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Abstract

This thesis deals with the detection of right and left hand-pull stimuli in EEG
data for five healthy subjects. This paradigm give rise to activation of motor
cortex contra-lateral to stimuli side.
ICA components obtained from a Kalman filter based algorithm have been ap-
plied as features in the classification task and compared with time series features
and Infomax ICA features. The Kalman ICA components have proven to be
well-suited for separating the two classes in this thesis, and the Kalman fea-
tures accomplished the lowest error rates when classifying left and right stimuli.
Different classifiers have been tested on the three feature types, and the ad-
vanced SVM classifier performed best in all cases. The percentage of significant
different features between the two classes showed to be strongly correlated to
the classification performance. For the purpose of stimuli detection a visual
inspection of the ICA components has been made. The visible distinction is not
as pronounced as the difference in classification performance for the two ICA
features.
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Resumé

Målet for denne afhandling er at anvende EEG data for fem raske personer til
at detektere to forskellige slags stimuli. Disse stimuli er trækken i hhv. højre
og venstre hånd. Dette paradigme forårsager aktivering af motor cortex i den
modsatte side end den hånd der blev trukket i.
ICA komponenter fra en Kalman filter baseret algoritme er blevet brugt som
features og sammenlignet med tidsserie features og Infomax ICA features. Kal-
man ICA komponenterne har vist sig at være særdeles velegnede til at separere
data i de to forskellige slags stimuli, og Kalman komponenterne er også de fe-
atures der opnår lavest fejlrate i klassifikationsopgaven. Der er blevet afprøvet
forskellige klassifikatorer på alle tre slags features og den avancerede SVM klas-
sifikator har i alle tilfælde klaret sig bedst. Procentdelen af signifikant forskellige
features mellem de to klasser har vist sig at være yderst korreleret med klas-
sifikationspræstationen. Der er yderligere blevet lavet en visuel inspektion af
ICA komponenterne med det formål at se om stimuli detekteringen er synlig.
Det viser sig, at den visuelle forskel ikke er lige så udtalt som forskellen mellem
klassifikationspræstationerne for de to slags ICA features.
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Chapter 1

Introduction

Electroencephalography (EEG) is a recording method that measures the elec-
trical activity of the brain, and electrodes placed on the scalp are widely used
to record this. The electrical activity is caused by simultaneous electrical sig-
nals from a huge number of nerve cells, and the EEG recordings are used for
both clinical and research purposes [39]. EEG is used as a diagnostic tool in
certain neurophysiological disorders. An example is epilepsy, where the seizures
result in very different electrical behaviour compared to normal activity [42].
In the research field EEG is e.g. applied to study Event Related Potentials
(ERP’s) , which is a response to a given internal or external stimulus, and
Brain Computer Interface (BCI) that enables communication between human
and computer only by means of brain activity [21]. Exploration of the brain can
be done by other modalities as well, such as fMRI and PET, which indirectly
measures the electrical activity and have a much higher spatial resolution than
EEG. Some significant advantages of EEG are the high temporal resolution and
the low cost of the examination compared to fMRI and PET. Combination of
EEG with fMRI give possibility of both high spatial and temporal resolution
[35]. Raw EEG signals contain both biological and environmental artifacts and
furthermore drift, which makes the raw signals very hard to interpret, as well
as time consuming [28]. In addition, the signals are summations of all brain ac-
tivity and the separation between activity caused by background- and stimulus
EEG can be quite difficult [2]. For these reasons various automated methods
have been proposed to solve these challenges.
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1.1 Modelling of EEG Signals

Modelling of EEG signals is one of the proposed solutions for the above men-
tioned challenges regarding raw EEG signals. Modelling provides a tool for
tracking the underlying brain activity and dividing the signal into components
caused by different brain processes, such as artifacts and stimuli [32]. This di-
vision of the signals into components is obviously an advantage as it enables
selection and discarding of respectively valuable and useless signals. This is ap-
plicable in many different types of EEG data, such as sleep or BCI recordings,
because it has the ability to act as a filter or classification tool. In sleep data it
is especially important to correct for artifacts in the form of e.g. blinking and
movements, and in BCI, feature extraction is the key to classification, which
can be done by modelling. Independent Component Analysis (ICA) is one way
to split a given signal into sources and thereby unmix the signal [32], [28], and
in combination with a generative model it makes a well suited tool for EEG
analysis [11].
Generative modelling has been explored in various ways and on many different
types of data. In [36] a linear state space model is applied to divide a speech
mixture into individual speech sources and in [24] a temporal Gaussian regres-
sion problem is reformulated as Kalman filtering of linear state space models. A
generative ICA approach has been applied with success in [11] on mental task
EEG data with the purpose of using the components in BCI classification.

1.2 Detection of Different Types of Stimuli in

EEG Signals

Distinction between stimuli in EEG signals is conditional on a traceable differ-
ence between EEG caused by the different types of stimuli, and discrimination
of background EEG and EEG related to stimuli. In the experiment used in this
thesis, the subjects are pulled in their left and right hand respectively. It is
expected that the left side of motor cortex is activated when the subjects are
being pulled in the right hand and vice versa, see section 3.1 for further details.
This should result in activation of different electrode areas for the two stim-
uli, which enables separation between these. In [3] detection of gamma waves
contra-lateral to the stimulus side was observed 0.6 seconds after stimuli. The
data in [3] is the same type of pull stimuli used in this thesis. In addition, the
same paradigm was used in [4] to study if the EEG data for this particular
stimulus is different between schizophrenic and healthy subjects.
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1.3 Thesis Objective

The object of this thesis was originally formulated as a generative approach to
modelling the multivariate EEG signal into underlying Brain processes using the
Gaussian Process Kalman filter, and in addition apply the filter for classification
by the use of the augmented binary probit node. This has been reformulated a
little during the process, but the result is nevertheless almost the same.
The Kalman filter has been applied as an ICA algorithm to track the underlying
components in the EEG data. These Kalman ICA components have been used
as features in a classification task and compared to raw time series features and
Infomax ICA features. The two simple classifiers K Nearest Neighbour (KNN)
and Naive Bayes (NBC) plus the more advanced Support Vector Machine (SVM)
have been tested on these three feature types to verify whether the Kalman filter
provides stimuli related to components applicable for classification or not. A
visual comparison of the ICA components has been carried out for inspection
of the nature of the tracked components, meaning whether the components is
related to noise, artifacts or stimuli. In addition filtering has been applied to
correct for the drift in data. The EEG data used for this purpose originates
from 5 subjects pulled in their left and right hand, respectively.
In [37] Kalman filter parameters are used as features, and in [11] generative ICA
components are applied for classification, but using Kalman ICA components as
features to EEG classification have to the best of my knowledge not been done
before.
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Chapter 2
Independent Component
Analysis Applied to EEG

ICA can be applied to EEG signals to separate data into underlying components
caused by e.g. artifacts and external stimuli [32]. This chapter is a general
introduction to the ICA method.
The Infomax ICA theory is provided in the first section, and ICA applied to
EEG through a concrete example is provided in the second section.

