
Checking consistency between
interaction diagrams and state

machines in UML models

Piotr Jacek Puczynski

Kongens Lyngby 2012

IMM-M.Sc.-2012-44

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2012-44

Abstract

The Uni�ed Modeling Language (UML) is the de-facto standard for the object-
oriented modeling of (software) systems. It describes a system by modeling
di�erent views on the system, e.g. using class and component diagrams to
provide a view on the static structure of the system and, e.g., state machines
and sequence diagrams to provide a view on the dynamic behavior of the system.

The di�erent views of the system should be consistent, that is, for example, that
the class names and methods named in interaction diagrams should correspond
to class names and methods used in class diagrams. This can be easily checked
syntactically and ensured by the modeler if he uses a modeling tool like Top-
cased, that allows him to work with a common instance of the meta model for all
diagrams. This, e.g., allows using the same class object in a class diagram and
in an interaction diagram. However, other connections between the di�erent
types of diagrams are not as easily ensured. For example, that an interaction
diagram showing the realization of a use case scenario is consistent with the
behavior described by, e.g., object life cycle state machines and protocol state
machines.

To goal of the thesis is to take the methodology used in the system integration
course to describe a system, and to develop a tool that ensures the consistency
of the UML model. In the course system integration, a system is described
by components which have ports. Ports have required and provided interfaces
and protocol state machines describing the possible communication through
the ports. Components are implemented by one or several classes which have
object state machines to describe their behaviors. Finally, the model of a system
contains use cases and use case scenarios as interaction diagrams that describe
the interaction between the user and the system.

The task of the thesis is to develop a tool that takes a UML model and performs
the following checks:

ii

� Checks that the components are implemented by the classes

� Creates interaction diagrams by extending the interaction diagrams of the
use cases to show how the system realizes the use case scenarios given the
behavior described by the object state machines

� Alternatively, the user provides the interaction diagrams himself and the
tool checks that the interactions are compatible with the classes and their
object life cycle state machines

� Checks that the created/provided interaction diagram contains admissible
interactions according to the protocol state machines of the ports

The tool should provide sensible hints to help the user to �x the model of the
system if problems in the validation occur.

The tool should be implemented preferably as an Eclipse plug-in using EMF to
represent the UML model.

Preface

This thesis was prepared at the Software Engineering Section, DTU Informatics,
Technical University of Denmark, in partial ful�llment of the requirements for
acquiring the Master of Science degree in Computer Science and Engineering.
The work on the thesis was carried out in the period from 6th December 2011
to 28th May 2012, having a workload of 30 ECTS credits.

Lyngby, 28-May-2012

Piotr Jacek Puczynski

iv

Acknowledgements

I would like to kindly thank my supervisor Hubert Baumeister for all his support
and the patience during the project preparation and execution. His insight into
the topic and the personal involvement were the key factors that shaped the
project.

I would also like to thank other professors from DTU Informatik for the im-
portant discussions about the modeling and the project itself, especially Ekkart
Kindler.

Thanks to Kent Inge Simonsen from Bergen University College for important
observations about the examples used in this thesis.

Thanks to Aliki Ott from Universität Bremen for providing the important ref-
erences for the project and the consultation.

I wish to thank OCL Eclipse project lead Edward Willink for answering all of
my many questions about the advanced OCL evaluator usage. I admit, I partly
repaid his help by �nding few important bugs in the OCL evaluator.

I wish to also thank the Topcased developers for giving me the important hints
during the project, especially Volker Stolz but also Li Dan and Tristan Faure.

Special thanks to Per Friis for providing the computer hardware that speeded
up the development of the project.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1
1.2 Structure of the thesis . 8
1.3 Related work . 8

2 Selected elements of the Uni�ed Modeling Language 15

2.1 UML as modeling language . 15
2.2 Semantics Variation Points . 17
2.3 Classes and instances . 17
2.4 Components . 19
2.5 State machines . 20
2.6 Interactions . 24

3 Inconsistencies 27

3.1 Sequence diagrams and structural properties of model 27
3.2 State machine diagrams and structural properties of model . . . 32
3.3 Other structural inconsistencies 33
3.4 Behavioral state machines and structural properties of model . . 34
3.5 Sequence diagrams and behavioral state machines 36
3.6 Conformance to contract speci�ed by interfaces 40
3.7 Related to components . 44

4 Case study: Toll System 47

4.1 Introduction to the toll system 47
4.2 Check-in with toll tag . 49
4.3 Check-out with toll tag . 49
4.4 Models of the toll system . 50

viii CONTENTS

5 Concepts and approach 51

5.1 Consistency checking by scenario simulation 51
5.2 Consistency checking algorithm 53
5.3 Direct UML representation . 54
5.4 Scenarios . 55
5.5 Realizations of scenarios . 56
5.6 Extensions of scenarios to realizations of the scenarios 59
5.7 Execution of behavioral state machines 66
5.8 The Simple Action Language . 83
5.9 Veri�cation of protocol state machines 93

6 Tool 107

6.1 General information . 107
6.2 Functionalities . 109
6.3 Design . 116
6.4 Implementation notes . 120
6.5 Testing . 121

7 Conclusions and Future Work 123

7.1 Conclusions . 123
7.2 Future work . 125
7.3 Evaluation . 125

A Toll System without components 127

B Toll System with components 135

C Scenarios and realizations of scenarios in Toll System 141

Bibliography 147

Nomenclature

BES Behavior execution speci�cation

BSM Behavioral state machine

EMF Eclipse Modeling Framework

MOS Message occurrence speci�cation

OCL Object Constraint Language

OMG Object Management Group

PSM Protocol state machine

SAL Simple Action Language

UML Uni�ed Modeling Language

x CONTENTS

Chapter 1

Introduction

In this chapter, we will see a motivation for �nding inconsistencies in UML
models and we will discover the project's objectives. We will also get an overview
on the structure of the thesis and the related work section.

1.1 Motivation

Modeling plays a central role in the activities that lead up to a deployment of
good software. We build the models in order to better understand and commu-
nicate the structure and behavior of our software systems.

The Uni�ed Modeling Language (UML) is currently the standard way of model-
ing object-oriented systems. Di�erent UML diagram types allow di�erent views
on the system: structural (static) and behavioral (dynamic) [Hol04]. Each view
can consist of many diagrams of di�erent types. The di�erent diagrams should
be consistent with each other since they all represent the same underlying model
(see �g. 1.1). Changes in one of the diagrams ultimately a�ect the underlying
model and it may cause (sometimes unexpected) consequences for the other di-
agrams. Diagrams should, in principle, give a clear view on how the model is
structured and how it behaves. Having the di�erent views on the model simpli-
�es the design of the complex systems, but unfortunately, it also makes it easier
to introduce inconsistencies [Egy00]. Any inconsistencies can result in serious
problems, including the situation where the model may not be able to ful�ll the
intended functionality.

2 Introduction

Figure 1.1: The UML model represented as a sphere with di�erent views on
it represented as di�erent UML diagrams.

A modeler (a person that models) can easily check some consistency rules using
modeling software that allows the modeler to work on instance of the UML meta-
model. This approach gives the possibility to use classes from the structure of
the model in the elements describing behavior, i.e. to refer from the behavioral
diagrams to the structural diagrams. Using modeling software also makes it
easier to avoid syntactic consistency problems and guarantees that the model
conforms to its meta-model.

A problem arises when we wish to check for consistency between di�erent UML
diagrams de�ning behavior. For instance, a state machine diagram describing
the behavior of a class has a relationship to a sequence diagram representing
the interaction in a system. The relationship is e.g. the order in which the
messages are received and sent on a lifeline (representing an object of the class)
in a sequence diagram. This order must correspond to an order of triggers and
e�ects that are placed on transitions that are possible to �re in a state machine
diagram during the system execution. The state machine diagram, in this case,
de�nes the behavior of the object represented by the lifeline. The described
problem is recognized as the semantic consistency problem and is not trivial to
detect (in more complex systems).

Our motivating example will be a naive automated teller machine (ATM) with
a single use-case; a client withdraws the money from the ATM (see �g. 1.3).
Our ATM system contains a hidden design defect. The ATM system model and
its instance (object diagram) are presented in �g. 1.2.

1.1 Motivation 3

Figure 1.2: The ATM model in UML containing a hidden defect. Marker no.
1: the class diagram. Marker no. 2: the object diagram showing
the instance of the system. Marker no. 3: the behavior of the
class ATM (used by instance atm20). Marker no. 4: the behavior
of the class Bank (used by instance bank). The naive behavior of
the Bank class will always validate every credit-card and deduct
the money without validating that the client has the amount on
the account.

4 Introduction

Figure 1.3: The ATM system use-case diagram with one use-case that allows
a client to withdraw the money.

Piotr is one of the clients of the ATM system. He doesn't know about the defect
and he will try to withdraw 100 DKK from the system (see �g. 1.4).

During the consistency checking between the sequence diagram representing the
scenario (in �g. 1.4) and the behavioral state machines (in �g. 1.2) we will create
a new sequence diagram of the scenario realization and we will be able to detect
the defect (an inconsistency) in the ATM system. The scenario realization is
presented in �g. 1.5.

The scenario was simulated by �rst calling insertCard in the atm20 instance
(see �g. 1.3) that was in "idle" state, which resulted in another call to bank
instance: isCardValid that returned true. Piotr then tried to call the verifyPIN
operation in the atm20 instance. The instance couldn't handle the call at that
time because when Piotr tries to call verifyPIN, the behavioral state machine for
the instance atm20 is in "veri�ed" state and there is no trigger on any outgoing
transition for the operation verifyPIN

The defect in the ATM system is the wrong behavioral state machine (BSM) for
the ATM class that does not accept the verifyPIN operation. The client could
withdraw the money without providing a PIN number (not a good behavior).
This is an inconsistency because the trace of the successful scenario from �g.
1.4 cannot be realized by execution of the behavioral state machines. This
inconsistency is detected by looking on both the sequence and the state machines
diagrams and generating the realization of the scenario. The conclusion is that
the given scenario could not be realized in the given model of the ATM system.

1.1 Motivation 5

Figure 1.4: The successful scenario of withdraw money from ATM use-case.
Piotr is one of the clients of the ATM system and the credit-card
(with no. 555) holder and he wishes to withdraw 100 DKK.

1.1.1 Aim of the thesis

The aim of this thesis is to describe the approach to the automatic consistency
checking between the UML (version 2.2) interactions (understood here as the
sequence diagrams) and the state machines diagrams. The presented consis-
tency checking technique includes check of behavioral parts of the model and
also structural parts. We aim mostly for detecting semantic inconsistencies. We
check model-independent properties (that are de�ned regardless to a particular
model instance) as well as model-dependent properties. The described consis-
tency checking technique can be applied to models of the software systems that
are based on the use-cases [Jac92].

6 Introduction

Figure 1.5: The realization of the scenario from �g. 1.4. Piotr is not able
to send verifyPIN message. The elements added during the re-
alization (the actual behavior that was executed internally in the
system) have distinct colors.

We divide the interactions into two classes:

1. The sequence diagrams de�ning the scenarios of use cases (see �g. 1.4).

2. The sequence diagrams de�ning the realizations of the scenarios within a
system (see �g. 1.5).

We propose a consistency checking approach that simulates the use-case scenar-
ios in the UML models and extend them into realizations of the scenarios by
adding missing fragments of the sequence diagram that show the actual internal
execution of the system1. During the simulation, consistency of the models is
checked by examining that a sequence diagram can be correctly extended with
respect to an actual state machines execution and the simulated scenario can
be correctly realized in a system.

The UML models that we use in this approach must be speci�c enough for

1Please, compare it with the elements that have distinct colors and were added during the
realization in �g. 1.5

1.1 Motivation 7

the purposes of model execution. No implementation of a designed system is
needed.

In order to get better idea of what the extension means, another example of it
is presented in �g. 1.6. This time the scenario is consistent the execution of
state machines. In the example, the left sequence diagram is the scenario that
was extended by the behavioral state machines execution to the right sequence
diagram of the realization of the scenario.

Figure 1.6: The example of the extension of the scenario to realization of this
scenario. Marker no. 1: scenario. Marker no. 2: realization of the
scenario. The elements added during simulation in the realization
have distinct colors.

Our approach addresses the most common inconsistencies that can be found
in the model when using the design approaches: Model Driven Architecture
(MDA) and Domain-Driven Design [Eva03]. We use methodology used in Sys-
tem Integration course at DTU in order to create a tool for consistency checking
that facilitates the design of models in graphical framework that helps to �nd
design problems in models.

The target groups that will bene�t from our tool are students and teachers of
System Integration course at DTU. The tool can be also used by other groups
of people willing to ensure consistency of their UML models.

8 Introduction

1.2 Structure of the thesis

The positioning of this work together with the related work is described in
section 1.3. Chapter 2 describes selected elements of UML that are used later
in the thesis. Chapter 3 contains the inconsistencies in the UML models that
we will address in the presented approach.

A case-study of the toll system is used for the presentation of the approach.
The case-study is presented in chapter 4 while the approach itself is described
in chapter 5. The presented consistency checking algorithm is divided to three
sub-algorithms: the sequence diagrams extension algorithm described in section
5.6, the execution of behavioral state machines algorithm described in section 5.7
and the veri�cation of the protocol state machines (PSM) algorithm described
in section 5.9.

The tool that implements the consistency checking algorithm is presented in
chapter 6. Finally, chapter 7 contains conclusions and possible future work.

It's important for the reader to read this thesis from the beginning to the end.
The thesis is written in a way that the subsequent sections build on each other
by adding new information to a reader's vision of a problem and a solution. In
the end of the thesis, the reader should have the complete vision of the problem
and the solution. The reader is also encouraged to look at appendices at any
moment during the reading.

1.3 Related work

Consistency checking of UML models has a long history of research. There are
many di�erent types of consistency checking techniques described, however, we
can categorize them into two groups.

The techniques in one group use a transformation of the UML models (that are
considered high-level speci�cations) [VVP00] to an intermediate representation
(based on UML extension or other representation) before the actual checking.
These approaches use algebraic approaches [Tsi00] or model checking [TMH08,
KTM08] as veri�cation techniques.

The second group uses simulations [Ger05] or other algorithmic approaches to
check the models [LTY03]. These approaches work directly on UML models
needing no intermediate representation. The approach presented in this thesis

1.3 Related work 9

belongs to this group.

More sophisticated schema of categorizing the consistency checking techniques is
described in survey by Usman [UNKC08] and splits the group using the interme-
diate representations into two sub-groups based on the type of the intermediate
representation: one group de�ning the intermediate representation in a formal
language and other de�ning it as an extension of the UML itself.

A more recent systematic literature review in this research area is presented in
[LMT09]. It de�nes more detailed criteria of evaluating the consistency checking
with respect to the UML version supported, the possibility of an extension
by a modeler, the integration with the CASE tool, the types of the diagrams
supported, the types of the consistency supported, the type of a (formal or
informal) technique used and the paradigm used.

It is signi�cant to note that only 1.6% of the papers reviewed in [LMT09] used
the UML version 2.0 which was adopted by the Object Management Group
(OMG) in 2005 (and the review is from May 2009). The rest of the papers use
the UML 1.x. There is also the same low rate of the approaches supporting
CASE tools. In comparison, the approach described in this thesis is based on
the UML 2.2 meta-model and supports CASE tools.

Following are some examples of consistency checking techniques that help to
position this work. We will see how this approach di�ers from other approaches
and why the presented approach is better for speci�c applications.

The technique presented in this thesis di�ers from other presented approaches by
extending the sequence diagrams representing the scenarios to the realizations
of scenarios during the consistency checking.

Attributed Typed Graphs and their Transformation

In the approach by A. Tsiolakis presented in [Tsi00] UML class diagrams are
transformed into the attributed typed graphs and sequence diagrams into the
attributed and typed graph grammars. The algorithm checks the existence, the
visibility and the multiplicity of the classes used in the sequence diagrams. The
checking algorithm uses the graph morphisms to check the compatibility of the
graphs and the grammars.

This approach does not take into account that a modeler typically works with
an instance of a meta-model. The number of checks is quite limited and the

10 Introduction

checks are related to the di�erences between the static (classes) and dynamic
(interactions) model elements.

Appending Constraints Information to Sequence Diagrams

In another approach by A. Tsiolakis presented in [Tsi01] UML class diagrams
and state machines diagrams are analyzed with respect to a particular sequence
diagram. The constraints (representing the properties speci�ed in the analyzed
diagrams, e.g. data invariants and multiplicities) are attached to the lifelines in
certain positions between the sending and receiving message points. Inconsis-
tencies are identi�ed by formally checking in enriched sequence diagram if some
of the locations in between such points describe the system states that do not
conform to the resolved constraints.

In this approach it is possible to generate pre- and post-conditions for a sequence
diagram. This approach takes into the consideration that sequence diagrams can
be incomplete; however it treats it equally with inconsistent speci�cations and
does not try to complete the diagram. This approach was not implemented
according to [Tsi01].

Instantiable Petri Nets

In an approach by Y. Thierry-Mieg et al. [TMH08, KTM08] behavioral parts
of the model are checked. This includes activity diagrams and state machines.
The model is, �rst, transformed to an Instantiable Petri Net (IPN) and then
checked by model checking techniques. Only model-independent properties are
examined. The reachability of states and unbounded behavior are the examples
of the checks that can be performed in this technique. This approach is imple-
mented in the tool Behavioral Consistency Checker2 which is based on Eclipse
Modeling Framework (EMF). In the approach, the sequence diagrams are not
regarded.

Colored Petri Nets

In a similar approach to consistency checking by Y. Shinkawa [Shi06] Colored
Petri Nets (CPNs) are used. This approach is de�ned based on use-case driven
development of the models. The use-case, class, sequence, activity and state

2http://move.lip6.fr/software/BCC/

http://move.lip6.fr/software/BCC/

1.3 Related work 11

machine diagrams are regarded for checking. The sequence diagrams are checked
but the functionality present in our approach of the extension of use-cases to
the realizations of scenarios is not in place in this approach.

Finite State Processes and Messages Traces

In an approach by H. Wang et al. [WFZZ05] the dynamic parts of a model are
checked. The sequence diagrams are validated against state machines. Inter-
mediate representations are used: Finite State Processes for the state machine
diagrams and the messages trace for the sequence diagrams. The intermediate
representations are checked by the LTSA model checker. The checks validate the
order of messages being sent and received. This approach does not produce the
realizations of scenarios from the sequence diagrams representing the scenarios.

Vooduu tool and approach using UPPAAL

An approach by K. Diethers [DH04] provides consistency checking between UML
state machines and sequence diagrams. The veri�cation uses an intermediate
representation of timed automata that is then analyzed in the UPPAAL model
checker. The results are transformed back into a sequence diagram. This ap-
proach focuses on checking of violation of timing conditions of timed events.
Other checks are available, e.g. incorrect message detection based on a sender
and a receiver and violation of loop conditions detection. A tool was imple-
mented as a plug-in for the Poseidon for UML3 (the name of the tool is Vooduu).

This approach is promising although not well suited for non-deterministic exam-
ples of models (with many possible traces of the execution, the inter-dependencies
of the clocks and the high number of the variables) due to the state explosion
problem.

Mapping to CSP domain

In an approach by G. Engels [EKHG01] UML models (behavioral and protocol
state machines diagrams) are checked by �rst mapping it to the CSP semantic
domain. Then, using the FDR model checker4, consistency rules are evaluated.

3http://www.gentleware.com/
4http://www.fsel.com/

http://www.gentleware.com/
http://www.fsel.com/

12 Introduction

This approach in the current version is limited to the state machines (although,
as authors claim, it could be de�ned for more diagram types). This approach
does not extend sequence diagrams.

OCL Rules Approach

An approach by R. Dubauskaite et al. in [DV10] is a consistency checking
technique based on OCL rules. The authors discuss the openness of the approach
for a modeler who can easily add the new rules to the checker (by writing them
in OCL). The rules check for the speci�c elements that are de�ned in the model,
e.g. if a representant of a lifeline is de�ned in the model. The tool is implemented
as the MagicDraw plug-in.

This approach mostly regards consistency between behavioral and structural
model parts and cannot be applied to inter-behavioral analysis.

The ViewIntegra Approach

An approach by A. Egyed [Egy01] uses a transformation between di�erent dia-
gram types for consistency comparisons (no use of intermediate representations).
Moreover, 10 di�erent transformations are de�ned between 11 diagram types
and as a result some comparisons require the series of transformations to be
executed. By comparing always the same representations, consistency checking
and the consistency rules are simpli�ed.

In this approach, sequence diagrams are ultimately interpreted as class diagrams
for comparison. It suggests that consistency rules mostly regard the structural
features and the behavior is lost during the transformations. The tool has been
implemented for selected transformations.

Behavioral Validator of UML

In the approach by B. Litvak et al. in [LTY03] simulations are conducted
to ensure the consistency of the sequence and state machines diagrams. The
messages order is checked and a type of sent messages is checked. The simulation
supports the advanced structures in the state machines diagram, e.g. the forks,
the joins, the concurrent states and the composite states. If none of the state
machines have de�ned the trigger for a message in the sequence diagram, it

1.3 Related work 13

is considered an error in this approach. The tool is implemented based on
ArgoUML5.

