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Most neural systems are adapted by optimization of a performance index, typically the

minimization of a \cost function", based on a �nite database (a training set) of N noisy

examples derived from the target system. However, there is always the hidden agenda

that the model should perform well, not only on the training set, but on the much larger

set of future inputs to the system.

Reading for your �nals you solve previous years tests, but you know very well that if

you then test yourself on last years test the result will be biased { too optimistic! Only a

test on a fresh data set, a test that was put aside before you started reading, will give the

you a reliable prediction of the �nal performance.

Doing well on unseen data may at �rst seem unattainable, but the ability to generalize

in very complex environments is nevertheless one of the most striking properties of neural

systems, and indeed one of the reasons that neural networks have shown useful in practical

applications.

As an example: in [10] a neural network system for inspection of handwritten digits

was able to classify 99.98% correct after training on a data base of 7291 digits, and classify

95% correct on an additional test set of 2007 digits.

When using a super-
exible model family, like neural networks, which in principle can

model arbitrarily complex systems, over�t is a major concern, which �nds expression in

the ubiquitous bias-variance dilemma [4]. The generalization ability of an adaptive sys-

tem is the quantitative measure of performance on a hypothetical in�nite test set. While

this quantity cannot be accessed directly, algebraic asymptotic estimates of generaliza-

tion, valid for large training sets (N ! 1), can be derived [1], [2], [9], [12], [13], [14].

Such asymptotic results were earlier derived for supervised learning; however, it was re-

cently shown that generalization ability for unsupervised learning machines (e.g., principal

component analysis and clustering schemes) can be analyzed in a similar framework [7].

If su�cient computational capacity is available, empirical resampling schemes can be

invoked. The two basic resampling strategies are cross-validation and bootstrap. Cross-

validation [3], [15] is based on a random division of the database into disjunct training

and validation sets. The procedure can be repeated, leading to more accurate results at

the price of increased computation. The so-called leave-one-out cross-validation is based

on using only a single example in the test set, and typically resampling N times. Approx-

imative techniques, by which the computational overhead in leave-one-out is signi�cantly

reduced, has been reported [8], [13].

Bootstrap, invented by Efron [6], is based on resampling with replacement. Bootstrap

produces pseudo training sets of size N , hence, simulates training set 
uctuations at the

full sample size, and was applied to control of over�t in a number of investigations [5],

[17], [18].

Optimization of the neural network architecture may lead to better generalization

ability and preferably lower computational burden. optimizing the network architecture is
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to optimally trade o� bias and variance [4], hence, maximizing generalization ability. This

can be done directly by optimizing the structure of the network by pruning or growing

techniques or indirectly by using regularization. Regularization { which goes back to

Hadamard { consist in adding a penalty term to the cost function. As an example consider

predicting the sunspot time series shown in the upper panel of Figure 1. The lower panel

[16] shows that generalization error (test error) is reduced by pruning the network.
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Figure 1: Upper panel: prediction the sunspot time series using an optimally pruned

feed-forward neural network. Lower panel: evolution of training and test error during a

pruning session using Optimal Brain Damage [11]. FPE is a modi�ed version of the Final

Prediction Error estimate [1]. The vertical line indicate the optimal network for which the

FPE estimate is minimal.
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