2.1 Infomax ICA

The general idea of ICA can be described as the process of separating an ob-
served dataset, x, into a set of independent components/sources, s, by finding
the unmixing matrix W. In Infomax ICA the generative model is described as

x = As , (2.1)

where it is assumed that the number of observations is equal to the number of
components, e.i. the mixing matrix A is square and related to W by having it
as its inverse, A = W−1. The Infomax ICA algorithm, which was invented by
Bell and Sejnowski in 1995 [6], is one method to perform ICA. It approximates
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W by minimising the Mutual Information (MI) between the components[32].
Making the MI go to zero returns maximally independent components [30], and
the MI objective can also be seen as a maximum likelihood inference problem
[31]. The likelihood function for A is given by

P(X|A) =
N�

n=1

p(x(n)|A) , (2.2)

for n = 1, ..., N where N is the number of samples. The right-hand side in Eq.
2.2 is the product of the marginalised probabilities and a single factor in the
likelihood can be written as

p(x(n)|A) =

�
p(x(n)|A, s(n))p(s(n))ds(n) . (2.3)

Assuming noise-free data [6], Eq 2.3 can be rewritten, by marginalising over
delta functions, yielding

p(x(n)|A) =

�
δ(x(n) −As(n))p(s(n))ds(n) . (2.4)

Now introducing a shift in variables z = As(n) and by the use of the Jacobian
given as

ds(n) = | det(ds
(n)

dz
)|dz

ds(n) = | det(A−1)|dz =
1

det |A|dz ,

(2.5)

the following is obtained by replacing Eq. 2.5 into Eq. 2.4, giving

p(x(n)|A) =
1

det |A|

�
δ(x(n) − z)p(A−1z)dz , (2.6)

and together with the property:
�
f(y)δ(y− y0)dy = f(y0), the reduced expres-

sion is given by

p(x(n)|A) =
1

det |A|p(A
−1x(n)) . (2.7)

The log likelihood can be derived directly from Eq. 2.7 and inserting W result
in the following expression for a single factor

lnp(x(n)|W) = ln | det(W)|+ lnp(Wx(n)) . (2.8)
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From now on W is assumed to be positive definite, and by finding the gradient
of the log likelihood, the maximum likelihood algorithm will be obtained by

∂ lnp(x(n)|W)

∂W
= [WT ]−1 + yxT

, (2.9)

where y = f(Wx) =
d lnp(s)

ds

���
s=Wx

which is a non-linear mapping. Maximis-
ing the log likelihood and thereby minimising the MI can therefore be expressed
by adjusting the weights according to the gradient in the following [31]

∆W = [WT ]−1 + yxT
. (2.10)

If the prior distribution is defined as p(s) =
1

π cosh(s)

���
s=Wx

then the function

f is given by f(s) = − tanh(s)|s=Wx. This definition for f is often applied,
because it assumes a more heavier tailed prior distribution than a Gaussian
prior [31].
Adjusting the weights according to Eq. 2.10 is one way to create the learning
algorithm, but the covariant algorithm is a simpler and faster alternative [31].
In this approach the weights are adjusted to the following gradient

∆W = W + yx�T , (2.11)

where x� = WTWx. The maximum likelihood problem is in this approach
solved by taking the second derivative (instead of the first) of the log likelihood
with respect to W, and the expression is advantageous because no inversion of
W appears [31]. For further description of this approach see [31].

2.2 Practical Aspects of Infomax ICA

An EEG dataset containing signals from 72 electrodes from one subject, stim-
ulated by 120 left and right hand pulls respectively, is used in this section. The
sampling rate of the data is 512 Hz, and initially the dataset was high pass fil-
tered at 3 Hz to correct for the offset in the data. The filtered signal is visualised
in Fig. 2.1. The vertical lines indicates different events, where 64602 and 64603
is left and right hand pulls respectively. To investigate the ICA algorithm’s ca-
pability to track stimuli, ICA is performed on the entire EEG signal, but since
channel 65-72 are reference and artifact channels, these are not included in the
analysis. The Infomax ICA algorithm, implemented in EEGlab, is applied to
perform an investigation of the signal, and the algorithm provides a temporal
and a spatial component. The spatial map can be derived from each column in
the mixing matrix A and the temporal component from each row in the source
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Figure 2.1: EEG signal filtered with a 3 Hz highpass filter.
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matrix S. The temporal independent components are visualised in Fig. 2.2.
It is clear from this figure that the ICA components are sorted according to
energy and thereby importance, but it is difficult to conclude if the ICA al-
gorithm has tracked the stimuli. The 64 temporal components are segmented
into 240 epochs, holding 120 for left hand and 120 for right hand, and averaged
with respect to epochs. Dividing into epochs and averaging is done to study if
any differences, related to the two different stimuli, are detectable. The epochs
consist of information from start of the stimuli to 1.5 seconds after. Different
illustrations of the segmented averaged components are shown in Fig. 2.3 and
2.4. The corresponding spatial components are provided in Fig. 2.5.

In Fig. 2.3 the first 16 and most important ICA components are shown sepa-
rately. It is clear from the components that Fig. a and b comes from different
stimuli, because the activation pattern between the two are visible differentiable.
Especially component 10 and 16 are easy to distinguish from each-other, and
when inspecting the spatial components in Fig. 2.5 it appears that the left and
right motor cortex area is activated, respectively. In Sec. 3.1 the physiological
background for this is explained. In Fig. 2.4 the two averaged components
are plotted for the two stimuli in the same plot with errorbars to study if the
difference between the stimuli is significant. The errorbars are calculated as the
standard-deviation across epochs, and the bars are quite big, which makes the
distinction between the two stimuli difficult, and classification based on tempo-
ral ICA components doubtful.
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Figure 2.2: Temporal ICA components.
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Figure 2.3: Segmented averaged ICA components, left and right stimuli, re-
spectively.
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Figure 2.4: Segmented averaged ICA component 10 and 16, respectively, with
errorbars. The blue curve is left stimuli and the red curve is right
stimuli.
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Figure 2.5: The 16 first spatial components.



Chapter 3

Theory

This chapter provides knowledge within the clinical and technical field relevant
for this thesis. The first section concerns a basic introduction to EEG signals and
how these are affected by external stimuli. The next three sections deal with the
theoretical background for the classification methods (KNN, NBC and SVM)
applied in this thesis. Finally, the last section provides the needed knowledge
for the Kalman filter theory.

3.1 EEG Signals and Activation of Motor Cortex

EEG is a representation of the electrical brain activity [39], and the activity
is recorded by electrodes either placed on the surface of the scalp or by sub
dermal needles. The electrical activity is a measure of the voltage between an
electrode placed in an active area and a reference electrode [25], and the activ-
ity is caused by electrical signals called action potentials that act as cell to cell
communication and activation of intracellular processes [38]. Electrodes are not
sensitive enough to measure individual action potentials, and the recorded elec-
trical currents are generated by a large number of simultaneous action potentials
originating from different neurons. The method was applied to humans for the
first time in 1924 by Hans Berger, and in 1929 he reported on the subject, where
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Figure 3.1: Homunculus model from [44] of the right hemisphere of motor
cortex.

the terms alpha and beta waves were introduced as well [7]. EEG signals from a
person that is awake and relaxed, has in general no specific pattern, because the
electrical activity is not synchronous. At other mental stages such as sleep, cer-
tain low frequency patterns are dominating. Alpha waves (8-13 Hz) occurs when
a person is awake with closed eyes and in quiet surroundings, and beta waves
(above 13 Hz) are dominant at EEG recordings at intense mental activity[39].
Gamma wave activity (25-100 Hz) is likely to occur in neural communication,
reflecting external input information to the brain [27], and the most pronounced
frequency in this wave pattern is 40 Hz [13].
The brain can be divided into four main parts; the brainstem, the cerebellum,
the diencephalon and the cerebrum. The outer surface of cerebrum is called
cerebral cortex and is the part of the brain that contribute most to the EEG
signals [39]. The motor area of cerebral cortex is called motor cortex and the
action potential originating from this area mainly controls voluntary movements
and especially movements performed by the hand are well represented [38]. In
Fig. 3.1 a homunculus model of the right hemisphere of motor cortex is shown,
and from this figure it is also illustrated, how big the part that controls hand
movement is. For this reason hand movements should result in detectable varia-
tion in the EEG signals compared to background activity [3]. The brain consists
of a right and a left hemisphere, and the left one controls the activity of muscles
from the right half of the body and vice versa [38]. Since movement of left/right
hand has a big region in the right and left hemisphere, respectively, difference
in EEG recordings between stimuli of the two hands should be detectable [3].
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3.2 K Nearest Neighbour