The approach is promising and similar to the approach presented in this thesis
in the aspect of using simulations to ensure consistency and in the way the tool
can help designers to �nd problems in the UML models. The tool, however,
does not add realizations of the scenarios to the sequence diagrams.

TestConductor and Live Sequence Charts

It is also important to mention an approach for building the systems using the
play-in, play-out algorithm described in [HM03]. This approach enables a user
to design the systems based on the behavioral parts of the model by declaring the
interactions in the Live Sequence Charts (LSCs) notation. The TestConductor
is a tool developed by Rhapsody [Ger05] that checks the interactions in the
LSCs by running the simulation and sending the messages on behalf of the
environment, when required. After the simulation, the resulting interaction is
compared with the original use-case. This approach is partially similar the one
presented in this thesis but the extension of the use-cases sequence diagrams to
the realizations of the scenarios is not realized here.

Automated Translation from Sequence to State Machines
Diagrams

In an approach by S. Sengupta et al. [SKB05] consistency is preserved by au-
tomatic generation of the state machines diagrams from the set of sequence
diagrams. This approach includes the analysis of OCL constraints in the se-
quence diagrams (the pre- and post-conditions).

This work is related to this thesis because it uses the opposite approach for gen-
eration of the new fragments of the model (from interactions to state machines).
In the approach presented in this thesis, the sequence diagrams are completed
based on the state machine diagrams.

5http://argouml.tigris.org/

http://argouml.tigris.org/

14 Introduction

Chapter 2

Selected elements of the

Uni�ed Modeling Language

The consistency checking approach presented in this thesis is based on input
of a UML model. In the following chapter we will introduce a description of
selected UML elements and notations that are used in the rest of the thesis.
Firstly, we introduce the UML as a modeling language, then we describe classes
and components, (behavioral and protocol) state machines and interactions. We
do not only describe the corresponding UML diagrams but also on the meta-
model of the corresponding language units1. It is important to note that the
presented description is not a complete description of the UML but rather a
short description of the selected elements and features that are used later in this
thesis. For more information on the usage of the UML please consult the book
by Rumbaugh et al. [RJB04]. For in-depth treatment of the meta-model issues,
please see the UML 2.2 Superstructure Speci�cation by the Object Management
Group (OMG) [Obj09] .

2.1 UML as modeling language

The Uni�ed Modeling Language is a graphical language for creating graphical
visualizations in a standard way that helps to understand a modeled system.
The UML may be applied to many types of systems, e.g. software applications,

1The language unit is a collection of highly coupled concepts in UML.

16 Selected elements of the Uni�ed Modeling Language

distributed web applications, databases, business processes, real time systems.
The modeling in the UML is important because it helps communicating ideas
to other people: these people are other engineers or clients of a development
company.

The UML is a very expressive language allowing di�erent views on a system.
Di�erent types of UML diagrams are used to show these di�erent views. These
views are together enough to capture all types of the systems mentioned before.
In the UML 2.2, a system can be modeled with �fteen types of diagrams. The
diagrams' hierarchy is presented in �g. 2.1.

Figure 2.1: Hierarchical view on the types of diagrams in the UML version
2.2.

The UML language creates a basic vocabulary that can be used and shared
between clients and developers, students and teachers, etc. The vocabulary is
de�ned in terms of names of UML elements.

The UML models are also used for the forward engineering (source codes can be
generated from them). The UML model can be represented in a programming
language such as Java, C++, and Visual Basic.

2.2 Semantics Variation Points 17

2.2 Semantics Variation Points

A wide range of applications of the UML is caused by the UML being �exible
notation, but, on the other hand, being also not precise about some of the se-
mantics and, in particular, some of the run-time semantics2: it is manifested
by a presence of number of variation points. The variation points are explicitly
identi�ed in the UML speci�cation to provide a leeway for domain-speci�c pur-
poses. The variation points become a more important issue when subjected to
model-to-code transformations or, is our case, direct model's executions.

2.3 Classes and instances

Class describes the "set of objects that share the same attributes, constraints,
relationships, operations and semantics" [RJB04]. Classes are used to show the
classi�cation of objects in a modeled system. A class shall have a unique name.
The uniqueness of the name must hold within a package in which the class in
placed (the enclosing package).

2.3.1 Properties

Classes may have any number of properties. A property is a structural feature
related to a classi�er (and, therefore, to a class)3.

There are two possible types of properties:

attribute is a named property of a class that describes the possible values that
instances of the property may hold;

association's end is one end of an association and describes a semantic rela-
tionship that can occur between typed elements (e.g. between two classes).

2The run-time semantics is a mapping of the modeling concepts into the program execution
phenomena.

3In the UML meta-model, Class inherits from Classifier.

18 Selected elements of the Uni�ed Modeling Language

2.3.2 Operations

Classes may also have operations. An operation is a behavioral feature for
invoking a behavior associated to the owning class. The name operation is
mostly used in the UML in a context of an interface (see section 2.3.5) while
the word method is used for operations in classes implementing an interface. A
signature of an operation can include its name, visibility, names and types of
parameters, default values of the parameters, and its return type.

2.3.3 Super-class

Classes may have unlimited number of super-classes. Super-classes are the more
general classes (parents) connected to a more speci�c class (child) with the
generalization relationship. A child may add a new structure and a behavior or
to rede�ne a behavior of its parent.

2.3.4 Abstract class

Classes can be abstract, i.e. they do "not provide a complete declaration and
cannot be typically instantiated" [Obj09]. Abstract classes are normally parents
of other classes.

2.3.5 Interface

An interface is a "kind of classi�er that represents a declaration of a set of
coherent public features and obligations" [Obj09]. Interfaces can own a protocol
state machine (see section 2.5.2) that "may impose ordering restrictions on
interactions through the interface" [Obj09].

Classi�ers can have provided and required interfaces. Provided interfaces are the
ones that a classi�er realizes (they are connected to a classi�er with interface
realization). Required interfaces are used by a classi�er, i.e. there is a usage
relationship between a classi�er and an interface.

2.4 Components 19

2.3.6 Instance Speci�cation

Instance speci�cations represent a particular instance of a classi�er. Instance
speci�cations can contain slots that represent the instances of attributes (or,
more generally, features) and can hold values. The instance speci�cation of an
association is called link.

Instance speci�cations can be presented in an object diagram that shows the
run-time state of a system's instance.

2.3.7 Class and object diagrams

A graphical representation of a class is a rectangle with the class's name shown.
Optionally, inside the rectangle, compartments with the class's attributes and
operations can be shown. Abstract classes are recognized by italics used in their
names. The example of class and object diagrams are presented in �g. 2.2.

Figure 2.2: Marker no. 1: the example class diagram. Marker no. 2: the
example object diagram with instances of classes.

2.4 Components

A component is a concept that describes a "modular unit with well-de�ned
interfaces that is replaceable within its environment" [Obj09]. An important
aspect of the component is self-containment, i.e. the component "encapsulates
the state and behavior of a number of classi�ers" [Obj09].

20 Selected elements of the Uni�ed Modeling Language

2.4.1 Ports

Interfaces of components can be exposed via ports (optionally). A port is a
"property of a classi�er that speci�es a distinct interaction point between that
classi�er and its environment or between the (behavior of the) classi�er and its
internal parts" [Obj09]. A port is like a "bridge" between internal parts of a
component and its external environment.

2.4.2 Component diagram

Components are represented as rectangles containing a characteristic symbol
in an upper right corner. Ports are represented as small squares on a border
of a component. Required and provided interfaces are presented in a lollipop
notation. See �g. 2.3 for example of a component diagram.

Figure 2.3: The UML component diagram with two components. Component1
provides an interface to Component2. Class2 is inside Compo-
nent2.

2.5 State machines

There are two types of state machines in the UML: behavioral and protocol
state machines. In this section, we will shortly describe both of the types.

2.5.1 Behavioral state machines

Behavioral state machines (BSM) are "used for modeling discrete behavior
through �nite state-transition systems" [Obj09]. A BSM can be de�ned in
context of a class and, by that, de�ne the class's behavior.

2.5 State machines 21

The behavior is modeled as a traversal of a graph of state nodes
interconnected by one or more joined transition arcs that are trig-
gered by the dispatching of series of (event) occurrences. During this
traversal, the state machine executes a series of activities associated
with various elements of the state machine. [Obj09]

2.5.1.1 Region

Every state machine should have one or more regions in which states and tran-
sitions are de�ned. Region(s) can also be de�ned in a state.

2.5.1.2 Transition

Transitions are directed relationships between two vertices: a target and a source
vertex4.

A transition can have:

� A number of triggers that �re the transition (a trigger is associated to an
event, e.g. a call event of an operation).

� An e�ect that is executed during a traversal (�ring) of the transition.
The UML does not specify a language in which e�ects can be expressed
textually; it allows a designer to choose this language.

� A guard that "provides a �ne-grained control over the �ring of the tran-
sition. The guard is evaluated when an event occurrence is dispatched by
the state machine. If the guard is true at that time, the transition may
be enabled; otherwise, it is disabled." [Obj09]

A special type of transitions is completion transitions. Completion transitions
do not have any triggers and are enabled during a completion event and after
entry actions and internal activities of a state are completed. The completion
event is "generated upon entering the state." [Obj09]

4Vertex is a common super-class for all states and pseudo-states in UML meta-model.

22 Selected elements of the Uni�ed Modeling Language

2.5.1.3 State

A state "models a situation during which some (usually implicit) invariant con-
dition holds." [Obj09]

States are divided into two main types:

� Simple states that do not have sub-states

� Composite states that "either contain one region or are decomposed into
two or more orthogonal regions." [Obj09] That implies that a composite
state can have many sub-states in its regions.

2.5.1.4 Pseudostate

Pseudostates represent di�erent type of vertices in state machines. Selected
types of pseudostates are described below:

initial pseudostate "represents a default vertex that is the source for a single
transition to the default state of a composite state" [Obj09] or a state
machine;

junction pseudostate is used to chain together multiple transitions;

choice pseudostate, "when reached, result in the dynamic evaluation of the
guards of the triggers of its outgoing transitions." [Obj09]

2.5.1.5 Active states con�guration

Active states con�guration of a state machine is a set of states that are active
(i.e. "entered as a result of some transition" [Obj09]) in the state machine. If a
state that is active is placed in a composite state, the composite state must also
be active (and must be placed in the active states con�guration). That's why we
can see the active states con�guration as a set of trees of states "starting with
the top-most states of the root regions down to the innermost active sub-state."
[Obj09]

2.5 State machines 23

2.5.1.6 State machines diagram

The example state machine diagram is presented in �g. 2.4. Guards are placed
inside brackets and e�ects are always preceded by character "/".

When the trigger for operation1 is �ring the transition, there is a choice based
on the parameter1 value. If the value of parameter1 is equal to "hello", then the
e�ect on the transition assigns attribute1 value 15 and replies true to a caller,
otherwise no assignment is made and replied value is false.

Figure 2.4: The example of a behavioral state machine diagram.

2.5.2 Protocol state machines

Protocol state machines (PSMs) are always de�ned in a context of a classi�er.
It includes the situation when a PSM is de�ned in context of an interface.
PSMs "specify which operations of the classi�er can be called in which state
and under which condition, thus specifying the allowed call sequences on the
classi�er's operations." [Obj09]

States of PSMs are the same states used in BSMs (see section 2.5.1.3) but
additionally can have state's invariants that "specify conditions that are always
true when this state is the current state." [Obj09]

2.5.2.1 Protocol transition

Transitions in PSMs can have a pre-condition, a post-condition and a referred
operation. No e�ects are allowed on protocol transitions.

24 Selected elements of the Uni�ed Modeling Language

For a protocol transition:

Pre-condition is a "condition that should be veri�ed before triggering the
transition." [Obj09]

Post-condition is a "condition that should be obtained once the transition is
triggered." [Obj09]

Referred operation is an operation that, when called, triggers the transition.

All unreferred operations (for which there are no protocol transitions) in PSMs
"can be called for any state of the protocol state machine, and do not change
the current state." [Obj09]

2.5.3 Protocol state machine diagram

A PSM diagram is visible in �g. 2.5. Pre-conditions are visible in brackets,
post-conditions in brackets preceded by character "/".

Figure 2.5: The example of a protocol state machine diagram.

2.6 Interactions

Interaction can be seen as a possible valid (or invalid) trace in a system. The
trace is described as a "sequence of event occurrences." [Obj09]

Specializing an interaction is "to add more traces to those of the original. The
traces de�ned by the specialization are combined with those of the inherited
interaction with a union." [Obj09]

2.6 Interactions 25

2.6.1 Lifeline

Lifelines represent "an individual participant in an interaction." [Obj09] E.g.
a lifeline can represent an actor or an instance speci�cation. The order of
occurrences on a lifeline is signi�cant and denotes the order in which these
occurrences will occur.

2.6.2 Message

Messages are used to de�ne a "particular communication between lifelines of an
interaction." [Obj09] This communication can be, e.g. calling an operation on
an object represented by a lifeline. Messages can have arguments that can be
used as arguments of a call of an operation.

There are few messages sorts:

synchCall that represents a synchronous call to an operation;

asynchCall that represents an asynchronous call to an operation;

asynchSignal that represents sending of a signal;

deleteMessage that represents termination of a target lifeline;

reply that represents reply for an operation call.

Found message is a message of which sending event is not known (i.e. it does
not come from any lifeline). Lost message is a message of which receiving event
is not known (i.e. it is not targeted to any lifeline).

2.6.3 Behavior execution speci�cation

Behavior execution speci�cations are kind of execution speci�cations "repre-
senting the execution of a behavior" [Obj09] within a lifeline. An execution
speci�cation has the start and �nish events occurrences that designates when
the execution starts and �nishes.

26 Selected elements of the Uni�ed Modeling Language

2.6.4 Sequence diagram

An example sequence diagram showing an interaction is presented in �g. 2.6.
The interaction consists of two lifelines and two messages. One of the messages
is synchCall message to operation1. Reply for this operation is true (it is visible
on the reply message). The two green boxes on the lifelines are the behavior
execution speci�cations.

Figure 2.6: The example of a sequence diagram.

Chapter 3

Inconsistencies

In this chapter we will describe inconsistencies that we would like to check in
our approach. The inconsistencies are divided into groups to help to understand
what they are mostly related to.

3.1 Sequence diagrams and structural properties

of model

Inconsistencies described in this section can be detected by an analysis of a
structure of a model. They must be enforced before some of semantical checks
can be done. They are also relatively easy to detect in the model.

3.1.1 Lifeline representant

Lifelines represent, in this approach, instances of actors, classes or components1.
If a lifeline representant's type is a class, the class should have de�ned behavior

1The type of lifeline's representant has changed in UML 2.0 to be of type connectable

element. This implies that instance speci�cations cannot be directly cross-referenced as repre-
sentants. The solution is to set a lifeline's representant to type of an instance speci�cation and
to use the lifeline name identical to the name of the instance speci�cation. We have chosen this
way to identify which lifelines in sequence diagrams represent which instances speci�cations
in a model.

28 Inconsistencies

as a behavioral state machine. The representant's type must not be abstract
class (it could not be instantiated). Example of this type of inconsistency where
abstract class is used as a lifeline's representant is presented in �g. 3.1.

Figure 3.1: The example of call to an abstract class. The abstract class can
be recognized by name in italics.

3.1.2 Message occurrence speci�cations

In our approach, there is a restriction that each message shall de�ne send and
receive message occurrence speci�cations (MOSs). By requiring that, we do not
allow found and lost messages (see section 2.6.2) to occur in scenarios. A reason
underlying this decision is connected to what an idea of use case is. In use cases,
an environment's behavior is typically represented by an actor's behavior in a
scenario of a use case; found messages coming from no lifeline or lost messages
targeting no lifeline do not make sense if we want to see the interaction of the
actors with the system. An example of an erroneous scenario with found and
lost messages is presented in �g. 3.2.

Another restriction is for each MOS that is in covered by collection of a lifeline2

in a scenario there must be the corresponding message.

2All events occurring on a lifeline are stored in this collection.

3.1 Sequence diagrams and structural properties of model 29

Figure 3.2: The example scenario containing the found and lost messages.

3.1.3 Behavior execution speci�cations

A consistency check of behavior execution speci�cations (BESs) is based on their
meta-model constructs.

� BES must have start and �nish elements speci�ed.

� If start and �nish elements are not the same fragment, start must occur
before �nish on the lifeline of BES.

It is di�cult to show an example diagram with the inconsistencies violating these
rules because the constrained elements are not directly visible in diagrams. Even
though the elements cannot be directly visualized, the enforcement of these rules
is crucial to ensure consistency of order of interaction fragments on lifelines in
a model representation.

3.1.4 Call message and target class

If a message representing an operation call is present in a scenario, a type that
represents a target lifeline has the operation that is used in the call. The type
may declare or inherit the operation from a parent. An example of calling an
operation not declared in a target class is presented in �g. 3.3.

30 Inconsistencies

Figure 3.3: The example of call of an operation that is not declared in a target
class.

3.1.5 Call message arguments

Arguments of a call message must conform to parameters of a called operation,
i.e. types of the arguments must be identical or can be implicitly converted to
the parameters' types (e.g. child classes can be used as parents' classes). Lower
and upper multiplicities of the parameters must conform to a number of values
in the arguments. An example of an inconsistency where a parameter of a call of
an operation is expected to be a String type but an actual argument is Integer
is shown in �g. 3.4.

3.1.6 Visibility of operations

Called operations must be visible to callers. Private and protected operations
in a class shall not be called by instances of di�erent classes. An example of
this type of inconsistency is shown in �g. 3.5 where an actor calls a private
operation.

In case of package private visibilities, callers should be in the same package with
called types.

3.1 Sequence diagrams and structural properties of model 31

Figure 3.4: The example of an inconsistency between a type of an argument
and a type of a parameter.

Figure 3.5: The call to a private operation. Private operations are recognized
by the minus sign.

3.1.7 Multiplicity

A multiplicity3 check must ensure that number of instances connected with links
in object diagrams (and represented by lifelines in sequence diagrams) conform

3The multiplicity used to be also called cardinality in the older UML versions.

32 Inconsistencies

to associations' ends multiplicities. An example of an inconsistency between a
number of links and a multiplicity of an association's end is presented in �g.
3.6. In the example, class C is connected to class D with the association. The
multiplicity of the association's end for D constraints a size of the collection
from zero to two elements, but in the scenario and in the object diagram there
are three instances of D connected to the instance of C.

Figure 3.6: An inconsistent number of links with respect to an association's
end multiplicity.

3.2 State machine diagrams and structural prop-

erties of model

This section describes inconsistencies that must be checked in order to ensure a
well-formed state machine. We must have the well-formed state machine if we
want to conduct semantical checks.

3.2.1 Region existence

A state machine shall have at least one region. This restriction is implied by
the fact that a state machine without regions cannot execute.

3.2.2 Initial pseudo-state

In each region (including regions of state machines and regions of composite
states), exactly one initial pseudo-state must be de�ned. Moreover, there must

3.3 Other structural inconsistencies 33

be exactly one transition outgoing from the initial pseudo-state. The transi-
tion does not have any triggers. An example of an inconsistent region with a
transition having a trigger de�ned and outgoing from an initial pseudo-state is
presented in �g. 3.7.

Figure 3.7: A transition having a trigger de�ned and outgoing from an initial
pseudo-state.

3.2.3 Final state

Final states shall have no outgoing transitions. The outgoing transitions would
never be taken because, upon entering a �nal state, a state machine (or an
orthogonal region) terminates.

3.2.4 Miracle state

Miracle states have at least one outgoing transition and no incoming transitions.
There is no way to enter a miracle state during a state machine execution and
thus an existence of it may be sign of a design error. A presence of the miracle
states is one of the classical inconsistency types in state machines. An example
of a diagram with a miracle state is presented in �g. 3.8.

3.3 Other structural inconsistencies

3.3.1 De�ning features of slots in instance speci�cations

Each slot in an instance speci�cation must be de�ned by feature that is set to
an attribute of the class that is a type for this instance speci�cation. This rule
must be enforced in order to obtain a well-structured model of instances that
represent objects of their classes.

34 Inconsistencies

Figure 3.8: The miracle state, i.e. a state that has some outgoings transitions
and no incoming transitions.

3.3.2 De�ning values in slots

Types and multiplicities of values in slots should conform to the slots' types and
multiplicities. If a value is an instance value, i.e. it represents object of a class
and not a primitive type, then an instance speci�cation's classi�er referred by
the instance value should conform to the slot's type. In a special case in which
the slot's type is an interface, the referred instance speci�cation must be of type
of a classi�er that realizes the interface.

3.4 Behavioral state machines and structural prop-

erties of model

Inconsistencies described in this section are connected to a behavior of state
machines and its conformance to structural parts of a model.

3.4.1 Missing association / link

If a BSM (representing a behavior of one object) call other object, there must be
an association between the types of these two objects (usually classes). There
must be also links between these two objects' instances. The called object must
be accessible from the caller object.

