. Finally the ’Generate’ button
should be pushed in order to generate the timetables.

Figure D.9 shows what happens when the 'Generate’ button is pushed. A ’Can-
cel” dialog appears, allowing the user to cancel the request, and the textbox in

IThis value is stated to be the optimal running time supplement in [|

D.3 Generating Timetables 195

the ’Generate Timetables’ tab is showing the intermediate output of the model-
checker of UPPAAL CORA while it is working.

|| Timetables Tool e RN

File

Generate Timetables | Railway Networkl Settings|
Timetable Requests

»

Options for the werification:
Generating shortest trace

il

Remaove Search order is random optimal depth fi
Using no space cptimisation
Edit Seed iz 1342210443

State space representation uses differe
Mame: Trainl

”
Startinterval: 0-0 Cancel Dialog [

perty 1 at line 14
: 137 states/sec Load: 15 3=

1 2123 =states/sec Load: 103
: 1684 states/sec Load: 213
: 1577 states/sec Load: 367
: 1243 states/sec Load: 490
= : 1090 =tates/sec Load: 587

— Throughput: 1163 states/sec Load: &71
—— Throughput: 1114 states/sec Load: 769 —

Working on the request...
Stop Reguests

t
t
t
t
t
t

Edit

L]

1| 1 | [

Running Time Supplement (hover here for info)

L

Figure D.9: The ’Generate’ button was pressed, with four timetable requests
in the railway network of Lokalbanen.

Once it is finished a 'Finished!” dialog will appear, and the created timetables
will be shown in a graph (if the checkbox was checked). Figure D.10 shows the
generated graph of the example, where one can see that Train3 has to wait for
Trainl and Train2 to leave Orholm station, before Train3 can continue on to
Brede station®. Furthermore it should be noted that these timetables are also
printed in the textbox in tool, as shown in figure D.11.

If the timetable requests do not represent possible journeys of the railway net-
work (for example if two consecutive are not connected), or some other pecu-

liarity is introduced by the user, the tool will not be able to generate timetables.

The following items should be noted about the generated graph:

2These timetable were created by leaving the tool working overnight, more on the running
times of the tool in appendix C.

196

Tool User Guide

| £/ Timetables Tool

T —

Timetables graph

225

200

7.5

15,0
@ 125 H
= T

10,0 -

—T ___ 4

75 -]

50 o

25 —

0o —

remisen jagersborg norgaardswej lyngbylokal fuglevad brede arhalm ravnholm narum
Station
|—Train1 — Train2 — Train3 Train4|

Figure D.10: Four timetables created and displayed in a graph.

e The names of the stations and trains in the generated graph, are taken
from the railway network and the timetable requests, potentially allowing
the user to make a graph with any amount of stations and stations names,
and any amount of trains and train names.

e The order in which the stations appear in the bottom axis, is dependent
on the order of the stations in the station list of the railway network in the
tool (The top station of the list, will be furthest to the left of the bottom
axis). This is the cause for the ability to rearrange the stations in the
station list.

e The time increases moving up the vertical time axis, as opposed to the
graph of figure 2.2, where the time is increasing going down the vertical
time axis. Technical issues resulted in the inverse time axis.

D.3 Generating Timetables 197

|%) Timetables Tool *“—QIQM“

File

Generate Timetables | Raiway Network | Settings

Timetable Requests

Trainl {Staticn, Arrival time, Departure t *
jagerskorg, 0, 0
ove norgaardsvej, 1, 1
lyngbylokal, 2, 2
fuglevad, 3, 3
brede, 5, 5
arhalm, 7, 7
ravnholm, &, &
narum, 10, 0

m

il

MName: Trainl

Startinterval: 0-0

Stop Reguests Train? (Station, Arrival time, Departure t
remisen, 0, 0

Add H Move Up] jagersborg, 2, 2

norgaardsvej, 3, 3

norgaardsvej, 0 E|

Ilyngbylokal, 0 [Remove] [Move Down] lvngbylokal, 4, 4
fuglevad, 0 fuglevad, 5. 5
- Edit gLevad, 2,
brede, 0 brede, 7, 7 =
< | 1] r
B
Running Time Supplement (hover here for info)
I
W
[¥] Show graph
i
e e — -

Figure D.11: The finished timetables presented as text.

198 Tool User Guide

Bibliography

[Bi2]

[BDL]

[Gro92]
[HPOS]
[HR99|
[KP8S]
[Lan10]

[Lan11]
[Lok]

[Thol2]

Heiko Bock. The Definitive Guide to NetBeans Platform 7. Apress,
2012.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
UPPAAL /.0. Department of Computer Science, Aalborg University,
Denmark.

The RAISE Language Group. The RAISE SPECIFICATION LAN-
GUAGE. Prentice Hall International (UK) Ltd., 1992.

Ingo Arne Hansen and Jorn Pachl. Railway Timetable & Traffic. Eu-
railpress, 2008.