The K Nearest Neighbour (KNN) algorithm is a supervised classification method
that was introduced for the first time in 1951 by Fix and Hodges [16]. KNN is
one of the most simple machine learning algorithms, and the method requires a
training set with known class labels to develop the classifier, and a test set to test
the classification performance. The classification of a test point is determined by
the euclidean distance from the test point to K training points. Assuming N and
P are the number of training and test points respectively, x(n) is the training set
and y(l) is the test set, where n = 1...N and l = 1...P . The euclidean distance
between one test point e.g. y(1) and the entire training set, x(n), is calculated by
Eq. 3.1. The distances are sorted and the K nearest training points determines
the classification of y(1) [39].

d
(1) =

�
x(1) − y(1)

2

d
(2) =

�
x(2) − y(1)

2

...

d
(n) =

�
x(n) − y(1)

2

(3.1)

The number of neighbours, K, is crucial for the classification result, and the op-
timal value of K is dependent on the specific dataset. If K is set too high there
is a risk of over smoothing and difficulties in distinguishing between classes. On
the other hand if K is to small there is a good change of over-fitting to the
pattern of the specific dataset. Accordingly it is of great importance to find a
value for K that is neither to high nor to small [8]. The identification of the
optimal K can be done by applying the "nested cross-validation" method, which
can be explained by the "leave one out" method only used on the training data,
meaning all points from the training set in turn are used as a test point, where
the distance from this point to its K neighbours are calculated, and the class of
the point is predicted and compared to the known true class. A classification
error for each number of K is thereby provided, and the optimal value of K is
the one that results in the lowest training classification error [22]. The size of K
is due to the leave-one-out method limited to the size of the training set minus
one, Kmax = Ntrain − 1.
The advantage of the KNN algorithm lies in the simplicity and that no prior
knowledge about density function is needed, but the necessity of storing all sam-
ples and comparing each of them with unknown samples is quite a disadvantage
as it is very computational expensive [18]. The KKN algorithm is illustrated in
Fig. 3.2 where the number of classes is two and the total number of training
points is ten. The black square indicates a test point that is classified by the K
nearest neighbour from the training set. The figure illustrates the importance of
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Figure 3.2: Illustration of the K nearest neighbour algorithm.

the value K for the classification of the test point. If K = 1, 5, 6, 7 the test point
will have the shortest distance to a majority of class 1 points, but if K = 2, 4
the test point can not be classified because the closest training points are of
equal numbers of class 1 and 2, and if K = 3 the point will be classified as class
2. To avoid equal amount of points from each class, K can be forced to be an
odd number [18].

3.3 Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is a simple classifier method, which is named
"Naive" because of the assumption about independent features. The method is
probabilistic and is based on Bayes’ Theorem stating that the posterior proba-
bility can be calculated from the prior probability and the likelihood

p(c|x) = p(x|c)p(c)
p(x)

. (3.2)

In Eq. 3.2, x = x1, x2..., xk, where k is the number of features, x represent a fea-
ture vector and c is the value of the class variable C. The posterior distribution
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is thereby the probability that the feature vector belongs to class c. Since the
features are independent the posterior probability can be modified according to
the conditional independence property

p(x1, x2, ..., nk|c) = p(x1|c)p(x2|c)...p(xk|c) =
k�

i=1

p(xi|c) . (3.3)

The posterior probability is then expressed by Eq. 3.4, and the class that result
in highest probability for a given feature vector gets this vector assigned.

p(c|x1, x2..., xk) =
p(c)

�k
i=1 p(xi|c)

p(x1, x2..., xk)
. (3.4)

For a two class situation where the value of c is 1 and −1 for the two classes,
respectively, the decision function can be described by the following

NBC =
p(C = 1|x)
p(C = −1|x)

=
p(C = 1)

p(C = −1)

k�

i=1

p(xi|C = 1)

p(xi|C = −1)
,

(3.5)

where the feature vector is assigned class 1 (c = 1) if NBC > 1 and class 2
(c = −1) if NBC < 1.
In real world applications the independence assumption appears rather unrealis-
tic, but despite this fact the NBC shows satisfying results. In [45] it is proposed
that the individual dependencies between features cancel out in the big picture,
and what matters for the NBC performance instead is the distribution of the
dependencies among all features over classes.

3.4 Support Vector Machine

The Support Vector Machine (SVM) algorithm was described for the first time
in 1995 by Cortes and Vapnik [12]. SVM is a supervised classification method
that aims to create a hyperplane that separates the classes in feature space in
the most optimal way by the use of support vectors. SVM classification can be
divided into creating an optimal hyperplane between three kinds of data:

1. Linear Separable

2. Not Fully Linear Separable
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3. Nonlinear

and the classification of these three types using SVM is described in the following
sections. The nonlinear approach is not applied in this thesis, and is accordingly
not described in details.

3.4.1 Linear Separable Classification

For simplicity a two class classification problem with only two features is ex-
plained. Assuming x(n) is the training data that belongs to either class c(n) = −1
or c

(n) = 1, where n = 1, ..., N denotes the sample number, the hyperplane for
separating the two classes can be expressed by [12]:

w · x+ b = 0 . (3.6)

Assuming the number of features is k = 2 the data can be represented by:

{x(n)
, c

(n)} where n = 1, ..., N, c
(n) ∈ {−1, 1} x

(n) ∈ �2
. (3.7)

In Eq. 3.7 the assumption about linear separability has been made, meaning a
hyperplane is able to fully separate the classes.

In Eq. 3.6, w is the normal to the hyperplane and
b

�w� is the perpendicular

distance from the origin to the separating hyperplane. The two-dimensional two
class example is illustrated in Fig. 3.3 and the samples closest to the separating
hyperplane is called Support Vectors. The SVM algorithm aims to locate the
hyperplane that has the longest distance to the closest observations of both
classes[17]. The maximisation of the margin between the two classes are also
referred to as the Maximum Margin Classifier.

The support vectors, marked by extra circles in Fig. 3.3 spans two lines (hyper-
planes in higher dimensions), H1 and H2. These lines can be expressed by:

x(n) ·w + b = +1 for H1

x(n) ·w + b = −1 for H2

(3.8)

The distances from these lines, d1 and d2, to the separating hyperplane are
equal and in order to orientate the hyperplane with the longest distance to the
support vectors, it is necessary to maximise the quantity d1 + d2 = 2d1, since
this is the distance between H1 and H2. The distance from the origin to the two
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Figure 3.3: Illustration of the binary classification example with two features
and six observations of each class. H1 and H2 are the lines spanned
by the support vectors that are marked with extra circles, and d1

and d2 are the distances from the separating hyperplane to H1

and H2. Figure from [17].

hyperplanes spanned by the support vectors are given by
|1− b|
�w� and

|−1− b|
�w�

[9], meaning 2d1 can be calculated as:

2d1 =
(1− b)

�w� − (−1− b)

�w� ⇒

d1 =
(1− b)− (−1− b)

2�w�

=
(1− b+ 1 + b)

2�w�

=
1

�w�

(3.9)

Finding the optimal separating hyperplane by maximising the distance between
the support vectors is therefore equivalent to minimising �w� and accordingly
the training data can be described by [12]:

x(n) ·w + b ≥ +1 for c
(n) = +1

x(n) ·w + b ≤ −1 for c
(n) = −1

(3.10)
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which combined gives:

c
(n)(x(n) ·w + b)− 1 ≥ 0 ∀n . (3.11)

Minimising �w� is equivalent to minimising
1

2
�w�2, which will turn out to be

handy later on, because it enables Quadratic Programming (QP) optimization
[17]. The problem formulation can therefore be summarised to:

min(
1

2
�w�2) such that c

(n)(x(n) ·w + b)− 1 ≥ 0 ∀n . (3.12)

In order to solve the constrained minimisation problem in 3.12 positive Lagrange
Multiplier’s (LM’s), α(n) for n = 1, ...N are introduced, where α

(n) ≥ 0 ∀n:

L(w, b,α) ≡ min
1

2
�w�2 − α

(n)[c(n)(x(n) ·w + b)− 1 ∀n]

≡ min
1

2
�w�2 −

N�

n=1

α
(n)[c(n)(x(n) ·w + b)− 1]

≡ min
1

2
�w�2 −

N�

n=1

α
(n)

c
(n)(x(n) ·w + b) +

N�

n=1

α
(n)

.