3.4 Behavioral state machines and structural properties of model 35

An example presented in �g. 3.9 shows a scenario in which object c is called
by an actor. Object c then tries to call an instance of class D that exists in
a system. However, there is no link between objects c and d that would allow
this call to be executed. Moreover, there is no association between class C and
class D. This is clearly an inconsistency.

Figure 3.9: The object of class C tries to call the object of class D. The objects
are not connected to each other with a link.

3.4.2 Missing reply

Operations with a declared result must return the result. When such operation
is synchronously called in a BSM, it initiates run-to-completion step (see section
5.7.1). A path in the BSM that was taken during that step must send back reply
with the result of the operation to a caller.

An example of this inconsistency is presented in �g. 3.10 where a state machine
does not have reply for a trigger of m() despite m is an operation that returns
Boolean result.

3.4.3 Reply conformance

Operations that are declared to return results of given types and multiplicities
must return values that conform to the declarations.

36 Inconsistencies

Figure 3.10: A reply for the call of operation m is missing in the behavior
state machine of C despite the Boolean result that is declared
in C class for this operation.

An example is presented in �g. 3.11 where a value returned as a reply for m()
is of a wrong type.

3.5 Sequence diagrams and behavioral state ma-

chines

The inconsistencies in this section are typical semantic inconsistencies detected
between sequence diagrams and BSMs.

3.5.1 Order of called operations

An order of messages in scenarios given as sequence diagrams must be realizable
in a system. BSMs must be able to handle call events produced by a scenario.
An example of an order inconsistency is presented in �g. 3.12.

In the example, we have a synchronous call messagem() that cannot be accepted

3.5 Sequence diagrams and behavioral state machines 37

Figure 3.11: The reply for the call of operationm() is declared to have the type
String but the behavior state machine of C returns Integer as
the actual reply for the call of m().

by a behavioral state machine of instance of class C (the trigger for the call event
b() is expected) and thus the scenario is not realizable.

3.5.2 Result of external event visible to actor

If a designer constructs a scenario with an actor calling an operation in a system
and he will also specify explicitly a result for the operation, then the provided
result should be identical with result returned from the system during the real-
ization.

In an example presented in �g. 3.13 we can see a scenario where a designer
expects Integer result 777 of operation m() but a behavioral state machine of
C replies with a constant value of 304 so this is an inconsistency. The e�ects on
the transitions in the behavioral state machine are expressed in Simple Action
Language described in section 5.8.

38 Inconsistencies

Figure 3.12: The order of the messages in the scenario's sequence diagram
cannot be realized by the state machine order of triggers. We
assume that the state machine of object c was in the initial state
just before the scenario was started.

Figure 3.13: The scenario where a designer speci�es an expected result of
operation m(). In the diagram showing the behavioral state ma-
chine of C the reply for m is constant integer 304 but the actor
expects to see 777.

3.5 Sequence diagrams and behavioral state machines 39

3.5.3 Reply for non-existing call

If there is a reply message sent in a sequence diagram but during BSMs execution
there is no corresponding call event �red, it's an error.

This type of error can be easily detected by looking only at the sequence diagram,
e.g. in �g. 3.14 we can clearly see that there are two replies for only one call.

Figure 3.14: Two replies for one call of m() operation.

3.5.4 Not realized message

If a synchronous call message is sent according to a sequence diagram but a
target BSM does not execute the call event this is an inconsistency.

A sequence diagram in �g. 3.15 shows two messages, one is called by an actor
and second is internally sent between two objects c and d. After the message
m() is called by the actor, the BSM of object c accepts it and then immediately
object terminates by entering a �nal state. In an e�ect, the message s() is
never realized by the system during the realization of the scenario. This is the
inconsistency.

40 Inconsistencies

Figure 3.15: The call message in the sequence diagram that was not realized
during the realization because the BSM of c does not call the
function d.s() in an e�ect of m() call.

3.6 Conformance to contract speci�ed by inter-

faces

This section describes inconsistencies that can be detected in a contract confor-
mance speci�ed by interfaces and protocol state machines de�ned in context of
the interfaces.

3.6.1 Realizing class does not implement operation from
interface

Classi�ers that are connected to interfaces with interface realization relation-
ships must conform to contracts speci�ed by the interfaces. An enforcement
of this rule include a check that checks for a set of operations declared in an
interface are in fact implemented by a set of methods in realizing classes. An
example of a violation of this rule is shown in �g. 3.16.

3.6 Conformance to contract speci�ed by interfaces 41

Figure 3.16: Class C is realizing interface IC but failed to implement opera-
tion pull from this interface.

3.6.2 An order of methods called does not conform to an
order in protocols

If an interface owns a protocol state machine (PSM) then a behavior of a class
realizing the interface should conform to the PSM.

One of the rules in PSM's conformance is an order in which methods are called
on instances of classes that implement an interface that owns a PSM. It must
be possible to realize the order in the PSM.

An example of a violation of this rule is shown in �g. 3.17. In the example
scenario, Piotr is an actor that calls the methods in c that must conform to
ProtocolOfIC protocol. The �rst call is to method m() that is not referred
in the protocol and executes correctly. The next call is push("test") that can
be accepted by c BSM. Unfortunately for this scenario, push is also operation
referred in the protocol ProtocolOfIC. According to the PSM, it is required that
pull shall be always called before pull could be called. This condition is not
satis�ed in this scenario.

3.6.3 Pre- or post-conditions of operations fail in PSMs

It could be the case that there exist no protocol transitions in a PSM for which
pre- or post-conditions for a referred operation are true. The pre-condition must
be true before the operation was called; the post-condition must be true after
the operation was called. The both (pre- and post-) conditions are speci�ed

42 Inconsistencies

Figure 3.17: Class C is realizing interface IC that owns the protocol Proto-
colOfIC. During a simulation of the scenario, a behavior of an
instance of the class C does not conform to the PSM of the in-
terface: an order of methods called is inconsistent with an order
of referred operations in the PSM.

in the Object Constraint Language (OCL) in our examples. In OCL, the pre-
condition is evaluated on a state of a system before a call and the post-condition
is evaluated on two states of a system: the state before the call (pre-state) and
a state after the call (post-state).

An access to both states in post-conditions gives the possibility to check for
di�erences that were introduced in the post-state during an operation call in
relation to the pre-state. If an operation returns a result, the post-state also
includes a result variable representing a value of the result.

3.6 Conformance to contract speci�ed by interfaces 43

An example of a scenario for which a post-condition failed is presented in �g.
3.18. In the presented scenario, push() method in class C always returns a
constant value 100. The PSM expects 99 in the post-condition of the operation
push(). There are no other protocol transitions in the PSM that could be taken
when the result is equal to 100 and therefore the scenario is not realizable.

Figure 3.18: Class C is realizing interface IC that owns protocol ProtocolOfIC.
During the simulation of the scenario, behavior of instance of
class C does not conform to the PSM of the interface: the post-
condition is not satis�ed.

44 Inconsistencies

3.7 Related to components

3.7.1 Discussion about components

Before we go to the next checks connected to components, we will explain why
the checks in components allow to refer from a component to a type outside
components (e.g. in a package). In principle, it shall not be possible to refer
from a class placed in one component to a typed element outside this component
by an association relationship. But what if we have a complex type Client that
is used in two or more components? In this case, all of the components must
know about the type Client. We could duplicate the type Client in all of the
components but then, there will be two identical types Client in a system. This
will break "don't repeat yourself" (DRY) principle. What to do with this sort
of types (like Client) without violating the DRY principle and an encapsulation
of components?

Currently, there is no known solution to this problem in context of the UML
components and the problem is not trivial to solve. For these reasons, in this
thesis we will make a simpli�cation and allow having references from contents
of components to classes outside any of components. This will allow creating a
type of a system presented in �g. 3.19.

Figure 3.19: Class Client is a complex class that is placed outside the compo-
nents in a package. The components Bank Central System and
Bank Department have the classes that have the associations to
Client class. The provided interface of the Bank Central System
component also has an operation with a parameter of the type
of Client class. This requires the other components that use the
interface to know about the type Client.

3.7 Related to components 45

3.7.2 Classes have relationships to other classes in other
components

If a class is de�ned in one component it must not be connected with relationships
to a class in another component (though it can be to class outside components).
The relationships in this rule are: association, dependency and generalization.
This rule supports the semantics of self-contained components, i.e. one compo-
nent shall not be dependent on another one.

An example of an inconsistency is presented in �g. 3.20. In the example, two
components and classes placed inside them have a relationship (generalization)
that connects a class in one component to a class in another component.

Figure 3.20: Class A is in CompA component and class B is in CompB com-
ponent. The generalization from A to B that crosses between
components is marked as the inconsistency.

3.7.3 Typed elements using types from other components

There shall not be a typed element in a component that uses a type that is
located in another component (though it can be a type outside components).
The typed elements include attributes, operations' results and operations' pa-
rameters in classes.

An example of an inconsistency is presented in �g. 3.21. In the example, class A
in component CompA has an attribute that uses type B from other component
CompB.

46 Inconsistencies

Figure 3.21: Class A is in CompA component and class B is in CompB compo-
nent. Attribute b in class A is of type B. This is the inconsistency.

3.7.4 Provided interfaces not realized by any class in a
component

If a component provides an interface, the interface must be realized by a class
inside the component (or the component itself). If the interface was not realized
in the component, there will be no way of providing this interface to other
components that use it.

The example of described situation is given in �g. 3.22 where CompA component
provides R1 interface to another component. Problem is that any of the classes
inside CompA (in this case we have only single class A) do not have realization
of R1 interface. In the consequence, CompA has no means of providing this
interface. This is an inconsistency.

Figure 3.22: Class A is in CompA component and class B is in CompB com-
ponent. CompA provides interface R1 but no class in component
CompA realizes R1.

Chapter 4

Case study: Toll System

In this chapter, we will see a short introduction to a case study of a toll system
that will be later used as an example for our consistency checking approach.
The case study described here is a (partial) solution for an exam project used
in System Integration course at DTU in summer semester of 2012 [BK12].

4.1 Introduction to the toll system

The toll system that is modeled is used to manage a motorway company system.
The system should, among others, charge owners of vehicles that enter and leave
a motorway (see �g. 4.1).

Figure 4.1: A motorway with two toll stations. Source: [BK12].

48 Case study: Toll System

The system is complex, with many use-cases and actors (see �g. 4.2). In this the-
sis, we focus on constructing and checking only two use-cases from the system:
check-in with toll tag and check out with toll tag. We choose these two use cases
because they provide good examples for our consistency checking technique.

Figure 4.2: The use-case diagram of the toll system. The selection frame shows
the part of the system used as the case study.

In �g. 4.1 each toll station is described to have many toll lanes. For our
simpli�ed system that handles the two use-cases, we will provide only one toll
lane type: express lane (this one is represented in �g. 4.1 as a rectangle with
a wireless sign). The express lanes can be used for the toll tag check-in and
check-out.

An express lane has:

barrier that opens after a vehicle successfully completed the check-in or check-
out;

RFID antenna that reads toll tags which are placed in cars entering the ex-
press lane.

4.2 Check-in with toll tag 49

Toll tags are used by regular customers for the easier wireless express check-in
and check-out. They are placed in vehicles and can be identi�ed by the express
lanes. Toll tags are bought in advance.

Toll tag is an RFID transponder with a range of a few meters which
is used to wirelessly identify the vehicle. One toll tag is bound to
one vehicle only. The price is not �xed but depends on the distance
traveled on the motorway, i.e. by calculating the distance between
the check-in and check-out. [BK12]

4.2 Check-in with toll tag

Check in with a toll tag occurs when the vehicle with a toll tag placed inside
enters a motorway through an express lane. The toll tag is detected by an
antenna in the express lane. If the toll tag is valid, a barrier in the express lane
opens. The price for the trip is computed when the vehicle leaves the motorway.

It may happen that the antenna cannot recognize the toll tag or the toll tag is
invalid. In this case, it is a cashier who decides how to proceed with the check-in
of the toll tag.

4.3 Check-out with toll tag

During the check-out a vehicle with a toll tag inside leaves a motorway through
an express lane. The toll tag is detected by an antenna. A distance between
entry and exit stations is calculated and a resulting number of kilometers is
multiplied by a price for one kilometer. The resultant value is then added to
a toll account of an owner of the toll tag. Then, a barrier in the express lane
opens.

The sum of tolls incurred in one month is charged in the end of each month.

It may happen that the antenna cannot recognize the toll tag or the toll tag
is invalid. In this case, it is a cashier who decides how to proceed with the
check-out of the toll tag by charging the owner of the toll tag correctly.

50 Case study: Toll System

4.4 Models of the toll system

The toll system was modeled in two versions:

� Version without components is presented in appendix A

� Version with components is presented in appendix B

� Use case scenarios and their realizations (the same for both versions) are
presented in appendix C

The two versions ful�ll the same functionality and are used during the descrip-
tion of the algorithm in chapter 5. A simpler version of the system without
components was constructed because some of the sub-algorithms do not require
knowledge about components (and protocols). It is therefore easier for the
reader to understand these algorithms having the simpler version of the system
without components. A proper version of the solution to the toll system design
in System Integration course would have components.

Chapter 5

Concepts and approach

In this chapter, we will see a technique to detect inconsistencies that were de-
scribed in chapter 3.

At the beginning, we will introduce a concept of a consistency checking by a
simulation of scenarios (see section 5.1), and then we will see overview on the
consistency checking algorithm (see section 5.2). A model's representation used
during the consistency checking is described in section 5.3.

In the following sections, concepts of scenarios (see section 5.4) and realizations
of scenarios (see section 5.5) are introduced.

We will see one consistency checking algorithm divided into three sub-algorithms,
i.e. the extension algorithm in section 5.6, the behavioral state machines exe-
cution algorithm in section 5.7 and the veri�cation of protocol state machines
algorithm in section 5.9.

A language created during this project, Simple Action Language (SAL), that
facilitates an execution of BSMs is presented in section 5.8.

5.1 Consistency checking by scenario simulation

A consistency checking technique that is developed in this master's project uses
simulation of scenarios provided by a designer to check the consistency of UML

52 Concepts and approach

models. In our approach, scenarios that were simulated successfully in a model
are realizable the model. We can say that the model's elements that were
checked during the simulation of the scenarios are consistent with the scenarios.

If a designer provided a reasonable set of scenarios for a model, i.e. for each
use case in the model, there is provided a main scenario and all remaining
alternative scenarios; and if all of the scenarios (the main and the alternatives)
are simulated successfully by a described algorithm (that will be described in
this chapter), then we can say that the model of the system is consistent with
its speci�cation by ful�lling the given use cases.

Our approach is designed to be used as a teaching technique for students by
helping them to understand how di�erent views on a model relate to each other.
The students should also understand how a change in one of the views can (un-
expectedly) a�ects other views on the model. Our approach is also focused on
constructing good (veri�able) scenarios that represent use cases from require-
ments. This approach shows the importance of a good testing as a method for
veri�cation of correctness of systems.

In real life, the testing is used for a veri�cation of an implementation; but for
our teaching purposes, it is a good practice to also construct tests for models1.
This gives a unique possibility of an early feedback to students on a design.

We would like to answer following questions:

� Is a design rational?

� Can a design be used for an implementation of a system?

� Will a system implemented based on a design be what we expected it to
be?

� Does design ful�ll the requirements?

� Can design realize use cases scenarios provided by clients and gathered
during requirements collection?

Can this approach be used in the industry? In most of the companies, the models
are never developed to the point that they will be suitable for the simulation
(or a code generation). Instead, the models are used for a speci�cation of early
versions of a system � and this is very reasonable approach, at least when we

1Especially if students do not have time to implement a system because the semester is
too short � and this happens to be our case.

5.2 Consistency checking algorithm 53

look at the money costs. The models are sometimes more di�cult and time
consuming to develop.

There are some companies, however, that use models. In the largest Danish IT
company: Danske Bank models are developed in Denmark and then they are
sent to India for implementation stage2. This type of a development make the
modeling more important.

5.2 Consistency checking algorithm

In this section, we will see an overview on a consistency checking algorithm that
is developed in this thesis and that is able to detect the inconsistencies described
in chapter 3. For simplicity, the description in this section will be given from
a high level perspective and then, in the subsequent sections, we will describe
separate phases (three sub-algorithms) of the algorithm in more detail.

The main role of the consistency checking algorithm is to check consistency
between interactions (sequence diagrams) and state machines (behavioral state
machines and protocol state machines diagrams). It is achieved by a simulation
of a given scenario in a model.

The algorithm works in two main phases:

1. checking of a static UML model's structure before a simulation is launched;

2. checking of a dynamic UML model's behavior during the simulation.

Consistency checking algorithm is given a scenario to check (scenarios are de-
scribed in section 5.4). The static properties of the model are checked �rst.
This step is necessary to ensure that the simulation of a scenario could be even
started. Most of inconsistencies that we are looking for in this phase are de-
scribed in sections 3.1, 3.2 and 3.3. Also inconsistencies related to components
described in section 3.7 are checked in this phase. If errors are found in this
phase, they are reported to a designer and the algorithm terminates without
starting a second phase.

The second phase of the algorithm always starts from the extension sub-algorithm
(see section 5.6) that triggers an execution of BSMs (see section 5.7). During

2This information was informally obtained by me from one of the Danske Bank Group IT
section employees, Rune Haxbøl.

54 Concepts and approach

the execution of BSMs, the extension sub-algorithm and the veri�cation of PSM
algorithm (see section 5.9) become observers of the execution, i.e. they are no-
ti�ed of execution events that occur. They both react on the events, ensuring
that the execution is consistent with other fragments of a model.

In the second phase of the algorithm, the test scenario is executed to ensure
that BSMs and PSMs are consistent with a scenario (a sequence diagram). Any
run-time errors are reported to a designer and, if they occur, the execution of
BSMs is stopped. During this phase, elements can be modi�ed in the model or
new elements can be added to the model. Any change to the model during a run
of the algorithm must be consistent with respect to the structural consistency.

5.3 Direct UML representation

The presented consistency checking algorithm works directly on UML models.
There are no transformations to another representation of a model before check-
ing. This approach was taken because it is easier by avoiding the problematic
transformations. From another point of view, the UML has really complex
meta-model and, therefore, navigating directly in UML models is more di�cult
during the consistency checking of scenarios in the direct approach. The direct
approach is easier to integrate into existing tooling (UML editors) and becomes
more important if the approached modify a model during the checking.

Most of the approaches that use transformations do not change anything in
UML models. The approach presented in this thesis extends sequence diagrams
by adding new UML elements to a model � this would require, if we used trans-
formations, to transform back the changes from an intermediate representation
to the UML model.

In the direct approach, it is also easier to show errors immediately during check-
ing. It's easier to indicate in which UML elements an error or a warning oc-
curred: we do not need to translate error information back to see what an error
context in the UML model is. Because of that, it is possible to provide much
more sensible hints for a designer.

I would also argue that direct approach is more robust if we want to use it
continuously during a design of the UML model. E.g. if an error occurred at
the very beginning of the simulation, we do not need to wait to �rst transform
the model to an intermediate representation; we can just start the simulation
and pinpoint the error.

5.4 Scenarios 55

5.4 Scenarios

Scenarios provided by a designer that were mentioned in the previous sections
are, in this approach, UML sequence diagrams that show interactions of actors
with a system. Scenario can represent a main scenario or an alternative scenario
of a use case. Use cases and their scenarios are developed during requirements
stage of a system development.

A scenario is given to the consistency checking algorithm as an input. The
algorithm is able to handle scenarios showing messages from or to the actor and
scenarios that are partly or completely realized (see section 5.5).

An example of a scenario for the check-out with toll tag use-case is shown in �g.
5.1. In the example, an actor DD12312 is a car that enters an express check-out
lane and is interacting with a toll system by calling method vehicleArrives() in
antenna instance. This call represents a detection of the toll tag with id tag123
in the car by the antenna. The actor then expects to drive through the lane by
calling vehicleDrivesThrough() in lane instance3.

The scenario does not include any information on how the both methods will
be realized: by looking at the diagram, we do not know if antenna or lane will
call other objects in the system and, if they will, in what order will they call
them. We do not also know if the toll tag was valid and if a barrier will open.

Figure 5.1: Check-out with toll tag successful scenario test.

The scenario must be de�ned together with a context of a system's state before
the simulation was started. To do this in the UML, a designer must prepare an

3This represents a possible sensor that is placed in the lane and can detect the car passing.

56 Concepts and approach

object diagram specifying a system's state. For our simple scenario, we assume
to have the following con�guration that is presented in �g. 5.2.

Figure 5.2: The toll system's state before check-out with toll tag started sim-
ulating.

Three toll tags are registered in the toll system, two of which are valid (tag2
and tag3).tag2 is the tag with id tag123 used in our scenario shown in �g. 5.1;
an accumulated price for this tag is currently 10 DKK.

The car is not an instance in the system. In approach presented in this thesis,
actors are generally considered to be external to a subject system and do not
need to be instantiated.