M. R. Hansen and H. Rischel. Introduction to programming using
SML. Addison-Wesley, 1999.

Glenn E. Krasner and Stephen T. Pope. A description of the model-
view-controller user interface paradigm in the smalltak-80 system.
1988.

Alex Landex. RailSys Tutorial, 2010.
Alex Landex. Rail traffic engineering. 2011.

Tjenestekeereplanens Indledende Bemerkninger (TIB-LJN). Lokalba-
nen A/S.

Mikkel Thorhauge. The usability of passenger delay models in socio-
economic analysis. page 10, 2012.

200 BIBLIOGRAPHY

[TKO11] Tjenestekoreplan Ost (TK(?2012). Bane Danmark, 2011.
[TKS11] Tjenestekoreplan S-tog (TKS2012). Bane Danmark, 2011.
[TPS11] Tutorial for TPS (Train Planning System), 2011.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Goals
	1.2 Thesis Overview

	2 Domain Description
	2.1 Basic Terms
	2.1.1 Station
	2.1.2 Open Line
	2.1.3 Train
	2.1.4 Route

	2.2 Railway Network
	2.2.1 Headway Time
	2.2.2 The Open Lines
	2.2.3 The Stations

	2.3 Timetable
	2.3.1 Passenger Timetable
	2.3.2 Working Timetable

	2.4 Trains Running According to a Timetable
	2.4.1 Delay
	2.4.2 Handling Delay

	3 Formal Model in RSL
	3.1 Utilities of RSL
	3.1.1 Types
	3.1.2 Functions - Predicates and Auxilliary Functions
	3.1.3 Test Cases

	3.2 Model Overview
	3.3 Model of Railway Network
	3.3.1 Railway Network Types
	3.3.2 Sample Railway Network
	3.3.3 Considering a Railway Network Valid
	3.3.4 Railway Network Auxilliary Functions
	3.3.5 Railway Network Predicates

	3.4 Model of Timetable
	3.4.1 Timetable Types
	3.4.2 Sample Timetables
	3.4.3 Considering Timetables Valid
	3.4.4 Timetable Auxilliary Functions
	3.4.5 Timetable Predicates

	3.5 Using Test Cases to Validate

	4 Using UPPAAL To Verify Timetables
	4.1 Utilities of UPPAAL
	4.1.1 Clocks/Time in UPPAAL
	4.1.2 UPPAAL Description Language
	4.1.3 UPPAAL Model-checker

	4.2 UPPAAL Model
	4.2.1 Validating Timetables - The Input
	4.2.2 Global Declarations
	4.2.3 The Hurry Template
	4.2.4 The Train Template
	4.2.5 System Declarations
	4.2.6 Optimizations

	4.3 Getting Results Using The Model-checker

	5 Using UPPAAL CORA To Generate Timetables
	5.1 Cost and Remaining of UPPAAL CORA
	5.2 Optimality in Timetables
	5.3 UPPAAL CORA Model
	5.3.1 Timetable Request - The Input
	5.3.2 Global Declarations
	5.3.3 Train Template
	5.3.4 Optimizations

	5.4 Getting Results Using The Model-checker - The Output

	6 The Tool
	6.1 Analysis
	6.1.1 The Scope of the Tool
	6.1.2 Create a Railway Network
	6.1.3 Create Timetables Requests
	6.1.4 Visualizing Output
	6.1.5 Using the model-checker of UPPAAL CORA
	6.1.6 Limiting the UPPAAL CORA Model
	6.1.7 Regular Features
	6.1.8 Limiting the Complexity of the Tool

	6.2 Design
	6.2.1 Design Pattern
	6.2.2 Generating Timetables

	6.3 Implementation
	6.3.1 Technology
	6.3.2 The Structure of the Tool
	6.3.3 The Final Look of the Tool

	7 Evaluation
	7.1 Running Time
	7.1.1 Running Time When Verifying Timetables
	7.1.2 Running Time When Generating Timetables

	7.2 The Verifications and the Generated Timetables
	7.2.1 The Resulting Verifications
	7.2.2 The Resulting Generated Timetables

	7.3 Creating a Tool Which Utilizes Formal Methods

	8 Conclusion
	8.1 Further Work

	A RSL files
	A.1 RailwayNetwork.rsl
	A.2 Timetable.rsl
	A.3 TestCases.rsl

	B The UPPAAL CORA models used by the final tool
	B.1 The full UPPAAL CORA model, used by the tool
	B.2 The UPPAAL CORA model, used by the tool, excluding station headway times
	B.3 The UPPAAL CORA model, used by the tool, excluding open line headway times
	B.4 The UPPAAL CORA model, used by the tool, excluding both headway times

	C Running Times
	C.1 Verifier
	C.2 Generator

	D Tool User Guide
	D.1 The Railway Network
	D.2 Creating the Timetable Requests
	D.3 Generating Timetables

	Bibliography