(3.13)

The switch to Lagrangian formulation is done for two reasons [9]:

1. The original constraints in Eq. 3.11 are substituted by constraints on the
LM.

2. The training data occurs only in the form of dot products, which is ex-
ploited in the Kernel Trick to be explained below.

To satisfy the constraint α
(n) ≥ 0 ∀n, the Lagrangian is minimised by setting

the derivatives with respect to w and b equal to zero [9], yielding:

∂L

∂w
= w −

N�

n=1

α
(n)

c
(n)x(n) = 0

⇒ w =
N�

n=1

α
(n)

c
(n)x(n)

(3.14)

∂L

∂b
=

N�

n=1

α
(n)

c
(n) = 0 (3.15)
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The dual formulation is obtained by substituting Eq. 3.14 and 3.15 into Eq.
3.13, where dual refers to solving a different problem, where the solution is the
same as the original problem.

Ldual ≡
N�

n=1

α
(n) − 1

2

N�

n=1

α
(n)

α
(n)� c(n)c(n)� x(n) · x(n)�

such that α(n) ≥ 0 ∀n,
N�

n=1

α
(n)

c
(n) = 0

(3.16)

The transformation from primal to dual formulation, and thereby making the
formulation only dependent on α

(n), changes the problem from a minimisation
of L to a maximisation of Ldual. The maximisation of Ldual is the objective of
the support vector training [9], and can return a vector α by running the before
mentioned QP solver. A description of this solver is beyond the scope of this
thesis and will not be explained in details. α is substituted into Eq. 3.14 to find
w, and the support vectors are used to find b by substituting Eq. 3.14 in to
Eq. 3.10. There exists a LM for all training observations, and the observations
where α

(n)
> 0 are the support vectors and lie on the lines H1 and H2.

The classification of an unknown test observation xtest, knowing the optimal
separating hyperplane from w and b is done by evaluating the sign of the function
given by:

s(xtest) = w · xtest + b (3.17)

3.4.2 Not Fully Linear Separable Classification

Assuming data is fully linear separable is not always realistic, which encourage
an extension of the method. This is done by introducing a positive slack variable,
ξ
(n), n = 1, ..., N [12]. The slack variable induces a penalty to an observation

that is on the wrong side of the separating hyperplane and the penalty increases
with the distance. In Fig. 3.4 the not fully separable classification problem is
illustrated. The introduction of ξ(n) modifies the training data in Eq. 3.11 to

c
(n)(x(n) ·w + b)− 1 + ξ

(n) ≥ 0 where ξ
(n) ≥ 0 ∀n , (3.18)

and from this, the minimisation problem in Eq. 3.12 is transformed to

min(
1

2
�w�2+T

N�

n=1

ξ
(n)) such that c

(n)(x(n) ·w+b)−1+ξ
(n) ≥ 0 ∀n ,

(3.19)
where T is the regularisation parameter and corresponds to the penalty assigned
to the misclassifications. T is user-determined [12]. Switching to the Lagrangian
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Figure 3.4: Illustration of the binary not fully separable classification example
with two features and six observations of each class. The distance
from the observation that is on the incorrect side of the separat-

ing hyperplane to the line spanned by the support vectors is
−ξ

|w| .

Figure from [17].

formulation gives:

L(w, b,α, µ) ≡ 1

2
�w�2 + T

N�

n=1

ξ
(n)

−
N�

n=1

α
(n)[c(n)(x(n) ·w + b)− 1 + ξ

(n)]−
N�

n=1

µ
(n)

ξ
(n)

,

(3.20)

where LM’s, µ(n) ≥ 0, forces ξ
(n) to be positive. Setting the derivative of Eq.

3.20 with respect to w, b and ξ
n equal to zero and substituting into Eq. 3.20

gives the same dual formulation as in Eq. 3.16. However the gradient of Eq.
3.20 with respect to ξ

n gives

∂L

∂ξ(n)
= T − α

(n) − µ
(n) = 0 ⇒ T = α

(n) + µ
(n)

, (3.21)

which together with the constraint µ
(n) ≥ 0 ∀n gives the combined constraint

0 ≤ α
(n) ≤ T [17]. The SVM for not fully linear separable classification can
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therefore be summarized to:

Ldual ≡
N�

n=1

α
(n) − 1

2

N�

n=1

α
(n)

α
(n)� c(n)c(n)� x(n) · x(n)�

such that 0 ≤ α
(n) ≤ T ∀n,

N�

n=1

α
(n)

c
(n) = 0 ,

(3.22)

where Ldual is maximised in the same way as previous by a QP solver and
returns α that provides w. Contrary to the separable classification problem,
the support vectors used to find b now has to satisfy 0 < α

(n)
< T .

3.4.3 Nonlinear Support Vector Machine Classification

The problem of classifying a data set that is not linear separable in feature
space is done by applying the Kernel Trick introduced for the first time by
Aizerman et al. in 1964 [1]. In brief the concept of the Kernel Trick is to map a
non-linear data classification problem into a high-dimensional (or even infinite)
feature space where the mapped data classification issue becomes linear and can
be handled by linear models[8], such as the linear SVM. The kernel function is
given by

k(x(n)
,x(n)�) = φ((x(n))T )φ(x(n)�) , (3.23)

where φ(x(n)) is the non-linear mapping. The simplest kernel is the linear kernel

k(x(n)
,x(n)�) = x(n) · x(n)� = (x(n))Tx(n)� , (3.24)

and the general idea of the kernel trick is to manipulate the data into only
containing inner product between x(n)� and (x(n))T , meaning the explicit calcu-
lation of φ is unnecessary [17]. The scalar product can thereby be replaced with
any other valid kernel of choice [8]. In the dual formulation of the Lagrangian in
Eq. 3.16 the input data only appears as inner products, which makes it a perfect
candidate for applying the Kernel trick to a non-linear dataset and classify it
with the linear SVM. In Fig. 3.5 the Kernel trick is illustrated. The dataset is
impossible to separate in the original feature space, but mapped into another
feature space with higher dimensions, the data is now linear separable. Besides
the linear kernel, other choices for kernels are:
Radial Basis Kernel:

k(x(n)
,x(n)�) = e

−
�x(n) − x(n)� �2

2σ2
, (3.25)

Polynomial Kernel:

k(x(n)
,x(n)�) = (x(n) · x(n)� + a)2 , (3.26)
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Figure 3.5: Illustration of the Kernel trick. Figure from [17].

Sigmoidal Kernel:

k(x(n)
,x(n)�) = tanh(ax(n) · x(n)� − b) , (3.27)

and the Matern Kernel:

k(x(n)
,x(n)� ) = 21−v

Γ(v)

�√
2v|x(n) − x

(n)� |
λ

�v

Kv

�√
2v|x(n) − x

(n)� |
λ

�
(3.28)

where Kv is the modified Bessel function and the user defined parameters a, b,
λ and v controls the behaviour of the kernels.