5.5 Realizations of scenarios

Realizations of scenarios are scenarios extended4 by new elements added during
the simulation of scenarios. A realization shows us detailed execution trace of
a scenario's simulation:

� what operations were called in the system;

� in what order were they called;

� what were arguments of the operations called;

� what were result values of the operations called.

4In the UML terminology we could also use the verb specialized. Compare it to the de�ni-
tion of specializing from section 2.6.

5.5 Realizations of scenarios 57

Additionally, after the simulation, we can see how a system state changed.

In an example presented in �g. 5.3 a realization of the scenario from section 5.4
is visible. In this section, we will focus on describing what we can see in the
realization. An extension algorithm is presented later in section 5.6.

Figure 5.3: The realization of a successful scenario check-out with toll tag.
Generated elements that were added as an extension with respect
to the original scenario in �g. 5.1 have distinct colors.

The diagram in �g. 5.3 is an extension of the scenario in �g. 5.1. It contains
the messages that were present in the original scenario; it contains also new,
generated elements that are result of the simulation of the original scenario.
More speci�cally, the new elements are the three lifelines: server, tag2 and
barrier. All the messages presented in blue in the diagram are the new messages
that were added during the simulation and were not present in the original
scenario. New behavior execution speci�cations (BESs) are presented in gray.

58 Concepts and approach

In the realization of the check-out with toll tag scenario we can see how a system
was executing the operations that were called by DD12312. After the vehicle
arrives and the antenna detects the tag with id "tag123", there are two opera-
tions called in server that check if the tag exists in the system and get the tag
object with corresponding id from server. Then, validity of the tag is checked
and the tag is updated with new accumulated price. barrier opens and the car
drives through. barrier closes after the car left.

The system's state after the simulation of the scenario is presented in �g. 5.4.
The value of accumulatedPrice in tag2 increased by 25 DKK. A conclusion: a
price for a trip was calculated and the price was added to the toll's account.

Figure 5.4: The toll system's state after check-out with toll tag scenario was
simulated. Note, 25 DKK was added to accumulatedPrice of tag2
with respect to the state from before simulation of the scenario
(�g. 5.2).

Because the rest of the diagrams in the toll system without components model
(including BSMs diagrams) in this example introduce not yet described syntax
of SAL, it may be better for the reader not to look at them during the �rst
reading and just trustfully assume that the presented sequence of events really
happened during the simulation. For curious reader, all BSMs diagrams and
class diagram are available in appendix A.

5.6 Extensions of scenarios to realizations of the scenarios 59

5.6 Extensions of scenarios to realizations of the

scenarios

In this section, we will see how scenarios are extended to realizations of the
scenarios. We will introduce an algorithm then describe an example run of the
algorithm on check-out with toll tag scenario.

5.6.1 Extension algorithm

Scenarios extension algorithm works in a manner presented in a pseudo-code in
�g. 5.5 and visually in �g. 5.6.

Figure 5.5: Extension of interactions.

1 extendScenar io (i n t e r a c t i o n) =
2 lastSeqMessage ← f i r s tMes sage inSeq (i n t e r a c t i o n)
3 whi le nu l l 6= lastSeqMessage
4 i f i sRep ly (lastSeqMessage) or not i sActo r (source (

lastSeqMessage))
5 e r r o r
6 invokeExecut ion (i n t e r a c t i on , t a r g e t (lastSeqMessage)

, lastSeqMessage)
7 lastSeqMessage ← nextMessageInSeq (i n t e r a c t i on ,

lastSeqMessage)

A scenario sequence diagram (interaction) is given as an input for a function
extendScenario. The input scenario may be one of the possible types:

a scenario described in section 5.4 that shows only the interactions between
actors and a system. During an extension, the scenario will be extended
by adding new parts of an interaction that occurs in the system internally
during simulation;

a scenario realization described in section 5.5 that shows all interactions be-
tween actors and a system and between the system's objects internally.
The algorithm will validate the scenario realization against the system's
actual behavior. If a given realization is not complete, i.e. there are some
missing parts of the internal system interactions, they will be completed

60 Concepts and approach

Figure 5.6: Visual description of extension of scenarios algorithm.

during the extension and the already existing parts will be veri�ed5.

The process of extension can be seen as divided in three steps.

In the �rst step, the algorithm looks for the �rst not executed call-message in a
sequence diagram and assigns it to lastSeqMessage (at the beginning it will be
always the �rst message sent in an interaction). Once it �nds the message, it
checks if the message is not a reply message (we cannot execute reply messages
here and if we found a reply message, it's an indicator that a designer speci�ed
more than one reply for the operation6).

The message should also be sent from an actor's lifeline � it's because, if the
message was sent from an internal system object, it should be the e�ect of a
system's behavior that would trigger the message, not this extension algorithm.

5In the thesis, our main focus is a situation where an input sequence diagram describes only
an interaction between actors and a system (the �rst case here); but the consistency checking
algorithm can handle also the case where the input sequence diagram contains some parts (or
all parts) of an interaction between system objects. That includes the situation where we run
the algorithm again on the output from the preceding simulation (on scenario realization) as
an input. In this case, algorithm should check if the system will realize this scenario in the
same way the second time.

6Please, compare it with �g. 3.14.

5.6 Extensions of scenarios to realizations of the scenarios 61

In line no. 6, starts an execution of an event that the message represents. A
source is a checked interaction and a target is BSM for an object that the target
lifeline represents. At this moment, algorithm enters second step.

In second step two, the algorithm is still in line no. 6. The algorithm becomes
observer of the triggered execution of BSMs. The execution produces call and
reply events that carry with them following essential information7:

� for a call event:

� what are a source and a target;

� what method in which object is being executed currently;

� what are arguments to a call;

� for a reply event:

� what are a source and a target;

� what is a triggering call event for this reply;

� what is a return value.

While the extension algorithm observes new arriving events, it will try to match
it to the existing sequence diagram, i.e. it will check the next message candi-
date that is sent in the checked interaction. If it matches the just arrived event's
information then the candidate is accepted. Because there is no substantial dif-
ference between matching call and reply events, we can de�ne a general function
for matching all types of events and (in case events have no matched candidates)
extending interactions. The function is presented in �g. 5.7.

In the function eventFired, after event arrives it is �ltered by a condition that
recognizes events with source in the checked interaction (line no. 9). For such
events, the function is not executed. Next, there is a search for a source and
a target lifeline of the event in the sequence diagram. We can safely assume
that the source lifeline will always be present in the diagram when the event
arrives (this is a consequence of step 1 of the extension algorithm and matching
next arriving events in the order of their execution). If the target lifeline is not
present in the sequence diagram (is null), it will be created; otherwise a search
for a message candidate will be conducted. lastSeqMessage used in search of the
candidate in line no. 17 is declared outside a scope of eventFired and initialized
(in step 1) to the �rst not executed message of the interaction.

7For details on how the BSM execute, please consult section 5.7.

62 Concepts and approach

Figure 5.7: Events matching during extension of interaction.

8 eventFired (event) =
9 i f source (event) = i n t e r a c t i o n

10 re turn
11 s o u r c e L i f e l i n e ← getSourceInSeq (i n t e r a c t i on , event)
12 t a r g e t L i f e l i n e ← getTargetInSeq (i n t e r a c t i on , event)
13 candidate ← nu l l
14 i f n u l l = t a r g e t L i f e l i n e
15 t a r g e t L i f e l i n e ← c r e a t eTa r g e tL i f e l i n e (i n t e r a c t i on ,

event)
16 e l s e
17 candidate ← nextMessageInSeq (i n t e r a c t i on ,

lastSeqMessage)
18 i f n u l l 6= candidate and eventConformsToMessage (event ,

candidate , s o u r c eL i f e l i n e , t a r g e t L i f e l i n e)
19 lastSeqMessage ← candidate
20 e l s e
21 message ← createMessageFrom (event)
22 in ser tMessageInSeq (i n t e r a c t i on , message ,

s o u r c eL i f e l i n e , t a r g e t L i f e l i n e)
23 lastSeqMessage ← message

If the candidate is found and it conforms to the event8, candidate is assigned
to lastSeqMessage. Otherwise, a new message will be created, inserted in the
correct place (after lastSeqMessage) in the sequence diagram and assigned to
lastSeqMessage.

In the third and last step of the extension algorithm, the BSMs execution �nishes
(there will be no more events arriving). The function in �g. 5.5 moves to line
no. 7 and then to a next iteration of a loop where it is checked if there is any
message left to be executed. If there is a message to execute, then the algorithm
starts from the �rst step again.

8In case of a call message, we can say this message conforms to a call event if an operation
speci�ed in the message is the same as an operation of the event and arguments of the message
are the same as arguments of the event. In case of a reply event, the result speci�ed in a reply
message must be identical with a result carried in the event. In both cases, a source and a
target lifelines must be the same.

5.6 Extensions of scenarios to realizations of the scenarios 63

5.6.2 Found and lost messages

Found and lost messages are the messages in a sequence diagram that, respec-
tively, originate from the environment or are targeted to the environment. In
the presented approach, found and lost messages are disallowed in sequence dia-
grams representing scenarios (compare with inconsistency in section 3.1.2). The
environment is represented always by actors. In this context, every message
coming from an actor is "found" because it is coming from outside of the sys-
tem. The messages targeted to an actor ("lost" messages in this approach) may
have sense if the actor has its behavior speci�ed (has its own BSM).

5.6.3 Example run of the extension algorithm

In this section, an example run of the algorithm from section 5.6.1 is presented.
We will apply the algorithm to the scenario described in section 5.4 and we will
see how we construct the realization of the scenario described in section 5.5. For
convenience, we present �g. 5.8 in which both the scenario and its realization
are presented. The �gure contains also additional markers with numbers to
which we will refer in a text.

In the �rst step of the algorithm in �g. 5.5, after extendScenario function is
called with an argument of a scenario as interaction, lastSeqMessage is assigned
to the �rst message in the sequence diagram, i.e. vehicleArrives (see marker 1).
Next, a target of the message is identi�ed to be antenna lifeline (see marker 2)
that represents an object antenna in the object diagram of the toll system (see
�g. 5.2). A call event of the vehicleArrives() operation with one argument is
dispatched to the object and the execution of BSM of antenna is started.

The extension algorithm enters the second step at this moment and starts ob-
serving execution events from BSMs. The �rst execution event arriving is:

1. name: vehicleArrives, type: synchCall (from DD12312 to antenna).

Note, it is an event of call of operation that we just invoked in the �rst step.
Upon arrival of the event, eventFired operation is called in the events matching
algorithm in �g. 5.7 with the event as an argument. The event is �ltered out
in line no. 9 because its source is the checked interaction (i.e. we invoked this
operation from the extension algorithm). The processing of the �rst event is
�nished.

64 Concepts and approach

Figure 5.8: The scenario check-out with toll tag and its realization. The added
elements in the extended realization of scenario have distinct col-
ors. Numbers in circles are markers referred in a text.

5.6 Extensions of scenarios to realizations of the scenarios 65

The execution of BSMs continues and another object lane is called. In the
result, the next event that arrives is:

2. name: tagDetection, type: synchCall (from antenna to lane).

Again, eventFired operation is called in the events matching function. This
time source of the event is not the interaction; instead it is antenna object.
The function �nds both a source and a target lifeline. Note, in this case the
target lifeline existed in the scenario (see marker 3) and a candidate message
is searched for (in line no. 17) and checked (in line no. 18). The candidate
message, in this case, is not found (is null) therefore the function generates a
new message (line no. 21), insert it into the interaction (line no. 22 and marker
4) and assign it to lastSeqMessage (line no. 23).

A next event that arrives is:

3. name: tagExists, type: synchCall (from lane to server).

Handling of it is similar to the previous event; with an exception, that server
target lifeline is not found and generated in line no. 15 (see marker 5). A new
message is generated for tagExists() operation (see marker 6).

Next, the following events arrive from BSMs execution:

4. name: ReplyOftagExists, type: reply (from server to lane)

5. name: getTag, type: synchCall (from lane to server)

6. name: ReplyOfgetTag, type: reply (from server to lane)

7. name: checkValidity, type: synchCall (from lane to tag2)

8. name: ReplyOfcheckValidity, type: reply (from tag2 to lane)

9. name: calculateAndUpdateAccumulatedPrice, type: synchCall (from lane
to tag2)

10. name: ReplyOfcalculateAndUpdateAccumulatedPrice, type: reply (from
tag2 to lane)

11. name: open, type: synchCall (from lane to barrier)

12. name: ReplyOfopen, type: reply (from barrier to lane)

66 Concepts and approach

13. name: ReplyOftagDetection, type: reply (from lane to antenna)

14. name: ReplyOfvehicleArrives, type: reply (from antenna to DD12312)

Handling them is similar to the previous two events (some of them generate new
lifelines, some of them not) and new messages for all of them are generated.
After the last event from this series arrived, lastSeqMessage have a value of a
reply message for vehicleArrives() operation (see marker 7).

At this moment, the BSMs do not have more to execute and the extension
function in �g. 5.5 moves to line no. 7, entering the third step of the algorithm.

In the line no. 7, a call message of vehicleDrivesThrough() operation (see marker
8) is assigned to lastSeqMessage. The while loop continues (the �rst step again)
to a next iteration and dispatch an execution of vehicleDrivesThrough() to lane
object. BSMs start the execution again and produce events (second step):

15. name: vehicleDrivesThrough, type: synchCall (from DD12312 to lane)

16. name: close, type: synchCall (from lane to barrier)

17. name: ReplyOfclose, type: reply (from barrier to lane)

18. name: ReplyOfvehicleDrivesThrough, type: reply (from lane to DD12312)

The �rst of which is vehicleDrivesThrough call event. The call event has a
source in the interaction and is skipped by the events matching function. No
new lifelines are generated for these events because a lifeline for barrier was
already created in the previous iteration of the algorithm. After the BSMs
do not have more to execute, lastSeqMessage is assigned to value of a reply
message of vehicleDrivesThrough() (see marker 9) and the algorithm enters the
third step.

This time, in the line no. 7, null is assigned to lastSeqMessage (there are no
more messages to execute in the interaction). In consequence, this ends the loop
and the whole run of the algorithm is �nished.

5.7 Execution of behavioral state machines

Since now, we have abstracted out from how BSMs execute. We assumed there
were events generated during the execution. In this section, we will look closer

5.7 Execution of behavioral state machines 67

on how BSMs execute, how events are generated and when observers are noti�ed
of new events. We will examine what run-to-completion means, and then we
will see the execution algorithm, the �ring of the transition function and some
of interesting problems during the execution. We will also see an example run of
BSMs execution. In the end, we will discuss other possible semantics of BSMs
execution.

5.7.1 Run-to-completion

A client (i.e. a sequence diagram or BSM) invokes an operation in a speci�ed
instance speci�cation of a target object. A call event is then created from the
invocation. The event is placed in the events' queue for the target object. The
events in the queue are fetched by BSM of the target object, one at a time (the
UML standard gives a leeway in de�ning order of dequeuing). The algorithm
to process these events by BSMs is called run-to-completion and it's described
in the UML speci�cation [Obj09].

The approach presented in this thesis follows the semantics of the run-to-completion
from the UML speci�cation, and in [HG97], and in [DDd03].

A run-to-completion step is "an execution of sequence of transitions between
two stable state con�gurations"[DDd03] (stable state con�guration is a "con-
�guration in which no further transition is possible without dispatching an
event"[DDd03]). The step involves dispatching a completion event and tak-
ing completion transitions after entering the stable con�guration. In the end
of each run-to-completion step an invoked "method terminates and the thread
of control returns to the calling object" [HG97]. If the step was triggered by a
synchronous call event, the reply is executed at the end or the step.

One step of the run-to-completion is presented in �g. 5.9.

Figure 5.9: Run-to-completion step.

1 eventDispatched (event)=
2 t r a n s i t i o n ← enab ledTrans i t i on (event)
3 execute (e f f e c t s (t r a n s i t i o n))
4 comple t i onTrans i t i ons ← comple t i onTrans i t i ons ()
5 execute (e f f e c t s (comple t i onTrans i t i ons))
6 i f i sSynchronous (event)
7 send rep ly

68 Concepts and approach

An event is dispatched by a dispatcher in line no. 1. An enabled transition for
this event is calculated (line no. 2). Then, e�ects on the �red transition are
executed (line no. 3). Next, the completion event is dispatched, i.e. completion
transitions are calculated (line no. 4) and e�ects on them are executed (line no.
5). In the end, a reply for the synchronous event is sent (line no. 7). Note,
the execution of e�ects on both enabled and completion transitions can set the
reply.

5.7.1.1 Run-to-completion initialization

During a system initialization, before the run-to-completion is started, all BSMs,
representing all instances speci�cations in the system, receive a completion
event: they execute completion transitions and execute e�ects on them. This
is a natural behavior to leave initial pseudo-states and, therefore, prepare for a
next run-to-completion step.

5.7.2 Execution algorithm

An algorithm used for the execution of BSMs is presented in �g. 5.10. Events
scheduling algorithm is presented in �g. 5.11. They both show the how BSMs
execute in our approach for the purpose of consistency checking.

The events used in this section are not exactly the same as the UML events.
The events used here are part of the consistency checking approach and they
only partly overlap and represent the UML events or actions.

Another di�erence between our approach and the UML speci�cation is that we
will use one global queue of events for all object instances, instead of one local
queue for each object instance, which is the normal UML semantics. By using
only one queue we simplify the processing of events during simulation. Our
events contain target and source references so it is possible to derive all the
local queues from the global one by looking at where the event is targeted to
and assigning it to the local queue of the target object. The events are dequeued
from the global queue is �rst-in �rst-out (FIFO) order.

A method of �ring a transition in this thesis is inspired by work of Alexander
Knapp in [Kna04] (especially forwardTrees function for the UML 1.x models)
and was extended in this work to match UML 2.2 BSMs. The algorithm pre-
sented in this thesis models a program �ow as events broadcasted from BSMs to
observers (i.e. other parts of the consistency algorithm, including the extension

5.7 Execution of behavioral state machines 69

Figure 5.10: Execution of behavioral state machines.

1 invokeExecut ion (source , target , message) =
2 (operat ion , args , i sSynchronous) ← message
3 ca l lOpe ra t i on (source , target , operat ion , args ,

i sSynchronous)
4 executeFirstFromQueue ()

5 ca l lOpe ra t i on (source , target , operat ion , args , i sSynchronous)=
6 event ← c reateCa l lEvent (source , target , operat ion , args ,

i sSynchronous)
7 addEventToQueue (event)
8 i f i sSynchronous
9 executeFromQueueAndGetResult (event)

10 e l s e
11 not i f yObse rve r so fCa l lEvent (event)
12 not i fyObserver so fContro lEvent (event)

13 accept (event) =
14 (source , target , operat ion , args , i sSynchronous) ← event
15 i f not argumentsConformToParameters (args , opera t i on)
16 e r r o r
17 i f i sQueryOperat ion (opera t i on)
18 ca l lQueryOperat ion (source , operat ion , args)
19 re turn
20 i f i sExecut ing (t a r g e t)
21 i f i sSynchronous
22 e r r o r
23 e l s e
24 eventLost (event)
25 e l s e
26 se tExecut ing (target , t rue)
27 t r a n s i t i o n s ← getTrans it ionsWithVal idGuards (target ,

operat ion , args)
28 i f t r a n s i t i o n s 6= ∅
29 toTake ← choose (t r a n s i t i o n s)
30 i f not ha sSentNot i f i c a t i onOf (event)
31 not i f yObse rve r so fCa l lEvent (event)
32 r ep ly ← f i r eT r a n s i t i o n (target , toTake) // t h i s can lead

to a r e c u r s i v e c a l l (s) to ca l lOpe ra t i on
33 f i r eComp l e t i onTrans i t i on s (target , r ep ly)
34 i f not replyConformToResult (rep ly , operat ion ,

i sSynchronous)
35 e r r o r
36 i f i sSynchronous
37 not i fyObserverso fReplyEvent (s e l f , event , r ep ly)
38 not i fyObserver so fCa l lReturnContro lEvent (event)
39 e l s e
40 i f i sSynchronous
41 e r r o r
42 e l s e
43 eventLost (event)
44 se tExecut ing (target , f a l s e)
45 executeFirstFromQueue ()

70 Concepts and approach

Figure 5.11: Scheduling of call events for behavioral state machines.

46 executeFirstFromQueue () =
47 i f queue 6= ∅
48 ca l lEvent ← f i r s tE l ement (queue)
49 removeFromQueue (event)
50 accept (event)

51 executeFromQueueAndGetResult (ca l lEvent)
52 do
53 executeFirstFromQueue ()
54 whi le ca l lEvent ∈ queue
55 getResu ltFor (ca l lEvent)

sub-algorithm (see section 5.6.1) and the veri�cation of protocol state machines
algorithm (see section 5.9.1)). Having an observer pattern in place provides a
separation between BSMs execution and other sub-algorithms.

In the algorithm that will be presented, there is a di�erence between a syn-
chronous and an asynchronous type of calls. The di�erence lies in the way the
SAL de�nes a reply of a synchronous operation (see section 5.8.2.3 for more
details on this topic). The BSM must be able to reply for a synchronous call in
the same run-to-completion step it was called to avoid a deadlock (that would
be caused by blocking of a caller that will wait for a reply that would never
come - compare with inconsistency 3.4.2). Because of that, synchronous calls
must be handled when they are called and a returned result must be known in
one run-to-completion step.

There are few types of events to communicate the execution state to other sub-
algorithms observing the execution:

call event that informs of a received call in BSM;

reply event that informs of a reply for a call from BSM;

completion event that is an internal event used to �re transitions without
triggers and with valid guards;

call return control event that helps to model when a program �ow returns
from a call to a caller (a moment of sending this event is di�erent for
synchronous and asynchronous calls).

Following is the description of the algorithm: the �rst call initiating an execution

5.7 Execution of behavioral state machines 71

is done by a client (in our case, a sequence diagram via the extension sub-
algorithm) using invokeExecution operation (line no. 1). A message from the
sequence diagram is used for callOperation arguments (line no. 3).

After callOperation is called, a new call event is created (line no. 6). Then, the
event is placed in the global events queue (line no. 7). If the call is synchronous,
the event queue must be executed immediately until we are able to get a result
of the called operation (line no. 9). If the call is asynchronous, the call event
and a new call return control event are sent to observers as noti�cations (lines
no. 11 and 12). After the call to callOperation returns, it is necessary to call an
operation executeFirstFromQueue() at least once (line no. 4). This will execute
remaining events from the queue, if any (note, an execution of the event will
eventually result in accept operation called in line no. 50 and in recursive call
in line no. 45).

The accept operation is called for a scheduled call event in line no. 50: it �rst
checks if arguments of the event conform to parameters of an operation, if not,
an error is reported (line no. 16; compare it with an inconsistency in section
3.1.5). If the operation is a query operation (the operation that does not change
a state of a system), it is handled immediately (line no. 18) without changing
an active state con�guration of the BSM (see section 5.7.6). If a target BSM
is executing and the call is synchronous, and then it is an error (line no. 22)
because of a deadlock that occurs: isExecuting means that a BSM is not in
stable state con�guration (is executing event right now) and cannot �re any
transitions. That means, recursive synchronous calls to self-instance are never
possible and cause an error (see �g. 5.12). This problem was observed �rst by
Harel and Grey in [HG97] and then by Tenzer and Stevens in [TS03]9.

In case of an asynchronous event arrival while a target BSM is executing, the
event is lost (line no. 24).

Next, transitions outgoing from the active states con�guration of a target BSM
with valid guards and having triggers for a given operation are calculated (line
no. 27). Arguments of the event must be taken into consideration during this
process (guards can refer to names of arguments of a called operation).

If no valid transitions are found and if a call is synchronous, it is an error (line

9Harel and Grey wrote [HG97]:

...when the client's statechart invokes another object's operation, its execu-
tion freezes in midtransition, and the thread of control is passed to the called
object. Clearly, this might continue, with the called object calling others, and
so on. However, a cycle of invocations leading back to the same object instance
is illegal, and an attempt to execute it will abort.

72 Concepts and approach

Figure 5.12: The presented BSM cannot execute a recursive synchronous call
to self. In a moment, self.m() is called, a transition with trigger
b() is still in a process of �ring and BSM is not in a stable state
con�guration. The result of m() cannot be determined.

no. 41; compare with an inconsistency in section 3.5.1). For an asynchronous
call, the event is lost (line no. 43).

If there is any transition to take, one is chosen (line no. 29). Note, if there is
more than one transition (the transitions are con�icting), the choice (and the
behavior of the BSM) is non-deterministic is �agged as a warning (see �g. 5.13).

Our current approach, in case of internal non-determinism, is to always choose
one �xed transition in the set but �ag the situation as a warning. However, if
the BSM describes behavior of an external component (that is placed outside
our system and therefore yields external non-determinism) we would like to give
a choice to a user (a designer) at run-time of which transition to take. More on
the topic is presented in 5.7.4.

Figure 5.13: There are two con�icting transitions with trigger for m(), both
outgoing from the State 1. In a result there is an internal non-
deterministic choice in this BSM. The situation must be detected
and �agged as a warning during BSMs execution. One of the
con�icting transitions must be chosen during the execution.

If it was not done before (the noti�cation could be sent earlier for asynchronous
call in line no. 11.), the observers are noti�ed of the call event (line no. 31).

5.7 Execution of behavioral state machines 73

Next, the chosen transition is �red and an e�ect on the transition is executed
(line no. 32). An action language (SAL) is de�ned for e�ects on transitions and
is described in section 5.8.

Firing a transition, in most cases, also changes an active states con�guration
of a target state machine. Firing a transition can also call operations in other
BSMs. Calling other BSMs results in a recursive call to callOperation (line no.
5). See section 5.7.5 for more details on this topic.

A completion event is dispatched internally to a target BSM (line no. 33), i.e. all
transitions that do not have any trigger and have valid guards are �red. During
�ring of completion transitions, simple in�nite loop detection is in place so that
a completion self-transition without any guard should not be taken (see �g.
5.14). Replies for synchronous calls can be modi�ed during �ring of completion
transitions.

Figure 5.14: The in�nite loop detection during the execution of BSMs is able
to detect a completion self-transition with no trigger and no
guard.

The reply is checked for a type and a multiplicity conformance to the oper-
ation result in line no. 34 (compare with an inconsistency in section 3.4.3).
Asynchronous calls shall not return results.

If a call is synchronous, the algorithm noti�es observers of a new reply event and
a new call return control event (lines no. 37 and 38). Replies for synchronous
calls are always sent after BSM stabilizes, i.e. after it is not possible to proceed
without dispatching the next event from the queue. This semantics follows the
semantics of David Harel and Eran Gray in [HG97] and formal UML semantics
of state machines in [DDd03].

After all the previous steps were executed, a target BSM is set not to be execut-
ing anymore (line no. 44) and a next event (if any of them left or were produced
by the last run-to-completion step) can execute (line no. 45).

74 Concepts and approach

A scheduling algorithm presented in a pseudo-code in �g. 5.11. The FIFO
events' queue is used in functions of the scheduler. Every time executeFirst-
FromQueue() operation is called, and if events queue is not empty, the �rst call
event is taken out from the queue and accept() function is called for a target
BSM (line no. 50).

For synchronous calls, executeFromQueueAndGetResult() function is executed.
The function ensures that a synchronous event will be executed (using do-while
loop in line no. 52). Then, a result of this event is retrieved (line no. 55).

5.7.3 Guards on transitions

Guards are speci�ed on transitions. In our approach, guards are de�ned in
the Object Constraint Language (OCL) language [Obj06]. A transition can be
�red only when a guard on the transition is satis�ed. There are no side-e�ects
of evaluation of guards, i.e. evaluating guards must not change a state of a
system. A guard on a transition is either "else" statement or an OCL query
expression returning a Boolean result. A guard is evaluated in a context of an
instance speci�cation that corresponds to an object for which a BSM (in which
the transition is de�ned) executes.

Transitions with guards provided as "else" statement must be outgoing from
choice or junction pseudo-states that do not have any other outgoings transitions
with guards equal to "else" statement and have at least one other transition
with a guard other than "else" statement. The transition with "else" state-
ment as a guard is taken only when guards on all other transitions outgoing
from a source pseudo-state evaluate to false.

In contrast, guards provided as OCL query expressions can be placed on any
transition that is not outgoing from initial pseudo-state.

If a guard is de�ned on a transition on which there is a trigger for a call event,
arguments' names of the call are available in the guard. An example of this
situation is presented in �g. 5.15.

Figure 5.15: The guard using arguments of the call event to evaluate.

5.7 Execution of behavioral state machines 75

5.7.4 Internal vs. external non-determinism

During the run-to-completion, "it is possible for more than one transition to
be enabled within a state machine"[Obj09] (see �g.5.13). These transitions are
called con�icting transitions in the UML speci�cation. If such con�ict happens
between transitions in the same region of the state machine, only one transition
may �re. The choice, which enabled transition to �re, is non-deterministic.

We divide non-determinism into two categories:

1. an internal non-determinism where "the agent makes the choice as to which
action to take"[VdH94], and

2. an external non-determinism where the choice is up to the external envi-
ronment.

A non-deterministic choice can be angelic, demonic or erratic dependent on
being the "correct, desired action whenever possible"[VdH94] (angelic) or "in-
correct, undesirable one if given that possibility"[VdH94] (demonic) or unpre-
dictable (erratic).

In classes and components that are parts of a UML model that we design, an
existing non-determinism is internal. I.e., we can specify BSMs in the way they
will have internal non-determinism. In this approach, a solution for the internal
non-deterministic choice is to always take one �xed transition from a set of all
possible enabled transitions10. An existence of the internal non-determinism is
marked as a warning so that a designer knows about a problem.

In the UML models, it is possible to specify components that represent external
components that we use but do not model. If we would like to use classes from
such components during BSMs execution we would need to model at least one
BSM that will model external non-deterministic choices about possible actions
in an external component. Such a BSM should be explicitly marked as belonging
to an external component by a designer. In this case, the eventual choice of a
transition is given to a designer during the simulation (a designer chooses one
transition from the list of enabled transitions).

10This is neither angelic, demonic or erratic choice type. It can be seen as one version
of a non-exhaustive choice that will be consistent between subsequent user runs of the same
scenario with the same initial system's state.

76 Concepts and approach

5.7.5 Firing a transition

Firing a transition function is presented in �g. 5.16. Firing a transition �rst re-
moves source states from an active states con�guration in an inside-out manner,
i.e. in case of composite states the most inner state is removed �rst. Exit actions
in removed states should be executed immediately when a state is removed from
an active state con�guration.

Figure 5.16: Firing a transition.

1 f i r eT r a n s i t i o n (conf , t r a n s i t i o n) =
2 l e aveSourceSta te s In s ideOut (conf , t r a n s i t i o n)
3 r ep ly ← getReply (execute (e f f e c t (t r a n s i t i o n)))
4 ente rTargetState sOuts ide In (conf , t r a n s i t i o n)
5 re turn r ep ly

An e�ect of a transition is executed. E�ects are speci�ed in the SAL (see sec.
5.8). If a reply statement (see section 5.8.2.3) is executed, a result is returned
and saved in reply variable. If an e�ect contains call expressions (see section
5.8.2.10), it leads to one or more calls to the callOperation function from �g.
5.10.

Then, target states are added to active states con�guration in an outside-in
manner, i.e. the most outer composite state is added �rst. Entry actions must be
executed immediately after addition of the state to an active state con�guration.
Finally, the variable reply is returned.

5.7.6 Query operations

A query operation is an operation that "leaves the state of the system un-
changed" [Obj09, p. 104]. Query operations are therefore useful to implement
getter operations in classes.

We de�ne body of a query operation as an OCL body expression [Obj06]. This
allows evaluating a result of a query operation immediately, without executing
a complete run-to-completion step in a BSM. This is particularly useful in our
approach because it avoids already the described problem of the deadlock in
case of a recursive self-call depicted in �g. 5.12. This also makes BSMs layout
simpler because a designer does not need to de�ne transitions with triggers for
getter operations.

5.7 Execution of behavioral state machines 77

There is an important issue with semantics however: unfortunately, the UML
2.2 meta-model has no means to specify a query operation's body. What the
UML has is bodyCondition, that is "an optional constraint on the result values
of an invocation of" [Obj09, p. 104] an operation. That means that it is not used
to return a result, but to check a result. Additionally, a result of bodyCondition
must be a Boolean value.

To resolve the problem, in our approach, we will de�ne semantics of UML body-
Condition to be the same as semantics of OCL body expression, i.e. that it is
"used to indicate the result of a query operation" [Obj06, p. 9]. Consequently,
we allow bodyCondition to be speci�ed in a model as an OCL body expression
that can return any type.

5.7.7 Example run of the execution algorithm

In this section, we will look at an example run of the execution of BSMs during
the check-out with toll tag scenario simulation (see �g. 5.17).

Each object instance presented in �g. 5.17 in the object diagram has its own
BSM instance. The BSMs of instances that actively take part in the scenario
are presented in �g. 5.18.

Before the scenario simulation is started, a system is instantiated, i.e. all the
BSM instances presented in �g. 5.18 are created. A completion event is dis-
patched to each of the new BSM instances (compare with section 5.7.1.1). In
the result, all of the BSMs move from initial states to "Idle" states.

Next, the simulation of the scenario starts. The extension function (compare
with �g. 5.5) invokes the invokeExecution function (see �g. 5.10, line no. 1) with
the �rst message in the scenario (vehicleArrives) as a parameter. The properties
of the message are extracted in line no. 2 and then, a call to the function
callOperation in line no. 3 is executed (source in this call is an interaction
diagram of the scenario and target is antenna instance).

The callOperation function invocation (line no. 5) creates a new call event based
on the given parameters (line no. 6). The new event is placed in the event's
queue (that was empty before) in line no. 7.

Because the call is synchronous (the message vehicleArrives in the sequence dia-
gram is synchronous), a scheduler is given a task to execute all events necessary
to get a result for the newly created event (line no. 9).

78 Concepts and approach

Figure 5.17: The realization of the scenario check-out with toll tag and the
corresponding object diagram after the simulation �nished.

5.7 Execution of behavioral state machines 79

Figure 5.18: The BSMs of instances that actively take part in the check-out
with toll tag scenario realization. The names of the corresponding
object instances are presented in the rectangles.

80 Concepts and approach

The loop in line no. 52 in the scheduler calls executeFirstFromQueue (line no.
53). Because the newly created event is in the queue, a function accept is called
in line no. 50.

accept function starts a run-to-completion step in the BSM of the antenna in-
stance from checking that an operation is available in the instance (it is declared
publicly) and that the arguments ("tag123" of type String) conform to the pa-
rameters (one String parameter) of the called operation (vehicleArrives) in line
no. 15.

The operation vehicleArrives is not a query operation and the antenna instance
is not executing anything else at that moment so the function moves to line no.
26 where a �ag isExecuting is set for the antenna instance.

The transitions with valid guards for the operation vehicleArrives are found in
the active state con�guration of the antenna's BSM (at that time it contains
only "Idle" state). There is only one enabled transition (compare �g. 5.18,
antenna's BSM). The enabled transition is chosen deterministically (because
it's the choice from a set containing a single element) in line no. 29.

Next, the noti�cation for the observers about the call event is sent in line no.
31 (the observers include eventFired function in �g. 5.7):

1. name: vehicleArrives, type: synchCall (from DD12312 to antenna).

The execution of the e�ect on the chosen transition is performed in line no. 32.
The executing e�ect is speci�ed as "expressLane.tagDetection(tagId)". In the
e�ect, the lane object will be selected as a target and the (recursive) invocation
to the callOperation function (line no. 5). The exact arguments of the call will
be:

callOperation(antenna, lane, tagDetection, ["tag123"])

For a clarity of a description, we will skip the part of the simulation that involves
the call of tagDetection operation and all the e�ects (incl. the subsequent calls
and replies) that it triggers11.

After executing, all of the events required to get the result of the synchronous

11We can do this because the process of the execution of the subsequent recursive calls and
the run-to-completion steps in other BSMs will be similar to the antenna instance's BSM
execution that we are examining here.

5.7 Execution of behavioral state machines 81

call to tagDetection, reply is assigned an empty value (compare to void12) (still
in line no. 32). In this case, an empty value is assigned because on the �ring
transition there is no reply statement (see section 5.8.2.3).

Let's look at the active states con�guration of antenna during the �ring of
the transition. The "Idle" state is removed from the con�guration once the
transition started the �ring process (see �g. 5.16, line no. 2). After the e�ect
�nishes executing, the "Idle" state is added back to the active con�guration (see
�g. 5.16, line no. 4). The state is added back because, in this case, the �ring
transition is a self-transition coming back to "Idle" state.

Next, a completion event is dispatched and completion transitions are �red in
line no. 33 (in �g. 5.10). We do not have any completion transitions in antenna's
BSM outgoing from "Idle" state so we do nothing. reply is also not modi�ed in
this case, it could be though, if there were any completion transitions with the
reply statement.

The reply variable passes the check in line no. 34 because it has an empty value
and the vehicleArrives operation should not return any result (see the class
diagram in �g. A.1 in the appendix).

Because the call is synchronous, the observers are noti�ed of the new reply
event (line no. 37) and of a new call return control event (line no. 38). The
isExecuting �ag is then unset for the antenna instance in line no. 44.

Finally, the remaining events are dispatched from the event's queue in line no.
45 and then in line no. 4. In fact, nothing is dispatched because the queue is
empty at that time. Dispatching of the remaining events here is useful if we had
some asynchronous events waiting in the queue.

At this point, invokeExecution function returns to a caller (the extension func-
tion). The function invokeExecution will be called again for a next message
(vehicleDrivesThrough) with a target set to lane instance. The function will
execute similarly to the execution of the message vehicleArrives that we have
just seen.

12This is one of the places where there should be a clear distinction between null and an
empty value (i.e. void). A function can return null but it doesn't mean it returned no result
at all. In this case, we have a function vehicleArrives that does not have any return value
declared (in the class diagram) and it should return an empty value.

82 Concepts and approach

5.7.8 Other possible semantics of behavioral state ma-
chines execution

In this thesis, we have chosen to use the UML run-to-completion semantics
that is described in UML speci�cation [Obj09] and formalized in papers like
[HG97] and [DDd03]. However, and this is worth noticing, the semantics is not
well suited for executions of some types of scenarios involving the synchronous
events that would be otherwise natural scenarios in object-oriented systems.

One of the problematic scenarios that was already described is inability to per-
form recursive synchronous self-calls (including the example presented in �g.
5.12). The inability is caused by the deadlock that occurs when one synchronous
call invokes the subsequent synchronous call in another objects that then call-
backs synchronously to self-object that is frozen (self is still executing the
initiating synchronous call). It is possible to address the problem by using so-
lution described in [TS03]. The solution introduced special type of BSMs that
separate them into two types of state machines: protocol state machines (that
are here BSMs with removed e�ects) and method state machines that "allow
de�nition of a state diagram in the context of an operation, but do not provide
detail about the particular features and behavior of this kind of state diagram"
[TS03]. In this solution, the recursive self synchronous callback is possible
because for each call event, a new instance of method state machine will be
executed avoiding the deadlock.

The next problematic scenario is a kind of a callback that would not be able
execute during a synchronous call event if executed according to our reply

semantics (see section 5.8.2.3). The scenario is presented in �g. 5.19.

Figure 5.19: The callback scenario that is not possible to execute with our
run-to-completion semantics.

5.8 The Simple Action Language 83

After an object c receives a synchronous event m(), d is asynchronously called
and in the result, it should call back to c value of 10. A reply of m() depends on
the callback's argument value. This is an error because BSM of c will need to
reply the result value in one completion step, i.e. it cannot accept the callback
event sent by d before sending the reply of m().

To resolve the problem, the reply semantics could be changed so that a reply is
sent immediately when executed in an e�ect. This enables delaying a reply in
multiple run-to-completion steps. That will, unfortunately, lead to the situation
where a reply would be needed for all triggers, even if the triggered operation
would not declare to return a result and, therefore, will make BSMs look more
complex.

In this project, I have chosen the standard semantics for the run-to-completion,
knowing about the possible problems and investigating di�erent options and
even implementing some of them in my prototypes. Then, the confrontation of
a theory with usability had taken place before a decision to keep the standard
semantics. The main reasons for not using other semantics of BSMs execution
is to keep close as possible to the original UML semantics.

5.8 The Simple Action Language

E�ects on transitions in BSMs can contain behavior expressions. A behavior
expression is executed when a transition is �red. The UML does not de�ne
any particular language to be used for behavior expressions; instead, to allows
choosing an action language for a model.

Simple Action Language (SAL) was de�ned during this Master's project to
specify behavior expressions on transitions in BSMs. The language supports
basic Integer and Boolean operations and partially maps to UML Actions. The
mapping includes CallAction and ReplyAction de�ned in the UML standard.

In this section the SAL language is described. Firstly, the SAL grammar is
described, and then examples of usage are presented, and then the semantics of
the language is described. In the end of the section, in a short summary, some
limitations of the language are pointed out.