3.5 Kalman Filtering

The Kalman filter is a generative modelling approach that was invented by
R.E. Kalman in 1960 [29]. It provides a set of inference equations to estimate
the underlying state, z ∈ �m, of a linear dynamical system, given some noisy
measurements, x ∈ �n, [33], [20]. Linear dynamic systems takes the dynamic
evolution of the state into account and captures the temporal structure of the
data[41].
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3.5.1 State process estimation

The linear dynamical system with time step k is given by the generative model
below

zk = Hzk−1 + wk−1 , (3.29)

and the noisy measurements, x ∈ �n, are given by

xk = Azk + vk , (3.30)

where wk and vk are random variables and represents the process and measure-
ment noise respectively. These variables are assumed to be independent, white
and normally distributed with covariance Q and R, respectively [23].
H is a state transition model that relates the previous state to the current state
and A is the observation model that relates the state, z, to the measurement x.
By defining a priori state estimate, ẑ−k ∈ �n , at time step k given knowledge
of the process prior to step k, and a posteriori state estimate, ẑk ∈ �n, at time
step k given measurement xk, the equation for calculating a posteriori state
estimate from a linear combination of a priori state estimate is given by

ẑk = ẑ
−
k +K(xk −Aẑ

−
k ) . (3.31)

K is the Kalman gain that controls the residual, given by xk − Aẑ
−
k . The

residual is a measure of the difference between the true measurement xk and
the predicted measurement Aẑ

−
k . The a priori and a posteriori estimate errors

are defined by

e
−
k ≡ zk − ẑ

−
k (3.32)

ek ≡ zk − ẑk , (3.33)

which entail that the a priori and a posteriori estimate error covariance are
given by

P
−
k = E[e−k (e

−
k )

T ] (3.34)
Pk = E[eke

T
k ] . (3.35)

The Kalman gain, K, is chosen to be optimal when the a posteriori estimate
error covariance, Pk, is minimised [43], which is accomplished by substituting
Eq. 3.31 into Eq. 3.33

ek = zk − [ẑ−k +K(xk −Aẑ
−
k )] , (3.36)

and then differentiate Pk with respect to K, where Eq. 3.36 is inserted into Eq.
3.35. The expression for K is then obtained by setting the derivative equal to
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zero and solving for K. An expression for K, when minimising Pk is then given
by [5]:

Kopt =
P

−
k A

T

AP
−
k AT +R

. (3.37)

Inspecting Eq. 3.37 the weighting of the residual by the Kalman gain can be
clarified. When the measurement error covariance goes to zero, Kopt approaches
A

−1, meaning the residual is weighted more and xk is trusted more. If P−
k goes

to zero the gain approach zero too, which will weight the residual less and the
predicted measurement will be trusted more [43].

3.5.2 Kalman Filter Algorithm

The Kalman filter algorithm is a recursive estimator, and can be divided into
two processes; prediction and correction [8]. The prediction phase estimates
the process state at the current time-step from the previous time-step, and the
correction phase provides feedback, the a posteriori estimate, from the knowl-
edge of the values obtained in the prediction step, the a priori estimate. The
prediction process can be described by

ẑ
−
k = Hẑ

−
k−1 and (3.38)

P
−
k = HP

−
k−1H

T +Q , (3.39)

and the correction process by

Kopt =
P

−
k A

T

AP
−
k AT +R ,

(3.40)

ẑk = ẑ
−
k +Kopt(xk −Aẑ

−
k ) and (3.41)

Pk = (I −KoptA)P−
k . (3.42)

To obtain the a posteriori state and error covariance estimate, the Kalman gain
minimised according to the a posteriori estimate error covariance, Pk, is the first
step in the correction phase, and the second step is to obtain the measurement
xk. The two values for Kopt and xk are inserted in to Eq. 3.41 and 3.42. This
is repeated for every time step.

3.5.3 Gaussian Process Model

The definition of a Gaussian Process (GP) is the probability distribution over
functions, f = f

(1)
, f

(2)
, ..., f

(N), for which any subset of samples, X =
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x
(1)

, x
(2)

, ..., x
(N), is normally distributed [8], meaning p(f |X) = N (0,K), where

K is the covariance matrix.
Applying ICA notation:

X = AS , (3.43)

where S is the source matrix and si denotes the ith row in S. Each source is
then assumed to have a GP prior, yielding

p(S) =
I�

i=1

p(si) ,

where p(si) = N (0,Ki)

(3.44)

In [40] it is stated that the optimisation problems for a GP classifier and a
SVM are very similar, because they are both convex. GP’s can accordingly be
interpreted as a probabilistic version of SVM.

3.5.4 Kalman ICA

ICA is a method that tracks the underlying sources in a measured dataset.
The Kalman filter can be viewed as a GP model [31] with independent sources,
meaning the Kalman filter can be applied as an ICA algorithm to separate the
data into different sources in a generative way. The GP source model to ICA
has a cubic complexity and by mapping the GP to a Kalman filter this can be
avoided, and replaced by a linear computational complexity instead [24]. In [24]
it is shown that this mapping can be accomplished for specific choices of kernel
functions such as the Matern Kernel, Eq. 3.28. The details of the mapping of
the temporal GP to the Kalman model is quite complex and the details given
in [24].
In the Kalman approach the mixing matrix is estimated via the Kalman gain
and the sources/states are estimated by the two-step recursive Kalman filter,
Eq. 3.38 to 3.42.
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Chapter 4

Methods and
Implementation

In this chapter the methods applied is this thesis, and how these are imple-
mented are described. The first section introduces the data set including facts
and how data is recorded. The next three sections concerns the feature extrac-
tion methods and how the feature matrix is obtained. Finally the last sections
explains the implementation of the classifiers including parameter settings and
cross-validation.

4.1 Software and Toolboxes

The following software and toolboxes has been applied to do the processing and
analysis of the EEG data.

• Matlab version 7.12.0. All programming and toolbox used have been car-
ried out in Matlab.

• EEGlab [14]. The toolbox has been used to pre-process data and extract
ICA components.
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• Modified K nearest neighbour script from [22], used to perform KNN train-
ing and testing.

• Naive Bayes Classifier toolbox in Matlab. The toolbox has been applied
to create a Naive Bayes Classifier for both training and test.

• LIBSVM [10]. Support vector machine toolbox. Compiled and applied in
Matlab to train data and test its performance with a linear classifier.

• Modified script for Kalman ICA, original made by Ricardo Henao. The
code has been used to extract Kalman ICA components, used as features.

4.2 Data Acquisition and Preprocessing

The EEG data was obtained at Department of Psychiatry, Hvidovre Hospital,
University Hospital of Copenhagen, Denmark, by Sidse M. Arnfred. The data
was provided to analysis in this thesis by Morten Mørup. Recordings from five
healthy persons with 72 electrodes have been applied, but it is only the first
64 scalp electrodes, that is actually used, because the last eight electrodes only
contains noise and reference electrodes. The 64 scalp electrodes are located
according to the 10-10 system, and channel 65 and 66 are reference electrodes
located on the earlobes. The exact channel location of the 64 scalp electrodes
can be obtained in Appendix A.
The five subjects are stimulated with two different stimuli; pulling of the left
and right hand, respectively. These two stimuli are repeated 120 times each
with a two seconds interval, starting with a right pull. This makes a total of 240
alternating left and right stimuli per subject [2]. The provided data is sampled
in Labview with a passband from 0.1-160 Hz and a sampling frequency of 2048
Hz, that was down-sampled to 512 Hz [34]. To correct for drift in the data,
EEGlab’s FIR filter function was used to high pass the data at 3 Hz. The
format of the data is .bdf, meaning channel location and epochs information is
included in the datafile and can be imported into EEGlab.

4.3 Feature Extraction

The extraction of features from the raw EEG signal is essential when applying
a classifier to separate data in to different stimuli. In this thesis three types of
features are tested with the classifiers. These are:

• Features from raw time series.
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• Features from Infomax ICA components

• Features from Kalman ICA components

The extraction of these three kinds of features is explained in the following
section.