84 Concepts and approach

5.8.1 SAL grammar

The SAL uses a textual representation. The following grammar in EBNF nota-
tion describes the SAL grammar:

〈stat-list〉 ::= 〈statement〉 (`;' 〈statement〉)*

〈statement〉 ::= 〈reply〉 | 〈assignment〉 | 〈expression〉 | 〈empty〉

〈reply〉 ::= `reply' 〈expression〉

〈assignment〉 ::= 〈identi�er〉 `:=' 〈expression〉

〈expression〉 ::= 〈Boolean expression〉
| 〈integer expression〉
| 〈Boolean constant〉
| 〈integer constant〉
| 〈null constant〉
| 〈string constant〉
| 〈OCL expression〉
| 〈collection expression〉
| 〈navigation expression〉
| `(' 〈expression〉 `)'

〈Boolean expression〉 ::= 〈expression〉 `and' 〈expression〉
| 〈expression〉 `or' 〈expression〉
| `not' 〈expression〉

〈integer expression〉 ::= 〈expression〉 `+' 〈expression〉
| 〈expression〉 `-' 〈expression〉
| 〈expression〉 `*' 〈expression〉
| 〈expression〉 `/' 〈expression〉
| 〈expression〉 `%' 〈expression〉

〈Boolean constant〉 ::= `true' | `false'

〈integer constant〉 ::= `-'? 〈digit〉+

〈null constant〉 ::= `null'

〈string constant〉 ::= `¨' string `¨'

〈OCL expression〉 ::= `ocl(´' OCL query `´)'

5.8 The Simple Action Language 85

〈collection expression〉 ::= `[' (〈expression〉 (`,' 〈expression〉)*)? `]'

〈navigation expression〉 ::= 〈identi�er〉
| 〈call expression〉
| 〈navigation expression〉 `.' 〈identi�er〉
| 〈navigation expression〉 `.' 〈call expression〉

〈call expression〉 ::= 〈call〉 | 〈call〉 〈selector〉

〈call〉 ::= 〈synchronous call〉 | 〈asynchronous call〉

〈synchronous call〉 ::= 〈id〉 `(' (〈expression〉 (`,' 〈expression〉)*)? `)'

〈asynchronous call〉 ::= `async:' 〈id〉 `(' (〈expression〉 (`,' 〈expression〉)*)? `)'

〈identi�er〉 ::= 〈id〉 | 〈id〉 〈selector〉

〈id〉 ::= 〈letter〉 (〈letter〉 | 〈digit〉)*

〈digit〉 ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'

〈letter〉 ::= [`a'-`z', `A'-`Z', `_']

Operations precedence is (from highest to lowest): not, %, /, *, -, +, and, or.

Examples of the SAL valid statements are:

� x := 10

� p := isInPState()

� obj.get(apple).equals("apple", true)

� reply (ocl(´obj.apples->size()´) + 1) * -8

5.8.2 SAL semantics

5.8.2.1 List of statements

List of statements (stat-list) is list of SAL statements in which each statement
is separated by a semicolon. The statements are executed from the leftmost to
the rightmost. For example op1(); op2() will execute op1() �rst and then
op2(). The semicolon after the rightmost statement can be skipped.

86 Concepts and approach

5.8.2.2 Expression

Every expression is the SAL language is evaluated to a collection of zero or more
UML value speci�cations. If in a resulting collection there is only one element,
the collection may be treated as a single value depending on a context of how
it is used; the collection can be implicitly converted to the single value.

The UML standard pro�le itself does not have any value speci�cations for col-
lections as primitive types. The only way to express that an element speci�es
a collection of values in UML is to provide lower- and upper-bounds for a mul-
tiplicity of the element. The SAL therefore must use its own collection types
during evaluation of an expression and then match it to the UML multiplicity
of an element when the expression is used in the speci�c context of this ele-
ment. E.g. when we assign a value of an expression to a variable x, the SAL
context-wise check will assure that the expression's value can be assigned to
x by checking the type and the multiplicities of x and then comparing them
with the type and the number of elements in a collection that is a result of the
expression. If the type or the number of elements in the collection is invalid, it
is an error.

5.8.2.3 Reply statement

A reply statement is the SAL representation of the UML ReplyAction. The
reply statement corresponds to a trigger that was the last trigger used to accept
a synchronous call event of an operation that returns a result. The reply state-
ment accepts return values of this operation and completes the execution of the
synchronous call in a BSM. After accepting, at the end of a run-to-completion
step, values of the reply statement are returned to a caller. An example of the
reply statement used in a BSM is presented in �g. 5.20.

Figure 5.20: The example of the SAL reply statement for a call of operation
m() in a BSM.

In an unusual situation, there may be more than one reply statements executed
during one run-to-completion step of a BSM execution after an operation call.
In this case, the value of the last reply statement completely overrides values of

5.8 The Simple Action Language 87

previous reply statements and will be the one that returns a result to a caller.
This situation is also �agged as a warning.

If at the end of a run-to-completion step there was no reply statement executed,
and the current event processed by a BSM is a call event of an operation that
declares to return a result, this situation is considered an error. An error also
occurs if a reply statement is executed during initialization of BSMs if there
is no triggering event involved (during execution of a completion event during
initialization of the run-to-completion). Reply statements must not be executed
for asynchronous call events or call events of operations that do not declare any
return types.

5.8.2.4 Assignment

Assignment is the SAL representation of a mixture of few UML actions, e.g.
WriteVariableAction, WriteLink and WriteStructuralFeature. The assignment
can create a new local variable (if it didn't exist before assignment) or change
an existing variable.

All variables' names must be accessible from a behavioral classi�er that owns a
BSM (owner)13 in which an assignment is declared. In other words, we need to
be able to resolve a model context of a variable.

Depends on what is a model context of a variable that we assign to, there may
be many di�erent contexts of an assignment:

An assignment to attributes of an owner is made in a context of an in-
stance speci�cation for which a BSM of the owner is executed. After the
assignment is successfully executed, there will be a slot in the instance
speci�cation with a name corresponding to the attribute's name used.

An assignment to a new local variable is also made in a context of an in-
stance speci�cation for which a BSM of the owner is executed. First,
when we create a new local variable, an attribute (a model context) must
be created in the owner14. The SAL evaluator creates an attribute (with
private visibility) in the owner for each created local variable. A type and

13We will be later using owner in a text that was de�ned here.
14The model context element speci�es a type and multiplicities of values in a variable. The

OCL evaluators require model context for identi�ers to evaluate. If we would like to use a
local variable created by an SAL assignment in OCL guards then we must have the model
context for this variable.

88 Concepts and approach

multiplicities of the new attribute will be inferred from an expression that
we assign to. The assignment then behaves like an attribute assignment.

An assignment to associations' role names is made in a context of instance
speci�cations that represent links of an association that we assign to.

There are two types of assignments in the SAL:

1. replace all assignment uses syntax without a selector (see section 5.8.2.5),
e.g. x := 2. This assignment replaces all values in x. If x was a variable
with lower- and upper- multiplicities equal to 1, right side of the assign-
ment must evaluate to single valued collection. If x was a collection, all
previous values will be removed and then value 2 will be added to the
collection x ;

2. replace one assignment uses syntax with a selector, e.g. x[1] := 2 can
be used for ordered collections to replace or add only one selected value
in the collection. In this assignment, the right side of the assignment
must evaluate to one valued collection. If the selector index points to
out of bounds, it is considered an error with an exception of selector index
pointing to "-1", and then a value at the end of the collection is replaced15.

5.8.2.5 Selector

Selector is used to specify an index of a value in an ordered collection. The
selector must evaluate to a single integer value greater or equal to 1 or equal
to -1. -1 index value represents the last element of the collection (it represents
the UML in�nity number). The index of the �rst value in a collection is 1. An
index 0 is unde�ned and is considered an error.

5.8.2.6 Boolean expression

De�nes a set of the standard Boolean operations: not, and, or. The operations
can be evaluated on single-valued operands only. E.g. false or (true and

not false) will evaluate to true.

15This semantical rule is inspired by the UML AddStructuralFeatureValueAction where
adding an element at an in�nite index results in adding the element to an ordered collection
at the end.

5.8 The Simple Action Language 89

5.8.2.7 Integer expression

De�nes a set of the standard integer operations: addition (+), subtraction (-),
multiplication (*), division (/), modulo (%). The operations can be evaluated
on single-valued operands only. E.g. 2 + 5 * 3 will evaluate to 17.

5.8.2.8 OCL expression

The SAL gives a possibility to evaluate an OCL query to a result that can be
then used as a SAL collection. The link between SAL and OCL is provided
by an OCL expression in SAL, e.g. ocl(´obj.apples->size()´) returns size
of obj.apples. The character ´ (acute accent) is used for escaping the OCL
expression.

A main reason for introducing the OCL expression in the SAL is a great expres-
siveness of the OCL that enables evaluating of more advanced queries.

One could argue that it is better to borrow the OCL syntax and use it in the
SAL syntax. I agree with this view completely; however a required amount
of work to accomplish it would be rather big and could be a foundation of a
separate thesis (at least).

5.8.2.9 Collection expression

The SAL gives a possibility to create own collections. At the moment, only
sequences can be created by the SAL evaluator (ordered lists of values allowing
duplicates). All collections in the SAL are �attened16. The SAL automatically
�attens nested collections by extracting their values and adding to a resulting
collection. E.g. [a, b, [c, [d]], e] evaluates to [a, b, c, d, e]. Cre-
ation of an empty collection is possible by stating [].

The collection expression was introduced to the SAL in order to give a �exibility
to call operations that have parameters with upper multiplicities greater than 1
or lower multiplicities equal to 0. A single argument of a call to such operation
can therefore accept more than one value or no values, e.g.

� m([1, 2, 3]) is a call to operation m with one argument of a collection
containing three elements;

16This is similar approach that is used for the OCL collections.

90 Concepts and approach

� m2([], 8) is a call to operation m with two arguments, the �rst argument
is an empty collection.

5.8.2.10 Call expression

The call expression is SAL representation of UML CallAction. The call ex-
pression accepts a number of arguments and matches them to parameters of a
speci�ed operation. Call expressions may be synchronous or asynchronous17.
We can call operation asynchronously by adding async: before the name of the
operation, e.g. async:op(true).

A synchronous call invokes a speci�ed operation with given arguments and waits
till an execution of the operation completes. An asynchronous call does not wait
for the operation to complete. If a synchronous operation returns result values
then the call expression evaluates to these values. It is possible to assign a
variable to a call expression that evaluates to a result of an operation called,
e.g. result := m(2, 3).

By default, a call expression context is an instance speci�cation of the owner of
BSM, i.e. operations called in call expressions must be present in the owner. The
context can be changed by using navigation expressions (see section 5.8.2.12).

It is possible to specify a call expression in a context of a collection containing
many instance speci�cations. If all of the instances have an operation with a
given name then the call expression calls each instance in the collection and
�attens the results of the called operations into one resulting collection.

5.8.2.11 Identi�er

Identi�er in the SAL can refer to an association end role name or to an attribute
of an instance speci�cation for which the identi�er is evaluated.

If an identi�er expression refers to an attribute, and then the identi�er expres-
sion returns all values from a slot that represents this attribute. If there is
no slot for this attribute in the instance speci�cation (the attribute was not
initialized), null value is returned.

If an identi�er expression refers to an association end role name, and then the

17In the UML, beside synchronous and asynchronous calls to operations, there exists a signal
element to express asynchronous communication.

5.8 The Simple Action Language 91

identi�er expression returns all instance speci�cations connected to the current
instance speci�cation with links representing this association. If there are no
links for this association, null value is returned.

If there is an ambiguity between names of an association end and an attribute
(see �g. 5.21 for an example), the attribute will take precedence during the
evaluation of the identi�er.

Figure 5.21: The ambiguity between names of the association end d and the
attribute d.

self identi�er provides self-identity. self always returns the current context
of the expression.

A selector (see section 5.8.2.5) may follow an identi�er to �lter a single element
from a collection.

5.8.2.12 Navigation expression

Navigation expression is used to change a context of an evaluation for call ex-
pressions and identi�ers. A navigation expression navigates through instance
speci�cations connected with links by using provided role names of ends of as-
sociations connected to the current context. If a role name is missing on an
association, the navigation through the association is not possible.

For navigation expressions, the default context is implicitly self, e.g. d.s().p
has the same meaning as self.d.s().p.

Navigation expressions are allowed navigating only when the current context
(left side of the expression) is single valued. Any other case is an error. To
navigate through multiplicity many ordered collections of instance speci�cations
connected by links, it is necessary to use selector to specify a single instance for
navigation.

An example of a navigation expression used to change context of a call expression
is presented in �g. 5.22. The expression d.s() in the example is evaluated in
a context of instance c and uses role name d of an association to navigate

92 Concepts and approach

to instance d of class D connected with a link which is an instance of the
association.

Figure 5.22: The example of the SAL navigation expression used in BSM
de�ning behavior of class C.

5.8.3 SAL summary

The SAL provides basic functionality of calling operations (synchronously and
asynchronously) from BSMs and to send and receive results of operations. SAL
provides functionality of reading and writing variables by changing slots' values
and links. The support of collections is minimal, but it is enough to call opera-
tions with parameters that have multiplicity many elements. It is also possible
to read and write one speci�ed element of a collection.

The current version of the SAL does not have a constructor and a destructor of
instances (with exception of links (that are also instances) that can be created
and removed by the assignments). The creation and deletion was out of the scope
of the project. Moreover, it was just not necessary to have these functionalists
for chosen use cases in the case study (described in section 4). The creation and
deletion can be added later without a big e�ort.

The SAL does not also have advanced �ltering mechanisms available in the OCL.
Instead, we provide a connection to OCL by introducing the OCL expression
in SAL where all those advanced constructs are available for a user. The only
reason we propose this solution is tight deadline of the project and the priorities
of SAL in the project.

There exist more complex action languages that have a support for all types of

5.9 Veri�cation of protocol state machines 93

actions, e.g. Jumbala [Dub06].

5.9 Veri�cation of protocol state machines

Protocol state machines (PSMs), in the presented approach, are de�ned in a
context of interfaces. Although the UML semantics allows using protocols in
context of any classi�er and port, we concentrate on the context of interfaces.
The presented technique of checking PSMs can be easily applied to check pro-
tocols in a context of any classi�er or port but it is out of the scope of this
project18.

In this section, we will see an algorithm to verify PSMs and an example run of
the algorithm on a model of the toll with components (see appendix B).

5.9.1 Veri�cation of protocol state machines algorithm

A separate instance of a PSM checking algorithm is created for each object
instance of a class that implements an interface (which has a PSM de�ned).
E.g. an object instance x is of class C. C implements two interfaces i1 and i2,
each with a PSM de�ned. There will be two instances of the PSM checking
algorithm for x, one instance of the algorithm veri�es for the PSM of i1 and
another instance of the algorithm veri�es the PSM of i2.

The PSMs veri�cation algorithm uses PSM states. A PSM state represents one
possible path in a checked PSM that can be taken. The algorithm constructs all
possible PSM states according to events that are generated (noti�ed) during a
BSMs execution. Invalid PSM states are eliminated. Therefore, after an event
was processed, there must be at least one PSM state for each satis�ed PSM
that is being veri�ed. If there are no PSM states after an event was processed, a
conclusion is that a checked PSM was violated during the BSMs execution and
an error is produced.

The function eventOcurred in the algorithm presented in �g. 5.23 observes an
execution of BSMs and �lter events for referred operations in a checked PSM
(line no. 5). The function knows about a list of all possible PSM states at a
current moment of the execution (variable psmStates) that conform to a current

18In summer semester of 2012, students of System Integration course were instructed to use
protocols in the context of interfaces. In the previous years, protocols were de�ned in the
context of ports.

94 Concepts and approach

Figure 5.23: PSMs veri�cation algorithm.

1 i n i t () =
2 psmStates ← i n i t i a l i z ePSM ()
3

4 eventOcurred (event) =
5 i f ((not i sRep ly (event) and getTarget (event) = myInstance)

or (i sRep ly (event) and getSource (event) = myInstance))
and i sRe f e r r e d (event)

6 l o c a l S t a t e s ← psmStates
7 f o r each psmState in l o c a l S t a t e s
8 i f i sRep ly (event)
9 p o s t c a l l (psmState , event)

10 e l s e
11 p r e c a l l (psmState , event)
12 el iminateEliminatedAndDuplicatedPSMStates ()
13 i f psmStates = ∅
14 e r r o r
15

16 p r e c a l l (psmState , event) =
17 t r a n s i t i o n s ← getTrans i t i onsWithVa l idPrecond i t i ons (

act iveConf (psmState) , event)
18 i f t r a n s i t i o n s = ∅
19 s e tForE l iminat ion (psmState)
20 e l s e
21 toTake ← choose (t r a n s i t i o n s)
22 f o r each t r a n s i t i o n in t r a n s i t i o n s
23 i f t r a n s i t i o n 6= toTake
24 newState ← newPSMState (psmState)
25 psmStates ← psmStates ∪ (newState)
26 handleEvent (newState , event , t r a n s i t i o n)
27 handleEvent (psmState , event , toTake)
28

29 handleEvent (psmState , event , t r a n s i t i o n) =
30 i f i sSynchronous (event)
31 setLastSynchEventTrans i t ion (psmState , t r an s i t i o n , event)
32 e l s e
33 setLastSynchEventTrans i t ion (psmState , nu l l , nu l l)
34 i f va l idatePos tCond i t i on (t r a n s i t i o n)
35 takeTrans i t i on (psmState , t r a n s i t i o n)
36 takeComplet ionTrans i t ions (psmState)
37 e l s e
38 s e tForE l iminat ion (psmState)
39

40 p o s t c a l l (psmState , event) =
41 t r a n s i t i o n ← getLastSynchEventTrans it ion (psmState , event)
42 i f nu l l 6= t r a n s i t i o n
43 i f va l idatePos tCond i t i on (t r a n s i t i o n)
44 takeTrans i t i on (psmState , t r a n s i t i o n)
45 takeComplet ionTrans i t ions (psmState)
46 e l s e
47 s e tForE l iminat ion (psmState)

5.9 Veri�cation of protocol state machines 95

execution trace and satisfy pre- and post-conditions. The PSM states that do
not conform to the execution are eliminated (line no. 12); duplicates of PSM
states are also eliminated (line no. 12). There must be at least one active PSM
state after processing of an event otherwise a checked PSM is not valid (line no.
13). The list of references to PSM states must be copied (in line no. 6) before
entering the loop (in line no. 7) to avoid possible modi�cation of it during the
event processing.

The precall function is called for call events (line no. 16). Transitions outgoing
from an active state con�guration of PSM that are speci�ed for an operation
referred in the event and have satis�ed pre-conditions are calculated (line no.
17). If no such transitions are found, the PSM state is marked for elimination
(line no. 19). If some transitions are found, one of them is chosen for the
current PSM state (line no. 21) and for all other transitions, new PSM states
are generated that are copy of this state (line no. 24) but take other possible
transition (line no. 26). Then, the chosen transition in the current PSM state
is taken (line no. 27).

In case of synchronous events, the transition to take and the completion tran-
sitions are not taken immediately in a PSM state, instead, the taken transition
and the triggering event are stored in the PSM state (line no. 31) for later use
(when a reply event arrives and postcall is called).

For asynchronous events, post-conditions are validated immediately (line no.
34), a transition to take is taken (line no. 35) and completion transitions are
calculated (line no. 36). Note, during completion transition calculation, new
PSM states can also be created (if there are more than one completion transitions
outgoing from active con�guration). If post-condition on the transition to take
is not valid, a PSM state is set for elimination (line no. 38).

The postcall function is called for reply events (line no. 40). The function �nds a
corresponding transition for the last called synchronous call event in the current
PSM state (line no. 42), a post-condition on the transition is validated (line no.
43). If the post-condition is satis�ed, the transition and completion transitions
are taken, otherwise the PSM state is set for elimination (line no. 47).

The algorithm splits checking of transitions triggered by synchronous call events
in two phases (precall and postcall). It is because a post-conditions evaluation
requires a contribution of pre- and post-states. A post-state is only available
at the time a reply event arrives. In contrast, post-conditions for asynchronous
events are evaluated immediately in precall.

96 Concepts and approach

5.9.2 Unreferred operations

Only operations referred in PSMs are used to �re protocol transitions. Unre-
ferred operations "can be called for any state of the protocol state machine,
and do not change the current state" [Obj09]. Therefore, in our approach it
is allowed to call unreferred operations that are declared in interfaces but not
referred in PSMs at any moment.

5.9.3 Pre- and post-conditions on protocol transitions

Protocol transitions can have pre- and post-conditions. A pre-condition "speci-
�es the condition that should be veri�ed before triggering the transition" [Obj09]
while a post-condition is "the condition that should be obtained once the tran-
sition is triggered." [Obj09] In the approach presented in this thesis, pre- and
post-conditions are speci�ed in OCL language. [Obj06] Pre- and post-conditions
on protocol transitions represent OCL pre- and post-conditions for operations.

On protocol transitions that have a referred operation, a pre-condition is eval-
uated before the operation was called; a post-condition immediately after a
result of the operation is returned. In post-conditions on protocol transitions,
it is possible to use result variable that refers to the operation result and vari-
ables with post-�x @pre, e.g. x@pre to refer to the value of x from before the
operation call (from pre-state). It is important to note that for validation of
pre-condition, we need to have a system state at a moment of the operation
call (pre-state). To validate a post-condition, we need to have a pre-state, a
post-state, and operation result.

The semantics for post-conditions on protocol transitions �red by asynchronous
calls de�ne that they are evaluated immediately after the moment of the call.
Using result in post-conditions in case of events of asynchronous calls is con-
sidered an error because the asynchronous calls do not return results.

On protocol transitions that do not specify referred operation, pre-conditions are
evaluated at the same moment as post-condition. It is possible to use result or
post-�x @pre on these transitions as well, because they are �red at the moment
when a post-state is already known.