4.3.1 Raw Time Series

The raw time series features are applied in the classification task as a reference
measure, because if the time features show better result than the ICA features,
it seem rather unnecessary to even bother performing ICA. Using time series as
features is initialised with dividing the data in to epochs in EEGlab, where one
epoch contains information from one stimuli (either left or right). The epochs
were chosen to contain information from stimuli start to 1.5 seconds after, and
given a 512 Hz sampling frequency this yield a three dimensional dataset with
the dimensions 240 × 64 × 768 (epochs × channels × frames). The data is
normalised over channels to avoid domination of features in greater numeric
ranges over features with lower numeric ranges [26], and the features for each
epoch are the information from channels× frames. This results in 240 feature
vectors, one for each epoch, with size 64 × 768 = 49152. The feature matrix
(epochs× features) is sorted by alternating right and left stimuli.

4.3.2 Infomax ICA Components

The extraction of Infomax ICA components is done by the run ICA option in
EEGlab, and initially the function normalises the data by removing the mean
for each channel [15]. The Infomax ICA algorithm, explained in Sec. 2.1,
is done before the division of the data into epochs and it returns a weight
vector, which inverted and multiplied with the original EEG data yields the
ICA components. Finding the weight vectors is an iterative process, and the
weights are adjusted according to Eq. 2.11, meaning the optimal weights are
found when ∆W is small enough. The algorithm stops when the user specified
value for ∆W is reached, or after 512 iterations, and the component is ordered
according to how much of the data they account for, starting with the component
that accounts for the most [15]. The number of output components is the same
as the number of input channels, i.e. 64, but the number of components used for
classification in this thesis is ten. The final feature matrix is similar to the one
for time series data but with the component information instead of raw signal
as features, meaning the feature matrix is given by epochs × features, where
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features = components×frames. Illustrations of time and spatial components
can be seen in Sec. 2.2.

4.3.3 Kalman ICA Components

The Kalman ICA components are obtained by a modified version of a Matlab
script made by Ricardo Henao. The algorithm is performed on the continuous
high pass filtered data that is not divided into epochs. The components are
found by inference by the implementation of Gibbs sampling (forward filter)
[19] and backward sampling. Since the method is very computational expensive
the code was run on IMM’s clusters, and the number of output components
is only ten. The ten output components are used as features for classification
by loading them into EEGlab and dividing them in to epochs. This results in
a feature matrix with the dimensions epochs × features, where features =
10× 768 = 7680.

4.4 Classification

The whole point of classification is to classify a dataset into different classes. In
this thesis the number of classes is two, and three very different classifiers has
been tested on the above described features to perform the task of classifying
the data. The three classifiers are:

• K Nearest Neighbour

• Naive Bayes Classifier

• Support Vector Machine

The data set is divided into a test and a training set, and the test set consists
of 20% (48 epochs) of the data and the training set of the remaining 80% (192
epochs). In order to use all data points as both training and test points [40], a 5-
fold cross-validation algorithm is implemented, and the error rate is represented
by the average of these five folds. The 5-fold cross-validation is illustrated in Fig.
4.1. The error rates are obtained by comparing the known true class label with
the class labels predicted by the three classifiers. In the following sections the
implementation of the classifiers is described. For the purpose of validation all
of the classifiers have been tested on an artificial dataset with two very different
stimuli, and all classifiers separated the stimuli perfectly.
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Figure 4.1: The applied 5-fold cross-validation method.

4.4.1 K Nearest Neighbour

The KNN algorithm is a modified version of the script from [22]. The algorithm
is provided with a training and test data with corresponding class labels, as
described above, and initially calculates the optimal value for K by the nested
cross-validation method. The optimal K with a maximum value of 191 (see Sec.
3.2), is applied when calculating the error rate for the test set.

4.4.2 Naive Bayes Classifier

The NBC algorithm is implemented by the use of the built-in toolbox in Matlab,
and the function consists of a fitting and predicting part. In the fitting step the
decision boundary is created by applying the training set, and additionally the
function calculates the prior probability from the class labels. The only user
specified option is the distribution used for fitting the data, which is chosen to
be Gaussian. In the predicting step the decision boundary, obtained from the
fitting step, is applied to the test set and thereby provides an error rate. A
detailed description of the NBC algorithm is provided in Sec. 3.3.
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4.4.3 Support Vector Machine

The LIBSVM package has been applied to implement a SVM for classification.
The toolbox provides a model function that creates a hyperplane from the train-
ing set, and a test function that uses this hyperplane to classify the test set.
The training step creates the optimal hyperplane by calculating the Support
Vectors, w and b [12]. The SVM algorithm is explained in Sec. 3.4, where de-
tails regarding the calculation of the optimal hyperplane can be found. Different
types of kernels can be applied in the LIBSVM package, but in this thesis only
the linear kernel has been tested. The regularisation parameter, T , is set to
default, because it is not a priority to test the effect of varying T . The default
value of T is 1.
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Results

This chapter concerns the results obtained in this thesis. The first section
presents a comparison of the performance of the three classifiers for each of
the different types of features. In addition percentage and visualisation of the
significant different features between the two classes are provided. The second
section contains a visual inspection of the ICA components averaged over epochs.

5.1 Classification of Left and Right Stimuli

In the following the results for classification of left and right stimulation for five
different subjects are represented. The results are, as mentioned previously, an
average of five error rates, obtained by 5-fold cross-validation. The number of
right and left stimulation is equal, and a random pick of an epoch is therefore
50% for both classes, meaning in order for the classifiers to be better than
flipping a coin the error rates has to be below 50%.
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5.1.1 Time series features

The error rates for normalised time features for the five subjects are shown in
Tab. 5.1. In general the classifiers perform almost equally good for the five
subjects, but for KNN and NBC the error rates are very high and in some cases
close to 50%. The NBC seems to perform just a tiny bit better than KNN,
but non of them show impressive results. The best performance is 43.75% and
41.25% for KNN and NBC, respectively. The SVM classifier clearly provides the
lowest error rates compared to the other two, and the error rate accomplished
for subject 5 is 29.17% and is the lowest seen.

Table 5.1: Error rates for classification with three different classifiers for the
five subjects with normalised time series features.

Classifier/Subjects 1 2 3 4 5
KNN 0.4458 0.4375 0.4750 0.4542 0.4667
NBC 0.4208 0.4750 0.4292 0.4125 0.4292
SVM 0.3167 0.3375 0.3250 0.3083 0.2917

5.1.2 Infomax ICA Components

The error rates, obtained by applying the Infomax ICA components, for the
five subjects are shown in Tab. 5.2. The features are not normalised, because
this is done as a part of the ICA algorithm in EEGlab. The error rates are
obtained by applying the ten components that account for most of the data in
the classification process despite the fact that the algorithm provides 64. This is
done to make the results comparable to the Kalman ICA components. Results
for 16, 30 and 64 components are provided in Appendix B.

Table 5.2: Error rates for classification with three different classifiers for the
five subjects with 10 Infomax ICA components as features.

Classifier/Subjects 1 2 3 4 5
KNN 0.4292 0.4417 0.4500 0.3708 0.4417
NBC 0.3042 0.4250 0.4625 0.2625 0.4958
SVM 0.2125 0.3417 0.3750 0.2833 0.3750

The error rates for KNN is in general very high, whereas the results for NBC
are rather varying between subjects, spanning from 26.25% to 49.58%. The best
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performance is accomplished by the SVM, and the lowest error rate on 21.25%
is obtained for subject 1 with the SVM classifier.

5.1.3 Kalman ICA Components

The classifiers are tested on both normalised and non-normalised Kalman ICA
components, and the obtained error rates are listed in Tab. 5.4 and 5.3, respec-
tively. The general performance is much better than the performance for time
series, and a little better than Infomax ICA, except for a few outliers.

Table 5.3: Error rates for classification with three different classifiers for the
five subjects with non-normalised Kalman ICA components as fea-
tures.

Classifier/Subjects 1 2 3 4 5
KNN 0.5625 0.4375 0.3750 0.2917 0.4167
NBC 0.3667 0.4542 0.3542 0.3667 0.3292
SVM 0.2083 0.1917 0.1333 0.2458 0.2125

The effect of normalising is ambiguous, but in most cases the performance is
better or the same with the exception of the two highlighted values in Tab. 5.4.
The lowest error rate for KNN is 29.17% obtained with the non-normalised fea-

Table 5.4: Error rates for classification with three different classifiers for the
five subjects with normalised Kalman ICA components as features.

Classifier/Subjects 1 2 3 4 5
KNN 0.4583 0.3542 0.3750 0.4375 0.4583
NBC 0.3667 0.4542 0.3542 0.3667 0.3292
SVM 0.1333 0.1792 0.1292 0.2458 0.2167

tures, and the best performance for NBC and SVM obtained with normalised
components is 32.92% and 12.92%, respectively. Again the SVM seems to per-
form the best.

5.1.4 Comparison of Classifiers and Features

An average of the error rates has been calculated to compare the features and
classifiers. The pattern in Tab. 5.5 is pretty clear; the best classifier is the SVM
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and the best features for classification is the normalised Kalman ICA compo-
nents. The overall lowest error rate is 12.92% for subject 3 with normalised
Kalman ICA components, classified by SVM, see Tab. 5.4. From Tab. 5.5

Table 5.5: Error rates averaged over subjects for all three classifiers and fea-
tures. The Kalman ICA components is normalised.

Classifier/Features Time series Infomax ICA Kalman ICA
KNN 0.4558 0.4267 0.4167
NBC 0.4333 0.3900 0.3742
SVM 0.3158 0.3175 0.1808

it is also evident that the ten Kalman ICA components are more well suited
for classification than the ten Infomax ICA components for the data applied
in this thesis. In Fig. 5.1 20 right and left epochs for subject 3 are shown for
two random Kalman features in feature-space. Even though this is only two
out of 7680 features, distinction between the two classes in the two dimensional
feature-space is visible.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

 
left stimuli
right stimuli

Figure 5.1: 20 right and left stimulation for subject 3 shown in feature space
for two random features.
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5.1.5 Significant Different Features between Left and Right
Stimuli

Another way to illustrate the suitability of the three feature types for classifi-
cation, is to calculate the amount of features that shows significant difference
between the two classes. This is done by a simple two-sample t-test that reveals
how many and which features that show significant difference between the two
stimuli. In Tab. 5.6 the percentage of significant different features with a sig-
nificance level at 1% for all subjects is shown. Hence the higher the value the
more significant difference is seen for the features.

Table 5.6: Percentage of significant different features.

Classifier/Subjects 1 2 3 4 5
Time series 0.4 0.5 0.4 1.0 0.6
Infomax ICA 1.9 1.1 0.7 1.7 0.5
Kalman ICA 2.0 1.5 2.0 2.0 1.5

The percentage of significant different features in Tab. 5.6 is very low and the
highest value is 2%, but the pattern is almost unambiguous, and corresponds to
the classification performance yield by the three types of features, meaning the
highest percentages are obtained by using the Kalman features, and the lowest
by using the time features. In Fig. 5.2, 5.3 and 5.4 the distribution accord-
ing to channels/components and time after stimuli of the significant different
features for subject 3 is visualised. Figures for the other subjects are provided
in Appendix C. These figures show that the discrimination between features is
more pronounced right after the start of the stimuli. Especially around 0.1 and
0.6 seconds after stimuli in Fig. 5.2 and 5.4, the significant different features
are in the majority. In Fig. 5.4 for the Kalman features component two, seven
and nine seem to be contributing most to the significant features, and for the
Infomax features in Fig. 5.3, five is the most dominant component. However the
time pattern around 0.1 and 0.6 seconds is not as pronounced for these features.
In Fig. 5.2 it is verified that the channels covering motor cortex are the channels
that contribute with most feature difference.
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Figure 5.2: Visualisation of significant different features for time series for
subject 3.

Time

C
om

po
ne
nt
s

0 200 400 600 800 1000 1200 1400

1

2

3

4

5

6

7

8

9

10

11

Figure 5.3: Visualisation of significant different features for Infomax ICA com-
ponents for subject 3.
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Figure 5.4: Visualisation of significant different features for Kalman ICA com-
ponents for subject 3.

5.2 Visualisation of ICA Components

In Sec. 5.1.4 it was established that the ten Kalman ICA components shows
better results than the ten Infomax ICA components in the classification task,
and especially for subject 3 the performance difference is evident. Accordingly,
a visual inspection of the ICA components for subject 3 is provided in this sec-
tion. Besides, the visualisation can be applied for artifact detection. To study
the general pattern of the left and right stimuli an average over epochs has
been calculated. Fig. 5.5 is the average for Infomax ICA components and Fig.
5.6 is the averaged Kalman ICA components. Figures for the other subjects is
provided in Appendix D. The Kalman and Infomax ICA components are visual
very different from each other. The Infomax components contain in general
more high frequencies in the ten components, whereas the Kalman components
shows lower frequency content in some components. Discriminating between
left versus right stimuli for Infomax components in Fig. 5.5 is a little difficult
partly because of the high frequent nature of the components and furthermore
the majority of the components is very similar.
The distinction between the left and right stimuli for the Kalman components
in Fig. 5.6 is a little more pronounced. In Fig. 5.6 it is evident that most of
the components shows activity at 0.1 and 0.6 seconds after stimuli start. The
third component is almost identical for the two stimuli, whereas component two,
seven and nine show distinction in the nature of the activation between the two
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stimuli. This indicates that component two, seven and nine might be related
to stimuli, whereas component three probably is caused by an artifact. The
visualisation in Fig. 5.4 showed significant different features between the two
classes at the same time and components as in Fig. 5.6, and therefore suggests
that these activations are stimuli related.
In Fig. 5.3 five was the most dominant component, which corresponds to the
visualisation of the component in Fig. 5.5, meaning the difference between left
and right stimuli is conspicuous. The averaged Infomax ICA component five
and Kalman ICA component two with errorbars are provided In Fig. 5.7 and
5.8, respectively. These are examples of visual distinguishable components in
Fig. 5.5 and 5.6, but the size of the error bars indicates that the obvious visual
difference should be taken with precautions.
The activation at 0.1 and 0.6 seconds is visible in the Infomax ICA components
as well and especially component six in Fig. 5.5 illustrates this phenomena.
Component six for the two stimuli is very similar and this could be the iden-
tification of an artifact, since the activation occurs independently of stimuli type.
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Figure 5.5: Epoch-averaged Infomax ICA components for both left and right
stimuli for subject 3.
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Figure 5.6: Epoch-averaged normalised Kalman ICA components for both left
and right stimuli for subject 3.
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Figure 5.7: Epoch-averaged Infomax ICA component five for both left and
right stimuli with errorbars for subject 3.
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Figure 5.8: Epoch-averaged Kalman ICA component two for both left and
right stimuli with errorbars for subject 3.
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Chapter 6

Discussion

This chapter contains a discussion of the result obtained in Chapter 5. The first
section concerns possible explanation for high and low performance for both
classifiers and feature extraction methods. The second section is an analysis of
the visualisation of the components, and a comparison of the visualisations with
the classification performance. Finally, the last section provides suggestions for
areas to improve and explore in continuation of this thesis.