If a post-condition failed on a protocol transition, the associated PMS state will
be eliminated19.

19This is one of the UML semantics variation points that we need to specify.

5.9 Veri�cation of protocol state machines 97

5.9.4 State invariants

State invariants are "conditions that are always true when this state is the
current state." [Obj09] In the algorithm presented in �g. 5.23, an evaluation of
state invariants is not visible. State invariants are not easy to check without
observing all changes to a state of a system. State invariants are outside the
scope of this project.

A possible solution to checking state invariants includes adding broadcasting
of change events on every change of a system state during BESs execution,
e.g. during an assignment (in the SAL), and listening to the events in PSM
veri�cation algorithm. If an invariant would be violated in a system state after
a change event is processed, a current PSM state would be eliminated.

5.9.5 Example run of the veri�cation of protocol state ma-
chines algorithm

In this section, we will see an example run of the PSM veri�cation algorithm
on the check-in with tag scenario. In this example we use the model of the toll
system with components. The division to components decouples the system and
introduces interfaces between di�erent parts of the system allowing de�nition of
PSMs in context of the interfaces.

Components and interfaces in the toll system are presented in �g. 5.24. The
detailed class diagram of the toll system is presented in �g. 5.25. The BSMs of
these classes are presented in appendices A and B.

Check-in with toll tag scenario and its realization after the scenario was success-
fully run are presented in �g. 5.26; the system states (object diagrams) before
and after the scenario simulation are shown in �g. 5.27.

During the example run, we will be interested in two protocols: BarrierToLane
(�g. 5.28) and EnterpriseServerToLane (�g. 5.29).

There are two separate instances of the algorithm running for each object imple-
menting the interfaces with PSM (in this case: for barrier object with Barrier-
ToLane protocol and for server object with EnterpriseServerToLane protocol).

At the beginning of execution of the scenario, in the initial phase of the algorithm
in �g. 5.23, init function is called (line no. 1). Initial PSM states for the object
instances implementing the interfaces with protocols are created (line no. 2).

98 Concepts and approach

Figure 5.24: The components and interfaces of the toll system.

Figure 5.25: The class diagram of toll system with components. The interfaces
visible here are de�ning borders of the components presented in
�g. 5.24.

They are presented in �g. 5.31 and 5.30 marked with no. 1 markers in both
�gures.

After the simulation is started, the two PSM veri�cation algorithm instances
observe the BSMs execution. The �rst two execution call events to arrive are:

5.9 Veri�cation of protocol state machines 99

Figure 5.26: Scenario check-in with toll tag and its realization. Added ele-
ments in the realization of scenario have distinct colors. Numbers
in circles are markers referred in a text.

100 Concepts and approach

Figure 5.27: The states of the toll system captured before and after the sce-
nario check-in with toll tag was simulated. An entry station in
tag2 was set to station5 during the simulation.

Figure 5.28: BarrierToLane PSM. Barrier must be opened before it can be
closed again.

1. name: vehicleArrives, type: synchCall (from DD12312 to antenna)

2. name: tagDetection, type: synchCall (from antenna to lane)

They are both �ltered out by the instances of the algorithm in line no. 5 because
they are targeted to other object instances (not to barrier or to server).

5.9 Veri�cation of protocol state machines 101

Figure 5.29: EnterpriseServerToLane PSM. The protocol forces to check for
existence of a tag and receive a positive result (checked in post-
condition) before getTag() can be called.

A next call event arriving is of more interest to us:

3. name: tagExists, type: synchCall (from lane to server)

This event is targeted to server (see marker 1 in �g. 5.26) and a corresponding
operation is referred in EnterpriseServerToLane protocol (�g. 5.29); therefore
it passes the �lter for the algorithm's instance to which server object instance
is assigned. Because it is a call event, precall is called for PSM state 1 in �g.
5.30 (only PSM state 1 exists at this point (marker 1)).

A result assigned to transitions in line no. 17 is two transitions available from
Idle state having referred operation tagExists. One transition is chosen (line no.
21) and for other transitions, new PSM states are created (we have one more
transition so PSM state 2 is created in �g. 5.30 (marker 2) that is a copy of PSM
state 1 but �ring other transition). Because the processed event is a synchronous
call event, both PSM states do not change the active state con�gurations. They
remember the transition to take (line no. 31) and will, possibly, take it when a
reply event will arrive (and post-state will be known). A next event that arrives
is the reply event:

4. name: ReplyOftagExists, type: reply (from server to lane)

Because it is the reply event for the referred operation and a source of it is
server instance, it passes the �lter in line no. 5 in EnterpriseServerToLane PSM
veri�cation algorithm instance. Then, postcall function is called (line no. 9) for
both PSM state 1 and PSM state 2. In postcall function, the post-conditions
are checked on both transitions referring to tagExists in both PSM states.

102 Concepts and approach

Figure 5.30: EnterpriseServerToLane protocol validation progress during the
simulation of the scenario. In step 2, a second PSM state is
created from the �rst one that takes another transition with dif-
ferent post-condition. The post-condition fails for PSM state 2
and the state is eliminated.

5.9 Veri�cation of protocol state machines 103

Because we know (see marker 2 in �g. 5.26) that result is equal to true during
the simulation, condition in line no. 43 fails for the PSM state 2 and this state
is eliminated (see �g. 5.30 (marker 3)). In contrast, the post-condition in PSM
state 1 is satis�ed and this PSM state changes the active con�guration to Tag
found state.

Even though the PSM state 2 was eliminated, the PSM state 1 is still present
and the condition in line no. 13 is not satis�ed20.

The next two events that arrive are:

5. name: getTag, type: synchCall (from lane to server)

6. name: ReplyOfgetTag, type: reply (from server to lane)

First of these events causes remembering of the transition getTag for taking in
EnterpriseServerToLane protocol for server instance (see �g. 5.30 (marker 4)).
The second event, a reply, is going to change the active state con�guration of
PSM state 1 back to Idle.

From this moment (see marker 3 in �g. 5.26), in this scenario, there will be no
more events a�ecting EnterpriseServerToLane protocol and there will be always
at least one PSM state for this protocol meaning this protocol is consistent with
the BSMs execution.

The next few events are not interesting from a point of view of any protocol and
we will skip describing them in detail:

7. name: checkValidity, type: synchCall (from lane to tag2)

8. name: ReplyOfcheckValidity, type: reply (from tag2 to lane)

9. name: setEntryStation, type: synchCall (from lane to tag2)

10. name: ReplyOfsetEntryStation, type: reply (from tag2 to lane)

The next two events (see marker 4 in �g. 5.26) a�ect validation of BarrierToLane
protocol for barrier object presented in �g. 5.31:

11. open, type: synchCall (from lane to barrier)

20If the condition in line no. 13 was satis�ed, i.e. if we had no PSM states left, it would be
the error of the PSM veri�cation.

104 Concepts and approach

12. name: ReplyOfopen, type: reply (from barrier to lane)

Figure 5.31: BarrierToLane protocol validation progress during the simula-
tion of the scenario. During the validation only one PSM state
is created (PSM state 1).

open event causes PSM state 1 in �g. 5.31 to mark a transition with a referred
operation open (marker 2). Then, a reply event ReplyOfopen causes the tran-
sition to �re and PSM state 1 to change active state con�guration to Opened
(marker 3).

Then, the next events that we skip (they are �ltered out by algorithm) are:

13. name: ReplyOftagDetection, type: reply (from lane to antenna)

14. name: ReplyOfvehicleArrives, type: reply (from antenna to DD12312)

15. name: vehicleDrivesThrough, type: synchCall (from DD12312 to lane)

More interesting events for protocols are (see marker 5 in �g. 5.26):

16. name: close, type: synchCall (from lane to barrier)

5.9 Veri�cation of protocol state machines 105

17. name: ReplyOfclose, type: reply (from barrier to lane)

These two events also a�ects the validation of BarrierToLane protocol causing
�ring of a transition with referred operation close() (see �g. 5.31 marker 4 and
5).

The last event in the execution of this scenario is also �ltered out:

18. name: ReplyOfvehicleDrivesThrough, type: reply (from lane to DD12312)

106 Concepts and approach

Chapter 6

Tool

This chapter is about EsculapaUML tool that was developed for the purpose
of the thesis. The �rst section contains general information about the tool
and a methodology used; the next sections describe the functionalities, design
and implementation notes of the tool. In the last section, testing methods are
summarized.

6.1 General information

6.1.1 Name and license

For the purpose of this thesis the tool EsculapaUML was developed. The name
EsculapaUML was chosen at the beginning of the project and comes from Greek
god Asclepius. Tool's logo (see �g. 6.1) uses symbol of Rod of Asclepius. In the
original context of medicine it is (according to Wikipedia):

Snake as a symbol of rejuvenation, treatment of snakebite, and wind-
ing Guinea worms on a stick to remove them from the body.

Of course, in the UML consistency checking terminology it is:

� extend the life of complex UML models by making easy to introduce con-

108 Tool

sistent changes into them;

� if a consistency problem occurs during the design, show the reason of it in
UML model;

� help with debugging of execution of UML model to facilitate detection of
inconsistencies.

The tool is open-source and distributed on Eclipse Public License 1.0 1. The tool
(and the sources) can be downloaded from its web-site: http://code.google.
com/a/eclipselabs.org/p/esculapa-uml/. The web-site contains also instal-
lation and running instructions.

Figure 6.1: Branding logo of EsculapaUML.

6.1.2 Agile methodology

This Master's project (including report and the tool) was executed in the agile
methodology. We used this methodology because that at the beginning of the
project it was unknown what will be the �nal outcome of the work so the decision
was to plan just a little into a future.

The time-frame of the project was divided into 25 iterations (each of them one
week long). The project itself was divided into small use-cases and even smaller
tasks. For each of the task a projected priority and di�culty of realization was
assigned. The white-board in the o�ce was used during the project (see �g.
6.2). The yellow sticky notes represent the scenarios for the implementation of
the tool and white ones the tasks for writing the report. Each note is assigned
priority and placed for realization in iteration.

1http://www.eclipse.org/legal/epl-v10.html

http://code.google.com/a/eclipselabs.org/p/esculapa-uml/
http://code.google.com/a/eclipselabs.org/p/esculapa-uml/
http://www.eclipse.org/legal/epl-v10.html

6.2 Functionalities 109

Figure 6.2: The white-board used to visualize iterations of the project at two
di�erent moments: in the middle of the project and close to the
project �nish. The scenarios (sticky notes) at the top of the white-
board are placed in section Done. The iterations are presented in
the table divided into columns Ix, where x is a number of iteration.

6.2 Functionalities

A purpose of the tool is to implement the approach described in chapter 5 and
automatically �nd inconsistencies including the ones described in chapter 3 in
the UML 2.2 models. In this section, functionalities of the tool are presented.

The overview on the use-case diagram of EsculapaUML tool is presented in �g.
6.3. Each of the use-cases visible in the diagram will be presented in this section.

6.2.1 Check scenario

The tool integrates with an existing UML graphical editor: Topcased. [FGC+06]
Topcased enables user to see and design the UML models. It is possible to run
the tool on the selected scenario from the editor from a pop-up menu in Outline
view of the currently opened model (see �g. 6.4). After the simulation of the
scenario is �nished, the results (i.e. realization of the scenario) are presented in
a sequence diagram in the editor without the necessity of reopening the model
(see �g. 6.5).

110 Tool

Figure 6.3: Use-case diagram with high-level use-cases implemented in Escu-
lapaUML tool.

6.2 Functionalities 111

Figure 6.4: EsculapaUML pop-up menu in Outline view in Topcased.

6.2.2 Load model

The tool accepts UML models that are persisted in EMF model format (that is
very similar to XML Metadata Interchange (XMI)). The editor loads a model
and passes it to the tool.

6.2.3 Check structural properties

Before a scenario is checked during simulation and extended, the tool checks
that the model structural properties of the elements used in the scenario are
consistent. This includes checking e.g. for some of inconsistencies described in
sections 3.1, 3.2, 3.3.

112 Tool

Figure 6.5: Topcased editor showing view on the sequence diagram just after
the EsculapaUML extended the Check-In with toll tag successful
scenario (see section 4.2).

6.2.4 Extend sequence diagrams

The tool is able to extend sequence diagrams representing the scenarios into
the realizations of the scenarios (see section 5.6) by adding elements generated
during BSMs execution to the original sequence diagram. This function is used
mainly to check for existence of inconsistencies described in section 3.5.

In the current version of the tool, the supported elements of sequence diagrams
that can be generated are: a lifeline, a synchronous message, an asynchronous
message, a reply message, and the behavior execution speci�cations.

The elements that are not supported (they were outside the scope of the project)
are: the interaction frames (conditions, assertions, etc.), a create message, and
a delete message.

6.2 Functionalities 113

6.2.5 Validate sequence diagrams

Using the presented approach, the realization of the scenarios sequence diagrams
(that include interactions between system's objects) can be validated by the
tool against a behavior of a model. It is also possible to validate a partly
extended sequence diagram that represents a scenario with only fragment of an
interaction between system objects de�ned (with missing fragments). In this
case, the missing fragments are completed by the extension mechanism.

6.2.6 Execute behavioral state machines

The extension and validation functionalities are based on the execution of BSMs
(see section 5.7). The tool gives a possibility to an actor to execute arbitrary
operation de�ned in a class in the UML model. The class must de�ne its be-
havior in a BSM. The operation must have its trigger on a transition that can
be �red at the moment of calling in order to execute.

The execution requires a system state to be de�ned in a model, i.e. the instance
speci�cations of the classes and associations (links) must be de�ned in the model.

Instances can call each other during execution of BSMs by using e�ects on
transition that are de�ned using the SAL (see section 5.8).

During the simulation, many run-time checks are in place, e.g. the one detecting
inconsistency described in section 3.1.5.

The supported elements during BSMs execution are an initial pseudo-state, a
state, a �nal state, an external transition, a composite state, a concurrent region,
a guard in OCL, a choices pseudo-state, a junction pseudo-state.

Not supported elements (they were outside the scope of the project) are entry,
exit, history, terminate pseudo-states, , internal transitions, state's entry, exit
behaviors, and do-activities.

6.2.7 Execute query operations

The tool is able to execute query operations de�ned in a model (see section
5.7.6). The query operations are de�ned as OCL operation body expressions. A
call to a query operation does not change a state of the system during execution.

114 Tool

6.2.8 Verify components and interfaces

The tool is able to check for all inconsistencies described in section 3.7. E.g.,
whatever components that have provided interfaces have indeed classes imple-
menting these interfaces. Another check is for a conformance of a class that
implements an interface with this interface.

6.2.9 Verify protocol state machines

The tool is capable of verifying the PSMs de�ned in context of interfaces (see
section 5.9). The functionality detects inconsistencies described in section 3.6.

All UML elements except state invariants (see section 5.9.4) are supported in
PSMs. The variables with @pre post-�x and oclIsNew() operator in post-
conditions on the protocol transitions are not supported due to the limitations
of the used OCL evaluator. The result variable in post-conditions is supported.

6.2.10 Show errors in diagrams

In case of any errors or warnings, their messages are presented to the user in
Topcased editor and the errors indicators (small red icons in the diagrams) are
shown on the parts of the model that are involved in these errors (see �g. 6.6). A
user that clicks on an error message sees automatically the view on the erroneous
model elements in the diagrams. A user that has the cursor hovering over an
error indicator automatically sees the corresponding error messages.

6.2.11 Decide to terminate execution

There is a simple loop detection implemented based on the presented approach
(see �g. 5.14). The simple loop detection will never detect complex loops (e.g.
the ones that occur when two instances call each other). This is also known as
the halting problem.

To avoid scenarios simulating forever, the tool has a build-in threshold of the
number of executed events. If the threshold is exceeded it is likely that the
scenario will never �nish simulation and a user is noti�ed. A user then can decide
whatever to continue to simulate (and to adaptively increase the threshold) or
to stop simulation.

6.2 Functionalities 115

Figure 6.6: Topcased editor showing an error detected by EsculapaUML: the
error message is presented in the Problems tab and also as an
indicator in the diagram. The hint with the message is visible
next to the cursor hovering over the error indicator.

6.2.12 Specify termination conditions of a scenario

The tool supports also other ways of terminating a scenario automatically:

� a user can add an annotation max-global-events to an interaction to
limit the maximum number of events to execute in a scenario;

� a user can add an annotation max-repetitive-subsequent-events to
an interaction to limit the maximum number of the same call events to
execute subsequently in a scenario.

6.2.13 Choose a transition to take

A user can annotate speci�c BSM in a model as having external non-determinism2

(see section 5.7.4). In this case, if there is more than one possible active transi-
tions in an execution step (see �g. 6.7), the tool asks the user which transition
to �re.

2A user adds an annotation with a key equal to external-choice and value true.

116 Tool

Figure 6.7: The window of the choice of transition to �re presented to a user.

6.3 Design

The tool consists of two separate Eclipse plug-ins (see �g. 6.8) that are described
in this section.

Figure 6.8: EsculapaUML plug-ins. The GUI plug-in depends on core plug-in.
The core plug-in does not need the GUI plug-in to work.

6.3.1 Core plug-in

The core plug-in is invoked by a client (e.g. Topcased), accepts a loaded UML
model and checks a scenario in the model by �rst statically checking the elements
used in the scenario and then by the simulation of the scenario.

New elements of the scenario can be generated during the simulation (the ex-
tension of the sequence diagram described in section 5.6). The new generated
elements are annotated in a model, i.e. the client can retrieve the changed model
and see what elements were added during the simulation.

If any errors are detected during the simulation, they will be placed in the

6.3 Design 117

diagnostics for the model3. The client can retrieve the diagnostics after the
checking is �nished.

The core plug-in is based on Eclipse Modeling Framework (EMF) [SBPM09] .
EMF provides "basic framework for modeling" when other sub-projects "build
on top of EMF core, providing such capabilities as model transformation, database
integration, and graphical editor generation" [SBPM09]4. One of the sub-
projects that are used in the tool is UML2 project that "provides an EMF-based
implementation of the UML 2.x metamodel" [SBPM09]. Other sub-project used
is the OCL project that "de�nes APIs for parsing and evaluating OCL con-
straints and queries on Ecore or UML models"5.

EMF was chosen as a framework because it implements the UML 2.2 meta-
model and has decent libraries including the one to evaluate OCL queries on
the UML models.

6.3.1.1 Packages

The core plug-in is divided into packages of which the most important are pre-
sented in �g. 6.9.

Figure 6.9: The most important packages in the core plug-in of EsculapaUML.

Checkers are responsible for checking the static structure of a model and, if

3The diagnostics are used in the EMF framework to capture the error information.
4The EMF framework known quotation is: "To model or to program, this is not the

question" [SBPM09]. This sentence characterizes the essence of EMF that aims for modeling
and programing to be considered the same thing using model-to-code generation facilities.

5http://www.eclipse.org/modeling/mdt/?project=ocl

http://www.eclipse.org/modeling/mdt/?project=ocl

118 Tool

there are no errors detected, initialize the simulation of a scenario. They
are also responsible for errors management.

Protocols verify the PSMs during execution, they are initialized by Checkers.

Executors are responsible for the simulation of a scenario, including the exe-
cution of BSMs.

Generators are used by Executors to generate new interaction elements if
necessary.

SAL Parser is used by Executors to parse SAL expressions.

OCL Validator is used by Executors to parse and evaluate OCL expressions.

6.3.1.2 Classes

The core plug-in has a complex structure and therefore in this section we will
abstract out from the details and look only at the most important classes (see
�g. 6.10) that help us understand how the design is realized.

The observer pattern in the core plug-in helps to decouple the di�erent parts of
the consistency checking algorithm. Scenario Executor observes the execution
of the Behavior Executors (representing BSMs) via Execution Coordinator and
reacts on call, reply and control �ow events. Scenario Executor veri�es and
extends a sequence diagram representing a scenario.

Protocol Veri�er instances also observe the execution and verify the PSMs. They
react on call events (used to calculate pre-conditions) and reply events (used to
calculate post-conditions).

Execution terminator also observes the execution and is able to cancel it when-
ever the conditions are violated (see sections 6.2.11 and 6.2.12).

Scheduler is used by Behavioral Executor to schedule and dispatch call events
in a system.

6.3.2 Topcased GUI plug-in

The tool includes plug-in for the graphical user interface of Topcased 5.1.0 editor.
The decision to use Topcased was made because the editor is implemented based
on the Eclipse platform and the EMF framework. Topcased includes the UML

6.3 Design 119

Figure 6.10: Some of the classes in the core plug-in that are important to
understand the design.

2.2 editors (incl. sequence, state machines, and class and component diagrams)
with the advanced view on the UML model: Outline view. Outline view enables
modifying any possible property of a model's element.

Unfortunately, Topcased does not support the protocol state machines diagrams
so the core plug-in can optionally accept the behavioral state machines (with
the e�ects speci�ed as post-conditions) as the protocol state machines.

The Topcased GUI plug-in adds necessary pop-up menu for EsculapaUML in
Topcased. When a scenario is selected, �rst it �xes the model of the scenario
(see bug description in section 6.4.3), then it initializes the core plug-in and
passes the scenario and the currently opened model to the core plug-in.