6.1 Classification Performance

The results of classification of left and right stimuli are very dependent on both
classification and feature extraction method. In general the highest error rates
are provided by the time series features and on average over subjects, Tab.
5.5, the time series features show the worst performance. This tendency is not
unexpected, because even though the amount of information is bigger than for
the ICA features, no attempt to concentrate or separate the features has been
performed, and it is likely that most of the information is contributing with noise
instead of valuable information related to stimuli. The Infomax ICA algorithm
provides on average the second best type of feature for classification, which is
likely to be related to the concentration of the informative features in the ten
components. However Tab. 5.2 and 5.1 showed that in some cases the Infomax
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ICA features are outmatched by the time series features. This can be explained
by the lack of tracking stimuli related components in the ten components and
loss of valuable information instead of concentration. This is consistent with
Tab. 5.6, since low percentage of significant different features is correlated
with high error rate. The Kalman ICA components are evidently providing
the best features for classification on the dataset used in this thesis, and the
lowest obtained error rate is 13%. This suggests that the Kalman filtering
approach is more capable of detecting the temporal stimuli than the Infomax
ICA algorithm. The better performance is probably caused by the temporal
aspect of the Kalman filter that facilitates capturing of the temporal evolution
of the data. Furthermore, the percentage of significant different features is the
highest, and accordingly a concentration of more of the important information
most be collected in the ten components than in the ten ICA components.
From a general perspective the two simple classifiers, KNN and NBC, is clearly
performing worse than the SVM classifier, which is probably because of the
similarity between the two types of stimuli in the EEG signal. Accordingly the
classifiers are not able to create a decision boundary that completely separates
the two classes. The SVM classifier accomplish the lowest error rates, and this
is likely to be caused by the more advanced nature of this classifier compared
to KNN and NBC. The t-test reveals that only around 2% of the Kalman ICA
features is different between the two stimuli, but the SVM classifier is able to
find a hyperplane that classifies the data with an accuracy of 87% for some
subjects.

6.2 Visual Comparison of ICA Components

The visual inspection of the ICA components reveals that the Kalman and In-
fomax algorithms divide the EEG data into very different components, and this
is probably the reason for the variation between the classification performance.
Furthermore, the visual distinction between the two stimuli is harder to track
for the Infomax components than for the Kalman components. Consequently
the visualisation of the ICA components corresponds fairly good to the classifi-
cation results, discussed above.
The averaged components showed peaks/valleys at 0.1 and 0.6 seconds after
stimuli start, but it is difficult to conclude if it originates from stimuli, artifacts
or a combination. The difference between left and right stimuli in component
two for the averaged Kalman components suggest the peak being caused by
stimuli, but the size of the error bars, obtained in figure 5.8 limits the credibil-
ity of the visual distinction. However the obvious similarity in component three
suggests that the peaks being caused by artifact. Comparing the concentration
of significant different features at 0.1 and 0.6 seconds after stimuli with the ICA
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components makes a strong indication of the peaks/valleys being stimuli related.
Finally, the visual inspection of component three, seven and nine for the kalman
algorithm in Fig. 5.4 and 5.6 is consistent.

6.3 Future Work

The Kalman ICA algorithm applied to EEG data shows promising results, and
a further investigation of the application of this could be interesting. The algo-
rithm is currently very heavy and an optimisation would accordingly be desirable
in the long run. In addition it could be attractive to reformulate the algorithm to
a plug-in, which could be used in e.g. EEGlab, since the Kalman ICA algorithm
returns a different result than the Infomax ICA. Finally, further development of
the Kalman algorithm to perform the original object of this thesis could be of
great interest.
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Chapter 7

Conclusion

Classification of left and right hand-pull stimuli by applying EEG data from
five subjects has been carried out. By using the ten temporal Kalman ICA
components as features the lowest error rate on 13% was accomplished. The
best results for time series and ten temporal Infomax ICA features were 29%
and 21%, respectively. All of the three error rates were obtained by applying
the SVM classifier, which in general performs way better than the KNN and
NBC classifiers. The paradigm prepare the ground for temporal distinction
between the two classes, and the Kalman features classified by SVM prove that
this discrimination indeed can be obtained. Even though the percentage of
significant different features between the two stimuli is low for all three features
with a maximum of 2%, it corresponds to the classification performance and
provides a verification of the results.
The visual inspection of the ten ICA components together with the visualisation
of the significant different features between the two stimuli showed that some
components are related to stimuli, whereas others might be caused by artifacts.
In addition activation around 0.1 and 0.6 seconds after stimuli was observed and
the components with significant different features showed visual distinction as
well.
It can be concluded that the Kalman ICA components for the data used in
this thesis captures the stimuli in the EEG signal despite the fact that some
components are most likely to be noise and artifact related. Accordingly, the
components are well suited as features in a classification task.
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64 of 72 electrode locations shown
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Figure A.1: Channel location for the 64 scalp electrode, placed according to
the 10-10 system
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Table B.1: Error rates for classification with three different classifiers for the
five subjects with 16 Infomax ICA components as features.

Classifier/Subjects 1 2 3 4 5
KNN 0.3667 0.3917 0.5125 0.4083 0.4042
NBC 0.2625 0.4042 0.4250 0.2458 0.4750
SVM 0.2042 0.3083 0.3500 0.2083 0.3917

Table B.2: Error rates for classification with three different classifiers for the
five subjects with 30 Infomax ICA components as features.

Classifier/Subjects 1 2 3 4 5
KNN 0.4417 0.3750 0.4625 0.3792 0.3833
NBC 0.2292 0.4542 0.3083 0.1875 0.4208
SVM 0.1667 0.2250 0.2667 0.1750 0.3042

Table B.3: Error rates for classification with three different classifiers for the
five subjects with 64 Infomax ICA components as features.

Classifier/Subjects 1 2 3 4 5
KNN 0.4458 0.3958 0.4625 0.3625 0.4667
NBC 0.1875 0.3375 0.2375 0.4000 0.3083
SVM 0.1583 0.2042 0.2542 0.1708 0.2833
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Figure C.1: Visualisation of significant different features for time series. Sub-
ject 1.
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Figure C.2: Visualisation of significant different features for Infomax ICA
components. Subject 1.
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Figure C.3: Visualisation of significant different features for Kalman ICA com-
ponents. Subject 1.
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Figure C.4: Visualisation of significant different features for time series. Sub-
ject 2.
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Figure C.5: Visualisation of significant different features for Infomax ICA
components. Subject 2.
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Figure C.6: Visualisation of significant different features for Kalman ICA com-
ponents. Subject 2.
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Figure C.7: Visualisation of significant different features for time series. Sub-
ject 4.
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Figure C.8: Visualisation of significant different features for Infomax ICA
components. Subject 4.
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Figure C.9: Visualisation of significant different features for Kalman ICA com-
ponents. Subject 4.
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Figure C.10: Visualisation of significant different features for time series. Sub-
ject 5.
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Figure C.11: Visualisation of significant different features for Infomax ICA
components. Subject 5.
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Figure C.12: Visualisation of significant different features for Kalman ICA
components. Subject 5.
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Figure D.1: Averaged Infomax ICA components for both left and right stimuli.
Subject 1.
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Figure D.2: Averaged normalised Kalman ICA components for both left and
right stimuli. Subject 1.
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Figure D.3: Averaged Infomax ICA components for both left and right stimuli.
Subject 2.
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Figure D.4: Averaged normalised Kalman ICA components for both left and
right stimuli. Subject 2.
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Figure D.5: Averaged Infomax ICA components for both left and right stimuli.
Subject 4.
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Figure D.6: Averaged normalised Kalman ICA components for both left and
right stimuli. Subject 4.
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Figure D.7: Averaged Infomax ICA components for both left and right stimuli.
Subject 5.
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Figure D.8: Averaged normalised Kalman ICA components for both left and
right stimuli. Subject 5.
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