After the checking of the scenario �nishes, the GUI plug-in examines the changed
model and �nds the elements that were generated by the core plug-in in order
to create a graphical representation for them in the sequence diagram and to
create a layout for the new extended sequence diagram.

120 Tool

Next, the GUI plug-in retrieves the diagnostics for the model and checks if there
are any errors detected. If there are some errors, the errors indicators are created
in the diagrams and Problems view.

6.4 Implementation notes

6.4.1 EMF OCL bug 286931

The evaluation of query operations does not work in EMF OCL for UML.
To avoid the submitted bug6 the hack was developed in the core plug-in that
changes the OCL environment before the simulation of a scenario starts so that
the OCL evaluator can evaluate query operations correctly later. The hack de-
velopment was critical for guards on transitions in BSMs to evaluate correctly.

6.4.2 EMF OCL bug with interfaces

The OCL evaluator has a problem when navigating "through" an interface. If
one class accesses another class via an interface, the OCL evaluator will not
correctly resolve the object's attributes and methods. E.g. evaluating the
self.barrier.isOpened() guard on the transition, where isOpened() is the
query operation and the barrier is instance speci�cation of type Barrier con-
nected through the link to self. The end of the link has type of the interface
(where the same operation isOpened() is also declared). The guard will fail
evaluating. This issue was reported on the OCL group7 but the resolution of the
issue didn't come on time to be included in this project. For the time being, the
walk-around is to use oclAsType, e.g. self.barrier.oclAsType(Barrier).isOpened().
I used this type of guards in the model in appendix B to be able to execute the
toll system with components.

6.4.3 Topcased bug #4014

During the tool development an important bug in Topcased was discovered
and submitted to Topcased's bug-tracker8. The bug a�ects the consistency
between what is presented in a sequence diagram graphically and what is stored

6https://bugs.eclipse.org/bugs/show_bug.cgi?id=286931
7http://www.eclipse.org/forums/index.php/t/328769/
8http://gforge.enseeiht.fr/tracker/?func=detail&atid=109&aid=4014&group_id=52

https://bugs.eclipse.org/bugs/show_bug.cgi?id=286931
http://www.eclipse.org/forums/index.php/t/328769/
http://gforge.enseeiht.fr/tracker/?func=detail&atid=109&aid=4014&group_id=52

6.5 Testing 121

in a model with respect to the order of messages on lifelines. The description
of the bug is: "Topcased wrongly saves and updates list 'coveredBy' for the
Lifeline elements. The elements should be ordered according to their vertical
position on Lifeline. Currently, when one moves a message in a way that order
is changed, Topcased not always updates this order correctly. Also when one
moves a message a little (so that the order is not changed), Topcased sometimes
changes the order unexpectedly."

Because the resolution of the bug was critical for EsculapaUML (if a user wants
to design the input sequence diagrams in the editor) and the Topcased team did
not solve the bug, the hack was developed and implemented in GUI plug-in. The
hack compares a model and a graphical representation of a sequence diagram
and �xes the model if necessary so that the model with the correct order of
messages will be always provided for the core plug-in.

6.5 Testing

During the tool development approx. 110 JUnit tests and the same number
of test UML models were created that helped a lot during validation of the
implementation. Some of the tests use the advanced UML models' di� provided
by EMF Compare framework9. The framework gives the possibility to compare
actual and expected results of the scenario extension.

9http://www.eclipse.org/emf/compare/

http://www.eclipse.org/emf/compare/

122 Tool

Chapter 7

Conclusions and Future Work

This chapter starts with the conclusions about the project and continues with
a possible future work. At the end, the proposal of an evaluation is presented.

7.1 Conclusions

The aim of the project was to check the consistency between sequence diagrams
and (behavioral and protocol) state machines diagrams in the UML models by
simulating the use-case scenarios and extending them into realizations of the
scenarios. During the project, the theoretical approach (including the consis-
tency checking algorithm) was developed and then, based on that, the tool that
realizes the approach was implemented. The project achieved its aim.

None of the approaches to consistency checking presented in section 1.3 gen-
erates realizations of scenarios from the scenarios. The approach in this thesis
ful�lls this research gap by giving a possibility to extend sequence diagrams
representing scenarios into realization of the scenarios during the simulation.

The project also included the creation of the Simple Action Language (SAL)
used for de�ning e�ects on transitions in UML behavioral state machines. The
SAL enables designers to design UML state machines suitable for the execution
and the consistency checking in a simple manner.

The approach uses the UML models directly during the simulation. The direct

124 Conclusions and Future Work

use of UML models simpli�es integration with editors and the tool development
but it also reveals the high complexity of the UML meta-model.

During the project, we became aware of the limitations of the UML behavioral
state machines' execution semantics that cannot deal with few types of the
synchronous scenarios in the object-oriented systems without deadlocking. We
see possible solutions for these limitations in section 5.7.8.

The UML semantics had to be de�ned precisely for some of the elements that
were crucial for our consistency checking approach. For example, the FIFO de-
queuing method was chosen for the event queue during the behavioral state ma-
chines execution. It also had to be chosen what happens when a post-condition
failed in protocol state machines.

The implemented tool is able to detect the semantical inconsistencies between
sequence and state machines diagrams during the design of the UML models.
The tool also points-out a source of problems to a designer. The tool can
simulate more complex systems, including the case-study of the toll system.
The tool can extend sequence diagrams representing scenarios to realizations of
the scenarios. The tool is integrated with UML editor (Topcased) and gives the
possibility to the designer to use it continuously during model design process.
Detected consistency errors are presented in UML diagrams in the editor in a
concise way.

The approach is aware that the execution of a state machine might not ter-
minate. For these scenarios that would never terminate the tool o�ers simple
loop detection. The tool implements additional ways of detecting long-running
scenarios based on events counter in which a user makes a decision to terminate
the simulation process prematurely.

The overall summary is that, with the presented approach, it is possible to
automatically detect the inconsistencies between sequence and state machines
diagrams during design. The implemented tool is recommended for designers;
it ful�lls its requirements for showing the realizations of the use-case scenarios
and it can be valuable to the designer to help him understand the possible
problems in a model. Using the tool will eventually lead to the improvement of
consistency of models.

7.2 Future work 125

7.2 Future work

The scope of the project was limited to the selected elements in the UML se-
quence and state machines diagrams. The approach can be further extended to
support more UML elements, i.e. interactions frames, create and delete mes-
sages in the sequence diagrams.

The execution of behavioral state machines can support more constructs like an
entry, an exit, a history and terminate pseudo-states, an internal transition, a
state's entry and exit behaviors, do-activities.

As it was shown in section 5.9.4, the veri�cation of protocol state machines can
be extended to include the state invariants veri�cation.

The SAL language can be extended by adding creator and destructor of instance
speci�cations.

By further extending the OCL evaluator, we can also include checking of expres-
sions with variables that refer to the pre-state in post-conditions (the variables
with post-�x @pre and oclIsNew operator).

More diagrams types could be also added to the consistency checking algorithm,
e.g. activity diagrams, use-case diagrams and communication diagrams. Sup-
porting speci�c UML pro�les will is also a possible extension.

Finally, the project could be extended by adding more functionality, e.g. a
support of a step-by-step simulation could be added to the tool. It would be
possible to construct a code generation facility that generates a source code in
a chosen programming language from the simulated model.

7.3 Evaluation

To prove a hypothesis that the tool is helpful for students, we should conduct
an empirical research with many students. Unfortunately, during this project
we had no possibility to do it. The tool was not mature enough to be used
by students at the time when the course System Integration was held in the
summer semester of 2012 at DTU.

The possible experiment would be to construct a complex model (e.g. the com-
plete toll system from �g. 4.2) with �ve hidden inconsistencies and to divide

126 Conclusions and Future Work

the students that will check the model individually into two groups: one group
will be given the tool to check the consistency and the other will check the
consistency manually. If the students using the tool will all �nd and �x the
inconsistencies signi�cantly faster than the students checking manually then we
have a good indication that the tool is helpful in �nding the inconsistencies
faster. If however, some students checking manually will fail �nding some of the
inconsistencies after a reasonable amount of time and all students using the tool
will �nd all of the inconsistencies then we have a proof that the tool is helpful
in �nding the inconsistencies in complex models. The experiment should be
conducted on the representative number of students to be valid.

From my personal experiences and looking back at my work logs for the case
study model presented in appendix B designed before the tool was created and
for a model of the same case study designed with the tool in the end of this
project, I discovered that the tool shorten the time needed to create the con-
sistent model by approx. 50%. That is, however, very weak evidence because I
could also become a more experienced modeler.

Appendix A

Toll System without

components

In this appendix, the model of the toll system that is able to realize the check-in
and the check-out is described. This is a simpli�ed version of the toll system
that does not include and use the components, the interfaces and the protocol
state machines.

128 Toll System without components

Figure A.1: Toll system's class diagram. Toll system is composed of Stations
that have many Lanes. In our case, we provide lanes kinds that
can be used for express check-in and check-out. Each Lane has a
connection to EnterpriseServer. EnterpriseServer is responsible
for keeping information about registered Tags in the system.

129

Figure A.2: Behavior of ExpressLaneCheckIn class. After successful valida-
tion of the tags, barrier is opened. Note, in case of problems with
the tags, the station is noti�ed.

130 Toll System without components

Figure A.3: Behavior of ExpressLaneCheckOut class. After successful valida-
tion of the tag, the tag is updated with the price of the trip and
barrier is opened. Note, in case of problems with the tags, the
station is noti�ed.

131

Figure A.4: Behavior of Antenna class. After vehicleArrives operation is
called, express lane is noti�ed about new detection of tag.

Figure A.5: Behavior of Station class. Station can handle problems with the
tags.

132 Toll System without components

Figure A.6: Behavior of Barrier class. Barrier can be opened and then closed.

Figure A.7: Behavior of EnterpriseServer class. EnterpriseServer checks for
existence of the tag and returns the tag from existing tags collec-
tion.

133

Figure A.8: Behavior of Tag class. Tag checks for self-validity and also knows
how to calculate and update its price based on entry and exit
stations. The algorithm here is a simpli�cation that always adds
25 to the accumulated price.

134 Toll System without components

Appendix B

Toll System with components

In this appendix, the model of the toll system that is able to realize the check-
in and the check-out is described. This is a full version of the toll system
that includes and uses the components, the interfaces and the protocol state
machines. The behaviors of most of the classes are the same as in appendix A.
Here, only the behaviors of the classes that di�er are shown.

136 Toll System with components

Figure B.1: Toll system's class diagram. Toll system is composed of Stations
that have many Lanes. In our case, we provide lanes kinds that
can be used for express check-in and check-out. Each Lane has
a connection to EnterpriseServer. EnterpriseServer is responsi-
ble for keeping information about registered Tags in the system.
The interfaces visible here are de�ning borders of components
presented in �g. B.2.

137

Figure B.2: Toll system's component diagram. Components are shown with
classes inside them. Toll system is composed of Lane, Station,
Barrier, Antenna and EnterpriseServer components. Provided
and required interfaces are visible in lollipop notation. Note, Tag
class is not visible in any component, reason is, it is outside com-
ponents.

Figure B.3: BarrierToLane protocol state machine. Barrier must be opened
before it can be closed again.

Figure B.4: EnterpriseServerToLane protocol state machine. Protocol forces
to check for existence of a tag with true result (checked in post-
condition) before getTag() can be called.

138 Toll System with components

Figure B.5: Behavior of ExpressLaneCheckIn class. After successful valida-
tion of the tags, barrier is opened. Note, in case of problems with
the tags, the station is noti�ed. In comparison to �g. A.2, one
guard uses oclAsType to check for value in Barrier (it is equiva-
lent to query operation behavior).

139

Figure B.6: Behavior of ExpressLaneCheckOut class. After successful vali-
dation of the tag, the tag is updated with the price of the trip
and barrier is opened. Note, in case of problems with the tags,
the station is noti�ed. In comparison to �g. A.3, one guard uses
oclAsType to check for value in Barrier (it is equivalent to query
operation behavior).

140 Toll System with components

Appendix C

Scenarios and realizations of

scenarios in Toll System

In this appendix, the scenarios and the realizations of the scenarios with view on
the object diagrams of the toll system are shown. The scenarios and the realiza-
tions are the same for both versions of the toll system presented in appendices
A and B.

142 Scenarios and realizations of scenarios in Toll System

Figure C.1: Check-in with toll tag scenario and the corresponding object dia-
gram before the realization.

143

Figure C.2: Check-in with toll tag realization of scenario and the correspond-
ing object diagram after the realization.

144 Scenarios and realizations of scenarios in Toll System

Figure C.3: Check-out with toll tag scenario and the corresponding object di-
agram before the realization.

145

Figure C.4: Check-out with toll tag realization of scenario and the correspond-
ing object diagram after the realization.

146 Scenarios and realizations of scenarios in Toll System

Bibliography

[BK12] Hubert Baumeister and Patrick Könemann. Project description:
Toll system, version 1: March 27. 2012.

[DDd03] Alexandre David, Johann Deneux, and Julien d'Orso. A formal
semantics for UML statecharts. Technical Report 2003-010, Uppsala
University, 2003.

[DH04] Karsten Diethers and Michaela Huhn. Vooduu: Veri�cation of
object-oriented designs using uppaal. In Kurt Jensen and Andreas
Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer
Science, pages 139�143. Springer Berlin / Heidelberg, 2004.

[Dub06] Jori Dubrovin. Jumbala � an action language for UML state
machines. Research Report A101, Helsinki University of Technol-
ogy, Laboratory for Theoretical Computer Science, Espoo, Finland,
March 2006.

[DV10] Ruta Dubauskaite and Olegas Vasilecas. The approach of ensur-
ing consistency of uml model based on rules. In Proceedings of the
11th International Conference on Computer Systems and Technolo-
gies and Workshop for PhD Students in Computing on International
Conference on Computer Systems and Technologies, CompSysTech
'10, pages 71�76, New York, NY, USA, 2010. ACM.

[Egy00] Alexander Franz Egyed. Heterogeneous view integration and its
automation. Technical report, PhD thesis, USC, 2000.

[Egy01] Alexander Egyed. Scalable consistency checking between diagrams-
the viewintegra approach. In Proceedings of the 16th IEEE inter-
national conference on Automated software engineering, ASE '01,
pages 387�, Washington, DC, USA, 2001. IEEE Computer Society.

148 BIBLIOGRAPHY

[EKHG01] Gregor Engels, Jochem M. Küster, Reiko Heckel, and Luuk Groe-
newegen. A methodology for specifying and analyzing consistency
of object-oriented behavioral models. SIGSOFT Softw. Eng. Notes,
26:186�195, September 2001.

[Eva03] E. Evans. Domain-Driven Design: Tacking Complexity In the Heart
of Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[FGC+06] Patrick Farail, Pierre Gau�llet, Agusti Canals, Christophe Le Ca-
mus, David Sciamma, Pierre Michel, Xavier Crégut, and Marc Pan-
tel. The topcased project: a toolkit in open source for critical aero-
nautic systems design. In Embedded Real Time Software (ERTS),
Toulouse, February 2006.

[Ger05] Eran Gery. Rhapsody: A pragmatic a roach to model-driven devel-
opment, 2005.

[HG97] David Harel and Eran Gery. Executable object modeling with stat-
echarts. IEEE Computer, 30:31�42, 1997.

[HM03] David Harel and Rami Marelly. Come, Let's Play: Scenario-Based
Programming Using LSC's and the Play-Engine. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

[Hol04] J. Holt. UML for systems engineering: watching the wheels. IEE
professional applications of computing series. Institution of Electrical
Engineers, 2004.

[Jac92] I. Jacobson. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley Professional, June 1992.

[Kna04] Alexander Knapp. Semantics of uml state machines. Techni-
cal report, Institut für Informatik, Ludwig-Maximilians-Universität
München, 2004.

[KTM08] Fabrice Kordon and Yann Thierry-Mieg. Experiences in model
driven veri�cation of behavior with uml. In Monterey Workshop,
pages 181�200, 2008.

[LMT09] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A sys-
tematic review of uml model consistency management. Information
and Software Technology, 51(12):1631 � 1645, 2009. Quality of UML
Models.

[LTY03] B. Litvak, S. Tyszberowicz, and A. Yehudai. Behavioral consistency
validation of uml diagrams. In Software Engineering and Formal
Methods, 2003.Proceedings. First International Conference on, pages
118 � 125, sept. 2003.

BIBLIOGRAPHY 149

[Obj06] Object Management Group. Object Constraint Language, OMG
Available Speci�cation, Version 2.0. Technical report, May 2006.

[Obj09] Object Management Group. OMG Uni�ed Modeling Language
(OMG UML), Superstructure, V2.2. Technical report, February
2009.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Uni�ed Model-
ing Language Reference Manual, The (2nd Edition). Pearson Higher
Education, 2004.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[Shi06] Yoshiyuki Shinkawa. Inter-model consistency in uml based on cpn
formalism. In Proceedings of the XIII Asia Paci�c Software Engi-
neering Conference, pages 411�418, Washington, DC, USA, 2006.
IEEE Computer Society.

[SKB05] S. Sengupta, A. Kanjilal, and S. Bhattacharya. Automated trans-
lation of behavioral models using ocl and xml. In TENCON 2005
2005 IEEE Region 10, pages 1 �6, nov. 2005.

[TMH08] Yann Thierry-Mieg and Lom-Messan Hillah. Uml behavioral con-
sistency checking using instantiable petri nets. ISSE, 4(3):293�300,
2008.

[TS03] Jennifer Tenzer and Perdita Stevens. Modelling recursive calls
with uml state diagrams. In PROC. 6 TH INT. CONF. FUN-
DAMENTAL APPROACHES TO SOFTWARE ENGINEERING
(FASE 03). VOLUME 2621 OF LECT. NOTES COMP. SCI, pages
135�149. Springer, 2003.

[Tsi00] Aliki Tsiolakis. Consistency analysis of uml class and sequence di-
agrams based on attributed typed graphs and their transformation.
In ETAPS 2000 workshop on graph transformation systems, pages
77�86, 2000.

[Tsi01] Aliki Tsiolakis. Semantic analysis and consistency checking of uml se-
quence diagrams. Technical Report 2001-06, Technische Universität
Berlin, Department of Computer Science, April 2001. Diplomarbeit.

[UNKC08] M. Usman, A. Nadeem, Tai-Hoon Kim, and Eun-Suk Cho. A survey
of consistency checking techniques for uml models. In Advanced
Software Engineering and Its Applications, 2008. ASEA 2008, pages
57�62, December 2008.

150 BIBLIOGRAPHY

[VdH94] W. Van der Hoek. Unravelling nondeterminism: on having the abil-
ity to choose. In Proceedings of the sixth international conference on
Arti�cial intelligence : methodology, systems, applications: method-
ology, systems, applications, AIMSA '94, pages 163�172, River Edge,
NJ, USA, 1994. World Scienti�c Publishing Co., Inc.

[VVP00] Dániel Varró, Gergely Varró, and András Pataricza. Designing the
automatic transformation of visual languages. In Hartmut Ehrig and
Gabriele Taentzer, editors, GRATRA 2000 Joint APPLIGRAPH
and GETGRATS Workshop on Graph Transformation Systems, page
14�21, Berlin, Germany, March 25�27 2000.

[WFZZ05] Hongyuan Wang, Tie Feng, Jiachen Zhang, and Ke Zhang. Consis-
tency check between behaviour models. In Communications and In-
formation Technology, 2005. ISCIT 2005. IEEE International Sym-
posium on, volume 1, pages 486 � 489, oct. 2005.

	Abstract
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Structure of the thesis
	1.3 Related work

	2 Selected elements of the Unified Modeling Language
	2.1 UML as modeling language
	2.2 Semantics Variation Points
	2.3 Classes and instances
	2.4 Components
	2.5 State machines
	2.6 Interactions

	3 Inconsistencies
	3.1 Sequence diagrams and structural properties of model
	3.2 State machine diagrams and structural properties of model
	3.3 Other structural inconsistencies
	3.4 Behavioral state machines and structural properties of model
	3.5 Sequence diagrams and behavioral state machines
	3.6 Conformance to contract specified by interfaces
	3.7 Related to components

	4 Case study: Toll System
	4.1 Introduction to the toll system
	4.2 Check-in with toll tag
	4.3 Check-out with toll tag
	4.4 Models of the toll system

	5 Concepts and approach
	5.1 Consistency checking by scenario simulation
	5.2 Consistency checking algorithm
	5.3 Direct UML representation
	5.4 Scenarios
	5.5 Realizations of scenarios
	5.6 Extensions of scenarios to realizations of the scenarios
	5.7 Execution of behavioral state machines
	5.8 The Simple Action Language
	5.9 Verification of protocol state machines

	6 Tool
	6.1 General information
	6.2 Functionalities
	6.3 Design
	6.4 Implementation notes
	6.5 Testing

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work
	7.3 Evaluation

	A Toll System without components
	B Toll System with components
	C Scenarios and realizations of scenarios in Toll System
	Bibliography

